
COLLABORATIVE LEARNING: THEORY, ALGORITHMS, AND
APPLICATIONS

By

Kaixiang Lin

A DISSERTATION

Submitted to
Michigan State University

in partial fulfillment of the requirements
for the degree of

Computer Science — Doctor of Philosophy

2020

ABSTRACT

COLLABORATIVE LEARNING: THEORY, ALGORITHMS, AND APPLICATIONS

By

Kaixiang Lin

Human intelligence prospers with the advantage of collaboration. To solve one or a set

of challenging tasks, we can effectively interact with peers, fuse knowledge from different

sources, continuously inspire, contribute, and develop the expertise for the benefit of the

shared objectives. Human collaboration is flexible, adaptive, and scalable in terms of various

cooperative constructions, collaborating across interdisciplinary, even seemingly unrelated

domains, and building large-scale disciplined organizations for extremely complex tasks. On

the other hand, while machine intelligence achieved tremendous success in the past decade,

the ability to collaboratively solve complicated tasks is still limited compared to human

intelligence.

In this dissertation, we study the problem of collaborative learning - building flexible,

generalizable, and scalable collaborative strategies to facilitate the efficiency of learning one

or a set of objectives. Towards achieving this goal, we investigate the following concrete and

fundamental problems: 1. In the context of multi-task learning, can we enforce flexible forms

of interactions from multiple tasks and adaptively incorporate human expert knowledge to

guide the collaboration? 2. In reinforcement learning, can we design collaborative methods

that effectively collaborate among heterogeneous learning agents to improve the sample-

efficiency? 3. In multi-agent learning, can we develop a scalable collaborative strategy to

coordinate a massive number of learning agents accomplishing a shared task? 4. In federated

learning, can we have provable benefit from increasing the number of collaborative learning

agents?

This thesis provides the first line of research to view the above learning fields in a unified

framework, which includes novel algorithms for flexible, adaptive collaboration, real-world

applications using scalable collaborative learning solutions, and fundamental theories for

propelling the understanding of collaborative learning.

ACKNOWLEDGMENTS

First and foremost, I would like to thank my advisor, Dr. Jiayu Zhou, for his advice,

encouragement, inspirations, and endless support for my research and career. Throughout

the past five years at Michigan State University, Dr. Zhou has always influenced me with his

curiosity, passion, and persistence of research. He is willing to discuss the grant picture of the

research and provide constructive suggestions in the technical details. Meanwhile, despite

being creative and productive, he also gives me the freedom to work on a variety of problems,

even some are not aligned with his interest. I would like to thank Drs. Jiliang Tang, Zhaojian

Li, and Anil K. Jain for being on my thesis committee.

I’m very happy to have had the opportunity to collaborate with the wonderful group

of colleagues, faculty, and researchers throughout my Ph.D. For the work presented in this

dissertation, I enjoyed working with Dr. Jianpeng Xu, Dr. Inci M. Baytas, Dr. Shuiwang Ji,

Dr. Shu Wang, Renyu Zhao, Dr. Zhe Xu, Zhaonan Qu, Dr. Zhaojian Li, Dr. Zhengyuan

Zhou and Dr. Jiayu Zhou. I thank them for their contributions and for everything they have

taught me. Besides the work presented in this thesis, I also had the pleasure of working

with many outstanding researchers, including Liyang Xie, Dr. Fei Wang, Dr. Pang-Ning

Tan, Fengyi Tang, Ikechukwu Uchendu, Boyang Liu, Ding Wang, Zhuangdi Zhu, and Dr. Bo

Dai. I would like to thank all of my amazing colleagues in ILLIDAN lab: Qi Wang, Dr. Inci

M. Baytas, Liyang Xie, Mengying Sun, Fengyi Tang, Boyang Liu, Zhuangdi Zhu, Junyuan

Hong, Xitong Zhang and Ikechukwu Uchendu for a collaborative, friendly, and productive

environment.

I also want to express my sincere thanks to the amazing colleagues I met during the

internships, including Dr. Pinghua Gong, Wei Chen, Guojun Wu, Zhengtian Xu, Hongyu

iv

Zheng, Jintao Ke, Huaxiu Yao, Dan Wang, Lili Cao, Lingkai Yang, Qiqi Wang, Dr. Yaguang

Li, Dr. Peng Wang, Dr. Jie Wang, Chao Tao, Dr. Jia Chen, and Dr. Youjie Zhou. Many

thanks to Dr. Pinghua Gong, Dr. Peng Wang, for hosting me as an intern at Didi Chuxing

in 2017 and 2018. I am also most thankful to Dr. Jia Chen and Dr. Youjie Zhou for their

patience and endless help during my internship at Google in 2019.

Finally, I thank my parents, for their unconditional love and support.

v

TABLE OF CONTENTS

LIST OF TABLES . ix

LIST OF FIGURES . xi

LIST OF ALGORITHMS . xiv

Chapter 1 Introduction . 1
1.1 Dissertation Contributions . 2

1.1.1 Model-driven collaboration . 2
1.1.2 Data-driven collaboration . 4
1.1.3 Large-scale Collaborative Multi-agent Learning 5
1.1.4 The Provable Advantage of Collaborative Learning 6

1.2 Dissertation Structure . 7

Chapter 2 Background . 9
2.1 Collaborative Learning Problem Formulation 9
2.2 A Taxonomy of Collaboration . 11

2.2.1 Model-Driven Collaboration . 11
2.2.2 Data-driven Collaboration . 12
2.2.3 Collaborative Multi-agent Learning 13

Chapter 3 Model-Driven Collaborative Learning 14
3.1 Multi-Task Feature Interaction Learning . 15

3.1.1 Introduction . 15
3.1.2 Related Work . 18
3.1.3 Task relatedness in high order feature interactions 22
3.1.4 Formulations and algorithms of the two MTIL approaches 27

3.1.4.1 Preliminary . 28
3.1.4.2 Shared Interaction Approach 28
3.1.4.3 Embedded Interaction Approach 31

3.1.5 Experiments . 35
3.1.6 Synthetic Dataset . 35

3.1.6.1 Effectiveness of modeling feature interactions 35
3.1.6.2 Effectiveness of MTIL . 37

3.1.7 School Dataset . 39
3.1.8 Modeling Alzheimer’s Disease . 40
3.1.9 Discussion . 41

3.2 Multi-Task Relationship Learning . 42
3.2.1 Introduction . 42
3.2.2 Related Work . 46
3.2.3 Interactive Multi-Task Relationship Learning 49

vi

3.2.3.1 Revisit the Multi-task Relationship Learning 49
3.2.3.2 The iMTRL Framework . 52
3.2.3.3 A knowledge-aware extension of MTRL 54
3.2.3.4 Efficient Optimization for kMTRL 56
3.2.3.5 Batch Mode Pairwise Constraints Active learning 59

3.2.4 Experiments . 61
3.2.4.1 Importance of High-Quality Task Relationship 61
3.2.4.2 Effectiveness of Query Strategy 63
3.2.4.3 Interactive Scheme for Query Strategy 64
3.2.4.4 Performance on Real Datasets 65

3.2.5 Case Study: Brain Atrophy and Alzheimer’s Disease 67

Chapter 4 Data-Driven Collaborative Learning 71
4.1 Collaborative Deep Reinforcement Learning 71

4.1.1 Introduction . 71
4.1.2 Related Work . 76
4.1.3 Background . 79

4.1.3.1 Reinforcement Learning . 79
4.1.3.2 Asynchronous Advantage actor-critic algorithm (A3C) . . . 80
4.1.3.3 Knowledge distillation . 81

4.1.4 Collaborative deep reinforcement learning framework 82
4.1.5 Collaborative deep reinforcement learning 83
4.1.6 Deep knowledge distillation . 85
4.1.7 Collaborative Asynchronous Advantage

Actor-Critic . 88
4.1.8 Experiments . 91

4.1.8.1 Training and Evaluation . 91
4.1.8.2 Certificated Homogeneous transfer 91
4.1.8.3 Certificated Heterogeneous Transfer 93
4.1.8.4 Collaborative Deep Reinforcement Learning 96

4.2 Ranking Policy Gradient . 97
4.2.1 Introduction . 97
4.2.2 Related works . 98
4.2.3 Notations and Problem Setting . 100
4.2.4 Ranking Policy Gradient . 100
4.2.5 Off-policy Learning as Supervised Learning 106
4.2.6 An algorithmic framework for off-policy learning 113
4.2.7 Sample Complexity and Generalization Performance 115
4.2.8 Supervision stage: Learning efficiency 117
4.2.9 Exploration stage: Exploration efficiency 120
4.2.10 Joint Analysis Combining Exploration and Supervision 122
4.2.11 Experimental Results . 123
4.2.12 Ablation Study . 125
4.2.13 Conclusion . 127

vii

Chapter 5 Collaborative Multi-Agent Learning 128
5.1 Introduction . 128
5.2 Related Works . 132
5.3 Problem Statement . 134
5.4 Contextual Multi-Agent Reinforcement Learning 137

5.4.1 Independent DQN . 137
5.4.2 Contextual DQN . 138
5.4.3 Contextual Actor-Critic . 140

5.5 Efficient allocation with linear programming 143
5.6 Simulator Design . 148
5.7 Experiments . 151

5.7.1 Experimental settings . 151
5.7.2 Performance comparison . 152
5.7.3 On the Efficiency of Reallocations . 155
5.7.4 The effectiveness of averaged reward design 158
5.7.5 Ablations on policy context embedding 159
5.7.6 Ablation study on grouping the locations 160
5.7.7 Qualitative study . 161

5.8 Conclusion . 162

Chapter 6 The Provable Advantage of Collaborative Learning 164
6.1 Introduction . 164
6.2 Setup . 167

6.2.1 The Federated Averaging (FedAvg) Algorithm 168
6.2.2 Assumptions . 169

6.3 Linear Speedup Analysis of FedAvg . 170
6.3.1 Strongly Convex and Smooth Objectives 170
6.3.2 Convex Smooth Objectives . 172

6.4 Linear Speedup Analysis of Nesterov Accelerated FedAvg 174
6.4.1 Strongly Convex and Smooth Objectives 174
6.4.2 Convex Smooth Objectives . 175

6.5 Geometric Convergence of FedAvg in the Overparameterized Setting 176
6.5.1 Geometric Convergence of FedAvg in the Overparameterized Setting . 177
6.5.2 Overparameterized Linear Regression Problems 178

6.6 Numerical Experiments . 180

Chapter 7 Conclusion . 182

APPENDICES . 185
Appendix A Ranking Policy Gradient . 186
Appendix B Federated Learning . 215

BIBLIOGRAPHY . 277

viii

LIST OF TABLES

Table 3.1: Examples of common smooth loss functions. 27

Table 3.2: Performance comparison MTIL and baselines on the School dataset 40

Table 3.3: Performance comparison MTIL and baselines on the ADNI dataset. 41

Table 3.4: The average RMSE of query and random strategy on testing dataset over 5
random splitting of training and validation samples. 63

Table 3.5: The RMSE comparison of kMTRL and baselines. 63

Table 3.6: The name of the brain regions in Figure 3.8, where (C) denotes cortical
parcellation and (W) denotes white matter parcellation. 67

Table 4.1: Notations for Section 4.2. 101

Table 5.1: Performance comparison of competing methods in terms of GMV and order
response rate without reposition cost. 155

Table 5.2: Performance comparison of competing methods in terms of GMV, order
response rate (ORR), and return on invest (ROI) in Xian considering
reposition cost. 155

Table 5.3: Performance comparison of competing methods in terms of GMV, order
response rate (ORR), and return on invest (ROI) in Wuhan considering
reposition cost. 156

Table 5.4: Effectiveness of contextual multi-agent actor-critic considering reposition
costs. 156

Table 5.5: Effectiveness of averaged reward design. 159

Table 5.6: Effectiveness of context embedding. 159

Table 5.7: Effectiveness of group regularization design 161

ix

Table 6.1: Convergence results for FedAvg and accelerated FedAvg. Throughout the paper, N
is the total number of local devices, and K ≤ N is the maximal number of devices
that are accessible to the central server. T is the total number of stochastic updates
performed by each local device, E is the local steps between two consecutive
server communications (and hence T/E is the number of communications). †

In the linear regression setting, we have κ = κ1 for FedAvg and κ =
√
κ1κ̃ for

accelerated FedAvg, where κ1 and
√
κ1κ̃ are condition numbers defined in Section

6.5. Since κ1 ≥ κ̃, this implies a speedup factor of
√

κ1
κ̃ for accelerated FedAvg. 166

Table A.1: A comparison of studies reducing RL to SL. The Objective column denotes
whether the goal is to maximize long-term reward. The Cont. Action
column denotes whether the method is applicable to both continuous and
discrete action spaces. The Optimality denotes whether the algorithms can
model the optimal policy. X† denotes the optimality achieved by ERL is
w.r.t. the entropy regularize objective instead of the original objective on
return. The Off-Policy column denotes if the algorithms enable off-policy
learning. The No Oracle column denotes if the algorithms need to access to
a certain type of oracle (expert policy or expert demonstrations). 189

Table A.2: Hyperparameters of RPG network . 213

Table B.1: A high-level summary of the convergence results in this paper compared to
prior state-of-the-art FL algorithms. This table only highlights the depen-
dence on T (number of iterations), E (the maximal number of local steps),
N (the total number of devices), and K ≤ N the number of participated
devices. κ is the condition number of the system and β ∈ (0, 1). We denote
Nesterov accelerated FedAvg as N-FedAvg in this table. 217

x

LIST OF FIGURES

Figure 3.1: Illustration of MTL with feature interactions. (a) the feature interactions
from multiple tasks can be collectively represented as a tensor Q; group
sparse structures (c) and low-rank structures (b) in feature interactions
can be used to facilitate multi-task models. 20

Figure 3.2: RMSE comparison between RR and STIL on two synthetic datasets with
sample size of 1k and 5k, respectively. 36

Figure 3.3: Synthetic dataset (Multi-task): Root Mean Square Error (RMSE) compar-
isons among all the methods. The Y-axis is RMSE, X-axis is dimension of
features. 37

Figure 3.4: Overview of the proposed iMTRL framework, which involves human experts
in the loop of multi-task learning. The framework consists of three phases:
(1) Knowledge-aware multi-task learning: learning multi-task learning mod-
els from knowledge and data, (2) Solicitation: soliciting most informative
knowledge from human experts using active learning based query strategy,
(3) Encoding: encoding the domain knowledge to facilitate inductive transfer. 44

Figure 3.5: Performance of MTRL and eMTRL as the number of features changing, in
terms of (a) Frobenius norm and (b) RMSE. MTRL [227] learns both task
models and task relationship at the same time, while eMTRL here learns
the task models while the task relationship Ω is fixed to ground truth, i.e.
encoding the correct domain knowledge about the task relationship. . . 63

Figure 3.6: The averaged RMSE of kMTRL using different setting of query strategy.
The kMTRL-10-100 means selecting 10 pairwise constraints at the end
of each iteration, start from zero, add 10 pairwise constraints at a time,
until 100 constraints. For all 4 schemes, kMTRL with zero constraints is
equivalent to MTRL. Results are the average over 5 fold random splitting. 65

Figure 3.7: The distribution of competence on (a) intra-region covariance and (b)
inter-region covariance. kMTRL performs better than MTRL when
competence> 1. Higher competence indicates better performance achieved
by kMTRL as compared to MTRL. We see in a majority of regions the
kMTRL outperforms the MTRL. 68

xi

Figure 3.8: Comparison of sub-matrices of covariance among (left) task covariance
using 90% all data points that is considered as “ground truth”, (middle)
the covariance matrix learned via MTRL on 20% data and (right) the
covariance matrix learned via kMTRL on 20% data with 0.8% pair-wise
constraints queried by the proposed query scheme. 68

Figure 4.1: Illustration of Collaborative Deep Reinforcement Learning Framework. . 72

Figure 4.2: Deep knowledge distillation. In (a), the teacher’s output logits zα is
mapped through a deep alignment network and the aligned logits Fθω (zα)
is used as the supervision to train the student. In (b), the extra fully
connected layer for distillation is added for learning knowledge from teacher.
For simplicity’s sake, time step t is omitted here. 82

Figure 4.3: Performance of online homogeneous knowledge distillation. 93

Figure 4.4: Performance of online knowledge distillation from a heterogeneous task. (a)
distillation from a Pong expert using the policy layer to train a Bowling
student (KD-policy). (b) distillation from a Pong expert to a Bowling
student using an extra distillation layer (KD-distill). 94

Figure 4.5: The action probability distributions of a Pong expert, a Bowling expert
and an aligned Pong expert. 94

Figure 4.6: Performance of offline, online deep knowledge distillation, and collabora-
tive learning. 95

Figure 4.7: Off-policy learning framework. 113

Figure 4.8: The binary tree structure MDP (M1) with one initial state, similar as
discussed in [184]. In this subsection, we focus on the MDPs that have no
duplicated states. The initial state distribution of the MDP is uniform
and the environment dynamics is deterministic. ForM1 the worst case
exploration is random exploration and each trajectory will be visited at
same probability under random exploration. Note that in this type of
MDP, the Assumption 5 is satisfied. 121

Figure 4.9: The training curves of the proposed RPG and state-of-the-art. All results
are averaged over random seeds from 1 to 5. The x-axis represents the
number of steps interacting with the environment (we update the model
every four steps) and the y-axis represents the averaged training episodic
return. The error bars are plotted with a confidence interval of 95%. . . 123

Figure 4.10: The trade-off between sample efficiency and optimality. 125

xii

Figure 4.11: Expected exploration efficiency of state-of-the-art. The results are averaged
over random seeds from 1 to 10. 126

Figure 5.1: The grid world system and a spatial-temporal illustration of the problem
setting. 137

Figure 5.2: Illustration of contextual multi-agent actor-critic. The left part shows the
coordination of decentralized execution based on the output of centralized
value network. The right part illustrates embedding context to policy
network. 144

Figure 5.3: The simulator calibration in terms of GMV. The red curves plot the GMV
values of real data averaged over 7 days with standard deviation, in 10-
minute time granularity. The blue curves are simulated results averaged
over 7 episodes. 150

Figure 5.4: Simulator time line in one time step (10 minutes). 151

Figure 5.5: Illustration of allocations of cA2C and LP-cA2C at 18:40 and 19:40, resp-
sectively. 158

Figure 5.6: Convergence comparison of cA2C and its variations without using context
embedding in both settings, with and without reposition costs. The X-axis
is the number of episodes. The left Y-axis denotes the number of conflicts
and the right Y-axis denotes the normalized GMV in one episode. 159

Figure 5.7: Illustration on the repositions nearby the airport at 1:50 am and 06:40
pm. The darker color denotes the higher state value and the blue arrows
denote the repositions. 162

Figure 5.8: The normalized state value and demand-supply gap over one day. 163

Figure 6.1: The linear speedup of FedAvg in full participation, partial participation,
and the linear speedup of Nesterov accelerated FedAvg, respectively. . . 181

Figure A.1: The binary tree structure MDP with two initial states. 194

Figure A.2: The directed graph that describes the conditional independence of pairwise
relationship of actions, where Q1 denotes the return of taking action a1
at state s, following policy π in M, i.e., QπM(s, a1). I1,2 is a random
variable that denotes the pairwise relationship of Q1 and Q2, i.e., I1,2 =
1, i.i.f. Q1 ≥ Q2, o.w. I1,2 = 0. 206

Figure B.1: The convergence of FedAvg w.r.t the number of local steps E. 276

xiii

LIST OF ALGORITHMS

Algorithm 3.1 knowledge-aware Multi-Task Relationship Learning (kMTRL) . . . 58

Algorithm 3.2 Projection algorithm . 58

Algorithm 3.3 Query Strategy of Pairwise Constraints 59

Algorithm 3.4 iMTRL framework . 59

Algorithm 4.1 Online cA3C . 90

Algorithm 4.2 Off-Policy Learning for Ranking Policy Gradient (RPG) 115

Algorithm 5.1 ε-greedy policy for cDQN . 141

Algorithm 5.2 Contextual Deep Q-learning (cDQN) 141

Algorithm 5.3 Contextual Multi-agent Actor-Critic Policy forward 144

Algorithm 5.4 Contextual Multi-agent Actor-Critic Algorithm for N agents 145

xiv

Chapter 1

Introduction

Human intelligence is remarkable at collaboration. Besides independent learning, our learning

process is highly improved by summarizing what has been learned, communicating it with

peers, and subsequently fusing knowledge from different sources to assist the current learning

goal. This collaborative learning procedure ensures that the knowledge is shared, continuously

refined, and concluded from different perspectives to construct a increasingly profound

understanding, which can significant improve the the learning efficiency.

On the other hand, machine intelligence still pales in comparison to human in some

aspects, despite its phenomenal development in recent years: they in general designed for

one specific task, with an isolated, data inefficient, and computationally expensive learning

paradigm.

The research goal presented in this dissertation is to build an intelligent system with

multiple learning agents that collaboratively resolves one or a set of tasks more efficiently. In

particular, we tackle the following challenges in various domains of collaborative learning.

• Flexible and interactive collaboration. How can models of multiple learning

agents interact to leverage the knowledge from related tasks in a flexible, stable, and

interactive way? More concretely, how can we incorporate higher-order interactions

into the multiple learning models during training? How can we continuously guide the

learning of multiple models and selectively solicit the human expert knowledge to escort

1

their collaboration interactively?

• Heterogeneous collaboration. One limitation in collaborative learning is that

the learning models in general, have a homogeneous structure. How can we design

collaborative strategies among heterogeneous learning agents to improve the sample-

efficiency?

• Large-scale collaboration. In practice, an effective and efficient collaboration among

a large amount of learning agents is desired. How can we scale the collaboration to

thousands of agents?

• Theoretical guarantee of collaboration. Besides the practical algorithms and

applications, what are the theoretical advantages of collaborative learning? Does the

learning benefit from more learning agents?

1.1 Dissertation Contributions

To resolve the aforementioned challenges of collaborative learning, this thesis presents how the

collaboration is achieved to improve sample-efficiency in various scenarios. More concretely,

the contributions of this thesis are summarized in the following sections.

1.1.1 Model-driven collaboration

We discuss model-driven collaboration in the context of multi-task learning. The first part

in this Chapter discusses how do we capture the high-order feature interactions among

related tasks collaboratively. Traditional multi-task learning with linear models are widely

used in various data mining and machine learning algorithms. One major limitation of

2

such models is the lack of capability to capture predictive information from interactions

between features. While introducing high-order feature interaction terms can overcome this

limitation, this approach dramatically increases the model complexity and imposes significant

challenges in the learning against overfitting. When there are multiple related learning

tasks, feature interactions from these tasks are usually related and modeling such relatedness

is the key to improve their generalization. Here, we present a novel Multi-Task feature

Interaction Learning (MTIL) framework to exploit the task relatedness from high-order

feature interactions. Specifically, we collectively represent the feature interactions from

multiple tasks as a tensor, and prior knowledge of task relatedness can be incorporated into

different structured regularizations on this tensor. We formulate two concrete approaches

under this framework, namely the shared interaction approach and the embedded interaction

approach. The former assumes tasks share the same set of interactions, and the latter assumes

feature interactions from multiple tasks share a common subspace. We have provided efficient

algorithms for solving the two formulations.

The second part in this chapter investigates soliciting and incorporating task relatedness

information from human expert to the model, which guides the direction of the model-based

collaboration. In the center of MTL algorithms is how the relatedness of tasks are modeled

and encoded in learning formulations to facilitate knowledge transfer. Among the MTL

algorithms, the multi-task relationship learning (MTRL) attracted much attention in the

community because it learns task relationship from data to guide knowledge transfer, instead

of imposing a prior task relatedness assumption. However, this method heavily depends on

the quality of training data. When there is insufficient training data or the data is too noisy,

the algorithm could learn an inaccurate task relationship that misleads the learning towards

suboptimal models. To address the aforementioned challenge, we propose a novel interactive

3

multi-task relationship learning (iMTRL) framework that efficiently solicits partial order

knowledge of task relationship from human experts, effectively incorporates the knowledge

in a proposed knowledge-aware MTRL formulation. We propose an efficient optimization

algorithm for kMTRL and comprehensively study query strategies that identify the critical

pairs that are most influential to the learning. We present extensive empirical studies on

both synthetic and real datasets to demonstrate the effectiveness of proposed framework.

1.1.2 Data-driven collaboration

In Chapter 3, we discuss data-driven collaboration in the context of reinforcement learning

and use the data as a medium to facilitate collaboration among multiple learning agents,

which can then largely improve the sample-efficiency.

In this chapter, we first leverage the knowledge distillation to enforce the collaboration

among heterogeneous learning agents. The idea of knowledge transfer has led to many

advances in machine learning and data mining, but significant challenges remain, especially

when it comes to reinforcement learning, heterogeneous model structures, and different

learning tasks. Motivated by human collaborative learning, we propose a collaborative

deep reinforcement learning (CDRL) framework that performs adaptive knowledge transfer

among heterogeneous learning agents. Specifically, the proposed CDRL conducts a novel

deep knowledge distillation method to address the heterogeneity among different learning

tasks with a deep alignment network. Furthermore, we present an efficient collaborative

Asynchronous Advantage Actor-Critic (cA3C) algorithm to incorporate deep knowledge

distillation into the online training of agents, and demonstrate the effectiveness of the CDRL

framework using extensive empirical evaluation on OpenAI gym.

In addition to knowledge transfer among different tasks, we can further coordinate

4

different homogeneous learning agents for the same task, which further advances more stable

optimization and sample-efficient learning. The main idea is an off-policy learning framework

that disentangles exploration and exploitation in reinforcement learning, which build upon

the connection between imitation learning and reinforcement learning. The state-of-the-art

estimates the optimal action values while it usually involves an extensive search over the

state-action space and unstable optimization. Towards the sample-efficient RL, we propose

ranking policy gradient (RPG), a policy gradient method that learns the optimal rank of a

set of discrete actions. To accelerate the learning of policy gradient methods, we establish

the equivalence between maximizing the lower bound of return and imitating a near-optimal

policy without accessing any oracles. These results lead to a general off-policy learning

framework, which preserves the optimality, reduces variance, and improves the sample-

efficiency. We conduct extensive experiments showing that when consolidating with the

off-policy learning framework, RPG substantially reduces the sample complexity, comparing

to the state-of-the-art.

1.1.3 Large-scale Collaborative Multi-agent Learning

In this chapter, we apply collaborative multi-agent reinforcement learning to a real-world fleet

management application, which is an essential component for online ride-sharing platforms.

Large-scale online ride-sharing platforms have substantially transformed our lives by reallo-

cating transportation resources to alleviate traffic congestion and promote transportation

efficiency. An efficient fleet management strategy not only can significantly improve the

utilization of transportation resources but also increase the revenue and customer satisfaction.

It is a challenging task to design an effective fleet management strategy that can adapt to an

environment involving complex dynamics between demand and supply. Existing studies usu-

5

ally work on a simplified problem setting that can hardly capture the complicated stochastic

demand-supply variations in high-dimensional space. We propose to tackle the large-scale

fleet management problem using reinforcement learning, and propose a contextual multi-agent

reinforcement learning framework including two concrete algorithms, namely contextual deep

Q-learning and contextual multi-agent actor-critic, to achieve explicit coordination among a

large number of agents adaptive to different contexts. We show significant improvements of

the proposed framework over state-of-the-art approaches through extensive empirical studies.

1.1.4 The Provable Advantage of Collaborative Learning

Previously, we propose the heuristic collaborative approach to coordinate a large number

of learning agents to resolve a real-world application. In addition, we would like to provide

a rigorous answer to whether there is a provable benefit from increasing the number of

collaborative learning agents. We investigate this problem in federated learning, which is a

critical scenario in both industry and academia. Federated learning (FL) learns a model jointly

from a set of participating devices without sharing each other’s privately held data. The

characteristics of non-iid data across the network, low device participation, and the mandate

that data remain private bring challenges in understanding the convergence of FL algorithms,

particularly in regards to how convergence scales with the number of participating devices.

Here, we focus on Federated Averaging (FedAvg)–the most widely used and effective FL

algorithm in use today–and provide a comprehensive study of its convergence rate. Although

FedAvg has recently been studied by an emerging line of literature, it remains open as

to how FedAvg’s convergence scales with the number of participating devices in the FL

setting–a crucial question whose answer would shed light on the performance of FedAvg in

large FL systems. We fill this gap by establishing convergence guarantees for FedAvg under

6

three classes of problems: strongly convex smooth, convex smooth, and overparameterized

strongly convex smooth problems. We show that FedAvg enjoys linear speedup in each

case, although with different convergence rates. For each class, we also characterize the

corresponding convergence rates for the Nesterov accelerated FedAvg algorithm in the FL

setting: to the best of our knowledge, these are the first linear speedup guarantees for FedAvg

when Nesterov acceleration is used. To accelerate FedAvg, we also design a new momentum-

based FL algorithm that further improves the convergence rate in overparameterized linear

regression problems. Empirical studies of the algorithms in various settings have supported

our theoretical results.

1.2 Dissertation Structure

The remainder of this dissertation is organized as follows. We introduce the background of

collaborative learning in Chapter 2. In Chapter 3, we start with learning linear models for

multiple tasks while incorporating flexible forms of interactions and develop an interactive

approach to solicit human expert knowledge for model collaborations. This chapter was

previously published as "Multi-task Feature Interaction Learning" [115] and "Interactive

Multi-task Relationship Learning" [117]. In Chapter 4, we present data-driven collaboration

methods to interact among heterogeneous learning agents, which can largely improve the

sample-efficiency of reinforcement learning algorithms. The materials in this chapter are based

on "Collaborative Deep Reinforcement Learning" [114] and "Ranking Policy Gradient" [118].

In Chapter 5, we study a real-world application and design a coordination strategy that can

scale to a large number of learning agents. The materials in this chapter were published as

"Efficient large-scale fleet management via multi-agent deep reinforcement learning" [116]. In

7

Chapter 6, we present rigorous theories on the improvement of convergence rates with respect

to the increasing number of collaborative learning agents, which advocate the advantage of

collaborative learning. The materials in this chapter are based on "Federated Learning’s

Blessing: FedAvg has Linear Speedup" [157]. We conclude this dissertation in Chapter 7.

8

Chapter 2

Background

In this chapter, we first give a coherent definition of collaborative learning used in throughout

this dissertation, then we discuss connections and discrepancies among four specific scenarios

under this overarching framework.

2.1 Collaborative Learning Problem Formulation

In disciplines of cognitive science, education and psychology, collaborative learning, a situation

in which a group of people learn to achieve a set of tasks together, has been advocated

throughout previous studies [50]. Motivated by the phenomenal success of human collaborative

learning, we study the collaborative learning in the domain of artificial intelligence. We first

provide a general definition of collaborative learning in this thesis.

Definition 1 (Collaborative learning). Collaborative learning is a general learning paradigm

that multiple learning agents collaborate to solve one or a set of tasks.

Here, we would like to clarify the several terminologies used in Definition 1.

• multiple: in contrast to individual learning, collaborative learning here covers a wide

range of learning: from a small scale such as a pair of learning agents to large-scale

such as thousands of learning agents.

9

• learning agents: The learning agent refers to a machine learning model that behaves

differently from each other. For example, learning agents can be parameterized by

different deep neural networks. The neural network can have different domains or

architectures. The central requirement is that each learning agent can learn individually

and conduct decision making independently.

• collaborate: the interaction among different learning agents. The strategy of this

interaction is the central design of the collaborative learning algorithm.

• solve one or a set of tasks: In machine learning, solving one or a set of tasks refers

to optimizing one or several objective functions that generalize well to the unseen

scenarios.

More concretely, we provide the problem formulation of collaborative learning as follows:

min
W={wi}Ki=1

K∑
i=1

Fi(W) s.t. wi ∈ Ci(W) ∀i = 1, . . . , K (2.1)

where Fi, i = 1, . . . , K refers to the set of tasks we want to solve. The model parameter wi

denotes the learning agents. It is worth noting that wi is not necessarily represented by a

single instance, e.g., a neural network, a decision tree, etc. We use wi to denote all variables

that need to be determined for a decision process, which constructs a mapping from the input

of task i to the action, such as regression, classification, etc. We use the set Ci,∀i = 1, . . . , K

denotes the interactions between learning agent i and others, which can encode various types

of collaboration strategies into the learning process as we will discuss shortly. For simplicity,

we denote the union of models of all learning agents as W = {wi}Ki=1. The rationale of

collaborative learning is that the proper design of interactions C among the learning agents

10

facilitates the optimization of objectives.

It is worth noting that the collaboration set is a more general expression comparing to

the regularization. The regularization has a specific form on enforcing the formulation while

the set of collaboration can integrate more flexible algorithmic designs of interaction. In this

thesis, despite differentiations exist in terms of how different learning agents interact, we

follow the common practice and use cooperation and collaboration interchangeably [50].

2.2 A Taxonomy of Collaboration

In this section, we present different categories of collaborations, which leads to several subfields

in the machine learning community. We discuss the connections and discrepancies of those

related subfields and explore the possible advantages of organizing them in a unified view.

2.2.1 Model-Driven Collaboration

The first category of collaborative learning is model-driven collaboration, which directly

enforces the interaction of learning agents in the parameter space. From the perspective of

transfer learning, these approaches implement knowledge transfer from introducing inductive

bias during the learning. It specifically specify the conditions of learned solution needs to be

satisfied, such as sparsity or low-rank property. In this case, the collaboration constrain reduces

to the various regularizations and the collaborative learning reduces to multi-task learning

and federated learning. More concretely, we set Ci = R(W), where R(·) is the regularization

added to the W. For example, under the situations that W is a matrix (each learning agents’

model is a vector), a common regularization is trace norm R(W) = {W|‖W‖tr that controls

the subspace of multiple models.

11

Multi-Task Learning (MTL) is a principled learning paradigm that leverages useful

information contained in multiple related tasks to help improve the generalization performance

of all the tasks [226]. The goal of MTL is to learn K functions for the tasks such that

fk(xik) = yik, based on the assumption that all task functions are related to some extent,

where each function fk is parameterized by wk. The general multi-task learning formulation

is given by:

min
W

K∑
k=1

Fk(wk) + λR(W) (2.2)

Another field that falls into model-driven collaboration is federated learning. Federated

learning (FL) learns a single model jointly from a set of learning agents. In general, each

learning agent corresponds to a local device and the training is performed sharing each other’s

privately held data. As for now, the prevalent collaboration strategy is the aggregation of all

learning agents’ models. The challenge of federated learning is the practical constraints on

collaboration: to reduce the communication cost (the frequency of collaboration), deal with

system heterogeneity, and understand the theoretical properties of this simple collaborative

strategy. We will provide rigorous answers to those questions in Chapter 6.

2.2.2 Data-driven Collaboration

One limitation for the traditional model-based collaboration is that the model structure

restricted due to the usage of inductive transfer. To overcome this issue, the data-driven

collaboration leverages the techniques such as knowledge distillation, mimic learning.

12

In this case, the data-driven collaboration constrain is given by

Ci(wi) = {arg min
wi

`(wi, fwj (x), y), ∀(x, y) ∈ B},

where B denotes the replay buffer that contain a set of selected data according to the

task-specific criteria. Notice that the interaction between learning agents now are conducted

through the data collected in B. Since the other learning agent’s model labeled the data

in B, it contains information learned in agent j, which is then distilled to agent i through

loss function `(·). In this way, we can empower a flexible network structure among different

agents, thus achieve collaboration among heterogeneous learning agents. These approaches

will be introduced in Chapter 4.

2.2.3 Collaborative Multi-agent Learning

In collaborative multi-agent learning, the multiple learning agents interact with others to

achieve a common task. Each learning agent can perform the learning process individually

while the We emphasize this problem as a distinct type of collaboration since the agents can

adapt their collaborations through the environment feedback, though this trial and error can

be computationally intractable. To improve the sample-efficiency in this scenario, we can

enforce a task-specific model-driven or data-driven approach during the learning. We provide

a concrete real-world application to demonstrate this category in Chapter 5.

13

Chapter 3

Model-Driven Collaborative Learning

In this chapter, we discuss model-driven collaboration in the context of multi-task learning.

More specifically, we first proposed a novel Multi-Task feature Interaction Learning (MTIL)

framework to exploit the task relatedness from high-order feature interactions, which provides

better generalization performance by inductive transfer among tasks via shared representations

of feature interactions. We formulate two concrete approaches under this framework and

provide efficient algorithms: the shared interaction approach and the embedded interaction

approach. The former assumes tasks share the same set of interactions, and the latter

assumes feature interactions from multiple tasks come from a shared subspace. We have

provided efficient algorithms for solving the two approaches. Secondly, the classical multi-task

relationship learning could learn an inaccurate task relationship when there are insufficient

training data or the data is too noisy, and would mislead the learning towards suboptimal

models. In this chapter, we proposed a novel interactive multi-task relationship learning

(iMTRL) framework that efficiently solicits partial order knowledge of task relationship from

human experts, effectively incorporates the knowledge in a proposed knowledge-aware MTRL

formulation. We proposed efficient optimization algorithm for kMTRL and comprehensively

study query strategies that identify the critical pairs that are most influential to the learning.

14

3.1 Multi-Task Feature Interaction Learning

3.1.1 Introduction

Linear models are simple yet powerful machine learning and data mining models that are

widely used in many applications. Due to the additive nature of the linear models, it can fully

unleash the power of feature engineering, allowing crafted features to be easily integrated

into the learning system. This is a desired property in many practical applications, in which

high-quality features are the key to predictive performance. Moreover, efficient parallel

algorithms are readily available to learn linear models from large-scale datasets. Despite its

attractive properties, one apparent limitation of such models is that they can only learn a

set of individual effects of features contributing to the response, due to its linear additive

property. Thus when a part of the response is derived from interactions between features,

such models would not be able to detect such non-linear predictive information, thereby

leading to poor predictive performance.

In practice, high-order feature interactions are common in many domains. For example,

in genetics studies, environmental effects and genetic-environmental interaction are found

to have strong relationship with the variability in adoptee aggressivity, conduct disorder

and adult antisocial behavior [29]. Similarly, the interaction effects between continuance

commitment and affective commitment was found in predicting annexed absences [177].

Also, a recent study of depression found that genotype, sex, environmental risk and their

interaction have combined influence on depression symptoms [52]. It is also reported that the

interaction of brain-derived neurotrophic factor and early life stress exposure are identified

in predicting syndromal depression and anxiety, and associated alterations in cognition [63].

In biomedical studies, many human diseases are a result of complicated interactions among

15

genetic variants and environmental factors [79]. One intuitive solution to overcome this

limitation is to augment interaction terms into linear models, explicitly modeling the effects

from the interactions. However, this will dramatically increase the model complexity and lead

to poor generalization performance when there is limited amount of data [35, 39, 124, 158, 216].

On the other hand, when there are multiple related learning tasks, the multi-task learning

(MTL) paradigm [10, 19, 33] has offered a principled way to improve the generalization

performance of such learning tasks by leveraging the relatedness among tasks and performing

inductive transfer among them. The past decade has witnessed a great amount of success

in applying MTL to tackle problems where large amount of labeled data are not available

or creating such datasets incurs prohibitive cost. Such problems are especially prevalent in

biological and medical domains, where MTL has achieved significant success, including data

analysis on genotype and gene expression [101], breast cancer diagnosis [228] and progression

modeling of Alzheimer’s Disease [68], etc. The MTL improves generalization performance

by learning a shared representation from all tasks, which serves as the agent for knowledge

transfer. Structured regularization has provided an effective means of modeling such shared

representation and encoding various types of domain knowledge on tasks [10, 89, 142, 199].

The attractive benefits provided by MTL make it an ideal scheme when learning problems

involve multiple related tasks with feature interactions, because tasks may be related with

each other by shared structures on feature interactions. For example, predicting various

cognitive functions may involve a shared set of interactions among brain regions.

However, many existing MTL frameworks are based on linear models [10] in the original

input space. Thus they cannot be directly applied to explore task relatedness in the form

of high-order feature interactions. On the other hand, although traditional nonlinear MTL

methods based on neural networks (e.g., [13]) can exploit non-linear feature interactions

16

to some extends, it is generally difficult to encode prior knowledge on task relatedness to

such models. In this chapter, we propose a novel multi-task feature interaction learning

framework, which learns a set of related tasks by exploiting task relatedness in the form

of shared representations in both the original input space and the interaction space among

features. We study two concrete approaches under this framework, according to different prior

knowledge about the relatedness via feature interactions. The shared interaction approach

assumes that there are only a small number of interactions that are relevant to the predictions,

and all tasks share the same set of interactions; the embedded interaction approach assumes

that, for each task, the feature interactions are derived from a low-dimensional subspace

that is shared across different tasks. We have provided formulations and efficient algorithms

for both approaches. We conduct empirical studies on both synthetic and real datasets to

demonstrate the effectiveness of the proposed framework on leveraging feature interactions

from tasks. The contributions of this paper are three folds:

• Our novel framework has extended the MTL paradigm, for the first time, to allow high-

order representations to be shared among tasks, by exploiting predictive information

from feature interactions.

• We proposed two novel approaches under our framework to model different task

relatedness over feature interactions.

• Our comprehensive empirical studies on both synthetic and real data have led to

practical insights of the proposed framework.

The remainder of this paper is organized as follows: Section 3.1.2 reviews related work of

MTL and models involving feature interactions. Section 3.1.3 introduces the framework for

17

MTIL. The two approaches under MTIL have been given in 3.1.4. Section 6.6 presents the

experimental results on both synthetic and real datasets.

3.1.2 Related Work

The proposed research is related to existing work on MTL and feature interaction learning.

In this section, we briefly summarize the these related work and show how our work advances

these areas.

Multi-Task Learning. MTL has been extensive studied over the last two decades. In the

center of most MTL algorithms is how task relationships are assumed and encoded into

the learning formulations. The concept of learning multiple related tasks in parallel was

first introduced in [33]. It was demonstrated in multiple real-world applications that adding

a shared representation in neural network tasks can help others get better models. Such

discovery had inspired many subsequent research efforts in the community and applications in

diverse application domains. Among these studies, the regularized MTL framework has been

pioneered by [55]. The regularization scheme can easily integrate various task relationship into

existing learning formulations to couple MTL, thus providing a flexible multi-task extension

to existing algorithms. It is well adopted and is soon generalized to a rich family of MTL

algorithms.

MTL via Regularization. Among the work in the regularization based MTL scheme, there

are many different assumptions about how tasks are related, leading to different regularization

terms in the formulation. For example, one common assumption is that the tasks share a

subset of features, and the task relatedness can be captured by imposing a group sparsity

penalty on the models to achieve simultaneous feature selection across tasks [199, 142].

18

Another common assumption is that the models of tasks come from the same subspace,

leading to a low-rank structure within the model matrix. Directly penalizing the rank function

leads to NP-hard problems, and one convex alternative is to penalize the convex envelop of

the rank function, i.e., trace norm. This encourages low-rank by introducing sparsity to the

singular values of the model matrix [89]. In [10], the authors studied a MTL formulation that

learns a common feature mapping for the tasks and assumed all tasks share the same features

after the mapping. The authors have shown that this assumption can also be equivalently

expressed by a low- rank regularization on the model. There are many more formulations

that fall into this category of formulation to capture task relatedness by designing different

shared representation and regularization terms, such as cluster structures [232], tree/graph

structures [101, 38], etc. However, to the best of our knowledge, all of these formulations do

not consider feature interactions in the model, and extensions to consider interactions are

not straightforward. In this work, we will extend the MTL framework to enable knowledge

transfer not only in the original input space, but also in higher- order feature interaction

space.

Multilinear MTL. The use of tensor in MTL has shown to be very effective in representing

structural information underlying in MTL problems. In [162], Romera-Paredes et al. proposed

a multilinear multitask (MLMTL) framework that arranges parameters of linear effects from

all tasks into a tensor W , by which they are able to represent the multi-modal relationships

among tasks. In a dataset containing multi-modal relationships, tasks can be referenced

by multiple indices. In MLMTL, the authors employed a regularizer on W to induce a

low-rank structure to transfer knowledge among tasks. The optimization problem contains

the minimization of tensor’s rank, which leads to solving a non-convex problem. Thus the

authors develop an alternating algorithm, employing the Tucker decomposition and convex

19

d

d

T

d

Feature Interaction
of one task

Q

a) tensor representation of feature interactions

d

d

T

…
Task 2 Task 1 Task T

b) structured sparsity of an interaction tensor

×
1
3 ×

1
1

d

d

T

r

d

r

r

T
d r

c) low-rank structure of an interaction tensor

Figure 3.1: Illustration of MTL with feature interactions. (a) the feature interactions from
multiple tasks can be collectively represented as a tensor Q; group sparse structures (c) and
low-rank structures (b) in feature interactions can be used to facilitate multi-task models.

relaxation using tensor trace norm. Although the authors also used a tensor representation

in MTL, the learning formulations, implications, as well as the meaning of such the tensor

is fundamentally different from those in our work. The proposed MTIL framework utilizes

tensor to capture the relatedness among tasks and transfer knowledge through high-order

feature interactions, which cannot be achieved by any existing MTL formulations. Note that

the tensor in MLMTL is indexed by multi-modal tasks. In MTIL, the tensor is indexed by

features and tasks, which is clearly different from the aforementioned work. In the proposed

embedded interaction approach for MTIL, however, we face a similar challenge in MLMTL

to seek a solution involving a low-rank tensor.

Feature Interaction

In many machine learning tasks, we are interested in learning a linear predictive model.

Given the input feature vector of a sample, the response is given by a linear combination of

20

these features, i.e., a weighted sum of the features. Because of this reason we call them linear

effects. There are strong evidences found in many complex applications that, in addition to

the linear effects, there are also effects from high-order interactions between such features. As

a result, there are considerable efforts from both academia and industry aiming at addressing

this limitation by removing the additive assumption and including interaction effects.

To overcome the dimensionality issues introduced by interaction effects, two types of

heredity constraints have been studied [20]; namely strong hierarchy in which an interaction

effect can be selected into the model only if both of its corresponding linear effects have been

selected, and weak hierarchy, in which an interaction effect can be selected if at least one of

its corresponding linear effects has been selected. In [39], the authors proposed an approach

known as SHIM to identify the important interaction effects. SHIM extends the classical

Lasso [194] and enforces a strong hierarchy. An iterative algorithm was proposed based on

Lasso, which may not scale to problems with high dimensional feature space. Radchenko et.

al proposed the VANISH method to address the problem [158]. They developed a convex

formulation with a refined penalty that can not only learn the sparse solution, but also treat

the linear and interaction effects using different weights. This way, the main effect could

have more influence on the prediction. In [20], a hierarchical lasso was proposed to search

for interactions with large main effects instead of considering all possible interactions. The

authors proposed an algorithm based on ADMM for strong hierarchy lasso and a generalized

gradient descent for weak hierarchical lasso. More recently, Liu et al. [124] proposed an

efficient algorithm for solving the non-convex weak hierarchical Lasso directly, based on the

framework of general iterative shrinkage and thresholding (GIST) [67]. The authors proposed

a closed form solution of proximal operator and further improved the efficiency of solving the

subproblem of proximal operator from quadratic to linearithmic time complexity.

21

In many real work applications there are multiple related tasks. When those these tasks

involve interaction effects, the tasks could be related via the high order feature interactions.

In our paper, we propose to address the model complexity issue from interaction effects using

a new perspective, by leveraging such relatedness.

3.1.3 Task relatedness in high order feature interactions

In this section, we present the framework of Multi-Task feature Interaction Learning (MTIL).

For completeness, we give a self-contained introduction of our work. We will derive concrete

learning algorithms under this framework in Section 3.1.4.

Linear and Interaction Effects. Consider the traditional linear models. For an input

feature vector x ∈ Rd and a scalar response y, we have assumed the following underlying

linear generative model:

y =
d∑
i=1

xiwi + ε,

where w ∈ Rd is the weight vector for linear effects, and ε ∼ N (0, σ2) is a Gaussian noise.

A linear model f(x; w) = xTw can be a quite effective prediction function. However, if the

underlying generative model includes effects from feature interactions, i.e.,

y =
d∑
i=1

xiwi +
d∑
i=1

d∑
j=1

xixjQi,j + ε,

where xixjQi,j is the joint effect between the ith feature and the jth feature, and Qi,j is the

weight for this joint effect. This type of feature interactions have been commonly found in

many applications. If the training data follow this distribution then the linear model is not

enough to capture the relationship between input features and output responses. One of the

22

approaches is to introduce non-linear feature interaction terms into the linear model. That is,

we can denote it as a quadratic function:

f(x; w,Q) = xTw + xTQx, (3.1)

where w ∈ Rd and Q ∈ Rd×d collectively represent the parameters for linear effects and

interaction effects, respectively. We note that Q is typically symmetric because this represen-

tation includes two terms involving feature i and j: xixj(Qi,j + Qj,i) and it also includes

second-order feature transformations of the original features x2
iQi,i.

Discussions on Feature Interactions. In supervised learning, we seek a predictive

function that maps an input vector x ∈ Rd to a corresponding output y ∈ R. Let (X,y) =

{(x1, y1), (x2, y2), ...(xn, yn)} be a training dataset, in which each data point is drawn from

certain i.i.d. distribution µ. The goal of learning is to find the best predictor f̂ ∈ H so that

the predicted value ŷi for the input data xi is as close as possible to the ground truth yi,

∀(xi, yi) ∈ (X,y), given a loss function L(., .). We hope that the predictor f learned in this

way is close to the optimal model that minimizes the expected loss according to the µ:

R(f) = E(X,y)∼µL(f(X),y). (3.2)

Such predictor is given by the minimum of the empirical risk:

f̂ = arg min
f∈H

n∑
i=1

L(f(xi),yi).

The error caused by learning the best predictor in the training dataset is called the estimation

error. The error caused by using a restricted H is called the approximation error. For a

23

fixed data size, the smaller the hypothesis space H, the larger the approximation error, and

vice versa. The trade-off between approximation error and estimation error is controlled by

selecting the size of H. By including feature interactions we would enlarge the hypothesis

space, and we may be able to dramatically minimize the approximation error compared

to the traditional hypothesis space for linear models. On the other hand, we note that

given a limited amount of data, a large hypothesis space may result in models with poor

generalization performance. We will need to either increase our training data, or provide

effective regularizations to narrow down the hypothesis space.

Multi-task Feature Interactions. We consider the setting that there are multiple learning

tasks which are related not only in the original feature space, but also in terms of feature

interactions. The propose framework simultaneously learns all related tasks and provides an

effective regularization on the hypothesis space using relatedness on the interactions.

Let D = (X1,y1), . . . , (XT ,yT) be the training data for the T learning tasks, and the

i.i.d. training samples for task t is drawn from (µt)
mt , where mt is the number of data points

available for task t. We collectively denote the distribution as D ∼ µ =
∏T
t=1(µt)

mt . All

tasks have a d-dimensional feature space (i.e., xi ∈ Rd). The corresponding features are

homogeneous and have the same semantic meaning. The total training data points are:

(Xt,yt) = {(x1t, y1t), (x2t, y2t), . . . , (xmt, ymt)}, t = 1, . . . , T,

The goal of MTL is to learn T functions for the tasks such that ft(xit) = yit, based on the

assumption that all task functions are related to some extent.

In order to consider interactions for each task, we use the quadratic predictive function in

Eq. 3.1 for all tasks. We collectively represent the linear effects from all tasks as a matrix

24

W = [w1, . . . ,wT] ∈ Rd×T , wi ∈ Rd and the interaction effects as a tensor Q ∈ Rd×d×T ,

in which the t-th frontal slice Qt ∈ Rd×d represents the interaction effects for task t. We

illustrate this interaction tensor in Figure 3.1(a).

Given specific loss functions ˆ̀ for samples from one task, (e.g., square loss for regres-

sion and logistic loss for classification, see Table 3.1), the loss function for each task is

`t(f,w,Q; X,y) =
∑mt
i=1

ˆ̀(f(xi; w,Q), yi). Our multi-task feature interaction loss function

is given by:

L(W,Q; f,X,Y) =
T∑
t=1

`t(f,wt,Qt; Xt,Yt). (3.3)

Note that it is not necessary for all tasks to have the same loss function. In MTL, the learning

of each task benefits from the knowledge from other tasks, which effectively reduces the

hypothesis space for all tasks. In order to achieve knowledge transfer among tasks, we would

like to impose shared representations via designing regularization terms on both W and Q,

which specify how tasks are related in the original feature space and features interactions,

respectively.

The MTIL Framework. The proposed Multi-Task feature Interaction Learning (MTIL)

framework is then given by the following learning objective:

min
W,Q

L(W,Q; f,X,Y) + λRRF (W) + λIRI(Q), (3.4)

where RF (W) is the regularization providing task relatedness in the original feature space,

RI(Q) is the regularization encoding our knowledge about how feature interactions are related

among tasks, λR and λI are the corresponding regularization coefficients. For λI →∞, the

25

problem reduces to traditional MTL, when RI is chosen properly. In this paper, we formulate

two concrete approaches to capture the feature interaction patterns:

• Shared Interaction Approach. In many applications, even though we have a

large number of feature interactions, only a few interactions may be related to the

response [20, 39]. When learning with multiple tasks, different tasks may share exactly

the same set of feature interactions, but with different effects. As such, we can design

MTIL formulations that learns a set of common feature interactions, which could

effectively reduce the hypothesis space. During the learning process the selected

feature interactions for one task will be task’s knowledge, contributing to the share

representation: a set of indices of common interactions. An analogy in traditional MTL

is the joint feature learning approach [142, 199], in which tasks share the same set of

features. One way to achieve this approach is by using the structured sparsity to induce

the same sparsity patterns on the interaction effects. An illustration of this approach is

given in Figure 3.1(b).

• Embedded Interaction Approach. When the response from one task is related to

complicated feature interactions, the patterns of such interactions may be captured by

a low-dimensional space, resulting in a low-rank interaction matrix. When there are

multiple related tasks, they could have a shared low-dimensional space, i.e., different

interaction matrices may share the same set of rank-1 basis matrices, but have different

weights associated with these basis matrices. When collectively represented by a tensor,

we end up with a low-rank tensor. During the learning process, each task contributes

their subspace information to facilitate learning of the share low-dimensional subspace,

which in turn, improves the feature space. The analogy in traditional MTL is the

26

Table 3.1: Examples of common smooth loss functions.

Loss with Interaction Loss function Li Gradient | Linear Eff. ∇WLi Gradient | Interaction Eff. ∇Qt
Li

Logistic Loss∗ −[log(g(xi))yti + (1− yti)(log(1− g(xi)))] (g(xi)− yti)xi (g(xi)− yti)xix
T
i

Squared Loss 1
2
||xT

i wt + xT
i Qtxi − yti||22 xi(x

T
i wt + xT

i Qtxi − yti) xi(x
T
i wt + xT

i Qtxi − yti)xT
i

Squared Hinge† h(yti(x
T
i wt + xT

i Qtxi)) ytixih
′(xT

i wt + xT
i Qtxi) ytixix

T
i h
′(xT

i wt + xT
i Qtxi)

∗g(x) is the sigmoid function defined as g(xi) = 1/
{

1 + exp(−(xTi wt + xTi Qtxi))
}

†h′(z) = {−1 for z ≤ 0, z − 1 for 0 < z < 1, 0 for z ≥ 1}
low-rank based models [10, 89]. However, there are challenging questions such as:

How to define a proper rank function for tensor? Are there tractable algorithms to

induce low-rank structure in tensor? In the next section we will discuss these important

questions and propose efficient algorithms. We illustrate this approach in Figure 3.1(c).

We note that even though we only provided two specific approaches in this paper, the

proposed MTIL framework could offer broader class of formulations. The proposed framework

allows many other possible ways to define task relatedness on feature interactions, leading to

a brand-new research area of MTL.

3.1.4 Formulations and algorithms of the two MTIL approaches

In this section, we will study how the formulations and algorithms of the shared interaction

approach and embedded interaction approach under the proposed MITL framework. We

note that extension of multi-task learning to feature interactions is not trivial because of

the involvement of tensors. We start with formulating the shared interaction approach

by incorporating a group Lasso penalty to introduce structured sparsity on the tensor,

which would select only a set of common feature interactions across different tasks that are

relevant to the prediction. For the embedded interaction approach, we propose both a convex

formulation and a non-convex formulation. While the convex formulation leads to efficient

optimization algorithms and global solutions, the non-convex formulation provides reduced

storage complexity for large-scale problems.

27

3.1.4.1 Preliminary

Here, we use the following basic definition of tensor:

Mode-n fiber is a vector defined by fixing every index but one. We may see it as the higher

order analogue of matrix rows (mode-2 fibers) and columns (mode-1 fibers). For example, in

a three-way tensor Q ∈ Rn1×n2×n3 , the mode-3 fiber is Qi,j,: ∈ Rn3 .

Mode-n unfolding is the process of reordering the elements of an N-way tensor Q ∈

Rn1×n2×,..,×nN into a matrix. The mode-k unfolding of tensor Q is denoted by Q(k) ∈

Rnk×Jk , where Jk =
∏N
i=1,i 6=k. The matrix is arranged by concatenating all mode-k fibers

of the tensor.

Rank-n denotes the rank of tensor’s mode-n unfolding. It’s actually the dimension of

the space spanned by the mode-n fibers of tensor. Specifically, rankn(Q) = rank(Q(n)).

When Q is a matrix (i.e. 2-way tensor), this becomes the regular definition of rank, since

rank1(Q) = rank2(Q) = rank(Q).

3.1.4.2 Shared Interaction Approach

The goal of the shared interaction approach is to identify a set of common and relevant feature

interactions across different tasks. The interaction tensor Q in our framework has provided

a convenient representation to encode such information, and we are able to incorporating

a group Lasso penalty [61] to induce a special type of structured sparsity on the tensor,

coupling the same interactions for all tasks. Recall that the sparsity implies that only the

significant interaction effects are captured in the model. For the purpose of shared interaction,

28

a sparse tensor norm is defined as:

||Q||GL-Sym ≡
∑d

i=1

∑d

j≥i

√∑K

k=1

(
Q2
i,j,k +Q2

j,i,k

)
. (3.5)

Note that this norm enforces a symmetric sparsity by over the tensor, so that the one group

is defined to include coefficients of one interaction between feature i and feature j, from all

tasks. Penalizing the tensor sparse norm leads to the following formulation:

min
w,Q

L(W,Q; f,X,Y) + λFRF (W) + λI ||Q||GL-Sym, (3.6)

where the parameter λI control the sparsity of tensor Q, a larger λI will end up with a more

sparse Q. The solution to formulation delivers a tensor such that the mode-3 fibers are either

all zeros vectors or non zero vectors, i.e., interaction effects between 2 features xi, xj either

exists on all tasks, or irrelevant for all tasks. Note that even the sparsity patterns is same for

all tasks, their interactions may have different weights. It is easy to see that, this approach

subsumes the traditional multi- task learning as a special case: when λI → ∞ by setting

regularization parameter on tensor Q to infinity, all the elements in of Q in the solution will

be zeros, and the model only considers linear effects.

When the loss function L chosen is convex and continuously differentiable with Lipschitz

continuous gradient [158], then we can use proximal based gradient methods, such as first

order FISTA [16], SpaRSA [214] or second order Proximal Newton [108] to solve it efficiently.

Because that the linear effects and interaction effects are decoupled in the predictive function,

a major class of loss functions belong to this category, and we give a few examples of common

loss functions in Table 3.1. Note that even when L is non-convex, a local optimal solution

29

can be efficiently obtained using the GIST framework [67]. The key to apply these algorithms

is to efficiently compute the proximal operator that associates to the problem (refer to [150]

for more details about proximal):

min
W,Q

1

2
(‖W − Ŵ‖2F + ‖Q − Q̂‖2F) + ρ1RF (W) + ρ2||Q||GL-Sym,

where Ŵ and Q̂ are intermediate solutions at each step, ρ1 and ρ2 are regularization

parameters augmented with step size. Note that we have extend the Forbenius norm from

matrix to tensor. We see that the problem is decoupled for W and Q. And the tensor

proximal:

min
Q

1

2
‖Q − Q̂‖2F + ρ2||Q||GL-Sym,

can be solved in the same way as the group Lasso proximal operator [222]. Moreover, we find

that when the gradient is symmetric, we don’t need to enforce a symmetric tensor sparse

norm, and we could simply use a simple alternative:

||Q||GL =
∑

i,j

√∑K

k=1
Q2
i,j,k,

and initialize the algorithm with a symmetric tensor as the starting point. The reason

that symmetry holds can be explained by two parts. First, the gradient of Q is symmetric,

therefore the gradient descent step won’t change the symmetry of tensor Q. Second, the

proximal operator associated to sparse tensor norm won’t change the symmetry of matrix.

To see this, the proximal operation is performed by vectorizing the matrix into a vector

and shrink each element of the vector with respect to a input vector, which is obtained by

30

the last gradient descent step. Since the input vector represents an symmetric matrix, the

element and its symmetric element will always shrink to the same new value. Therefore, the

symmetry of Q holds. The sparse tensor norm is equivalent to perform the l1 projection of

vectors where each element is the l2 norm of mode-3 fiber in tensor Q.

