
APPLYING EVOLUTIONARY COMPUTATION TECHNIQUES TO ADDRESS
ENVIRONMENTAL UNCERTAINTY IN DYNAMICALLY ADAPTIVE

SYSTEMS

By

Andres J. Ramirez

A DISSERTATION

Submitted to
Michigan State University

in partial fulfillment of the requirements
for the degree of

Computer Science - DOCTOR OF PHILOSOPHY

2013

ABSTRACT

APPLYING EVOLUTIONARY COMPUTATION TECHNIQUES TO ADDRESS
ENVIRONMENTAL UNCERTAINTY IN DYNAMICALLY ADAPTIVE

SYSTEMS

By

Andres J. Ramirez

A dynamically adaptive system (DAS) observes itself and its execution environ-

ment at run time to detect conditions that warrant adaptation. If an adaptation is

necessary, then a DAS changes its structure and/or behavior to continuously satisfy

its requirements, even as its environment changes. It is challenging, however, to sys-

tematically and rigorously develop a DAS due to environmental uncertainty. In par-

ticular, it is often infeasible for a human to identify all possible combinations of system

and environmental conditions that a DAS might encounter throughout its lifetime.

Nevertheless, a DAS must continuously satisfy its requirements despite the threat

that this uncertainty poses to its adaptation capabilities. This dissertation proposes

a model-based framework that supports the specification, monitoring, and dynamic

reconfiguration of a DAS to explicitly address uncertainty. The proposed framework

uses goal-oriented requirements models and evolutionary computation techniques to

derive and fine-tune utility functions for requirements monitoring in a DAS, identify

combinations of system and environmental conditions that adversely affect the be-

havior of a DAS, and generate adaptations on-demand to transition the DAS to a

target system configuration while preserving system consistency. We demonstrate the

capabilities of our model-based framework by applying it to an industrial case study

involving a remote data mirroring network that efficiently distributes data even as

network links fail and messages are dropped, corrupted, and delayed.

Copyright by
ANDRES J. RAMIREZ
2013

To my family, who has always supported me in every possible way.

iv

ACKNOWLEDGEMENTS

First and foremost, I would like to thank Dr. Betty H.C. Cheng for guiding this

dissertation research from its inception to its conclusion. Her guidance, feedback,

attention to detail, and high expectations have shaped this dissertation research.

In addition, I want to thank my dissertation committee members: Dr. Erik Good-

man, Dr. Charles Ofria, Dr. Philip McKinley, and Dr. Xiaobo Tan. I greatly appre-

ciate their valuable feedback, insights, and willingness to read through hundreds of

pages multiple times.

I would also like to thank Dr. Percy Pierre and Dr. Barbara O’Kelly for recruiting

me to the Alfred P. Sloan program at Michigan State University and giving me the

opportunity of a lifetime. Both of you took a chance on me and changed the rest of

my life for the better. I hope to pay it forward.

Many others provided help and encouragement along the way. I wish to thank

current and past SENS and DevoLab members. Dave Knoester, Heather Goldsby,

Ben Beckmann, and Adam Jensen helped set the foundation for ideas that would

evolve into this dissertation. Likewise, Jared Moore, Tony Clark, Brian Connelly,

Erik Fredericks, Chad Byers, Anu Pakanati, Erick Nieves, Jorge Cintron, and Nel-

son Sepulveda provided technical and motivational support during key stages of this

dissertation.

Finally, I would like to thank Amanda and Odin for putting up with me through

this long, draining, and sometimes infuriating process. I would not have finished this

dissertation without them, and I appreciate the sacrifices that have been made so I

could focus and complete my research.

v

TABLE OF CONTENTS

LIST OF TABLES . ix

LIST OF FIGURES . x

1 Introduction . 1
1.1 Problem Description . 3
1.2 Thesis Statement . 4
1.3 Research Contributions . 5
1.4 Organization of Dissertation . 6

2 Background . 9
2.1 Remote Data Mirroring . 9
2.2 Dynamically Adaptive Systems 12

2.2.1 Processes of a DAS . 14
2.2.2 Adaptation Semantics . 17

2.3 Goal-Oriented Requirements Engineering 19
2.3.1 Goal-Oriented Requirements Modeling 21
2.3.2 RELAX Specification Language 26

2.4 Evolutionary Computation . 27
2.4.1 Genetic Algorithms . 30
2.4.2 Genetic Programming . 32
2.4.3 Linear Genetic Programming 37

3 Automatic Derivation of Utility Functions for Requirements Mon-
itoring . 40
3.1 Motivation . 41
3.2 Introduction to Athena . 42
3.3 Athena Process . 44

3.3.1 Expected Inputs and Outputs 44
3.4 Utility Function Derivation Process 49
3.5 Case Study . 58

3.5.1 No Adverse Environmental Conditions 59
3.5.2 Requirements Violation Produced by Environmental

Uncertainty . 67
3.6 Discussion . 77
3.7 Summary . 79

vi

4 Exploring Environmental Uncertainty 80
4.1 Motivation . 81
4.2 Introduction to Loki . 82
4.3 Novelty Search . 83
4.4 Loki Process . 84

4.4.1 Expected Inputs and Outputs 84
4.4.2 Environmental Assessment Process 85

4.5 Experimental Results . 90
4.5.1 Simulation and Experimental Setup 90
4.5.2 Discovering Behaviors . 93
4.5.3 Randomized Search Comparison 101

4.6 Discussion . 105
4.7 Summary . 106

5 Automatically RELAXing Goal Models to Cope with Uncertainty 107
5.1 Motivation . 107
5.2 Introduction to AutoRELAX . 108
5.3 AutoRELAX Process . 109

5.3.1 Expected Inputs and Outputs 109
5.3.2 AutoRELAX Process Description 111

5.4 Experimental Results . 116
5.5 Discussion . 126
5.6 Summary . 127

6 Generating Reconfigurations . 128
6.1 Motivation . 128
6.2 Introduction to Plato . 130
6.3 Plato Process Description . 131

6.3.1 Assumptions . 131
6.3.2 Target Reconfiguration Generation Process 132

6.4 Case Study . 142
6.4.1 Reconfiguration of Monitoring Infrastructure 154

6.5 Discussion . 162
6.6 Summary . 164

7 Generating Safe Adaptation Paths . 165
7.1 Motivation . 165
7.2 Introduction to Hermes . 167
7.3 Hermes Process Description . 168

7.3.1 Assumptions . 168
7.3.2 Safe Adaptation Path Generation Process 168

7.4 Case Study . 175
7.5 Discussion . 184
7.6 Summary . 185

vii

8 End-to-End RDM Example . 186
8.1 Deriving Utility Functions . 187
8.2 Identifying and Resolving Obstacles 198
8.3 RDM Goal Model Revision . 203
8.4 Fine-Tuning Utility Functions . 207
8.5 Dynamic Reconfiguration . 210