3.1.4.3 Embedded Interaction Approach

The share interaction approach has enforced a very restrictive form of how tasks are supposed

to relate to each other. In many applications, the prediction may be a result of complicated

feature interactions, instead only involves a few interactions. Even though the prediction

may involve all feature interactions, it is usually a reasonable assumption that there are

patterns among these interactions. Numerically, existence of patterns imply a low-dimensional

subspace, which is reflected by a low-rank structure in the matrix. When there are multiple

related learning tasks, one way for these tasks relate to others via a shared low-dimensional

subspace, which gives us a low-rank tensor. As such, we may design a structured regularization

to encourage the matrix Q to be a low-rank tensor. In this paper we describe one convex

formulation that encourages low-rank structure by penalizing a tensor norm and one non-

convex formulation that directly learns a low-rank representation.

Convex Formulation

One way to obtain a low-rank tensor is to augment our formulation with a rank penalty.

One problem associates to tensor is that there is no consistent way to define the rank of a

tensor. One way is to use the average rank of unfolding on different mode [62]:

1

N

N∑
n=1

rankn(Q) =
1

N

N∑
n=1

rank(Q(n)),

31

where N is the total number of mode of the tensor (N = 3 when only pair-wise interactions),

and Q(n) is unfold on n mode. Since minimizing the rank function is proven to be NP-hard,

we could penalize the trace norm instead, which is the convex envelope of the rank function.

The trace norm is defined as the sum of singular values of the matrix variable [89]. We then

obtain the following convex formulation:

min
W,Q

L(W,Q; f,X,Y) + λRR1(W) +
λI
N

3∑
n=1

||Q(n)||∗, (3.7)

where ‖.‖∗ denotes the trace norm. However, this convex formulation penalizes every mode

of tensor Q to be jointly low rank, which may be too restricted in practice, which may lead

to suboptimal performance. Moreover, the practical way to solve the formulation in Eq. (3.7)

is to use the alternating direction methods of multipliers (ADMM) [23], which introduces

auxiliary variables and equality constraints, in order to decouple the three tensor trace norm

terms. However, ADMM algorithm in practice is shown to have a slow convergence rate, and

less preferred when composite proximal methods such as FISTA can be applied.

One alternative way to address these issues is to use the latent trace norm [195, 196],

which is defined as following for a N−way tensor:

||Q||latent = inf
Q(1)+Q(2)+...+Q(N)=Q

N∑
n=1

||Q(n)
(n)
||∗,

where Q(1) . . .Q(N) are a set of low-rank auxiliary tensors, which states that the original

tensor can be decomposed into the sum of a set of tensors that are low-rank in different

modes. Finally, we proposed to drop the equality constraint that each auxiliary tensor equal

to the original one, but we directly use the mixture of tensors to represent the original tensor,

32

so the problem becomes a unconstrained optimization problem. The predictive function of

task t with such mixture is given by:

fmix(x; wt, {Q(i)}3i=1) = xTwt + xT (
∑3

i=1
Q(i)
t)x,

where Q(j) ∈ Rd×d×K , ∀j = 1, 2, 3 are the auxiliary tensors for replacing the original tensor

Q, matrix Q(j)
(j)
∈ R(n1n2n3/nj)×nj is the mode j unfolding of tensor Q(j), Q(j)

t ∈ Rd×d is the

tth frontal slice of tensor Q(j). Finally, our convex formulation under embedded interaction

approach is given by:

min
W,{Q(i)}3i=1

L(W,{Q(i)}3i=1; fmix,X,Y) +λFRF (W) + λI

3∑
j=1

||Q(j)
(j)
||∗.

The convexity of this formulation holds since both the loss function and the penalty are

convex. We note that this formulation can be solved in the same way as the formulation in

Eq. (3.7), and the model is much more flexible to model the complicated interactions among

the features, leveraging the advantages of such auxiliary tensors.

Non-Convex Formulation

Although using proximal gradient methods we are able to secure an optimal solution for

the convex formulation, the time complexity and storage cost are unacceptable in practice as

the dimension of data increase. To see this, we note that the proximal operator associated to

a trace norm regularized objective requires singular projections [89], which requires cubic-

complexity singular value decomposition. Recall in each iteration of the gradient methods

could involve more than one computation of proximal operator [16], and thus the computation

may be prohibitive when dimension grows larger. On the other hand, we have to maintain

33

3 dense tensors of size d× d× T which means the storage cost is at O(d2), where T is the

number of tasks and typically we have T � d. Also the mixture of three low-rank auxiliary

tensors may lead to some difficulty when it comes to analyzing the predictive model itself.

To this end, we propose to use a tensor with a explicit low-rank structure. Consider the

interaction effects matrix Q ∈ Rd×d for one task, we assume the low-rank decomposition

Q = BQ̃BT , where B ∈ Rd×r is a basis matrix, Q̃ ∈ Rr×r is a small matrix, capturing the

information of the original tensor under the set of bases (columns) in B. To see this, we can

expand Q =
∑r
i,j=1 Q̃(i,j)BiB

T
j , meaning the matrix Q is a result of interactions among

bases in B and also spanned by the columns of B. We thus can use a predictive function

that explicitly considers this low-rank structure:

fnvc(x; w,B, Q̃) = xTw + xTBQ̃BTx.

When there are multiple tasks, our assumption for embedded interaction approach is the

shared basis, meaning B is restricted to be same as all other tasks. The multi-task loss

function is thus given by:

L(W, {B}, Q̃; fnvc,X,Y) =
T∑
t=1

`t(fnvc,wt,B, Q̃t; Xt,Yt),

where Q̃ ∈ Rr×r×T collective denotes the set of matrices Q̃ from all tasks. This loss function

is not convex because of the multiplication of variables in xTBQ̃BTx. This loss function

leads to our final non-convex formulation for embedded:

min
W,{B},Q̃

L(W,{B}, Q̃; fnvc,X,Y)

34

+ λFRF (W) + λIRI({B}, Q̃),

where the regularization RI({B}, Q̃) can be Forbenius norm or other structural information

(e.g. `1 norm). The dimension r of B can be chosen according to the need of specific

application demands, and can be selected by cross-validation. In general, we choose r � d.

We note that the storage complexity for the feature interaction effects (e.g., tensor Q) is

reduce from O(d2K) to O(dr + r2K), which is dramatically smaller than the full tensor,

especially in the high dimensional settings. We could use the family of block coordinate

descent algorithms [198] to alternatively solve the variables W, {B}, and Q̃, to get a local

optimal solution.

3.1.5 Experiments

In this section, we perform experiments on both synthetic datasets and two real world datasets

to evaluate the effectiveness of our proposed MTIL framework.

3.1.6 Synthetic Dataset

In order to justify the effectiveness of modeling the feature interactions and MTIL framework,

we test our methods on synthetic datasets.

3.1.6.1 Effectiveness of modeling feature interactions

In this subsection, we test whether the interactions between features can be properly handled

by adding the interaction term Q. To do so, we create a single task synthetic dataset by

assuming:

y = Xw + diag(XQX′) + ε, (3.8)

35

Dimension of features
10 20 30 40 50 60 70 80 90 100

R
M

S
E

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1.1
Single Task Synthetic Dataset

STIL-1k
STIL-5k
RR-1k
RR-5k

Figure 3.2: RMSE comparison between RR and STIL on two synthetic datasets with sample
size of 1k and 5k, respectively.

where X ∈ Rn×d is the feature matrix, y ∈ Rn×1 is the responses, w ∈ Rd×1 is the weight

vector, Q ∈ Rd×d is a symmetric, low-rank sparse matrix, which represents the feature

interactions in the dataset, and ε ∼ N (0, 0.01In) is the additive noise term. We generate

20 synthetic datasets with different sizes (1000 or 1k and 5000 or 5k) and different feature

dimensions (varying from 10 to 100, stepped by 10) by randomly selecting X, w, and Q and

computing y according to Eq.(3.8).

We use single task feature interaction learning model (STIL) to evaluate the effectiveness

of the interaction term Q:

min
w,Q

n∑
i=1

1

2
||xTi w + xTi Qxi − yi||22 +

λ

2
||w||22 + µ||Q||1,1,

where w ∈ Rd×1 is the weight vector, Q ∈ Rd×d is the feature interaction matrix, and

‖Q‖1,1 =
∑
i

∑
j |Qi,j | denotes the `1,1 norm.

We compared the Root Mean Square Error (RMSE) between the Ridge Regression(RR)

and STIL on both of the synthetic datasets. As the results show in Figure 3.2, STIL

outperforms RR on both of the datasets, which shows the effectiveness of modeling the

36

Dimension of features
10 15 20 25 30 35 40 45 50

R
M

S
E

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1.1
Multi Task Synthetic Dataset

RR
STIL
MTL-L
MTIL-L-S
MTIL-S-S
MTIL-L-Lc
MTIL-L-Ln
MTIL-S-Ln
MTIL-S-Lc

Figure 3.3: Synthetic dataset (Multi-task): Root Mean Square Error (RMSE) comparisons
among all the methods. The Y-axis is RMSE, X-axis is dimension of features.

feature interaction in the data. Besides, STIL-5k (RR-5k) performs better than STIL-1k

(RR-1k), which demonstrates that the learning models will capture the underlining models

of the data better with larger training size. Also note that with the number of dimensions

increases, STIL will gradually overfit the data, because of the dramatic increase of the

interactions between features.

3.1.6.2 Effectiveness of MTIL

In order to test the effectiveness of MTIL, we generate a multi-task synthetic data by

assuming:

yt = Xtwt + diag(XtQtX
T
t), t = 1, 2, 3, .., T,

where Xt ∈ Rn×d is the feature matrix of task t, yt ∈ Rn×1 is the responses of task t,

W ∈ Rd×T = [w1,w2,w3, ...,wT] is the weights for tasks. As described in Section 3.1.4.3,

we generate feature interaction matrix Qt = BqtB
T and project it into a sparse, symmetric

space.

In this experiment, we generate 5 datasets with different feature dimensions from 10 to

37

50, stepped by 10, by randomly selecting Xt, wt, B and qt.

The predictive performance of the methods outlined below are examined on the synthetic

multi-task datasets:

• Ridge Regression (RR): We choose this model as the baseline and make neither assump-

tions of feature interaction nor the relation among all the tasks.

• STIL: We perform STIL on each of the task independently.

• MTL-L: This approach refers to the traditional MTL method regularized by the trace

norm of the weight matrix W[10]. It does not make assumptions on feature interactions.

• MTIL-L-S: This approach, refers to multi-task feature interaction learning regularized

by the trace norm of the weight matrix W and the tensor group lasso norm of tensor

Q (see section 3.1.4.2).

• MTIL-S-S: This approach is similar to MTIL-L-S except that the regularization term

on W is `2,1 norm.

• MTIL-L-Lc: This approach refers to multi-task feature interaction learning regularized

by the trace norm of the weight matrix W and latent trace norm of tensor Q (see

section 3.1.4.3).

• MTIL-S-Lc: This approach is similar to MTIL-L-Lc except for that the regularization

term on W is `2,1 norm.

• MTIL-L-Ln: This approach refer to multi-task feature interaction learning regularized

by the low rank norm of tensor Q and the trace norm of the weight matrix W (see

section 3.1.4.3).

38

• MTIL-S-Ln: This approach is similar to MTIL-L-Ln except for that the regularization

term on W is `2,1 norm.

Figure 3.3 compares the RMSE of the above methods on the 5 synthetic datasets. We

can see that MTIL-L-Ln and MTIL-S-Ln are not that sensitive to the change of feature

dimensions, thanks to the low-rank assumption on the feature interaction. Also, RR and

MTL-L share a similar performance, which is consistent with the fact that we did not assume

any low-rank structure in this synthetic dataset. Note that although STIL performs almost

the best on low dimensional data, its performance deteriorates rapidly compared with other

MTIL methods, due to the incapability of learning the feature interactions across tasks.

3.1.7 School Dataset

This dataset contains the examination records of 15362 students with 28 features from

139 schools in years of 1985, 1986 and 1987, provided by the Inner London Education

Authority(ILEA). In this dataset, each task is to predict exam scores for students in one out

of the 139 schools. We perform 4 sets of experiments by varying the amount of training size,

from 20% to 50% of the total sample size. We test the approaches summarized in section 3.1.6.2

and tune the parameters on λR in set [10−1, 100, ..., 109, 1010]. For MTIL-L-Ln and MTIL-S-

Ln methods, the rank of matrix r for each task are tuned in [2, 3, ..., 19, 20]. For MTIL-L-S

and MTIL-L-Lc, we tune the regularization parameters λI in [10−1, 100, ..., 109, 1010].

The experimental results are shown in Table 3.2. First, for most of the methods, RMSE

will decrease when the training size increases. This means that providing more data in the

training set will help overcome the overfitting problem. Also, we found that the performance

of embedded feature approaches (i.e. MTIL-L-Lc, MTIL-L-Ln, MTIL-S-Ln) are worse than

the single task learning approach. The reason behind this is that embedded feature approaches

39

Table 3.2: Performance comparison MTIL and baselines on the School dataset

Training 20% Training 30% Training 40% Training 50%
RR 0.9149 ± 0.0031 0.9025 ± 0.0058 0.8885 ± 0.0067 0.8722 ± 0.0059
STIL 0.9149 ± 0.0031 0.9025 ± 0.0057 0.8885 ± 0.0067 0.8721 ± 0.0058
MTL-L 0.8998 ± 0.0044 0.8807 ± 0.0052 0.8657 ± 0.0032 0.8503 ± 0.0070

MTIL-L-S 0.8623 ± 0.0048 0.8506± 0.0038 0.8511±0.0043 0.8404 ± 0.0067
MTIL-S-S 0.8999 ± 0.0063 0.8907 ± 0.0049 0.8832 ± 0.0077 0.8686 ± 0.0046
MTIL-L-Lc 0.9252 ± 0.0090 0.8893 ± 0.0037 0.8859 ± 0.0037 0.8720 ± 0.0044
MTIL-S-Lc 0.9353 ± 0.0133 0.9139 ± 0.0053 0.8941 ± 0.0024 0.8761 ± 0.0062
MTIL-L-Ln 1.0084 ± 0.0180 0.9758 ± 0.0097 0.9328 ± 0.0267 0.9041 ± 0.0140
MTIL-S-Ln 1.0026 ± 0.0368 0.9585 ± 0.0059 0.9297 ± 0.0253 0.8965 ± 0.0066

do not have sparse constraints on the interaction term, which will severely overfit the data

when there is not sufficient training samples. Additionally, the MTL-L and MTIL-L-S obtain

better performance than single task learning, which indicates that the low-rank structure

shared by tasks are effectively captured by the low-rank assumption in these two methods.

Moreover, MTIL-L-S method outperforms all other methods, which empirically proves the

effectiveness of learning the shared interactions with sparse constraints.

3.1.8 Modeling Alzheimer’s Disease

The Alzheimer’s Disease Neuroimaging Initiative (ADNI) database(adni.loni.ucla.edu), which

was launched in 2003 as a 5-year public-private partnership, is aimed to test whether

the positron emission tomography (PET), serial magnetic resonance imaging (MRI), other

biological markers, and clinical and neuropsychological assessments can be combined to

measure the progression of mild cognitive impairment (MCI) and early Alzheimer’s disease

(AD). We follow the procedure of preprocessing mentioned in [234] and obtain 648 subjects

and 305 MRI features. The parameters are tuned in the same way as we described in 3.1.7.

The RMSE comparison result is shown in Table 3.3. First, we found that all of the MTLs

outperform the single task learning approaches (RR and STIL), which demonstrates the

40

Table 3.3: Performance comparison MTIL and baselines on the ADNI dataset.

RMSE ± standard deviation
RR 0.9418 ± 0.0023
STIL 0.9417 ± 0.0021
MTL-L 0.9031 ± 0.0007
MTIL-L-S 0.9030 ± 0.0007
MTIL-S-S 0.9162 ± 0.0017
MTIL-L-Lc 0.8941 ± 0.0050
MTIL-S-Lc 0.8909 ± 0.0059
MTIL-L-Ln 0.8926 ± 0.0009
MTIL-S-Ln 0.9085 ± 0.0028

effectiveness of learning multiple tasks jointly by exploring the relatedness between tasks,

as well as the existence of the underlying relatedness between tasks in the ADNI dataset.

Second, the RMSE results of MTIL-L-S and MTL-L are comparable with each other, which

indicates that the multiple tasks in this dataset do not share the same feature interaction

structure. Finally, the result of MTIL-S-Lc method outperforms all other methods, which

shows superiority of our feature interaction framework. Through a mixture of 3 low-rank

tensor, we are able to learn the feature interaction pattern in this dataset.

3.1.9 Discussion

The proposed multi-task feature interaction learning framework has provided us a way to

bridge related tasks using interaction effects. By employing different types of regularizations

on the interaction effects tensor, the formulations under this framework have very different

characteristics.

For the shared interaction approach: we utilize Group Lasso on the interaction tensor to

control the model complexity. The proximal operator admits a closed form solution, and thus

the overall computational cost is very low. We are able to obtain interpretable results from

the model, showing what are important interactions that are relevant to the prediction tasks.

41

The main drawback is that we assume all tasks share the same set of interaction effects, which

may not be the case for many data sets. One way to further improve the formulation is by

extending the strong or weak heredity properties [20, 124] to the proposed MTIL framework.

For the embedded interaction approach: we can easily obtain the global optimal for the

convex formulation. Though we are able to tune the regularization parameter on the trace

norms to control the rank of the interaction tensor, it is usually very hard to decide the value

unless cross-validation is used. A rank larger than necessary may lead to over-fitting when

training samples are insufficient. On the other hand, the obtained mixture of 3 tensor is hard

to interpret. The non-convex formulation provides a better model decomposition, from which

we can see the combination of basis for different tasks and identify embedded bases that

are shared among the set of tasks. The drawback of this formulation is that we may easily

trapped in a bad local optimal unless we carefully choose the initial value (e.g., using the

solution from the convex formulation).

In general, this framework can be generalized into many other possible relatedness on

feature interactions by incorporating different regularization terms. Different approaches of

this framework should be carefully chosen according to the application domain. In the future

work we plan to study the statistical properties of the proposed model, which may lead to

deeper understanding of these interaction models.

3.2 Multi-Task Relationship Learning

3.2.1 Introduction

Supervised learning has been a well studied area of machine learning and there are many

efficient algorithms to learn from data and generate predictive models to infer labels for

42

unseen data points. As extensively studied in the statistical learning theory, the quantity and

quality of the labeled training data is the key to high-performance models. Unfortunately,

even in the big data era, obtaining labeled instances in many real world domains such as

biology and healthcare still incurs substantial cost. For example, the National Institute of

Aging funded over $60 million to Alzheimer’s disease neuroimaging initiative to study the

disease and data are collected from less than 1000 patients. The limited sample size largely

restricted the study of disease progression with many possible biomarkers.

Interestingly, while machine learning demands a large set of training samples to learn

simple concepts, the learning process of human beings allows us link a learning task with

what we have learned before and thus we are able to learn complicated cognitive concepts

with much less training samples. Motivated by this human learning, the multi-task learning

(MTL) paradigm learns related machine learning tasks simultaneously and performs inductive

knowledge transfer among the tasks to improve their the generalization performance. MTL has

many successful applications in board fields such as data mining, computer vision, text mining,

bioinformatics and healthcare analytics [101, 228, 68]. For example, capturing temporal

relatedness among multiple learning tasks allows researchers to build high performance disease

progression models for Alzheimer’s disease by transfer knowledge among time points [234].

One approach to learning multiple tasks is based on the regularized MTL framework [55].

The regularized MTL is extensively studied because of its flexibility to incorporate various

learning objectives such as least squares, logistic regression and hinge loss, and to extend

them with different kinds of assumptions on how tasks are related. Examples of such task

relatedness regularizations include shared sets of features via sparsity inducing norms [120],

shared low-dimensional subspace via the nuclear norm [10], and clustering structures via

spectral k-means [232]. The same framework can accommodate more complicated assumptions

43

such as dirty models [88] and robust models [37, 66]. Moreover, efficient implementations

have been developed for regularized MTL, which can be easily extended to new regularization

terms [233].

Many of the regularized MTL methods heavily depend on the prior knowledge of task

relatedness. In [54, 96, 171], for example, the prior knowledge of task relatedness are assumed

to be known and is then transfered to regularization terms to guide the learning. However,

the relationship for all tasks may not always be available. To address this problem, the

multi-task relationship learning (MTRL) approaches [227, 58, 225] are studied to learn the

task relationship in the form of a task covariance matrix from the data, representing how

similar are the two tasks. These methods have been shown to be more effective than others

in some learning problems. However, recall that in MTL the training samples are typically

insufficient, and thus we may not always be able to infer reliable task relationship from the

training data. If misleading task covariance matrix is learned from insufficient and noisy

data, the subsequent knowledge transfer guided by such covariance information will not be

performed towards the right direction as we expected, and lead to suboptimal models.

Figure 3.4: Overview of the proposed iMTRL framework, which involves human experts in
the loop of multi-task learning. The framework consists of three phases: (1) Knowledge-
aware multi-task learning: learning multi-task learning models from knowledge and data, (2)
Solicitation: soliciting most informative knowledge from human experts using active learning
based query strategy, (3) Encoding: encoding the domain knowledge to facilitate inductive
transfer.

44

In many applications the human experts may have some domain knowledge about how

some of tasks are related. For example, the physicians may indicate the predictive models

of two disease models should be very similar due to the similarity in the their pathological

pathways or dynamics in physiology. In those situations, soliciting and incorporating these

domain knowledge in the learning could dramatically improve the generalization performance

of learning models. Unfortunately, to the best of our knowledge, little research has been

done on this area. We identified a few key questions in area: (1) What type of domain

knowledge is suitable for guiding MTL? (2) How the solicited domain knowledge can be

effectively incorporated into the MTL formulations; and (3) How the domain knowledge can

be efficiently solicited?

To address the aforementioned challenges in MTL, this paper systematically investigated

the above questions and propose a novel interactive multi-task relationship learning (iMTRL)

framework. Specifically, in the iMTRL framework we propose to solicit the domain knowledge

in the form of partial order between two pairs of tasks, which is equivalent to a pairwise

relationship between two elements in the task covariance matrix. To effectively incorporate

the partial order knowledge, we propose a knowledge aware MTRL (kMTRL) formulation,

which learns a task covariance matrix constrained by the partial order relationships in

the domain knowledge. We develop an efficient optimization algorithm for the proposed

kMTRL. Moreover, since human labeling is very expensive even for weak supervision like tasks

relationship, we propose an efficient query strategy for knowledge solicitation. We evaluate

the proposed iMTRL framework on both synthetic and real datasets and demonstrate its

efficiency and effectiveness.

Notation: We use lowercase letters to denote scalars, lowercase bold letters to denote vectors

(e.g. x), uppercase bold letters to denote matrices (e.g. Ω). We use R to denote the set of

45

real numbers and R+(R++) to denote the subset of non-negative (positive) ones. If x ∈ Rd,

the p-norm of vector x is given by ‖x‖p = (
∑d
i=1 ‖xi‖p)

1
p . If A ∈ Rd×K , we use aj ∈ Rd to

denote the jth column of A and ãi ∈ RT to denote the ith row of A. For all r, p > 1, we

define the lp,q norm of A as ‖A‖p,q = (
∑d
i=1 ‖ãi‖

q
p)

1
p . The set of K integers is denoted as

NK = [1, ..., K]. We use Id to denote a d× d identity matrix, and 1d to denote a d dimension

vector with all elements are 1. Unless stated otherwise, all vectors are column vectors.

3.2.2 Related Work

Multi-task learning. MTL has been successfully applied to solve many challenging machine

learning problems involving multiple related tasks. Recently the regularization based MTL

approach has received a lot of attention because of its flexibility and efficient implementations.

One major research direction in regularized MTL is to encode the relationship among

tasks [54, 96, 58, 227, 171, 22]. The regularized MTL algorithms can be roughly classified into

two types: the first involves assumptions about task relatedness, which are then “translated”

into proper regularization terms in the regularization to infer a shared representation, that

serves as the media of knowledge transfer. An example is the low-rank MTL [54, 96, 171],

which seeks a shared low-dimensional subspace in task models, and the tasks are related

through the shared subspace. One potential issue in such methods is that the prior knowledge

may not always accurate and the assumption may not be suitable for all tasks. Later on some

studies focus on infer the task relationship from the dataset [227, 58, 22], e.g, by learning a

“covariance matrix” over tasks. Since the learned covariance matrix governing the knowledge

transfer is also learned from data, these methods is heavily dependent on the quality and

quantity of the training samples available. When an inaccurate task relationship is learned, it

will lead to point the knowledge transfer in a wrong direction and lead to suboptimal models,

46

as will be shown in our empirical studies. To alleviate the problem of existing models, we

propose an active learning framework which can interactively label the ground truth of task

relationship into learning model and guide correct knowledge transfer.

Active Learning. There are two common categories of active learning: the pool based and

the batch mode. The pool based active learning approaches select the most informative

unlabeled instance iteratively, which is then labeled by user, with the goal of learning a better

model with less efforts [173]. The selection process is often referred as a query. However, such

sequential query selection strategy is inefficient in many cases, i.e. adding one labeled data

point at a time is typically insufficient to substantially improve the performance of model,

and thus the training procedure is very slow. In contrast, the batch-mode active learning

approaches select a set of most informative query instances simultaneously. To the best of

our knowledge, all previous active learning focus on how to select a group of most informative

instances or training samples. Here, we instead propose a novel query strategy to query

another type of supervision: task relationship. This supervision is intuitive but comes with a

significant challenge, i.e., most previous active learning strategies cannot be directly applied.

In our study the task supervision is represented by partial orders which lead to pair-

wise constraints. There are a few previous studies on the effectiveness of the pairwise

constraints [215, 70] under active learning framework. In [70], a clustering algorithm named

Active-PCCA was proposed to consider whether two data points should be assigned to the

same cluster or not, by which it biases the categorization towards the one expected. The most

informative pairwise constraints are selected using the data points on the frontier of those least

well-defined clusters. In [215], the authors studied a semi-supervised clustering algorithm with

a query strategy to choose pairwise constraints by selecting the most informative instance, as

well as data points in its neighborhoods. The pairwise constraints are in the form of Must-link

47

and Cannot-link, which restrict two data points should be in the same class or not. However,

those methods are developed for clustering algorithms. How to select pairwise constraints on

task relationship that are suitable for the MTL framework remains to be an open problem.

In this work, we study query strategies for task relationship supervision, including one novel

strategy based on the inconsistency of learning model.

Interactive Machine Learning. Interactive machine learning (IML) is a systematic way to

include human in the learning loop, observing the results of learning and providing feedback

to improve the generalization performance of learning model [6]. It has provided a natural

way to integrate background knowledge into the learning procedure [7, 9, 210, 8]. For example,

the system called “perception-based classication” (PBC) [9] has been pioneered to offer an

interactive way to construct decision. The PBC is able to construct a smaller decision tree

but the accuracy achieved doesn’t has significant improve compared to other decision tree

methods such as C4.5. The decision construction has been further extend in [210]. They also

found out that users can build good models only when the visualization are apparent in two

dimension. Manual classifier construction is not successful for large data set involving high

dimension interaction. In [7], an end-user IML system (ReGroup) are proposed to be able to

help people create customized groups in social networks. In [8], the authors developed an

IML system named as (CueT) to learn the triaging decision about network alarm in a highly

dynamic environment. In this paper, iMTRL is proposed to combine the domain knowledge

in terms of task relationship to build learning models. Our work is exploring a completely

novel problem compared to the previous studies in interactive machine learning.

48

3.2.3 Interactive Multi-Task Relationship Learning

In this section, we first review the strengths and potential issues of the multi-task relationship

learning in Subsection 3.2.3.1, which motivate the overarching framework of the proposed

interactive multi-task relationship learning (iMTRL) in Subsection 3.2.3.2. Subsection 3.2.3.3

presents the knowledge-aware MTRL (kMTRL) formulation and algorithm. Subsection 3.2.3.5

introduces the novel batch mode knowledge query strategy based on active learning.

3.2.3.1 Revisit the Multi-task Relationship Learning

Before discussing the iMTRL framework, we revisit the multi-task relationship learning

(MTRL) [227], one popular MTL model that learns not only the prediction models but also task

relationship. The MTRL framework has a well founded Bayesian background. Assume we have

K related learning tasks, and in each task we are given a data matrix and their corresponding

responses. Let d be the number of features. For the task k, we are given m samples and their

corresponding responses, collectively denoted by Xk = [(xk1)T ; (xk2)T ; ...; (xkm)T] ∈ Rm×d

and yk ∈ Rm. We assume that the responses come from a linear combination of features

with a Gaussian noise, so that for sample j from task i, we have yij = wT
i xij + bi + εi, where

distribution of the noise is given by εi ∼ N (0, ε2i). The goal of the learning is to estimate the

task parameters W = [w1, ...,wK] and bias term b = [b1, ..., bK] for all K tasks from data.

Based on the assumption we can write the likelihood of yij given xij ,wi, bi, and εi is given

by:

p(yij |x
i
j ,wi, bi, εi) ∼ N (wT

i xij + bi, ε
2
i),

where N (m,Σ) represents the multivariate distribution with mean m and covariance matrix

49

Σ [21]. The prior on W = (w1, ...,wK) is given by:

p(W|εi) ∼

 K∏
i=1

N (wi|0d, σ2
i Id)

 q(W),

where Id ∈ Rd×d is the identity matrix. The first term is the extension of ridge prior to the

multi-task learning setting, which controls the model complexity of each task wi. The second

term refers to the task relationship, in which MTRL tries to learn the covariance of W using

a matrix-variate normal distribution for q(W)

q(W) =MNd×K(W|0d×K , Id ⊗Ω),

whereMNd×K(M,A⊗B) denotes matrix-variate normal distribution with mean M ∈ Rd×K ,

row covariance matrix A ∈ Rd×d and column covariance matrix B ∈ RK×K . According to

the Bayes’s theorem, the posterior distribution for W is proportional to the product of the

prior distribution and the likelihood function [21]:

p(W|X,y,b, ε, σ,Ω) ∝ p(y|X,W,b, ε)p(W|Ω, σ), (3.9)

where X collectively denotes the data matrix for K tasks and y = [y1, ...,yk] denotes labels

for all data points.

By taking negative logarithm of Eq. (3.9), the maximum a posteriori estimation of W

and maximum likelihood estimation of Ω is given by:

min
W,Ω

K∑
k=1

1

ε2k
‖y −Xkwk − bk1nk‖

2
F +

1

σ2
k

tr(WWT) + tr(WΩ−1WT) + d ln(Ω). (3.10)

50

In the above formulation, the last term d ln(Ω) controls the complexity of Ω and is a

concave function. In order to obtain a convex objective function, the MTRL proposed to

use tr(Ω) = 1 instead to control the complexity and project Ω to be a positive semi-definite

matrix. As such, the objective function of MTRL is derived as follows:

min
W,Ω

K∑
k=1

1

nk
‖yk −Xkwk − bk1nk‖

2
F +

λ1

2
tr(WWT) (3.11)

+
λ2

2
tr(WΩ−1WT). s.t. Ω � 0, tr(Ω) = 1

An alternating algorithm is proposed in [227] to solve this formulation. The algorithm

iteratively solves two steps: first it optimizes Eq (3.11) with respect to W and b when

Ω is fixed; it then optimizes the objective function with respective to Ω, which admits a

closed-form solution:

Ω = (WTW)1/2/tr((WTW)1/2). (3.12)

We note that there is a feedback loop in the learning of MTRL as illustrated above. The

MTRL achieves knowledge transfer among task models via the task relation matrix Ω, and

the task models will be used to estimate Ω. If the Ω can be learned correctly or can closely

represent the true tasks relationship, it will benefit learning on the tasks parameters W by

guiding the knowledge transfer in a good direction. In turn, the better tasks parameters will

help the algorithm to identify a more accurate estimation of Ω. The positive feedback loop

is the key to help building a good MTRL model. On the contrary, the training procedure

will be biased to wrong direction once we keep getting misleading feedbacks in the loop. To

be more specific, once data is either low-quality or insufficient-quantity, the Ω will indicate

an inaccurate direction to transfer the knowledge among tasks, which leads to a negative

51

feedback in the loop. This will end up learning a model with poor generalization performance,

examples of which will be elaborated in the empirical studies.

Another remark is that in Eq. (3.11), due to the relaxation, the solution of Ω is no longer

the extract solution from the maximum likelihood estimation of column covariance matrix

derived from Eq. (3.10). The advantages of the objective function in Eq. (3.11) compared to

Eq. (3.10) have been discussed in details in [227]. We would like to further point out that the

learned Ω is actually a better representation of tasks relationship than the column covariance

matrix. Recall that the covariance suggests the extent that elements in two vectors move

to the same direction. Suppose we have tasks parameters W ∈ Rd×K , the unbiased sample

covariance can be computed by C = WT
c Wc/(d− 1), where Wc = W − 1Td 1dW/d is the

centralized tasks models. This measure is only meaningful when there are enough number

of dimension d and the variance contains in tasks parameters. If W = [1,−2; 1,−2], the

covariance matrix will return an all-zero matrix which will not indicate a correct relationship.

Instead, an accurate estimation can be inferred by using Eq. (3.12). We can obtain a

correlation matrix Corr = [1− 1;−1, 1] from Ω.

The above discussions lead to two important conclusions: (1) The Ω can indicate a genuine

task relationship. (2) Maintaining an accurate Ω is the key in this learning procedure.

3.2.3.2 The iMTRL Framework

In MTL scenarios, the quality and quantity of training data usually impose significant

challenges to the learning algorithms. The task covariance matrix Ω inferred from the data

may not always give an accurate description of the true task relationship, which in turn

would prevent effective knowledge transfer. Fortunately, in many real-world applications,

human experts possess indispensable domain knowledge about relatedness among some tasks.

52

For example, when building models predicting different regions of the brain from clinical

features, neuroscientist and medical researcher can reveal important relationship among the

regions. As such, solicit feedback from human experts on task relationship and encode them

as supervision is especially attractive. To achieve this goal we need to answer the following

problems:

1. What type of knowledge representation can be efficiently solicited from human experts,

and also can be used to effectively guide the learning algorithms?

2. How to design MTL algorithm that combines the domain knowledge and data-driven

insights?

3. How to effectively solicit knowledge, reducing the workload of the human experts by

supplying only the most important knowledge that affects the learning system?

In this paper we propose a framework of interactive multi-task Machine learning (iMTRL),

which provides an integrated solution to address the above challenging questions. The

framework is illustrated in Fig 3.4. The iMTRL is an iterative learning procedure that

involves human experts in the loop. In each iteration, the learning procedure involves the

following:

1. Encoding. The domain knowledge of task relationship is represented as partial orders,

and can be encoded in the learning as pairwise constraints.

2. Knowledge-Aware Multi-Task Learning. We propose a novel MTL algorithm that infers

models and task relationship from data and conform the solicited knowledge.

3. Active Learning based Knowledge Query. To maximize the usefulness of solicited

knowledge, we propose a knowledge query strategy based on active learning.

53

It is natural and intuitive to use partial orders as the knowledge presentation for task

relationship. Query a question that whether the task i and j are more related than task i and

k is much easier than asking to which extent the task i and j are related to each other. For

example, ith task and jth tasks has positive relationship while the ith task and kth task has

negative relationship, then this relationship is represented by a partial order Ωi,j ≥ Ωi,k. The

focus of this paper is the algorithm development for iMTRL and we make a few assumptions

to alleviate common issues in using this presentation and simply our discussions:

Assumption 1. The domain knowledge acquired from human expert is accurate. The expert

may choose not to label if he/she is not confident.

Assumption 2. The acquired partial orders are compatible, i.e. when Ωi,j > Ωi,k and

Ωi,k > Ωk,p are established, the Ωi,j < Ωk,p cannot be included.

If this situation happens, we can discard the less important constraints and make the

remain constraints be compatible. The importance of constraints can be measured by the

Inconsistency which we will introduced in Definition 2.

3.2.3.3 A knowledge-aware extension of MTRL

Assume in the current iteration of iMTRL, our domain knowledge is stored in a set T defined

by:

T = {Ω : Ωi1,j1
≥ Ωi2,j2

∀(i1, j1, i2, j2) ∈ S}, (3.13)

where each pairwise constraint has specified a preferred half-space that an ideal solution Ω

should belong to, and the set S contains the indexes of tasks selected by our query strategy.

The partial order information is more important than the magnitude of Ω. The reason is that

if we multiply each element in Ω with a scalar a, it’s equal to solve the Eq. (3.15) replacing

54

λ2 with aλ2 [51]. Hence, the magnitude of elements in Ω can be adjusted simultaneously

without changing the results. But the order of pairs in Ω is a more important structure to

encode. These algorithmic advantages reinforced our choice of using pairwise constraints to

represent domain knowledge.

We note that the constraints in Eq. (3.13) would lead to a trivial solution that Ωi1,j1
=

Ωi2,j2
∀(i1, j1, i2, j2) ∈ S, which is apparently not the effect we seek. To overcome this

problem, we add a positive parameter c so that we can assure the elements in Ω preserve the

true pair wise order. Hence, the convex set T is changed to:

T = {Ω : Ωi1,j1
≥ Ωi2,j2

+ c, ∀(i1, j1, i2, j2) ∈ S}. (3.14)

The proposed knowledge-aware multi-task relationship (kMTRL) learning extends the

MTRL by enforcing a feasible space for Ω specified by T . To this end, the kMTRL formulation

is given by the following optimization problem:

min
W,b,Ω

F(W,b,Ω) =
K∑
k=1

1

nk
‖yk −Xkwk − bk1nk‖

2
F

+
λ1

2
tr(WWT) +

λ2

2
tr(WΩ−1WT)

s.t. Ω � 0, tr(Ω) = 1, Ω ∈ T (3.15)

We note that even though the problem of kMTRL is considered to be more challenging

to solve than MTRL because of additional constraints introduced in T , the solution space

of kMTRL is much smaller because each constraint cuts the solution space in half, and the

optimization algorithms may converge faster in this case.

55

3.2.3.4 Efficient Optimization for kMTRL

The proposed kMTRL is a convex optimization problem, and we propose to solve it using an

alternating algorithm:

Step 1: We first optimize the objective function with respect to W and b given a fixed Ω.

This step can either be solved using the linear system [227] or off-the-shelf solvers such as

CVX [69] and FISTA [16]. Different solvers can be applied depending on the nature of the

data: first order solvers such as FISTA is more scalable when there are many samples, while

solving linear system can be more efficient as feature dimension is high.

Step 2: Given W and b, the objective function with respect to Ω is given by an analytical

solution using Eq. (3.12).

Step 3: The Ω is projected to the convex set:

T = {Ω|Ω ∈ T ,Ω � 0, tr(Ω) = 1}

by solving the Euclidean projection problem below:

minΩ ‖Ω− Ω̂‖2F , s.t. Ω ∈ T

where the Ω̂ is the analytical solution we obtained from the Eq. (3.12). This objective

function can be solved efficiently using a successive projection algorithm [76] that iteratively

projects the solution to each constraint in the set.

The KKT analysis [35] of the above optimization problem leads to the property summarized

in Theorem 1, and leads to Algorithm 3.2. To simplify the discussion, we requires the true

pair orders are in the form of Ωi1,j1 ≥ Ωi2,j2.

56

Theorem 1. Suppose that T = {Ω : Ωi1,j1 ≥ Ωi2,j2 + c}, then, for any Ω ∈ RK×K , the

projection of Ω to the convex set T is given by:

Proj(Ω) = Ω if Ω ∈ T ,

otherwise

Proj(Ω) = Ω∗ =


Ω∗i1,j1 = 1

2(Ωi1,j1 + Ωi2,j2 + c)

Ω∗i2,j2 = 1
2(Ωi1,j1 + Ωi2,j2 − c)

Ω∗p,q = Ωp,q, ∀(p, q) 6= (i1, j1) and (i2, j2)

In practice, the term WTW is not guaranteed to be a full rank matrix. In fact, in a

typical MTL setting W is a low rank matrix and thus the Ω calculated by Eq. (3.12) is also

a rank deficiency matrix. Moreover, recall that the operation that projects Ω to a convex

set has a very high chance lead to a singular matrix. The numerical problems during the

inversion of the singular matrix Ω will lead to a meaningless inverse of task relation matrix

and corrupt the training procedure. Therefore, we propose to solve a perturbed version of

our original objective function Eq. (3.15) as follows:

min
W,b,Ω

F(W,b,Ω) =
K∑
k=1

1

nk
‖yk −Xkwk − bk1nk‖

2
F

+
λ1

2
tr(WWT) +

λ2

2
tr(Ω−1(WWT + εI)),

s.t. Ω � 0, tr(Ω) = 1, Ω ∈ T

(3.16)

where T follows the definition in Eq. (3.14). As a result, the analytical solution of Ω in Step

57

Algorithm 3.1: knowledge-aware Multi-Task Relationship Learning (kMTRL)
Require: Training data {Xk,yk}Kk , constraints set S, regularization parameters λ1, λ2, a

positive number c. Randomly initialize W0. Ω0 = I/d.
1: while W and Ω are not converge do
2: Compute {W,b} = arg minW,bF(W,b,Ω)
3: Compute Ω using Eq. (3.12)
4: Ω = Proj(Ω, S, n, c)
5: end while
6: return W, b, Ω

Algorithm 3.2: Projection algorithm
Require: Task correlation matrix Ω, constraints set S, max iteration n, a positive number c.
1: for i = 1, ..., n do
2: while ∀(i1, j1, i2, j2) ∈ S do
3: if Ωi1,j1 < Ωi2,j2 then
4: Ωi1,j1 = 1

2(Ωi1,j1 + Ωi2,j2 + c)
5: Ωi1,j1 = 1

2(Ωi1,j1 + Ωi2,j2 − c)
6: end if
7: end while
8: Dynamic update c = c× 0.9
9: Project Ω to be a positive semi-definite matrix

10: if All constraints are satisfied then
11: break
12: end if
13: end for
14: return Ω

2. is thus replaced by the following:

Ω = (WTW + εI)1/2/tr((WTW + εI)1/2. (3.17)

The algorithm to solve the objective function Eq. (3.16) is presented in Algorithm 3.1.

This algorithm can be interpreted as alternately performing supervised and unsupervised steps.

In the supervised step we learn the task specific parameters (W and b). In unsupervised step

we get the task relationship matrix from the task parameters. Finally, the last supervised

step we encode prior knowledge to the task relationship matrix Ω. We repeat the steps

iteratively until converge.

58

Algorithm 3.3: Query Strategy of Pairwise Constraints
Require: The task correlation matrix Ω, the model parameter matrix W for all tasks,

the number of pairwise constraints n selected to be query
1: Compute Ω̂ = (WTW)1/2/tr((WTW)1/2)
2: while ∀(i1, j1, i2, j2) do
3: Compute Ω(i1,j1,i2,j2) and Ω̂(i1,j1,i2,j2)

4: end while
5: while ∀(i1, j1, i2, j2) do
6: Compute Inc(i1,j1,i2,j2)
7: end while
8: Select n pairs with highest scores into the set T
9: return T

Algorithm 3.4: iMTRL framework
Require: Training sets {Xk,yk}Kk , number of selected queries q,

regularization parameters λ1, λ2, positive number c, T 0 = ∅
1: for i = 1, ..., n do
2: (Ωi, Wi, bi) = kMTRL({Xk,yk}Kk , T i−1, λ1, λ2, c)
3: T i = query(Wi, Ωi, qi)
4: T i = T i ∪ T i−1
5: end for
6: Ω = Ωi, W = Wi, b = bi

7: return Ω, W, b

3.2.3.5 Batch Mode Pairwise Constraints Active learning

There are too many possible pairs for human experts to label them all, and thus the efficiency

of iMTRL framework heavily relies on the quality of the pairs selected by the system. In

this subsection, we discuss the important question of how to efficiently solicit the domain

knowledge. Specifically, we would like to select the pairs that are most informative to the

learning process. We propose an efficient heuristic query strategy as elaborated as follows.

We first design a score function for pairwise constraints based on the inconsistency in the

model. To explain the inconsistency, we denote the analytical solution calculated by W as

Ω̂ = (WTW)1/2/tr((WTW)1/2) and the difference between elements Ωi1,j1
and Ωi2,j2

in

the learned Ω as Ω(i1,j1,i2,j2) = Ωi1,j1
−Ωi2,j2

. Then inconsistency in the model is defined

as follows:

59

Definition 2. Inconsistency is defined as:

Inc(i1,j1,i2,j2) = sign(i1, j1, i2, j2)|Ω(i1,j1,i2,j2) − Ω̂(i1,j1,i2,j2)|,

where sign(i1, j1, i2, j2) =
Ω(i1,j1,i2,j2)Ω̂(i1,j1,i2,j2)

|Ω(i1,j1,i2,j2)Ω̂(i1,j1,i2,j2)|
.

The Inc(i1,j1,i2,j2) represents two types of inconsistency:

Negative inconsistency: Given that the pairwise orders of two relationship matrices (Ω

and Ω̂) are not consistent, i.e. Ωi1,j1
> Ωi2,j2

, but Ω̂i1,j1
< Ω̂i2,j2

or vice versa, the

Inc(i1,j1,i2,j2) is always negative. The smaller the Inc(i1,j1,i2,j2) is, the higher is the heuristic

score.

Positive inconsistency: Given that the pairwise orders of two relationship matrices are

consistent, then the inconsistency comes from ‖Ω(i1,j1,i2,j2) − Ω̂(i1,j1,i2,j2)‖. The larger the

Inc(i1,j1,i2,j2) is, the higher is the heuristic score .

Note that the disorder of two pairs are more important that the difference of two pairs,

and all pairs with negative inconsistency has the priority to be selected over those with

positive inconsistency. At the first iteration, before adding any pairwise constraints into the

training procedure, the learned Ω is very close to the analytical solution calculated from W,

i.e. Ω(i1,j1,i2,j2) = Ω̂(i1,j1,i2,j2), except for the disturb of numerical term εI. Therefore, the

inconsistency is caused by some numerical issues in the first round. Therefore at the first

training iteration, there is no negative inconsistency. As the number of constraints added into

the model, the inconsistency will appear and the query strategy will become more effective in

this situation. The Algorithm 3.3 describes the query strategy.

Finally, we summarize all procedures of iMTRL in Algorithm 3.4. The line 1 means there

are n iterations learning procedures need to be conducted. The line 2 corresponds to the

60

knowledge-aware MTL step in our iMTRL framework. The line 3 is to solicit the domain

knowledge and line 4 is to answer the query and encoding the knowledge into the model.

3.2.4 Experiments

3.2.4.1 Importance of High-Quality Task Relationship

In this subsection, we conduct experiments to show that encoding an accurate task relationship

will significantly enhance the performance of MTRL. The effectiveness of MTRL has already

been demonstrated in [227], in which the authors showed that MTRL can infer an accurate

task relationship from a relatively clean dataset with sufficient training samples. Here we

use a toy example to show that MTRL would infer a misleading relationship when noise

presents and there are insufficient training samples. The toy dataset is generated as follows.

There are three tasks with data sampled from y = 3x+ 10, y = −2x+ 5 and y = 10x+ 1,

respectively. For each tasks we generate 5 samples from a uniformly distribution in [0, 10].

The function outputs for three tasks are corrupted by a Gaussian noise with zero mean and

standard variance equal to 30, 10 and 10, respectively. According to the generative regression

functions, we expect that the correlation between the first task and third task is close to 1

and for the rest of pairs is close to -1. We use the linear kernel of MTRL with λ1 = 0.01 and

λ2 = 0.05. The learned Ω gives a correlation matrix as follows:

 1 0.9999 −0.9999

0.9999 1 −1

−0.9999 −1 1


From the above matrix we see that the learned relationship for task 1 is opposite to the

supposed relationship, because of the highly noised data. This will leads to suboptimal solution

61

for W = [−3.7283,−2.6605, 3.0105], as compared to the ground truth W = [3,−2, 10]. On

the other hand, if we encode the true tasks relationship by fixing the Ω to be the ground

truth during the learning process, with the exactly same parameters setting as above. We

can then learn a model W = [0.6850,−0.3878, 2.5840] that is closer to the ground truth in

terms of l2 norm and keeps the correct tasks relationship. This procedure is denoted as truth-

encoded multi-task relationship learning (eMTRL) in this subsection.

This observation motivates us to further explore the effectiveness of eMTRL. We created

synthetic dataset by generatingK = 10 tasks parameters wi and bi from a uniform distribution

between 0 and 1. Each task contains 25 samples drawn from a Gaussian distribution with zero

means and the variance equals to 10. The function response is also corrupted by a Gaussian

noise with zero mean and has a variance of 5. We split this synthetic dataset to training,

validation and testing set. Out of the 25 samples for each tasks, 20% are for training, 30%

for validation and 50% for testing. We fix the number of samples and the number of tasks,

vary the number of features from 20 to 100. The parameters λ1 and λ2 have been tuned

in [1× 10−3, 1× 10−2, 1× 10−1] and [0, 1× 10−3, 1× 10−2, 1× 10−1, 1, 10, 1× 102, 1× 103],

respectively.

The performance has been evaluated using Root Mean Square Error (RMSE) and Frobenius

norm between learned task model and the ground truth task model. The results shown in

Figure 3.5 indicate that encoding the knowledge about task relationship will significantly

benefit the prediction. Even though eMTRL is not a practical model because we can

never know the true task relationship, the experimental results confirm that there is a huge

potential to improve predictive performance if we can take advantage of domain knowledge.

The experimental results in next section will show how to efficiently solicit and incorporate

the domain knowledge about tasks relationship into the learning.

62

Table 3.4: The average RMSE of query and random strategy on testing dataset over 5 random
splitting of training and validation samples.

· number of constraints 0 5 10 15 20 25 30 35 40
Query Strategy 1.1387 1.1267 1.1224 1.1117 1.1125 1.1101 1.1102 1.1137 1.1168

Random Selection 1.1387 1.1255 1.1390 1.1284 1.1165 1.1285 1.1379 1.1382 1.1364

Table 3.5: The RMSE comparison of kMTRL and baselines.

School RR MTL-L MTL-l21 MTRL kMTRL-20 kMTRL-40 kMTRL-60 kMTRL-80
5% 1.1737±0.0041 1.1799± 0.0047 1.176± 0.0043 1.0615 ± 0.0167 1.0584 ± 0.0128 1.0553 ± 0.0155 1.0551 ± 0.0158 1.0551 ± 0.0159
10% 1.1428±0.0306 1.1485 ± 0.0293 1.1477 ± 0.0282 0.9872 ± 0.0057 0.9823 ± 0.0030 0.9805 ± 0.0014 0.9803 ± 0.0018 0.9803 ± 0.0018
15% 1.0665±0.0395 1.0699 ± 0.0405 1.0700 ± 0.0399 0.9491 ± 0.0060 0.9334 ± 0.0057 0.9321 ± 0.0081 0.9322 ± 0.0083 0.9323 ± 0.0082
20% 0.9756±0.0157 0.9774 ± 0.0153 0.9776 ± 0.0149 0.9047 ± 0.0031 0.8966 ± 0.0123 0.8906 ± 0.0123 0.8844 ± 0.0022 0.8843 ± 0.0019

MMSE RR MTL-L MTL-l21 MTRL kMTRL-5 kMTRL-10 kMTRL-15 kMTRL-20
2% 0.9503± 0.1467 0.9319±0.1497 0.9314±0.1693 0.9106 ± 0.0976 0.9113 ± 0.0982 0.9058 ± 0.0926 0.9058 ± 0.0926 0.9058 ± 0.0926

Dimension of features
20 30 40 50 60 70 80 90 100

N
or

m

5

10

15

20

MTRL
eMTRL

Dimension of features
20 30 40 50 60 70 80 90 100

R
M

SE

20

25

30

35

40

45

50

55

60

65

MTRL
eMTRL

(a) (b)

Figure 3.5: Performance of MTRL and eMTRL as the number of features changing, in
terms of (a) Frobenius norm and (b) RMSE. MTRL [227] learns both task models and task
relationship at the same time, while eMTRL here learns the task models while the task
relationship Ω is fixed to ground truth, i.e. encoding the correct domain knowledge about
the task relationship.

3.2.4.2 Effectiveness of Query Strategy

In this subsection, we conduct the experiments to show that encoding the domain knowledge in

the form of partial order is useful. We follow the same synthetic data set with 20 feature dimen-

sion generated above. The same setting of splitting training, testing and validation dataset,

and 5 fold random split validation are applied. The parameters λ1 and λ2 have been tuned

in [1× 10−3, 1× 10−2, 1× 10−1] and [0, 1× 10−3, 1× 10−2, 1× 10−1, 1, 10, 1× 102, 1× 103],

respectively. After the learning algorithm converges, we compare the the pairwise constraints

63

are chosen by the proposed query strategy and the randomly selected strategy. The results of

two strategies are reported in Table 3.4. We see the trend that both of the proposed query

strategy and the random selection reach better generalization performance as the number of

incorporated pairwise constraints increases. To be more specific, the results in first column is

worse than all the results using query strategy and most of the results using random selection.

This show that solicit the domain knowledge in terms of pairwise constraints is effective.

On the other hand, when comparing the results of the proposed query strategy and random

selection, we see that our query strategy selects important pairwise constraints, leading to

a better model than the random query. When the number of pairwise constraints is larger

than 5, the proposed query strategy works consistently better than random selection.

3.2.4.3 Interactive Scheme for Query Strategy

To further analysis our query strategy, we also explore different interactive schemes in our

query strategy. There are multiple ways to query a certain amount of partial orders. We

can either query many times and each time with less labeling efforts, or vice versa. We use

kMTRL-a-b to denote a total b constraints and each time we query a constraints (the human

expert needs to interact with the system b/a times). The different interactive scheme will

highly impact the user experience. For example, kMTRL-10-100 needs to query experts 10

times and experts need to label 10 constraints at each time. Also, it takes 10 training iterations

which is much more expensive than other schemes. In contrast, kMTRL-100-100 only needs to

query experts once, which is the most efficient scheme. However, this scheme cannot benefit

from the iterative process of iMTRL. The pairwise constraints added in previous iterations

will affect the model and won’t be selected again. This will reveal other important constraints.

Taking a one iteration scheme cannot utilize this information. The results are summarized

64

Number of selected pairwise constraints
0 10 20 30 40 50 60 70 80 90 100

R
M

SE

0.85

0.9

0.95

1

1.05
Comparison of active learning scheme

kMTRL-10-100
kMTRL-20-100
kMTRL-50-100
kMTRL-100-100

Figure 3.6: The averaged RMSE of kMTRL using different setting of query strategy. The
kMTRL-10-100 means selecting 10 pairwise constraints at the end of each iteration, start
from zero, add 10 pairwise constraints at a time, until 100 constraints. For all 4 schemes,
kMTRL with zero constraints is equivalent to MTRL. Results are the average over 5 fold
random splitting.
in Figure 3.6. We see that kMTRL-50-100 achieves the best performance. Therefore, the

best scheme indicate that our query strategy is mostly effective when we balance the two

parameters, and thus it does not require intensively interaction with experts and meanwhile

utilizes the previous information effectively1.

3.2.4.4 Performance on Real Datasets

The school dataset is a widely used benchmark dataset for multi-task regression problem. It

contains 15372 students with 28 features from 139 secondary schools in the year of 1985, 1986

and 1987, provided by the Inner London Education Authority(ILEA). The task is to predict

the score for students in 139 schools. The experimental settings are explained as follows. We

first split the dataset into training, validation and testing datasets. The percentage of testing

samples varies from 10% to 25% of all samples each tasks in original dataset. Taking the

10% testing dataset as an example, we perform 3-fold random split on the rest 90% data.

1Code is publicly available at https://github.com/illidanlab/iMTL

65

https://github.com/illidanlab/iMTL

Each fold has 20% samples for training and 70% for testing. The same random splitting are

applied to the three datasets.

Another real dataset we used here is Alzheimer’s Disease Neuroimaging Initiative (ADNI)

database2. The experimental setup is same as described in the paper [235]. The goal is

to predict the successive cognition status of patients based on the measurements at the

screening or the baseline visit. We use 2% samples for training, 10% for testing and the

rest for validation. We also perform 3-fold random split on this dataset. The predictive

performance of the competing methods listed below are reported on the real datasets:

• RR: This approach refers to ridge regression.

• MTL-L: This approach refers to the low-rank multi-task learning with trace norm

regularization [10].

• MTL-L21: This approach refers to multi-task joint feature learning using l2,1 norm

that selects a subset of features shared by all tasks [121].

• MTRL: This approach refers to the multi-task relationship learning as we described in

Section 3.2.3 [227].

• kMTRL-N : This approach refers to the proposed kMTRL method with N pairwise

encoded into the model.

We tune the regularization parameters on W in [1× 10−3, 1× 10−2, 1× 10−1] for RR,

MTL-L and MTL-L21. The regularization parameters λ1 and λ2 in Eq.(3.16) are tuned in

[1× 10−3, 1× 10−2, 1× 10−1] and [0, 1× 10−3, 1× 10−2, 1× 10−1, 1, 10, 1× 102, 1× 103]

respectively. The best parameters are selected based on the performance on the validation

2Data is publicly available at http://adni.loni.usc.edu/

66

http://adni.loni.usc.edu/

Table 3.6: The name of the brain regions in Figure 3.8, where (C) denotes cortical parcellation
and (W) denotes white matter parcellation.

Intra-region Inter-region (Row) Inter-region (Column)
1 (C) Right Caudal Middle Frontal (W) Right Putamen (C) Right Inferior Temporal
2 (C) Right Pericalcarine (W) Left Cerebral Cortex (C) Left Rostral Middle Frontal
3 (W) Corpus Callosum Mid Anterior (W) Right Ventral Diencephalon (C) Right Pars Triangularis
4 (W) Right Cerebellum Cortex (C) Right Caudal Anterior Cingulate (C) Right Precentral
5 (W) Corpus Callosum Central (C) Left Temporal Pole (C) Right Medial Orbitofrontal
6 (C) Left Bank ssts (C) Right Postcentral (C) Left Pars Triangularis
7 (C) Right Pars Opercularis (C) Right Precentral (C) Right Superior Parietal
8 (C) Left Isthmus Cingulate (W) Right Cerebral Cortex (C) Right Inferior Parietal
9 (C) Left Supramarginal (C) Left Isthmus Cingulate (C) Left Pars Orbitalis
10 (C) Right Inferior Temporal (C) Left Superior Frontal (W) Corpus Callosum Central

set. The performance of learned models are measured by RMSE on the testing dataset. The

experimental results are shown in Table 3.5, from which we see that kMTRL achieves the

best results. In this experiment, we adopt the scheme kMTRL-20-80 for school dataset and

kMTRL-5-20 for MMSE dataset as described in previous subsection.

3.2.5 Case Study: Brain Atrophy and Alzheimer’s Disease

In this section we apply the proposed iMTRL framework to study the brain atrophy patterns

and how the changes in the brain is associated to different clinical dementia scores and

symptoms that are related to Alzheimer’s disease (AD). It is estimated that there are

currently 5 million Americans have AD, and AD has become one of the leading causes of

death in the United States. Since AD is characterized by structural atrophy in the brain, there

is a pressing demand of understanding how the brain atrophy is related to the progression of

the disease.

In this work we study how the structural features of brain regions can be related to 51

cognitive markers such as, Alzheimer’s Disease Assessment Scale (ADAS), clinical dementia

rating (CDR), Global Deterioration Scale (GDS), Hachinski, Neuropsychological Battery,

WMS-R Logic, and other neuropsychological assessment scores. We are interested in predicting

the volume of brain areas extracted from the structural magnetic resonance imaging (MRI).

67

Competence
0.6 0.8 1 1.2 1.4 1.6 1.8

Fr
eq
ue
nc
y

0

5

10

15

20

25

Competence
0.8 1 1.2 1.4 1.6 1.8

Fr
eq
ue
nc
y

0

20

40

60

80

100

120

(a) (b)

Figure 3.7: The distribution of competence on (a) intra-region covariance and (b) inter-region
covariance. kMTRL performs better than MTRL when competence> 1. Higher competence
indicates better performance achieved by kMTRL as compared to MTRL. We see in a majority
of regions the kMTRL outperforms the MTRL.

Real

2 4 6 8 10

2

4

6

8

10

MTRL

2 4 6 8 10

2

4

6

8

10

kMTRL

2 4 6 8 10

2

4

6

8

10

#10-3

0

2

4

6

8

10

(a) Intra-region covariance
Real

2 4 6 8 10

2

4

6

8

10

MTRL

2 4 6 8 10

2

4

6

8

10

kMTRL

2 4 6 8 10

2

4

6

8

10

#10-3

-2

0

2

4

6

8

(b) Inter-region covariance

Figure 3.8: Comparison of sub-matrices of covariance among (left) task covariance using 90%
all data points that is considered as “ground truth”, (middle) the covariance matrix learned
via MTRL on 20% data and (right) the covariance matrix learned via kMTRL on 20% data
with 0.8% pair-wise constraints queried by the proposed query scheme.