9 Related Work . 219
9.1 Requirements Models for Adaptive Systems 220

9.1.1 Specifying Dynamically Adaptive Systems 220
9.1.2 Requirements Modeling in a Dynamically Adaptive

System . 222
9.1.3 Obstacle Identification, Analysis, and Resolution 223
9.1.4 Identifying and Mitigating Sources of Uncertainty . . . 226
9.1.5 Requirements Monitoring in Adaptive Systems 228

9.2 Design Models for Adaptive Systems 230
9.2.1 Model-based Approaches for Developing Adaptive Sys-

tems . 231
9.2.2 Model-based Frameworks for Dynamically Reconfigur-

ing Adaptive Systems . 233

10 Conclusions & Future Investigations 241
10.1 Summary of Contributions . 243
10.2 Future Investigations . 244

APPENDICES . 248

A Intelligent Vehicle System Case Studies 249
A.1 Intelligent Vehicle Systems . 249
A.2 IVS Goal Model . 251
A.3 Derived Utility Functions for Requirements Monitoring . . . 254

A.3.1 Sample Derived Utility Functions 254
A.3.2 Simulation Results . 258

A.4 Exploring the Space of Uncertainty 269

References . 277

BIBLIOGRAPHY . 277

viii

LIST OF TABLES

Table 2.1 Propagation methods time intervals and data sizes [55]. 11

Table 2.2 Table of RELAX operators and their semantics [114] 27

Table 3.1 Table with ENV, MON, and REL elements for RDM application. 48

Table 3.2 Configuration for simulation without uncertainty. 60

Table 3.3 Configuration for simulation with uncertainty. 68

Table 4.1 Genetic algorithm and novelty search configurations. 92

Table 4.2 Possible ranges of uncertainty values. 93

Table 7.1 Description of reconfiguration instructions used by Hermes. . . . 170

Table 7.2 Genetic program configuration. 171

Table 8.1 Configuration for simulation with uncertainty. 191

Table A.1 Table with ENV, MON, and REL elements for IVS application. . 255

Table A.2 Severity of noise applied to monitoring infrastructure in the IVS 266

Table A.3 Loki configuration for IVS experiments. 271

ix

LIST OF FIGURES

Figure 1.1 Data flow diagram overviewing our model-based framework for
specifying, monitoring, and dynamically adapting a DAS. . . . 7

Figure 2.1 A DAS comprises a set of finite steady-state machines. 13

Figure 2.2 Data flow diagram depicting the monitoring, analysis, planning,
and execution processes of a DAS. 15

Figure 2.3 One-point, guided, and overlap adaptation semantics [119]. For
interpretation of the references to color in this and all other
figures, the reader is referred to the electronic version of this
dissertation. 19

Figure 2.4 KAOS Goal model for RDM application. 22

Figure 2.5 Goal-oriented obstacle decomposition in KAOS. 25

Figure 2.6 Data flow diagram illustrating key processes in evolutionary
algorithms. 29

Figure 2.7 Examples of encodings in a genetic algorithm. 31

Figure 2.8 One-point and two-point crossover in a genetic algorithm. . . . 32

Figure 2.9 Flip mutation operator in a genetic algorithm. 33

Figure 2.10 Tree-based representation of a genetic programming. 33

Figure 2.11 Crossover operator for a tree-based representation genetic pro-
gram. 35

Figure 2.12 Insertion, removal, modification, and swap mutation operators
for a tree-based genetic program. 36

Figure 2.13 Linear genetic programming representation with DCM protocol
instructions as instruction set. 37

x

Figure 2.14 Two-point crossover in linear genetic program. 38

Figure 2.15 Mutation in linear-based genetic program. 39

Figure 3.1 Utility functions within a DAS. 41

Figure 3.2 RELAXed goal model for RDM application. 46

Figure 3.3 Specification grammar for KAOS goals. 47

Figure 3.4 Specification grammar for RELAX goals. 47

Figure 3.5 Data flow diagram illustrating how Athena generates a single
utility function for a given KAOS or RELAXed goal. 50

Figure 3.6 Triangle shape fuzzy logic operator and its corresponding utility
function template. 52

Figure 3.7 Left shoulder shape fuzzy logic operator and its corresponding
utility function template. 53

Figure 3.8 Right shoulder shape fuzzy logic operator and its corresponding
utility function template. 54

Figure 3.9 State-based utility function templates for Achieve, Avoid, and
Maintain goals. 57

Figure 3.10 Utility values for Invariant Goal (A) 61

Figure 3.11 Utility values for Invariant Goal (B) 62

Figure 3.12 Utility values for Goal (C). 63

Figure 3.13 Ratio of messages diffused. 63

Figure 3.14 Utility Values for Goal (F). 64

Figure 3.15 Number of active network links. 65

Figure 3.16 Utility values for Goal (H). 66

Figure 3.17 Mean distribution time. 66

Figure 3.18 Utility values for Invariant Goal (A). 70

xi

Figure 3.19 Utility values for Goal (B). 71

Figure 3.20 Utility values for Goal (C). 71

Figure 3.21 Ratio of data messages diffused. 72

Figure 3.22 Utility values for Goal (F). 73

Figure 3.23 Number of network links. 74

Figure 3.24 Utility values for Goal (H). 74

Figure 3.25 Mean distribution time. 75

Figure 3.26 Utility values for Goal (I). 76

Figure 3.27 Number of active data mirrors. 77

Figure 4.1 Data flow diagram describing how Loki explores effects of system
and environmental uncertainty. 86

Figure 4.2 Example genome that specifies sensor noise configuration. . . . 87

Figure 4.3 Generating new configurations via crossover and mutation op-
erators. 88

Figure 4.4 Mean satisfaction of Goal (A) under operational contexts in
novelty archive. 95

Figure 4.5 Sample partitioned RDM network that leads to a requirements
violation. 96

Figure 4.6 Utility values for Goal (F). 97

Figure 4.7 Utility values for Goal (H). 98

Figure 4.8 Utility values for Goal (I). 99

Figure 4.9 Mean cumulative number of adaptations triggered by different
operational contexts. 100

Figure 4.10 Sample RDM network partition that hinders data diffusion. . . 101

Figure 4.11 Box plot of discovered behaviors by novelty search and random-
ized search. 104

xii

Figure 5.1 DFD diagram of AutoRELAX process 111

Figure 5.2 Encoding a candidate solution in AutoRELAX 112

Figure 5.3 Generating new RELAXed goal models with crossover and mu-
tation operators . 117

Figure 5.4 Fitness value comparison between AutoRELAX, manually RE-
LAXed and unRELAXed goal models. 120

Figure 5.5 Adaptation costs comparison between RELAXed and
unRELAXed goal models. 122

Figure 5.6 Partitioned RDM network that facilitates partial data diffusion. 123

Figure 5.7 Mean number of RELAXed goals for varying degrees of system
and environmental uncertainty 124

Figure 5.8 Mean number of adaptations triggered, sorted by number of
RELAXed goals . 125

Figure 6.1 Encodings of two overlay network solutions as individuals in a
genetic algorithm. 134