We use the ADNI cohort consisting 648 subjects whose baseline MRI images passed quality

control. We used the FreeSurfer tool to extract the 99 brain volumes from regions of interest

(ROIs) of the baseline MRI images. Considering the prediction of the volume of each ROI

as a learning task, we thus have a collection of 99 learning tasks, with each task having 648

samples and 51 features. Since the brain regions are related during the aging process and

Alzheimer’s progression, the MTL approach can be used to improve the performance by

considering such relatedness among brain regions.

We adopt the same experimental setting as in the previous experiments, where we compare

the MTRL with the proposed kMTRL by querying and adding pair-wise expert knowledge

68

and inspecting the effectiveness of the queried task relationship supervision. We show the

differences among the (1) task covariance using 90% all data points that is considered as

“ground truth”, (2) the covariance matrix learned via MTRL on 10% data and (3) the

covariance matrix learned via kMTRL on 10% data with 0.8% pair-wise constraints queried

by the proposed query scheme. Since the complete 99× 99 covariance matrices are hard to

visualize, we choose investigate two types of subregions of the covariance matrices: (a) a

random intra region of the covariance of the size 10× 10 (row regions and column regions are

the same) and (b) a random inter region of the covariance of the size 10× 10 (row regions and

column regions are different). We define the competence metric to quantify how the quality

of the sub-covariance:

‖ΩMTRL − Ωreal‖F /‖ΩkMTRL − Ωreal‖F , (3.18)

where the kMTRL performs better than MTRL when competence > 1, and the higher the

better. We repeatedly choose random sub-covariances and the distribution of the competence

is shown in the Figure 3.7, indicating that in a majority of cases knowledge can improve

relationship estimation.

We visualize two sub-covariance matrices in Figure 3.8, whose regions are shown in

Table 3.6. In Figure 3.8(a), we see that the covariances from both the ground truth and the

kMTRL discourage the positive knowledge transfer from Right Cerebellum Cortex, which

agrees with the pathological characteristics of AD [182], where cerebellum does not correlate

with the progression of AD. Also the positive correlation between Corpus Callosum Mid

Anterior and Corpus Callosum Central is identified in both the ground truth and the kMTRL,

and ignored by MTRL. The significant reduced corpus callosum size was previously reported

69

in AD studies [192], and the progression patterns of the two regions can be similar because of

the physical distance between the two regions. Figure 3.8(b), we see that the unsubstantiated

strong correlation between Right Precentral and Left Pars Triangularis as found in MTRL has

been largely suppressed by the domain knowledge. However, since we only specified partial

order relationship, there are chances the proposed kMTRL algorithm may “over-utilize” the

supervision, as we notice that some unsubstantiated positive correlations involving Right

Ventral Diencephalon are introduced to the covariance. We plan to further elaborate the

findings and clinical insights of AD and dementia in the journal extension of this paper.

70

Chapter 4

Data-Driven Collaborative Learning

In this chapter, we discuss data-driven collaboration in reinforcement learning. More specifi-

cally, we first propose a collaborative deep reinforcement learning framework that can address

the knowledge transfer among heterogeneous tasks. Under this framework, we propose deep

knowledge distillation to adaptively align the domain of different tasks with the utilization of

deep alignment network. Secondly, we further construct heterogeneous learning agents in

the same task to improve its sample-efficiency. The central idea is to disentangle exploration

and exploitation agents and then conduct data-driven transfer through imitation learning,

which leads to an off-policy learning framework largely facilitates the learning efficiency. The

off-policy learning framework uses generalized policy iteration for exploration and exploits

the stableness of supervised learning for deriving policy, which accomplishes the unbiasedness,

variance reduction, off-policy learning, and sample efficiency at the same time.

4.1 Collaborative Deep Reinforcement Learning

4.1.1 Introduction

On the other hand, the study of human learning has largely advanced the design of machine

learning and data mining algorithms, especially in reinforcement learning and transfer learning.

The recent success of deep reinforcement learning (DRL) has attracted increasing attention

71

Agent

Agent Agent

Agent

Homogeneous
Interaction

Agent

Agent Agent

Agent

Homogeneous
Interaction

Heterogeneous Interaction

Environment

Agent

Agent model

Deep
knowledge
distilling

Interact with
heterogeneous
agents

Learn from
environment

Interact
with

environment

Learn from
distilled
knowledge

Target (student)

Agent Agent Agent...
Sources (teachers)

Figure 4.1: Illustration of Collaborative Deep Reinforcement Learning Framework.

from the community, as DRL can discover very competitive strategies by having learning

agents interacting with a given environment and using rewards from the environment as

the supervision (e.g., [132, 86, 107, 174]). Even though most of current research on DRL

has focused on learning from games, it possesses great transformative power to impact

many industries with data mining and machine learning techniques such as clinical decision

support [193], marketing [3], finance [2], visual navigation [236], and autonomous driving [32].

Although there are many existing efforts towards effective algorithms for DRL [131, 137],

the computational cost still imposes significant challenges as training DRL for even a simple

game such as Pong [24] remains very expensive. The underlying reasons for the obstacle

of efficient training mainly lie in two aspects: First, the supervision (rewards) from the

environment is very sparse and implicit during training. It may take an agent hundreds or

even thousands actions to get a single reward, and which actions that actually lead to this

reward are ambiguous. Besides the insufficient supervision, training deep neural network

itself takes lots of computational resources.

72

Due to the aforementioned difficulties, performing knowledge transfer from other related

tasks or well-trained deep models to facilitate training has drawn lots of attention in the

community [159, 191, 151, 86, 166]. Existing transfer learning can be categorized into two

classes according to the means that knowledge is transferred: data transfer [82, 151, 166] and

model transfer [53, 227, 229, 151]. Model transfer methods implement knowledge transfer

from introducing inductive bias during the learning, and has been extensively studied in

both transfer learning/multi-task learning (MTL) community and deep learning community.

For example, in the regularized MTL models such as [55, 233], tasks with the same feature

space are related through some structured regularization. Another example is the multi-task

deep neural network, where different tasks share parts of the network structures [229]. One

obvious disadvantage of model transfer is the lack of flexibility: usually the feasibility of

inductive transfer has largely restricted the model structure of learning task, which makes

it not practical in DRL because for different tasks the optimal model structures may be

radically different. On the other hand, the recently developed data transfer (also known as

knowledge distillation or mimic learning) [82, 166, 151] embeds the source model knowledge

into data points. Then they are used as knowledge bridge to train target models, which can

have different structures as compared to the source model [82, 25]. Because of the structural

flexibility, the data transfer is especially suitable to deal with structure variant models.

There are two situations that transfer learning methods are essential in DRL:

Certificated heterogeneous transfer. Training a DRL agent is computational expensive.

If we have a well-trained model, it will be beneficial to assist the learning of other tasks by

transferring knowledge from this model. Therefore we consider following research question:

Given one certificated task (i.e. the model is well-designed, extensively trained and performs

very well), how can we maximize the information that can be used in the training of other

73

related tasks? Some model transfer approaches directly use the weights from the trained model

to initialize the new task [151], which can only be done when the model structures are the same.

Thus, this strict requirement has largely limited its general applicability on DRL. On the other

hand, the initialization may not work well if the tasks are significantly different from each

other in nature [151]. This challenge could be partially solved by generating an intermediate

dataset (logits) from the existing model to help learning the new task. However, new problems

would arise when we are transferring knowledge between heterogeneous tasks. Not only the

action spaces are different in dimension, the intrinsic action probability distributions and

semantic meanings of two tasks could differ a lot. Specifically, one action in Pong may

refer to move the paddle upwards while the same action index in Riverraid [24] would

correspond to fire. Therefore, the distilled dataset generated from the trained source task

cannot be directly used to train the heterogeneous target task. In this scenario, the first key

challenge we identified in this work is that how to conduct data transfer among heterogeneous

tasks so that we can maximally utilize the information from a certificated model while still

maintain the flexibility of model design for new tasks. During the transfer, the transferred

knowledge from other tasks may contradict to the knowledge that agents learned from its

environment. One recently work [159] use an attention network selective eliminate transfer if

the contradiction presents, which is not suitable in this setting since we are given a certificated

task to transfer. Hence, the second challenge is how to resolve the conflict and perform a

meaningful transfer.

Lack of expertise. A more general desired but also more challenging scenario is that DRL

agents are trained for multiple heterogeneous tasks without any pre-trained models available.

One feasible way to conduct transfer under this scenario is that agents of multiple tasks share

part of their network parameters [229, 166]. However, an inevitable drawback is, multiple

74

models lose their task-specific designs since the shared part needs to be the same. Another

solution is to learn a domain invariant feature space shared by all tasks [4]. However, some

task-specific information is often lost while converting the original state to a new feature

subspace. In this case, an intriguing questions is that: can we design a framework that

fully utilizes the original environment information and meanwhile leverages the knowledge

transferred from other tasks?

This paper investigates the aforementioned problems systematically and proposes a novel

Collaborative Deep Reinforcement Learning (CDRL) framework (illustrated in Figure 4.1) to

resolve them. Our major contribution is threefold:

• First, in order to transfer knowledge among heterogeneous tasks while remaining the

task-specific design of model structure, a novel deep knowledge distillation is proposed

to address the heterogeneity among tasks, with the utilization of deep alignment network

designed for the domain adaptation.

• Second, in order to incorporate the transferred knowledge from heterogeneous tasks into

the online training of current learning agents, similar to human collaborative learning, an

efficient collaborative asynchronously advantage actor-critic learning (cA3C) algorithm

is developed under the CDRL framework. In cA3C, the target agents are able to learn

from environments and its peers simultaneously, which also ensure the information from

original environment is sufficiently utilized. Further, the knowledge conflict among

different tasks is resolved by adding an extra distillation layer to the policy network

under CDRL framework, as well.

• Last but not least we present extensive empirical studies on OpenAI gym to evaluate

the proposed CDRL framework and demonstrate its effectiveness by achieving more

75

than 10% performance improvement compared to the current state-of-the-art.

Notations: In this paper, we use teacher network/source task denotes the network/task

contained the knowledge to be transferred to others. Similarly, the student network/target

task is referred to those tasks utilizing the knowledge transferred from others to facilitate its

own training. The expert network denotes the network that has already reached a relative

high averaged reward in its own environment. In DRL, an agent is represented by a policy

network and a value network that share a set of parameters. Homogeneous agents denotes

agents that perform and learn under independent copies of same environment. Heterogeneous

agents refer to those agents that are trained in different environments.

4.1.2 Related Work

Multi-agent learning. One closely related area to our work is multi-agent reinforcement

learning. A multi-agent system includes a set of agents interacting in one environment.

Meanwhile they could potentially interact with each other [28, 103, 73, 190]. In collaborative

multi-agent reinforcement learning, agents work together to maximize a shared reward mea-

surement [103, 73]. There is a clear distinction between the proposed CDRL framework and

multi-agent reinforcement learning. In CDRL, each agent interacts with its own environment

copy and the goal is to maximize the reward of the target agents. The formal definition of

the proposed framework is given in Section 4.1.5.

Transfer learning. Another relevant research topic is domain adaption in the field of

transfer learning [149, 183, 200]. The authors in [183] proposed a two-stage domain adaptation

framework that considers the differences among marginal probability distributions of domains,

as well as conditional probability distributions of tasks. The method first re-weights the data

76

from the source domain using Maximum Mean Discrepancy and then re-weights the predictive

function in the source domain to reduce the difference on conditional probabilities. In [200],

the marginal distributions of the source and the target domain are aligned by training

a network, which maps inputs into a domain invariant representation. Also, knowledge

distillation was directly utilized to align the source and target class distribution. One clear

limitation here is that the source domain and the target domain are required to have the

same dimensionality (i.e. number of classes) with same semantics meanings, which is not the

case in our deep knowledge distillation.

In [4], an invariant feature space is learned to transfer skills between two agents. However,

projecting the state into a feature space would lose information contained in the original state.

There is a trade-off between learning the common feature space and preserving the maximum

information from the original state. In our work, we use data generated by intermediate

outputs in the knowledge transfer instead of a shared space. Our approach thus retains

complete information from the environment and ensures high quality transfer. The recently

proposed A2T approach [159] can avoid negative transfer among different tasks. However,

it is possible that some negative transfer cases may because of the inappropriate design of

transfer algorithms. In our work, we show that we can perform successful transfer among

tasks that seemingly cause negative transfer.

Knowledge transfer in deep learning. Since the training of each agent in an environment

can be considered as a learning task, and the knowledge transfer among multiple tasks belongs

to the study of multi-task learning. The multi-task deep neural network (MTDNN) [229]

transfers knowledge among tasks by sharing parameters of several low-level layers. Since

the low-level layers can be considered to perform representation learning, the MTDNN

is learning a shared representation for inputs, which is then used by high-level layers in

77

the network. Different learning tasks are related to each other via this shared feature

representation. In the proposed CDRL, we do not use the share representation due to the

inevitable information loss when we project the inputs into a shared representation. We

instead perform explicitly knowledge transfer among tasks by distilling knowledge that are

independent of model structures. In [82], the authors proposed to compress cumbersome

models (teachers) to more simple models (students), where the simple models are trained by

a dataset (knowledge) distilled from the teachers. However, this approach cannot handle the

transfer among heterogeneous tasks, which is one key challenge we addressed in this paper.

Knowledge transfer in deep reinforcement learning. Knowledge transfer is also studied

in deep reinforcement learning. [131] proposed multi-threaded asynchronous variants of several

most advanced deep reinforcement learning methods including Sarsa, Q-learning, Q-learning

and advantage actor-critic. Among all those methods, asynchronous advantage actor-critic

(A3C) achieves the best performance. Instead of using experience replay as in previous work,

A3C stabilizes the training procedure by training different agents in parallel using different

exploration strategies. This was shown to converge much faster than previous methods and

use less computational resources. We show in Section 4.1.5 that the A3C is subsumed to

the proposed CDRL as a special case. In [151], a single multi-task policy network is trained

by utilizing a set of expert Deep Q-Network (DQN) of source games. At this stage, the

goal is to obtain a policy network that can play source games as close to experts as possible.

The second step is to transfer the knowledge from source tasks to a new but related target

task. The knowledge is transferred by using the DQN in last step as the initialization of

the DQN for the new task. As such, the training time of the new task can be significantly

reduced. Different from their approach, the proposed transfer strategy is not to directly

mimic experts’ actions or initialize by a pre-trained model. In [166], knowledge distillation

78

was adopted to train a multi-task model that outperforms single task models of some tasks.

The experts for all tasks are firstly acquired by single task learning. The intermediate outputs

from each expert are then distilled to a similar multi-task network with an extra controller

layer to coordinate different action sets. One clear limitation is that major components of

the model are exactly the same for different tasks, which may lead to degraded performance

on some tasks. In our work, transfer can happen even when there are no experts available.

Also, our method allow each task to have their own model structures. Furthermore, even

the model structures are the same for multiple tasks, the tasks are not trained to improve

the performance of other tasks (i.e. it does not mimic experts from other tasks directly).

Therefore our model can focus on maximizing its own reward, instead of being distracted by

others.

4.1.3 Background

4.1.3.1 Reinforcement Learning

In this work, we consider the standard reinforcement learning setting where each agent

interacts with it’s own environment over a number of discrete time steps. Given the current

state st ∈ S at step t, agent gi selects an action at ∈ A according to its policy π(at|st),

and receives a reward rt+1 from the environment. The goal of the agent is to choose an

action at at step t that maximize the sum of future rewards {rt} in a decaying manner:

Rt =
∑∞
i=0 γ

irt+i, where scalar γ ∈ (0, 1] is a discount rate. Based on the policy π of this

agent, we can further define a state value function V (st) = E[Rt|s = st], which estimates the

expected discounted return starting from state st, taking actions following policy π until the

game ends. The goal in reinforcement learning algorithm is to maximize the expected return.

79

Since we are mainly discussing one specific agent’s design and behavior throughout the paper,

we leave out the notation of the agent index for conciseness.

4.1.3.2 Asynchronous Advantage actor-critic algorithm (A3C)

The asynchronous advantage actor-critic (A3C) algorithm [131] launches multiple agents in

parallel and asynchronously updates a global shared target policy network π(a|s, θp) as well

as a value network V (s, θv). parametrized by θp and θv, respectively. Each agent interacts

with the environment, independently. At each step t the agent takes an action based on

the probability distribution generated by policy network. After playing a n-step rollout or

reaching the terminal state, the rewards are used to compute the advantage with the output

of value function. The updates of policy network is conducted by applying the gradient:

∇θp log π(at|st; θp)A(st, at; θv),

where the advantage function A(st, at; θv) is given by:

∑T−t−1

i=0
γirt+i + γT−tV (sT ; θv)− V (st; θv).

Term T represents the step number for the last step of this rollout, it is either the max

number of rollout steps or the number of steps from t to the terminal state. The update of

value network is to minimize the squared difference between the environment rewards and

value function outputs, i.e.,

min
θv

(
∑T−t−1

i=0
γirt+i + γT−tV (sT ; θv)− V (st; θv))

2.

80

The policy network and the value network share the same layers except for the last output

layer. An entropy regularization of policy π is added to improve exploration, as well.

4.1.3.3 Knowledge distillation

Knowledge distillation [82] is a transfer learning approach that distills the knowledge from a

teacher network to a student network using a temperature parameterized "soft targets" (i.e.

a probability distribution over a set of classes). It has been shown that it can accelerate the

training with less data since the gradient from "soft targets" contains much more information

than the gradient obtained from "hard targets" (e.g. 0, 1 supervision).

To be more specific, logits vector z ∈ Rd for d actions can be converted to a probability

distribution h ∈ (0, 1)d by a softmax function, raised with temperature τ :

h(i) = softmax(z/τ)i =
exp(z(i)/τ)∑
j exp(z(j)/τ)

, (4.1)

where h(i) and z(i) denotes the i-th entry of h and z, respectively.

Then the knowledge distillation can be completed by optimize the following Kullback-

Leibler divergence (KL) with temperature τ [166, 82].

LKL(D, θ
β
p) =

∑
t=1

softmax(zαt /τ) ln
softmax(zαt /τ)

softmax(z
β
t)

(4.2)

where zαt is the logits vector from teacher network (notation α represents teacher) at step

t, while z
β
t is the logits vector from student network (notation β represents student) of this

step. θβp denotes the parameters of the student policy network. D is a set of logits from

teacher network.

81

4.1.4 Collaborative deep reinforcement learning framework

In this section, we introduce the proposed collaborative deep reinforcement learning (CDRL)

framework. Under this framework, a collaborative Asynchronous Advantage Actor-Critic

(cA3C) algorithm is proposed to confirm the effectiveness of the collaborative approach.

Before we introduce our method in details, one underlying assumption we used is as follows:

Assumption 3. If there is a universe that contains all the tasks E = {e1, e2, ..., e∞} and ki

represents the corresponding knowledge to master each task ei, then ∀i, j, ki ∩ kj 6= ∅.

This is a formal description of our common sense that any pair of tasks are not absolutely

isolated from each other, which has been implicitly used as a fundamental assumption by

most prior transfer learning studies [151, 166, 55, 37, 235].Therefore, we focus on mining the

shared knowledge across multiple tasks instead of providing strategy selecting tasks that share

knowledge as much as possible, which remains to be unsolved and may lead to our future

work. The goal here is to utilize the existing knowledge as well as possible. For example,

we may only have a well-trained expert on playing Pong game, and we want to utilize its

expertise to help us perform better on other games. This is one of the situations that can be

solved by our collaborative deep reinforcement learning framework.

logits 𝒛𝜶 Aligned logits 𝟊𝛉𝐰(𝐳𝛂)

Distillation logits 𝒛𝜷′

Training

Student network

Teacher network Deep
alignment
network

Distillation loss

Distillation logits𝒛𝜷′

Parameter 𝜽𝒑
𝜷′

Parameter 𝜽𝒑
𝜷

Fully connected
policy layer

Fully connected
distillation layer

Softmax

LSTM NetworkConvolutional
Neural Networkstate

Action
Probability
distribution

Policy logits

𝒛𝜷

(a) Distillation procedure (b) Student network structure.

Figure 4.2: Deep knowledge distillation. In (a), the teacher’s output logits zα is mapped
through a deep alignment network and the aligned logits Fθω (zα) is used as the supervision
to train the student. In (b), the extra fully connected layer for distillation is added for
learning knowledge from teacher. For simplicity’s sake, time step t is omitted here.

82

4.1.5 Collaborative deep reinforcement learning

In deep reinforcement learning, since the training of agents are computational expensive, the

well-trained agents should be further utilized as source agents (agents where we transferred

knowledge from) to facilitate the training of target agents (agents that are provided with

the extra knowledge from source). In order to incorporate this type of collaboration to the

training of DRL agents, we formally define the collaborative deep reinforcement learning

(CDRL) framework as follows:

Definition 3. Given m independent environments {ε1, ε2, ..., εm} of m tasks {e1, e2, ..., em}

, the corresponding m agents {g1, g2, ..., gm} are collaboratively trained in parallel to maximize

the rewards (master each task) with respect to target agents.

• Environments. There is no restriction on the environments: The m environments can

be totally different or with some duplications.

• In parallel. Each environment εi only interacts with the one corresponding agent gi, i.e.,

the action ajt from agent gj at step t has no influence on the state sit+1 in εi,∀i 6= j.

• Collaboratively. The training procedure of agent gi consists of interacting with envi-

ronment εi and interacting with other agents as well. The agent gi is not necessary

to be at same level as "collaborative" defined in cognitive science [50]. E.g., g1 can be

an expert for task e1 (environment ε1) while he is helping agent g2 which is a student

agent in task e2.

• Target agents. The goal of CDRL can be set as maximizing the rewards that agent

gi obtains in environment εi with the help of interacting with other agents, similar

to inductive transfer learning where gi is the target agent for target task and others

83

are source tasks. The knowledge is transfered from source to target gi by interaction.

When we set the goal to maximize the rewards of multiple agents jointly, it is similar to

multi-task learning where all tasks are source tasks and target tasks at the same time.

Notice that our definition is very different from the previously defined collaborative

multiagent Markow Decision Process (collaborative multiagent MDP) [103, 73] where a set

of agents select a global joint action to maximize the sum of their individual rewards and

the environment is transitted to a new state based on that joint action. First, MDP is

not a requirement in CDRL framework. Second, in CDRL, each agent has its own copy

of environment and maximizes its own cumulative rewards. The goal of collaboration is

to improve the performance of collaborative agents, compared with isolated ones, which is

different from maximizing the sum of global rewards in collaborative multiagent MDP. Third,

CDRL focuses on how agents collaborate among heterogeneous environments, instead of how

joint action affects the rewards. In CDRL, different agents are acting in parallel, the actions

taken by other agents won’t directly influence current agent’s rewards. While in collaborative

multiagent MDP, the agents must coordinate their action choices since the rewards will be

directly affected by the action choices of other agents.

Furthermore, CDRL includes different types of interaction, which makes this a general

framework. For example, the current state-of-the-art is A3C [131] can be categorized as one

homogeneous CDRL method with advantage actor-critic interaction. Specifically, multiple

agents in A3C are trained in parallel with the same environment. All agents first synchronize

parameters from a global network, and then update the global network with their individual

gradients. This procedure can be seen as each agent maintains its own model (a different

version of global network) and interacts with other agents by sending and receiving gradients.

In this paper, we propose a novel interaction method named deep knowledge distillation

84

under the CDRL framework. It is worth noting that the interaction in A3C only deals with

the homogeneous tasks, i.e. all agents have the same environment and the same model

structure so that their gradients can be accumulated and interacted. By deep knowledge

distillation, the interaction can be conducted among heterogeneous tasks.

4.1.6 Deep knowledge distillation

As we introduced before, knowledge distillation [82] is trying to train a student network

that can behave similarly to the teacher network by utilizing the logits from the teacher as

supervision. However, transferring the knowledge among heterogeneous tasks faces several

difficulties. First, the action spaces of different tasks may have different dimensions. Second,

even if the dimensionality of action space is same among tasks, the action probability

distributions for different tasks could vary a lot, as we illustrated in Figure 4.5 (a) and

(b). Thus, the action patterns represented by the logits of different policy networks are

usually different from task to task. If we directly force a student network to mimic the action

pattern of a teacher network for a different task, it could be trained in a wrong direction,

and finally ends up with worse performance than isolated training. In fact, this suspect has

been empirically verified in our experiments.

Based on the above observation, we propose deep knowledge distillation to transfer

knowledge between heterogeneous tasks. As illustrated in Figure 4.2 (a), the approach for

deep knowledge distillation is straightforward. We use a deep alignment network to map the

logits of the teacher network from a heterogeneous source task eα (environment εα), then the

logits is used as our supervision to update the student network of target task eβ (environment

εβ). This procedure is performed by minimizing following objective function over student

85

policy network parameters θβp
′
:

LKL(D, θ
β
p
′
, τ) =

∑
t

lKL(Fθω(zαt), z
β
t

′
, τ), (4.3)

where

lKL(Fθω(zαt), z
β
t

′
, τ) = softmax(Fθω(zαt)/τ) ln

softmax(Fθω(zαt)/τ)

softmax(z
β
t

′
)

.

Here θω denotes the parameters of the deep alignment network, which transfers the logits zαt

from the teacher policy network for knowledge distillation by function Fθω (zαt) at step t. As

we show in Figure 4.2 (b), θβp is the student policy network parameters (including parameters

of CNN, LSTM and policy layer) for task eβ , while θβp
′
denotes student network parameters

of CNN, LSTM and distillation layer. It is clear that the distillation logits z
β
t

′
from the

student network does not determine the action probability distribution directly, which is

established by the policy logits z
β
t , as illustrated in Figure 4.2 (b). We add another fully

connected distillation layer to deal with the mismatch of action space dimensionality and the

contradiction of the transferred knowledge from source domain and the learned knowledge

from target domain. The input to both of the teacher and the student network is the state

of environment εβ of target task eβ . It means that we want to transfer the expertise from

an expert of task eα towards the current state. Symbol D is a set of logits from the teacher

network in one batch and τ is the temperature same as described in Eq (4.1). In a trivial

case that the teacher network and the student network are trained for same task (eα equals

eβ), then the deep alignment network Fθω would reduce to an identity mapping, and the

problem is also reduced to a single task policy distillation, which has been proved to be

86

effective in [166]. Before we can apply the deep knowledge distillation, we need to first train

a good deep alignment network. In this work, we provide two types of training protocols for

different situations:

Offline training: This protocol first trains two teacher networks in both environment εα

and εβ . Then we use the logits of both two teacher networks to train a deep alignment

network Fθω . After acquiring a pre-trained Fθω , we train a student network of task eβ

from scratch, in the meanwhile the teacher network of task eα and Fθω are used for deep

knowledge distillation.

Online training: Suppose we only have a teacher network of task eα, and we want to use

the knowledge from task eα to train the student network for task eβ to get higher performance

from scratch. The pipeline of this method is that, we firstly train the student network by

interacting with the environment εβ for a certain amount of steps T1, and then start to

train the alignment network Fθω , using the logits from the teacher network and the student

network. Afterwards, at step T2, we start performing deep knowledge distillation. Obviously

T2 is larger than T1, and the value of them are task-specific, which is decided empirically in

this work.

The offline training could be useful if we have already had a reasonably good model for

task eβ , while we want to further improve the performance using the knowledge from task eα.

The online training method is used when we need to learn the student network from scratch.

Both types of training protocol can be extended to multiple heterogeneous tasks.

87

4.1.7 Collaborative Asynchronous Advantage

Actor-Critic

In this section, we introduce the proposed collaborative asynchronous advantage actor-critic

(cA3C) algorithm. As we described in section 4.1.5, the agents are running in parallel. Each

agent goes through the same training procedure as described in Algorithm 4.1. As it shows,

the training of agent g1 can be separated into two parts: The first part is to interact with

the environment, get the reward and compute the gradients to minimize the value loss and

policy loss based on Generalized Advantage Estimation (GAE) [169]. The second part is to

interact with source agent g2 so that the logits distilled from agent g2 can be transferred by

the deep alignment network and used as supervision to bias the training of agent g1.

To be more concrete, the pseudo code in Algorithm 4.1 is an envolved version of A3C

based on online training of deep knowledge distillation. At T -th iteration, the agent interacts

with the environment for tmax steps or until the terminal state is reached (Line 6 to Line

15). Then the updating of value network and policy network is conducted by GAE. This

variation of A3C is firstly implemented in OpenAI universe starter agent [147]. Since the main

asynchronous framework is the same as A3C, we still use the A3C to denote this algorithm

although the updating is the not the same as advantage actor-critic algorithm used in original

A3C paper [131].

The online training of deep knowledge distillation is mainly completed from Line 25 to

Line 32 in Algorithm 4.1. The training of the deep alignment network starts from T1 steps

(Line 25 - 28). After T1 steps, the student network is able to generate a representative action

probability distribution, and we have suitable supervision to train the deep alignment network

as well, parameterized by θω. After T2 steps, θω will gradually converge to a local optimal,

88

and we start the deep knowledge distillation. As illustrated in Figure 4.2 (b), we use symbol

θ
β
p
′
to represent the parameters of CNN, LSTM and the fully connected distillation layer,

since we don’t want the logits from heterogeneous directly affect the action pattern of target

task. To simplify the discussion, the above algorithm is described based on interacting with

a single agent from a heterogeneous task. In algorithm 4.1, logits zαt can be acquired from

multiple teacher networks of different tasks, each task will train its own deep alignment

network θω and distill the aligned logits to the student network.

As we described in previous section 4.1.5, there are two types of interactions in this

algorithm: 1). GAE interaction uses the gradients shared by all homogeneous agents. 2)

Distillation interaction is the deep knowledge distillation from teacher network. The GAE

interaction is performed only among homogeneous tasks. By synchronizing the parameters

from a global student network in Algorithm 4.1 (line 3), the current agent receives the GAE

updates from all the other agents who interactes with the same environment. In line 21

and 22, the current agent sends his gradients to the global student network, which will be

synchronized with other homogeneous agents. The distillation interaction is then conducted

in line 31, where we have the aligned logits Fθω (zαt) and the distillation logits z
β
t

′
to compute

the gradients for minimizing the distillation loss. The gradients of distillation are also sent to

the global student network. The role of global student network can be regarded as a parameter

server that helps sending interactions among the homogeneous agents. From a different angle,

each homogeneous agent maintains an instinct version of global student network. Therefore,

both two types of interactions affect all homogeneous agents, which means that the distillation

interactions from agent g2 and agent g1 would affect all homogeneous agents of agent g1.

89

Algorithm 4.1: Online cA3C
Require: Global shared parameter vectors Θp and Θv and global shared counter T = 0;

Agent-specific parameter vectors Θ′p and Θ′v, GAE [169] parameters γ and λ. Time step to
start training deep alignment network and deep knowledge distillation T1, T2.

1: while T < Tmax do
2: Reset gradients: dθp = 0 and dθv = 0
3: Synchronize agent-specific parameters θ′p = θp and θ′v = θv
4: tstart = t, Get state st
5: Receive reward rt and new state st+1

6: repeat
7: Perform at according to policy
8: Receive reward rt and new state st+1

9: Compute value of state vt = V (st; θ
′
v)

10: if T ≥ T1 then
11: Compute the logits zαt from teacher network.
12: Compute the policy logits zβt and distillation logits zβt

′
from student network.

13: end if
14: t = t+ 1, T = T + 1
15: until terminal st or t− tstart >= tmax
16:

R = vt =

{
0 for terminal st
V (st, θ

′
v) for non-terminal st

17: for i ∈ {t− 1, ..., tstart} do
18: δi = ri + γvi+1 − vi
19: A = δi + (γλ)A
20: R = ri + γR
21: dθp ← dθp +∇ log π(ai|si; θ′)A
22: dθv ← dθv + ∂(R− vi)2/∂θ′v
23: end for
24: Perform asynchronous update of θp using dθp and of θv using dθv.
25: if T ≥ T1 then
26: // Training deep alignment network.
27: minθω

∑
t lKL(zβt , z

α
t , τ), lKL is defined in Eq (4.3).

28: end if
29: if T ≥ T2 then
30: // online deep knowledge distillation.
31: min

θβp
′
∑

t lKL(Fθω(zαt), zβt
′
)

32: end if
33: end while

90

4.1.8 Experiments

4.1.8.1 Training and Evaluation

In this work, training and evaluation are conducted in OpenAI Gym [24], a toolkit that

includes a collection of benchmark problems such as classic Atari games using Arcade Learning

Environment (ALE) [18], classic control games, etc. Same as the standard RL setting, an agent

is stimulated in an environment, taking an action and receiving rewards and observations at

each time step. The training of the agent is divided into episodes, and the goal is to maximize

the expectation of the total reward per episode or to reach higher performance using as few

episodes as possible.

4.1.8.2 Certificated Homogeneous transfer

In this subsection, we verify the effectiveness of knowledge distillation as a type of interaction

in collaborative deep reinforcement learning for homogeneous tasks. This is also to verify the

effectiveness of the simplest case for deep knowledge distillation. Although the effectiveness

of policy distillation in deep reinforcement learning has been verified in [166] based on DQN,

there is no prior studies on asynchronous online distillation. Therefore, our first experiment

is to demonstrate that the knowledge distilled from a certificated task can be used to train a

decent student network for a homogeneous task. Otherwise, the even more challenging task

of transferring among heterogeneous sources may not work. We note that in this case, the

Assumption 3 is fully satisfied given k1 = k2, where k1 and k2 are the knowledge needed to

master task e1 and e2, respectively. In this experiment, we conduct experiments in a gym

environment named Pong. It is a classic Atari game that an agent controls a paddle to

bounce a ball pass another player agent. The maximum reward that each episode can reach

is 21.

91

First, we train a teacher network that learns from its own environment by asynchronously

performing GAE updates. We then train a student network using only online knowledge

distillation from the teacher network. For fair comparisons, we use 8 agents for all environments

in the experiments. Specifically, both the student and the teacher are training in Pong

with 8 agents. The 8 agents of the teacher network are trained using the A3C algorithm

(equivalent to CDRL with GAE updates in one task). The 8 agents of student network are

trained using normal policy distillation, which uses the logits generated from the teacher

network as supervision to train the policy network directly. From the results in Figure 4.3 (a)

we see that the student network can achieve a very competitive performance that is is almost

same as the state-of-arts, using online knowledge distillation from a homogeneous task. It

also suggests that the teacher doesn’t necessarily need to be an expert, before it can guide

the training of a student in the homogeneous case. Before 2 million steps, the teacher itself is

still learning from the environment, while the knowledge distilled from teacher can already

be used to train a reasonable student network. Moreover, we see that the hybrid of two types

of interactions in CDRL has a positive effect on the training, instead of causing performance

deterioration.

In the second experiment, the student network is learning from both the online knowledge

distillation and the GAE updates from the environment. We find that the convergence is much

faster than the state-of-art, as shown in Figure 4.3 (b). In this experiment, the knowledge

is distilled from the teacher to student in the first one million steps and the distillation is

stopped after that. We note that in homogeneous CDRL, knowledge distillation is used

directly with policy logits other than distillation logits. The knowledge transfer setting in this

experiment is not a practical one because we already have a well-trained model of Pong, but

it shows that when knowledge is correctly transferred, the combination of online knowledge

92

(a) online KD only (b) online KD with GAE

Figure 4.3: Performance of online homogeneous knowledge distillation.

distillation and the GAE updates is an effective training procedure.

4.1.8.3 Certificated Heterogeneous Transfer

In this subsection, we design experiments to illustrate the effectiveness of CDRL in certificated

heterogeneous transfer, with the proposed deep knowledge distillation. Given a certificated

task Pong, we want to utilize the existing expertise and apply it to facilitate the training

of a new task Bowling. In the following experiments, we do not tune any model-specific

parameters such as number of layers, size of filter or network structure for Bowling. We

first directly perform transfer learning from Pong to Bowling by knowledge distillation.

Since the two tasks has different action patterns and action probability distributions, directly

knowledge distillation with a policy layer is not successful, as shown in Figure 4.4 (a). In fact,

the knowledge distilled from Pong contradicts to the knowledge learned from Bowling,

which leads to the much worse performance than the baseline. We show in Figure 4.5 (a) and

(b) that the action distributions of Pong and Bowling are very different. To resolve this,

we distill the knowledge through an extra distillation layer as illustrated in Figure 4.2 (b).

As such, the knowledge distilled from the certificated heterogeneous task can be successfully

transferred to the student network with improved performance after the learning is complete.

93

(a) KD with policy layer (b) KD with distillation layer

Figure 4.4: Performance of online knowledge distillation from a heterogeneous task. (a)
distillation from a Pong expert using the policy layer to train a Bowling student (KD-
policy). (b) distillation from a Pong expert to a Bowling student using an extra distillation
layer (KD-distill).

(a) Pong (b) Bowling (c) aligned Pong

Figure 4.5: The action probability distributions of a Pong expert, a Bowling expert and
an aligned Pong expert.

However, this leads to a much slower convergence than the baseline as shown in Figure 4.4 (b),

because that it takes time to learn a good distillation layer to align the knowledge distilled

from Pong to the current learning task. An interesting question is that, is it possible to have

both improved performance and faster convergence?

Deep knowledge distillation – Offline training. To handle the heterogeneity between

Pong and Bowling, we first verify the effectiveness of deep knowledge distillation with an

offline training procedure. The offline training is split into two stages. In the first stage, we

train a deep alignment network with four fully connected layers using the Relu activation

function. The training data are logits generated from an expert Pong network and Bowling

94

(a) Offline (b) Online Strategy 1 (c) Online Strategy 2 (d) Collaborative

Figure 4.6: Performance of offline, online deep knowledge distillation, and collaborative
learning.

network. The rewards of the networks at convergence are 20 and 60 respectively. In stage 2,

with the Pong teacher network and trained deep alignment network, we train a Bowling

student network from scratch. The student network is trained with both GAE interactions

with its environment, and the distillation interactions from the teacher network and the deep

alignment network. The results in Figure 4.6 (a) show that deep knowledge distillation can

transfer knowledge from Pong to Bowling both efficiently and effectively.

Deep knowledge distillation – Online training. A more practical setting of CDRL is

the online training, where we simultaneously train deep alignment network and conduct the

online deep knowledge distillation. We use two online training strategies: 1) The training of

deep alignment network starts after 4 million steps, when the student Bowling network

can perform reasonably well, and the knowledge distillation starts after 6 million steps. 2)

The training of deep alignment network starts after 0.1 million steps, and the knowledge

distillation starts after 1 million steps. Results are shown in Figure 4.6 (b) and (c) respectively.

The results show that both strategies reach higher performance than the baseline. Moreover,

the results suggest that we do not have to wait until the student network reaches a reasonable

performance before we start to train the deep alignment network. This is because the deep

alignment network is train to align two distributions of Pong and Bowling, instead of

transferring the actual knowledge. Recall that the action probability distribution of Pong

95

and Bowling are quite different as shown in Figure 4.5 (a) and (b). After we projecting

the logits of Pong using the deep alignment network, the distribution is very similar to

Bowling, as shown in Figure 4.5 (c).

4.1.8.4 Collaborative Deep Reinforcement Learning

In previous experiments, we assume that there is a well-trained Pong expert, and we transfer

knowledge from the Pong expert to the Bowling student via deep knowledge distillation.

A more challenging settings that both of Bowling and Pong are trained from scratch. In

this experiment, we we show that the CDRL framework can still be effective in this setting.

In this experiment, we train a Bowling network and a Pong network from scratch using

the proposed cA3C algorithm. The Pong agents are trained with GAE interactions only, and

the target Bowling receive supervision from both GAE interactions and distilled knowledge

from Pong via a deep alignment network. We start to train the deep alignment network after

3 million steps, and perform deep knowledge distillation after 4 million steps, where the Pong

agents are still updating from the environment. We note that in this setting, the teacher

network is constantly being updated, as knowledge is distilled from the teacher until 15

million steps. Results in Figure 4.6 (d) show that the proposed cA3C is able to converge to a

higher performance than the current state-of-art. The reward of last one hundred episodes of

A3C is 61.48± 1.48, while cA3C achieves 68.35± 1.32, with a significant reward improvement

of 11.2%.

96

4.2 Ranking Policy Gradient

4.2.1 Introduction

To utilize the collaborative strategy for improving the sample-efficiency in single agent

reinforcement learning, we disentangle the exploration and exploitation into two separate

agents and conduct data-driven collaboration through imitation learning, which leads to a

more sample-efficient off-policy learning framework. We first approach the sample-efficient

reinforcement learning from a ranking perspective. Instead of estimating the optimal action

value function, we concentrate on learning optimal rank of actions. The rank of actions

depends on the relative action values. As long as the relative action values preserve the same

rank of actions as the optimal action values (Q-values), we choose the same optimal action.

To learn optimal relative action values, we propose the ranking policy gradient (RPG) that

optimizes the actions’ rank with respect to the long-term reward by learning the pairwise

relationship among actions.

Ranking Policy Gradient (RPG) that directly optimizes relative action values to maximize

the return is a policy gradient method. The track of off-policy actor-critic methods [46, 72, 208]

have made substantial progress on improving the sample-efficiency of policy gradient. How-

ever, the fundamental difficulty of learning stability associated with the bias-variance trade-off

remains [136]. In this work, we first exploit the equivalence between RL optimizing the

lower bound of return and supervised learning that imitates a specific optimal policy. Build

upon this theoretical foundation, we propose a general off-policy learning framework that

equips the generalized policy iteration [187, Chap. 4] with an external step of supervised

learning. The proposed off-policy learning not only enjoys the property of optimality pre-

serving (unbiasedness), but also largely reduces the variance of policy gradient because of its

97

independence of the horizon and reward scale. Furthermore, this learning paradigm leads

to a sample complexity analysis of large-scale MDP, in a non-tabular setting without the

linear dependence on the state space. Based on our sample-complexity analysis, we define the

exploration efficiency that quantitatively evaluates different exploration methods. Besides,

we empirically show that there is a trade-off between optimality and sample-efficiency, which

is well aligned with our theoretical indication. Last but not least, we demonstrate that the

proposed approach, consolidating the RPG with off-policy learning, significantly outperforms

the state-of-the-art [80, 17, 42, 132].

4.2.2 Related works

Sample Efficiency. The sample efficient reinforcement learning can be roughly divided into

two categories. The first category includes variants of Q-learning [132, 167, 203, 80]. The

main advantage of Q-learning methods is the use of off-policy learning, which is essential

towards sample efficiency. The representative DQN [132] introduced deep neural network

in Q-learning, which further inspried a track of successful DQN variants such as Double

DQN [203], Dueling networks [209], prioritized experience replay [167], and Rainbow [80].

The second category is the actor-critic approaches. Most of recent works [46, 208, 71] in

this category leveraged importance sampling by re-weighting the samples to correct the

estimation bias and reduce variance. The main advantage is in the wall-clock times due to

the distributed framework, firstly presented in [131], instead of the sample-efficiency. As of

the time of writing, the variants of DQN [80, 42, 17, 167, 203] are among the algorithms of

most sample efficiency, which are adopted as our baselines for comparison.

RL as Supervised Learning. Many efforts have focused on developing the connections

between RL and supervised learning, such as Expectation-Maximization algorithms [45, 152,

98

102, 1], Entropy-Regularized RL [145, 74], and Interactive Imitation Learning (IIL) [44, 188,

163, 165, 184, 81, 148]. EM-based approaches apply the probabilistic framework to formulate

the RL problem maximizing a lower bound of the return as a re-weighted regression problem,

while it requires on-policy estimation on the expectation step. Entropy-Regularized RL

optimizing entropy augmented objectives can lead to off-policy learning without the usage of

importance sampling while it converges to soft optimality [74].

Of the three tracks in prior works, the IIL is most closely related to our work. The

IIL works firstly pointed out the connection between imitation learning and reinforcement

learning [163, 188, 165] and explore the idea of facilitating reinforcement learning by imitating

experts. However, most of imitation learning algorithms assume the access to the expert policy

or demonstrations. The off-policy learning framework proposed in this thesis can be interpreted

as an online imitation learning approach that constructs expert demonstrations during the

exploration without soliciting experts, and conducts supervised learning to maximize return

at the same time. In short, our approach is different from prior arts in terms of at least one

of the following aspects: objectives, oracle assumptions, the optimality of learned policy, and

on-policy requirement. More concretely, the proposed method is able to learn optimal policy

in terms of long-term reward, without access to the oracle (such as expert policy or expert

demonstration) and it can be trained both empirically and theoretically in an off-policy

fashion. A more detailed discussion of the related work on reducing RL to supervised learning

is provided in Appendix A.

PAC Analysis of RL. Most existing studies on sample complexity analysis [95, 180, 97, 179,

105, 91, 90, 223] are established on the value function estimation. The proposed approach

leverages the probably approximately correct framework [202] in a different way such that

it does not rely on the value function. Such independence directly leads to a practically

99

sample-efficient algorithm for large-scale MDP, as we demonstrated in the experiments.

4.2.3 Notations and Problem Setting

Here, we consider a finite horizon T , discrete time Markov Decision Process (MDP) with

a finite discrete state space S and for each state s ∈ S, the action space As is finite. The

environment dynamics is denoted as P = {p(s′|s, a),∀s, s′ ∈ S, a ∈ As}. We note that the

dimension of action space can vary given different states. We use m = maxs ‖As‖ to denote

the maximal action dimension among all possible states. Our goal is to maximize the expected

sum of positive rewards, or return J(θ) = Eτ,πθ [
∑T
t=1 r(st, at)], where 0 < r(s, a) <∞,∀s, a.

In this case, the optimal deterministic Markovian policy always exists [156][Proposition

4.4.3]. The upper bound of trajectory reward (r(τ)) is denoted as Rmax = maxτ r(τ). A

comprehensive list of notations is elaborated in Table 4.1.

4.2.4 Ranking Policy Gradient

Value function estimation is widely used in advanced RL algorithms [132, 131, 170, 71, 80, 42]

to facilitate the learning process. In practice, the on-policy requirement of value function

estimations in actor-critic methods has largely increased the difficulty of sample-efficient

learning [46, 71]. With the advantage of off-policy learning, the DQN [132] variants are

currently among the most sample-efficient algorithms [80, 42, 17]. For complicated tasks, the

value function can align with the relative relationship of action’s return, but the absolute

values are hardly accurate [132, 85].

The above observations motivate us to look at the decision phase of RL from a different

prospect: Given a state, the decision making is to perform a relative comparison over available

100

Table 4.1: Notations for Section 4.2.

Notations Definition

λij The discrepancy of the relative action value of action i and action j.
λij = λi − λj , where λi = λ(s, ai). Notice that the value here is not
the estimation of return, it represents which action will have
relatively higher return if followed.

Qπ(s, a) The action value function or equivalently the estimation of return
taking action a at state s, following policy π.

pij pij = P (λi > λj) denotes the probability that i-th action is to be
ranked higher than j-th action. Notice that pij is controlled by θ
through λi, λj

τ A trajectory τ = {s(τ, t), a(τ, t)}Tt=1 collected from the
environment. It is worth noting that this trajectory is not
associated with any policy. It only represents a series of state-action
pairs. We also use the abbreviation st = s(τ, t), at = a(τ, t).

r(τ) The trajectory reward r(τ) =
∑T
t=1 r(st, at) is the sum of reward

along one trajectory.
Rmax Rmax is the maximal possible trajectory reward, i.e.,

Rmax = maxτ r(τ). Since we focus on MDPs with finite horizon
and immediate reward, therefore the trajectory reward is bounded.∑

τ The summation over all possible trajectories τ .
p(τ) The probability of a specific trajectory is collected from the

environment given policy πθ.
pθ(τ) = p(s0)ΠTt=1πθ(at|st)p(st+1|st, at)

T The set of all possible near-optimal trajectories. |T | denotes the
number of near-optimal trajectories in T .

n The number of training samples or equivalently state action pairs
sampled from uniformly (near)-optimal policy.

m The number of discrete actions.

actions and then choose the best action, which can lead to relatively higher return than

others. Therefore, an alternative solution is to learn the optimal rank of the actions, instead

of deriving policy from the action values. In this section, we show how to optimize the rank

of actions to maximize the return, and thus avoid the necessity of accurate estimation for

optimal action value function. To learn the rank of actions, we focus on learning relative

101

action value (λ-values), defined as follows:

Definition 4 (Relative action value (λ-values)). For a state s, the relative action values

of m actions (λ(s, ak), k = 1, ...,m) is a list of scores that denotes the rank of actions. If

λ(s, ai) > λ(s, aj), then action ai is ranked higher than action aj.

The optimal relative action values should preserve the same optimal action as the optimal

action values:

arg max
a

λ(s, a) = arg max
a

Qπ∗(s, a)

where Qπ∗(s, ai) and λ(s, ai) represent the optimal action value and the relative action value

of action ai, respectively. We omit the model parameter θ in λθ(s, ai) for concise presentation.

Remark 1. The λ-values are different from the advantage function Aπ(s, a) = Qπ(s, a)−

V π(s). The advantage functions quantitatively show the difference of return taking different

actions following the current policy π. The λ-values only determine the relative order of

actions and its magnitudes are not the estimations of returns.

To learn the λ-values, we can construct a probabilistic model of λ-values such that the

best action has the highest probability to be selected than others. Inspired by learning to

rank [26], we consider the pairwise relationship among all actions, by modeling the probability

(denoted as pij) of an action ai to be ranked higher than any action aj as follows:

pij =
exp(λ(s, ai)− λ(s, aj))

1 + exp(λ(s, ai)− λ(s, aj))
, (4.4)

where pij = 0.5 means the relative action value of ai is same as that of the action aj , pij > 0.5

indicates that the action ai is ranked higher than aj . Given the independent Assumption 4,

we can represent the probability of selecting one action as the multiplication of a set of

102

pairwise probabilities in Eq (4.4). Formally, we define the pairwise ranking policy in Eq (4.5).

Please refer to Section A in the Appendix for the discussions on feasibility of Assumption 4.

Definition 5. The pairwise ranking policy is defined as:

π(a = ai|s) = Πmj=1,j 6=i pij , (4.5)

where the pij is defined in Eq (4.4). The probability depends on the relative action values

q = [λ1, ..., λm]. The highest relative action value leads to the highest probability to be selected.

Assumption 4. For a state s, the set of events E = {eij |∀i 6= j} are conditionally inde-

pendent, where eij denotes the event that action ai is ranked higher than action aj. The

independence of the events is conditioned on a MDP and a stationary policy.

Our ultimate goal is to maximize the long-term reward through optimizing the pairwise

ranking policy or equivalently optimizing pairwise relationship among the action pairs. Ideally,

we would like the pairwise ranking policy selects the best action with the highest probability

and the highest λ-value. To achieve this goal, we resort to the policy gradient method.

Formally, we propose the ranking policy gradient method (RPG), as shown in Theorem 2.

Theorem 2 (Ranking Policy Gradient Theorem). For any MDP, the gradient of the expected

long-term reward J(θ) =
∑
τ pθ(τ)r(τ) w.r.t. the parameter θ of a pairwise ranking policy

(Def 5) can be approximated by:

∇θJ(θ) ≈ Eτ∼πθ

[∑T

t=1
∇θ
(∑m

j=1,j 6=i
(λi − λj)/2

)
r(τ)

]
, (4.6)

and the deterministic pairwise ranking policy πθ is: a = arg maxi λi, i = 1, . . . ,m, where

103

λi denotes the relative action value of action ai (λθ(st, at), ai = at), st and at denotes the

t-th state-action pair in trajectory τ , λj ,∀j 6= i denote the relative action values of all other

actions that were not taken given state st in trajectory τ , i.e., λθ(st, aj), ∀aj 6= at.

The proof of Theorem 2 is provided in Appendix A. Theorem 2 states that optimizing the

discrepancy between the action values of the best action and all other actions, is optimizing

the pairwise relationships that maximize the return. One limitation of RPG is that it is not

convenient for the tasks where only optimal stochastic policies exist since the pairwise ranking

policy takes extra efforts to construct a probability distribution [see Appendix A]. In order

to learn the stochastic policy, we introduce Listwise Policy Gradient (LPG) that optimizes

the probability of ranking a specific action on the top of a set of actions, with respect to the

return. In the context of RL, this top one probability is the probability of action ai to be

chosen, which is equal to the sum of probability all possible permutations that map action

ai at the top. This probability is computationally prohibitive since we need to consider the

probability of m! permutations. Inspired by listwise learning to rank approach [31], the top

one probability can be modeled by the softmax function (see Theorem 3). Therefore, LPG is

equivalent to the Reinforce [212] algorithm with a softmax layer. LPG provides another

interpretation of Reinforce algorithm from the perspective of learning the optimal ranking

and enables the learning of both deterministic policy and stochastic policy (see Theorem 4).

Theorem 3 ([31], Theorem 6). Given the action values q = [λ1, ..., λm], the probability of

action i to be chosen (i.e. to be ranked on the top of the list) is:

π(at = ai|st) =
φ(λi)∑m
j=1 φ(λj)

, (4.7)

where φ(∗) is any increasing, strictly positive function. A common choice of φ is the

104

exponential function.

Theorem 4 (Listwise Policy Gradient Theorem). For any MDP, the gradient of the long-

term reward J(θ) =
∑
τ pθ(τ)r(τ) w.r.t. the parameter θ of listwise ranking policy takes the

following form:

∇θJ(θ) = Eτ∼πθ

 T∑
t=1

∇θ

log
eλi∑m
j=1 e

λj

 r(τ)

 , (4.8)

where the listwise ranking policy πθ parameterized by θ is given by Eq (4.9) for tasks with

deterministic optimal policies:

a = arg max
i

λi, i = 1, . . . ,m (4.9)

or Eq (4.10) for stochastic optimal policies:

a ∼ π(∗|s), i = 1, . . . ,m (4.10)

where the policy takes the form as in Eq (4.11)

π(a = ai|st) =
eλi∑m
j=1 e

λj
(4.11)

is the probability that action i being ranked highest, given the current state and all the relative

action values λ1 . . . λm.

The proof of Theorem 4 exactly follows the direct policy differentiation [153, 212] by

replacing the policy to the form of the Softmax function. The action probability π(ai|s),∀i =

1, ...,m forms a probability distribution over the set of discrete actions [31, Lemma 7].

105

Theorem 4 states that the vanilla policy gradient [212] parameterized by Softmax layer is

optimizing the probability of each action to be ranked highest, with respect to the long-term

reward. Furthermore, it enables learning both of the deterministic policy and stochastic

policy.

To this end, seeking sample-efficiency motivates us to learn the relative relationship (RPG

(Theorem 2) and LPG (Theorem 4)) of actions, instead of deriving policy based on action

value estimations. However, both of the RPG and LPG belong to policy gradient methods,

which suffers from large variance and the on-policy learning requirement [187]. Therefore,

the intuitive implementations of RPG or LPG are still far from sample-efficient. In the next

section, we will describe a general off-policy learning framework empowered by supervised

learning, which provides an alternative way to accelerate learning, preserve optimality, and

reduce variance.

4.2.5 Off-policy Learning as Supervised Learning

In this section, we discuss the connections and discrepancies between RL and supervised

learning, and our results lead to a sample-efficient off-policy learning paradigm for RL. The

main result in this section is Theorem 5, which casts the problem of maximizing the lower

bound of return into a supervised learning problem, given one relatively mild Assumption 5

and practical assumptions 4,6. It can be shown that these assumptions are valid in a range

of common RL tasks, as discussed in Lemma 6 in Appendix A. The central idea is to collect

only the near-optimal trajectories when the learning agent interacts with the environment,

and imitate the near-optimal policy by maximizing the log likelihood of the state-action pairs

from these near-optimal trajectories. With the road map in mind, we then begin to introduce

our approach as follows.

106

In a discrete action MDP with finite states and horizon, given the near-optimal policy

π∗, the stationary state distribution is given by: pπ∗(s) =
∑
τ p(s|τ)pπ∗(τ), where p(s|τ) is

the probability of a certain state given a specific trajectory τ and is not associated with any

policies, and only pπ∗(τ) is related to the policy parameters. The stationary distribution of

state-action pairs is thus: pπ∗(s, a) = pπ∗(s)π∗(a|s). In this section, we consider the MDP

that each initial state will lead to at least one (near)-optimal trajectory. For a more general

case, please refer to the discussion in Appendix A. In order to connect supervised learning

(i.e., imitating a near-optimal policy) with RL and enable sample-efficient off-policy learning,

we first introduce the trajectory reward shaping (TRS), defined as follows:

Definition 6 (Trajectory Reward Shaping, TRS). Given a fixed trajectory τ , its trajectory

reward is shaped as follows:

w(τ) =


1, if r(τ) ≥ c

0, o.w.

where c = Rmax − ε is a problem-dependent near-optimal trajectory reward threshold that

indicates the least reward of near-optimal trajectory, ε ≥ 0 and ε� Rmax. We denote the set

of all possible near-optimal trajectories as T = {τ |w(τ) = 1}, i.e., w(τ) = 1,∀τ ∈ T .

Remark 2. The threshold c indicates a trade-off between the sample-efficiency and the

optimality. The higher the threshold, the less frequently it will hit the near-optimal trajectories

during exploration, which means it has higher sample complexity, while the final performance

is better (see Figure 4.10).

Remark 3. The trajectory reward can be reshaped to any positive functions that are not

related to policy parameter θ. For example, if we set w(τ) = r(τ), the conclusions in this

section still hold (see Eq (A.6) in Appendix A). For the sake of simplicity, we set w(τ) = 1.

107

Different from the reward shaping work [139], where shaping happens at each step on

r(st, at), the proposed approach directly shapes the trajectory reward r(τ), which facilitates

the smooth transform from RL to SL. After shaping the trajectory reward, we can transfer

the goal of RL from maximizing the return to maximize the long-term performance (Def 7).

Definition 7 (Long-term Performance). The long-term performance is defined by the expected

shaped trajectory reward:

∑
τ
pθ(τ)w(τ). (4.12)

According to Def 6, the expectation over all trajectories is the equal to that over the near-

optimal trajectories in T , i.e.,
∑
τ pθ(τ)w(τ) =

∑
τ∈T pθ(τ)w(τ).

The optimality is preserved after trajectory reward shaping (ε = 0, c = Rmax) since the

optimal policy π∗ maximizing long-term performance is also an optimal policy for the original

MDP, i.e.,
∑
τ pπ∗(τ)r(τ) =

∑
τ∈T pπ∗(τ)r(τ) = Rmax, where π∗ = arg maxπθ

∑
τ pπθ(τ)w(τ)

and pπ∗(τ) = 0,∀τ /∈ T (see Lemma 4 in Appendix A). Similarly, when ε > 0, the optimal

policy after trajectory reward shaping is a near-optimal policy for original MDP. Note that

most policy gradient methods use the softmax function, in which we have ∃τ /∈ T , pπθ(τ) > 0

(see Lemma 5 in Appendix A). Therefore when softmax is used to model a policy, it will

not converge to an exact optimal policy. On the other hand, ideally, the discrepancy of the

performance between them can be arbitrarily small based on the universal approximation [83]

with general conditions on the activation function and Theorem 1 in [188].

Essentially, we use TRS to filter out near-optimal trajectories and then we maximize

the probabilities of near-optimal trajectories to maximize the long-term performance. This

procedure can be approximated by maximizing the log-likelihood of near-optimal state-action

108

pairs, which is a supervised learning problem. Before we state our main results, we first

introduce the definition of uniformly near-optimal policy (Def 8) and a prerequisite (Asm. 5)

specifying the applicability of the results.

Definition 8 (Uniformly Near-Optimal Policy, UNOP). The Uniformly Near-Optimal Policy

π∗ is the policy whose probability distribution over near-optimal trajectories (T) is a uniform

distribution. i.e. pπ∗(τ) = 1
|T | , ∀τ ∈ T , where |T | is the number of near-optimal trajectories.

When we set c = Rmax, it is an optimal policy in terms of both maximizing return and

long-term performance. In the case of c = Rmax, the corresponding uniform policy is an

optimal policy, we denote this type of optimal policy as uniformly optimal policy (UOP).

Assumption 5 (Existence of Uniformly Near-Optimal Policy). We assume the existence of

Uniformly Near-Optimal Policy (Def. 8).

Based on Lemma 6 in Appendix A, Assumption 5 is satisfied for certain MDPs that

have deterministic dynamics. Other than Assumption 5, all other assumptions in this work

(Assumptions 4,6) can almost always be satisfied in practice, based on empirical observations.

With these relatively mild assumptions, we present the following long-term performance

theorem, which shows the close connection between supervised learning and RL.

Theorem 5 (Long-term Performance Theorem). Maximizing the lower bound of expected

long-term performance in Eq (4.12) is maximizing the log-likelihood of state-action pairs

sampled from a uniformly (near)-optimal policy π∗, which is a supervised learning problem:

arg max
θ

∑
s∈S

∑
a∈As

pπ∗(s, a) log πθ(a|s) (4.13)

The optimal policy of maximizing the lower bound is also the optimal policy of maximizing

109

the long-term performance and the return.

Remark 4. It is worth noting that Theorem 5 does not require a uniformly near-optimal policy

π∗ to be deterministic. The only requirement is the existence of a uniformly near-optimal

policy.

Remark 5. Maximizing the lower bound of long-term performance is maximizing the lower

bound of long-term reward since we can set w(τ) = r(τ) and
∑
τ pθ(τ)r(τ) ≥

∑
T pθ(τ)w(τ).

An optimal policy that maximizes this lower bound is also an optimal policy maximizing the

long-term performance when c = Rmax, thus maximizing the return.

The proof of Theorem 5 can be found in Appendix A. Theorem 5 indicates that we break the

dependency between current policy πθ and the environment dynamics, which means off-policy

learning is able to be conducted by the above supervised learning approach. Furthermore, we

point out that there is a potential discrepancy between imitating UNOP by maximizing log

likelihood (even when the optimal policy’s samples are given) and the reinforcement learning

since we are maximizing a lower bound of expected long-term performance (or equivalently

the return over the near-optimal trajectories only) instead of return over all trajectories. In

practice, the state-action pairs from an optimal policy is hard to construct while the uniform

characteristic of UNOP can alleviate this issue (see Sec 4.2.6). Towards sample-efficient RL,

we apply Theorem 5 to RPG, which reduces the ranking policy gradient to a classification

problem by Corollary 1.

Corollary 1 (Ranking performance policy gradient). The lower bound of expected long-

term performance (defined in Eq (4.12)) using pairwise ranking policy (Eq (4.5)) can be

110

approximately optimized by the following loss:

min
θ

∑
s,ai

pπ∗(s, ai)
(∑m

j=1,j 6=i
max(0, 1 + λ(s, aj)− λ(s, ai))

)
. (4.14)

Corollary 2 (Listwise performance policy gradient). Optimizing the lower bound of expected

long-term performance by the listwise ranking policy (Eq (4.11)) is equivalent to:

max
θ

∑
s
pπ∗(s)

∑m

i=1
π∗(ai|s) log

eλi∑m
j=1 e

λj
(4.15)

The proof of this Corollary is a direct application of theorem 5 by replacing policy with the

softmax function.

The proof of Corollary 1 can be found in Appendix A. Similarly, we can reduce LPG to

a classification problem (see Corollary 2). One advantage of casting RL to SL is variance

reduction. With the proposed off-policy supervised learning, we can reduce the upper

bound of the policy gradient variance, as shown in the Corollary 3. Before introducing the

variance reduction results, we first make the common assumptions on the MDP regularity

(Assumption 6) similar to [43, 46, A1]. Furthermore, the Assumption 6 is guaranteed for

bounded continuously differentiable policy such as softmax function.

Assumption 6. we assume the existence of maximum norm of log gradient over all possible

state-action pairs, i.e.

C = max
s,a
‖∇θ log πθ(a|s)‖∞

111

Corollary 3 (Policy gradient variance reduction). Given a stationary policy, the upper bound

of the variance of each dimension of policy gradient is O(T 2C2R2
max). The upper bound

of gradient variance of maximizing the lower bound of long-term performance Eq (4.13) is

O(C2), where C is the maximum norm of log gradient based on Assumption 6. The supervised

learning has reduced the upper bound of gradient variance by an order of O(T 2R2
max) as

compared to the regular policy gradient, considering Rmax ≥ 1, T ≥ 1, which is a very common

situation in practice.

The proof of Corollary 3 can be found in Appendix A. This corollary shows that the

variance of regular policy gradient is upper-bounded by the square of time horizon and the

maximum trajectory reward. It is aligned with our intuition and empirical observation: the

longer the horizon the harder the learning. Also, the common reward shaping tricks such

as truncating the reward to [−1, 1] [34] can help the learning since it reduces variance by

decreasing Rmax. With supervised learning, we concentrate the difficulty of long-time horizon

into the exploration phase, which is an inevitable issue for all RL algorithms, and we drop

the dependence on T and Rmax for policy variance. Thus, it is more stable and efficient to

train the policy using supervised learning. One potential limitation of this method is that

the trajectory reward threshold c is task-specific, which is crucial to the final performance

and sample-efficiency. In many applications such as Dialogue system [111], recommender

system [130], etc., we design the reward function to guide the learning process, in which c

is naturally known. For the cases that we have no prior knowledge on the reward function

of MDP, we treat c as a tuning parameter to balance the optimality and efficiency, as we

empirically verified in Figure 4.10. The major theoretical uncertainty on general tasks is the

existence of a uniformly near-optimal policy, which is negligible to the empirical performance.

The rigorous theoretical analysis of this problem is beyond the scope of this work.

112

!, "
Exploration
Generalized Policy

Iteration for
Exploration

Policy evaluation

!∗, "∗

Policy improvement

Possibly divergent optimization
(e.g., deadly triad)

Hit near-optimal
trajectories more

frequently

$%
(Near)-Optimal Trajectories

More samples lead to better generalization

$& $'

State-action distribution
from UNOP

Approximate

UNOP "∗

Converge to UNOP
before exploration
policy converges

Time

Exploitation
Imitate UNOP

through supervised
learning from near-
optimal trajectories

()

* = greedy(V)

Figure 4.7: Off-policy learning framework.

4.2.6 An algorithmic framework for off-policy learning

Based on the discussions in Section 4.2.5, we exploit the advantage of reducing RL into

supervised learning via a proposed two-stages off-policy learning framework. As we illustrated

in Figure 4.7, the proposed framework contains the following two stages:

Generalized Policy Iteration for Exploration. The goal of the exploration stage is

to collect different near-optimal trajectories as frequently as possible. Under the off-policy

framework, the exploration agent and the learning agent can be separated. Therefore, any

existing RL algorithm can be used during the exploration. The principle of this framework

is using the most advanced RL agents as an exploration strategy in order to collect more

near-optimal trajectories and leave the policy learning to the supervision stage.

Supervision. In this stage, we imitate the uniformly near-optimal policy, UNOP (Def 8).

Although we have no access to the UNOP, we can approximate the state-action distribution

from UNOP by collecting the near-optimal trajectories only. The near-optimal samples

113

are constructed online and we are not given any expert demonstration or expert policy

beforehand. This step provides a sample-efficient approach to conduct exploitation, which

enjoys the superiority of stability (Figure 4.9), variance reduction (Corollary 3), and optimality

preserving (Theorem 5).

The two-stage algorithmic framework can be directly incorporated in RPG and LPG

to improve sample efficiency. The implementation of RPG is given in Algorithm 4.2, and

LPG follows the same procedure except for the difference in the loss function. The main

requirement of Alg. 4.2 is on the exploration efficiency and the MDP structure. During the

exploration stage, a sufficient amount of the different near-optimal trajectories need to be

collected for constructing a representative supervised learning training dataset. Theoretically,

this requirement always holds [see Appendix Section A, Lemma 7], while the number of

episodes explored could be prohibitively large, which makes this algorithm sample-inefficient.

This could be a practical concern of the proposed algorithm. However, according to our

extensive empirical observations, we notice that long before the value function based state-of-

the-art converges to near-optimal performance, enough amount of near-optimal trajectories

are already explored.

Therefore, we point out that instead of estimating optimal action value functions and

then choosing action greedily, using value function to facilitate the exploration and imitating

UNOP is a more sample-efficient approach. As illustrated in Figure 4.7, value based methods

with off-policy learning, bootstrapping, and function approximation could lead to a divergent

optimization [187, Chap. 11]. In contrast to resolving the instability, we circumvent this

issue via constructing a stationary target using the samples from (near)-optimal trajectories,

and perform imitation learning. This two-stage approach can avoid the extensive exploration

of the suboptimal state-action space and reduce the substantial number of samples needed

114

for estimating optimal action values. In the MDP where we have a high probability of hitting

the near-optimal trajectories (such as Pong), the supervision stage can further facilitate the

exploration. It should be emphasized that our work focuses on improving the sample-efficiency

through more effective exploitation, rather than developing novel exploration method.

Algorithm 4.2: Off-Policy Learning for Ranking Policy Gradient (RPG)
Require: The near-optimal trajectory reward threshold c, the number of maximal training

episodes Nmax. Maximum number of time steps in each episode T , and batch size b.
1: while episode < Nmax do
2: repeat
3: Retrieve state st and sample action at by the specified exploration agent (random,

ε-greedy, or any RL algorithms).
4: Collect the experience et = (st, at, rt, st+1) and store to the replay buffer.
5: t = t+ 1
6: if t % update step == 0 then
7: Sample a batch of experience {ej}bj=1 from the near-optimal replay buffer.
8: Update πθ based on the hinge loss Eq (4.14) for RPG.
9: Update the exploration agent using samples from the regular replay buffer (In

simple MDPs such as Pong where near-optimal trajectories are encountered
frequently, near-optimal replay buffer can be used to update
the exploration agent).

10: end if
11: until terminal st or t− tstart >= T
12: if return

∑T
t=1 rt ≥ c then

13: Take the near-optimal trajectory et, t = 1, ..., T in the latest episode from the regular
replay buffer, and insert the trajectory into the near-optimal replay buffer.

14: end if
15: if t % evaluation step == 0 then
16: Evaluate the RPG agent by greedily choosing the action. If the best performance is

reached, then stop training.
17: end if
18: end while

4.2.7 Sample Complexity and Generalization Performance

In this section, we present a theoretical analysis on the sample complexity of RPG with

off-policy learning framework in Section 4.2.6. The analysis leverages the results from the

Probably Approximately Correct (PAC) framework, and provides an alternative approach

115

to quantify sample complexity of RL from the perspective of the connection between RL

and SL (see Theorem 5), which is significantly different from the existing approaches that

use value function estimations [95, 180, 97, 179, 105, 91, 90, 223]. We show that the sample

complexity of RPG (Theorem 6) depends on the properties of MDP such as horizon, action

space, dynamics, and the generalization performance of supervised learning. It is worth

mentioning that the sample complexity of RPG has no linear dependence on the state-space,

which makes it suitable for large-scale MDPs. Moreover, we also provide a formal quantitative

definition (Def 9) on the exploration efficiency of RL.

Corresponding to the two-stage framework in Section 4.2.6, the sample complexity of

RPG also splits into two problems:

• Learning efficiency: How many state-action pairs from the uniformly optimal policy

do we need to collect, in order to achieve good generalization performance in RL?

• Exploration efficiency: For a certain type of MDPs, what is the probability of

collecting n training samples (state-action pairs from the uniformly near-optimal policy)

in the first k episodes in the worst case? This question leads to a quantitative evaluation

metric of different exploration methods.

The first stage is resolved by Theorem 6, which connects the lower bound of the generalization

performance of RL to the supervised learning generalization performance. Then we discuss

the exploration efficiency of the worst case performance for a binary tree MDP in Lemma 2.

Jointly, we show how to link the two stages to give a general theorem that studies how many

samples we need to collect in order to achieve certain performance in RL.

In this section, we restrict our discussion on the MDPs with a fixed action space and

assume the existence of deterministic optimal policy. The policy π = ĥ = arg minh∈H ε̂(h)

116

corresponds to the empirical risk minimizer (ERM) in the learning theory literature, which is

the policy we obtained through learning on the training samples. H denotes the hypothesis

class from where we are selecting the policy. Given a hypothesis (policy) h, the empirical risk

is given by ε̂(h) =
∑n
i=1

1
n1{h(si) 6= ai}. Without loss of generosity, we can normalize the

reward function to set the upper bound of trajectory reward equals to one (i.e., Rmax = 1),

similar to the assumption in [90]. It is worth noting that the training samples are generated

i.i.d. from an unknown distribution, which is perhaps the most important assumption in the

statistical learning theory. i.i.d. is satisfied in this case since the state action pairs (training

samples) are collected by filtering the samples during the learning stage, and we can manually

manipulate the samples to follow the distribution of UOP (Def 8) by only storing the unique

near-optimal trajectories.

4.2.8 Supervision stage: Learning efficiency

To simplify the presentation, we restrict our discussion on the finite hypothesis class (i.e.

|H| <∞) since this dependence is not germane to our discussion. However, we note that the

theoretical framework in this section is not limited to the finite hypothesis class. For example,

we can simply use the VC dimension [204] or the Rademacher complexity [15] to generalize

our discussion to the infinite hypothesis class, such as neural networks. For completeness, we

first revisit the sample complexity result from the PAC learning in the context of RL.

Lemma 1 (Supervised Learning Sample Complexity [133]). Let |H| < ∞, and let δ, γ be

fixed, the inequality ε(ĥ) ≤ (minh∈H ε(h)) + 2γ = η holds with probability at least 1− δ, when

117

the training set size n satisfies:

n ≥ 1

2γ2
log

2|H|
δ

, (4.16)

where the generalization error (expected risk) of a hypothesis ĥ is defined as:

ε(ĥ) =
∑

s,a
pπ∗(s, a)1

{
ĥ(s) 6= a

}
.

Condition 1 (Action values). We restrict the action values of RPG in certain range, i.e.,

λi ∈ [0, cq], where cq is a positive constant.

This condition can be easily satisfied, for example, we can use a sigmoid to cast the action

values into [0, 1]. We can impose this constraint since in RPG we only focus on the relative

relationship of action values. Given the mild condition and established on the prior work

in statistical learning theory, we introduce the following results that connect the supervised

learning and reinforcement learning.

Theorem 6 (Generalization Performance). Given a MDP where the UOP (Def 8) is deter-

ministic, let |H| denote the size of hypothesis space, and δ, n be fixed, the following inequality

holds with probability at least 1− δ:

∑
τ
pθ(τ)r(τ) ≥ D(1 + e)η(1−m)T ,

where D = |T | (Πτ∈T pd(τ))
1
|T | , pd(τ) = p(s1)ΠT

t=1p(st+1|st, at) denotes the environment

dynamics. η is the upper bound of supervised learning generalization performance, defined as

η = (minh∈H ε(h)) + 2

√
1

2n log
2|H|
δ = 2

√
1

2n log
2|H|
δ .

118

Corollary 4 (Sample Complexity). Given a MDP where the UOP (Def 8) is deterministic,

let |H| denotes the size of hypothesis space, and let δ be fixed. Then for the following inequality

to hold with probability at least 1− δ:

∑
τ
pθ(τ)r(τ) ≥ 1− ε,

it suffices that the number of state action pairs (training sample size n) from the uniformly

optimal policy satisfies:

n ≥ 2(m− 1)2T 2

(log1+e
D

1−ε)
2

log
2|H|
δ

= O

 m2T 2(
log D

1−ε

)2
log
|H|
δ

 .

The proofs of Theorem 6 and Corollary 4 are provided in Appendix A. Theorem 6

establishes the connection between the generalization performance of RL and the sample

complexity of supervised learning. The lower bound of generalization performance decreases

exponentially with respect to the horizon T and action space dimension m. This is aligned

with our empirical observation that it is more difficult to learn the MDPs with a longer

horizon and/or a larger action space. Furthermore, the generalization performance has a

linear dependence on D, the transition probability of optimal trajectories. Therefore, T ,

m, and D jointly determines the difficulty of learning of the given MDP. As pointed out

by Corollary 4, the smaller the D is, the higher the sample complexity. Note that T , m,

and D all characterize intrinsic properties of MDPs, which cannot be improved by our

learning algorithms. One advantage of RPG is that its sample complexity has no dependence

on the state space, which enables the RPG to resolve large-scale complicated MDPs, as

119

demonstrated in our experiments. In the supervision stage, our goal is the same as in the

traditional supervised learning: to achieve better generalization performance η.

4.2.9 Exploration stage: Exploration efficiency

The exploration efficiency is highly related to the MDP properties and the exploration

strategy. To provide interpretation on how the MDP properties (state space dimension, action

space dimension, horizon) affect the sample complexity through exploration efficiency, we

characterize a simplified MDP as in [184] , in which we explicitly compute the exploration

efficiency of a stationary policy (random exploration), as shown in Figure 4.8.

Definition 9 (Exploration Efficiency). We define the exploration efficiency of a certain

exploration algorithm (A) within a MDP (M) as the probability of sampling i distinct optimal

trajectories in the first k episodes. We denote the exploration efficiency as pA,M(ntraj ≥ i|k).

WhenM, k, i and optimality threshold c are fixed, the higher the pA,M(ntraj ≥ i|k), the better

the exploration efficiency. We use ntraj to denote the number of near-optimal trajectories in

this subsection. If the exploration algorithm derives a series of learning policies, then we have

pA,M(ntraj ≥ i|k) = p{πi}ti=0,M
(ntraj ≥ i|k), where t is the number of steps the algorithm

A updated the policy. If we would like to study the exploration efficiency of a stationary

policy, then we have pA,M(ntraj ≥ i|k) = pπ,M(ntraj ≥ i|k).

Definition 10 (Expected Exploration Efficiency). The expected exploration efficiency of a

certain exploration algorithm (A) within a MDP (M) is defined as:

EA,k,M =
∑k

i=0
pA,M(ntraj = i|k)i.

120

S0

S1 S2

S4 S6S5 S7

Figure 4.8: The binary tree structure MDP (M1) with one initial state, similar as discussed
in [184]. In this subsection, we focus on the MDPs that have no duplicated states. The initial
state distribution of the MDP is uniform and the environment dynamics is deterministic. For
M1 the worst case exploration is random exploration and each trajectory will be visited at
same probability under random exploration. Note that in this type of MDP, the Assumption 5
is satisfied.

The definitions provide a quantitative metric to evaluate the quality of exploration.

Intuitively, the quality of exploration should be determined by how frequently it will hit

different good trajectories. We use Def 9 for theoretical analysis and Def 10 for practical

evaluation.

Lemma 2 (The Exploration Efficiency of Random Policy). The Exploration Efficiency of

random exploration policy in a binary tree MDP (M1) is given as:

pπr,M(ntraj ≥ i|k) = 1−
∑i−1

i′=0
Ci
′
|T |

∑i′
j=0(−1)jC

j
i′(N − |T |+ i′ − j)k

Nk
,

where N denotes the total number of different trajectories in the MDP. In binary tree MDP

M1, N = |S0||A|T , where the |S0| denotes the number of distinct initial states. |T | denotes

the number of optimal trajectories. πr denotes the random exploration policy, which means

the probability of hitting each trajectory inM1 is equal.

The proof of Lemma 2 is available in Appendix A.

121

4.2.10 Joint Analysis Combining Exploration and Supervision

In this section, we jointly consider the learning efficiency and exploration efficiency to study

the generalization performance. Concretely, we would like to study if we interact with the

environment a certain number of episodes, what is the worst generalization performance we

can expect with certain probability, if RPG is applied.

Corollary 5 (RL Generalization Performance). Given a MDP where the UOP (Def 8) is

deterministic, let |H| be the size of the hypothesis space, and let δ, n, k be fixed, the following

inequality holds with probability at least 1− δ′:

∑
τ
pθ(τ)r(τ) ≥ D(1 + e)η(1−m)T ,

where k is the number of episodes we have explored in the MDP, n is the number of distinct

optimal state-action pairs we needed from the UOP (i.e., size of training data.). n′ denotes

the number of distinct optimal state-action pairs collected by the random exploration. η =

2

√
1

2n log
2|H|pπr,M(n′≥n|k)

pπr,M(n′≥n|k)−1+δ′ .

The proof of Corollary 5 is provided in Appendix A. Corollary 5 states that the probability

of sampling optimal trajectories is the main bottleneck of exploration and generalization,

instead of state space dimension. In general, the optimal exploration strategy depends on the

properties of MDPs. In this work, we focus on improving learning efficiency, i.e., learning

optimal ranking instead of estimating value functions. The discussion of optimal exploration

is beyond the scope of this work.

122

Figure 4.9: The training curves of the proposed RPG and state-of-the-art. All results are
averaged over random seeds from 1 to 5. The x-axis represents the number of steps interacting
with the environment (we update the model every four steps) and the y-axis represents the
averaged training episodic return. The error bars are plotted with a confidence interval of
95%.

4.2.11 Experimental Results

To evaluate the sample-efficiency of Ranking Policy Gradient (RPG), we focus on Atari

2600 games in OpenAI gym [18, 24], without randomly repeating the previous action. We

compare our method with the state-of-the-art baselines including DQN [132], C51 [17],

IQN [42], Rainbow [80], and self-imitation learning (SIL) [145]. For reproducibility, we use

the implementation provided in Dopamine framework1 [34] for all baselines and proposed

methods, except for SIL using the official implementation. 2. Follow the standard practice [145,

1https://github.com/google/dopamine
2https://github.com/junhyukoh/self-imitation-learning

123

80, 42, 17], we report the training performance of all baselines as the increase of interactions

with the environment, or proportionally the number of training iterations. We run the

algorithms with five random seeds and report the average rewards with 95% confidence

intervals. The implementation details of the proposed RPG and its variants are given as

follows3:

EPG: EPG is the stochastic listwise policy gradient (see Eq (4.10)) incorporated with

the proposed off-policy learning. More concretely, we apply trajectory reward shaping (TRS,

Def 6) to all trajectories encountered during exploration and train vanilla policy gradient

using the off-policy samples. This is equivalent to minimizing the cross-entropy loss (see

Appendix Eq (4.15)) over the near-optimal trajectories.

LPG: LPG is the deterministic listwise policy gradient with the proposed off-policy learn-

ing. The only difference between EPG and LPG is that LPG chooses action deterministically

(see Appendix Eq (4.9)) during evaluation.

RPG: RPG explores the environment using a separate EPG agent in Pong and IQN in

other games. Then RPG conducts supervised learning by minimizing the hinge loss Eq (4.14).

It is worth noting that the exploration agent (EPG or IQN) can be replaced by any existing

exploration method. In our RPG implementation, we collect all trajectories with the trajectory

reward no less than the threshold c without eliminating the duplicated trajectories and we

empirically found it is a reasonable simplification.

Sample-efficiency. As the results shown in Figure 4.9, our approach, RPG, significantly

outperforms the state-of-the-art baselines in terms of sample-efficiency at all tasks. Further-

more, RPG not only achieved the most sample-efficient results, but also reached the highest

final performance at Robotank, DoubleDunk, Pitfall, and Pong, comparing to any

3Code is available at https://github.com/illidanlab/rpg.

124

https://github.com/illidanlab/rpg

Figure 4.10: The trade-off between sample efficiency and optimality.

model-free state-of-the-art. In reinforcement learning, the stability of algorithm should be

emphasized as an important issue. As we can see from the results, the performance of baselines

varies from task to task. There is no single baseline consistently outperforms others. In

contrast, due to the reduction from RL to supervised learning, RPG is consistently stable and

effective across different environments. In addition to the stability and efficiency, RPG enjoys

simplicity at the same time. In the environment Pong, it is surprising that RPG without

any complicated exploration method largely surpassed the sophisticated value-function based

approaches. More details of hyperparameters are provided in the Appendix Section A.

4.2.12 Ablation Study

The effectiveness of pairwise ranking policy and off-policy learning as supervised

learning. To get a better understanding of the underlying reasons that RPG is more sample-

efficient than DQN variants, we performed ablation studies in the Pong environment by

varying the combination of policy functions with the proposed off-policy learning. The results

of EPG, LPG, and RPG are shown in the bottom right, Figure 4.9. Recall that EPG and

LPG use listwise policy gradient (vanilla policy gradient using softmax as policy function) to

conduct exploration, the off-policy learning minimizes the cross-entropy loss Eq (4.15). In

contrast, RPG shares the same exploration method as EPG and LPG while uses pairwise

125

Figure 4.11: Expected exploration efficiency of state-of-the-art. The results are averaged over
random seeds from 1 to 10.

ranking policy Eq (4.5) in off-policy learning that minimizes hinge loss Eq (4.14). We can see

that RPG is more sample-efficient than EPG/LPG in learning deterministic optimal policy.

We also compared the advanced on-policy method Proximal Policy Optimization (PPO) [170]

with EPG, LPG, and RPG. The proposed off-policy learning largely surpassed the best

on-policy method. Therefore, we conclude that off-policy as supervised learning contributes

to the sample-efficiency substantially, while the pairwise ranking policy can further accelerate

the learning. In addition, we compare RPG to representative off-policy policy gradient

approach: ACER [208]. As the results shown, the proposed off-policy learning framework is

more sample-efficient than the state-of-the-art off-policy policy gradient approaches.

On the Trade-off between Sample-Efficiency and Optimality. Results in Figure 4.10

show that there is a trade-off between sample efficiency and optimality, which is controlled by

the trajectory reward threshold c. Recall that c determines how close is the learned UNOP

to optimal policies. A higher value of c leads to a less frequency of near-optimal trajectories

being collected and and thus a lower sample efficiency, and however the algorithm is expected

to converge to a strategy of better performance. We note that c is the only parameter we

tuned across all experiments.

126

Exploration Efficiency. We empirically evaluate the Expected Exploration Efficiency

(Def 9) of the state-of-the-art on Pong. It is worth noting that the RL generalization

performance is determined by both of learning efficiency and exploration efficiency. Therefore,

higher exploration efficiency does not necessarily lead to more sample efficient algorithm due

to the learning inefficiency, as demonstrated by RainBow and DQN (see Figure 4.11). Also,

the Implicit Quantile achieves the best performance among baselines, since its exploration

efficiency largely surpasses other baselines.

4.2.13 Conclusion

In this work, we introduced ranking policy gradient methods that, for the first time, approach

the RL problem from a ranking perspective. Furthermore, towards the sample-efficient RL,

we propose an off-policy learning framework, which trains RL agents in a supervised learning

manner and thus largely facilitates the learning efficiency. The off-policy learning framework

uses generalized policy iteration for exploration and exploits the stableness of supervised

learning for deriving policy, which accomplishes the unbiasedness, variance reduction, off-

policy learning, and sample efficiency at the same time. Besides, we provide an alternative

approach to analyze the sample complexity of RL, and show that the sample complexity of

RPG has no dependency on the state space dimension. Last but not least, empirical results

show that RPG achieves superior performance as compared to the state-of-the-art.

127

Chapter 5

Collaborative Multi-Agent Learning

In this chapter, we investigate the scalability of collaborative learning in the context of

multi-agent learning for a real-world fleet management application. We propose to transfer

the coordination of a large number of learning agents into a linear programming problem,

with proper domain knowledge to guide the optimization. We show the superiority of this

global collaboration compared to individual learning through extensive evaluation on the

real-world traffic data.

5.1 Introduction

Large-scale online ride-sharing platforms such as Uber [201], Lift [126], and Didi Chuxing [40]

have transformed the way people travel, live and socialize. By leveraging the advances

in and wide adoption of information technologies such as cellular networks and global

positioning systems, the ride-sharing platforms redistribute underutilized vehicles on the

roads to passengers in need of transportation. The optimization of transportation resources

greatly alleviated traffic congestion and calibrated the once significant gap between transport

demand and supply [112].

One key challenge in ride-sharing platforms is to balance the demands and supplies, i.e.,

orders of the passengers and drivers available for picking up orders. In large cities, although

millions of ride-sharing orders are served everyday, an enormous number of passengers requests

128

remain unserviced due to the lack of available drivers nearby. On the other hand, there

are plenty of available drivers looking for orders in other locations. If the available drivers

were directed to locations with high demand, it will significantly increase the number of

orders being served, and thus simultaneously benefit all aspects of the society: utility of

transportation capacity will be improved, income of drivers and satisfaction of passengers

will be increased, and market share and revenue of the company will be expanded. fleet

management is a key technical component to balance the differences between demand and

supply, by reallocating available vehicles ahead of time, to achieve high efficiency in serving

future demand.

Even though rich historical demand and supply data are available, using the data to

seek an optimal allocation policy is not an easy task. One major issue is that changes

in an allocation policy will impact future demand-supply, and it is hard for supervised

learning approaches to capture and model these real-time changes. On the other hand, the

reinforcement learning (RL) [186], which learns a policy by interacting with a complicated

environment, has been naturally adopted to tackle the fleet management problem [64, 65, 211].

However, the high-dimensional and complicated dynamics between demand and supply can

hardly be modeled accurately by traditional RL approaches.

Recent years witnessed tremendous success in deep reinforcement learning (DRL) in

modeling intellectual challenging decision-making problems [132, 174, 175] that were previously

intractable. In the light of such advances, in this chapter we propose a novel DRL approach to

learn highly efficient allocation policies for fleet management. There are significant technical

challenges when modeling fleet management using DRL:

1) Feasibility of problem setting. The RL framework is reward-driven, meaning that a sequence

of actions from the policy is evaluated solely by the reward signal from environment [11].

129

The definitions of agent, reward and action space are essential for RL. If we model the

allocation policy using a centralized agent, the action space can be prohibitively large since

an action needs to decide the number of available vehicles to reposition from each location to

its nearby locations. Also, the policy is subject to a feasibility constraint enforcing that the

number of repositioned vehicles needs to be no larger than the current number of available

vehicles. To the best of our knowledge, this high-dimensional exact-constrain satisfaction

policy optimization is not computationally tractable in DRL: applying it in a very small-scale

problem could already incur high computational costs [154].

2) Large-scale Agents. One alternative approach is to instead use a multi-agent DRL setting,

where each available vehicle is considered as an agent. The multi-agent recipe indeed alleviates

the curse of dimensionality of action space. However, such setting creates thousands of agents

interacting with the environment at each time. Training a large number of agents using DRL

is again challenging: the environment for each agent is non-stationary since other agents are

learning and affecting the environment at same the time. Most of existing studies [125, 60, 189]

allow coordination among only a small set of agents due to high computational costs.

3) Coordinations and Context Dependence of Action space Facilitating coordination among

large-scale agents remains a challenging task. Since each agent typically learns its own policy

or action-value function that are changing over time, it is difficult to coordinate agents for

a large number of agents. Moreover, the action space is dynamic changing over time since

agents are navigating to different locations and the number of feasible actions depends on

the geographic context of the location.

In this paper, we propose a contextual multi-agent DRL framework to resolve the afore-

mentioned challenges. Our major contributions are listed as follows:

130

• We propose an efficient multi-agent DRL setting for large-scale fleet management

problem by a proper design of agent, reward and state.

• We propose contextual multi-agent reinforcement learning framework in which three

concrete algorithms: contextual multi-agent actor-critic (cA2C), contextual deep Q-

learning (cDQN), and Contextual multi-agent actor-critic with linear programming

(LP-cA2C) are developed. For the first time in multi-agent DRL, the contextual

algorithms can not only achieve efficient coordination among thousands of learning

agents at each time, but also adapt to dynamically changing action spaces.

• In order to train and evaluate the RL algorithm, we developed a simulator that simulates

real-world traffic activities perfectly after calibrating the simulator using real historical

data provided by Didi Chuxing [40].

• Last but not least, the proposed contextual algorithms significantly outperform the

state-of-the-art methods in multi-agent DRL with a much less number of repositions

needed.

The rest of this chapter is organized as follows. We first give a literature review on

the related work in Sec 5.2. Then the problem statement is elaborated in Sec 5.3 and the

simulation platform we built for training and evaluation are introduced in Sec 5.6. The

methodology is described in Sec 5.4. Quantitative and qualitative results are presented in

Sec 6.6. Finally, we conclude our work in Sec 5.8.

131

5.2 Related Works

Intelligent Transportation System. Advances in machine learning and traffic data

analytics lead to widespread applications of machine learning techniques to tackle challenging

traffic problems. One trending direction is to incorporate reinforcement learning algorithms

in complicated traffic management problems. There are many previous studies that have

demonstrated the possibility and benefits of reinforcement learning. Our work has close

connections to these studies in terms of problem setting, methodology and evaluation. Among

the traffic applications that are closely related to our work, such as taxi dispatch systems or

traffic light control algorithms, multi-agent RL has been explored to model the intricate nature

of these traffic activities [14, 172, 128]. The promising results motivated us to use multi-agent

modeling in the fleet management problem. In [64], an adaptive dynamic programming

approach was proposed to model stochastic dynamic resource allocation. It estimates the

returns of future states using a piecewise linear function and delivers actions (assigning orders

to vehicles, reallocate available vehicles) given states and one step future states values, by

solving an integer programming problem. In [65], the authors further extended the approach

to the situations that an action can span across multiple time periods. These methods are

hard to be directly utilized in the real-world setting where orders can be served through the

vehicles located in multiple nearby locations.

Multi-agent reinforcement learning. Another relevant research topic is multi-agent

reinforcement learning [27] where a group of agents share the same environment, in which

they receive rewards and take actions. [190] compared and contrasted independent Q-learning

and a cooperative counterpart in different settings, and empirically showed that the learning

speed can benefit from the cooperation among agents. Independent Q-learning is extended

132

into DRL in [189], where two agents are cooperating or competing with each other only

through the reward. In [60], the authors proposed a counterfactual multi-agent policy

gradient method that uses a centralized advantage to estimate whether the action of one

agent would improve the global reward, and decentralized actors to optimize the agent policy.

Ryan et al. also utilized the framework of decentralized execution and centralized training to

develop multi-agent multi-agent actor-critic algorithm that can coordinate agents in mixed

cooperative-competitive environments [125]. However, none of these methods were applied

when there are a large number of agents due to the communication cost among agents.

Recently, few works [230, 217] scaled DRL methods to a large number of agents, while it is

not applicable to apply these methods to complex real applications such as fleet management.

In [140, 141], the authors studied large-scale multi-agent planning for fleet management with

explicitly modeling the expected counts of agents.

Deep reinforcement learning. DRL utilizes neural network function approximations and

are shown to have largely improved the performance over challenging applications [175, 132].

Many sophisticated DRL algorithms such as DQN [132], A3C [131] were demonstrated to

be effective in the tasks in which we have a clear understanding of rules and have easy

access to millions of samples, such as video games [24, 18]. However, DRL approaches are

rarely seen to be applied in complicated real-world applications, especially in those with

high-dimensional and non-stationary action space, lack of well-defined reward function, and in

need of coordination among a large number of agents. In this chapter, we show that through

careful reformulation, the DRL can be applied to tackle the fleet management problem.

133

5.3 Problem Statement

In this chapter, we consider the problem of managing a large set of available homogeneous

vehicles for online ride-sharing platforms. The goal of the management is to maximize the

gross merchandise volume (GMV: the value of all the orders served) of the platform by

repositioning available vehicles to the locations with larger demand-supply gap than the

current one. This problem belongs to a variant of the classical fleet management problem [47].

A spatial-temporal illustration of the problem is available in Figure 5.1. In this example, we

use hexagonal-grid world to represent the map and split the duration of one day into T = 144

time intervals (one for 10 minutes). At each time interval, the orders emerge stochastically in

each grid and are served by the available vehicles in the same grid or six nearby grids. The

goal of fleet management here is to decide how many available vehicles to relocate from each

grid to its neighbors in ahead of time, so that most orders can be served.

To tackle this problem, we propose to formulate the problem using multi-agent reinforce-

ment learning [27]. In this formulation, we use a set of homogeneous agents with small action

spaces, and split the global reward into each grid. This will lead to a much more efficient

learning procedure than the single agent setting, due to the simplified action dimension and

the explicit credit assignment based on split reward. Formally, we model the fleet management

problem as a Markov game G for N agents, which is defined by a tuple G = (N,S,A,P ,R, γ),

where N,S,A,P ,R, γ are the number of agents, sets of states, joint action space, transition

probability functions, reward functions, and a discount factor respectively. The definitions

are given as follows:

• Agent: We consider an available vehicle (or equivalently an idle driver) as an agent,

and the vehicles in the same spatial-temporal node are homogeneous, i.e., the vehicles

134

located at the same region at the same time interval are considered as same agents

(where agents have the same policy). Although the number of unique heterogeneous

agents is always N , the number of agents Nt is changing over time.

• State st ∈ S: We maintain a global state st at each time t, considering the spatial

distributions of available vehicles and orders (i.e. the number of available vehicles and

orders in each grid) and current time t (using one-hot encoding). The state of an agent

i, sit, is defined as the identification of the grid it located and the shared global state

i.e. sit = [st,gj] ∈ RN×3+T , where gj is the one-hot encoding of the grid ID. We note

that agents located at same grid have the same state sit.

• Action at ∈ A = A1 × ...×ANt : a joint action at = {ait}
Nt
1 instructing the allocation

strategy of all available vehicles at time t. The action space Ai of an individual agent

specifies where the agent is able to arrive at the next time, which gives a set of seven

discrete actions denoted by {k}7k=1. The first six discrete actions indicate allocating the

agent to one of its six neighboring grids, respectively. The last discrete action ait = 7

means staying in the current grid. For example, the action a1
0 = 2 means to relocate

the 1st agent from the current grid to the second nearby grid at time 0, as shown in

Figure 5.1. For a concise presentation, we also use ait , [g0,g1] to represent agent i

moving from grid g0 to g1. Furthermore, the action space of agents depends on their

locations. The agents located at corner grids have a smaller action space. We also

assume that the action is deterministic: if ait , [g0,g1], then agent i will arrive at the

grid g1 at time t+ 1.

• Reward function Ri ∈ R = S × A → R: Each agent is associated with a reward

function Ri and all agents in the same location have the same reward function. The

135

i-th agent attempts to maximize its own expected discounted return: E
[∑∞

k=0 γ
krit+k

]
.

The individual reward rit for the i-th agent associated with the action ait is defined as the

averaged revenue of all agents arriving at the same grid as the i-th agent at time t+ 1.

Since the individual rewards at same time and the same location are same, we denote

this reward of agents at time t and grid gj as rt(gj). Such design of rewards aims at

avoiding greedy actions that send too many agents to the location with high value of

orders, and aligning the maximization of each agent’s return with the maximization of

GMV (value of all served orders in one day). Its effectiveness is empirically verified in

Sec 6.6.

• State transition probability p(st+1|st, at) : S ×A× S → [0, 1]: It gives the proba-

bility of transiting to st+1 given a joint action at is taken in the current state st. Notice

that although the action is deterministic, new vehicles and orders will be available

at different grids each time, and existing vehicles will become off-line via a random

process.

To be more concrete, we give an example based on the above problem setting in Figure 5.1.

At time t = 0, agent 1 is repositioned from g0 to g2 by action a1
0, and agent 2 is also

repositioned from g1 to g2 by action a2
0. At time t = 1, two agents arrive at g2, and a new

order with value 10 also emerges at same grid. Therefore, the reward r1 for both a1
0 and a2

0

is the averaged value received by agents at g2, which is 10/2 = 5.

It’s worth to note that this reward design may not lead to the optimal reallocation strategy

though it empirically leads to good reallocation policy. We give a simple example to illustrate

this problem. We use the grid world map as show in Figure 5.1. At time t = 1, there is an

order with value 100 emerged in g1 and another order with value 10 emerged in g0. Suppose

136

g0

g1

t = 0 t = 1

g2

Time

a0
1=[g0, g2]

a0
2=[g1, g2]

�

�

�

Repositions/OrdersThe Grid World

An order with
value 10

Reward r1 =5

Figure 5.1: The grid world system and a spatial-temporal illustration of the problem setting.

we have two agents that are available in grid g0 at time t = 0. The optimal reallocation

strategy in this case is to ask one agent stay in g0 and another go to g1, by which we can

receive the total reward 110. However, in the current setting, each agent trys to maximize

its own reward. As a result, both of them will go to g1 and receive 50 reward and none of

them will go to g1 since the reward they can receive is less than 50. However, we show that

there are few ways to approximate this global optimal allocation strategy using the individual

action function of each agent.

5.4 Contextual Multi-Agent Reinforcement Learning

In this section, we present two novel contextual multi-agent RL approaches: contextual

multi-agent actor-critic (cA2C) and contextual DQN (cDQN) algorithm. We first briefly

introduce the basic multi-agent RL method.

5.4.1 Independent DQN

Independent DQN [189] combines independent Q-learning [190] and DQN [132]. A straightfor-

ward extension of independent DQN from small scale to a large number of agents, is to share

137

network parameters and distinguish agents with their IDs [230]. The network parameters

can be updated by minimizing the following loss function, with respect to the transitions

collected from all agents:

E

Q(sit, a
i
t; θ)−

rit+1 + γ max
ait+1

Q(sit+1, a
i
t+1; θ′)

2

, (5.1)

where θ′ includes parameters of the target Q network updated periodically, and θ includes

parameters of behavior Q network outputting the action value for ε-greedy policy, same as

the algorithm described in [132]. This method could work reasonably well after extensive

tunning but it suffers from high variance in performance, and it also repositions too many

vehicles. Moreover, coordination among massive agents is hard to achieve since each unique

agent executes its action independently based on its action values.

5.4.2 Contextual DQN

Since we assume that the location transition of an agent after the allocation action is

deterministic, the actions that lead the agents to the same grid should have the same action

value. In this case, the number of unique action-values for all agents should be equal to

the number of grids N . Formally, for any agent i where sit = [st,gi], ait , [gi,gd] and

gi ∈ Ner(gd), the following holds:

Q(sit, a
i
t) = Q(st,gd) (5.2)

138

Hence, at each time step, we only need N unique action-values (Q(st,gj),∀j = 1, . . . , N) and

the optimization of Eq (5.1) can be replaced by minimizing the following mean-squared loss:

[
Q(st,gd; θ)−

(
rt+1(gd) + γ max

gp∈Ner(gd)
Q(st+1,gp; θ

′)

)]2

. (5.3)

This accelerates the learning procedure since the output dimension of the action value function

is reduced from R|st| → R7 to R|st| → R. Furthermore, we can build a centralized action-

value table at each time for all agents, which can serve as the foundation for coordinating the

actions of agents.

Geographic context. In hexagonal grids systems, border grids and grids surrounded by

infeasible grids (e.g., a lake) have reduced action dimensions. To accommodate this, for each

grid we compute a geographic context Ggj ∈ R7, which is a binary vector that filters out

invalid actions for agents in grid gj . The kth element of vector Ggj represents the validity

of moving toward kth direction from the grid gj . Denote gd as the grid corresponds to the

kth direction of grid gj , the value of the kth element of Ggj is given by:

[Gt,gj
]k =


1, if gd is valid grid,

0, otherwise,
(5.4)

where k = 0, . . . , 6 and last dimension of the vector represents direction staying in same grid,

which is always 1.

Collaborative context. To avoid the situation that agents are moving in conflict directions

(i.e., agents are repositioned from grid g1 to g2 and g2 to g1 at the same time.), we provide

a collaborative context Ct,gj
∈ R7 for each grid gj at each time. Based on the centralized

action values Q(st,gj), we restrict the valid actions such that agents at the grid gj are

139

navigating to the neighboring grids with higher action values or staying unmoved. Therefore,

the binary vector Ct,gj
eliminates actions to grids with lower action values than the action

staying unmoved. Formally, the kth element of vector Ct,gj
that corresponds to action value

Q(st,gi) is defined as follows:

[Ct,gj
]k =


1, if Q(st,gi) >= Q(st,gj),

0, otherwise.
(5.5)

After computing both collaborative and geographic context, the ε-greedy policy is then

performed based on the action values survived from the two contexts. Suppose the original

action values of agent i at time t is Q(sit) ∈ R7
≥0, given state sit, the valid action values after

applying contexts is as follows:

q(sit) = Q(sit) ∗Ct,gj
∗Gt,gj

. (5.6)

The coordination is enabled because that the action values of different agents lead to the

same location are restricted to be same so that they can be compared, which is impossible in

independent DQN. This method requires that action values are always non-negative, which

will always hold because that agents always receive nonnegative rewards. The algorithm of

cDQN is elaborated in Alg 5.2.

5.4.3 Contextual Actor-Critic

We now present the contextual multi-agent actor-critic (cA2C) algorithm, which is a multi-

agent policy gradient algorithm that tailors its policy to adapt to the dynamically changing

action space. Meanwhile, it achieves not only a more stable performance but also a much

140

Algorithm 5.1: ε-greedy policy for cDQN
Require: Global state st
1: Compute centralized action value Q(st,gj),∀j = 1, . . . , N
2: for i = 1 to Nt do
3: Compute action values Qi by Eq (5.2), where (Qi)k = Q(sit, a

i
t = k).

4: Compute contexts Ct,gj
and Gt,gj

for agent i.

5: Compute valid action values qit = Qi
t ∗Ct,gj

∗Gt,gj
.

6: ait = argmaxkqit with probability 1− ε otherwise choose an action randomly from the
valid actions.

7: end for
8: return Joint action at = {ait}

Nt
1 .

Algorithm 5.2: Contextual Deep Q-learning (cDQN)
1: Initialize replay memory D to capacity M
2: Initialize action-value function with random weights θ or pre-trained parameters.
3: for m = 1 to max-iterations do
4: Reset the environment and reach the initial state s0.
5: for t = 0 to T do
6: Sample joint action at using Alg. 5.1, given st.
7: Execute at in simulator and observe reward rt and next state st+1
8: Store the transitions of all agents (sit, a

i
t, r

i
t, s

i
t+1, ∀i = 1, ..., Nt) in D.

9: end for
10: for k = 1 to M1 do
11: Sample a batch of transitions (sit, a

i
t, r

i
t, s

i
t+1) from D,

12: Compute target yit = rit + γ ∗max
ait+1

Q(sit+1, a
i
t+1; θ′).

13: Update Q-network as θ ← θ +∇θ(yit −Q(sit, a
i
t; θ))

2,
14: end for
15: end for

more efficient learning procedure in a non-stationary environment. There are two main ideas

in the design of cA2C: 1) A centralized value function shared by all agents with an expected

update; 2) Policy context embedding that establishes explicit coordination among agents,

enables faster training and enjoys the flexibility of regulating policy to different action spaces.

The centralized state-value function is learned by minimizing the following loss function

141

derived from Bellman equation:

L(θv) = (Vθv(sit)− Vtarget(st+1; θ′v, π))2, (5.7)

Vtarget(st+1; θ′v, π) =
∑

ait
π(ait|sit)(rit+1 + γVθ′v

(sit+1)). (5.8)

where we use θv to denote the parameters of the value network and θ′v to denote the target

value network. Since agents staying unmoved at the same time are treated homogeneous and

share the same internal state, there are N unique agent states, and thus N unique state-values

(V (st,gj),∀j = 1, ..., N) at each time. The state-value output is denoted by vt ∈ RN , where

each element (vt)j = V (st,gj) is the expected return received by agent arriving at grid gj

on time t. In order to stabilize learning of the value function, we fix a target value network

parameterized by θ′v, which is updated at the end of each episode. Note that the expected

update in Eq (5.7) and training actor/critic in an offline fashion are different from the updates

in n-step actor-critic online training using TD error [131], whereas the expected updates

and training paradigm are found to be more stable and sample-efficient. This is also in

line with prior work in applying actor-critic to real applications [12]. Furthermore, efficient

coordination among multiple agents can be established upon this centralized value network.

Policy Context Embedding. Coordination is achieved by masking available action space

based on the context. At each time step, the geographic context is given by Eq (5.4) and the

collaborative context is computed according to the value network output:

[Ct,gj
]k =


1, if V (st,gi) >= V (st,gj),

0, otherwise,
(5.9)

where the kth element of vector Ct,gj
corresponds to the probability of the kth action

142

π(ait = k|sit). Let P(sit) ∈ R7
>0 denote the original logits from the policy network output for

the ith agent conditioned on state sit. Let qvalid(sit) = P(sit) ∗Ct,gj
∗Ggj denote the valid

logits considering both geographic and collaborative context for agent i at grid gj , where ∗

denotes an element-wise multiplication. In order to achieve effective masking, we restrict the

output logits P(sit) to be positive. The probability of valid actions for all agents in the grid

gj are given by:

πθp(ait = k|sit) = [qvalid(s
i
t)]k =

[qvalid(s
i
t)]k

‖qvalid(sit)‖1
. (5.10)

The gradient of policy can then be written as:

∇θpJ(θp) = ∇θp log πθp(ait|sit)A(sit, a
i
t), (5.11)

where θp denotes the parameters of policy network and the advantage A(sit, a
i
t) is computed

as follows:

A(sit, a
i
t) = rit+1 + γVθ′v

(sit+1)− Vθv(sit). (5.12)

The detailed description of cA2C is summarized in Alg 5.4.

5.5 Efficient allocation with linear programming

In this section, we present the proposed LP-cA2C that utilizes the state value functions

learned by cA2C and compute the reallocations in a centralized view, which achieves the best

performance with higher efficiency.

143

Algorithm 5.3: Contextual Multi-agent Actor-Critic Policy forward
Require: The global state st.
1: Compute centralized state-value vt
2: for i = 1 to Nt do
3: Compute contexts Ct,gj

and Gt,gj
for agent i.

4: Compute action probability distribution qvalid(sit) for agent i in grid gj (Eq (5.10)).
5: Sample action for agent i in grid gj based on action probability pi.
6: end for
7: return Joint action at = {ait}

Nt
1 .

Ce
nt

ra
liz

ed
Va

lu
e

O
ut

pu
t

Dynamic
Collaborative

Context
Geographic

Context

Agent Agent Agent Agent

Parameter-Shared Policy NetworkDe
ce

nt
ra

liz
ed

Ac
to

rE
xe

cu
tio

n

Parameter-Shared
Policy Network

Agent State

Geo-Context

Raw Logits

Sampled Action

0 1 1 10 …

Col-Context

0 0 1 01 …

1

1

Centralized
Critic Network

Valid Logits

Figure 5.2: Illustration of contextual multi-agent actor-critic. The left part shows the
coordination of decentralized execution based on the output of centralized value network.
The right part illustrates embedding context to policy network.

From another perspective, if we formulate this problem as a MDP where we have a

meta-agent that controls the decisions of all drivers, our goal is to maximize the long term

reward of the platform:

Qc(s, a) = E[
∞∑
t=1

γt−1rt(st, at)|s0 = s, a0 = a, π∗].

The π∗ in above formulation denotes the optimal global reallocation strategy. Although the

sum of immediate reward received by all agents is equal to the total reward of the platform,

maximizing the long term reward of each agent is not equal to maximize the long term

reward of the platform, i.e.
∑
i maxai Q(si, ai) 6= maxaQ

c(s, a). In cooperative multi-agent

144

Algorithm 5.4: Contextual Multi-agent Actor-Critic Algorithm for N agents
1: Initialization:
2: Initialize the value network with fixed value table.
3: for m = 1 to max-iterations do
4: Reset environment, get initial state s0.
5: Stage 1: Collecting experience
6: for t = 0 to T do
7: Sample actions at according to Alg 5.3, given st.
8: Execute at in simulator and observe reward rt and next state st+1.
9: Compute value network target as Eq (5.8) and advantage as Eq (5.12)

for policy network and store the transitions.
10: end for
11: Stage 2: Updating parameters
12: for m1 = 1 to M1 do
13: Sample a batch of experience: sit, Vtarget(s

i
t; θ
′
v, π)

14: Update value network by minimizing the value loss Eq (5.7) over the batch.
15: end for
16: for m2 = 1 to M2 do
17: Sample a batch of experience: sit, a

i
t, A(sit, a

i
t),Ct,gj

,Ggj .
18: Update policy network as θp ← θp +∇θpJ(θp).
19: end for
20: end for

reinforcement learning, the sum of rewards of multiple agents is the global reward we want

to maximize. In this case, given a centralized policy (π∗) for all agents, the summation of

long term reward should be equal to the global long term reward.

N∑
i=1

Qi(si, ai) =
N∑
i=1

Eπ∗

[∞∑
t=1

γt−1rit

∣∣∣si0 = si, ai0 = ai

]

= Eπ∗

 ∞∑
t=1

γt−1
N∑
i=1

rit

∣∣∣s0 = s, a0 = a


= Eπ∗

[∞∑
t=1

γt−1rt

∣∣∣s0 = s, a0 = a

]
= Qc(s, a)

However, in this work, this simple relationship does not hold mainly since the number of

agents (Nt) is not static. As shown in Eq (5.13), the global reward at time t+1 of the platform

145

is not equal to the sum of all current agents’ reward (i.e.
∑Nt
i=1 r

i
t+1 6=

∑Nt+1
i=1 rit+1 = rt+1)

even given a centralized policy π∗.

Nt∑
i=1

Q(sit, a
i
t) =

Nt∑
i=1

Eπ∗ [r
i
t+1 + γ max

ait+1

Q(sit+1, a
i
t+1)] (5.13)

Ideally, we would like to directly learn the centralized action value function Qc while it’s

computational intractable to explore and optimize the Qc in the case we have substantially

large action space. Therefore, we need to leverage the averaged long term reward of each

agent to approximate the maximization of the centralized action-value function Qc. In cDQN,

we approximate this allocation by avoiding the greedy allocation with ε−greedy strategy even

during the evaluation stage. In cA2C, the policy will allocate the agents in the same location

to its nearby locations with certain probability according to the state-values. In fact, we

uses this empirical strategy to better align the joint actions of each individual agent with the

action from optimal reallocation. However, both of the cA2C and cDQN try to coordinate

agents from a localized view, in which each agent only consider its nearby situation when

they are coordinating. Therefore, the redundant reallocation still exists in those two methods.

Other methods that can approximate the centralized action-value function such as VDN [185]

and QMIX [160] are not able to scale to large number of agents.

In this work, we propose to approximate the centralized policy by formulating the

reallocation as a linear programming problem.

max
y(st)

(
v(st)

TAt − cTt

)
y(st)− λ‖D (ot+1 −Aty(st)) ‖22 (5.14)

s.t. y(st) ≥ 0

Bty(st) = dt

146

where the vector y(st) ∈ RNr(t)×1 denotes the feasible repositions for all agents at current

time step t. Each element in y(st) represents one reposition from current grid to its nearby grid.

Nr(t) is the total number of feasible reposition direction. The number of feasible repositions

depends on the current state values in each grid since we reallocate agents from location with

lower state value to the grid with higher state value. A ∈ RN×Nr(t) is a indicator matrix

that denotes the allocations that dispatch drivers into the grid, i.e. Ai,j ∈ {0, 1}. Ai,j = 1

means the j-th reposition reallocates agents into the i-th grid. Similarly, B ∈ RN×Nr(t)

is the indicator matrix that denotes the allocations that dispatch drivers out of the grid.

D ∈ {0, 1}N×N is the adjacency matrix denotes the connectivity of the grid world. ot+1

denotes the estimated number of orders in each grid at next time step. ct ∈ RNr(t)×1 denotes

the cost associated with each reposition and s(st) ∈ RN×1 denotes the state value for each

grid in time step t.

The first term in Eq (5.14) approximates our goal that we want to maximize the long

term reward of the platform. Since the state value can be interpreted as the averaged long

term reward one agent will receive if it appears in certain grid, the first term represents the

total reward minus the total cost associated with the repositions. However, optimizing the

first term will lead to a greedy solution that reallocates all the agents to the nearby grid

with highest state value minus the cost. To alleviate this greedy reallocation, we add the

second term to regularize the number of agents reallocated to each grid. Since the agent in

current grid can pick up the orders emerged in nearby grids, we utilize the adjacency matrix

to regularize the number of agents reallocated into a group of nearby grids should be close to

the number of orders emerged in a group of nearby grids. From another point of view, the

second term more focus on the immediate reward since it prefer the solution that allocates

right amount of agents to pick-up the orders without consider the future income that an

147

agent can receive by that reposition. The regularization parameter λ is used to balance the

long term reward and the immediate reward. The two flow conservation constrains requires

the number of repositions should be positive and the number of repositions from current grid

should be equal to the number of available agents in current grids.

Ideally, we need to solve a integer programming problem where our solution satisfies

y(st) ∈ ZNr . However, solving integer programming is NP-hard in worst case while solving

its linear programming relaxation is in P. In practice, we solve the linear programming

relaxation and round the solution into integers [49].

5.6 Simulator Design

A fundamental challenge of applying RL algorithm in reality is the learning environment.

Unlike the standard supervised learning problems where the data is stationary to the learning

algorithms and can be evaluated by the training-testing paradigm, the interactive nature

of RL introduces intricate difficulties on training and evaluation. One common solution in

traffic studies is to build simulators for the environment [211, 172, 128]. In this section, we

introduce a simulator design that models the generation of orders, procedure of assigning

orders and key driver behaviors such as distributions across the city, on-line/off-line status

control in the real world. The simulator serves as the training environment for RL algorithms,

as well as their evaluation. More importantly, our simulator allows us to calibrate the key

performance index with the historical data collected from a fleet management system, and

thus the policies learned are well aligned with real-world traffics.

The Data Description The data provided by Didi Chuxing includes orders and trajectories

of vehicles in two cities including Chengdu and Wuhan. Chengdu is covered by a hexagonal

148

grids world consisting of 504 grids. Wuhan contains more than one thousands grids. The

order information includes order price, origin, destination and duration. The trajectories

contain the positions (latitude and longitude) and status (on-line, off-line, on-service) of all

vehicles every few seconds.

Timeline Design. In one time interval (10 minutes), the main activities are conducted

sequentially, also illustrated in Figure 5.4.

• Vehicle status updates: Vehicles will be stochastically set offline (i.e., off from service)

or online (i.e., start working) following a spatiotemporal distribution learned from real

data using the maximum likelihood estimation (MLE). Other types of vehicle status

updates include finishing current service or allocation. In other words, if a vehicle

is about to finish its service at the current time step, or arriving at the dispatched

grid, the vehicles are available for taking new orders or being repositioned to a new

destination.

• Order generation: The new orders generated at the current time step are bootstrapped

from real orders occurred in the same time interval. Since the order will naturally

reposition vehicles in a wide range, this procedure keeps the reposition from orders

similar to the real data.

• Interact with agents: This step computes state as input to fleet management algorithm

and applies the allocations for agents.

• Order assignments: All available orders are assigned through a two-stage procedure.

In the first stage, the orders in one grid are assigned to the vehicles in the same grid.

In the second stage, the remaining unfilled orders are assigned to the vehicles in its

neighboring grids. In reality, the platform dispatches order to a nearby vehicle within

149

Figure 5.3: The simulator calibration in terms of GMV. The red curves plot the GMV values
of real data averaged over 7 days with standard deviation, in 10-minute time granularity.

The blue curves are simulated results averaged over 7 episodes.

a certain distance, which is approximately the range covered by the current grid and

its adjacent grids. Therefore, the above two-stage procedure is essential to stimulate

these real-world activities and the following calibration. This setting differentiates

our problem from the previous fleet management problem setting (i.e., demands are

served by those resources at the same location only.) and make it impossible to directly

apply the classic methods such as adaptive dynamic programming approaches proposed

in [64, 65].

Calibration. The effectiveness of the simulator is guaranteed by calibration against the real

data regarding the most important performance measurement: the gross merchandise volume

(GMV). As shown in Figure 5.3, after the calibration procedure, the GMV in the simulator is

very similar to that from the ride-sharing platform. The r2 between simulated GMV and

real GMV is 0.9331 and the Pearson correlation is 0.9853 with p-value p < 0.00001.

150

Update distribution
of available vehicles

Bootstrap new
orders

Interact with Agents

State Policy Action

Reposition current
available vehicles

Dispatch orders

A B
Reward

Figure 5.4: Simulator time line in one time step (10 minutes).

5.7 Experiments

In this section, we conduct extensive experiments to evaluate the effectiveness of our proposed

method.

5.7.1 Experimental settings

In the following experiments, both of training and evaluation are conducted on the simulator

introduced in Sec 5.6. For all the competing methods, we prescribe two sets of random seed

that control the dynamics of the simulator for training and evaluation, respectively. Examples

of dynamics in simulator include order generations, and stochastically status update of all

vehicles. In this setting, we can test the generalization performance of algorithms when it

encounters unseen dynamics as in real scenarios. The performance is measured by GMV (the

total value of orders served in the simulator) gained by the platform over one episode (144

time steps in the simulator), and order response rate (ORR), which is the averaged number

of orders served divided by the number of orders generated. We use the first 15 episodes for

training and conduct evaluation on the following ten episodes for all learning methods. The

number of available vehicles at each time in different locations is counted by a pre-dispatch

procedure. This procedure runs a virtual two-stage order dispatching process to compute the

remaining available vehicles in each location. On average, the simulator has 5356 agents per

time step waiting for management. All the quantitative results of learning methods presented

in this section are averaged over three runs.

151

5.7.2 Performance comparison

In this subsection, the performance of following methods are extensively evaluated by the

simulation.

• Simulation: This baseline simulates the real scenario without any fleet management.

The simulated results are calibrated with real data in Sec 5.6.

• Diffusion: This method diffuses available vehicles to neighboring grids randomly.

• Rule-based: This baseline computes a T ×N value table Vrule, where each element

Vrule(t, j) represents the averaged reward of an agent staying in grid gj at time step

t. The rewards are averaged over ten episodes controlled by random seeds that are

different with testing episodes. With the value table, the agent samples its action based

on the probability mass function normalized from the values of neighboring grids at

the next time step. For example, if an agent located in g1 at time t and the current

valid actions are [g1,g2] and [g1,g1], the rule-based method sample its actions from

p(ait , [g1,gj]) = Vrule(t+ 1, j)/(Vrule(t+ 1, 2) + Vrule(t+ 1, 1)),∀j = 1, 2.

• Value-Iter: It dynamically updates the value table based on policy evaluation [186].

The allocation policy is computed based on the new value table, the same used in the

rule-based method, while the collaborative context is considered.

• T-Q learning: The standard independent tabular Q-learning [186] learns a table

qtabular ∈ RT×N×7 with ε-greedy policy. In this case the state reduces to time and the

location of the agent.

• T-SARSA: The independent tabular SARSA [186] learns a table qsarsa ∈ RT×N×7

with same setting of states as T-Q learning.

152

• DQN: The independent DQN is currently the state-of-the-art as we introduced in

Sec 5.4.1. Our Q network is parameterized by a three-layer ELUs [41] and we adopt

the ε-greedy policy as the agent policy. The ε is annealed linearly from 0.5 to 0.1 across

the first 15 training episodes and fixed as ε = 0.1 during the testing.