Figure 6.2 GA encoding for monitoring configurations. 134

Figure 6.3 Crossover operator for network-based representation. 136

Figure 6.4 Mutation operator for network-based representation. 136

Figure 6.5 Overlay network produced when optimizing for cost. 144

Figure 6.6 Fitness of overlay networks when optimizing for cost only. . . 145

Figure 6.7 Fitness of overlay networks when optimizing for reliability only. 146

Figure 6.8 Overlay network produced when optimizing for cost, perfor-
mance, and reliability. 147

Figure 6.9 Maximum fitness of overlay networks when optimizing for cost,
performance, and reliability. 148

Figure 6.10 Number of active links in overlay network when optimizing for
cost, performance, and reliability. 149

xiii

Figure 6.11 Initial overlay network topology with cost being the lone design
factor. 150

Figure 6.12 Overlay network evolved in response to a link failure. 151

Figure 6.13 Maximum fitness achieved before and after reconfiguration. . . 151

Figure 6.14 Number of active links in overlay network before and after re-
configuration. 152

Figure 6.15 Potential average data loss across overlay network before and
after reconfiguration. 153

Figure 6.16 Mean fitness progression of Plato when evolving monitoring
configurations. 156

Figure 6.17 Comparison of monitoring costs between static configuration,
adaptive sampling, and Plato techniques. 157

Figure 6.18 Mean fitness of overlay networks achieved throughout multiple
reconfigurations until complete network failure. 159

Figure 6.19 Mean number of active links throughout multiple reconfigura-
tions until complete network failure. 160

Figure 6.20 Mean potential data loss throughout multiple reconfigurations
until complete network failure. 161

Figure 7.1 Adaptation path overview. 166

Figure 7.2 Dynamic change management algorithm for reconfiguring dy-
namic adaptive systems. 177

Figure 7.3 Comparison of adaptation path quality. 179

Figure 7.4 Progression of average maximum fitness values for different net-
work sizes. 180

Figure 7.5 Progression of average fitness values when minimizing reconfig-
uration costs and maximizing reconfiguration performance. . . 182

Figure 7.6 Performance and reliability tradeoffs in evolved solutions. . . . 183

Figure 8.1 KAOS goal model for RDM application. 189

xiv

Figure 8.2 RELAXed goal model for RDM application. 190

Figure 8.3 Utility values for Invariant Goal (A) 192

Figure 8.4 Utility values for Invariant Goal (B) 193

Figure 8.5 Utility values for Invariant Goal (C). 194

Figure 8.6 Ratio of data messages diffused. 195

Figure 8.7 Utility values for Goal (F). 195

Figure 8.8 Partitioned RDM network. 196

Figure 8.9 Number of active network links. 197

Figure 8.10 Utility values for Goal (I). 197

Figure 8.11 Number of adaptations triggered. 198

Figure 8.12 Mean satisfaction of Goal (A) under operational contexts in
novelty archive. 199

Figure 8.13 Partitioned RDM network that leads to a requirements violation.201

Figure 8.14 Utility values for Goal (F). 202

Figure 8.15 Utility values for Goal (H). 203

Figure 8.16 Revised goal model with applied uncertainty mitigation strate-
gies for RELAXed goals. 204

Figure 8.17 Desirable network partition that reduces chances of data loss. 205

Figure 8.18 Mean satisfaction of Goal (A) under operational contexts in
novelty archive after goal model revision. 206

Figure 8.19 Mean satisficement of Goal (F) under operational contexts in
novelty archive after goal model revision. 207

Figure 8.20 Fitness value comparison between AutoRELAX, manually RE-
LAXed and unRELAXed goal models. 208

Figure 8.21 Adaptation costs comparison between RELAXed and
unRELAXed goal models. 209

xv

Figure 8.22 Sample RDM network generated by Plato when optimizing for
cost. 211

Figure 8.23 Maximum fitness of overlay networks achieved throughout mul-
tiple reconfigurations. 212

Figure 8.24 Sample RDM network generated by Plato when optimizing for
cost, performance, and reliability. 212

Figure 8.25 Number of active links in overlay network throughout multiple
reconfigurations. 213

Figure 8.26 Potential average data loss across overlay network throughout
multiple reconfigurations. 214

Figure 8.27 Progression of average fitness values when maximizing reconfig-
uration reliability. 216

Figure 8.28 Average time required to complete reconfiguration when maxi-
mizing reconfiguration reliability. 217

Figure 8.29 Reconfiguration and performance tradeoffs in evolved solutions. 218

Figure A.1 Overview of an Intelligent Vehicle System. 250

Figure A.2 KAOS goal model for adaptive cruise control in IVS. 252

Figure A.3 KAOS Goal model for lane keeping feature in IVS. 253

Figure A.4 State-based utility function derived by Athena for goal (B) . . 256

Figure A.5 Metric-based utility function derived by Athena for goal (C) . . 257

Figure A.6 Utility values for “maintain safe distance” goal. 259

Figure A.7 Utility values for achieve safe and desired speed goals. 260

Figure A.8 Utility values for “minimizing acceleration and deceleration
rates”. 261

Figure A.9 Utility values for “achieve and maintain center lane goal”. . . 262

Figure A.10 Utility values for “maintain safe distance” goal. 263

Figure A.11 Utility values for “achieve and maintain desired speed goals”. . 264

xvi

Figure A.12 Utility values for “minimizing acceleration and deceleration
rates”. 265

Figure A.13 Utility values for “achieving and maintaining center lane goal”. 265

Figure A.14 Utility values for “maintain safe distance goal”. 267

Figure A.15 Utility values for “achieve and maintain a safe speed”. 268

Figure A.16 Utility values for “minimize acceleration and deceleration rates”.269

Figure A.17 Utility values for “achieve and maintain center lane”. 270

Figure A.18 Effects of uncertainty upon the IVS’s current speed self-
assessment abilities. 274

Figure A.19 Effects of uncertainty upon the IVS’s safe distance self-
assessment abilities. 275

Figure A.20 Box plot comparison of discovered behaviors between Loki and
randomized search. 276

xvii

Chapter 1

Introduction

Software systems increasingly interact with real-world physical devices upon

which humans critically depend. This shared cyber-physical boundary exposes soft-

ware systems to a myriad of environmental conditions, including some that may

prevent the system from satisfying its requirements. For many safety-critical appli-

cation domains, such as power grids, extended downtimes where humans manually

inspect, analyze, and modify application code in response to system and environ-

mental changes is neither practical nor safe. A dynamically adaptive system (DAS)

observes itself and its execution environment and, if necessary, dynamically changes

its structure and behavior to continuously satisfy its objectives [73]. Developing a

DAS that satisfies its requirements, however, is a challenging task due to system and

environmental uncertainty. For this dissertation, system and environmental uncer-

tainty refer to combinations in inaccuracies and imprecisions in the measurements

of environmental properties, as well as unanticipated combinations of environmen-

tal conditions, respectively. Consequently, automated techniques for exploring and

mitigating how the environment affects a DAS at run time are increasingly important.