• cDQN: The contextual DQN as we introduced in Sec 5.4.2. The ε is annealed the same

as in DQN. At the end of each episode, the Q-network is updated over 4000 batches,

i.e. M1 = 4000 in Alg 5.2. To ensure a valid context masking, the activation function

of the output layer of the Q-network is ReLU + 1.

• cA2C: The contextual multi-agent actor-critic as we introduced in Sec 5.4.3. At the

end of each episode, both the policy network and the value network are updated over

4000 batches, i.e. M1 = M2 = 4000 in Alg 5.2. Similar to cDQN, The output layer of

the policy network uses ReLU + 1 as the activation function to ensure that all elements

in the original logits P(sit) are positive.

• LP-cA2C: The contextual multi-agent actor-critic with linear programming as intro-

duced in Sec 5.5. During the training state, we use cA2C to explore the environment

and learn the state value function. During the evaluation, we conduct the policy given

by linear programming.

Except for the first baseline, the geographic context is considered in all methods so that

the agents will not navigate to the invalid grid. Unless other specified, the value function

approximations and policy network in contextual algorithms are parameterized by a three-

layer ReLU [78] with node sizes of 128, 64 and 32, from the first layer to the third layer. The

batch size of all deep learning methods is fixed as 3000, and we use AdamOptimizer with a

learning rate of 1e− 3. Since performance of DQN varies a lot when there are a large number

153

of agents, the first column in the Table 5.1 for DQN is averaged over the best three runs out

of six runs, and the results for all other methods are averaged over three runs. Also, the

centralized critics of cDQN and cA2C are initialized from a pre-trained value network using

the historical mean of order values computed from ten episodes simulation, with different

random seeds from both training and evaluation.

To test the robustness of proposed method, we evaluate all competing methods under

different numbers of initial vehicles accross different cities. The results are summarized in

Table 5.1, 5.2, 5.3. The results of Diffusion improved the performance a lot in Table 5.1,

possibly because that the method sometimes encourages the available vehicles to leave the

grid with high density of available vehicles, and thus the imbalanced situation is alleviated.

However, in a more realistic setting that we consider reposition cost, this method can lead

to negative effective due to the highly inefficient reallocations. The Rule-based method that

repositions vehicles to the grids with a higher demand value, improves the performance

of random repositions. The Value-Iter dynamically updates the value table according to

the current policy applied so that it further promotes the performance upon Rule-based.

Comparing the results of Value-Iter, T-Q learning and T-SARSA, the first method consistently

outperforms the latter two, possibly because that the usage of a centralized value table enables

coordinations, which helps to avoid conflict repositions. The above methods simplify the state

representation into a spatial-temporal value representation, whereas the DRL methods account

both complex dynamics of supply and demand using neural network function approximations.

As the results shown in last three rows of Table 5.1, 5.2, 5.3, the methods with deep learning

outperforms the previous one. Furthermore, the contextual algorithms largely outperform

the independent DQN (DQN), which is the state-of-the-art among large-scale multi-agent

DRL method and all other competing methods. Last but not least, the lp-cA2C acheive the

154

Table 5.1: Performance comparison of competing methods in terms of GMV and order
response rate without reposition cost.

100% initial vehicles 90% initial vehicles 10% initial vehicles
Normalized GMV ORR Normalized GMV ORR Normalized GMV ORR

Simulation 100.00± 0.60 81.80%± 0.37% 98.81± 0.50 80.64%± 0.37% 92.78± 0.79 70.29%± 0.64%

Diffusion 105.68± 0.64 86.48%± 0.54% 104.44± 0.57 84.93%± 0.49% 99.00± 0.51 74.51%± 0.28%

Rule-based 108.49± 0.40 90.19%± 0.33% 107.38± 0.55 88.70%± 0.48% 100.08± 0.50 75.58%± 0.36%

Value-Iter 110.29± 0.70 90.14%± 0.62% 109.50± 0.68 89.59%± 0.69% 102.60± 0.61 77.17%± 0.53%

T-Q learning 108.78± 0.51 90.06%± 0.38% 107.71± 0.42 89.11%± 0.42% 100.07± 0.55 75.57%± 0.40%

T-SARSA 109.12± 0.49 90.18%± 0.38% 107.69± 0.49 88.68%± 0.42% 99.83± 0.50 75.40%± 0.44%

DQN 114.06± 0.66 93.01%± 0.20% 113.19± 0.60 91.99%± 0.30% 103.80± 0.96 77.03%± 0.23%

cDQN 115.19± 0.46 94.77%± 0.32% 114.29 ±0.66 94.00% ±0.53% 105.29± 0.70 79.28%± 0.58%

cA2C 115.27 ±0.70 94.99% ±0.48% 113.85± 0.69 93.99%± 0.47% 105.62 ±0.66 79.57% ±0.51%

Table 5.2: Performance comparison of competing methods in terms of GMV, order response
rate (ORR), and return on invest (ROI) in Xian considering reposition cost.

100% initial vehicles 90% initial vehicles 10% initial vehicles
Normalized GMV ORR ROI Normalized GMV ORR ROI Normalized GMV ORR ROI

Simulation 100.00± 0.60 81.80%± 0.37% - 98.81± 0.50 80.64%± 0.37% - 92.78± 0.79 70.29%± 0.64% -
Diffusion 103.02± 0.41 86.49%± 0.42% 0.5890 102.35± 0.51 85.00%± 0.47% 0.7856 97.41± 0.55 74.51%± 0.46% 1.5600
Rule-based 106.21± 0.43 90.00%± 0.43% 1.4868 105.30± 0.42 88.58%± 0.37% 1.7983 99.37± 0.36 75.83%± 0.48% 3.2829
Value-Iter 108.26± 0.65 90.28%± 0.50% 2.0092 107.69± 0.82 89.53%± 0.56% 2.5776 101.56± 0.65 77.11%± 0.44% 4.5251

T-Q learning 107.55± 0.58 90.12%± 0.52% 2.9201 106.60± 0.52 89.17%± 0.41% 4.2052 99.99± 1.28 75.97%± 0.91% 5.2527
T-SARSA 107.73± 0.46 89.93%± 0.34% 3.3881 106.88± 0.45 88.82%± 0.37% 5.1559 99.11± 0.40 75.23%± 0.35% 6.8805

DQN 110.81± 0.68 92.50%± 0.50% 1.7811 110.16± 0.60 91.79%± 0.29% 2.3790 103.40± 0.51 77.14%± 0.26% 4.3770
cDQN 112.49± 0.42 94.88%± 0.33% 2.2207 112.12± 0.40 94.17%± 0.36% 2.7708 104.25± 0.55 79.41%± 0.48% 4.8340
cA2C 112.70± 0.64 94.74%± 0.57% 3.1062 112.05± 0.45 93.97%± 0.37% 3.8085 104.19± 0.70 79.25%± 0.68% 5.2124

LP-cA2C 113.60 ±0.56 95.27% ±0.36% 4.4633 112.75±0.65 94.62%±0.47% 5.2719 105.37 ±0.58 80.15% ±0.46% 7.2949

best performance in terms of return on investment (the gmv gain per reallocation), GMV,

and order response rate.

5.7.3 On the Efficiency of Reallocations

In reality, each reposition comes with a cost. In this subsection, we consider such reposition

costs and estimated them by fuel costs. Since the travel distance from one grid to another

is approximately 1.2km and the fuel cost is around 0.5 RMB/km, we set the cost of each

reposition as c = 0.6. In this setting, the definition of agent, state, action and transition

probability is same as we stated in Sec 5.3. The only difference is that the repositioning cost

is included in the reward when the agent is repositioned to different locations. Therefore, the

GMV of one episode is the sum of all served order value substracted by the total of reposition

cost in one episode. For example, the objective function for DQN now includes the reposition

155

Table 5.3: Performance comparison of competing methods in terms of GMV, order response
rate (ORR), and return on invest (ROI) in Wuhan considering reposition cost.

Normalized GMV ORR ROI
Simulation 100.00± 0.48 76.56%± 0.45% -
Diffusion 98.84± 0.44 80.07%± 0.24% -0.2181
Rule-based 103.84± 0.63 84.91%± 0.25% 0.5980
Value-Iter 107.13± 0.70 85.06%± 0.45% 1.6156

T-Q learning 107.10± 0.61 85.28%± 0.28% 1.8302
T-SARSA 107.14± 0.64 84.99%± 0.28% 2.0993

DQN 108.45± 0.62 86.67%± 0.33% 1.0747
cDQN 108.93± 0.57 89.03%± 0.26% 1.1001
cA2C 113.31± 0.54 88.57%± 0.45% 4.4163

LP-cA2C 114.92 ±0.65 89.29% ±0.39% 6.1417

Table 5.4: Effectiveness of contextual multi-agent actor-critic considering reposition costs.

Normalized GMV ORR Repositions
DQN 110.81± 0.68 92.50%± 0.50% 606932
cDQN 112.49± 0.42 94.88%± 0.33% 562427
cA2C 112.70± 0.64 94.74%± 0.57% 408859

LP-cA2C 113.60± 0.56 95.27%± 0.36% 304752

cost as follows:

E
[
Q(sit, a

i
t; θ)−

(
rit+1 − c+ γmax

ait+1
Q(sit+1, a

i
t+1; θ′

)]2

, (5.15)

where ait , [go,gd], and if gd = go then c = 0, otherwise c = 0.6. Similarly, we can consider

the costs in cA2C. However, it is hard to apply them to cDQN because that the assumption,

that different actions that lead to the same location should share the same action value,

which is not held in this setting. Therefore, instead of considering the reposition cost in the

objective function, we only incorporate the reposition cost when we actually conduct our

policy based on cDQN. Under this setting, the learning objective of action value of cDQN is

156

same as in Eq (5.3) while the context embedding is changed from Eq (5.4) to the following:

[Ct,gj
]k =


1, if Q(st,gi) >= Q(st,gj) + c,

0, otherwise.
(5.16)

For LP-cA2C, the cost effect is naturally incorporated in the objective function as

in Eq (5.14). As the results shown in Table 5.4, the DQN tends to reposition more agents

while the contextual algorithms achieve better performance in terms of both GMV and

order response rate, with lower cost. More importantly, the LP-cA2C outperforms other

methods in both of the performance and efficiency. The reason is that this method formulate

the coordination among agents into an optimization problem, which approximates the

maximization of the platform’s long term reward in a centralized version. The centralized

optimization problem can avoid lots of redundant reallocations compared to previous methods.

The training procedures and the network architecture are the same as described in the previous

section.

To be more concrete, we give a specific scenario to demonstrate that the efficiency of

LP-cA2C. Imaging we would like to ask drivers to move from grid A to nearby grid B while

there is a grid C that is adjacent to both grid A and B. In the previous algorithms, since

the allocation is jointly given by each agent, it’s very likely that we reallocate agents by

the short path A → B and longer path A → C → B when there are sufficient amount of

agents can arrive at B from A. These inefficient reallocations can be avoided by LP-cA2C

naturally since the longer path only incurs a higher cost which will be the suboptimal solution

to our objective function compared to the solution only contains the first path. As shown

in Figure 5.5 (a), the allocation computed by cA2C contains many triangle repositions as

denoted by the black circle, while we didn’t observe these inefficient allocations in Figure 5.5

157

(a) cA2C (b) LP-cA2C

Figure 5.5: Illustration of allocations of cA2C and LP-cA2C at 18:40 and 19:40, respsectively.

(b). Therefore, the allocation policy delivered by LP-cA2C is more efficient than those given

by previous algorithms.

5.7.4 The effectiveness of averaged reward design

In multi-agent RL, the reward design for each agent is essential for the success of learning. In

fully cooperative multi-agent RL, the reward for all agents is a single global reward [27], while

it suffers from the credit assignment problem for each agent’s action. Splitting the reward to

each agent will alleviate this problem. In this subsection, we compare two different designs

for the reward of each agent: the averaged reward of a grid as stated in Sec 5.3 and the total

reward of a grid that does not average on the number of available vehicles at that time. As

shown in table 5.5, the methods with averaged reward (cA2C, cDQN) largely outperform

those using total reward, since this design naturally encourages the coordinations among

agents. Using total reward, on the other hand, is likely to reposition an excessive number of

agents to the location with high demand.

158

Table 5.5: Effectiveness of averaged reward design.

Proposed methods Raw Reward
Normalized GMV/ORR Normalized GMV/ORR

cA2C 115.27±0.70/94.99%± 0.48% 105.75± 1.17/88.09%± 0.74%
cDQN 115.19± 0.46/94.77%± 0.32% 108.00± 0.35/89.53%± 0.31%

(a) Without reposition cost (b) With reposition cost

Figure 5.6: Convergence comparison of cA2C and its variations without using context
embedding in both settings, with and without reposition costs. The X-axis is the number of
episodes. The left Y-axis denotes the number of conflicts and the right Y-axis denotes the
normalized GMV in one episode.

Table 5.6: Effectiveness of context embedding.

Normalized GMV/ORR Repositions
Without reposition cost

cA2C 115.27± 0.70/94.99%± 0.48% 460586
cA2C-v1 114.78± 0.67/94.52%± 0.49% 704568
cA2C-v2 111.39± 1.65/92.12%± 1.03% 846880

With reposition cost
cA2C 112.70± 0.64/94.74%± 0.57% 408859

cA2C-v3 110.43± 1.16/93.79%± 0.75% 593796

5.7.5 Ablations on policy context embedding

In this subsection, we evaluate the effectiveness of context embedding, including explicitly

coordinating the actions of different agents through the collaborative context, and eliminating

the invalid actions with geographic context. The following variations of proposed methods

are investigated in different settings.

159

• cA2C-v1: This variation drops collaborative context of cA2C in the setting that does

not consider reposition cost.

• cA2C-v2: This variation drops both geographic and collaborative context of cA2C in

the setting that does not consider reposition cost.

• cA2C-v3: This variation drops collaborative context of cA2C in the setting that

considers reposition cost.

The results of above variations are summarized in Table 5.6 and Figure 5.6. As seen in

the first two rows of Table 5.6 and the red/blue curves in Figure 5.6 (a), in the setting of

zero reposition cost, cA2C achieves the best performance with much less repositions (65.37%)

comparing with cA2C-v1. Furthermore, collaborative context embedding achieves significant

advantages when the reposition cost is considered, as shown in the last two rows in Table 5.6

and Figure 5.6 (b). It not only greatly improves the performance but also accelerates the

convergence. Since the collaborative context largely narrows down the action space and

leads to a better policy solution in the sense of both effectiveness and efficiency, we can

conclude that coordination based on collaborative context is effective. Also, comparing the

performances of cA2C and cA2C-v2 (red/green curves in Figure 5.6 (a)), apparently the

policy context embedding (considering both geographic and collaborative context) is essential

to performance, which greatly reduces the redundant policy search.

5.7.6 Ablation study on grouping the locations

This section studies the effectiveness of our regularization design for LP-cA2C. One key

difference between our work and traditional fleet management works [64, 65] is that we didn’t

assume the drivers in one location can only pick up the orders in the same location. On

160

the contrary, one agent can also serve the orders emerged in the nearby locations, which is

a more realistic and complicated setting. In this case, we regularize the number of agents

repositioned into a set of nearby grids close to the number of estimated orders at next time

step. This grouping regularization in Eq (5.14) is more efficient than the regularization in

Eq (5.17) requiring the number of agents repositioned into each grid is close to the number

of estimated orders at that gird since lots of reposition inside the same group can be avoided.

As the results shown in Table 5.7, using the group regularization in Eq (5.14) reallocates less

agents while achieves same best performance as the one in Eq (5.17) (LP-cA2C’).

max
y(st)

(v(st)
TAt − cTt)y(st)− λ(ot −Aty(st))

2 (5.17)

Table 5.7: Effectiveness of group regularization design

Normalized GMV ORR Repositions ROI
LP-cA2C 113.56± 0.61 95.24%± 0.40% 341774 3.9663
LP-cA2C’ 113.60± 0.56 95.27%± 0.36% 304752 4.4633

5.7.7 Qualitative study

In this section, we analyze whether the learned value function can capture the demand-supply

relation ahead of time, and the rationality of allocations. To see this, we present a case study

on the region nearby the airport. The state value and allocation policy is acquired from cA2C

that was trained for ten episodes. We then run the well-trained cA2C on one testing episode,

and qualitatively exam the state value and allocations under the unseen dynamics. The sum

of state values and demand-supply gap (defined as the number of orders minus the number of

vehicles) of seven grids that cover the CTU airport is visualized. As seen in Figure 5.8, the

state value can capture the future dramatic changes of demand-supply gap. Furthermore, the

161

spatial distribution of state values can be seen in Figure 5.7. After the midnight, the airport

has a large number of orders, and less available vehicles, and therefore the state values of

airport are higher than other locations. During the daytime, more vehicles are available at

the airport so that each will receive less reward and the state values are lower than other

regions, as shown in Figure 5.7 (b). In Figure 5.7 and Figure 5.8, we can conclude that the

value function can estimate the relative shift of demand-supply gap from both spatial and

temporal perspectives. It is crucial to the performance of cA2C since the coordination is

built upon the state values. Moreover, as illustrated by blue arrows in Figure 5.7, we see

that the allocation policy gives consecutive allocations from lower value grids to higher value

grids, which can thus fill the future demand-supply gap and increase the GMV.

(a) At 01:50 am. (b) At 06:40 pm.

Figure 5.7: Illustration on the repositions nearby the airport at 1:50 am and 06:40 pm. The
darker color denotes the higher state value and the blue arrows denote the repositions.

5.8 Conclusion

In this chapter, we first formulate the large-scale fleet management problem into a feasible

setting for deep reinforcement learning. Given this setting, we propose contextual multi-agent

reinforcement learning framework, in which two contextual algorithms cDQN and cA2C are

162

Figure 5.8: The normalized state value and demand-supply gap over one day.

developed and both of them achieve the large scale agents’ coordination in fleet management

problem. cA2C enjoys both flexibility and efficiency by capitalizing a centralized value

network and decentralized policy execution embedded with contextual information. It is

able to adapt to different action space in an end-to-end training paradigm. A simulator is

developed and calibrated with the real data provided by Didi Chuxing, which served as our

training and evaluation platform. Extensive empirical studies under different settings in

simulator have demonstrated the effectiveness of the proposed framework.

163

Chapter 6

The Provable Advantage of

Collaborative Learning

6.1 Introduction

Federated learning (FL) is a machine learning setting where many clients (e.g., mobile devices

or organizations) collaboratively train a model under the orchestration of a central server (e.g.,

service provider), while keeping the training data decentralized [176, 94]. In recent years, FL

has swiftly emerged as an important learning paradigm [129, 109]–one that enjoys widespread

success in applications such as personalized recommendation [36], virtual assistant [106], and

keyboard prediction [77], to name a few–for at least two reasons: First, the rapid proliferation

of smart devices that are equipped with both computing power and data-capturing capabilities

provided the infrastructure core for FL. Second, the rising awareness of privacy and the

exponential growth of computational power (blessed by Moore’s law) in mobile devices have

made it increasingly attractive to push the computation to the edge.

Despite its promise and broad applicability in our current era, the potential value FL

delivers is coupled with the unique challenges it brings forth. In particular, when FL learns a

single statistical model using data from across all the devices while keeping each individual

device’s data isolated (and hence protects privacy) [94], it faces two challenges that are absent

164

in centralized optimization and distributed (stochastic) optimization [231, 178, 99, 113, 205,

213, 206, 92, 219, 218, 98, 104]:

1) Data heterogeneity: data distributions in devices are different (and data can’t be

shared);

2) System heterogeneity: only a subset of devices may access the central server at each

time both because the communications bandwidth profiles vary across devices and because

there is no central server that has control over when a device is active.

To address these challenges, Federated Averaging (FedAvg) [129] was proposed as a

particularly effective heuristic, which has enjoyed great empirical success [77]. This success

has since motivated a growing line of research efforts into understanding its theoretical

convergence guarantees in various settings. For instance, [75] analyzed FedAvg (for non-

convex smooth problems satisfying PL conditions) under the assumption that each local

device’s minimizer is the same as the minimizer of the joint problem (if all devices’ data is

aggregated together), an overly restrictive assumption. Very recently, [110] furthered the

progress and established an O(1
T) convergence rate for FedAvg for strongly convex smooth

problems. At the same time, [84] studied the Nesterov accelerated FedAvg for non-convex

smooth problems and established an O(1√
T

) convergence rate to stationary points.

However, despite these very recent fruitful pioneering efforts into understanding the

theoretical convergence properties of FedAvg, it remains open as to how the number of

devices–particularly the number of devices that participate in the computation–affects the

convergence speed. In particular, do we get linear speedup of FedAvg? What about when

FedAvg is accelerated? These aspects are currently unexplored in FL. We fill in the gaps here

by providing affirmative answers.

Our Contributions We provide a comprehensive convergence analysis of FedAvg and its

165

Table 6.1: Convergence results for FedAvg and accelerated FedAvg. Throughout the paper, N is
the total number of local devices, and K ≤ N is the maximal number of devices that are accessible
to the central server. T is the total number of stochastic updates performed by each local device, E
is the local steps between two consecutive server communications (and hence T/E is the number of
communications). † In the linear regression setting, we have κ = κ1 for FedAvg and κ =

√
κ1κ̃ for

accelerated FedAvg, where κ1 and
√
κ1κ̃ are condition numbers defined in Section 6.5. Since κ1 ≥ κ̃,

this implies a speedup factor of
√

κ1
κ̃ for accelerated FedAvg.

hhhhhhhhhhhhhParticipation

Objective function Strongly Convex Convex Overparameterized Overparameterized
general case linear regression

Full O(1
NT

+ E2

T2) O
(

1√
NT

+ NE2

T

)
O(exp(− NT

Eκ1
)) O(exp(−NT

Eκ
))†

Partial O
(
E2

KT
+ E2

T2

)
O

(
E2
√
KT

+ KE2

T

)
O(exp(− KT

Eκ1
)) O(exp(−KT

Eκ
))†

accelerated variants in the presence of both data and system heterogeneity. Our contributions

are threefold.

First, we establish an O(1/KT) convergence rate under FedAvg for strongly convex and

smooth problems and an O(1/
√
KT) convergence rate for convex and smooth problems

(where K is the number of participating devices), thereby establishing that FedAvg enjoys

the desirable linear speedup property in the FL setup. Prior to our work here, the best

and the most related convergence analysis is given by [110], which established an O(1
T)

convergence rate for strongly convex smooth problems under FedAvg. Our rate matches the

same (and optimal) dependence on T , but also completes the picture by establishing the

linear dependence on K.

Second, we establish the same convergence rates–O(1/KT) for strongly convex and smooth

problems and O(1/
√
KT) for convex and smooth problems–for Nesterov accelerated FedAvg.

We analyze the accelerated version of FedAvg here because empirically it tends to perform

better; yet, its theoretical convergence guarantee is unknown. To the best of our knowledge,

these are the first results that provide a linear speedup characterization of Nesterov accelerated

FedAvg in those two problem classes (that FedAvg and Nesterov accelerated FedAvg share

the same convergence rate is to be expected: this is the case even for centralized stochastic

166

optimization).

Third, we study a subclass of strongly convex smooth problems where the objective is

over-parameterized and establish a faster O(exp(−KTκ)) convergence rate for FedAvg. Within

this class, we further consider the linear regression problem and establish an even sharper

rate under FedAvg. In addition, we propose a new variant of accelerated FedAvg–MaSS

accelerated FedAvg–and establish a faster convergence rate (compared to if no acceleration

is used). This stands in contrast to generic (strongly) convex stochastic problems where

theoretically no rate improvement is obtained when one accelerates FedAvg. The detailed

convergence results are summarized in Table 6.1.

6.2 Setup

In this chapter, we study the following federated learning problem:

min
w

{
F (w) ,

∑N

k=1
pkFk(w)

}
, (6.1)

where N is the number of local devices (users/nodes/workers) and pk is the k-th device’s

weight satisfying pk ≥ 0 and
∑N
k=1 pk = 1. In the k-th local device, there are nk data points:

x1
k,x

2
k, . . . ,x

nk
k . The local objective Fk(·) is defined as: Fk(w) , 1

nk

∑nk
j=1 `

(
w; x

j
k

)
, where

` denotes a user-specified loss function. Each device only has access to its local data, which

gives rise to its own local objective Fk. Note that we do not make any assumptions on the

data distributions of each local device. The local minimum F ∗k = min
w∈Rd Fk(w) can be far

from the global minimum of Eq (6.1).

167

6.2.1 The Federated Averaging (FedAvg) Algorithm

We first introduce the standard Federated Averaging (FedAvg) algorithm [129]. FedAvg

updates the model in each device by local Stochastic Gradient Descent (SGD) and sends

the latest model to the central server every E steps. The central server conducts a weighted

average over the model parameters received from active devices and broadcasts the latest

averaged model to all devices. Formally, the updates of FedAvg at round t is described as

follows:

vkt+1 = wk
t − αtgt,k, wk

t+1 =


vkt+1 if t+ 1 /∈ IE ,∑
k∈St+1

vkt+1 if t+ 1 ∈ IE ,

where wk
t is the local model parameter maintained in the k-th device at the t-th iteration,

gt,k := ∇Fk(wk
t , ξ

k
t) is the stochastic gradient based on ξkt , the data sampled from k-th

device’s local data uniformly at random. IE = {E, 2E, . . . } is the set of global communication

steps. We use St+1 to represent the set of active devices at t+ 1.

Since federated learning usually involves an enormous amount of local devices, it is often

more realistic to assume only a subset of local devices is active at each communication round

(system heterogeneity). In this work, we consider both the case of full participation where

the model is averaging over all devices at the communication round, i.e., wk
t+1 =

∑N
k=1 pkv

k
t+1,

and the case of partial participation where |St+1| < N . With partial participation, St+1

is obtained by two types of sampling schemes to simulate practical scenarios [110]. For

example, one scheme establishes St+1 by i.i.d. sampling the devices with probability pk

with replacement. Both schemes guarantee that gradient updates in FedAvg are unbiased

stochastic versions of updates in FedAvg with full participation. For more details on the

168

notations and setup, please refer to Section B in the appendix.

6.2.2 Assumptions

We make the following standard assumptions on the objective function F1, . . . , FN . Assump-

tions 7 and 8 are commonly satisfied by a range of popular objective functions, such as

`2-regularized logistic regression and cross-entropy loss functions.

Assumption 7 (L-smooth). F1, · · · , FN are all L-smooth: for all v and w, Fk(v) ≤

Fk(w) + (v −w)T∇Fk(w) + L
2 ‖v −w‖22.

Assumption 8 (Strongly-convex). F1, · · · , FN are all µ -strongly convex: for all v and

w, Fk(v) ≥ Fk(w) + (v −w)T∇Fk(w) + µ
2‖v −w‖22

Assumption 9 (Bounded local variance). Let ξkt be sampled from the k-th device’s local

data uniformly at random. The variance of stochastic gradients in each device is bounded:

E
∥∥∥∇Fk (wk

t , ξ
k
t

)
−∇Fk

(
wk
t

)∥∥∥2
≤ σ2

k, for k = 1, · · · , N and any wk
t . Let σ

2 =
∑N
k=1 pkσ

2
k.

Assumption 10 (Bounded local gradient). The expected squared norm of stochastic gradients

is uniformly bounded. i.e., E
∥∥∥∇Fk (wk

t , ξ
k
t

)∥∥∥2
≤ G2, for all k = 1, ..., N and t = 0, . . . , T−1.

Assumptions 9 and 10 have been made in many previous works in federated learning,

e.g. [219, 110, 178]. We provide further justification for their generality. As model average pa-

rameters become closer to w∗, the L-smoothness property implies that E‖∇Fk(wk
t , ξ

k
t)‖2 and

E‖∇Fk(wk
t , ξ

k
t)−∇Fk(wk

t)‖2 approach E‖∇Fk(w∗, ξkt)‖2 and E‖∇Fk(w∗, ξkt)−∇Fk(w∗)‖2.

Therefore, there is no substantial difference between these assumptions and assuming the

169

bounds at w∗ only. Furthermore, compared to assuming bounded gradient diversity as in

related work [75, 109], Assumption 10 is much less restrictive. When the optimality gap

converges to zero, bounded gradient diversity restricts local objectives to have the same

minimizer as the global objective, contradicting the heterogeneous data setting. For detailed

discussions of our assumptions, please refer to Appendix Section B.

6.3 Linear Speedup Analysis of FedAvg

In this section, we provide convergence analyses of FedAvg for convex objectives in the general

setting with both heterogeneous data and partial participation. We show that for strongly

convex and smooth objectives, the convergence of the optimality gap of averaged parameters

across devices is O(1/NT), while for convex and smooth objectives, the rate is O(1/
√
NT).

Detailed proofs are deferred to Appendix Section B.

6.3.1 Strongly Convex and Smooth Objectives

We first show that FedAvg has an O(1/NT) convergence rate for µ-strongly convex and

L-smooth objectives. The result improves on the O(1/T) rate of [110] with a linear speedup

in the number of devices N . Moreover, it implies a distinction in communication efficiency

that guarantees this linear speedup for FedAvg with full and partial device participation.

With full participation, E can be chosen as large as O(
√
T/N) without degrading the linear

speedup in the number of workers. On the other hand, with partial participation, E must be

O(1) to guarantee O(1/NT) convergence.

Theorem 7. Let wT =
∑N
k=1 pkw

k
T , νmax = maxkNpk, and set decaying learning rates

αt = 1
4µ(γ+t)

with γ = max{32κ,E} and κ = L
µ . Then under Assumptions 7 to 10 with full

170

device participation,

EF (wT)− F ∗ = O
(
κν2

maxσ
2/µ

NT
+
κ2E2G2/µ

T 2

)
,

and with partial device participation with at most K sampled devices at each communication

round,

EF (wT)− F ∗ = O
(
κE2G2/µ

KT
+
κν2

maxσ
2/µ

NT
+
κ2E2G2/µ

T 2

)
.

Linear speedup. We first compare our bound with that in [110], which is O(1
NT + E2

KT +

E2G2

T). Because the term E2G2

T is also O(1/T) without a dependence on N , for any choice

of E their bound cannot achieve linear speedup. The improvement of our bound comes from

the term κ2E2G2/µ

T2 , which now is O(E2/T 2). As a result, all leading terms scale with 1/N

in the full device participation setting, and with 1/K in the partial participation setting.

This implies that in both settings, there is a linear speedup in the number of active workers

during a communication round. We also emphasize that the reason one cannot recover the

full participation bound by setting K = N in the partial participation bound is due to the

variance generated by sampling which depends on E.

Communication Complexity. Our bound implies a distinction in the choice of E between

the full and partial participation settings. With full participation there is linear speedup

O(1/NT) as long as E = O(
√
T/N) since then O(E2/T 2) = O(1/NT) matches the leading

term. This corresponds to a communication complexity of T/E = O(
√
NT). In contrast,

the bound in [110] does not allow E to scale with
√
T to preserve O(1/T) rate, even for full

participation. On the other hand, with partial participation, κE
2G2/µ
KT is also a leading term,

171

and so E must be O(1). In this case, our bound still yields a linear speedup in K, which

is also confirmed by experiments. The requirement E = O(1) in partial participation likely

cannot be removed for our sampling schemes, as the sampling variance is Ω(E2/T 2) and the

dependence on E is tight.

Comparison with related work. To better understand the significance of the obtained

bound, we compare our rates to the best-known results in related settings. [75] proves a

linear speedup O(1/NT) result for strongly convex and smooth objectives, with O(N1/3T 2/3)

communication complexity with i.i.d. data and partial participation. However, their results

build on the bounded gradient diversity assumption, which implies the existence of w∗ that

minimizes all local objectives (see discussions in Section 6.2.2), effectively removing system

heterogeneity. The bound in [104] matches our bound in the full participation case, but their

framework excludes partial participation [104, Proposition 1].

6.3.2 Convex Smooth Objectives

Next we provide linear speedup analyses of FedAvg with convex and smooth objectives and

show that the optimality gap is O(1/
√
NT). This result complements the strongly convex

case in the previous part, as well as the non-convex smooth setting in [92, 219, 75], where

O(1/
√
NT) results are given in terms of averaged gradient norm.

Theorem 8. Under assumptions 7,9,10 and constant learning rate αt = O(
√

N
T),

min
t≤T

F (wt)− F (w∗) = O
(
ν2

maxσ
2

√
NT

+
NE2LG2

T

)

with full participation, and with partial device participation with K sampled devices at each

172

communication round and learning rate αt = O(
√

K
T),

min
t≤T

F (wt)− F (w∗) = O
(
ν2

maxσ
2

√
KT

+
E2G2
√
KT

+
KE2LG2

T

)
.

Choice of E and linear speedup. With full participation, as long as E = O(T 1/4/N3/4),

the convergence rate is O(1/
√
NT) with O(N3/4T 3/4) communication rounds. In the partial

participation setting, E must be O(1) in order to achieve linear speedup of O(1/
√
KT). Our

result again demonstrates the difference in communication complexities between full and

partial participation, and is to our knowledge the first result on linear speedup in the general

federated learning setting with both heterogeneous data and partial participation for convex

objectives.

The valid range of N or K for linear speedup. Given specific values of E, T , and

other constants in the bound, we can solve an optimal N or K, which can serve as a valid

range of the number of devices for linear speedup. For example, with partial participation, the

optimal number of participated devices is Kopt = O
(√

T (γmaxδ
2 +G2)/G2L

)2/3
, neglecting

other constant coefficients. Since increasing the value of N/K larger than Kopt will not bring

any benefit for the convergence, from the perspective of increasing the number of devices to

improve convergence, the valid range of linear speedup is [1, Kopt]. On the other hand, as

long as the number of devices satisfies K = O(T 1/3), the linear speedup is guaranteed.

173

6.4 Linear Speedup Analysis of Nesterov Accelerated Fe-

dAvg

A natural extension of the FedAvg algorithm is to use momentum-based local updates instead

of local SGD updates. To our knowledge, the only convergence analyses of FedAvg with

momentum-based stochastic updates focus on the non-convex smooth case [84, 218, 109]. In

this section, we complete the picture with O(1/NT) and O(1/
√
NT) convergence results for

Nesterov-accelerated FedAvg for convex objectives that match the rates from the previous

section. As we know from stochastic optimization, Nesterov and other momentum updates

may fail to accelerate over SGD [119, 100, 122, 221]. Therefore in Section 6.5 we will specialize

to overparameterized problems where we demonstrate that a particular FedAvg variant with

momentum updates is able to accelerate over the original FedAvg algorithm. Detailed proofs

of convergence results in this section are deferred to Appendix Section B.

6.4.1 Strongly Convex and Smooth Objectives

The Nesterov Accelerated FedAvg algorithm follows the updates:

vkt+1 = wk
t − αtgt,k,

wk
t+1 =


vkt+1 + βt(v

k
t+1 − vkt) if t+ 1 /∈ IE ,∑

k∈St+1

[
vkt+1 + βt(v

k
t+1 − vkt)

]
if t+ 1 ∈ IE ,

where gt,k := ∇Fk(wk
t , ξ

k
t) is the stochastic gradient sampled on the k-th device at time t.

Theorem 9. Let vT =
∑N

k=1 pkv
k
T and set learning rates βt−1 = 3

14(t+γ)(1− 6
t+γ

)max{µ,1} ,

174

αt = 6
µ

1
t+γ . Then under Assumptions 7,8,9,10 with full device participation,

EF (vT)− F ∗ = O
(
κν2

maxσ
2/µ

NT
+
κ2E2G2/µ

T 2

)
,

and with partial device participation with K sampled devices at each communication round,

EF (vT)− F ∗ = O
(
κν2

maxσ
2/µ

NT
+
κE2G2/µ

KT
+
κ2E2G2/µ

T 2

)
.

To our knowledge, this is the first convergence result for Nesterov accelerated FedAvg

in the strongly convex and smooth setting. The same discussion about linear speedup of

FedAvg applies to the Nesterov accelerated variant. In particular, to achieve O(1/NT) linear

speedup, T iterations of the algorithm require only O(
√
NT) communication rounds with

full participation.

6.4.2 Convex Smooth Objectives

We now show that the optimality gap of Nesterov Accelerated FedAvg has O(1/
√
NT) rate.

This result complements the strongly convex case in the previous part, as well as the non-

convex smooth setting in [84, 218, 109], where a similar O(1/
√
NT) rate is given in terms of

averaged gradient norm.

Theorem 10. Set learning rates αt = βt = O(
√

N
T). Then under Assumptions 7,9,10

Nesterov accelerated FedAvg with full device participation has rate

min
t≤T

F (vt)− F ∗ = O
(
ν2

maxσ
2

√
NT

+
NE2LG2

T

)
,

175

and with partial device participation with K sampled devices at each communication round,

min
t≤T

F (vt)− F ∗ = O
(
ν2

maxσ
2

√
KT

+
E2G2
√
KT

+
KE2LG2

T

)
.

It is possible to extend the results in this section to accelerated FedAvg algorithms with

other momentum-based updates. However, in the stochastic optimization setting, none of

these methods can achieve a better rate than the original FedAvg with SGD updates for

general problems [100]. For this reason, we will instead turn to the overparameterized setting

[127, 119, 30] in the next section where we show that FedAvg enjoys geometric convergence

and it is possible to improve its convergence rate with momentum-based updates.

6.5 Geometric Convergence of FedAvg in the Overparam-

eterized Setting

Overparameterization is a prevalent machine learning setting where the statistical model has

much more parameters than the number of training samples and the existence of parameter

choices with zero training loss is ensured [5, 224]. Due to the property of automatic variance

reduction in overparameterization, a line of recent works proved that SGD and accelerated

methods achieve geometric convergence [127, 134, 138, 168, 181]. A natural question is

whether such a result still holds in the federated learning setting. In this section, we provide

the first geometric convergence rate of FedAvg for the overparameterized strongly convex

and smooth problems, and show that it preserves linear speedup at the same time. We then

sharpen this result in the special case of linear regression. Inspired by recent advances in

accelerating SGD [123, 87], we further propose a novel momentum-based FedAvg algorithm,

176

which enjoys an improved convergence rate over FedAvg. Detailed proofs are deferred to

Appendix Section B. In particular, we do not need Assumptions 9 and 10 and use modified

versions of Assumptions 7 and 8 detailed in this section.

6.5.1 Geometric Convergence of FedAvg in the Overparameterized

Setting

Recall the FL problem minw
∑N
k=1 pkFk(w) with Fk(w) = 1

nk

∑nk
j=1 `(w; x

j
k). In this section,

we consider the standard Empirical Risk Minimization (ERM) setting where ` is non-negative,

l-smooth, and convex, and as before, each Fk(w) is L-smooth and µ-strongly convex. Note that

l ≥ L. This setup includes many important problems in practice. In the overparameterized

setting, there exists w∗ ∈ arg minw
∑N
k=1 pkFk(w) such that `(w∗; xjk) = 0 for all x

j
k. We

first show that FedAvg achieves geometric convergence with linear speedup in the number of

workers.

Theorem 11. In the overparameterized setting, FedAvg with communication every E itera-

tions and constant step size α = O(1
E

N
lνmax+L(N−νmin)

) has geometric convergence:

EF (wT) ≤ L

2
(1− α)T ‖w0 −w∗‖2 = O

(
L exp

(
− µ
E

NT

lνmax + L(N − νmin)

)
· ‖w0 −w∗‖2

)
.

Linear speedup and Communication Complexity The linear speedup factor is on

the order of O(N/E) for N ≤ O(lL), i.e. FedAvg with N workers and communication every

E iterations provides a geometric convergence speedup factor of O(N/E), for N ≤ O(lL).

When N is above this threshold, however, the speedup is almost constant in the number of

workers. This matches the findings in [127]. Our result also illustrates that E can be taken

O(Tβ) for any β < 1 to achieve geometric convergence, achieving better communication

177

efficiency than the standard FL setting.

6.5.2 Overparameterized Linear Regression Problems

We now turn to quadratic problems and show that the bound in Theorem 11 can be improved

to O(exp(− N
Eκ1

t)) for a larger range of N . We then propose a variant of FedAvg that has

provable acceleration over FedAvg with SGD updates. The local device objectives are now

given by the sum of squares Fk(w) = 1
2nk

∑nk
j=1(w

Txjk − z
j
k)

2, and there exists w∗ such that

F (w∗) ≡ 0. Two notions of condition number are important in our results: κ1 which is based

on local Hessians, and κ̃, which is termed the statistical condition number [119, 87]. For their

detailed definitions, please refer to Appendix Section B. Here we use the fact κ̃ ≤ κ1. Recall

νmax = maxk pkN and νmin = mink pkN .

Theorem 12. For the overparamterized linear regression problem, FedAvg with communi-

cation every E iterations with constant step size α = O(1
E

N
lνmax+µ(N−νmin)

) has geometric

convergence:

EF (wT) ≤ O
(
L exp(− NT

E(νmaxκ1 + (N − νmin))
)‖w0 −w∗‖2

)
.

When N = O(κ1), the convergence rate is O((1 − N
Eκ1

)T) = O(exp(− NT
Eκ1

)), which

exhibits linear speedup in the number of workers, as well as a 1/κ1 dependence on the

condition number κ1. Inspired by [119], we propose the MaSS accelerated FedAvg

algorithm (FedMaSS):

wk
t+1 =


ukt − ηk1gt,k if t+ 1 /∈ IE ,∑
k∈St+1

[
ukt − ηk1gt,k

]
if t+ 1 ∈ IE ,

178

ukt+1 = wk
t+1 + γk(wk

t+1 −wk
t) + ηk2gt,k.

When ηk2 ≡ 0, this algorithm reduces to the Nesterov accelerated FedAvg algorithm. In the

next theorem, we demonstrate that FedMaSS improves the convergence to O(exp(− NT
E
√
κ1κ̃

)).

To our knowledge, this is the first acceleration result of FedAvg with momentum updates

over SGD updates.

Theorem 13. For the overparamterized linear regression problem, FedMaSS with com-

munication every E iterations and constant step sizes η1 = O(1
E

N
lνmax+µ(N−νmin)

), η2 =

η1(1− 1
κ̃)

1+ 1√
κ1κ̃

, γ =
1− 1√

κ1κ̃

1+ 1√
κ1κ̃

has geometric convergence:

EF (wT) ≤ O
(
L exp(− NT

E(νmax
√
κ1κ̃+ (N − νmin))

)‖w0 −w∗‖2
)
.

Speedup of FedMaSS over FedAvg To better understand the significance of the

above result, we briefly discuss related works on accelerating SGD. Nesterov and Heavy Ball

updates are known to fail to accelerate over SGD in both the overparameterized and convex

settings [119, 100, 122, 221]. Thus in general one cannot hope to obtain acceleration results

for the FedAvg algorithm with Nesterov and Heavy Ball updates. Luckily, recent works

in SGD [87, 119] introduced an additional compensation term to the Nesterov updates to

address the non-acceleration issue. Surprisingly, we show the same approach can effectively

improve the rate of FedAvg. Comparing the convergence rate of FedMass (Theorem 13) and

FedAvg (Theorem 12), when N = O(
√
κ1κ̃), the convergence rate is O((1 − N

E
√
κ1κ̃

)T) =

O(exp(− NT
E
√
κ1κ̃

)) as opposed to O(exp(− NT
Eκ1

)). Since κ1 ≥ κ̃, this implies a speedup factor

of
√

κ1
κ̃ for FedMaSS. On the other hand, the same linear speedup in the number of workers

179

holds for N in a smaller range of values.

6.6 Numerical Experiments

In this section, we empirically examine the linear speedup convergence of FedAvg and Nesterov

accelerated FedAvg in various settings, including strongly convex function, convex smooth

function, and overparameterized objectives, as analyzed in previous sections.

Setup. Following the experimental setting in [178], we conduct experiments on both

synthetic datasets and real-world dataset w8a [155] (d = 300, n = 49749). We consider the

distributed objectives F (w) =
∑N
k=1 pkFk(w), and the objective function on the k-th local

device includes three cases: 1) Strongly convex objective: the regularized binary logistic

regression problem, Fk(w) = 1
Nk

∑Nk
i=1 log(1 + exp(−yki wTxki) + λ

2‖w‖
2. The regularization

parameter is set to λ = 1/n ≈ 2e− 5. 2) Convex smooth objective: the binary logistic

regression problem without regularization. 3) Overparameterized setting: the linear

regression problem without adding noise to the label, Fk(w) = 1
Nk

∑Nk
i=1(wTxki + b− yki)2.

Linear speedup of FedAvg and Nesterov accelerated FedAvg. To verify the linear

speedup convergence as shown in Theorems 7 8 9 10, we evaluate the number of iterations

needed to reach ε-accuracy in three objectives. We initialize all runs with w0 = 0d and

measure the number of iterations to reach the target accuracy ε. For each configuration

(E,K), we extensively search the learning rate from min(η0,
nc

1+t), where η0 ∈ {0.1, 0.12, 1, 32}

according to different problems and c can take the values c = 2i ∀i ∈ Z. As the results shown

in Figure 6.1, the number of iterations decreases as the number of (active) workers increasing,

which is consistent for FedAvg and Nesterov accelerated FedAvg across all scenarios. For

additional experiments on the impact of E, detailed experimental setup, and hyperparameter

180

100 101

Number of workers (N)

103

104

N
um

be
r

of
 it

er
at

io
ns

 (
T)

E=1
E=4
E=16

100 101

Number of workers (N)

103

N
um

be
r

of
 it

er
at

io
ns

 (
T)

E=1
E=4
E=16

100 101

Number of workers

2 × 103

3 × 103

N
um

be
r

of
 it

er
at

io
ns

E=1
E=4
E=16

101

Number of active workers (K)

103

104

N
um

be
r

of
 it

er
at

io
ns

 (
T)

E=1
E=4

101

Number of active workers (K)

103
N

um
be

r
of

 it
er

at
io

ns
 (

T)

E=1
E=4

101

Number of active workers (K)

2 × 103

N
um

be
r

of
 it

er
at

io
ns

 (
T)

E=1
E=4

100 101

Number of workers (N)

103

104

N
um

be
r

of
 it

er
at

io
ns

 (
T)

E=1
E=4
E=16

100 101

Number of workers (N)

103

104

N
um

be
r

of
 it

er
at

io
ns

 (
T)

E=1
E=4
E=16

100 101

Number of workers (N)

2 × 103

3 × 103

N
um

be
r

of
 it

er
at

io
ns

 (
T)

E=1
E=4
E=16

(a) Strongly convex objective (b) Convex smooth objective (c) Linear regression

Figure 6.1: The linear speedup of FedAvg in full participation, partial participation, and the
linear speedup of Nesterov accelerated FedAvg, respectively.

setting, please refer to the Appendix Section B.

181

Chapter 7

Conclusion

In this dissertation, we considered the problem of collaborative learning, aiming to find

effective ways to leverage knowledge from peers for efficient learning and better generalization.

To start, we formally defined the collaborative learning problem and discussed several

challenges we need to resolve under this systematic framework. The first challenge we focus

on is the flexibility and interactive model-driven collaboration. We present algorithms that

capture high-order interactions and interactively incorporate the human expert knowledge

to guide the collaboration. Then to generalize the collaboration to heterogeneous learning

agents and heterogeneous tasks, we propose data-driven collaborative algorithms, where the

learning agents transfer knowledge from a selective and dynamic dataset. In addition to

the various form of collaborations, we also study the scalability of collaboration, where we

propose linear programming based collaborative multi-agent learning algorithm in the context

of a large-scale fleet management application. Last but not least, the empirical success of

collaborative learning motivates us to dig into the reason why collaborative learning can be

beneficial. We provide rigorous theoretical analysis on the convergence improvement with

respect to the increasing number of learning agents.

There are various domains that can benefit from collaborative learning, including but

not limited to multi-task meta-learning, transfer learning, federated learning, multi-agent

reinforcement learning, etc. The research in the community has been devoted to pushing

182

the frontier of each domain in-depth, while seldom study their intrinsic connections, which

can be essential towards building collaborative machine intelligence. There are emerging

researches to reveal the relations across different fields such as the connection between

federated learning and multi-task learning [176], federated learning and meta-learning [57],

etc, which could serve as the initial step towards bridging the gaps across multiple fields. One

central motivation of this dissertation that views those domains as an integrated framework

is that the collaboration should be emphasized as a significant learning objective instead

of an auxiliary product, along with accomplishing other goals. Our vision is that towards

the building the machine intelligence that is comparable to human intelligence, the rigorous

understanding of collaborative learning is inevitable.

More concretely, there many future directions under the grant picture of collaborative

learning. First and foremost, one fundamental question is what type of tasks can be learned

collaboratively, Or when can we expect collaborative learning benefit the performance

comparing to learning individually? This is closely related to the negative transfer [207] and

and task interference [220] in multi-task learning. In Chapter 6, we quantify a simplified

setting in supervised learning where the gradient variance across heterogeneous tasks are

bounded, while this is far from desire. In practice, what is the efficient and testing standard

before considering collaboration? Another perspective of thinking this problem is that is

there always exists a collaboration strategy that works better than individual learning?

Despite the long-term goal of collaborative learning, a promising direction would be

learning to collaborate. The current collaboration strategies are mostly predefined. We

manually set up the rules of the collaboration according to certain domain knowledge.

Can we parameterize the collaboration and learn the intrinsic principle of collaborative

learning that is generalizable? Recently, we notice a trend of meta-learning and AI-generating

183

algorithms [146, 59], while similar efforts haven’t been found in collaborative learning. Human

can easily generalize the structure of organizations, communication protocol, interaction

patterns to solve different tasks. To develop collaborative learning solutions along this

direction would be incredibly valuable for generating human-like intelligence.

184

APPENDICES

185

Appendix A

Ranking Policy Gradient

Discussion of Existing Efforts on Connecting Reinforce-

ment Learning to Supervised Learning.

There are two main distinctions between supervised learning and reinforcement learning. In

supervised learning, the data distribution D is static and training samples are assumed to be

sampled i.i.d. from D. On the contrary, the data distribution is dynamic in reinforcement

learning and the sampling procedure is not independent. First, since the data distribution

in RL is determined by both environment dynamics and the learning policy, and the policy

keeps being updated during the learning process. This updated policy results in dynamic data

distribution in reinforcement learning. Second, policy learning depends on previously collected

samples, which in turn determines the sampling probability of incoming data. Therefore, the

training samples we collected are not independently distributed. These intrinsic difficulties

of reinforcement learning directly cause the sample-inefficient and unstable performance of

current algorithms.

On the other hand, most state-of-the-art reinforcement learning algorithms can be shown

to have a supervised learning equivalent. To see this, recall that most reinforcement learning

algorithms eventually acquire the policy either explicitly or implicitly, which is a mapping

from a state to an action or a probability distribution over the action space. The use of such

186

a mapping implies that ultimately there exists a supervised learning equivalent to the original

reinforcement learning problem, if optimal policies exist. The paradox is that it is almost

impossible to construct this supervised learning equivalent on the fly, without knowing any

optimal policy.

Although the question of how to construct and apply proper supervision is still an open

problem in the community, there are many existing efforts providing insightful approaches to

reduce reinforcement learning into its supervised learning counterpart over the past several

decades. Roughly, we can classify the existing efforts into the following categories:

• Expectation-Maximization (EM): [45, 152, 102, 1], etc.

• Entropy-Regularized RL (ERL): [144, 145, 74], etc.

• Interactive Imitation Learning (IIL): [44, 188, 163, 165, 184], etc.

The early approaches in the EM track applied Jensen’s inequality and approximation

techniques to transform the reinforcement learning objective. Algorithms are then derived

from the transformed objective, which resemble the Expectation-Maximization procedure

and provide policy improvement guarantee [45]. These approaches typically focus on a

simplified RL setting, such as assuming that the reward function is not associated with the

state [45], approximating the goal to maximize the expected immediate reward and the state

distribution is assumed to be fixed [153]. Later on in [102], the authors extended the EM

framework from targeting immediate reward into episodic return. Recently, [1] used the

EM-framework on a relative entropy objective, which adds a parameter prior as regularization.

It has been found that the estimation step using Retrace [135] can be unstable even with a

linear function approximation [197]. In general, the estimation step in EM-based algorithms

involves on-policy evaluation, which is one challenge shared among policy gradient methods.

187

On the other hand, off-policy learning usually leads to a much better sample efficiency, and

is one main motivation that we want to reformulate RL into a supervised learning task.

To achieve off-policy learning, PGQ [144] connected the entropy-regularized policy gradient

with Q-learning under the constraint of small regularization. In the similar framework, Soft

Actor-Critic [74] was proposed to enable sample-efficient and faster convergence under

the framework of entropy-regularized RL. It is able to converge to the optimal policy that

optimizes the long-term reward along with policy entropy. It is an efficient way to model

the suboptimal behavior and empirically it is able to learn a reasonable policy. Although

recently the discrepancy between the entropy-regularized objective and original long-term

reward has been discussed in [143, 56], they focus on learning stochastic policy while the

proposed framework is feasible for both learning deterministic optimal policy (Corollary 1)

and stochastic optimal policy (Corollary 2). In [145], this work shares similarity to our

work in terms of the method we collecting the samples. They collect good samples based

on the past experience and then conduct the imitation learning w.r.t those good samples.

However, we differentiate at how do we look at the problem theoretically. This self-imitation

learning procedure was eventually connected to lower-bound-soft-Q-learning, which belongs

to entropy-regularized reinforcement learning. We comment that there is a trade-off between

sample-efficiency and modeling suboptimal behaviors. The more strict requirement we have

on the samples collected we have less chance to hit the samples while we are more close to

imitating the optimal behavior.

From the track of interactive imitation learning, early efforts such as [163, 165] pointed

out that the main discrepancy between imitation learning and reinforcement learning is the

violation of i.i.d. assumption. SMILe [163] and DAgger [165] are proposed to overcome the

distribution mismatch. Theorem 2.1 in [163] quantified the performance degradation from the

188

Table A.1: A comparison of studies reducing RL to SL. The Objective column denotes whether
the goal is to maximize long-term reward. The Cont. Action column denotes whether the
method is applicable to both continuous and discrete action spaces. The Optimality denotes
whether the algorithms can model the optimal policy. X† denotes the optimality achieved
by ERL is w.r.t. the entropy regularize objective instead of the original objective on return.
The Off-Policy column denotes if the algorithms enable off-policy learning. The No Oracle
column denotes if the algorithms need to access to a certain type of oracle (expert policy or
expert demonstrations).

Methods Objective Cont. Action Optimality Off-Policy No Oracle
EM X X X 7 X
ERL 7 X X† X X
IIL X X X X 7

RPG X 7 X X X

expert considering that the learned policy fails to imitate the expert with a certain probability.

The theorem seems to resemble the long-term performance theorem (Thm. 5) in this chapter.

However, it studied the scenario that the learning policy is trained through a state distribution

induced by the expert, instead of state-action distribution as considered in Theorem 5. As

such, Theorem 2.1 in [163] may be more applicable to the situation where an interactive

procedure is needed, such as querying the expert during the training process. On the contrary,

the proposed work focuses on directly applying supervised learning without having access to

the expert to label the data. The optimal state-action pairs are collected during exploration

and conducting supervised learning on the replay buffer will provide a performance guarantee

in terms of long-term expected reward. Concurrently, a resemble of Theorem 2.1 in [163] is

Theorem 1 in [188], where the authors reduced the apprenticeship learning to classification,

under the assumption that the apprentice policy is deterministic and the misclassification

rate is bounded at all time steps. In this work, we show that it is possible to circumvent

such a strong assumption and reduce RL to its SL. Furthermore, our theoretical framework

also leads to an alternative analysis of sample-complexity. Later on AggreVaTe [164]

was proposed to incorporate the information of action costs to facilitate imitation learning,

189

and its differentiable version AggreVaTeD [184] was developed in succession and achieved

impressive empirical results. Recently, hinge loss was introduced to regular Q-learning as a

pre-training step for learning from demonstration [81], or as a surrogate loss for imitating

optimal trajectories [148]. In this work, we show that hinge loss constructs a new type of

policy gradient method and can be used to learn optimal policy directly.

In conclusion, our method approaches the problem of reducing RL to SL from a unique

perspective that is different from all prior work. With our reformulation from RL to SL, the

samples collected in the replay buffer satisfy the i.i.d. assumption, since the state-action pairs

are now sampled from the data distribution of UNOP. A multi-aspect comparison between

the proposed method and relevant prior studies is summarized in Table A.1.

Ranking Policy Gradient Theorem

The Ranking Policy Gradient Theorem (Theorem 2) formulates the optimization of long-term

reward using a ranking objective. The proof below illustrates the formulation process.

Proof. The following proof is based on direct policy differentiation [153, 212]. For a concise

presentation, the subscript t for action value λi, λj , and pij is omitted.

∇θJ(θ) =∇θ
∑

τ
pθ(τ)r(τ) (A.1)

=
∑

τ
pθ(τ)∇θ log pθ(τ)r(τ)

=
∑

τ
pθ(τ)∇θ log

(
p(s0)ΠTt=1πθ(at|st)p(st+1|st, at)

)
r(τ)

=
∑

τ
pθ(τ)

∑T

t=1
∇θ log πθ(at|st)r(τ)

=Eτ∼πθ

[∑T

t=1
∇θ log πθ(at|st)r(τ)

]

190

=Eτ∼πθ

[∑T

t=1
∇θ log

(∏m

j=1,j 6=i
pij

)
r(τ)

]
=Eτ∼πθ

[∑T

t=1
∇θ
∑m

j=1,j 6=i
log

(
e
λij

1 + e
λij

)
r(τ)

]

=Eτ∼πθ

[∑T

t=1
∇θ
∑m

j=1,j 6=i
log

(
1

1 + e
λji

)
r(τ)

]
(A.2)

≈Eτ∼πθ

[∑T

t=1
∇θ
(∑m

j=1,j 6=i
(λi − λj)/2

)
r(τ)

]
, (A.3)

where the trajectory is a series of state-action pairs from t = 1, ..., T , i.e.τ = s1, a1, s2, a2, ..., sT .

From Eq (A.2) to Eq (A.3), we use the first-order Taylor expansion of log(1 + ex)|x=0 =

log 2 + 1
2x+O(x2) to further simplify the ranking policy gradient.

Probability Distribution in Ranking Policy Gradient

In this section, we discuss the output property of the pairwise ranking policy. We show in

Corollary 6 that the pairwise ranking policy gives a valid probability distribution when the

dimension of the action space m = 2. For cases when m > 2 and the range of Q-value satisfies

Condition 2, we show in Corollary 7 how to construct a valid probability distribution.

Corollary 6. The pairwise ranking policy as shown in Eq (4.5) constructs a probability

distribution over the set of actions when the action space m is equal to 2, given any action

values λi, i = 1, 2. For the cases with m > 2, this conclusion does not hold in general.

It is easy to verify that π(ai|s) > 0,
∑2
i=1 π(ai|s) = 1 holds and the same conclusion

cannot be applied to m > 2 by constructing counterexamples. However, we can introduce

a dummy action a′ to form a probability distribution for RPG. During policy learning, the

algorithm increases the probability of best actions and the probability of dummy action

decreases. Ideally, if RPG converges to an optimal deterministic policy, the probability of

191

taking best action is equal to 1 and π(a′|s) = 0. Similarly, we can introduce a dummy

trajectory τ ′ with the trajectory reward r(τ ′) = 0 and pθ(τ ′) = 1−
∑
τ pθ(τ). The trajectory

probability forms a probability distribution since
∑
τ pθ(τ) + pθ(τ

′) = 1 and pθ(τ) ≥ 0 ∀τ

and pθ(τ ′) ≥ 0. The proof of a valid trajectory probability is similar to the following proof

on π(a|s) to be a valid probability distribution with a dummy action. Its practical influence

is negligible since our goal is to increase the probability of (near)-optimal trajectories. To

present in a clear way, we avoid mentioning dummy trajectory τ ′ in Proof A while it can be

seamlessly included.

Condition 2 (The range of action-value). We restrict the range of action-values in RPG so

that it satisfies λm ≥ ln(m
1

m−1 − 1), where λm = mini,j λji and m is the dimension of the

action space.

This condition can be easily satisfied since in RPG we only focus on the relative relationship

of λ and we can constrain the range of action-values so that λm satisfies the condition 2.

Furthermore, since we can see that m
1

m−1 > 1 is decreasing w.r.t to action dimension m.

The larger the action dimension, the less constraint we have on the action values.

Corollary 7. Given Condition 2, we introduce a dummy action a′ and set π(a = a′|s) =

1−
∑
i π(a = ai|s), which constructs a valid probability distribution (π(a|s)) over the action

space A ∪ a′.

Proof. Since we have π(a = ai|s) > 0 ∀i = 1, . . . ,m and
∑
i π(a = ai|s) + π(a = a′|s) = 1.

To prove that this is a valid probability distribution, we only need to show that π(a = a′|s) ≥

0, ∀m ≥ 2, i.e.
∑
i π(a = ai|s) ≤ 1, ∀m ≥ 2. Let λm = mini,j λji,

∑
i
π(a = ai|s)

192

=
∑

i

∏m

j=1,j 6=i
pij

=
∑

i

∏m

j=1,j 6=i
1

1 + e
λji

≤
∑

i

∏m

j=1,j 6=i
1

1 + eλm

=m

(
1

1 + eλm

)m−1

≤ 1 (Condition 2).