Most software engineering techniques and approaches for developing a DAS [35,

53, 62, 85, 120] have focused on identifying, at design time, all possible conditions

1

that might warrant adaptation after the system is deployed. In particular, these

approaches often enumerate and encode specific adaptations to address system and

environmental conditions conducive to a requirements violation. For example, sev-

eral object-oriented adaptation-enabling frameworks [11, 35, 83] and middleware ap-

proaches [17, 62, 75] use rule-based repositories to map monitoring information to

adaptation strategies that mitigate specific undesirable conditions. Nevertheless,

these rule-based techniques enable a DAS to adapt only in response to conditions

identified at design time under specific assumptions about what the environment

should be at run time. Unfortunately, inadequate assumptions may prevent a DAS

from safely and correctly adapting itself [28, 93, 111, 112].

This dissertation presents a model-based framework for specifying, monitoring,

and adapting a DAS to satisfy functional and non-functional goals while explicitly

addressing system and environmental uncertainty. We present investigation results

that explore how goal-oriented requirements models and evolutionary computation

can be leveraged to detect and mitigate obstacles or conditions that prevent a DAS

from satisfying its requirements, without explicitly specifying adaptation conditions

and mitigation strategies at design time. In particular, the proposed model-based

framework automatically generates and fine-tunes an executable abstraction of a goal-

oriented requirements model in the form of utility functions for monitoring how a

DAS satisfies requirements at run time. This framework also supports the automatic

identification of system and environmental conditions that prevent a DAS from satis-

fying its requirements, thereby suggesting goals that require revisions. Moreover, this

framework also supports the generation of safe adaptations that balance competing

concerns. Each adaptation specifies structural and behavioral changes that a DAS

should perform, as well as the set of reconfiguration instructions for transitioning the

system to its target configuration while preserving consistency. For some application

domains, these safe adaptations can be generated on-demand at run time.

2

1.1 Problem Description

A key objective in software engineering is to design and implement software sys-

tems that continuously satisfy their stakeholder’s objectives, even if unanticipated

conditions arise during execution. As a result, the field of DASs is gaining attention

from the software engineering community as it provides a means for a software system

to observe, analyze, and respond to system and environmental changes at run time.

To this end, software engineering for self-adaptive systems focuses on identifying,

analyzing, and integrating adaptation-specific concerns throughout the entire devel-

opment lifecycle of a DAS, starting with the requirements that the DAS must satisfy

and continuing through the maintenance of the DAS. In this manner, elicited require-

ments, including adaptation needs and constraints, guide the design, development,

testing, deployment, and even execution of a DAS.

Based on DAS-focused techniques described in the literature [7, 14, 120], when

developing a new DAS, a requirements engineer first identifies invariant and non-

invariant requirements that the DAS must satisfy. A requirements engineer then

analyzes and decomposes these requirements into goals to determine dependencies,

constraints, and assumptions that the DAS must satisfy at run time [13]. Goal models

enable requirements engineers to identify and resolve obstacles that can prevent a DAS

from satisfying its requirements [28, 29, 107]. Developers then implement adaptation

strategies to reconfigure the system in response to these anticipated obstacles [15,

35, 83] while preserving system consistency before, during, and after adaptation [64,

121]. At run time, the DAS monitors itself and its execution environment to detect

the occurrence of these conditions and, if necessary, self-reconfigures to prevent or

mitigate the obstacle.

This development process enables a DAS to monitor and self-adapt in response

to conditions and obstacles identified at design time, under specific sets of assump-

tions about what the system and its environment should be like at run time. Nev-

3

ertheless, complete identification of all possible obstacles may be unachievable by a

requirements engineer as it is often infeasible for a human to exhaustively identify all

possible combinations of environmental inputs that a DAS will encounter throughout

its lifetime [13, 28, 114]. Furthermore, it is equally challenging for a requirements

engineer to anticipate and evaluate how these environmental inputs may affect the

behavior of a DAS. These observations imply that certain key adaptation-centric

decisions must be deferred until run time, when actual system and environmental

conditions are known. As a result, throughout this design and development process,

the DAS research community faces three key challenges in terms of how to:

• effectively and efficiently monitor requirements satisfaction in a DAS.

• anticipate sources of uncertainty and their effects upon a DAS.

• safely reconfigure a DAS in response to changing system and environmental

conditions while satisfying functional and non-functional requirements.

1.2 Thesis Statement

This research defines a model-based framework for explicitly addressing system

and environmental uncertainty in a DAS. This framework uses a goal-oriented re-

quirements model as a point of reference to support the automatic specification,

monitoring, and adaptation in a DAS.

Thesis Statement: Evolutionary computation can be harnessed to support a

model-based framework for specifying, monitoring, and dynamically adapting a system

to explicitly address system and environmental uncertainty.

4

1.3 Research Contributions

Three major overarching research objectives guide the investigations described

in this dissertation. First, we emphasize the use of lightweight, computationally inex-

pensive techniques to assess the environment and its impact on system functionality.

Second, we maximize the use of automation for the overall process of specifying,

monitoring, and adapting a DAS. Lastly, we minimize the need to identify a prede-

termined set of adaptations in response to anticipated reconfiguration scenarios at

design time. To achieve these objectives, the proposed model-based framework in-

tegrates goal-oriented requirements models and evolutionary computation techniques

to support the automatic monitoring and dynamic adaptation of a DAS, respectively.

Guided by these research objectives, we now state the research contributions of

this dissertation. Specifically, our model-based framework supports the:

1. Automatic generation and fine-tuning of utility functions for requirements mon-

itoring in a DAS even in the presence of system and environmental uncertainty.

These utility functions enable a DAS to identify conditions conducive to a re-

quirements violation and diagnose potential causes for a requirements violation.

2. Automatic exploration of different combinations of system and environmen-

tal conditions that a DAS may encounter throughout its lifetime. Analyzing

how system and environmental conditions affect the behavior of a DAS more

rigorously facilitates the identification of alternate design choices for resolving

obstacles at the requirements level.

3. Automatic generation of adaptations that specify the target system configura-

tion and the series of reconfiguration steps necessary for safely reaching that

target configuration. These adaptations can be generated by only specifying,

at a high level of abstraction, the general concerns and functional and non-

functional objectives that the DAS should satisfy.

5

This dissertation realizes these research contributions in the form of a suite of

techniques and tools. The data flow diagram in Figure 1.1 depicts each component

in our model-based framework. Specifically, Athena uses a goal model of the DAS

to automatically derive utility functions for requirements monitoring at run time.

Using these utility functions, Loki generates combinations of system and environmen-

tal conditions that produce interesting and representative DAS behaviors, including

requirements violations and latent behaviors, which are undesirable behaviors that

do not violate known requirement but should be disallowed nonetheless. AutoRELAX

uses these identified sources of uncertainty to fine-tune the utility functions derived

by Athena such that minor and transient sources of uncertainty do not cause unneces-

sary adaptations. Together, these first three techniques support the first and second

research contributions by enabling a DAS to detect requirements violations even in

environments with uncertain conditions.

As Figure 1.1 also illustrates, Plato generates suites of target reconfigurations

that specify what the configuration of a DAS should be, including its monitoring

infrastructure, in response to changes in its environment. Hermes, on the other hand,

generates adaptation paths, or series of reconfiguration instructions that a DAS can

apply at run time to safely transition itself to its target configuration while preserving

system consistency. Together, Plato and Hermes enable a DAS to self-reconfigure at

run time without having to encode adaptations in response to specific system and

environmental conditions, thereby supporting the third contribution.