This thus concludes the proof.

Condition of Preserving Optimality

The following condition describes what types of MDPs are directly applicable to the trajectory

reward shaping (TRS, Def 6):

Condition 3 (Initial States). The (near)-optimal trajectories will cover all initial states of

MDP. i.e. {s(τ, 1)| ∀τ ∈ T } = {s(τ, 1)| ∀τ}, where T = {τ |w(τ) = 1} = {τ |r(τ) ≥ c}.

The MDPs satisfying this condition cover a wide range of tasks such as Dialogue Sys-

tem [111], Go [175], video games [18] and all MDPs with only one initial state. If we want to

preserve the optimality by TRS, the optimal trajectories of a MDP need to cover all initial

states or equivalently, all initial states must lead to at least one optimal trajectory. Similarly,

the near-optimality is preserved for all MDPs that its near-optimal trajectories cover all

initial states.

Theoretically, it is possible to transfer more general MDPs to satisfy Condition 3 and

preserve the optimality with potential-based reward shaping [139]. More concretely, consider

the deterministic binary tree MDP (M1) with the set of initial states S1 = {s1, s
′
1} as defined

in Figure A.1. There are eight possible trajectories inM1. Let r(τ1) = 10 = Rmax, r(τ8) =

193

Figure A.1: The binary tree structure MDP with two initial states.

3, r(τi) = 2, ∀i = 2, . . . , 7. Therefore, this MDP does not satisfy Condition 3. We can

compensate the trajectory reward of the best trajectory starting from s′1 to the Rmax by

shaping the reward with the potential-based function φ(s′7) = 7 and φ(s) = 0,∀s 6= s′7. This

reward shaping requires more prior knowledge, which may not be feasible in practice. A more

realistic method is to design a dynamic trajectory reward shaping approach. In the beginning,

we set c(s) = mins∈S1
r(τ |s(τ, 1) = s),∀s ∈ S1. TakeM1 as an example, c(s) = 3, ∀s ∈ S1.

During the exploration stage, we track the current best trajectory of each initial state and

update c(s) with its trajectory reward.

Nevertheless, if the Condition 3 is not satisfied, we need more sophisticated prior knowledge

other than a predefined trajectory reward threshold c to construct the replay buffer (training

dataset of UNOP). The practical implementation of trajectory reward shaping and rigorously

theoretical study for general MDPs are beyond the scope of this work.

194

Proof of Long-term Performance Theorem 5

Lemma 3. Given a specific trajectory τ , the log-likelihood of state-action pairs over horizon

T is equal to the weighted sum over the entire state-action space, i.e.:

1

T

∑T

t=1
log πθ(at|st) =

∑
s,a
p(s, a|τ) log πθ(a|s),

where the sum in the right hand side is the summation over all possible state-action pairs. It

is worth noting that p(s, a|τ) is not related to any policy parameters. It is the probability of a

specific state-action pair (s, a) in a specific trajectory τ .

Proof. Given a trajectory τ = {(s(τ, 1), a(τ, 1)), . . . , (s(τ, T), a(τ, T))} = {(s1, a1), . . . , (sT , aT)},

denote the unique state-action pairs in this trajectory as U(τ) = {(si, ai)}ni=1, where n is

the number of unique state-action pairs in τ and n ≤ T . The number of occurrences of

a state-action pair (si, ai) in the trajectory τ is denoted as |(si, ai)|. Then we have the

following:

1

T

∑T

t=1
log πθ(at|st)

=
∑n

i=1

|(si, ai)|
T

log πθ(ai|si)

=
∑n

i=1
p(si, ai|τ) log πθ(ai|si)

=
∑

(s,a)∈U(τ)
p(s, a|τ) log πθ(a|s) (A.4)

=
∑

(s,a)∈U(τ)
p(s, a|τ) log πθ(a|s) +

∑
(s,a)/∈U(τ)

p(s, a|τ) log πθ(a|s) (A.5)

=
∑

(s,a)
p(s, a|τ) log πθ(a|s)

195

From Eq (A.4) to Eq (A.5) we used the fact:

∑
(s,a)∈U(τ)

p(s, a|τ) =
∑n

i=1
p(si, ai|τ) =

∑n

i=1

|(si, ai)|
T

= 1,

and therefore we have p(s, a|τ) = 0, ∀(s, a) /∈ U(τ). This thus completes the proof.

Now we are ready to prove the Theorem 5:

Proof. The following proof holds for an arbitrary subset of trajectories T determined by the

threshold c in Def 8. The π∗ is associated with c and this subset of trajectories. We present

the following lower bound of the expected long-term performance:

arg max
θ

∑
τ
pθ(τ)w(τ)

∵ w(τ) = 0, if τ /∈ T

= arg max
θ

1

|T |
∑

τ∈T
pθ(τ)w(τ)

use Lemma 5 ∵ pθ(τ) > 0 and w(τ) > 0,∴
∑

τ∈T
pθ(τ)w(τ) > 0

= arg max
θ

log

(
1

|T |
∑

τ∈T
pθ(τ)w(τ)

)
∵ log

(∑n

i=1
xi/n

)
≥
∑n

i=1
log(xi)/n,∀i, xi > 0,we have:

log

(
1

|T |
∑

τ∈T
pθ(τ)w(τ)

)
≥
∑

τ∈T
1

|T |
log pθ(τ)w(τ),

where the lower bound holds when pθ(τ)w(τ) = 1
|T | ,∀τ ∈ T . To this end, we maximize the

lower bound of the expected long-term performance:

arg max
θ

∑
τ∈T

1

|T |
log pθ(τ)w(τ)

196

= arg max
θ

∑
τ∈T

log(p(s1)
∏T

t=1
(πθ(at|st)p(st+1|st, at))w(τ))

= arg max
θ

∑
τ∈T

log

(
p(s1)

∏T

t=1
πθ(at|st)

∏T

t=1
p(st+1|st, at)w(τ)

)
= arg max

θ

∑
τ∈T

(
log p(s1) +

∑T

t=1
log p(st+1|st, at) +

∑T

t=1
log πθ(at|st) + logw(τ)

)
(A.6)

The above shows that w(τ) can be set as an arbitrary positive constant

= arg max
θ

1

|T |
∑

τ∈T

∑T

t=1
log
∏

θ
(at|st)

= arg max
θ

1

|T |T
∑

τ∈T

∑T

t=1
log
∏

θ
(at|st) (A.7)

= arg max
θ

1

|T |
∑

τ∈T
1

T

∑T

t=1
log πθ(at|st) (the existence of UNOP in Assumption 5)

= arg max
θ

∑
τ∈T

pπ∗(τ)
1

T

(∑T

t=1
log πθ(at|st)

)
where π∗ is a UNOP (Def 8)⇒ pπ∗(τ) = 0 ∀τ /∈ T (A.8)

Eq (A.8) can be established based on
∑

τ∈T
pπ∗(τ) =

∑
τ∈T

1/|T | = 1

= arg max
θ

∑
τ
pπ∗(τ)

1

T

(∑T

t=1
log πθ(at|st)

)
(Lemma 3)

= arg max
θ

∑
τ
pπ∗(τ)

∑
s,a
p(s, a|τ) log πθ(a|s)

The 2nd sum is over all possible state-action pairs. (A.9)

(s, a) represents a specific state-action pair.

= arg max
θ

∑
τ

∑
s,a
pπ∗(τ)p(s, a|τ) log πθ(a|s)

= arg max
θ

∑
s,a

∑
τ
pπ∗(τ)p(s, a|τ) log πθ(a|s)

= arg max
θ

∑
s,a
pπ∗(s, a) log πθ(a|s). (A.10)

In this proof we use st = s(τ, t) and at = a(τ, t) as abbreviations, which denote the t-th state

197

and action in the trajectory τ , respectively. |T | denotes the number of trajectories in T . We

also use the definition of w(τ) to only focus on near-optimal trajectories. We set w(τ) = 1

for simplicity but it will not affect the conclusion if set to other constants.

Optimality: Furthermore, the optimal solution for the objective function Eq (A.10) is a

uniformly (near)-optimal policy π∗.

arg max
θ

∑
s,a
pπ∗(s, a) log πθ(a|s)

= arg max
θ

∑
s
pπ∗(s)

∑
a
π∗(a|s) log πθ(a|s)

= arg max
θ

∑
s
pπ∗(s)

∑
a
π∗(a|s) log πθ(a|s)−

∑
s
pπ∗(s)

∑
a

log π∗(a|s)

= arg max
θ

∑
s
pπ∗(s)

∑
a
π∗(a|s) log

πθ(a|s)
π∗(a|s)

= arg max
θ

∑
s
pπ∗(s)

∑
a
−KL(π∗(a|s)||πθ(a|s)) = π∗

Therefore, the optimal solution of Eq (A.10) is also the (near)-optimal solution for the

original RL problem since
∑
τ pπ∗(τ)r(τ) =

∑
τ∈T

1
|T |r(τ) ≥ c = Rmax − ε. The optimal

solution is obtained when we set c = Rmax.

Lemma 4. Given any optimal policy π of MDP satisfying Condition 3, ∀τ /∈ T , we have

pπ(τ) = 0 , where T denotes the set of all possible optimal trajectories in this lemma. If

∃τ /∈ T , such that pπ(τ) > 0, then π is not an optimal policy.

Proof. We prove this by contradiction. We assume π is an optimal policy. If ∃τ ′ /∈ T , such

that 1) pπ(τ ′) 6= 0, or equivalently: pπ(τ ′) > 0 since pπ(τ ′) ∈ [1, 0]. and 2) τ ′ /∈ T . We can

find a better policy π′ by satisfying the following three conditions:

pπ′(τ
′) = 0 and

198

pπ′(τ1) = pπ(τ1) + pπ(τ ′), τ1 ∈ T and

pπ′(τ) = pπ(τ), ∀τ /∈ {τ ′, τ1}

Since pπ′(τ) ≥ 0,∀τ and
∑
τ pπ′(τ) = 1, therefore pπ′ constructs a valid probability distribu-

tion. Then the expected long-term performance of π′ is greater than that of π:

∑
τ
pπ′(τ)w(τ)−

∑
τ
pπ(τ)w(τ)

=
∑

τ /∈{τ ′,τ1}
pπ′(τ)w(τ) + pπ′(τ1)w(τ1) + pπ′(τ

′)w(τ ′)

−
(∑

τ /∈{τ ′,τ1}
pπ(τ)w(τ) + pπ(τ1)w(τ1) + pπ(τ ′)w(τ ′)

)
=pπ′(τ1)w(τ1) + pπ′(τ

′)w(τ ′)− (pπ(τ1)w(τ1) + pπ(τ ′)w(τ ′))

∵ τ ′ /∈ T ,∴ w(τ ′) = 0 and τ1 ∈ T ,∴ w(τ) = 1

=pπ′(τ1)− pπ(τ1)

=pπ(τ1) + pπ(τ ′)− pπ(τ1) = pπ(τ ′) > 0.

Essentially, we can find a policy π′ that has higher probability on the optimal trajectory τ1

and zero probability on τ ′. This indicates that it is a better policy than π. Therefore, π is

not an optimal policy and it contradicts our assumption, which proves that such τ ′ does not

exist. Therefore, ∀τ /∈ T , we have pπ(τ) = 0.

Lemma 5 (Policy Performance). If the policy takes the form as in Eq (4.7) or Eq (4.5), then

we have ∀τ , pθ(τ) > 0. This means for all possible trajectories allowed by the environment,

the policy takes the form of either ranking policy or softmax will generate this trajectory with

probability pθ(τ) > 0. Note that because of this property, πθ is not an optimal policy according

to Lemma 4, though it can be arbitrarily close to an optimal policy.

199

Proof.

The trajectory probability is defined as: p(τ) = p(s1)ΠTt=1(πθ(at|st)p(st+1|st, at))

Then we have:

The policy takes the form as in Eq (4.7) or Eq (4.5) ⇒ πθ(at|st) > 0.

p(s1) > 0, p(st+1|st, at) > 0.⇒ pθ(τ) = 0.

p(st+1|st, at) = 0 or p(s1) = 0,⇒ pθ(τ) = 0, which means τ is not a possible trajectory.

In summary, for all possible trajectories, pθ(τ) > 0.

This thus completes the proof.

Proof of Corollary 1

Corollary 8 (Ranking performance policy gradient). The lower bound of expected long-term

performance by ranking policy can be approximately optimized by the following loss:

min
θ

∑
s,ai

pπ∗(s, ai)L(si, ai) (A.11)

where the pair-wise loss L(si, ai) is defined as:

L(s, ai) =
∑|A|

j=1,j 6=i
max(0, 1 + λ(s, aj)− λ(s, ai))

Proof. In RPG, the policy πθ(a|s) is defined as in Eq (4.5). We then replace the action

200

probability distribution in Eq (4.13) with the RPG policy.

∵ π(a = ai|s) = Πmj=1,j 6=ipij (A.12)

Because RPG is fitting a deterministic optimal policy,

we denote the optimal action given sate s as ai, then we have

max
θ

∑
s,ai

pπ∗(s, ai) log π(ai|s) (A.13)

= max
θ

∑
s,ai

pπ∗(s, ai) log(Πmj 6=i,j=1pij) (A.14)

= max
θ

∑
s,ai

pπ∗(s, ai) log Πmj 6=i,j=1
1

1 + e
λji

(A.15)

= min
θ

∑
s,ai

pπ∗(s, ai)
m∑

j 6=i,j=1

log(1 + e
λji) first order Taylor expansion (A.16)

≈min
θ

∑
s,ai

pπ∗(s, ai)
m∑

j 6=i,j=1

λji s.t. |λij | = c < 1,∀i, j, s (A.17)

= min
θ

∑
s,ai

pπ∗(s, ai)
m∑

j 6=i,j=1

(λj − λi) s.t. |λi − λj | = c < 1,∀i, j, s (A.18)

⇒min
θ

∑
s,ai

pπ∗(s, ai)L(si, ai) (A.19)

where the pairwise loss L(s, ai) is defined as:

L(s, ai) =

|A|∑
j=1,j 6=i

max(0,margin + λ(s, aj)− λ(s, ai)), (A.20)

where the margin in Eq (A.19) is a small positive constant. (A.21)

From Eq (A.18) to Eq (A.19), we consider learning a deterministic optimal policy ai = π∗(s),

where we use index i to denote the optimal action at each state. The optimal λ-values

minimizing Eq (A.18) (denoted by λ1) need to satisfy λ1
i = λ1

j + c,∀j 6= i, s. The optiaml λ-

201

values minimizing Eq (A.19) (denoted by λ2) need to satisfy λ2
i = maxj 6=i λ

2
j + margin,∀j 6=

i, s. In both cases, the optimal policies from solving Eq (A.18) and Eq (A.18) are the

same: π(s) = arg maxk λ
1
k = arg maxk λ

2
k = ai. Therefore, we use Eq (A.19) as a surrogate

optimization problem of Eq (A.18).

Policy gradient variance reduction

Corollary 9 (Variance reduction). Given a stationary policy, the upper bound of the variance

of each dimension of policy gradient is O(T 2C2R2
max). The upper bound of gradient variance

of maximizing the lower bound of long-term performance Eq (4.13) is O(C2), where C is the

maximum norm of log gradient based on Assumption 6. The supervised learning has reduced

the upper bound of gradient variance by an order of O(T 2R2
max) as compared to the regular

policy gradient, considering Rmax ≥ 1, T ≥ 1, which is a very common situation in practice.

Proof. The regular policy gradient of policy πθ is given as [212]:

∑
τ
pθ(τ)[

T∑
t=1

∇θ log(πθ(a(τ, t)|s(τ, t)))r(τ)]

The regular policy gradient variance of the i-th dimension is denoted as follows:

V ar

 T∑
t=1

∇θ log(πθ(a(τ, t)|s(τ, t))i)r(τ)



We denote xi(τ) =
∑T
t=1∇θ log(πθ(a(τ, t)|s(τ, t))i)r(τ) for convenience. Therefore, xi is a

202

random variable. Then apply var(x) = Epθ(τ)[x
2]− Epθ(τ)[x]2, we have:

V ar

(∑T

t=1
∇θ log(πθ(a(τ, t)|s(τ, t))i)r(τ)

)
=V ar (xi(τ))

=
∑

τ
pθ(τ)xi(τ)2 − [

∑
τ
pθ(τ)xi(τ)]2

≤
∑

τ
pθ(τ)xi(τ)2

=
∑

τ
pθ(τ)[

∑T

t=1
∇θ log(πθ(a(τ, t)|s(τ, t))i)r(τ)]2

≤
∑

τ
pθ(τ)[

∑T

t=1
∇θ log(πθ(a(τ, t)|s(τ, t))i)]2R2

max

=R2
max

∑
τ
pθ(τ)[

∑T

t=1

∑T

k=1
∇θ log(πθ(a(τ, t)|s(τ, t))i)∇θ log(πθ(a(τ, k)|s(τ, k)i)]

(Assumption 6)

≤R2
max

∑
τ
pθ(τ)[

T∑
t=1

T∑
k=1

C2]

=R2
max

∑
τ
pθ(τ)T 2C2

=T 2C2R2
max

The policy gradient of long-term performance (Def 7):
∑
s,a pπ∗(s, a)∇θ log πθ(a|s). The

policy gradient variance of the i-th dimension is denoted as: var(∇θ log πθ(a|s)i). Then the

upper bound is given by

var(∇θ log πθ(a|s)i)

=
∑

s,a
pπ∗(s, a)[∇θ log πθ(a|s)i]2 − [

∑
s,a
pπ∗(s, a)∇θ log πθ(a|s)i]2

≤
∑

s,a
pπ∗(s, a)[∇θ log πθ(a|s)i]2 (Assumption 6)

≤
∑

s,a
pπ∗(s, a)C2

203

= C2

This thus completes the proof.

Discussions of Assumption 5

In this section, we show that UNOP exists in a range of MDPs. Notice that the lemma 6

shows the sufficient conditions of satisfying Asumption 5 rather than necessary conditions.

Lemma 6. For MDPs defined in Section 4.2.3 satisfying the following conditions:

• Each initial state leads to one optimal trajectory. This also indicates |S1| = |T |, where

T denotes the set of optimal trajectories in this lemma, S1 denotes the set of initial

states.

• Deterministic transitions, i.e., p(s′|s, a) ∈ {0, 1}.

• Uniform initial state distribution, i.e., p(s1) = 1
|T | ,∀s1 ∈ S1.

Then we have: ∃π∗, where s.t. pπ∗(τ) = 1
|T | , ∀τ ∈ T . It means that a deterministic uniformly

optimal policy always exists for this MDP.

Proof. We can prove this by construction. The following analysis applies for any τ ∈ T .

pπ∗(τ) =
1

|T |

⇐⇒ log pπ∗(τ) = − log |T |

⇐⇒ log p(s1) +
∑T

t=1
log p(st+1|st, at) +

∑T

t=1
log π∗(at|st) = − log |T |

⇐⇒
∑T

t=1
log π∗(at|st) = − log p(s1)−

∑T

t=1
log p(st+1|st, at)− log |T |

204

where we use at, st as abbreviations of a(τ, t), s(τ, t).

We denote D(τ) = − log p(s1)−
∑T

t=1
log p(st+1|st, at) > 0

⇐⇒
∑T

t=1
log π∗(at|st) = D(τ)− log |T |

∴ we can obtain a uniformly optimal policy by solving the nonlinear programming:∑T

t=1
log π∗(a(τ, t)|s(τ, t)) = D(τ)− log |T | ∀τ ∈ T (A.22)

log π∗(a(τ, t)|s(τ, t)) = 0, ∀τ ∈ T , t = 1, ..., T (A.23)∑m

i=1
π∗(ai|s(τ, t)) = 1, ∀τ ∈ T , t = 1, ..., T (A.24)

Use the condition p(s1) = 1
|T | , then we have:

∵
∑T

t=1
log π∗(a(τ, t)|s(τ, t)) (A.25)

=
∑T

t=1
log 1 = 0 (LHS of Eq (A.22))

(A.26)

∵ − log p(s1)−
∑T

t=1
log p(st+1|st, at)− log |T | = log |T | − 0− log |T | = 0 (A.27)

(RHS of Eq (A.22))

(A.28)

∴ D(τ)− log |T | =
∑T

t=1
log π∗(a(τ, t)|s(τ, t)), ∀τ ∈ T .

Also the deterministic optimal policy satisfies the conditions in Eq (A.23 A.24). Therefore,

205

(a) (b)

Figure A.2: The directed graph that describes the conditional independence of pairwise
relationship of actions, where Q1 denotes the return of taking action a1 at state s, following
policy π inM, i.e., QπM(s, a1). I1,2 is a random variable that denotes the pairwise relationship
of Q1 and Q2, i.e., I1,2 = 1, i.i.f. Q1 ≥ Q2, o.w. I1,2 = 0.

the deterministic optimal policy is a uniformly optimal policy. This lemma describes one

type of MDP in which UOP exists. From the above reasoning, we can see that as long

as the system of non-linear equations Eq (A.22 A.23 A.24) has a solution, the uniformly

(near)-optimal policy exists.

Lemma 7 (Hit optimal trajectory). The probability that a specific optimal trajectory was not

encountered given an arbitrary softmax policy πθ is exponentially decreasing with respect to the

number of training episodes. No matter a MDP has deterministic or probabilistic dynamics.

Proof. Given a specific optimal trajectory τ = {s(τ, t), a(τ, t)}Tt=1, and an arbitrary stationary

policy πθ, the probability that has never encountered at the n-th episode is [1− pθ(τ)]n = ξn,

based on lemma 5, we have pθ(τ) > 0, therefore we have ξ ∈ [0, 1).

Discussions of Assumption 4

Intuitively, given a state and a stationary policy π, the relative relationships among actions

can be independent, considering a fixed MDPM. The relative relationship among actions

is the relative relationship of actions’ return. Starting from the same state, following a

206

stationary policy, the actions’ return is determined by MDP properties such as environment

dynamics, reward function, etc.

More concretely, we consider a MDP with three actions (a1, a2, a3) for each state. The

action value QπM satisfies the Bellman equation in Eq (A.29). Notice that in this subsection,

we use QπM to denote the action value that estimates the absolute value of return inM.

QπM(s, ai) = r(s, ai) + max
a

Es′∼p(∗|s,a)Q
π
M(s′, a),∀i = 1, 2, 3. (A.29)

As we can see from Eq (A.29), QπM(s, ai), i = 1, 2, 3 is only related to s, π, and environment

dynamics P. It means if π, M and s are given, the action values of three actions are

determined. Therefore, we can use a directed graph [21] to model the relationship of action

values, as shown in Figure A.2 (a). Similarly, if we only consider the ranking of actions, this

ranking is consistent with the relationship of actions’ return, which is also determined by s, π,

and P. Therefore, the pairwise relationship among actions can be described as the directed

graph in Figure A.2 (b), which establishes the conditional independence of actions’ pairwise

relationship. Based on the above reasoning, we conclude that Assumption 4 is realistic.

The proof of Theorem 6

Proof. The proof mainly establishes on the proof for long term performance Theorem 5 and

connects the generalization bound in PAC framework to the lower bound of return. We

construct a hybrid policy based on pairwise ranking policy Eq (4.5) as follows:

207

If π∗(s) = arg maxa λθ(s, a),

ph(a|s) =


1, π∗(s) = arg maxa λθ(s, a)

0, o.w.

(A.30)

If π∗(s) 6= arg maxa λθ(s, a),

ph(a|s) = πθ(a|s) = Πmj 6=i,j=1pij (A.31)

In plain English, the hybrid policy can be described as follows: for a state s and the

policy parameter θ, if the action chosen by UOP has the highest relative action value (i.e.,

π∗(s) = arg maxa λθ(s, a)), we use the deterministic policy as defined in Eq (A.30) for this

state. Otherwise, we use the stochastic policy as defined in Eq (A.31). Note that the

construction of this policy assume we have access to the UOP π∗, which is feasible in our

setting. With TRS 6, we can filter all unique optimal trajectories following UOP. Therefore,

when UOP is deterministic, for each state, we have the action that is chosen by the UOP.

We study the generalization performance and sample complexity of the pairwise ranking

policy as follows:

log(
1

|T |
∑

τ∈T
pθ(τ)w(τ)) ≥ 1

|T |
∑
τ∈T

log pθ(τ)w(τ)

⇔
∑

τ∈T
pθ(τ)w(τ) ≥ |T | exp(

1

|T |
∑
τ∈T

log pθ(τ)w(τ))

denote F =
∑

τ
pθ(τ)w(τ) =

∑
τ∈T

pθ(τ)w(τ)

(A.32)

208

⇔ F ≥ |T | exp(
1

|T |
∑

τ∈T
log pθ(τ)w(τ))

= |T | exp

(
1

|T |
∑

τ∈T

(
log p(s1) +

∑T

t=1
log p(st+1|st, at) +

∑T

t=1
log ph(at|st) + logw(τ)

))
(A.33)

∵ w(τ) = 1, ∀τ ∈ T , st = s(τ, t), at = a(τ, t), t = 1, . . . , T

= |T | exp

(
1

|T |
∑

τ∈T

(
log p(s1) +

∑T

t=1
log p(st+1|st, at) +

T∑
t=1

log ph(at|st)

))

= |T | exp

(
1

|T |
∑
τ∈T

(log p(s1) +
∑T

t=1
log p(st+1|st, at))

)
exp

(
1

|T |
∑

τ∈T
(
∑T

t=1
log ph(at|st))

)

(A.34)

Denote the dynamics of a trajectory as pd(τ) = p(s1)ΠTt=1p(st+1|st, at)

Notice that pd(τ) is environment dynamics, which is fixed given a specific MDP.

⇔ F ≥ |T | exp

(
1

|T |
∑

τ∈T
log pd(τ)

)
exp

(
1

|T |
∑

τ∈T
(
∑T

t=1
log ph(at|st))

)
= |T | (Πτ∈T pd(τ))

1
|T | exp

(
1

|T |T
∑

τ∈T
(
∑T

t=1
log ph(at|st))T

)
Use the same reasoning from Eq (A.7) to Eq (A.10).

= |T | (Πτ∈T pd(τ))
1
|T | exp

(
T
∑

s,a
pπ∗(s, a) log ph(a|s)

)
= |T | (Πτ∈T pd(τ))

1
|T | exp(TL)

We denote L =
∑
s,a

pπ∗(s, a) log ph(a|s).

L is the only term that is related to the policy parameter θ

209

Given h = πθ,misclassified state action pairs set Uw = {s, a|h(s) 6= a, (s, a) ∼ p∗(s, a)}

L =
∑

s,a∈Uw
pπ∗(s, a) log ph(a|s) +

∑
s,a/∈Uw

pπ∗(s, a) log ph(a|s)

By definition of Uw,∀s, a /∈ Uw, h(s) = a,∴ ph(a|s) = 1. (A.35)

=
∑

s,a∈Uw
pπ∗(s, a) log πθ(a|s)

Since we use RPG as our policy parameterization, then with Eq (4.5)

=
∑

s,a∈Uw
pπ∗(s, a) log(Πmj 6=i,j=1pij)

=
∑

s,ai∈Uw
pπ∗(s, ai)

∑m

j 6=i,j=1
log

1

1 + e
Qji

By Condition 1, which can be easily satisfied in practice. Then we have: Qij < 2cq ≤ 1

Apply Lemma 1, the misclassified rate is at most η.

≥
∑

s,ai∈Uw
pπ∗(s, ai)(m− 1) log(

1

1 + e
)

≥ −
∑

s,ai∈Uw
pπ∗(s, ai)(m− 1) log(1 + e)

≥ −η(m− 1) log(1 + e)

= η(1−m) log(1 + e)

F ≥ |T | (Πτ∈T pd(τ))
1
|T | exp(TL)

≥ |T | (Πτ∈T pd(τ))
1
|T | exp(η(1−m)T log(1 + e))

≥ |T | (Πτ∈T pd(τ))
1
|T | (1 + e)η(1−m)T

= D(1 + e)η(1−m)T

210

From generalization performance to sample complexity:

Set 1− ε = D(1 + e)η(1−m)T ,where D = |T | (Πτ∈T pd(τ))
1
|T |

η =
log1+e

D
1−ε

(m− 1)T

With realizable assumption 11, εmin = 0

γ =
η − εmin

2
=
η

2

n ≥ 1

2γ2
log

2|H|
δ

=
2(m− 1)2T 2(
log1+e

D
1−ε

)2
log

2|H|
δ

Bridge the long-term reward and long-term performance:

∑
τ
pθ(τ)r(τ) In Section 4.2.7, r(τ) ∈ [0, 1],∀τ.

≥
∑

τ
pθ(τ)w(τ) Since we focus on UOP Def 8, c = 1 in TSR Def 6

=
∑

τ∈T
pθ(τ)w(τ)

≥1− ε

This thus concludes the proof.

Assumption 11 (Realizable). We assume there exists a hypothesis h∗ ∈ H that obtains zero

expected risk, i.e. ∃h∗ ∈ H ⇒
∑
s,a pπ∗(s, a)1{h∗(s) 6= a} = 0.

The Assumption 11 is not necessary for the proof of Theorem 6. For the proof of

Corollary 4, we introduce this assumption to achieve more concise conclusion. In finite

211

MDP, the realizable assumption can be satisfied if the policy is parameterized by multi-layer

neural network, due to its perfect finite sample expressivity [224]. It is also advocated in our

empirical studies since the neural network achieved optimal performance in Pong.

The proof of Lemma 2

Proof. Let e=i denotes the event n = i|k, i.e. the number of different optimal trajectories in

first k episodes is equal to i. Similarly, e≥i denotes the event n ≥ i|k. Since the events e=i

and e=j are mutually exclusive when i 6= j. Therefore, p(e≥i) = p(e=i, e=i+1, ..., e=|T |) =∑|T |
j=i p(e=j). Further more, we know that

∑T
i=0 p(e=i) = 1 since {e=i, i = 0, ..., |T |}

constructs an universal set. For example, p(e≥1) = pπr,M(n ≥ 1|k) = 1− pπr,M(n = 0|k) =

1− (
N−|T |
N)k.

pπr,M(n ≥ i|k) = 1−
∑i−1

i′=0
pπ,M(n = i′|k)

= 1−
∑i−1

i′=0
Ci
′
|T |

∑i′
j=0(−1)jC

j
i′(N − |T |+ i′ − j)k

Nk
(A.36)

In Eq (A.36), we use the inclusion-exclusion principle [93] to have the following equality.

pπr,M(n = i′|k) = Ci
′
|T |p(eτ1,τ2,...,τi′)

= Ci
′
|T |

∑i′
j=0(−1)jC

j
i′(N − |T |+ i′ − j)k

Nk

eτ1,τ2,...,τi′ denotes the event: in first k episodes, a certain set of i′ optimal trajectories

τ1, τ2, ..., τi′ , i
′ ≤ |T | is sampled.

212

Table A.2: Hyperparameters of RPG network

Hyperparameters Value
Architecture Conv(32-8×8-4)

-Conv(64-4×4-2)
-Conv(64-3×3-2)
-FC(512)

Learning rate 0.0000625
Batch size 32
Replay buffer size 1000000
Update period 4
Margin in Eq (4.14) 1

The proof of Corollary 5

Proof. The Corollary 5 is a direct application of Lemma 2 and Theorem 6. First, we reformat

Theorem 6 as follows:

p(A|B) ≥ 1− δ

where event A denotes
∑
τ pθ(τ)r(τ) ≥ D(1 + e)η(1−m)T , event B denotes the number of

state-action pairs n′ from UOP (Def 8) satisfying n′ ≥ n, given fixed δ. With Lemma 2, we

have p(B) ≥ pπr,M(n′ ≥ n|k). Then, P (A) = P (A|B)P (B) ≥ (1− δ)pπr,M(n′ ≥ n|k).

Set (1− δ)pπr,M(n′ ≥ n|k) = 1− δ′

we have P (A) ≥ 1− δ′

δ = 1− 1− δ′

pπr,M(n′ ≥ n|k)

η = 2

√
1

2n
log

2|H|
δ

= 2

√
1

2n
log

2|H|pπr,M(n′ ≥ n|k)

pπr,M(n′ ≥ n|k)− 1 + δ′

213

Hyperparameters

We present the training details of ranking policy gradient in Table A.2. The network

architecture is the same as the convolution neural network used in DQN [132]. We update

the RPG network every four timesteps with a minibatch of size 32. The replay ratio is equal

to eight for all baselines and RPG (except for ACER we use the default setting in openai

baselines [48] for better performance).

214

Appendix B

Federated Learning

Additional Notations

In this section, we introduce additional notations that are used throughout the proof. Following

common practice [178, 110], we define two virtual sequences vt and wt. For full device

participation and t /∈ IE , vt = wt =
∑N
k=1 pkv

k
t . For partial participation, t ∈ IE , wt 6= vt

since vt =
∑N
k=1 pkv

k
t while wt =

∑
k∈St wk

t . However, we can set unbiased sampling

strategy such that EStwt = vt. vt+1 is one-step SGD from wt.

vt+1 = wt − ηtgt, (B.1)

where gt =
∑N
k=1 pkgt,k is one-step stochastic gradient, averaged over all devices.

gt,k = ∇Fk
(
wk
t , ξ

k
t

)
,

Similarly, we denote the expected one-step gradient gt = Eξt [gt] =
∑N
k=1 pkEξkt

gt,k, where

E
ξkt

gt,k = ∇Fk
(
wk
t

)
, (B.2)

215

and ξt = {ξkt }Nk=1 denotes random samples at all devices at time step t. Since in this work,

we also consider the case of partial participation. The sampling strategy to approximate

the system heterogeneity can also affect the convergence. Here we follow the prior arts [75]

considering two types of sampling schemes. The sampling scheme I establishes St+1 by i.i.d.

sampling the devices with replacement, in this case the upper bound of expected square norm

of wt+1 − vt+1 is given by [110, Lemma 5]:

ESt+1
‖wt+1 − vt+1‖2 ≤

4

K
η2
tE

2G2. (B.3)

The sampling scheme II establishes St+1 by uniformly sampling all devices without replace-

ment, in which we have the

ESt+1
‖wt+1 − vt+1‖2 ≤

4(N −K)

K(N − 1)
η2
tE

2G2. (B.4)

We denote this upper bound as follows for concise presentation.

ESt+1
‖wt+1 − vt+1‖2 ≤ η2

tC. (B.5)

Comparison of Convergence Rates with Related Works

In this section, we compare our convergence rate with the best-known results in the literature

(see Table B.1). In [75], the authors provide O(1/NT) convergence rate of non-convex

problems under Polyak-Łojasiewicz (PL) condition, which means their results can directly

apply to the strongly convex problems. However, their assumption is based on bounded

216

gradient diversity, defined as follows:

Λ(w) =

∑
k pk‖∇Fk(w)‖22

‖
∑
k pk∇Fk(w)‖22

≤ B

This is a more restrictive assumption comparing to assuming bounded gradient under the

case of target accuracy ε→ 0 and PL condition. To see this, consider the gradient diversity

at the global optimal w∗, i.e., Λ(w∗) =

∑
k pk‖∇Fk(w)‖22

‖
∑
k pk∇Fk(w)‖22

. For Λ(w∗) to be bounded, it

requires ‖∇Fk(w∗)‖22 = 0, ∀ k. This indicates w∗ is also the minimizer of each local objective,

which contradicts to the practical setting of heterogeneous data. Therefore, their bound

is not effective for arbitrary small ε-accuracy under general heterogeneous data while our

convergence results still hold in this case.

Table B.1: A high-level summary of the convergence results in this paper compared to prior
state-of-the-art FL algorithms. This table only highlights the dependence on T (number of
iterations), E (the maximal number of local steps), N (the total number of devices), and
K ≤ N the number of participated devices. κ is the condition number of the system and
β ∈ (0, 1). We denote Nesterov accelerated FedAvg as N-FedAvg in this table.

Reference Convergence rate E NonIID Participation Extra Assumptions Setting

FedAvg[110] O(E
2

T) O(1) 3 Partial Bounded gradient Strongly convex
FedAvg[75] O(1

KT) O(K−1/3T 2/3)† 3‡‡ Partial Bounded gradient diversity Strongly convex§

FedAvg[104] O(1
NT) O(N−1/2T 1/2) 3 Full Bounded gradient Strongly convex

FedAvg/N-FedAvg O(1
KT) O(N−1/2T 1/2)‡ 3 Partial Bounded gradient Strongly convex

FedAvg[98] O(1√
NT

) O(N−3/2T 1/2) 3 Full Bounded gradient Convex

FedAvg[104] O(1√
NT

) O(N−3/4T 1/4) 3 Full Bounded gradient Convex

FedAvg/N-FedAvg O
(

1√
KT

)
O(N−3/4T 1/4)‡ 3 Partial Bounded gradient Convex

FedAvg O
(

exp(− NT
Eκ1

)
)

O(Tβ) 3 Partial Bounded gradient Overparameterized LR

FedMass O
(

exp(− NT
E
√
κ1κ̃

)

)
O(Tβ) 3 Partial Bounded gradient Overparameterized LR

† This E is obtained under i.i.d. setting.
‡ This E is obtained under full participation setting.
§ In [75], the convergence rate is for non-convex smooth problems with PL condition, which
also applies to strongly convex problems. Therefore, we compare it with our strongly convex
results here.
‡‡ The bounded gradient diversity assumption is not applicable for general heterogeneous
data when converging to arbitrarily small ε-accuracy (see discussions in Sec B).

217

Proof of Convergence Results for FedAvg

Strongly Convex Smooth Objectives

To facilitate reading, theorems from the main paper are restated and numbered identically.

We first summarize some properties of L-smooth and µ-strongly convex functions [161].

Lemma 8. Let F be a convex L-smooth function. Then we have the following inequalities:

1. Quadratic upper bound: 0 ≤ F (w)− F (w′)− 〈∇F (w′),w −w′〉 ≤ L
2 ‖w −w′‖2.

2. Coercivity: 1
L‖∇F (w)−∇F (w′)‖2 ≤ 〈∇F (w)−∇F (w′),w −w′〉.

3. Lower bound: F (w) ≥ F (w′) + 〈∇F (w′),w − w′〉 + 1
2L‖∇F (w) − ∇F (w′)‖2. In

particular, ‖∇F (w)‖2 ≤ 2L(F (w)− F (w∗)).

4. Optimality gap: F (w)− F (w∗) ≤〈∇F (w),w −w∗〉.

Lemma 9. Let F be a µ-strongly convex function. Then

F (w) ≤ F (w′) + 〈∇F (w′),w −w′〉+
1

2µ
‖∇F (w)−∇F (w′)‖2

F (w)− F (w∗) ≤ 1

2µ
‖∇F (w)‖2

Theorem 14. Let wT =
∑N
k=1 pkw

k
T , νmax = maxkNpk, and set decaying learning rates

αt = 1
4µ(γ+t)

with γ = max{32κ,E} and κ = L
µ . Then under Assumptions 7,8,9,10 with full

device participation,

EF (wT)− F ∗ = O
(
κν2

maxσ
2/µ

NT
+
κ2E2G2/µ

T 2

)

and with partial device participation with at most K sampled devices at each communication

218

round,

EF (wT)− F ∗ = O
(
κE2G2/µ

KT
+
κν2

maxσ
2/µ

NT
+
κ2E2G2/µ

T 2

)

Proof. The proof builds on ideas from [110]. The first step is to observe that the L-smoothness

of F provides the upper bound

E(F (wt))− F ∗ = E(F (wt)− F (w∗))

≤ L

2
E‖wt −w∗‖2

and bound E‖wt −w∗‖2.

Our main step is to prove the bound

E‖wt+1 −w∗‖2 ≤ (1− µαt)E‖wt −w∗‖2 + α2
t

1

N
ν2
maxσ

2 + 5E2Lα3
tG

2

We have

‖wt+1 −w∗‖2 = ‖(wt − αtgt)−w∗‖2

= ‖(wt − αtgt −w∗)− αt(gt − gt)‖2

= A1 + A2 + A3

where

A1 = ‖wt −w∗ − αtgt‖2

A2 = 2αt〈wt −w∗ − αtgt,gt − gt〉

219

A3 = α2
t ‖gt − gt‖2

By definition of gt and gt (see Eq (B.2)), we have EA2 = 0. For A3, we have the follow

upper bound:

α2
tE‖gt − gt‖2 = α2

tE‖gt − Egt‖2 = α2
t

N∑
k=1

p2
k‖gt,k − Egt,k‖2 ≤ α2

t

N∑
k=1

p2
kσ

2
k

again by Jensen’s inequality and using the independence of gt,k,gt,k′ [110, Lemma 2].

Next we bound A1:

‖wt −w∗ − αtgt‖2 = ‖wt −w∗‖2 + 2〈wt −w∗,−αtgt〉+ ‖αtgt‖2

and we will show that the third term ‖αtgt‖2 can be canceled by an upper bound of the

second term.

Now

− 2αt〈wt −w∗,gt〉

=− 2αt

N∑
k=1

pk〈wt −w∗,∇Fk(wk
t)〉

=− 2αt

N∑
k=1

pk〈wt −wk
t ,∇Fk(wk

t)〉 − 2αt

N∑
k=1

pk〈wk
t −w∗,∇Fk(wk

t)〉

≤ − 2αt

N∑
k=1

pk〈wt −wk
t ,∇Fk(wk

t)〉+ 2αt

N∑
k=1

pk(Fk(w∗)− Fk(wk
t))

− αtµ
N∑
k=1

pk‖wk
t −w∗‖2

220

≤2αt

N∑
k=1

pk

[
Fk(wk

t)− Fk(wt) +
L

2
‖wt −wk

t ‖2 + Fk(w∗)− Fk(wk
t)

]

− αtµ‖
N∑
k=1

pkw
k
t −w∗‖2

=αtL
N∑
k=1

pk‖wt −wk
t ‖2 + 2αt

N∑
k=1

pk [Fk(w∗)− Fk(wt)]− αtµ‖wt −w∗‖2

For the second term, which is negative, we can ignore it, but this yields a suboptimal bound

that fails to provide the desired linear speedup. Instead, we upper bound it using the following

derivation:

2αt

N∑
k=1

pk [Fk(w∗)− Fk(wt)]

≤ 2αt [F (wt+1)− F (wt)]

≤ 2αtE〈∇F (wt),wt+1 −wt〉+ αtLE‖wt+1 −wt‖2

= −2α2
tE〈∇F (wt),gt〉+ α3

tLE‖gt‖2

= −2α2
tE〈∇F (wt),gt〉+ α3

tLE‖gt‖2

= −α2
t

[
‖∇F (wt)‖2 + ‖gt‖2 − ‖∇F (wt)− gt‖2

]
+ α3

tLE‖gt‖2

= −α2
t

[
‖∇F (wt)‖2 + ‖gt‖2 − ‖∇F (wt)−

∑
k

pk∇F (wk
t)‖2

]
+ α3

tLE‖gt‖2

≤ −α2
t

[
‖∇F (wt)‖2 + ‖gt‖2 −

∑
k

pk‖∇F (wt)−∇F (wk
t)‖2

]
+ α3

tLE‖gt‖2

≤ −α2
t

[
‖∇F (wt)‖2 + ‖gt‖2 − L2

∑
k

pk‖wt −wk
t ‖2
]

+ α3
tLE‖gt‖2

≤ −α2
t ‖gt‖2 + α2

tL
2
∑
k

pk‖wt −wk
t ‖2 + α3

tLE‖gt‖2 − α2
t ‖∇F (wt)‖2

where we have used the smoothness of F twice.

221

Note that the term −α2
t ‖gt‖2 exactly cancels the α2

t ‖gt‖2 in the bound for A1, so that

plugging in the bound for −2αt〈wt −w∗,gt〉, we have so far proved

E‖wt+1 −w∗‖2 ≤ E(1− µαt)‖wt −w∗‖2 + αtL

N∑
k=1

pk‖wt −wk
t ‖2 + α2

t

N∑
k=1

p2
kσ

2
k

+ α2
tL

2
N∑
k=1

pk‖wt −wk
t ‖2 + α3

tLE‖gt‖2 − α2
t ‖∇F (wt)‖2

The term E‖gt‖2 ≤ G2 by assumption.

Now we bound E
∑N
k=1 pk‖wt−wk

t ‖2 following [110]. Since communication is done every

E steps, for any t ≥ 0, we can find a t0 ≤ t such that t− t0 ≤ E − 1 and wk
t0

= wt0
for all k.

Moreover, using αt is non-increasing and αt0 ≤ 2αt for any t− t0 ≤ E − 1, we have

E
N∑
k=1

pk‖wt −wk
t ‖2

= E
N∑
k=1

pk‖wk
t −wt0

− (wt −wt0
)‖2

≤ E
N∑
k=1

pk‖wk
t −wt0

‖2

= E
N∑
k=1

pk‖wk
t −wk

t0
‖2

= E
N∑
k=1

pk‖ −
t−1∑
i=t0

αigi,k‖2

≤ 2
N∑
k=1

pkE
t−1∑
i=t0

Eα2
i ‖gi,k‖

2

≤ 2
N∑
k=1

pkE
2α2
t0
G2

≤ 4E2α2
tG

2

222

Using the bound on E
∑N
k=1 pk‖wt−wk

t ‖2, we can conclude that, with νmax := N ·maxk pk

and νmin := N ·mink pk,

E‖wt+1 −w∗‖2

≤ E(1− µαt)‖wt −w∗‖2 + 4E2Lα3
tG

2

+ 4E2L2α4
tG

2 + α2
t

N∑
k=1

p2
kσ

2
k + α3

tLG
2

= E(1− µαt)‖wt −w∗‖2 + 4E2Lα3
tG

2

+ 4E2L2α4
tG

2 + α2
t

1

N2

N∑
k=1

(pkN)2σ2
k + α3

tLG
2

≤ E(1− µαt)‖wt −w∗‖2 + 4E2Lα3
tG

2

+ 4E2L2α4
tG

2 + α2
t

1

N2
ν2
max

N∑
k=1

σ2
k + α3

tLG
2

≤ E(1− µαt)‖wt −w∗‖2 + 6E2Lα3
tG

2 + α2
t

1

N
ν2
maxσ

2

where in the last inequality we use σ2 = maxk σ
2
k, and assume αt satisfies Lαt ≤ 1

8 . We show

next that E‖wt −w∗‖2 = O(1
tN + E2LG2

t2
).

Let C ≡ 6E2LG2 and D ≡ 1
N ν

2
maxσ

2. Suppose that we have shown E‖wt − w∗‖2 ≤

b · (αtD + α2
tC) for some constant b and αt. Then

E‖wt+1 −w∗‖2

≤b(1− µαt)(αtD + α2
tC) + α2

tD + α3
tC

=(b(1− µαt) + αt)αtD + (b(1− µαt) + αt)α
2
tC

223

and so it remains to choose αt and b such that (b(1−µαt) +αt)αt ≤ bαt+1 and (b(1−µαt) +

αt)α
2
t ≤ bα2

t+1. Recall that we require αt0 ≤ 2αt for any t − t0 ≤ E − 1, and Lαt ≤ 1
8 .

If we let αt = 4
µ(t+γ)

where γ = max{E, 32κ}, then we may check that αt satisfies both

requirements.

Setting b = 4
µ , we have

(b(1− µαt) + αt)αt =

(
b(1− 4

t+ γ
) +

4

µ(t+ γ)

)
4

µ(t+ γ)

=

(
b
t+ γ − 4

t+ γ
+

4

µ(t+ γ)

)
4

µ(t+ γ)

= b(
t+ γ − 3

t+ γ
)

4

µ(t+ γ)

≤ b(
t+ γ − 1

t+ γ
)

4

µ(t+ γ)

≤ b
4

µ(t+ γ + 1)
= bαt+1

and

(b(1− µαt) + αt)α
2
t =

(
b(1− 4

t+ γ
) +

4

µ(t+ γ)

)
16

µ2(t+ γ)2

=

(
b
t+ γ − 4

t+ γ
+

4

µ(t+ γ)

)
16

µ2(t+ γ)2

= b(
t+ γ − 2

t+ γ
)

16

µ2(t+ γ)2

≤ b
16

µ2(t+ γ + 1)2
= bα2

t+1

where we have used the facts that

t+ γ − 1

(t+ γ)2
≤ 1

(t+ γ + 1)

224

t+ γ − 2

(t+ γ)3
≤ 1

(t+ γ + 1)2

for γ ≥ 1.

Thus we have shown

E‖wt+1 −w∗‖2 ≤ b · (αt+1D + α2
t+1C)

for our choice of αt and b. Now to ensure

‖w0 −w∗‖2 ≤ b · (α0D + α2
0C)

= b · (4

µγ
D +

16

µ2γ2
C)

we can simply scale b by c‖w0 −w∗‖2 for a constant c large enough and the induction step

still holds.

It follows that

E‖wt −w∗‖2 ≤ c‖w0 −w∗‖2 4

µ
(Dαt + Cα2

t)

for all t ≥ 0.

Finally, the L-smoothness of F implies

E(F (wT))− F ∗

= E(F (wT)− F (w∗))

≤ L

2
E‖wT −w∗‖2 ≤ L

2
c‖w0 −w∗‖2 4

µ
(DαT + Cα2

T)

225

= 2c‖w0 −w∗‖2κ(DαT + Cα2
T)

≤ 2c‖w0 −w∗‖2κ
[

4

µ(T + γ)
· 1

N
ν2
maxσ

2 + 6E2LG2 · (4

µ(T + γ)
)2
]

= O(
κ

µ

1

N
ν2
maxσ

2 · 1

T
+
κ2

µ
E2G2 · 1

T 2
)

With partial participation, the update at each communication round is now given by

averages over a subset of sampled devices. When t + 1 /∈ IE , vt+1 = wt+1, while when

t+ 1 /∈ IE , we have Ewt+1 = vt+1 by design of the sampling schemes, so that

E‖wt+1 −w∗‖2 = E‖wt+1 − vt+1 + vt+1 −w∗‖2

= E‖wt+1 − vt+1‖2 + E‖vt+1 −w∗‖2

As before, E‖vt+1 −w∗‖2 ≤ E(1− µαt)‖wt −w∗‖2 + 6E2Lα3
tG

2 + α2
t

1
N ν

2
maxσ

2.

The key is to bound E‖wt+1 − vt+1‖2. For sampling scheme I we have

E‖wt+1 − vt+1‖2 =
1

K

∑
k

pkE‖wk
t+1 −wt+1‖2

≤ 4

K
α2
tE

2G2

while for sampling scheme II

E‖wt+1 − vt+1‖2 =
N −K
N − 1

1

K

∑
k

pkE‖wk
t+1 −wt+1‖2

≤ N −K
N − 1

4

K
α2
tE

2G2

226

The same argument as the full participation case implies

EF (wT)− F ∗ = O(
κν2

maxσ
2/µ

NT
+
κE2G2/µ

KT
+
κ2E2G2/µ

T 2
)

One may ask whether the dependence on E in the term κE2G2/µ
KT can be removed, or

equivalently whether
∑
k pk‖wk

t −wt‖2 = O(1/T 2) can be independent of E. We provide a

simple counterexample that shows that this is not possible in general.

Lemma 10. There exists a dataset such that if E = O(Tβ) for any β > 0 then
∑
k pk‖wk

t −

wt‖2 = Ω(1
T2−2β) .

Proof. Suppose that we have an even number of devices and each Fk(w) = 1
nk

∑nk
j=1(x

j
k−w)2

contains data points x
j
k = w∗,k, with nk ≡ n. Moreover, the w∗,k’s come in pairs around

the origin. As a result, the global objective F is minimized at w∗ = 0. Moreover, if we start

from w0 = 0, then by design of the dataset the updates in local steps exactly cancel each

other at each iteration, resulting in wt = 0 for all t. On the other hand, if E = Tβ , then

starting from any t = O(T) with constant step size O(1
T), after E iterations of local steps,

the local parameters are updated towards w∗,k with ‖wk
t+E‖

2 = Ω((Tβ · 1
T)2) = Ω(1

T2−2β).

This implies that

∑
k

pk‖wk
t+E −wt+E‖2 =

∑
k

pk‖wk
t+E‖

2

= Ω(
1

T 2−2β
)

which is at a slower rate than 1
T2 for any β > 0. Thus the sampling variance E‖wt+1 −

227

vt+1‖2 = Ω(
∑
k pkE‖wk

t+1 − wt+1‖2) decays at a slower rate than 1
T2 , resulting in a

convergence rate slower than O(1
T) with partial participation.

Convex Smooth Objectives

Theorem 15. Under assumptions 7,9,10 and constant learning rate αt = O(
√

N
T),

min
t≤T

F (wt)− F (w∗) = O
(
νmaxσ

2
√
NT

+
NE2LG2

T

)

with full participation, and with partial device participation with K sampled devices at each

communication round and learning rate αt = O(
√

K
T),

min
t≤T

F (wt)− F (w∗) = O
(
νmaxσ

2
√
KT

+
E2G2
√
KT

+
KE2LG2

T

)

Proof. We again start by bounding the term

‖wt+1 −w∗‖2 = ‖(wt − αtgt)−w∗‖2

= ‖(wt − αtgt −w∗)− αt(gt − gt)‖2

= A1 + A2 + A3

where

A1 = ‖wt −w∗ − αtgt‖2

A2 = 2αt〈wt −w∗ − αtgt,gt − gt〉

A3 = α2
t ‖gt − gt‖2

228

By definition of gt and gt (see Eq (B.2)), we have EA2 = 0. For A3, we have the follow

upper bound:

α2
tE‖gt − gt‖2 = α2

tE‖gt − Egt‖2 = α2
t

N∑
k=1

p2
k‖gt,k − Egt,k‖2 ≤ α2

t

N∑
k=1

p2
kσ

2
k

again by Jensen’s inequality and using the independence of gt,k,gt,k′ [110, Lemma 2].

Next we bound A1:

‖wt −w∗ − αtgt‖2 = ‖wt −w∗‖2 + 2〈wt −w∗,−αtgt〉+ ‖αtgt‖2

Using the convexity and L-smoothness of Fk,

− 2αt〈wt −w∗,gt〉

= −2αt

N∑
k=1

pk〈wt −w∗,∇Fk(wk
t)〉

= −2αt

N∑
k=1

pk〈wt −wk
t ,∇Fk(wk

t)〉 − 2αt

N∑
k=1

pk〈wk
t −w∗,∇Fk(wk

t)〉

≤ −2αt

N∑
k=1

pk〈wt −wk
t ,∇Fk(wk

t)〉+ 2αt

N∑
k=1

pk(Fk(w∗)− Fk(wk
t))

≤ 2αt

N∑
k=1

pk

[
Fk(wk

t)− Fk(wt) +
L

2
‖wt −wk

t ‖2 + Fk(w∗)− Fk(wk
t)

]

= αtL
N∑
k=1

pk‖wt −wk
t ‖2 + 2αt

N∑
k=1

pk [Fk(w∗)− Fk(wt)]

which results in

‖wt+1 −w∗‖2 ≤ ‖wt −w∗‖2 + αtL
N∑
k=1

pk‖wt −wk
t ‖2

229

+ 2αt

N∑
k=1

pk [Fk(w∗)− Fk(wt)] + α2
t ‖gt‖2 + α2

t

N∑
k=1

p2
kσ

2
k

The difference of this bound with that in the strongly convex case is that we no longer

have a contraction factor in front of ‖wt −w∗‖2. In the strongly convex case, we were able

to cancel α2
t ‖gt‖2 with 2αt

∑N
k=1 pk [Fk(w∗)− Fk(wt)] and obtain only lower order terms.

In the convex case, we use a different strategy and preserve
∑N
k=1 pk [Fk(w∗)− Fk(wt)] in

order to obtain a telescoping sum.

We have

‖gt‖2 = ‖
∑
k

pk∇Fk(wk
t)‖2

= ‖
∑
k

pk∇Fk(wk
t)−

∑
k

pk∇Fk(wt) +
∑
k

pk∇Fk(wt)‖2

≤ 2‖
∑
k

pk∇Fk(wk
t)−

∑
k

pk∇Fk(wt)‖2 + 2‖
∑
k

pk∇Fk(wt)‖2

≤ 2L2
∑
k

pk‖wk
t −wt‖2 + 2‖

∑
k

pk∇Fk(wt)‖2

= 2L2
∑
k

pk‖wk
t −wt‖2 + 2‖∇F (wt)‖2

using ∇F (w∗) = 0. Now using the L smoothness of F , we have ‖∇F (wt)‖2 ≤ 2L(F (wt)−

F (w∗)), so that

‖wt+1 −w∗‖2

≤ ‖wt −w∗‖2 + αtL

N∑
k=1

pk‖wt −wk
t ‖2 + 2αt

N∑
k=1

pk [Fk(w∗)− Fk(wt)]

+ 2α2
tL

2
∑
k

pk‖wk
t −wt‖2 + 4α2

tL(F (wt)− F (w∗)) + α2
t

N∑
k=1

p2
kσ

2
k

230

= ‖wt −w∗‖2 + (2α2
tL

2 + αtL)
N∑
k=1

pk‖wt −wk
t ‖2 + αt

N∑
k=1

pk [Fk(w∗)− Fk(wt)]

+ α2
t

N∑
k=1

p2
kσ

2
k + αt(1− 4αtL)(F (w∗)− F (wt))

Since F (w∗) ≤ F (wt), as long as 4αtL ≤ 1, we can ignore the last term, and rearrange the

inequality to obtain

‖wt+1 −w∗‖2 + αt(F (wt)− F (w∗))

≤ ‖wt −w∗‖2 + (2α2
tL

2 + αtL)
N∑
k=1

pk‖wt −wk
t ‖2 + α2

t

N∑
k=1

p2
kσ

2
k

≤ ‖wt −w∗‖2 +
3

2
αtL

N∑
k=1

pk‖wt −wk
t ‖2 + α2

t

N∑
k=1

p2
kσ

2
k

The same argument as before yields E
∑N
k=1 pk‖wt −wk

t ‖2 ≤ 4E2α2
tG

2 which gives

‖wt+1 −w∗‖2 + αt(F (wt)− F (w∗)) ≤ ‖wt −w∗‖2 + α2
t

N∑
k=1

p2
kσ

2
k + 6α3

tE
2LG2

≤ ‖wt −w∗‖2 + α2
t

1

N
ν2

maxσ
2 + 6α3

tE
2LG2

Summing the inequalities from t = 0 to t = T , we obtain

T∑
t=0

αt(F (wt)− F (w∗)) ≤ ‖w0 −w∗‖2 +
T∑
t=0

α2
t ·

1

N
ν2

maxσ
2 +

T∑
t=0

α3
t · 6E2LG2

so that

min
t≤T

F (wt)− F (w∗) ≤ 1∑T
t=0 αt

‖w0 −w∗‖2 +
T∑
t=0

α2
t ·

1

N
ν2

maxσ
2 +

T∑
t=0

α3
t · 6E2LG2



231

By setting the constant learning rate αt ≡
√

N
T , we have

min
t≤T

F (wt)− F (w∗)

≤ 1√
NT
· ‖w0 −w∗‖2 +

1√
NT

T · N
T
· 1

N
ν2

maxσ
2 +

1√
NT

T (

√
N

T
)36E2LG2

≤ 1√
NT
· ‖w0 −w∗‖2 +

1√
NT

T · N
T
· 1

N
ν2

maxσ
2 +

N

T
6E2LG2

=(‖w0 −w∗‖2 + ν2
maxσ

2)
1√
NT

+
N

T
6E2LG2

=O(
ν2

maxσ
2

√
NT

+
NE2LG2

T
)

Similarly, for partial participation, we have

min
t≤T

F (wt)− F (w∗)

≤ 1∑T
t=0 αt

‖w0 −w∗‖2 +
T∑
t=0

α2
t · (

1

N
νmaxσ

2 + C) +
T∑
t=0

α3
t · 6E2LG2



where C = 4
KE

2G2 or N−K
N−1

4
KE

2G2, so that with αt =
√

K
T , we have

min
t≤T

F (wt)− F (w∗) = O(
νmaxσ

2
√
KT

+
E2G2
√
KT

+
KE2LG2

T
)

232

Proof of Convergence Results for Nesterov Accelerated Fe-

dAvg

Strongly Convex Smooth Objectives

Theorem 16. Let vT =
∑N

k=1 pkv
k
T and set learning rates βt−1 = 3

14(t+γ)(1− 6
t+γ

)max{µ,1} ,

αt = 6
µ(t+γ) . Then under Assumptions 7,8,9,10 with full device participation,

EF (vT)− F ∗ = O
(
κνmaxσ

2/µ

NT
+
κ2E2G2/µ

T 2

)
,

and with partial device participation with K sampled devices at each communication round,

EF (vT)− F ∗ = O
(
κνmaxσ

2/µ

NT
+
κE2G2/µ

KT
+
κ2E2G2/µ

T 2

)
.

Proof. Define the virtual sequences vt =
∑N

k=1 pkv
k
t , wt =

∑N
k=1 pkw

k
t , and gt =

∑N
k=1 pkEgt,k.