1.4 Organization of Dissertation

The remainder of this dissertation is organized as follows. Chapter 2 reviews

background material on the remote data mirroring application and dynamically adap-

tive systems, as well as several enabling techniques that include goal-oriented require-

6

Generate
Utility

Functions
(Athena)

(1)

goals

Explore
Environmental

Conditions
(Loki)

(2)

Generate
Target

Adaptations
(Plato)

(4)

Utility
Functions

utility
functions

Generate
Adaptation

Paths
(Hermes)

(5)

target system
configuration

utility
functions

system &
environmental

conditions

utility
functions

goals,
non-functional

concerns

reconfigurations

safe
adaptation

path

Requirements
Engineer

adaptation
triggers

fitness
functions

Data StoreProcess Data Flow
Legend:

Actor

Executable
Specification

simulation

requirements,
goals

identified
obstacles

Automatically
RELAX Goal

Model
(AutoRELAX)

(3)

simulation

RELAXed
utility

functions

operational
contexts

Goal
Model

Sources of
Uncertainty

Figure 1.1: Data flow diagram overviewing our model-based framework for specifying,
monitoring, and dynamically adapting a DAS.

ments engineering, the RELAX requirements specification language for DASs, and

evolutionary computation. Chapter 3 introduces Athena and describes the process it

uses to derive utility functions for different types of goals. Chapter 4 describes how

Loki generates operational contexts that produce interesting DAS behaviors, includ-

ing requirements violations. Chapter 5 describes how AutoRELAX leverages sources

of uncertainty discovered by Loki to fine-tune the utility functions derived by Athena.

7

Chapters 6 and 7 describe how Plato and Hermes search for target system reconfigura-

tions and safe adaptation paths, respectively. Although each chapter presents experi-

mental results, Chapter 8 illustrates how the suite of techniques can be integrated by

applying them to an end-to-end case study involving a remote data mirroring network

that must distribute data messages across unreliable networks. Chapter 9 overviews

related work on model-based approaches to dynamic adaptation. Lastly, Chapter 10

presents conclusions, summarizes the contributions of this dissertation, and discusses

future directions.

Appendices include additional descriptions of how individual techniques were

applied to another case study involving an intelligent vehicle system that performs

adaptive cruise control, lane keeping, and collision avoidance.

8

Chapter 2

Background

This chapter provides background information on the remote data mirroring

application and three topics fundamental to this dissertation: dynamically adap-

tive systems, goal-oriented requirements engineering, and evolutionary computation.

First, we overview the objectives and constraints of remote data mirroring, the ap-

plication domain used to illustrate the techniques developed in this research. We

then overview the key objectives and theoretical foundations of adaptive systems.

Next, we describe how a goal-oriented requirements model captures the objectives,

requirements, assumptions, and constraints of a software system. Lastly, we overview

evolutionary computation and describe how it searches for optimal or near-optimal

solutions in vast and complex solution spaces.

2.1 Remote Data Mirroring

Remote data mirroring (RDM) is a data protection technique that replicates and

stores copies of critical data at one or more secondary sites [1, 50, 54, 55, 56, 115].

RDM are intended to guarantee continuous access to important data by keeping two

or more copies of important information physically isolated from each other, thereby

protecting data from failures that may affect the primary copy. In the event of a

9

failure, recovery typically involves either a site failover to another data mirror or

data reconstruction. RDM has been previously applied to efficiently replicate and

distribute on-demand television media across limited bandwidth channels [48]. In

addition, RDM has also been applied at companies such as Google and Yahoo to

support their heavily distributed search-engine infrastructure.

Designing and deploying a remote mirror, however, is a complex and expensive

task that should be done only when the cost of losing data outweighs the cost of pro-

tecting it [50]. For instance, ad hoc solutions may provide inadequate data protection,

poor write performance, and incur high network costs [55]. Similarly, over-engineered

solutions may incur expensive operational costs to defend against negligible risks.

Two important RDM design choices include the type of network link used to

connect the mirrors and the remote mirroring protocol. Each network link incurs an

operational cost and has a measurable throughput, latency, and loss rate that col-

lectively determines the overall RDM design and its performance and reliability [50].

Remote mirroring protocols affect both network performance and data reliability, and

can be categorized as either synchronous or asynchronous. In synchronous propaga-

tion, the secondary site receives and applies each write before the write completes

at the primary site. In batched asynchronous propagation, updates accumulate at

the primary site and are periodically propagated to the secondary site, which then

applies each batch atomically. As Table 2.1 illustrates, synchronous propagation

achieves zero potential data loss but consumes large amounts of network bandwidth.

In contrast, batched asynchronous propagation achieves better network performance

than synchronous propagation, but may have a higher potential data loss.

For this dissertation, the emphasis is on dynamically reconfiguring an RDM

network. Specifically, we focus on the construction and maintenance of an overlay

network of RDMs such that data may be distributed to all data mirrors. To this end,

an RDM network shall:

10

Table 2.1: Propagation methods time intervals and data sizes [55].

Time Interval Avg. Data Batch Size
0 0 GB
1 min. 0.0436 GB
5 min. 0.2067 GB
1 hr. 2.091 GB
4 hrs. 6.595 GB
12 hrs. 15.12 GB
24 hrs. 27.388 GB

• Remain connected at all times.

• Never exceed the allocated monetary budget, as specified by the end-user.

• Distribute data as efficiently as possible by minimizing the amount of bandwidth

consumed when diffusing data.

• Shall never lose or corrupt protected data.

All considerations combined, data diffusion is a multi-objective problem where data

must be distributed as efficiently as possible while minimizing expenses and potential

data loss.

For this dissertation, we implemented an executable specification that satisfies

these RDM requirements and constraints. In particular, we modeled and implemented

an RDM network simulation as a completely connected undirected graph where each

node and edge represents an RDM or a network link, respectively. The specific

number of data mirrors and the underlying network link topology can be configured

in different ways to explore different RDM design scenarios. Moreover, the operational

characteristics of each RDM node and network link, such as workload or capacity,

were randomly generated using different statistical distributions (i.e, normal, uniform)

based on RDM operational models previously presented by Keeton et al. [55].

The RDM controller performs several key processes during each simulation time

step. First, the RDM controller collects system and environmental monitoring data

11

from its sensors. The RDM controller then replicates, archives, and distributes new

data messages to neighboring data mirrors. Simultaneously, the RDM controller also

evaluates its utility functions to detect adverse conditions that might warrant adap-

tation. To self-adapt, the RDM network selects an alternate network configuration

that best addresses current system and environmental conditions. If an adaptation is

required, then a target configuration is selected and an adaptation path is generated

to safely transition the executing RDM network to its target configuration.

2.2 Dynamically Adaptive Systems

It is often impossible to know or enumerate, at design time, all possible combina-

tions of system and environmental conditions that a software system will encounter

during its lifetime [13, 114]. Furthermore, functional and non-functional requirements

may change after the software system is deployed. The primary objective of a dynam-

ically adaptive system (DAS) is to continuously satisfy its requirements by modifying

its structure and behavior in response to changing requirements and environmental

conditions [73, 83]. As Figure 2.1 illustrates, a DAS comprises a set of finite steady-

state machines, each of which satisfies specific requirements and constraints within a

domain or environment [120]. An adaptation, therefore, corresponds to a transition

from one source steady-state system to another target steady-state system.

Kephart and Chess [58] proposed the concept of an autonomic computing system

to explicitly address the growing complexity of managing large-scale software systems.

Akin to the self-governing human nervous system, the elements of an autonomic com-

puting system are mostly self-managed, guided only by high-level objectives provided

by a systems administrator. Specifically, each component in an autonomic computing

system adopts a MAPE-K architecture [113] to monitor and analyze its environment,

as well as plan and execute reconfigurations as necessary. Furthermore, each of these

12

Adaptation

Steady-State Program A Steady-State Program B

State

Transition

Start state

End state

Adaptation
Legend:

Figure 2.1: A DAS comprises a set of finite steady-state machines.

processes is supported by a knowledge repository that maps monitored conditions

to specific reconfigurations. These processes enable an autonomic computing sys-

tem to leverage self-managing properties, such as self-configuration, self-healing, self-

optimization, and self-protection; for brevity, we use the term “self-*” when referring

to these terms collectively. Within the context of an autonomic computing system,

self-configuration modifies the interactions between system components, self-healing

detects and recovers from faults, self-protection identifies and fends-off malicious at-

tacks, and self-optimization improves the delivery of services to clients.

Although all autonomic computing systems are self-adaptive in nature, not all

adaptive systems are necessarily autonomic. The key distinction between an auto-

nomic computing system and an adaptive system is the level of automation in the

self-reconfiguration process. Specifically, an autonomic computing system is mostly

self-managed, only accepting high-level inputs from a systems administrator with re-

gards to the system’s objectives. In contrast, an adaptive system is not necessarily

self-managed; key adaptation-specific decisions, such as when and how to reconfigure

an application, may be determined by a system’s administrator at run time. Through-

13

out this dissertation, we only consider DAS’s that are primarily self-managed, and

thus use the term DAS to include autonomic computing systems unless otherwise

noted.

2.2.1 Processes of a DAS

A DAS performs introspection and intercession in order to detect and respond to

changing requirements and environmental conditions [73]. Introspection is the ability

of a software system to observe its own behavior, as well as measure properties of its

surrounding execution environment. Intercession, on the other hand, is the ability

for a software system to reason about data collected during introspection and modify

its behavior in response. Often, a DAS adopts a feedback control loop to automat-

ically and continuously apply these introspection and intercession processes at run

time, respectively [10, 79, 102]. Following the MAPE-K architectural model [58], a

DAS performs introspection via monitoring, and intercession via analysis, planning

or decision-making, and execution or reconfiguration.

The data flow diagram in Figure 2.2, based on the traditional MAPE-K archi-

tectural model, provides additional details on how a DAS monitors both system and

environmental properties as part of introspection in order to detect conditions leading

to a requirements violation [28, 29, 97]. More specifically, internal monitoring enables

a DAS to observe its own operational state, and external monitoring enables a DAS

to measure properties of its surrounding execution environment. A DAS may gather

this external monitoring information via active or passive monitoring, depending on

whether sensors automatically report changes in the system and its environment, or

whether the DAS must periodically probe sensors to obtain the desired data, re-

spectively. Although monitoring is a key process in a DAS, it is often intrusive,

computationally expensive, and difficult to design [36]. As a result, tradeoffs between

monitoring costs (overhead) and accuracy must be carefully balanced when selecting

14

which system and environmental properties to monitor, as well as how often and at

what granularity to collect the data.

Software
System

Execution
Environment

Internal
Monitoring

system
conditions

environmental
conditions Analysis

PlanningExecutionreconfiguration steps,
adaptation dependencies

target system
configuration

External
Monitoring

adaptation
trigger

measured
environmental

properties

measured
system

properties

Figure 2.2: Data flow diagram depicting the monitoring, analysis, planning, and
execution processes of a DAS.

As part of intercession, a DAS performs decision-making by analyzing monitoring

data and, if necessary, planning for any necessary adaptations. As the data flow

diagram in Figure 2.2 depicts, a DAS analyzes monitoring data to determine if an

adaptation is necessary in order to mitigate undesirable changes in the system or

its execution environment. If an adaptation is necessary, then the DAS must also

plan how and when to safely adapt the executing system in order to preserve system

consistency (i.e., prevent the loss or corruption of application data). To achieve

this objective, a DAS first selects a target system configuration, and then either

selects or generates a series of reconfiguration instructions to safely reach that target

configuration [64].

Software adaptation can be accomplished either at the parameter or composi-

15

tional level [73, 117]. In parameter adaptation, the DAS adjusts operational variables

and strategies to achieve optimal behavior. More specifically, parameter adaptation

can switch between existing strategies already built into the system, but may not

adopt new strategies or components after deployment. Thus, while parameter adap-

tation is relatively simple to implement, the possible range of adaptation changes

supported by this approach is limited by whichever scenarios were considered at

design-time. In contrast, compositional adaptation enables a DAS to add, remove,

and modify algorithmic and structural components at run time. Although more dif-

ficult to implement, compositional adaptation provides greater flexibility in terms of

reconfiguration than parameter adaptation.

Adaptation techniques can be classified either as static (closed) or dynamic

(open) [73]. Static adaptation occurs either at development-, compile-, or load-time.

Development-time composition hard codes reconfiguration strategies into an applica-

tion, and thus requires manual modifications to the code base in order to incorporate

new adaptive behaviors. Similarly, compile-time composition requires recompiling

or relinking different components in order to adapt the application to suit specific

environments. Load-time composition delays the decision of which components to

load until run time. Dynamic composition, in contrast, refers to tunable and mutable

methods that modify the DAS’s behavior or structure at run time. Tunable recon-

figuration supports the optimization of crosscutting concerns in response to chang-

ing environmental conditions. Mutable reconfiguration, the most flexible adaptation

form, supports changes to the entire application. While this added flexibility increases

the difficulty associated with ensuring the correctness and integrity of a DAS across

adaptations, dynamic composition is more powerful than static composition as it can

achieve new behaviors at run time that were not available at design time.

16

2.2.2 Adaptation Semantics

A DAS must preserve system consistency before, during, and after adapta-

tion [120]. To achieve this objective, a DAS must apply a dynamic change manage-

ment protocol that guides components towards active, passive, and quiescent states

in bounded time [64]. An active component may initiate and service transaction re-

quests. In contrast, a passive component may accept and service transaction requests,

but may not initiate new requests nor be currently engaged in a transaction it initi-

ated. A quiescent component, on the other hand, is neither engaged in a transaction

nor will it receive or initiate new transaction requests on its own. For a component

to reach a quiescent state, however, it needs to cooperate with all of its neighboring

components to establish a region of passive components. Guiding all neighboring

components towards a passive state ensures that no new transaction requests will

be initiated with the component attempting to reach quiescence, thus “freezing” the

state and communication channels of the component before an adaptation takes place.