We have Egt = gt and vt+1 = wt − αtgt, and wt+1 = vt+1 for all t. The proof again uses

the L-smoothness of F to bound

E(F (vt))− F ∗ = E(F (vt)− F (w∗))

≤ L

2
E‖vt −w∗‖2

Our main step is to prove the bound

E‖vt+1 −w∗‖2 ≤ (1− µαt)E‖vt −w∗‖2 + α2
t

1

N
ν2
maxσ

2 + 20E2Lα3
tG

2

233

for appropriate step sizes αt, βt.

We have

‖vt+1 −w∗‖2 = ‖(wt − αtgt)−w∗‖2

= ‖(wt − αtgt −w∗)− αt(gt − gt)‖2

= A1 + A2 + A3

where

A1 = ‖wt −w∗ − αtgt‖2

A2 = 2αt〈wt −w∗ − αtgt,gt − gt〉

A3 = α2
t ‖gt − gt‖2

By definition of gt and gt (see Eq (B.2)), we have EA2 = 0. For A3, we have the follow

upper bound:

α2
tE‖gt − gt‖2 = α2

tE‖gt − Egt‖2 = α2
t

N∑
k=1

p2
k‖gt,k − Egt,k‖2 ≤ α2

t

N∑
k=1

p2
kσ

2
k

again by Jensen’s inequality and using the independence of gt,k,gt,k′ [110, Lemma 2].

Next we bound A1:

‖wt −w∗ − αtgt‖2 = ‖wt −w∗‖2 + 2〈wt −w∗,−αtgt〉+ ‖αtgt‖2

234

Same as the SGD case,

− 2αt〈wt −w∗,gt〉+ ‖αtgt‖2

≤αtL
N∑
k=1

pk‖wt −wk
t ‖2 + α2

tL
2
∑
k

pk‖wt −wk
t ‖2 + α3

tLE‖gt‖2 − αtµ‖wt −w∗‖2

so that

‖wt −w∗ − αtgt‖2

≤(1− αtµ)‖wt −w∗‖2 + αtL
N∑
k=1

pk‖wt −wk
t ‖2 + α2

tL
2
∑
k

pk‖wt −wk
t ‖2 + α3

tLE‖gt‖2

Different from the SGD case, we have

‖wt −w∗‖2

=‖vt + βt−1(vt − vt−1)−w∗‖2

=‖(1 + βt−1)(vt −w∗)− βt−1(vt−1 −w∗)‖2

=(1 + βt−1)2‖vt −w∗‖2 − 2βt−1(1 + βt−1)〈vt −w∗,vt−1 −w∗〉+ β2
t−1‖(vt−1 −w∗)‖2

≤(1 + βt−1)2‖vt −w∗‖2 + 2βt−1(1 + βt−1)‖vt −w∗‖ · ‖vt−1 −w∗‖

+ β2
t−1‖(vt−1 −w∗)‖2

which gives

‖vt+1 −w∗‖2

235

≤(1− αtµ)(1 + βt−1)2‖vt −w∗‖2

+2(1− αtµ)βt−1(1 + βt−1)‖vt −w∗‖ · ‖vt−1 −w∗‖

+α2
t

N∑
k=1

p2
kσ

2
k + β2

t−1(1− αtµ)‖(vt−1 −w∗)‖2

+αtL
N∑
k=1

pk‖wt −wk
t ‖2 + α2

tL
2
∑
k

pk‖wt −wk
t ‖2 + α3

tLG
2

and we will using this recursive relation to obtain the desired bound.

First we bound E
∑N
k=1 pk‖wt −wk

t ‖2. Since communication is done every E steps, for

any t ≥ 0, we can find a t0 ≤ t such that t− t0 ≤ E − 1 and wkt0 = wt0
for all k. Moreover,

using αt is non-increasing, αt0 ≤ 2αt, and βt ≤ αt for any t− t0 ≤ E − 1, we have

E
N∑
k=1

pk‖wt −wk
t ‖2

= E
N∑
k=1

pk‖wk
t −wt0

− (wt −wt0
)‖2

≤ E
N∑
k=1

pk‖wk
t −wt0

‖2

= E
N∑
k=1

pk‖wk
t −wk

t0
‖2

= E
N∑
k=1

pk‖
t−1∑
i=t0

βi(v
k
i+1 − vki)−

t−1∑
i=t0

αigi,k‖2

≤ 2
N∑
k=1

pkE
t−1∑
i=t0

(E − 1)α2
i ‖gi,k‖

2 + 2
N∑
k=1

pkE
t−1∑
i=t0

(E − 1)β2
i ‖(v

k
i+1 − vki)‖2

≤ 2
N∑
k=1

pkE
t−1∑
i=t0

(E − 1)α2
i (‖gi,k‖

2 + ‖(vki+1 − vki)‖2)

≤ 4
N∑
k=1

pkE
t−1∑
i=t0

(E − 1)α2
iG

2

236

≤ 4(E − 1)2α2
t0
G2 ≤ 16(E − 1)2α2

tG
2

where we have used E‖vkt − vkt−1‖
2 ≤ G2. To see this identity for appropriate αt, βt, note

the recursion

vkt+1 − vkt = wk
t −wk

t−1 − (αtgt,k − αt−1gt−1,k)

wk
t+1 −wk

t = −αtgt,k + βt(v
k
t+1 − vkt)

so that

vkt+1 − vkt = −αt−1gt−1,k + βt−1(vkt − vkt−1)− (αtgt,k − αt−1gt−1,k)

= βt−1(vkt − vkt−1)− αtgt,k

Since the identity vkt+1 − vkt = βt−1(vkt − vkt−1)− αtgt,k implies

E‖vkt+1 − vkt ‖2 ≤ 2β2
t−1E‖v

k
t − vkt−1‖

2 + 2α2
tG

2

as long as αt, βt−1 satisfy 2β2
t−1 + 2α2

t ≤ 1/2, we can guarantee that E‖vkt − vkt−1‖
2 ≤ G2

for all k by induction. This together with Jensen’s inequality also gives E‖vt − vt−1‖2 ≤ G2

for all t.

Using the bound on E
∑N
k=1 pk‖wt − wk

t ‖2, we can conclude that, with νmax := N ·

maxk pk,

E‖vt+1 −w∗‖2

237

≤ E(1− µαt)(1 + βt−1)2‖vt −w∗‖2 + 16E2Lα3
tG

2 + 16E2L2α4
tG

2 + α3
tLG

2

+ (1− αtµ)β2
t−1‖(vt−1 −w∗)‖2 + α2

t

N∑
k=1

p2
kσ

2
k

+ 2βt−1(1 + βt−1)(1− αtµ)‖vt −w∗‖ · ‖vt−1 −w∗‖

≤ E(1− µαt)(1 + βt−1)2‖vt −w∗‖2 + 20E2Lα3
tG

2 + (1− αtµ)β2
t−1‖(vt−1 −w∗)‖2

+ α2
t

1

N
νmaxσ

2 + 2βt−1(1 + βt−1)(1− αtµ)‖vt −w∗‖ · ‖vt−1 −w∗‖

where σ2 =
∑
k pkσ

2
k, and αt satisfies Lαt ≤

1
5 . We show next that E‖vt−w∗‖2 = O(1

tN +E2

t2
)

by induction.

Assume that we have shown

E‖yt −w∗‖2 ≤ b(Cα2
t +Dαt)

for all iterations until t, where C = 20E2LG2, D = 1
N ν

2
maxσ

2, and b is to be chosen later. For

step sizes we choose αt = 6
µ

1
t+γ and βt−1 = 3

14(t+γ)(1− 6
t+γ

)max{µ,1} where γ = max{32κ,E}, so

that βt−1 ≤ αt and

(1− µαt)(1 + 14βt−1)

≤(1− 6

t+ γ
)(1 +

3

(t+ γ)(1− 6
t+γ)

)

=1− 6

t+ γ
+

3

t+ γ
= 1− 3

t+ γ
= 1− µαt

2

Recall that we also require αt0 ≤ 2αt for any t− t0 ≤ E−1, Lαt ≤ 1
5 , and 2β2

t−1 +2α2
t ≤ 1/2,

which we can also check to hold by definition of αt and βt.

Moreover, E‖yt −w∗‖2 ≤ b(Cα2
t +Dαt) with the chosen step sizes also implies ‖vt−1 −

238

w∗‖ ≤ 2‖vt −w∗‖. Therefore the bound for E‖vt+1 −w∗‖2 can be further simplified with

2βt−1(1 + βt−1)(1− αtµ)‖vt −w∗‖ · ‖vt−1 −w∗‖ ≤ 4βt−1(1 + βt−1)(1− αtµ)‖vt −w∗‖2

and

(1− αtµ)β2
t−1‖(vt−1 −w∗)‖2 ≤ 4(1− αtµ)β2

t−1‖(vt −w∗)‖2

so that

E‖vt+1 −w∗‖2 ≤ (1− µαt)((1 + βt−1)2 + 4βt−1(1 + βt−1) + 4β2
t−1)E‖(vt −w∗)‖2

+ 20E2Lα3
tG

2 + α2
t

1

N
νmaxσ

2

≤ E(1− µαt)(1 + 14βt−1)‖(vt −w∗)‖2 + 20E2Lα3
tG

2 + α2
t

1

N
νmaxσ

2

≤ b(1− µαt
2

)(Cα2
t +Dαt) + Cα3

t +Dα2
t

= (b(1− µαt
2

) + αt)α
2
tC + (b(1− µαt

2
) + αt)αtD

and so it remains to choose b such that

(b(1− µαt
2

) + αt)αt ≤ bαt+1

(b(1− µαt
2

) + αt)α
2
t ≤ bα2

t+1

from which we can conclude E‖vt+1 −w∗‖2 ≤ α2
t+1C + αt+1D.

239

With b = 6
µ , we have

(b(1− µαt
2

) + αt)αt = (b(1− (
3

t+ γ
) +

6

µ(t+ γ)
)

6

µ(t+ γ)

= (b
t+ γ − 3

t+ γ
+

6

µ(t+ γ)
)

6

µ(t+ γ)

≤ b(
t+ γ − 1

t+ γ
)

6

µ(t+ γ)

≤ b
6

µ(t+ γ + 1)
= bαt+1

where we have used t+γ−1

(t+γ)2
≤ 1

t+γ+1 .

Similarly

(b(1− µαt
2

) + αt)α
2
t = (b(1− (

3

t+ γ
) +

6

µ(t+ γ)
)(

6

µ(t+ γ)
)2

= (b
t+ γ − 3

t+ γ
+

6

µ(t+ γ)
)(

6

µ(t+ γ)
)2

= b(
t+ γ − 2

t+ γ
)(

6

µ(t+ γ)
)2

≤ b
36

µ2(t+ γ + 1)2
= bα2

t+1

where we have used t+γ−2

(t+γ)3
≤ 1

(t+γ+1)2
.

Finally, to ensure ‖v0−w∗‖2 ≤ b(Cα2
0 +Dα0), we can rescale b by c‖v0−w∗‖2 for some

c. It follows that E‖vt −w∗‖2 ≤ b(Cα2
t +Dαt) for all t. Thus

E(F (wT))− F ∗ = E(F (wT)− F (w∗))

≤ L

2
E‖wT −w∗‖2 ≤ L

2
c‖w0 −w∗‖2 6

µ
(DαT + Cα2

T)

= 3c‖w0 −w∗‖2κ(DαT + Cα2
T)

240

≤ 3c‖w0 −w∗‖2κ
[

6

µ(T + γ)
· 1

N
νmaxσ

2 + 20E2LG2 · (6

µ(T + γ)
)2
]

= O(
κ

µ

1

N
νmaxσ

2 · 1

T
+
κ2

µ
E2G2 · 1

T 2
)

With partial participation, the same argument in the SGD case yields

EF (wT)− F ∗ = O(
κνmaxσ

2/µ

NT
+
κE2G2/µ

KT
+
κ2E2G2/µ

T 2
)

Convex Smooth Objectives

Theorem 17. Set learning rates αt = βt = O(
√

N
T). Then under Assumptions 7,9,10

Nesterov accelerated FedAvg with full device participation has rate

min
t≤T

F (wt)− F ∗ = O
(
νmaxσ

2
√
NT

+
NE2LG2

T

)
,

and with partial device participation with K sampled devices at each communication round,

min
t≤T

F (wt)− F ∗ = O
(
νmaxσ

2
√
KT

+
E2G2
√
KT

+
KE2LG2

T

)
.

Proof. Define pt :=
βt

1−βt
[wt −wt−1 + αtgt−1] =

β2
t

1−βt
(vt − vt−1) for t ≥ 1 and 0 for t = 0.

We can check that

wt+1 + pt+1 = wt + pt −
αt

1− βt
gt

241

Now we define zt := wt + pt and ηt =
αt

1−βt
for all t, so that we have the recursive relation

zt+1 = zt − ηtgt

Now

‖zt+1 −w∗‖2 = ‖(zt − ηtgt)−w∗‖2

= ‖(zt − ηtgt −w∗)− ηt(gt − gt)‖2

= A1 + A2 + A3

where

A1 = ‖zt −w∗ − ηtgt‖2

A2 = 2ηt〈zt −w∗ − ηtgt,gt − gt〉

A3 = η2
t ‖gt − gt‖2

where again EA2 = 0 and EA3 ≤ η2
t

∑
k p

2
kσ

2
k. For A1 we have

‖zt −w∗ − ηtgt‖2 = ‖zt −w∗‖2 + 2〈zt −w∗,−ηtgt〉+ ‖ηtgt‖2

Using the convexity and L-smoothness of Fk,

− 2ηt〈zt −w∗,gt〉

= −2ηt

N∑
k=1

pk〈zt −w∗,∇Fk(wk
t)〉

242

= −2ηt

N∑
k=1

pk〈zt −wk
t ,∇Fk(wk

t)〉 − 2ηt

N∑
k=1

pk〈wk
t −w∗,∇Fk(wk

t)〉

= −2ηt

N∑
k=1

pk〈zt −wt,∇Fk(wk
t)〉 − 2ηt

N∑
k=1

pk〈wt −wk
t ,∇Fk(wk

t)〉

− 2ηt

N∑
k=1

pk〈wk
t −w∗,∇Fk(wk

t)〉

≤ −2ηt

N∑
k=1

pk〈zt −wt,∇Fk(wk
t)〉 − 2ηt

N∑
k=1

pk〈wt −wk
t ,∇Fk(wk

t)〉

+ 2ηt

N∑
k=1

pk(Fk(w∗)− Fk(wk
t))

≤ 2ηt

N∑
k=1

pk

[
Fk(wk

t)− Fk(wt) +
L

2
‖wt −wk

t ‖2 + Fk(w∗)− Fk(wk
t)

]

− 2ηt

N∑
k=1

pk〈zt −wt,∇Fk(wk
t)〉

= ηtL
N∑
k=1

pk‖wt −wk
t ‖2 + 2ηt

N∑
k=1

pk [Fk(w∗)− Fk(wt)]− 2ηt

N∑
k=1

pk〈zt −wt,∇Fk(wk
t)〉

which results in

E‖wt+1 −w∗‖2 ≤ E‖wt −w∗‖2 + ηtL
N∑
k=1

pk‖wt −wk
t ‖2 + 2ηt

N∑
k=1

pk [Fk(w∗)− Fk(wt)]

+ η2
t ‖gt‖2 + η2

t

N∑
k=1

p2
kσ

2
k − 2ηt

N∑
k=1

pk〈zt −wt,∇Fk(wk
t)〉

As before, ‖gt‖2 ≤ 2L2∑
k pk‖wk

t −wt‖2 + 4L(F (wt)− F (w∗)), so that

η2
t ‖gt‖2 + ηt

N∑
k=1

pk [Fk(w∗)− Fk(wt)]

≤2L2η2
t

∑
k

pk‖wk
t −wt‖2 + ηt(1− 4ηtL)(F (w∗)− F (wt))

243

≤2L2η2
t

∑
k

pk‖wk
t −wt‖2

for ηt ≤ 1/4L. Using
∑N
k=1 pk‖wt − wk

t ‖2 ≤ 16E2α2
tG

2 and
∑N
k=1 p

2
kσ

2
k ≤ νmax

1
N σ

2, it

follows that

E‖wt+1 −w∗‖2 + ηt(F (wt)− F (w∗))

≤ E‖wt −w∗‖2 + (ηtL+ 2L2η2
t)

N∑
k=1

pk‖wt −wk
t ‖2 + η2

t

N∑
k=1

p2
kσ

2
k

− 2ηt

N∑
k=1

pk〈zt −wt,∇Fk(wk
t)〉

≤ E‖wt −w∗‖2 + 32LE2α2
t ηtG

2 + η2
t νmax

1

N
σ2

− 2ηt

N∑
k=1

pk〈zt −wt,∇Fk(wk
t)〉

if ηt ≤ 1
2L . It remains to bound E

∑N
k=1 pk〈zt − wt,∇Fk(wk

t)〉. Recall that zt − wt =

βt
1−βt

[wt −wt−1 + αtgt−1] =
β2
t

1−βt
(vt − vt−1) and E‖vt − vt−1‖2 ≤ G2, E‖∇Fk(wk

t)‖2 ≤

G2.

Cauchy-Schwarz gives

E
N∑
k=1

pk〈zt −wt,∇Fk(wk
t)〉 ≤

N∑
k=1

pk

√
E‖zt −wt‖2 ·

√
E‖∇Fk(wk

t)‖2

≤
β2
t

1− βt
G2

Thus

E‖wt+1 −w∗‖2 + ηt(F (wt)− F (w∗))

244

≤E‖wt −w∗‖2 + 32LE2α2
t ηtG

2 + η2
t νmax

1

N
σ2 + 2ηt

β2
t

1− βt
G2

Summing the inequalities from t = 0 to t = T , we obtain

T∑
t=0

ηt(F (wt)− F (w∗))

≤ ‖w0 −w∗‖2 +
T∑
t=0

η2
t ·

1

N
νmaxσ

2 +
T∑
t=0

ηtα
2
t · 32LE2G2 +

T∑
t=0

2ηt
β2
t

1− βt
G2

so that

min
t≤T

F (wt)− F (w∗)

≤ 1∑T
t=0 ηt

‖w0 −w∗‖2 +
T∑
t=0

η2
t ·

1

N
νmaxσ

2 +
T∑
t=0

ηtα
2
t · 32LE2G2 +

T∑
t=0

2ηt
β2
t

1− βt
G2



By setting the constant learning rates αt ≡
√

N
T and βt ≡ c

√
N
T so that ηt =

αt
1−βt

=√
N
T

1−c
√
N
T

≤ 2
√

N
T , we have

min
t≤T

F (wt)− F (w∗)

≤ 1

2
√
NT
· ‖w0 −w∗‖2 +

2√
NT

T · N
T
· 1

N
νmaxσ

2

+
1√
NT

T (

√
N

T
)332LE2G2 +

2√
NT

T (

√
N

T
)3G2

= (
1

2
‖w0 −w∗‖2 + 2νmaxσ

2)
1√
NT

+
N

T
(32LE2G2 + 2G2)

= O(
νmaxσ

2
√
NT

+
NE2LG2

T
)

245

Similarly, for partial participation, we have

min
t≤T

F (wt)− F (w∗)

≤ 1∑T
t=0 αt

‖w0 −w∗‖2 +
T∑
t=0

α2
t · (

1

N
νmaxσ

2 + C) +
T∑
t=0

α3
t · 6E2LG2



where C = 4
KE

2G2 or N−K
N−1

4
KE

2G2, so that with αt ≡
√

K
T and βt ≡ c

√
K
T , we have

min
t≤T

F (wt)− F (w∗) = O(
νmaxσ

2
√
KT

+
E2G2
√
KT

+
KE2LG2

T
)

Proof of Geometric Convergence Results for Overparame-

terized Problems

Geometric Convergence of FedAvg for general strongly convex and

smooth objectives

Theorem 18. For the overparameterized setting with general strongly convex and smooth

objectives, FedAvg with local SGD updates and communication every E iterations with constant

step size α = 1
2E

N
lνmax+L(N−νmin)

gives the exponential convergence guarantee

EF (wt) ≤
L

2
(1− µα)t‖w0 −w∗‖2 = O(exp(− µ

2E

N

lνmax + L(N − νmin)
t) · ‖w0 −w∗‖2)

Proof. To illustrate the main ideas of the proof, we first present the proof for E = 2. Let

246

t− 1 be a communication round, so that wk
t−1 = wt−1. We show that

‖wt+1 −w∗‖2 ≤ (1− αtµ)(1− αt−1µ)‖wt−1 −w∗‖2

for appropriately chosen constant step sizes αt, αt−1. We have

‖wt+1 −w∗‖2 = ‖(wt − αtgt)−w∗‖2

= ‖wt −w∗‖2 − 2αt〈wt −w∗,gt〉+ α2
t ‖gt‖2

and the cross term can be bounded as usual using µ-convexity and L-smoothness of Fk:

− 2αtEt〈wt −w∗,gt〉

= −2αt

N∑
k=1

pk〈wt −w∗,∇Fk(wk
t)〉

= −2αt

N∑
k=1

pk〈wt −wk
t ,∇Fk(wk

t)〉 − 2αt

N∑
k=1

pk〈wk
t −w∗,∇Fk(wk

t)〉

≤ −2αt

N∑
k=1

pk〈wt −wk
t ,∇Fk(wk

t)〉+ 2αt

N∑
k=1

pk(Fk(w∗)− Fk(wk
t))

− αtµ
N∑
k=1

pk‖wk
t −w∗‖2

≤ 2αt

N∑
k=1

pk

[
Fk(wk

t)− Fk(wt) +
L

2
‖wt −wk

t ‖2 + Fk(w∗)− Fk(wk
t)

]

− αtµ‖
N∑
k=1

pk(wk
t −w∗)‖2

247

= αtL
N∑
k=1

pk‖wt −wk
t ‖2 + 2αt

N∑
k=1

pk [Fk(w∗)− Fk(wt)]− αtµ‖wt −w∗‖2

= αtL

N∑
k=1

pk‖wt −wk
t ‖2 − 2αt

N∑
k=1

pkFk(wt)− αtµ‖wt −w∗‖2

and so

E‖wt+1 −w∗‖2 ≤ E(1− αtµ)‖wt −w∗‖2 − 2αtF (wt) + α2
t ‖gt‖2 + αtL

N∑
k=1

pk‖wt −wk
t ‖2

Applying this recursive relation to ‖wt−w∗‖2 and using ‖wt−1−wk
t−1‖

2 ≡ 0, we further

obtain

E‖wt+1 −w∗‖2

≤ E(1− αtµ)
(

(1− αt−1µ)‖wt−1 −w∗‖2 − 2αt−1F (wt−1) + α2
t−1‖gt−1‖2

)
− 2αtF (wt) + α2

t ‖gt‖2 + αtL
N∑
k=1

pk‖wt −wk
t ‖2

Now instead of bounding
∑N
k=1 pk‖wt−wk

t ‖2 using the arguments in the general convex case,

we follow [127] and use the fact that in the overparameterized setting, w∗ is a minimizer of each

`(w, x
j
k) and that each ` is l-smooth to obtain ‖∇Fk(wt−1, ξ

k
t−1)‖2 ≤ 2l(Fk(wt−1, ξ

k
t−1)−

Fk(w∗, ξkt−1)), where recall Fk(w, ξkt−1) = `(w, ξkt−1), so that

N∑
k=1

pk‖wt −wk
t ‖2 =

N∑
k=1

pk‖wt−1 − αt−1gt−1 −wk
t−1 + αt−1gt−1,k‖2

=
N∑
k=1

pkα
2
t−1‖gt−1 − gt−1,k‖2

= α2
t−1

N∑
k=1

pk(‖gt−1,k‖2 − ‖gt−1‖2)

248

= α2
t−1

N∑
k=1

pk‖∇Fk(wt−1, ξ
k
t−1)‖2 − α2

t−1‖gt−1‖2

≤ α2
t−1

N∑
k=1

pk2l(Fk(wt−1, ξ
k
t−1)− Fk(w∗, ξkt−1))− α2

t−1‖gt−1‖2

again using wt−1 = wk
t−1. Taking expectation with respect to ξkt−1’s and using the fact that

F (w∗) = 0, we have

Et−1

N∑
k=1

pk‖wt −wk
t ‖2 ≤ 2lα2

t−1

N∑
k=1

pkFk(wt−1)− α2
t−1‖gt−1‖2

= 2lα2
t−1F (wt−1)− α2

t−1‖gt−1‖2

Note also that

‖gt−1‖2 = ‖
N∑
k=1

pk∇Fk(wt−1, ξ
k
t−1)‖2

while

‖gt‖2 = ‖
N∑
k=1

pk∇Fk(wk
t , ξ

k
t)‖2

≤ 2‖
N∑
k=1

pk∇Fk(wt, ξ
k
t)‖2 + 2‖

N∑
k=1

pk(∇Fk(wt, ξ
k
t)−∇Fk(wk

t , ξ
k
t))‖2

≤ 2‖
N∑
k=1

pk∇Fk(wt, ξ
k
t)‖2 + 2

N∑
k=1

pkl
2‖wt −wk

t ‖2

Substituting these into the bound for ‖wt+1 −w∗‖2, we have

E‖wt+1 −w∗‖2

249

≤E(1− αtµ)((1− αt−1µ)‖wt−1 −w∗‖2 − 2αt−1F (wt−1) + α2
t−1‖gt−1‖2)

− 2αtF (wt) + 2α2
t ‖

N∑
k=1

pk∇Fk(wt, ξ
k
t)‖2

+
(

2l2α2
t−1α

2
t + αtα

2
t−1L

)(
2lF (wt−1)− ‖gt−1‖2

)

E‖wt+1 −w∗‖2

≤E(1− αtµ)(1− αt−1µ)‖wt−1 −w∗‖2 − 2αt(F (wt)− αt‖
N∑
k=1

pk∇Fk(wt, ξ
k
t)‖2)

−2αt−1(1− αtµ)

(1−
lαt−1(2l2α2

t + αtL)

1− αtµ
)F (wt−1)− αt−1

2
‖
N∑
k=1

pk∇Fk(wt−1, ξ
k
t−1)‖2


from which we can conclude that

E‖wt+1 −w∗‖2 ≤(1− αtµ)(1− αt−1µ)E‖wt−1 −w∗‖2

if we can choose αt, αt−1 to guarantee

E(F (wt)− αt‖
N∑
k=1

pk∇Fk(wt, ξ
k
t)‖2) ≥ 0

E

(1−
lαt−1(2l2α2

t + αtL)

1− αtµ
)F (wt−1)− αt−1

2
‖
N∑
k=1

pk∇Fk(wt−1, ξ
k
t−1)‖2

 ≥ 0

250

Note that

Et‖
N∑
k=1

pk∇Fk(wt, ξ
k
t)‖2

=Et〈
N∑
k=1

pk∇Fk(wt, ξ
k
t),

N∑
k=1

pk∇Fk(wt, ξ
k
t)〉

=
N∑
k=1

p2
kEt‖∇Fk(wt, ξ

k
t)‖2 +

N∑
k=1

∑
j 6=k

pjpkEt〈∇Fk(wt, ξ
k
t),∇Fj(wt, ξ

j
t)〉

=
N∑
k=1

p2
kEt‖∇Fk(wt, ξ

k
t)‖2 +

N∑
k=1

∑
j 6=k

pjpk〈∇Fk(wt),∇Fj(wt)〉

=
N∑
k=1

p2
kEt‖∇Fk(wt, ξ

k
t)‖2 +

N∑
k=1

N∑
j=1

pjpk〈∇Fk(wt),∇Fj(wt)〉

−
N∑
k=1

p2
k‖∇Fk(wt)‖2

Et‖
N∑
k=1

pk∇Fk(wt, ξ
k
t)‖2

≤
N∑
k=1

p2
kEt‖∇Fk(wt, ξ

k
t)‖2 + ‖

∑
k

pk∇Fk(wt)‖2 −
1

N
νmin‖

∑
k

pk∇Fk(wt)‖2

=
N∑
k=1

p2
kEt‖∇Fk(wt, ξ

k
t)‖2 + (1− 1

N
νmin)‖∇F (wt)‖2

and so following [127] if we let αt = min{ qN
2lνmax

, 1−q
2L(1− 1

N νmin)
} for a q ∈ [0, 1] to be optimized

251

later, we have

Et(F (wt)− αt‖
N∑
k=1

pk∇Fk(wt, ξ
k
t)‖2)

≥Et
N∑
k=1

pkFk(wt)− αt

 N∑
k=1

p2
kEt‖∇Fk(wt, ξ

k
t)‖2 + (1− 1

N
νmin)‖∇F (wt)‖2


≥Et

N∑
k=1

pk(qFk(wt, ξ
k
t)− αt

1

N
νmax‖∇Fk(wt, ξ

k
t)‖2)

+ ((1− q)F (wt)− αt(1−
1

N
νmin)‖∇F (wt)‖2)

≥qEt
N∑
k=1

pk(Fk(wt, ξ
k
t)− 1

2l
‖∇Fk(wt, ξ

k
t)‖2) + (1− q)(F (wt)−

1

2L
‖∇F (wt)‖2)

≥0

again using w∗ optimizes Fk(w, ξkt) with Fk(w∗, ξkt) = 0.

Maximizing αt = min{ qN
2lνmax

, 1−q
2L(1− 1

N
νmin)
} over q ∈ [0, 1], we see that q = lνmax

lνmax+L(N−νmin)

results in the fastest convergence, and this translates to αt = 1
2

N
lνmax+L(N−νmin)

. Next we

claim that αt−1 = c1
2

N
lνmax+L(N−νmin)

also guarantees

E(1−
lαt−1(2l2α2

t + αtL)

1− αtµ
)F (wt−1)− αt−1

2
‖
N∑
k=1

pk∇Fk(wt−1, ξ
k
t−1)‖2 ≥ 0

Note that by scaling αt−1 by a constant c ≤ 1 if necessary, we can guarantee

lαt−1(2l2α2
t+αtL)

1−αtµ
≤ 1

2 , and so the condition is equivalent to

F (wt−1)− αt−1‖
N∑
k=1

pk∇Fk(wt−1, ξ
k
t−1)‖2 ≥ 0

which was shown to hold with αt−1 ≤ 1
2

N
lνmax+L(N−νmin)

.

252

For the proof of general E ≥ 2, we use the following two identities:

‖gt‖2 ≤ 2‖
N∑
k=1

pk∇Fk(wt, ξ
k
t)‖2 + 2

N∑
k=1

pkl
2‖wt −wk

t ‖2

E
N∑
k=1

pk‖wt −wk
t ‖2

≤E2(1 + 2l2α2
t−1)

N∑
k=1

pk‖wt−1 −wk
t−1‖

2 + 8α2
t−1lF (wt−1)− 2α2

t−1‖gt−1‖2

where the first inequality has been established before. To establish the second inequality,

note that

N∑
k=1

pk‖wt −wk
t ‖2 =

N∑
k=1

pk‖wt−1 − αt−1gt−1 −wk
t−1 + αt−1gt−1,k‖2

≤ 2
N∑
k=1

pk

(
‖wt−1 −wk

t−1‖
2 + ‖αt−1gt−1 − αt−1gt−1,k‖2

)

and

∑
k

pk‖gt−1,k − gt−1‖2 =
∑
k

pk(‖gt−1,k‖2 − ‖gt−1‖2)

=
∑
k

pk‖∇Fk(wt−1, ξ
k
t−1) +∇Fk(wk

t−1, ξ
k
t−1)−∇Fk(wt−1, ξ

k
t−1)‖2 − ‖gt−1‖2

≤ 2
∑
k

pk

(
‖∇Fk(wt−1, ξ

k
t−1)‖2 + l2‖wk

t−1 −wt−1‖2
)
− ‖gt−1‖2

253

so that using the l-smoothness of `,

E
N∑
k=1

pk‖wt −wk
t ‖2

≤E2(1 + 2l2α2
t−1)

N∑
k=1

pk‖wt−1 −wk
t−1‖

2 + 4α2
t−1

∑
k

pk‖∇Fk(wt−1, ξ
k
t−1)‖2

− 2α2
t−1‖gt−1‖2

≤E2(1 + 2l2α2
t−1)

N∑
k=1

pk‖wt−1 −wk
t−1‖

2 + 4α2
t−12l

∑
k

pk(Fk(wt−1, ξ
k
t−1)

− Fk(w∗, ξkt−1))− 2α2
t−1‖gt−1‖2

=E2(1 + 2l2α2
t−1)

N∑
k=1

pk‖wt−1 −wk
t−1‖

2 + 8α2
t−1lF (wt−1)− 2α2

t−1‖gt−1‖2

Using the first inequality, we have

E‖wt+1 −w∗‖2 ≤ E(1− αtµ)‖wt −w∗‖2

− 2αtF (wt) + 2α2
t ‖

N∑
k=1

pk∇Fk(wt, ξ
k
t)‖2

+ (2α2
t l

2 + αtL)
N∑
k=1

pk‖wt −wk
t ‖2

and we choose αt and αt−1 such that E(F (wt) − αt‖
∑N
k=1 pk∇Fk(wt, ξ

k
t)‖2) ≥ 0 and

(2α2
t l

2 + αtL) ≤ (1− αtµ)(2α2
t−1l

2 + αt−1L)/3. This gives

E‖wt+1 −w∗‖2 ≤ E(1− αtµ)[(1− αt−1µ)‖wt−1 −w∗‖2 − 2αt−1F (wt−1)

+ 2α2
t−1‖

N∑
k=1

pk∇Fk(wt−1, ξ
k
t−1)‖2

254

+ (2α2
t−1l

2 + αt−1L)(
N∑
k=1

pk‖wt−1 −wk
t−1‖

2 +
N∑
k=1

pk‖wt −wk
t ‖2)/3]

Using the second inequality

N∑
k=1

pk‖wt −wk
t ‖2

≤E2(1 + 2l2α2
t−1)

N∑
k=1

pk‖wt−1 −wk
t−1‖

2 + 8α2
t−1lF (wt−1)− 2α2

t−1‖gt−1‖2

and that 2(1 + 2l2α2
t−1) ≤ 3, 2α2

t−1l
2 + αt−1L ≤ 1, we have

E‖wt+1 −w∗‖2 ≤ E(1− αtµ)[(1− αt−1µ)‖wt−1 −w∗‖2

− 2αt−1F (wt−1) + 2α2
t−1‖

N∑
k=1

pk∇Fk(wt−1, ξ
k
t−1)‖2 + 8α2

t−1lF (wt−1)

+ (2α2
t−1l

2 + αt−1L)(2
N∑
k=1

pk‖wt−1 −wk
t−1‖

2)]

and if αt−1 is chosen such that

(F (wt−1)− 4αt−1lF (wt−1))− αt−1‖
N∑
k=1

pk∇Fk(wt−1, ξ
k
t−1)‖2 ≥ 0

and

(2α2
t−1l

2 + αt−1L)(1− αt−1µ)

≤ (2α2
t−2l

2 + αt−2L)/3

255

we again have

E‖wt+1 −w∗‖2 ≤ E(1− αtµ)(1− αt−1µ)[‖wt−1 −w∗‖2

+ (2α2
t−2l

2 + αt−2L) · (2
N∑
k=1

pk‖wt−1 −wk
t−1‖

2)/3]

Applying the above derivation iteratively τ < E times, we have

E‖wt+1 −w∗‖2 ≤ E(1− αtµ) · · · (1− αt−τ+1µ)[(1− αt−τµ)‖wt−τ −w∗‖2

− 2αt−τF (wt−τ) + 2α2
t−τ‖

N∑
k=1

pk∇Fk(wt−τ , ξ
k
t−τ)‖2 + 8τα2

t−τ lF (wt−τ)

+ (2α2
t−τ l

2 + αt−τL)((τ + 1)
N∑
k=1

pk‖wt−τ −wk
t−τ‖2)]

as long as the step sizes αt−τ are chosen such that the following inequalities hold

(2α2
t−τ l

2 + αt−τL)(1− αt−τµ) ≤ (2α2
t−τ−1l

2 + αt−τ−1L)/3

2(1 + 2l2α2
t−τ) ≤ 3

2α2
t−τ l

2 + αt−τL ≤ 1

(F (wt−τ)− 4ταt−τ lF (wt−τ))− αt−τ‖
N∑
k=1

pk∇Fk(wt−τ , ξ
k
t−τ)‖2 ≥ 0

We can check that setting αt−τ = c 1
τ+1

N
lνmax+L(N−νmin)

for some small constant c satisfies

the requirements.

Since communication is done every E iterations, wt0
= wk

t0
for some t0 > t− E , from

256

which we can conclude that

E‖wt −w∗‖2 ≤ (

t−t0−1∏
τ=1

(1− µαt−τ))‖wt0
−w∗‖2

≤ (1− c µ
E

N

lνmax + L(N − νmin)
)t−t0‖wt0

−w∗‖2

and applying this inequality to iterations between each communication round,

E‖wt −w∗‖2 ≤ (1− c µ
E

N

lνmax + L(N − νmin)
)t‖w0 −w∗‖2

= O(exp(
µ

E

N

lνmax + L(N − νmin)
t))‖w0 −w∗‖2

With partial participation, we note that

E‖wt+1 −w∗‖2 = E‖wt+1 − vt+1 + vt+1 −w∗‖2

= E‖wt+1 − vt+1‖2 + E‖vt+1 −w∗‖2

=
1

K

∑
k

pkE‖wk
t+1 −wt+1‖2 + E‖vt+1 −w∗‖2

and so the recursive identity becomes

E‖wt+1 −w∗‖2 ≤ E(1− αtµ) · · · (1− αt−τ+1µ)[(1− αt−τµ)‖wt−τ −w∗‖2

− 2αt−τF (wt−τ) + 2α2
t−τ‖

N∑
k=1

pk∇Fk(wt−τ , ξ
k
t−τ)‖2 + 8τα2

t−τ lF (wt−τ)

+ (2α2
t−τ l

2 + αt−τL+
1

K
)((τ + 1)

N∑
k=1

pk‖wt−τ −wk
t−τ‖2)]

257

which requires

(2α2
t−τ l

2 + αt−τL+
1

K
)(1− αt−τµ) ≤ (2α2

t−τ−1l
2 + αt−τ−1L+

1

K
)/3

2(1 + 2l2α2
t−τ) ≤ 3

2α2
t−τ l

2 + αt−τL+
1

K
≤ 1

(F (wt−τ)− 4ταt−τ lF (wt−τ))− αt−τ‖
N∑
k=1

pk∇Fk(wt−τ , ξ
k
t−τ)‖2 ≥ 0

to hold. Again setting αt−τ = c 1
τ+1

N
lνmax+L(N−νmin)

for a possibly different constant from

before satisfies the requirements.

Finally, using the L-smoothness of F ,

F (wT)− F (w∗) ≤ L

2
E‖wT −w∗‖2 = O(L exp(− µ

E

N

lνmax + L(N − νmin)
T))‖w0 −w∗‖2

Geometric Convergence of FedAvg for Overparameterized Linear Re-

gression

We first provide details on quantities used in the proof of results on linear regression in

Section 6.5 in the main text. The local device objectives are now given by the sum of

squares Fk(w) = 1
2nk

∑nk
j=1(w

Txjk − zjk)
2, and there exists w∗ such that F (w∗) ≡ 0. Define

the local Hessian matrix as Hk := 1
nk

∑nk
j=1 x

j
k(x

j
k)T , and the stochastic Hessian matrix

as H̃k
t := ξkt (ξkt)T , where ξkt is the stochastic sample on the kth device at time t. Define

l to be the smallest positive number such that E‖ξkt ‖2ξkt (ξkt)T � lHk for all k. Note that

258

l ≤ maxk,j ‖x
j
k‖

2. Let L and µ be lower and upper bounds of non-zero eigenvalues of Hk.

Define κ1 := l/µ and κ := L/µ.

Following [119, 87], we define the statistical condition number κ̃ as the smallest positive

real number such that E
∑
k pkH̃

k
tH
−1H̃k

t ≤ κ̃H. The condition numbers κ1 and κ̃ are

important in the characterization of convergence rates for FedAvg algorithms. Note that

κ1 > κ and κ1 > κ̃.

Let H =
∑
k pkH

k. In general H has zero eigenvalues. However, because the null space of

H and range of H are orthogonal, in our subsequence analysis it suffices to project wt −w∗

onto the range of H, thus we may restrict to the non-zero eigenvalue of H.

A useful observation is that we can use w∗Tx
j
k − z

j
k ≡ 0 to rewrite the local objectives as

Fk(w) = 1
2〈w −w∗,Hk(w −w∗)〉 ≡ 1

2‖w −w∗‖2
Hk :

Fk(w) =
1

2nk

nk∑
j=1

(wTxk,j − zk,j − (w∗Txk,j − zk,j))
2 =

1

2nk

nk∑
j=1

((w −w∗)Txk,j)
2

=
1

2
〈w −w∗,Hk(w −w∗)〉 =

1

2
‖w −w∗‖2

Hk

so that F (w) = 1
2‖w −w∗‖2H .

Finally, note that EH̃k
t = 1

nk

∑nk
j=1 x

j
k(x

j
k)T = Hk and gt,k = H̃k

t (wk
t − w∗) while

gt =
∑N
k=1 pk∇Fk(wk

t , ξ
k
t) =

∑N
k=1 pkH̃

k
t (wk

t −w∗) and gt =
∑N
k=1 pkH

k(wk
t −w∗)

Theorem 19. For the overparamterized linear regression problem, FedAvg with communi-

cation every E iterations with constant step size α = O(1
E

N
lνmax+µ(N−νmin)

) has geometric

259

convergence:

EF (wT) ≤ O
(
L exp(− NT

E(νmaxκ1 + (N − νmin))
)‖w0 −w∗‖2

)
.

Proof. We again show the result first when E = 2 and t− 1 is a communication round. We

have

‖wt+1 −w∗‖2 = ‖(wt − αtgt)−w∗‖2

= ‖wt −w∗‖2 − 2αt〈wt −w∗,gt〉+ α2
t ‖gt‖2

and

− 2αtEt〈wt −w∗,gt〉

= −2αt

N∑
k=1

pk〈wt −w∗,∇Fk(wk
t)〉

= −2αt

N∑
k=1

pk〈wt −wk
t ,∇Fk(wk

t)〉 − 2αt

N∑
k=1

pk〈wk
t −w∗,∇Fk(wk

t)〉

= −2αt

N∑
k=1

pk〈wt −wk
t ,∇Fk(wk

t)〉 − 2αt

N∑
k=1

pk〈wk
t −w∗,Hk(wk

t −w∗)〉

= −2αt

N∑
k=1

pk〈wt −wk
t ,∇Fk(wk

t)〉 − 4αt

N∑
k=1

pkFk(wk
t)

≤ 2αt

N∑
k=1

pk(Fk(wk
t)− Fk(wt) +

L

2
‖wt −wk

t ‖2)− 4αt

N∑
k=1

pkFk(wk
t)

= αtL
N∑
k=1

pk‖wt −wk
t ‖2 − 2αt

N∑
k=1

pkFk(wt)− 2αt

N∑
k=1

pkFk(wk
t)

= αtL

N∑
k=1

pk‖wt −wk
t ‖2 − αt

N∑
k=1

pk〈(wt −w∗),Hk(wt −w∗)〉 − 2αt

N∑
k=1

pkFk(wk
t)

260

and

‖gt‖2 = ‖
N∑
k=1

pkH̃
k
t (wk

t −w∗)‖2

= ‖
N∑
k=1

pkH̃
k
t (wt −w∗) +

N∑
k=1

pkH̃
k
t (wk

t −wt)‖2

≤ 2‖
N∑
k=1

pkH̃
k
t (wt −w∗)‖2 + 2‖

N∑
k=1

pkH̃
k
t (wk

t −wt)‖2

which gives

E‖wt+1 −w∗‖2

≤E‖wt −w∗‖2 − αt
N∑
k=1

pk〈wt −w∗,Hkwt −w∗〉+ 2α2
t ‖

N∑
k=1

pkH̃
k
t (wt −w∗)‖2

+ αtL
N∑
k=1

pk‖wt −wk
t ‖2 + 2α2

t ‖
N∑
k=1

pkH̃
k
t (wk

t −wt)‖2 − 2αt

N∑
k=1

pkFk(wk
t)

following [127] we first prove that

E‖wt −w∗‖2 − αt
N∑
k=1

pk〈(wt −w∗),Hk(wt −w∗)〉+ 2α2
t ‖

N∑
k=1

pkH̃
k
t (wt −w∗)‖2

≤ (1− N

8(νmaxκ1 + (N − νmin))
)E‖wt −w∗‖2

with appropriately chosen αt. Compared to the rate O(N
νmaxκ1+(N−νmin)κ

) for general

strongly convex and smooth objectives, this is an improvement as linear speedup is now

available for a larger range of N .

261

We have

Et‖
N∑
k=1

pkH̃
k
t (wt −w∗)‖2

= Et〈
N∑
k=1

pkH̃
k
t (wt −w∗),

N∑
k=1

pkH̃
k
t (wt −w∗)〉

=
N∑
k=1

p2
kEt‖H̃

k
t (wt −w∗)‖2 +

N∑
k=1

∑
j 6=k

pjpkEt〈H̃k
t (wt −w∗), H̃j

t (wt −w∗)〉

=
N∑
k=1

p2
kEt‖H̃

k
t (wt −w∗)‖2 +

N∑
k=1

∑
j 6=k

pjpkEt〈Hk(wt −w∗),Hj(wt −w∗)〉

=
N∑
k=1

p2
kEt‖H̃

k
t (wt −w∗)‖2 +

N∑
k=1

N∑
j=1

pjpkEt〈Hk(wt −w∗),Hj(wt −w∗)〉

−
N∑
k=1

p2
k‖H

k(wt −w∗)‖2

=
N∑
k=1

p2
kEt‖H̃

k
t (wt −w∗)‖2 + ‖

∑
k

pkH
k(wt −w∗)‖2 −

N∑
k=1

p2
k‖H

k(wt −w∗)‖2

≤
N∑
k=1

p2
kEt‖H̃

k
t (wt −w∗)‖2 + ‖

∑
k

pkH
k(wt −w∗)‖2 − 1

N
νmin‖

∑
k

pkH
k(wt −w∗)‖2

≤ 1

N
νmax

N∑
k=1

pkEt‖H̃k
t (wt −w∗)‖2 + (1− 1

N
νmin)‖

∑
k

pkH
k(wt −w∗)‖2

≤ 1

N
νmaxl

N∑
k=1

pk〈(wt −w∗),Hk(wt −w∗)〉+ (1− 1

N
νmin)‖

∑
k

pkH
k(wt −w∗)‖2

=
1

N
νmaxl〈(wt −w∗),H(wt −w∗)〉+ (1− 1

N
νmin)〈wt −w∗,H2(wt −w∗)〉

using ‖H̃k
t ‖ ≤ l.

Now we have

E‖wt −w∗‖2 − αt
N∑
k=1

pk〈(wt −w∗),Hk(wt −w∗)〉+ 2α2
t ‖

N∑
k=1

pkH̃
k
t (wt −w∗)‖2 =

262

〈wt −w∗, (I − αtH + 2α2
t (
νmaxl

N
H +

N − νmin

N
H2))(wt −w∗)〉

and it remains to bound the maximum eigenvalue of

(I − αtH + 2α2
t (
νmaxl

N
H +

N − νmin

N
H2))

and we bound this following [127]. If we choose αt < N
2(νmaxl+(N−νmin)L)

, then

−αtH + 2α2
t (
νmaxl

N
H +

N − νmin

N
H2) ≺ 0

and the convergence rate is given by the maximum of 1− αtλ+ 2α2
t (
νmaxl
N λ+

N−νmin
N λ2)

maximized over the non-zero eigenvalues λ of H. To select the step size αt that gives the

smallest upper bound, we then minimize over αt, resulting in

min
αt<

N
2(νmaxl+(N−νmin)L)

max
λ>0:∃v,Hv=λv

{
1− αtλ+ 2α2

t (
νmaxl

N
λ+

N − νmin

N
λ2)

}

Since the objective is quadratic in λ, the maximum is achieved at either the largest eigenvalue

λmax of H or the smallest non-zero eigenvalue λmin of H.

When N ≤ 4νmaxl
L−λmin

+ 4νmin, i.e. when N = O(l/λmin) = O(κ1), the optimal objective

value is achieved at λmin and the optimal step size is given by αt = N
4(νmaxl+(N−νmin)λmin)

.

The optimal convergence rate (i.e. the optimal objective value) is equal to

1− 1

8

Nλmin

(νmaxl + (N − νmin)λmin)
= 1− 1

8

N

(νmaxκ1 + (N − νmin))
.

This implies that when N = O(κ1), the optimal convergence rate has a linear speedup in N .

263

When N is larger, this step size is no longer optimal, but we still have 1− 1
8

N
(νmaxκ1+(N−νmin))

as an upper bound on the convergence rate.

Now we have proved

E‖wt+1 −w∗‖2

≤(1− 1

8

N

(νmaxκ1 + (N − νmin))
)E‖wt −w∗‖2

+ αtL

N∑
k=1

pk‖wt −wk
t ‖2 + 2α2

t ‖
N∑
k=1

pkH̃
k
t (wk

t −wt)‖2 − 2αt

N∑
k=1

pkFk(wk
t)

Next we bound terms in the second line using a similar argument as the general case. We

have

2α2
t ‖

N∑
k=1

pkH̃
k
t (wk

t −wt)‖2 ≤ 2α2
t l

2
N∑
k=1

pk‖wt −wk
t ‖2

and

E
N∑
k=1

pk‖wt −wk
t ‖2 ≤ E2(1 + 2l2α2

t−1)
N∑
k=1

pk‖wt−1 −wk
t−1‖

2 + 8α2
t−1lF (wt−1)

= 4α2
t−1l〈wt−1 −w∗,H(wt−1 −w∗)〉

and if αt, αt−1 satisfy

αtL+ 2α2
t ≤ (1− 1

8

N

(νmaxκ1 + (N − νmin))
)(αt−1L+ 2α2

t−1)/3

2(1 + 2l2α2
t−1) ≤ 3

αtL+ 2α2
t ≤ 1

264

we have

E‖wt+1 −w∗‖2

≤ (1− 1

8

N

(νmaxκ1 + (N − νmin))
)[E‖wt−1 −w∗‖2 − αt〈wt−1 −w∗,Hwt−1 −w∗〉

+ 2α2
t ‖

N∑
k=1

pkH̃
k
t (wt −w∗)‖2

+ (αt−1L+ 2α2
t−1) · 2

N∑
k=1

pk‖wt−1 −wk
t−1‖

2 + 4α2
t−1l〈wt−1 −w∗,H(wt−1 −w∗)〉]

and again by choosing αt−1 = c N
8(νmaxl+(N−νmin)λmin)

for a small constant c, we can

guarantee that

E‖wt−1 −w∗‖2 − αt−1〈wt−1 −w∗,Hwt−1 −w∗〉

+2α2
t−1‖

N∑
k=1

pkH̃
k
t−1(wt−1 −w∗)‖2 + 4α2

t−1l〈wt−1 −w∗,H(wt−1 −w∗)〉

≤ (1− c N

16(νmaxl + (N − νmin)λmin)
)E‖wt−1 −w∗‖2

For general E, we have the recursive relation

E‖wt+1 −w∗‖2

≤E(1− c1

8

N

(νmaxκ1 + (N − νmin))
) · · · (1− c 1

8τ

N

(νmaxκ1 + (N − νmin))
)[‖wt−τ −w∗‖2

− αt−τ 〈wt−τ −w∗,Hwt−τ −w∗〉+ 2α2
t−τ‖

N∑
k=1

pkH̃
k
t−τ (wt−τ −w∗)‖2

+ 4τα2
t−1l〈wt−1 −w∗,H(wt−1 −w∗)〉

+ (2α2
t−τ l

2 + αt−τL)((τ + 1)
N∑
k=1

pk‖wt−τ −wk
t−τ‖2)]

265

as long as the step sizes are chosen αt−τ = c N
4τ(νmaxl+(N−νmin)λmin)

such that the following

inequalities hold

(2α2
t−τ l

2 + αt−τL) ≤ (1− αt−τµ)(2α2
t−τ−1l

2 + αt−τ−1L)/3

2(1 + 2l2α2
t−τ) ≤ 3

2α2
t−τ l

2 + αt−τL ≤ 1

and

‖wt−τ −w∗‖2 − αt−τ 〈wt−τ −w∗,Hwt−τ −w∗〉

+ 2α2
t−τ‖

N∑
k=1

pkH̃
k
t−τ (wt−τ −w∗)‖2 + 4τα2

t−1l〈wt−1 −w∗,H(wt−1 −w∗)〉

≤ (1− c N

8(τ + 1)(νmaxκ1 + (N − νmin))
)E‖wt−τ −w∗‖2

which gives

E‖wt −w∗‖2 ≤ (1− c 1

8E

N

(νmaxκ1 + (N − νmin))
)t‖w0 −w∗‖2

= O(exp(− 1

E

N

(νmaxκ1 + (N − νmin))
t))‖w0 −w∗‖2

and with partial participation, the same bound holds with a possibly different choice of c.

266

Geometric Convergence of FedMaSS for Overparameterized Linear

Regression

Theorem 20. For the overparamterized linear regression problem, FedMaSS with com-

munication every E iterations and constant step sizes η1 = O(1
E

N
lνmax+µ(N−νmin)

), η2 =

η1(1− 1
κ̃)

1+ 1√
κ1κ̃

, γ =
1− 1√

κ1κ̃

1+ 1√
κ1κ̃

has geometric convergence:

EF (wT) ≤ O
(
L exp(− NT

E(νmax
√
κ1κ̃+ (N − νmin))

)‖w0 −w∗‖2
)
.

Proof. The proof is based on results in [119] which originally proposed the MaSS algorithm.

Note that the update can equivalently be written as

vkt+1 = (1− αk)vkt + αkukt − δkgt,k

wk
t+1 =


ukt − ηkgt,k if t+ 1 /∈ IE∑N
k=1 pk

[
ukt − ηkgt,k

]
if t+ 1 ∈ IE

ukt+1 =
αk

1 + αk
vkt+1 +

1

1 + αk
wk
t+1

where there is a bijection between the parameters 1−αk
1+αk

= γk, ηk = ηk1 ,
ηk−αkδk

1+αk
= ηk2 , and

we further introduce an auxiliary parameter vkt , which is initialized at vk0 . We also note that

when δk = ηk

αk
, the update reduces to the Nesterov accelerated SGD. This version of the

FedAvg algorithm with local MaSS updates is used for analyzing the geometric convergence.

As before, define the virtual sequences wt =
∑N
k=1 pkw

k
t , vt =

∑N
k=1 pkv

k
t , ut =∑N

k=1 pku
k
t , and gt =

∑N
k=1 pkEgt,k. We have Egt = gt and wt+1 = ut − ηtgt, vt+1 =

267

(1− αk)vt + αkwt − δkgt, and ut+1 = αk

1+αk
vt+1 + 1

1+αk
wt+1.

We first prove the theorem with E = 2 and t− 1 being a communication round. We have

‖vt+1 −w∗‖2
H−1

= ‖(1− α)vt + αut − δ
∑
k

pkH̃
k
t (ukt −w∗)−w∗‖2

H−1

= ‖(1− α)vt + αut −w∗‖2
H−1 + δ2‖

∑
k

pkH̃
k
t (ukt −w∗)‖2

H−1

− 2δ〈
∑
k

pkH̃
k
t (ukt −w∗), (1− α)vt + αut −w∗〉

H−1

≤ ‖(1− α)vt + αut −w∗‖2
H−1︸ ︷︷ ︸

A

+ 2δ2‖
∑
k

pkH̃
k
t (ut −w∗)‖2

H−1︸ ︷︷ ︸
B

+ 2δ2‖
∑
k

pkH̃
k
t (ut − ukt)‖2

H−1−2δ〈
∑
k

pkH̃
k
t (ut −w∗), (1− α)vt + αut −w∗〉

H−1︸ ︷︷ ︸
C

− 2δ〈
∑
k

pkH̃
k
t (ukt − ut), (1− α)vt + αut −w∗〉

H−1

Following the proof in [119],

EA ≤ E(1− α)‖vt −w∗‖2
H−1 + α‖ut −w∗‖2

H−1

≤ E(1− α)‖vt −w∗‖2
H−1 +

α

µ
‖ut −w∗‖2

using the convexity of the norm ‖ · ‖
H−1 and that µ is the smallest non-zero eigenvalue of H.

Now

EB ≤ 2δ2(νmax
1

N
κ̃+

N − νmin

N
)‖(ut −w∗)‖2H

268

using the folowing bound:

E

(∑
k

pkH̃
k
t

)
H−1

(∑
k

pkH̃
k
t

)

= E
∑
k

p2
kH̃

k
tH
−1H̃k

t +
∑
k 6=j

pkpjH̃
k
tH
−1H̃

j
t

� νmax
1

N
E
∑
k

pkH̃
k
tH
−1H̃k

t +
∑
k 6=j

pkpjH
kH−1Hj

= νmax
1

N
E
∑
k

pkH̃
k
tH
−1H̃k

t +
∑
k,j

pkpjH
kH−1Hj −

∑
k

p2
kH

kH−1Hk

� νmax
1

N
E
∑
k

pkH̃
k
tH
−1H̃k

t + H− 1

N
νmin

∑
k

pkH
kH−1Hk

� νmax
1

N
E
∑
k

pkH̃
k
tH
−1H̃k

t + H− 1

N
νmin(

∑
k

pkH
k)H−1(

∑
k

pkH
k)

= νmax
1

N
E
∑
k

pkH̃
k
tH
−1H̃k

t +
N − νmin

N
H

� νmax
1

N
κ̃H +

N − νmin

N
H

where we have used E
∑
k pkH̃

k
tH
−1H̃k

t ≤ κ̃H by definition of κ̃ and the operator convexity

of the mapping W → WH−1W .

Finally,

EC = −E2δ〈
∑
k

pkH̃
k
t (ut −w∗), (1− α)vt + αut −w∗〉

H−1

= −2δ〈
∑
k

pkH
k(ut −w∗), (1− α)vt + αut −w∗〉

H−1

= −2δ〈(ut −w∗), (1− α)vt + αut −w∗〉

= −2δ〈(ut −w∗),ut −w∗ +
1− α
α

(ut −wt)〉

= −2δ‖ut −w∗‖2 +
1− α
α

δ(‖wt −w∗‖2 − ‖ut −w∗‖2 − ‖wt − ut‖2)

269

≤ 1− α
α

δ‖wt −w∗‖2 − 1− α
α

δ‖ut −w∗‖2

where we have used

(1− α)vt + αut

= (1− α)((1 + α)ut −wt)/α + αut

=
1

α
ut −

1− α
α

wt

and the identity that −2〈a,b〉 = ‖a‖2 + ‖b‖2 − ‖a + b‖2.

It follows that

E‖vt+1 −w∗‖2
H−1

≤ (1− α)‖vt −w∗‖2
H−1 +

1− α
α

δ‖wt −w∗‖2

+ (
α

µ
− 1− α

α
δ)‖ut −w∗‖2 + 2δ2(νmax

1

N
κ̃+

N − νmin

N
)‖(ut −w∗)‖2H

+ 2δ2‖
∑
k

pkH̃
k
t (ut − ukt)‖2

H−1

− 2δ〈
∑
k

pkH̃
k
t (ukt − ut), (1− α)vt + αut −w∗〉

H−1

On the other hand,

E‖wt+1 −w∗‖2 = E‖ut −w∗ − η
∑
k

pkH̃
k
t (ut −w∗)‖2

= E‖ut −w∗‖2 − 2η‖ut −w∗‖2H + η2‖
∑
k

pkH̃
k
t (ut −w∗)‖2

≤ E‖ut −w∗‖2 − 2η‖ut −w∗‖2H + η2(νmax
1

N
`+ L

N − νmin

N
)‖ut −w∗‖2

270

where we use the following bound:

E

(∑
k

pkH̃
k
t

)(∑
k

pkH̃
k
t

)

= E
∑
k

p2
kH̃

k
t H̃

k
t +

∑
k 6=j

pkpjH̃
k
t H̃

j
t

� νmax
1

N
E
∑
k

pkH̃
k
t H̃

k
t +

∑
k 6=j

pkpjH
kHj

= νmax
1

N
E
∑
k

pkH̃
k
t H̃

k
t +

∑
k,j

pkpjH
kHj −

∑
k

p2
kH

kHk

� νmax
1

N
E
∑
k

pkH̃
k
t H̃

k
t + H2 − 1

N
νmin

∑
k

pkH
kHk

� νmax
1

N
E
∑
k

pkH̃
k
t H̃

k
t + H2 − 1

N
νmin(

∑
k

pkH
k)(
∑
k

pkH
k)

= νmax
1

N
E
∑
k

pkH̃
k
t H̃

k
t +

N − νmin

N
H2

� νmax
1

N
lH + L

N − νmin

N
H

again using that W → W 2 is operator convex and that EH̃k
t H̃

k
t � lHk by definition of l.