Within the context of our adaptive RDM network, each data mirror implements

the DCM protocol such that it may reach active, passive, and quiescent states in

bounded time. In particular, each active data mirror can receive, replicate, archive,

and distribute data messages to other adjacent data mirrors in the network. Like-

wise, each passive data mirror can receive, replicate, and archive data messages but

may not distribute these to other data mirrors, as that would entail initializing a

new transaction. For operational reasons, it is preferable to maximize and minimize

the number of active and passive data mirrors at run time, respectively. Moreover,

from a performance perspective, it is extremely detrimental for data mirrors to reach

quiescence as they will be unable to receive, replicate, archive, and distribute data

messages throughout the network, thus creating the possibility for data loss and data

unavailability.

Adaptation semantics capture the intricacies between the possible states of a

17

DAS during adaptation. As previously defined by Zhang and Cheng [119], the three

most commonly encountered adaptive behaviors are one-point, guided, and overlap

adaptation. As Figure 2.3 shows, these adaptations differ in when an adaptation

begins and terminates. In one-point adaptation, a single transition transfers execu-

tion from the source system to the target system. In guided adaptation, the source

program must first reach a quiescent state such that the adaptive transition does not

leave the system in an inconsistent state. The source program reaches a quiescent

state by entering a restricted mode (Rcond) where some features are disabled (i.e., a

passive state), and then applies a one-point adaptation to transfer execution to the

target program. In overlap adaptation, both source and target behaviors may coin-

cide as the target system begin to execute before the source system has terminated.

Eventually, the source behavior terminates and only the target behavior is observable.

One-point adaptation can be the most disruptive of the three adaptation seman-

tics. For example, in the RDM application, one-point adaptation guides all data

mirrors to quiescence, enacts the corresponding reconfigurations, and then completes

the reconfiguration process by reactivating all data mirrors. This pause in the source

behavior implies that no message can be received, replicated, archived, or distributed

during the adaptation process. In contrast, two-point adaptation, which corresponds

to the traditional DCM protocol, only guides data mirrors affected by an adapta-

tion to a quiescent state, thereby allowing other data mirrors to continue receiving,

replicating, archiving, and distributing messages as parts of the network are being

adapted. Lastly, overlap adaptation interleaves independent reconfiguration steps

in order to minimize the number of data mirrors that reach quiescence simultane-

ously while maximizing the functionality provided by active data mirrors during the

reconfiguration process.

18

AReq

source behavior target behavior
One-Point Adaptation:

AReq

Rcond
source

behavior target behavior

Two-Point Adaptation:

AReq

Rcond
source

behavior target behavior

Overlap Adaptation:

Figure 2.3: One-point, guided, and overlap adaptation semantics [119]. For interpre-
tation of the references to color in this and all other figures, the reader is referred to
the electronic version of this dissertation.

2.3 Goal-Oriented Requirements Engineering

The key requirements engineering activities include eliciting, exploring, analyz-

ing, and documenting the various objectives, constraints, and assumptions that a

software system-to-be must meet in order to solve a specific problem for a stake-

holder [105]. As Jackson and Zave formalized in their 4-variable model [47], the

problem to be solved by the system-to-be often arises within an organizational, tech-

nical, or physical world context. As a result, the system-to-be shares some phenomena

with the problem world. The phenomena that arise at the shared boundary between

the system-to-be and its execution environment define the interface through which

the system-to-be interacts with the world and its stakeholders. Thus, in order to

19

satisfy its objectives, constraints, and assumptions, the system-to-be must monitor

and control parts of the shared boundary.

Goal-oriented requirements engineering (GORE) extends Jackson’s 4-variable

model with the concept of a goal that guides the elicitation, evaluation, documenta-

tion, and analysis of requirements based on the objectives of the system-to-be. A goal

captures the intentions of a stakeholder on the system-to-be, as well as the assump-

tions and expectations upon its execution environment [105]. In particular, a goal

captures the intended behavior of a system by declaratively prescribing the states

it may reach during execution. In this manner, goal-orientation plays a central role

in requirements engineering by providing the rationale for a requirement, facilitat-

ing the structuring of complex specifications at differing levels of detail, delimiting

the scope of the system-to-be, and enabling the reasoning about alternative design

options [18, 105].

A functional goal declares a service that the system-to-be must provide to its

clients, and a non-functional goal imposes a quality constraint or criterion upon

the delivery of those services. Functional goals are often expressed as ‘‘Achieve’’

or ‘‘Maintain’’ goals. An achieve goal prescribes a behavior where some target

condition must sooner or later become true, and a maintain goal prescribes a behavior

where some condition must remain true at all times. In this manner, a maintain goal

is an invariant that the system-to-be must always satisfy and an achieve goal is a non-

invariant that may become temporarily unsatisfied at run time. While the satisfaction

of a hard goal can be assessed in a clear-cut, true or false sense, the satisfaction of a

soft goal cannot be precisely determined because it involves subjective and potentially

conflicting preferences from multiple stakeholders [118]. Thus, a hard goal can be

achieved whereas a soft goal can be satisficed, or satisfied to some degree [16, 52, 118].

20

2.3.1 Goal-Oriented Requirements Modeling

The GORE process gradually decomposes high-level functional and non-

functional goals into finer-grained subgoals [105]. The semantics of goal decompo-

sition are formally and graphically captured in a directed acyclic graph where each

node represents a goal and each edge represents a goal refinement. Figure 2.4 presents

a goal model for the RDM application in the KAOS modeling language [18, 105]. As

this figure illustrates, KAOS depicts goals and refinements as parallelograms and

refinements as directed arrows pointing in the direction of their higher-level or par-

ent goal, respectively. KAOS supports AND/OR refinements, where a goal that

has been AND-decomposed can only be satisfied if all of its subgoals are satisfied,

and a goal that has been OR-decomposed can be satisfied if at least one of its

subgoals is satisfied. For example, the goal (A) “Maintain[DataAvailable]” can

only be satisfied if both subgoals (B) “Maintain[OperationalCosts <= Budget]”

and (C) “Achieve[NumberDataCopies == NumberServers]” are satisfied. In con-

trast, goal (G) “Achieve[DataAtRisk <= RiskThreshold]” can be satisfied if either

subgoals (Q) “Achieve[Send Data Synchronously]” or (R) “Achieve[Send Data

Asynchronously]” is satisfied. In general, AND-refinements capture milestones that

must be performed in order to satisfy a single higher-level goal, whereas an OR-

refinement provides alternative paths for achieving a given goal.