Combining the bounds for E‖wt+1 −w∗‖2 and E‖vt+1 −w∗‖2
H−1 ,

E
δ

α
‖wt+1 −w∗‖2 + ‖vt+1 −w∗‖2

H−1

≤ (1− α)‖vt −w∗‖2
H−1 +

1− α
α

δ‖wt −w∗‖2 + (
α

µ
− δ)‖ut −w∗‖2

+ (2δ2(νmax
1

N
κ̃+

N − νmin

N
)− 2ηδ/α + η2δ(νmax

1

N
l + L

N − νmin

N
)/α)‖ut −w∗‖2

+ 2δ2‖
∑
k

pkH̃
k
t (ut − ukt)‖2

H−1

+ δL
∑
k

pk‖(ut − ukt)‖2
H−1

271

Following [119] if we choose step sizes so that

α

µ
− δ ≤ 0

2δ2(νmax
1

N
κ̃+

N − νmin

N
)− 2ηδ/α + η2δ(νmax

1

N
l + L

N − νmin

N
)/α ≤ 0

or equivalently

α/δ ≤ µ

2αδ(νmax
1

N
κ̃+

N − νmin

N
) + η(η(νmax

1

N
l + L

N − νmin

N
)− 2) ≤ 0

the second and third terms are negative. To optimize the step sizes, note that the two

inequalities imply

α2 ≤ η(2− η(νmax
1

N
l + L

N − νmin

N
))µ/2(νmax

1

N
κ̃+

N − νmin

N
)

and maximizing the right hand side with respect to η, which is quadratic, we see that

η ≡ 1/(νmax
1
N l + L

N−νmin
N) maximizes the right hand side, with

α ≡ 1√
2(νmax

1
N κ1 + κ

N−νmin
N)(νmax

1
N κ̃+

N−νmin
N)

δ ≡ α

µ
=

η

α(νmax
1
N κ̃+

N−νmin
N)

Note that α = 1√
2(νmax

1
N κ1+κ

N−νmin
N)(νmax

1
N κ̃+

N−νmin
N)

= O(N√
κ1κ̃

) when N =

O(min{κ̃, κ1/κ}).

Finally, to deal with the terms 2δ2‖
∑
k pkH̃

k
t (ut − ukt)‖2

H−1+δL
∑
k pk‖(ut − ukt)‖2

H−1 , we

272

can use Jensen

2δ2‖
∑
k

pkH̃
k
t (ut − ukt)‖2

H−1 + δL
∑
k

pk‖(ut − ukt)‖2
H−1

≤ (2δ2l2 + δL)
∑
k

pk‖ut − ukt ‖2H−1

= (2δ2l2 + δL)
∑
k

pk‖
α

1 + α
vt +

1

1 + α
wt − (

α

1 + α
vkt +

1

1 + α
wkt)‖2

H−1

≤ (2δ2l2 + δL)(2(
α

1 + α
)2δ2 + 2(

1

1 + α
)2η2)

∑
k

pk‖H̃k
t−1(ut−1 −w∗)‖2

≤ (2δ2l2 + δL)(2(
α

1 + α
)2δ2 + 2(

1

1 + α
)2η2)l2‖(ut−1 −w∗)‖2

which can be combined with the terms with ‖(ut−1 −w∗)‖2 in the recursive expansion of

E δ
α‖wt −w∗‖2 + ‖vt −w∗‖2

H−1 :

E
δ

α
‖wt −w∗‖2 + ‖vt −w∗‖2

H−1

≤ (1− α)‖vt−1 −w∗‖2
H−1 +

1− α
α

δ‖wt−1 −w∗‖2 + (
α

µ
− δ)‖ut−1 −w∗‖2

+ (2δ2(νmax
1

N
κ̃+

N − νmin

N
)− 2ηδ/α + η2δ(νmax

1

N
l + L

N − νmin

N
)/α)‖ut−1 −w∗‖2

and the step sizes can be chosen so that the resulting coefficients are negative. Therefore, we

have shown that

E‖wt+1 −w∗‖2 ≤ (1− α)2‖wt−1 −w∗‖2

where α = 1√
2(νmax

1
N κ1+κ

N−νmin
N)(νmax

1
N κ̃+

N−νmin
N)

= O(N
νmax

√
κ1κ̃+N−νmin

) when N =

O(min{κ̃, κ1/κ}).

273

For general E > 1, choosing η = c/E(νmax
1
N l + L

N−νmin
N) for some small constant c

results in α = O(1

E

√
(νmax

1
N κ1+κ

N−νmin
N)(νmax

1
N κ̃+

N−νmin
N)

) and this guarantees that

E‖wt −w∗‖2 ≤ (1− α)t‖w0 −w∗‖2

for all t.

Details on Experiments and Additional Results

We described the precise procedure to reproduce the results in this chapter. As we mentioned

in Section 6.6, we empirically verified the linear speed up on various convex settings for both

FedAvg and its accelerated variants. For all the results, we set random seeds as 0, 1, 2 and

report the best convergence rate across the three folds. For each run, we initialize w0 = 0

and measure the number of iteration to reach the target accuracy ε. We use the small-scale

dataset w8a [155], which consists of n = 49749 samples with feature dimension d = 300.

The label is either positive one or negative one. The dataset has sparse binary features in

{0, 1}. Each sample has 11.15 non-zero feature values out of 300 features on average. We

set the batch size equal to four across all experiments. In the next following subsections, we

introduce parameter searching in each objective separately.

Strongly Convex Objectives We first consider the strongly convex objective function,

where we use a regularized binary logistic regression with regularization λ = 1/n ≈ 2e− 5.

We evenly distributed on 1, 2, 4, 8, 16, 32 devices and report the number of iterations/rounds

needed to converge to ε−accuracy, where ε = 0.005. The optimal objective function value f∗

274

is set as f∗ = 0.126433176216545. This is determined numerically and we follow the setting

in [178]. The learning rate is decayed as the ηt = min(η0,
nc

1+t), where we extensively search

the best learning rate c ∈ {2−1c0, 2
−2c0, c0, 2c0, 2

2c0}. In this case, we search the initial

learning rate η0 ∈ {1, 32} and c0 = 1/8.

Convex Smooth Objectives We also use binary logistic regression without regu-

larization. The setting is almost same as its regularized counter part. We also evenly

distributed all the samples on 1, 2, 4, 8, 16, 32 devices. The figure shows the number of

iterations needed to converge to ε−accuracy, where ε = 0.02. The optiaml objective func-

tion value is set as f∗ = 0.11379089057514849, determined numerically. The learning rate

is decayed as the ηt = min(η0,
nc

1+t), where we extensively search the best learning rate

c ∈ {2−1c0, 2
−2c0, c0, 2c0, 2

2c0}. In this case, we search the initial learning rate η0 ∈ {1, 32}

and c0 = 1/8.

Linear regression For linear regression, we use the same feature vectors from w8a

dataset and generate ground truth [w∗, b∗] from a multivariate normal distribution with zero

mean and standard deviation one. Then we generate label based on yi = xtiw
∗ + b∗. This

procedure will ensure we satisfy the over-parameterized setting as required in our theorems.

We also evenly distributed all the samples on 1, 2, 4, 8, 16, 32 devices. The figure shows the

number of iterations needed to converge to ε−accuracy, where ε = 0.02. The optiaml objective

function value is f∗ = 0. The learning rate is decayed as the ηt = min(η0,
nc

1+t), where we

extensively search the best learning rate c ∈ {2−1c0, 2
−2c0, c0, 2c0, 2

2c0}. In this case, we

search the initial learning rate η0 ∈ {0.1, 0.12} and c0 = 1/256.

Partial Participation To examine the linear speedup of FedAvg in partial participation

setting, we evenly distributed data on 4, 8, 16, 32, 64, 128 devices and uniformly sample 50%

devices without replacement. All other hyperparameters are the same as previous sections.

275

100 101

Local steps (E)

103

N
um

be
r

of
 it

er
at

io
ns

 (
T)

K=4
K=8
K=16
K=32

100 101

Local steps (E)

103

N
um

be
r

of
 it

er
at

io
ns

 (
T)

K=4
K=8
K=16
K=32

100 101

Local steps (E)

N
um

be
r

of
 it

er
at

io
ns

 (
T)

K=4
K=8
K=16
K=32

100 101

Local steps (E)

103

N
um

be
r

of
 r

ou
nd

s
(T

/E
)

K=4
K=8
K=16
K=32

100 101

Local steps (E)

102

103

N
um

be
r

of
 r

ou
nd

s
(T

/E
)

K=4
K=8
K=16
K=32

100 101

Local steps (E)

102

103

N
um

be
r

of
 r

ou
nd

s
(T

/E
)

K=4
K=8
K=16
K=32

(a) Strongly convex objective (b) Convex smooth objective (c) Linear regression

Figure B.1: The convergence of FedAvg w.r.t the number of local steps E.

Nesterov accelerated FedAvg The experiments of Nesterov accelerated FedAvg (see

update formula below) uses the same setting as previous three sections for vanilia FedAvg.

ykt+1 = wk
t − αtgt,k

wk
t+1 =


ykt+1 + βt(y

k
t+1 − ykt) if t+ 1 /∈ IE∑

k∈St+1

(
ykt+1 + βt(y

k
t+1 − ykt)

)
if t+ 1 ∈ IE

We set βt = 0.1 and search αt in the same way as ηt in FedAvg.

The impact of E. In this subsection, we further examine how does the number of local

steps (E) affect convergence. As shown in Figure B.1, the number of iterations increases as

E increase, which slow down the convergence in terms of gradient computation. However,

it can save communication costs as the number of rounds decreased when the E increases.

This showcase that we need a proper choice of E to trade-off the communication cost and

convergence speed.

276

BIBLIOGRAPHY

277

BIBLIOGRAPHY

[1] Abbas Abdolmaleki, Jost Tobias Springenberg, Yuval Tassa, Remi Munos, Nicolas
Heess, and Martin Riedmiller. Maximum a posteriori policy optimisation. arXiv
preprint arXiv:1806.06920, 2018.

[2] Naoki Abe, Prem Melville, Cezar Pendus, Chandan K Reddy, David L Jensen, Vince P
Thomas, James J Bennett, Gary F Anderson, Brent R Cooley, Melissa Kowalczyk, et al.
Optimizing debt collections using constrained reinforcement learning. In SIGKDD,
pages 75–84. ACM, 2010.

[3] Naoki Abe, Naval Verma, Chid Apte, and Robert Schroko. Cross channel optimized
marketing by reinforcement learning. In SIGKDD, pages 767–772. ACM, 2004.

[4] YuXuan Liu Pieter Abbeel†‡ Sergey Levine Abhishek Gupta†, Coline Devin†. Learning
invariant feature spaces to transfer skills with reinforcement learning. In Under review
as a conference paper at ICLR 2017, 2017.

[5] Zeyuan Allen-Zhu, Yuanzhi Li, and Zhao Song. A convergence theory for deep learning
via over-parameterization. arXiv preprint arXiv:1811.03962, 2018.

[6] Saleema Amershi, Maya Cakmak, W Bradley Knox, and Todd Kulesza. Power to the
people: The role of humans in interactive machine learning. AAAI, 2014.

[7] Saleema Amershi, James Fogarty, and Daniel Weld. Regroup: Interactive machine
learning for on-demand group creation in social networks. In Proceedings of the SIGCHI,
pages 21–30. ACM, 2012.

[8] Saleema Amershi, Bongshin Lee, Ashish Kapoor, Ratul Mahajan, and Blaine Christian.
Cuet: human-guided fast and accurate network alarm triage. In Proceedings of the
SIGCHI, pages 157–166. ACM, 2011.

[9] Mihael Ankerst, Christian Elsen, Martin Ester, and Hans-Peter Kriegel. Visual clas-
sification: an interactive approach to decision tree construction. In SIGKDD, pages
392–396. ACM, 1999.

[10] A. Argyriou, T. Evgeniou, and M. Pontil. Convex multi-task feature learning. Machine
Learning, 73(3):243–272, 2008.

[11] Kai Arulkumaran, Marc Peter Deisenroth, Miles Brundage, and Anil Anthony Bharath.
A brief survey of deep reinforcement learning. arXiv preprint arXiv:1708.05866, 2017.

278

[12] Dzmitry Bahdanau, Philemon Brakel, Kelvin Xu, Anirudh Goyal, Ryan Lowe, Joelle
Pineau, Aaron Courville, and Yoshua Bengio. An actor-critic algorithm for sequence
prediction. arXiv preprint arXiv:1607.07086, 2016.

[13] Bart Bakker and Tom Heskes. Task clustering and gating for bayesian multitask
learning. The Journal of Machine Learning Research, 4:83–99, 2003.

[14] Bram Bakker, Shimon Whiteson, Leon Kester, and Frans CA Groen. Traffic light
control by multiagent reinforcement learning systems. In Interactive Collaborative
Information Systems, pages 475–510. Springer, 2010.

[15] Peter L Bartlett and Shahar Mendelson. Rademacher and gaussian complexities: Risk
bounds and structural results. Journal of Machine Learning Research, 3(Nov):463–482,
2002.

[16] Amir Beck and Marc Teboulle. A fast iterative shrinkage-thresholding algorithm for
linear inverse problems. SIAM journal on imaging sciences, 2(1):183–202, 2009.

[17] Marc G Bellemare, Will Dabney, and Rémi Munos. A distributional perspective on
reinforcement learning. arXiv preprint arXiv:1707.06887, 2017.

[18] Marc G Bellemare, Yavar Naddaf, Joel Veness, and Michael Bowling. The arcade
learning environment: An evaluation platform for general agents. J. Artif. Intell.
Res.(JAIR), 47:253–279, 2013.

[19] Shai Ben-David and Reba Schuller. Exploiting task relatedness for multiple task
learning. In Learning Theory and Kernel Machines, pages 567–580. Springer, 2003.

[20] Jacob Bien, Jonathan Taylor, and Robert Tibshirani. A lasso for hierarchical interactions.
Annals of statistics, 41(3):1111, 2013.

[21] Christopher M Bishop. Pattern recognition and machine learning. springer, 2006.

[22] Edwin V Bonilla, Kian M Chai, and Christopher Williams. Multi-task gaussian process
prediction. In NIPS, pages 153–160, 2007.

[23] Stephen Boyd, Neal Parikh, Eric Chu, Borja Peleato, and Jonathan Eckstein. Dis-
tributed optimization and statistical learning via the alternating direction method of
multipliers. Foundations and Trends R© in Machine Learning, 3(1):1–122, 2011.

[24] Greg Brockman, Vicki Cheung, Ludwig Pettersson, Jonas Schneider, John Schulman,
Jie Tang, and Wojciech Zaremba. Openai gym. arXiv preprint arXiv:1606.01540, 2016.

[25] Cristian Bucilu, Rich Caruana, and Alexandru Niculescu-Mizil. Model compression. In
SIGKDD, pages 535–541. ACM, 2006.

279

[26] Chris Burges, Tal Shaked, Erin Renshaw, Ari Lazier, Matt Deeds, Nicole Hamilton,
and Greg Hullender. Learning to rank using gradient descent. In Proceedings of the
22nd international conference on Machine learning, pages 89–96. ACM, 2005.

[27] Lucian Busoniu, Robert Babuska, and Bart De Schutter. A comprehensive survey of
multiagent reinforcement learning. IEEE Trans. Systems, Man, and Cybernetics, Part
C, 38(2):156–172, 2008.

[28] Lucian Buşoniu, Robert Babuška, and Bart De Schutter. Multi-agent reinforcement
learning: An overview. In Innovations in multi-agent systems and applications-1, pages
183–221. Springer, 2010.

[29] Remi J Cadoret, William R Yates, George Woodworth, and Mark A Stewart. Genetic-
environmental interaction in the genesis of aggressivity and conduct disorders. Archives
of General Psychiatry, 52(11):916–924, 1995.

[30] Alfredo Canziani, Adam Paszke, and Eugenio Culurciello. An analysis of deep neural
network models for practical applications. arXiv preprint arXiv:1605.07678, 2016.

[31] Zhe Cao, Tao Qin, Tie-Yan Liu, Ming-Feng Tsai, and Hang Li. Learning to rank: from
pairwise approach to listwise approach. In ICML, pages 129–136. ACM, 2007.

[32] Marc Carreras, Junku Yuh, Joan Batlle, and Pere Ridao. A behavior-based scheme
using reinforcement learning for autonomous underwater vehicles. IEEE Journal of
Oceanic Engineering, 30(2):416–427, 2005.

[33] Rich Caruana. Multitask learning. Machine learning, 28(1):41–75, 1997.

[34] Pablo Samuel Castro, Subhodeep Moitra, Carles Gelada, Saurabh Kumar, and Marc G.
Bellemare. Dopamine: A research framework for deep reinforcement learning. CoRR,
abs/1812.06110, 2018.

[35] Shiyu Chang, Guo-Jun Qi, Charu C Aggarwal, Jiayu Zhou, Meng Wang, and Thomas S
Huang. Factorized similarity learning in networks. In ICDM, pages 60–69. IEEE, 2014.

[36] Fei Chen, Zhenhua Dong, Zhenguo Li, and Xiuqiang He. Federated meta-learning for
recommendation. arXiv preprint arXiv:1802.07876, 2018.

[37] Jianhui Chen, Jiayu Zhou, and Jieping Ye. Integrating low-rank and group-sparse
structures for robust multi-task learning. In SIGKDD, pages 42–50. ACM, 2011.

[38] Xiaohui Chen, Xinghua Shi, Xing Xu, Zhiyong Wang, Ryan Mills, Charles Lee, and
Jinbo Xu. A two-graph guided multi-task lasso approach for eqtl mapping. In AISTATS,
pages 208–217, 2012.

280

[39] Nam Hee Choi, William Li, and Ji Zhu. Variable selection with the strong heredity
constraint and its oracle property. JASA, 105(489):354–364, 2010.

[40] Didi Chuxing.

[41] Djork-Arné Clevert, Thomas Unterthiner, and Sepp Hochreiter. Fast and accurate deep
network learning by exponential linear units (elus). arXiv preprint arXiv:1511.07289,
2015.

[42] Will Dabney, Georg Ostrovski, David Silver, and Rémi Munos. Implicit quantile
networks for distributional reinforcement learning. arXiv preprint arXiv:1806.06923,
2018.

[43] Bo Dai, Albert Shaw, Lihong Li, Lin Xiao, Niao He, Zhen Liu, Jianshu Chen, and
Le Song. Sbeed: Convergent reinforcement learning with nonlinear function approxima-
tion. arXiv preprint arXiv:1712.10285, 2017.

[44] Hal Daumé, John Langford, and Daniel Marcu. Search-based structured prediction.
Machine learning, 75(3):297–325, 2009.

[45] Peter Dayan and Geoffrey E Hinton. Using expectation-maximization for reinforcement
learning. Neural Computation, 9(2):271–278, 1997.

[46] Thomas Degris, Martha White, and Richard S Sutton. Off-policy actor-critic. arXiv
preprint arXiv:1205.4839, 2012.

[47] Pierre J Dejax and Teodor Gabriel Crainic. Survey paper—a review of empty flows and
fleet management models in freight transportation. Transportation science, 21(4):227–
248, 1987.

[48] Prafulla Dhariwal, Christopher Hesse, Oleg Klimov, Alex Nichol, Matthias Plappert,
Alec Radford, John Schulman, Szymon Sidor, Yuhuai Wu, and Peter Zhokhov. Openai
baselines. https://github.com/openai/baselines, 2017.

[49] Jilles Steeve Dibangoye and Olivier Buffet. Learning to Act in Decentralized Partially
Observable MDPs. PhD thesis, INRIA Grenoble-Rhone-Alpes-CHROMA Team; INRIA
Nancy, équipe LARSEN, 2018.

[50] Pierre Dillenbourg. Collaborative Learning: Cognitive and Computational Approaches.
Advances in Learning and Instruction Series. ERIC, 1999.

[51] Pierre Dutilleul. The mle algorithm for the matrix normal distribution. J STAT
COMPUT SIM, 64(2):105–123, 1999.

281

https://github.com/openai/baselines

[52] Thalia C Eley, Karen Sugden, Alejandro Corsico, Alice M Gregory, Pak Sham, Peter
McGuffin, Robert Plomin, and Ian W Craig. Gene–environment interaction analysis of
serotonin system markers with adolescent depression. Molecular psychiatry, 9(10):908–
915, 2004.

[53] A Evgeniou and Massimiliano Pontil. Multi-task feature learning. NIPS, 19:41, 2007.

[54] Theodoros Evgeniou, Charles A Micchelli, and Massimiliano Pontil. Learning multiple
tasks with kernel methods. In JMLR, pages 615–637, 2005.

[55] Theodoros Evgeniou and Massimiliano Pontil. Regularized multi–task learning. In
SIGKDD, pages 109–117. ACM, 2004.

[56] Benjamin Eysenbach and Sergey Levine. If maxent rl is the answer, what is the question?
arXiv preprint arXiv:1910.01913, 2019.

[57] Alireza Fallah, Aryan Mokhtari, and Asuman Ozdaglar. Personalized federated learning:
A meta-learning approach. arXiv preprint arXiv:2002.07948, 2020.

[58] Hongliang Fei and Jun Huan. Structured feature selection and task relationship inference
for multi-task learning. Knowledge and information systems, 35(2):345–364, 2013.

[59] Chelsea Finn. Learning to learn with gradients. PhD thesis, UC Berkeley, 2018.

[60] Jakob Foerster, Gregory Farquhar, Triantafyllos Afouras, Nantas Nardelli, and Shimon
Whiteson. Counterfactual multi-agent policy gradients. arXiv preprint arXiv:1705.08926,
2017.

[61] Jerome Friedman, Trevor Hastie, and Robert Tibshirani. A note on the group lasso
and a sparse group lasso. arXiv preprint arXiv:1001.0736, 2010.

[62] Silvia Gandy, Benjamin Recht, and Isao Yamada. Tensor completion and low-n-rank
tensor recovery via convex optimization. Inverse Problems, 27(2):025010, 2011.

[63] JM Gatt, CB Nemeroff, C Dobson-Stone, RH Paul, RA Bryant, PR Schofield, E Gordon,
AH Kemp, and LM Williams. Interactions between bdnf val66met polymorphism and
early life stress predict brain and arousal pathways to syndromal depression and anxiety.
Molecular psychiatry, 14(7):681–695, 2009.

[64] Gregory A Godfrey and Warren B Powell. An adaptive dynamic programming algorithm
for dynamic fleet management, i: Single period travel times. Transportation Science,
36(1):21–39, 2002.

[65] Gregory A Godfrey and Warren B Powell. An adaptive dynamic programming algorithm
for dynamic fleet management, ii: Multiperiod travel times. Transportation Science,
36(1):40–54, 2002.

282

[66] Pinghua Gong, Jieping Ye, and Changshui Zhang. Robust multi-task feature learning.
In SIGKDD, pages 895–903. ACM, 2012.

[67] Pinghua Gong, Changshui Zhang, Zhaosong Lu, Jianhua Z Huang, and Jieping Ye.
A general iterative shrinkage and thresholding algorithm for non-convex regularized
optimization problems. In ICML, volume 28, page 37, 2013.

[68] Pinghua Gong, Jiayu Zhou, Wei Fan, and Jieping Ye. Efficient multi-task feature
learning with calibration. In SIGKDD, pages 761–770. ACM, 2014.

[69] Michael Grant, Stephen Boyd, and Yinyu Ye. Cvx: Matlab software for disciplined
convex programming, 2008.

[70] Nizar Grira, Michel Crucianu, and Nozha Boujemaa. Active semi-supervised fuzzy
clustering for image database categorization. In Proceedings of the 7th ACM SIGMM
international workshop on Multimedia information retrieval, pages 9–16. ACM, 2005.

[71] Audrunas Gruslys, Will Dabney, Mohammad Gheshlaghi Azar, Bilal Piot, Marc Belle-
mare, and Remi Munos. The reactor: A fast and sample-efficient actor-critic agent for
reinforcement learning. 2018.

[72] Shixiang Gu, Timothy Lillicrap, Zoubin Ghahramani, Richard E Turner, and Sergey
Levine. Q-prop: Sample-efficient policy gradient with an off-policy critic. arXiv preprint
arXiv:1611.02247, 2016.

[73] Carlos Guestrin, Michail Lagoudakis, and Ronald Parr. Coordinated reinforcement
learning. In ICML, volume 2, pages 227–234, 2002.

[74] Tuomas Haarnoja, Aurick Zhou, Pieter Abbeel, and Sergey Levine. Soft actor-critic:
Off-policy maximum entropy deep reinforcement learning with a stochastic actor. In
International Conference on Machine Learning, pages 1856–1865, 2018.

[75] Farzin Haddadpour and Mehrdad Mahdavi. On the convergence of local descent
methods in federated learning. arXiv preprint arXiv:1910.14425, 2019.

[76] Shih-Ping Han. A successive projection method. Mathematical Programming, 40(1-3):1–
14, 1988.

[77] Andrew Hard, Chloé M Kiddon, Daniel Ramage, Francoise Beaufays, Hubert Eichner,
Kanishka Rao, Rajiv Mathews, and Sean Augenstein. Federated learning for mobile
keyboard prediction, 2018.

[78] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Identity mappings in deep
residual networks. In ECCV, pages 630–645. Springer, 2016.

283

[79] Kari Hemminki, Justo Lorenzo Bermejo, and Asta Försti. The balance between heritable
and environmental aetiology of human disease. Nature Reviews Genetics, 7(12):958–965,
2006.

[80] Matteo Hessel, Joseph Modayil, Hado Van Hasselt, Tom Schaul, Georg Ostrovski, Will
Dabney, Dan Horgan, Bilal Piot, Mohammad Azar, and David Silver. Rainbow: Com-
bining improvements in deep reinforcement learning. arXiv preprint arXiv:1710.02298,
2017.

[81] Todd Hester, Matej Vecerik, Olivier Pietquin, Marc Lanctot, Tom Schaul, Bilal Piot,
Dan Horgan, John Quan, Andrew Sendonaris, Ian Osband, et al. Deep q-learning from
demonstrations. In Thirty-Second AAAI Conference on Artificial Intelligence, 2018.

[82] Geoffrey Hinton, Oriol Vinyals, and Jeff Dean. Distilling the knowledge in a neural
network. arXiv preprint arXiv:1503.02531, 2015.

[83] Kurt Hornik, Maxwell Stinchcombe, and Halbert White. Multilayer feedforward
networks are universal approximators. Neural networks, 2(5):359–366, 1989.

[84] Zhouyuan Huo, Qian Yang, Bin Gu, Lawrence Carin Huang, et al. Faster on-device
training using new federated momentum algorithm. arXiv preprint arXiv:2002.02090,
2020.

[85] Andrew Ilyas, Logan Engstrom, Shibani Santurkar, Dimitris Tsipras, Firdaus Janoos,
Larry Rudolph, and Aleksander Madry. Are deep policy gradient algorithms truly
policy gradient algorithms? arXiv preprint arXiv:1811.02553, 2018.

[86] Max Jaderberg, Volodymyr Mnih, Wojciech Marian Czarnecki, Tom Schaul, Joel Z
Leibo, David Silver, and Koray Kavukcuoglu. Reinforcement learning with unsupervised
auxiliary tasks. arXiv preprint arXiv:1611.05397, 2016.

[87] Prateek Jain, Sham M Kakade, Rahul Kidambi, Praneeth Netrapalli, and Aaron Sidford.
Accelerating stochastic gradient descent. In Proc. STAT, volume 1050, page 26, 2017.

[88] Ali Jalali, Sujay Sanghavi, Chao Ruan, and Pradeep K Ravikumar. A dirty model for
multi-task learning. In NIPS.

[89] Shuiwang Ji and Jieping Ye. An accelerated gradient method for trace norm minimiza-
tion. In ICML, pages 457–464. ACM, 2009.

[90] Nan Jiang and Alekh Agarwal. Open problem: The dependence of sample complexity
lower bounds on planning horizon. In Conference On Learning Theory, pages 3395–3398,
2018.

284

[91] Nan Jiang, Akshay Krishnamurthy, Alekh Agarwal, John Langford, and Robert E
Schapire. Contextual decision processes with low bellman rank are pac-learnable. In
Proceedings of the 34th International Conference on Machine Learning-Volume 70,
pages 1704–1713. JMLR. org, 2017.

[92] Peng Jiang and Gagan Agrawal. A linear speedup analysis of distributed deep learning
with sparse and quantized communication. In Advances in Neural Information Processing
Systems, pages 2525–2536, 2018.

[93] Jeff Kahn, Nathan Linial, and Alex Samorodnitsky. Inclusion-exclusion: Exact and
approximate. Combinatorica, 16(4):465–477, 1996.

[94] Peter Kairouz, H Brendan McMahan, Brendan Avent, Aurélien Bellet, Mehdi Bennis,
Arjun Nitin Bhagoji, Keith Bonawitz, Zachary Charles, Graham Cormode, Rachel
Cummings, et al. Advances and open problems in federated learning. arXiv preprint
arXiv:1912.04977, 2019.

[95] Sham Machandranath Kakade et al. On the sample complexity of reinforcement learning.
PhD thesis, University of London London, England, 2003.

[96] Tsuyoshi Kato, Hisashi Kashima, Masashi Sugiyama, and Kiyoshi Asai. Multi-task
learning via conic programming. In NIPS, pages 737–744, 2008.

[97] Michael J Kearns, Yishay Mansour, and Andrew Y Ng. Approximate planning in
large pomdps via reusable trajectories. In Advances in Neural Information Processing
Systems, pages 1001–1007, 2000.

[98] A Khaled, K Mishchenko, and P Richtárik. Tighter theory for local sgd on identical
and heterogeneous data. In The 23rd International Conference on Artificial Intelligence
and Statistics (AISTATS 2020), 2020.

[99] Ahmed Khaled, Konstantin Mishchenko, and Peter Richtárik. First analysis of local gd
on heterogeneous data. NeurIPS Workshop on Federated Learning for Data Privacy
and Confidentiality, 2019.

[100] Rahul Kidambi, Praneeth Netrapalli, Prateek Jain, and Sham Kakade. On the insuffi-
ciency of existing momentum schemes for stochastic optimization. In 2018 Information
Theory and Applications Workshop (ITA), pages 1–9. IEEE, 2018.

[101] Seyoung Kim and Eric P Xing. Tree-guided group lasso for multi-task regression with
structured sparsity. ICML, 2010.

[102] Jens Kober and Jan R Peters. Policy search for motor primitives in robotics. In
Advances in neural information processing systems, pages 849–856, 2009.

285

[103] Jelle R Kok and Nikos Vlassis. Collaborative multiagent reinforcement learning by
payoff propagation. JMLR, 7(Sep):1789–1828, 2006.

[104] Anastasia Koloskova, Nicolas Loizou, Sadra Boreiri, Martin Jaggi, and Sebastian U
Stich. A unified theory of decentralized sgd with changing topology and local updates.
arXiv preprint arXiv:2003.10422, 2020.

[105] Akshay Krishnamurthy, Alekh Agarwal, and John Langford. Pac reinforcement learning
with rich observations. In Advances in Neural Information Processing Systems, pages
1840–1848, 2016.

[106] Monica S Lam. Autonomy and privacy with open federated virtual assistants.

[107] Guillaume Lample and Devendra Singh Chaplot. Playing fps games with deep rein-
forcement learning. arXiv preprint arXiv:1609.05521, 2016.

[108] Jason Lee, Yuekai Sun, and Michael Saunders. Proximal newton-type methods for
convex optimization. In NIPS, pages 836–844, 2012.

[109] Tian Li, Anit Kumar Sahu, Manzil Zaheer, Maziar Sanjabi, Ameet Talwalkar, and
Virginia Smith. Federated optimization in heterogeneous networks. MLSys, 2020.

[110] Xiang Li, Kaixuan Huang, Wenhao Yang, Shusen Wang, and Zhihua Zhang. On the
convergence of fedavg on non-iid data. ICLR, 2020.

[111] Xiujun Li, Yun-Nung Chen, Lihong Li, Jianfeng Gao, and Asli Celikyilmaz. End-to-end
task-completion neural dialogue systems. arXiv preprint arXiv:1703.01008, 2017.

[112] Z Li, Y Hong, and Z Zhang. Do on-demand ride-sharing services affect traffic conges-
tion? evidence from uber entry. Technical report, Working paper, available at SSRN:
https://ssrn. com/abstract= 2838043, 2016.

[113] Xianfeng Liang, Shuheng Shen, Jingchang Liu, Zhen Pan, Enhong Chen, and Yifei
Cheng. Variance reduced local sgd with lower communication complexity. arXiv preprint
arXiv:1912.12844, 2019.

[114] Kaixiang Lin, Shu Wang, and Jiayu Zhou. Collaborative deep reinforcement learning.
arXiv preprint arXiv:1702.05796, 2017.

[115] Kaixiang Lin, Jianpeng Xu, Inci M Baytas, Shuiwang Ji, and Jiayu Zhou. Multi-task
feature interaction learning. In Proceedings of the 22Nd ACM SIGKDD International
Conference on Knowledge Discovery and Data Mining, pages 1735–1744, 2016.

[116] Kaixiang Lin, Renyu Zhao, Zhe Xu, and Jiayu Zhou. Efficient large-scale fleet man-
agement via multi-agent deep reinforcement learning. Proceedings of the 24th ACM
SIGKDD International Conference on Knowledge, 2018.

286

[117] Kaixiang Lin and Jiayu Zhou. Interactive multi-task relationship learning. In 2016
IEEE 16th International Conference on Data Mining (ICDM), pages 241–250. IEEE,
2016.

[118] Kaixiang Lin and Jiayu Zhou. Ranking policy gradient. In International Conference
on Learning Representations, 2020.

[119] Chaoyue Liu and Mikhail Belkin. Accelerating sgd with momentum for over-
parameterized learning. ICLR, 2020.

[120] Jun Liu, Shuiwang Ji, and Jieping Ye. Multi-task feature learning via efficient `2,1-norm
minimization. In Proceedings of the 25th conference on UAI, pages 339–348. AUAI
Press, 2009.

[121] Jun Liu and Jieping Ye. Efficient l1/lq norm regularization. arXiv:1009.4766, 2010.

[122] Tianyi Liu, Zhehui Chen, Enlu Zhou, and Tuo Zhao. Toward deeper understanding
of nonconvex stochastic optimization with momentum using diffusion approximations.
arXiv preprint arXiv:1802.05155, 2018.

[123] Wei Liu, Li Chen, Yunfei Chen, and Wenyi Zhang. Accelerating federated learning via
momentum gradient descent. IEEE Transactions on Parallel and Distributed Systems,
2020.

[124] Yashu Liu, Jie Wang, and Jieping Ye. An efficient algorithm for weak hierarchical lasso.
In SIGKDD, pages 283–292. ACM, 2014.

[125] Ryan Lowe, Yi Wu, Aviv Tamar, Jean Harb, Pieter Abbeel, and Igor Mordatch. Multi-
agent actor-critic for mixed cooperative-competitive environments. arXiv preprint
arXiv:1706.02275, 2017.

[126] Lyft.

[127] Siyuan Ma, Raef Bassily, and Mikhail Belkin. The power of interpolation: Understanding
the effectiveness of sgd in modern over-parametrized learning. ICML, 2018.

[128] Michał Maciejewski and Kai Nagel. The influence of multi-agent cooperation on the
efficiency of taxi dispatching. In PPAM, pages 751–760. Springer, 2013.

[129] H Brendan McMahan, Eider Moore, Daniel Ramage, Seth Hampson, et al.
Communication-efficient learning of deep networks from decentralized data. Pro-
ceedings of the 20 th International Conference on Artificial Intelligence and Statistics
(AISTATS), 2017.

[130] Prem Melville and Vikas Sindhwani. Recommender systems. In Encyclopedia of machine
learning, pages 829–838. Springer, 2011.

287

[131] Volodymyr Mnih, Adria Puigdomenech Badia, Mehdi Mirza, Alex Graves, Timothy P
Lillicrap, Tim Harley, David Silver, and Koray Kavukcuoglu. Asynchronous methods
for deep reinforcement learning. arXiv preprint arXiv:1602.01783, 2016.

[132] Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Andrei A Rusu, Joel Veness,
Marc G Bellemare, Alex Graves, Martin Riedmiller, Andreas K Fidjeland, Georg
Ostrovski, et al. Human-level control through deep reinforcement learning. Nature,
518(7540):529–533, 2015.

[133] Mehryar Mohri, Afshin Rostamizadeh, and Ameet Talwalkar. Foundations of machine
learning. MIT press, 2018.

[134] Eric Moulines and Francis R Bach. Non-asymptotic analysis of stochastic approximation
algorithms for machine learning. In Advances in Neural Information Processing Systems,
pages 451–459, 2011.

[135] Rémi Munos, Tom Stepleton, Anna Harutyunyan, and Marc Bellemare. Safe and efficient
off-policy reinforcement learning. In Advances in Neural Information Processing Systems,
pages 1054–1062, 2016.

[136] Ofir Nachum, Mohammad Norouzi, Kelvin Xu, and Dale Schuurmans. Bridging the
gap between value and policy based reinforcement learning. In Advances in Neural
Information Processing Systems, pages 2775–2785, 2017.

[137] Arun Nair, Praveen Srinivasan, Sam Blackwell, Cagdas Alcicek, Rory Fearon, Alessandro
De Maria, Vedavyas Panneershelvam, Mustafa Suleyman, Charles Beattie, Stig Petersen,
et al. Massively parallel methods for deep reinforcement learning. arXiv preprint
arXiv:1507.04296, 2015.

[138] Deanna Needell, Rachel Ward, and Nati Srebro. Stochastic gradient descent, weighted
sampling, and the randomized kaczmarz algorithm. In Advances in neural information
processing systems, pages 1017–1025, 2014.

[139] Andrew Y Ng, Daishi Harada, and Stuart Russell. Policy invariance under reward
transformations: Theory and application to reward shaping. In ICML, volume 99,
pages 278–287, 1999.

[140] Duc Thien Nguyen, Akshat Kumar, and Hoong Chuin Lau. Collective multiagent
sequential decision making under uncertainty. AAAI, 2017.

[141] Duc Thien Nguyen, Akshat Kumar, and Hoong Chuin Lau. Policy gradient with value
function approximation for collective multiagent planning. NIPS, 2017.

288

[142] Guillaume Obozinski, Ben Taskar, and Michael I Jordan. Joint covariate selection and
joint subspace selection for multiple classification problems. Statistics and Computing,
20(2):231–252, 2010.

[143] Brendan O’Donoghue. Variational bayesian reinforcement learning with regret bounds.
arXiv preprint arXiv:1807.09647, 2018.

[144] Brendan O’Donoghue, Remi Munos, Koray Kavukcuoglu, and Volodymyr Mnih. Com-
bining policy gradient and q-learning. arXiv preprint arXiv:1611.01626, 2016.

[145] Junhyuk Oh, Yijie Guo, Satinder Singh, and Honglak Lee. Self-imitation learning.
arXiv preprint arXiv:1806.05635, 2018.

[146] Junhyuk Oh, Matteo Hessel, Wojciech M Czarnecki, Zhongwen Xu, Hado van Hasselt,
Satinder Singh, and David Silver. Discovering reinforcement learning algorithms. arXiv
preprint arXiv:2007.08794, 2020.

[147] OpenAI. Openai universe-starter-agent. https://github.com/openai/
universe-starter-agent, 2017. Accessed: 2017-0201.

[148] Takayuki Osa, Joni Pajarinen, Gerhard Neumann, J Andrew Bagnell, Pieter Abbeel,
Jan Peters, et al. An algorithmic perspective on imitation learning. Foundations and
Trends R© in Robotics, 7(1-2):1–179, 2018.

[149] Sinno Jialin Pan and Qiang Yang. A survey on transfer learning. TKDE, 22(10):1345–
1359, 2010.

[150] Neal Parikh and Stephen P Boyd. Proximal algorithms. Foundations and Trends in
optimization, 1(3):127–239, 2014.

[151] Emilio Parisotto, Jimmy Lei Ba, and Ruslan Salakhutdinov. Actor-mimic: Deep
multitask and transfer reinforcement learning. arXiv preprint arXiv:1511.06342, 2015.

[152] Jan Peters and Stefan Schaal. Reinforcement learning by reward-weighted regression
for operational space control. In Proceedings of the 24th international conference on
Machine learning, pages 745–750. ACM, 2007.

[153] Jan Peters and Stefan Schaal. Reinforcement learning of motor skills with policy
gradients. Neural networks, 21(4):682–697, 2008.

[154] Tu-Hoa Pham, Giovanni De Magistris, and Ryuki Tachibana. Optlayer-practical
constrained optimization for deep reinforcement learning in the real world. arXiv
preprint arXiv:1709.07643, 2017.

289

https://github.com/openai/universe-starter-agent
https://github.com/openai/universe-starter-agent

[155] J Platt. Fast training of support vector machines using sequential minimal optimization,
in, b. scholkopf, c. burges, a. smola,(eds.): Advances in kernel methods-support vector
learning, 1998.

[156] Martin L Puterman. Markov decision processes: discrete stochastic dynamic program-
ming. John Wiley & Sons, 2014.

[157] Zhaonan Qu*, Kaixiang Lin*, Jayant Kalagnanam, Zhaojian Li, Jiayu Zhou, and
Zhengyuan Zhou. Federated learning’s blessing: Fedavg has linear speedup. arXiv
preprint arXiv:2007.05690, 2020, * denotes equal contribution.

[158] Peter Radchenko and Gareth M James. Variable selection using adaptive nonlinear in-
teraction structures in high dimensions. Journal of the American Statistical Association,
105(492):1541–1553, 2010.

[159] Janarthanan Rajendran, Aravind Lakshminarayanan, Mitesh M Khapra, Balaraman
Ravindran, et al. A2t: Attend, adapt and transfer: Attentive deep architecture for
adaptive transfer from multiple sources. arXiv preprint arXiv:1510.02879, 2015.

[160] Tabish Rashid, Mikayel Samvelyan, Christian Schroeder de Witt, Gregory Farquhar,
Jakob Foerster, and Shimon Whiteson. Qmix: Monotonic value function factorisation
for deep multi-agent reinforcement learning. arXiv preprint arXiv:1803.11485, 2018.

[161] R Tyrrell Rockafellar. Convex analysis. Number 28. Princeton university press, 1970.

[162] Bernardino Romera-Paredes, Hane Aung, Nadia Bianchi-Berthouze, and Massimiliano
Pontil. Multilinear multitask learning. In ICML, pages 1444–1452, 2013.

[163] Stéphane Ross and Drew Bagnell. Efficient reductions for imitation learning. In
Proceedings of the thirteenth international conference on artificial intelligence and
statistics, pages 661–668, 2010.

[164] Stephane Ross and J Andrew Bagnell. Reinforcement and imitation learning via
interactive no-regret learning. arXiv preprint arXiv:1406.5979, 2014.

[165] Stéphane Ross, Geoffrey Gordon, and Drew Bagnell. A reduction of imitation learning
and structured prediction to no-regret online learning. In Proceedings of the fourteenth
international conference on artificial intelligence and statistics, pages 627–635, 2011.

[166] Andrei A Rusu, Sergio Gomez Colmenarejo, Caglar Gulcehre, Guillaume Desjardins,
James Kirkpatrick, Razvan Pascanu, Volodymyr Mnih, Koray Kavukcuoglu, and Raia
Hadsell. Policy distillation. arXiv preprint arXiv:1511.06295, 2015.

[167] Tom Schaul, John Quan, Ioannis Antonoglou, and David Silver. Prioritized experience
replay. arXiv preprint arXiv:1511.05952, 2015.

290

[168] Mark Schmidt and Nicolas Le Roux. Fast convergence of stochastic gradient descent
under a strong growth condition. arXiv preprint arXiv:1308.6370, 2013.

[169] John Schulman, Philipp Moritz, Sergey Levine, Michael Jordan, and Pieter Abbeel.
High-dimensional continuous control using generalized advantage estimation. arXiv
preprint arXiv:1506.02438, 2015.

[170] John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov.
Proximal policy optimization algorithms. arXiv preprint arXiv:1707.06347, 2017.

[171] Anton Schwaighofer, Volker Tresp, and Kai Yu. Learning gaussian process kernels via
hierarchical bayes. In NIPS, pages 1209–1216, 2004.

[172] Kiam Tian Seow, Nam Hai Dang, and Der-Horng Lee. A collaborative multiagent
taxi-dispatch system. IEEE T-ASE, 7(3):607–616, 2010.

[173] Burr Settles. Active learning literature survey. University of Wisconsin, Madison,
52(55-66):11, 2010.

[174] David Silver, Aja Huang, Chris J Maddison, Arthur Guez, Laurent Sifre, George Van
Den Driessche, Julian Schrittwieser, Ioannis Antonoglou, Veda Panneershelvam, Marc
Lanctot, et al. Mastering the game of go with deep neural networks and tree search.
Nature, 529(7587):484–489, 2016.

[175] David Silver, Julian Schrittwieser, Karen Simonyan, Ioannis Antonoglou, Aja Huang,
Arthur Guez, Thomas Hubert, Lucas Baker, Matthew Lai, Adrian Bolton, et al.
Mastering the game of go without human knowledge. Nature, 550(7676):354, 2017.

[176] Virginia Smith, Chao-Kai Chiang, Maziar Sanjabi, and Ameet S Talwalkar. Federated
multi-task learning. In Advances in Neural Information Processing Systems, pages
4424–4434, 2017.

[177] Mark John Somers. Organizational commitment, turnover and absenteeism: An
examination of direct and interaction effects. Journal of Organizational Behavior,
16(1):49–58, 1995.

[178] Sebastian U Stich. Local sgd converges fast and communicates little. ICLR, 2019.

[179] Alexander L Strehl, Lihong Li, and Michael L Littman. Reinforcement learning in finite
mdps: Pac analysis. Journal of Machine Learning Research, 10(Nov):2413–2444, 2009.

[180] Alexander L Strehl, Lihong Li, Eric Wiewiora, John Langford, and Michael L Littman.
Pac model-free reinforcement learning. In Proceedings of the 23rd international confer-
ence on Machine learning, pages 881–888. ACM, 2006.

291

[181] Thomas Strohmer and Roman Vershynin. A randomized kaczmarz algorithm with
exponential convergence. Journal of Fourier Analysis and Applications, 15(2):262, 2009.

[182] Rukhsana Sultana, Debra Boyd-Kimball, H Fai Poon, Jian Cai, William M Pierce,
Jon B Klein, Michael Merchant, William R Markesbery, and D Allan Butterfield. Redox
proteomics identification of oxidized proteins in alzheimer’s disease hippocampus and
cerebellum: an approach to understand pathological and biochemical alterations in ad.
Neurobiology of aging, 27(11):1564–1576, 2006.

[183] Qian Sun, Rita Chattopadhyay, Sethuraman Panchanathan, and Jieping Ye. A two-
stage weighting framework for multi-source domain adaptation. In NIPS, pages 505–513,
2011.

[184] Wen Sun, Arun Venkatraman, Geoffrey J Gordon, Byron Boots, and J Andrew Bagnell.
Deeply aggrevated: Differentiable imitation learning for sequential prediction. In
Proceedings of the 34th International Conference on Machine Learning-Volume 70,
pages 3309–3318. JMLR. org, 2017.

[185] Peter Sunehag, Guy Lever, Audrunas Gruslys, Wojciech Marian Czarnecki, Vinicius
Zambaldi, Max Jaderberg, Marc Lanctot, Nicolas Sonnerat, Joel Z Leibo, Karl Tuyls,
et al. Value-decomposition networks for cooperative multi-agent learning. arXiv preprint
arXiv:1706.05296, 2017.

[186] Richard S Sutton and Andrew G Barto. Reinforcement learning: An introduction,
volume 1. MIT press Cambridge, 1998.

[187] Richard S Sutton and Andrew G Barto. Reinforcement learning: An introduction. MIT
press, 2018.

[188] Umar Syed and Robert E Schapire. A reduction from apprenticeship learning to
classification. In Advances in Neural Information Processing Systems, pages 2253–2261,
2010.

[189] Ardi Tampuu, Tambet Matiisen, Dorian Kodelja, Ilya Kuzovkin, Kristjan Korjus, Juhan
Aru, Jaan Aru, and Raul Vicente. Multiagent cooperation and competition with deep
reinforcement learning. PloS one, 12(4):e0172395, 2017.

[190] Ming Tan. Multi-agent reinforcement learning: Independent vs. cooperative agents. In
ICML, pages 330–337, 1993.

[191] Matthew E Taylor and Peter Stone. Transfer learning for reinforcement learning
domains: A survey. JMLR, 10(Jul):1633–1685, 2009.

[192] Stefan J Teipel, Wolfram Bayer, Gene E Alexander, York Zebuhr, Diane Teichberg,
Luka Kulic, Marc B Schapiro, Hans-Jürgen Möller, Stanley I Rapoport, and Harald

292

Hampel. Progression of corpus callosum atrophy in alzheimer disease. Archives of
Neurology, 59(2):243–248, 2002.

[193] Devinder Thapa, In-Sung Jung, and Gi-Nam Wang. Agent based decision support
system using reinforcement learning under emergency circumstances. In International
Conference on Natural Computation, pages 888–892. Springer, 2005.

[194] Robert Tibshirani. Regression shrinkage and selection via the lasso. Journal of the
Royal Statistical Society. Series B (Methodological), pages 267–288, 1996.

[195] Ryota Tomioka, Kohei Hayashi, and Hisashi Kashima. Estimation of low-rank tensors
via convex optimization. arXiv preprint arXiv:1010.0789, 2010.

[196] Ryota Tomioka and Taiji Suzuki. Convex tensor decomposition via structured schatten
norm regularization. In NIPS, pages 1331–1339, 2013.

[197] Ahmed Touati, Pierre-Luc Bacon, Doina Precup, and Pascal Vincent. Convergent
tree-backup and retrace with function approximation. arXiv preprint arXiv:1705.09322,
2017.

[198] Paul Tseng. Convergence of a block coordinate descent method for nondifferentiable
minimization. Journal of optimization theory and applications, 109(3):475–494, 2001.

[199] Berwin A Turlach, William N Venables, and Stephen J Wright. Simultaneous variable
selection. Technometrics, 47(3):349–363, 2005.

[200] Eric Tzeng, Judy Hoffman, Trevor Darrell, and Kate Saenko. Simultaneous deep transfer
across domains and tasks. In ICCV, pages 4068–4076, 2015.

[201] Uber.

[202] Leslie G Valiant. A theory of the learnable. In Proceedings of the sixteenth annual
ACM symposium on Theory of computing, pages 436–445. ACM, 1984.

[203] Hado Van Hasselt, Arthur Guez, and David Silver. Deep reinforcement learning with
double q-learning. In AAAI, volume 2, page 5. Phoenix, AZ, 2016.

[204] Vladimir Vapnik. Estimation of dependences based on empirical data. Springer Science
& Business Media, 2006.

[205] Jianyu Wang and Gauri Joshi. Cooperative sgd: A unified framework for the design and
analysis of communication-efficient sgd algorithms. arXiv preprint arXiv:1808.07576,
2018.

293

[206] Shiqiang Wang, Tiffany Tuor, Theodoros Salonidis, Kin K Leung, Christian Makaya,
Ting He, and Kevin Chan. Adaptive federated learning in resource constrained edge
computing systems. IEEE Journal on Selected Areas in Communications, 37(6):1205–
1221, 2019.

[207] Zirui Wang, Zihang Dai, Barnabás Póczos, and Jaime Carbonell. Characterizing and
avoiding negative transfer. In Proceedings of the IEEE Conference on Computer Vision
and Pattern Recognition, pages 11293–11302, 2019.

[208] Ziyu Wang, Victor Bapst, Nicolas Heess, Volodymyr Mnih, Remi Munos, Koray
Kavukcuoglu, and Nando de Freitas. Sample efficient actor-critic with experience replay.
arXiv preprint arXiv:1611.01224, 2016.

[209] Ziyu Wang, Tom Schaul, Matteo Hessel, Hado Van Hasselt, Marc Lanctot, and Nando
De Freitas. Dueling network architectures for deep reinforcement learning. arXiv
preprint arXiv:1511.06581, 2015.

[210] Malcolm Ware, Eibe Frank, Geoffrey Holmes, Mark Hall, and Ian H Witten. Interactive
machine learning: letting users build classifiers. INT J HUM-COMPUT ST, 55(3):281–
292, 2001.

[211] Chong Wei, Yinhu Wang, Xuedong Yan, and Chunfu Shao. Look-ahead insertion policy
for a shared-taxi system based on reinforcement learning. IEEE Access, 2017.

[212] Ronald J Williams. Simple statistical gradient-following algorithms for connectionist
reinforcement learning. Machine learning, 8(3-4):229–256, 1992.

[213] Blake E Woodworth, Jialei Wang, Adam Smith, Brendan McMahan, and Nati Srebro.
Graph oracle models, lower bounds, and gaps for parallel stochastic optimization. In
Advances in neural information processing systems, pages 8496–8506, 2018.

[214] Stephen J Wright, Robert D Nowak, and Mário AT Figueiredo. Sparse reconstruction
by separable approximation. Signal Processing, IEEE Transactions on, 57(7):2479–2493,
2009.

[215] Sicheng Xiong, Javad Azimi, and Xiaoli Z Fern. Active learning of constraints for
semi-supervised clustering. TKDE, 26(1):43–54, 2014.

[216] Jianpeng Xu, Pang-Ning Tan, and Lifeng Luo. Orion: Online regularized multi-task
regression and its application to ensemble forecasting. In ICDM, pages 1061–1066.
IEEE, 2014.

[217] Yaodong Yang, Rui Luo, Minne Li, Ming Zhou, Weinan Zhang, and Jun Wang. Mean
field multi-agent reinforcement learning. ICML, 2018.

294

[218] Hao Yu, Rong Jin, and Sen Yang. On the linear speedup analysis of communication
efficient momentum sgd for distributed non-convex optimization. ICML, 2019.

[219] Hao Yu, Sen Yang, and Shenghuo Zhu. Parallel restarted sgd with faster convergence
and less communication: Demystifying why model averaging works for deep learning.
In Proceedings of the AAAI Conference on Artificial Intelligence, volume 33, pages
5693–5700, 2019.

[220] Tianhe Yu, Saurabh Kumar, Abhishek Gupta, Sergey Levine, Karol Hausman, and
Chelsea Finn. Gradient surgery for multi-task learning. arXiv preprint arXiv:2001.06782,
2020.

[221] Kun Yuan, Bicheng Ying, and Ali H Sayed. On the influence of momentum acceleration
on online learning. The Journal of Machine Learning Research, 17(1):6602–6667, 2016.

[222] Lei Yuan, Jun Liu, and Jieping Ye. Efficient methods for overlapping group lasso. In
NIPS, pages 352–360, 2011.

[223] Andrea Zanette and Emma Brunskill. Tighter problem-dependent regret bounds in
reinforcement learning without domain knowledge using value function bounds. arXiv
preprint arXiv:1901.00210, 2019.

[224] Chiyuan Zhang, Samy Bengio, Moritz Hardt, Benjamin Recht, and Oriol Vinyals.
Understanding deep learning requires rethinking generalization. arXiv preprint
arXiv:1611.03530, 2016.

[225] Yi Zhang and Jeff G Schneider. Learning multiple tasks with a sparse matrix-normal
penalty. In NIPS, pages 2550–2558, 2010.

[226] Yu Zhang and Qiang Yang. A survey on multi-task learning. arXiv preprint
arXiv:1707.08114, 2017.

[227] Yu Zhang and Dit-Yan Yeung. A convex formulation for learning task relationships in
multi-task learning. arXiv preprint arXiv:1203.3536, 2012.

[228] Yu Zhang, Dit-Yan Yeung, and Qian Xu. Probabilistic multi-task feature selection. In
NIPS, pages 2559–2567, 2010.

[229] Zhanpeng Zhang, Ping Luo, Chen Change Loy, and Xiaoou Tang. Facial landmark
detection by deep multi-task learning. In ECCV, pages 94–108. Springer, 2014.

[230] Lianmin Zheng, Jiacheng Yang, Han Cai, Weinan Zhang, Jun Wang, and Yong Yu. Ma-
gent: A many-agent reinforcement learning platform for artificial collective intelligence.
arXiv preprint arXiv:1712.00600, 2017.

295

[231] Fan Zhou and Guojing Cong. On the convergence properties of a k-step averaging
stochastic gradient descent algorithm for nonconvex optimization. IJCAI, 2018.

[232] Jiayu Zhou, Jianhui Chen, and Jieping Ye. Clustered multi-task learning via alternating
structure optimization. In NIPS, pages 702–710, 2011.

[233] Jiayu Zhou, Jianhui Chen, and Jieping Ye. Malsar: Multi-task learning via structural
regularization. Arizona State University, 2011.

[234] Jiayu Zhou, Jun Liu, Vaibhav A Narayan, Jieping Ye, Alzheimer’s Disease Neuroimaging
Initiative, et al. Modeling disease progression via multi-task learning. NeuroImage,
78:233–248, 2013.

[235] Jiayu Zhou, Lei Yuan, Jun Liu, and Jieping Ye. A multi-task learning formulation for
predicting disease progression. In SIGKDD, pages 814–822. ACM, 2011.

[236] Yuke Zhu, Roozbeh Mottaghi, Eric Kolve, Joseph J Lim, Abhinav Gupta, Li Fei-Fei, and
Ali Farhadi. Target-driven visual navigation in indoor scenes using deep reinforcement
learning. arXiv preprint arXiv:1609.05143, 2016.

296

	List of Tables
	List of Figures
	List of Algorithms
	Chapter 1Introduction
	Dissertation Contributions
	Model-driven collaboration
	Data-driven collaboration
	Large-scale Collaborative Multi-agent Learning
	The Provable Advantage of Collaborative Learning

	Dissertation Structure

	Chapter 2Background
	Collaborative Learning Problem Formulation
	A Taxonomy of Collaboration
	Model-Driven Collaboration
	Data-driven Collaboration
	Collaborative Multi-agent Learning

	Chapter 3Model-Driven Collaborative Learning
	Multi-Task Feature Interaction Learning
	Introduction
	Related Work
	Task relatedness in high order feature interactions
	Formulations and algorithms of the two MTIL approaches
	Preliminary
	Shared Interaction Approach
	Embedded Interaction Approach

	Experiments
	Synthetic Dataset
	Effectiveness of modeling feature interactions
	Effectiveness of MTIL

	School Dataset
	Modeling Alzheimer's Disease
	Discussion

	Multi-Task Relationship Learning
	Introduction
	Related Work
	Interactive Multi-Task Relationship Learning
	Revisit the Multi-task Relationship Learning
	The iMTRL Framework
	A knowledge-aware extension of MTRL
	Efficient Optimization for kMTRL
	Batch Mode Pairwise Constraints Active learning

	Experiments
	Importance of High-Quality Task Relationship
	Effectiveness of Query Strategy
	Interactive Scheme for Query Strategy
	Performance on Real Datasets

	Case Study: Brain Atrophy and Alzheimer's Disease

	Chapter 4Data-Driven Collaborative Learning
	Collaborative Deep Reinforcement Learning
	Introduction
	Related Work
	Background
	Reinforcement Learning
	Asynchronous Advantage actor-critic algorithm (A3C)
	Knowledge distillation

	Collaborative deep reinforcement learning framework
	Collaborative deep reinforcement learning
	Deep knowledge distillation
	Collaborative Asynchronous Advantage Actor-Critic
	Experiments
	Training and Evaluation
	Certificated Homogeneous transfer
	Certificated Heterogeneous Transfer
	Collaborative Deep Reinforcement Learning

	Ranking Policy Gradient
	Introduction
	Related works
	Notations and Problem Setting
	Ranking Policy Gradient
	Off-policy Learning as Supervised Learning
	An algorithmic framework for off-policy learning
	Sample Complexity and Generalization Performance
	Supervision stage: Learning efficiency
	Exploration stage: Exploration efficiency
	Joint Analysis Combining Exploration and Supervision
	Experimental Results
	Ablation Study
	Conclusion

	Chapter 5Collaborative Multi-Agent Learning
	Introduction
	Related Works
	Problem Statement
	Contextual Multi-Agent Reinforcement Learning
	Independent DQN
	Contextual DQN
	Contextual Actor-Critic

	Efficient allocation with linear programming
	Simulator Design
	Experiments
	Experimental settings
	Performance comparison
	On the Efficiency of Reallocations
	The effectiveness of averaged reward design
	Ablations on policy context embedding
	Ablation study on grouping the locations
	Qualitative study

	Conclusion

	Chapter 6The Provable Advantage of Collaborative Learning
	Introduction
	Setup
	The Federated Averaging (FedAvg) Algorithm
	Assumptions

	Linear Speedup Analysis of FedAvg
	Strongly Convex and Smooth Objectives
	Convex Smooth Objectives

	Linear Speedup Analysis of Nesterov Accelerated FedAvg
	Strongly Convex and Smooth Objectives
	Convex Smooth Objectives

	Geometric Convergence of FedAvg in the Overparameterized Setting
	Geometric Convergence of FedAvg in the Overparameterized Setting
	Overparameterized Linear Regression Problems

	Numerical Experiments

	Chapter 7Conclusion
	Appendices
	Appendix A Ranking Policy Gradient
	Appendix B Federated Learning
	Bibliography