Goal decomposition continues until each goal is assigned to a single agent capable

of fully achieving that goal. An agent is an active system component that restricts its

behavior to fulfill leaf-goals in a goal model [105]. Two different types of agents

can fulfill goals: system and environmental agents. While a system agent is an

automated component controllable by the system-to-be, an environmental agent is

often a human being or some automated component that cannot be controlled by

the system-to-be. As Figure 2.4 illustrates, the KAOS modeling language depicts an

agent with a hexagon connected to a bolded leaf-goal via an assignment link. KAOS

21

Goal
Requirement
Agent
Refinement

Legend:

Link
Sensor

Network
Actuator

Achieve [NumberData
Copies == NumberServers]

Achieve[Network
Partitions == 0]

Achieve[Measure
NetworkProperties]

Achieve
[Link

Activated]

Achieve
[Link

Deactivated]

Achieve
[LossRate
Measured]

Achieve
[Workload
 Measured]

Achieve
[Capacity
Measured]

RDM
Sensor

Maintain[Operational
Costs <= Budget]

Achieve
[Cost

Measured]

(A)

(B) (C)

(D) (E) (F)

(K) (L)

(M) (N)

(O) (P)Achieve
[Activity

Measured]

(J)

Achieve[Minimum
NumLinksActive]

Maintain [DataAvailable]

…

Figure 2.4: KAOS Goal model for RDM application.

also denotes the difference between a system and an environmental agent by including

a stick figure icon within the hexagon of an environmental agent, such as agents RDM

Sensor and Link Sensor in Figure 2.4. A goal under the responsibility of a system

agent is a requirement and a goal under the responsibility of an environmental agent

is an expectation.

Goal Refinement Patterns. Darimont and van Lamsweerde [19] developed

a set of goal refinement patterns to assist requirements engineers in decomposing

high-level goals into finer-grained goals. Each of these goal refinement patterns have

been proven correct and complete. Thus, a requirements engineer may instantiate

these patterns while preserving their correctness and completeness. For instance,

22

the unmonitorability refinement pattern [19, 105] captures the interactions across the

shared boundary between system and environmental agents. This refinement pattern

is applicable when a system agent alone is unable to monitor a condition in a goal

formulation. Since the system agent is unable to directly observe a specific envi-

ronmental property, this refinement pattern reassigns the monitoring responsibility

to an environmental agent capable of doing so. The system agent is then able to

achieve its original objective by processing the monitoring information gathered by

the environmental agent.

Obstacle Mitigation. In addition to gradually decomposing goals, goal-oriented

requirements engineering also focuses on obstacle identification, analysis, and mitiga-

tion. Specifically, an obstacle is a precondition for the non-satisfaction of an assertion

that is a goal or some assumption made about the software application domain [105].

In other words, an obstacle is some event or condition that prevents the satisfac-

tion of the goal with which it is associated. Conceptually, goals and obstacles are

dual opposites of each other. While a goal prescribes a maximal set of admissible

behaviors for the system-to-be, an obstacle captures a minimal set of inadmissible

behaviors [105, 107]. More specifically, the definition of an obstacle, and therefore

the satisfaction of a goal, can be formalized as follows:

¬O1 ∧ ¬O2 ∧ ... ∧ ¬On |= G

where Oi is an obstacle to a goal G. This definition states that if all obstacles are

negated (i.e., resolved), then goal G is necessarily satisfied. Based on this definition,

Letier and van Lamsweerde [107] proposed a goal-oriented requirements-model based

approach for obstacle analysis and mitigation. In general, this obstacle analysis and

mitigation approach results in a more robust software system, though completeness

and correctness is ultimately bound by what a requirements engineer knows about

23

the application domain [28].

Letier and van Lamsweerde [105, 107] also presented an iterative process for iden-

tifying, assessing, and controlling obstacles in KAOS. In particular, a requirements

engineer identifies obstacles by first selecting a goal, assumption or hypothesis in the

goal model. Preferably, the selected goal should be a leaf node in the goal mode

as the finer-grained the target, the finer-grained the obstacle is to identify, assess,

and resolve. Next, a requirements engineer negates the selected goal G to obtain the

root obstacle, ¬G. Subsequently, the root obstacle ¬G must also be AND/OR re-

fined according to the desired level of detail. This process continues until obstruction

pre-conditions are reached (i.e, obstacles are sufficiently fine-grained) to enable an

assessment of their feasibility, likelihood, and resolvability.

To facilitate obstacle analysis, Letier and van Lansweerde [105, 107] also extended

the KAOS modeling language to formally and graphically capture obstacles and their

relationships to goals. Similar to a goal model, an obstacle diagram is a directed

acyclic graph with AND/OR refinements anchored on a particular assertion, such

as a goal or assumption, in a goal model. As obstacle Activity Not Measured

in Figure 2.5 shows, KAOS depicts obstacles as inverted parallelograms connected

by a crossed-out association link to the goal it obstructs. Obstacles can also be

progressively refined into finer-grained obstacles that are eventually connected to a

countermeasure goals through resolution links. An AND-refinement from a parent

obstacle specifies the set of conjoined sub-obstacles whose satisfaction is sufficient for

the satisfaction of the parent obstacle. For instance, Link Failed and NetworkLink

Not Faulty are two necessary preconditions for the obstacle Link Not Activated

to occur. In contrast, an OR-refinement from a parent obstacle captures the different

ways that the obstacle may be satisfied given the domain properties and hypothesis.

For instance, in this example, either NetworkLink Faulty or Sensor Data Dropped

prevents the satisfaction of goal (K) Activity Measured.

24

Maintain
[Operational

Costs <= Budget]

...
...

(B)

(D) (F)

(K) (P)

Achieve[Measure
NetworkProperties]

Achieve[Network
Partitions ==0]

Achieve[Activity
Measured]

Achieve[Link
Activated]

Link Not
Activated

Network
Actuator

NetworkLink
Not Faulty

Link
Failed

LinkSensor
Activity

Not Measured

Network
LinkFaulty

Sensor
Data Dropped

Figure 2.5: Goal-oriented obstacle decomposition in KAOS.

Once a requirements engineer has identified and refined a set of obstacles to the

desired level of granularity, these need to be evaluated in terms of their likelihood

and criticality. First, it must be shown that an obstacle can arise in the software

system by assessing whether each leaf obstacle is compatible with elicited domain

knowledge, as well as find some behavior of the system-to-be that satisfies it. Next,

the likelihood and criticality of each obstacle must be determined by applying several

application-specific rules and heuristics. For instance, the likelihood that an obstacle

occurs propagates bottom-up in an obstacle diagram, from independent sub-obstacles

to parent obstacles, as follows:

• If obstacle O is AND-refined by sub-obstacles SOi, then the likelihood of O is

computed by taking the minimum value of the likelihood of SOi.

25

• If obstacle O is OR-refined by sub-obstacles SOi, then the likelihood of O is

computed by taking the maximum value of the likelihood of SOi.

Such propagation rules produce rough estimates that may need revision through

domain-specific weakening, in the case of an AND-refinement, or strengthening, in

the case of an OR-refinement.

2.3.2 RELAX Specification Language

RELAX [114] is a requirements specification language for identifying and mitigat-

ing sources of environmental uncertainty in a DAS. Instead of enumerating all possible

ways that a goal might become obstructed, RELAX focuses on declaratively specifying

the sources and impacts of uncertainty at the shared boundary between the system-

to-be and its execution environment [47]. A requirements engineer organizes this

information into ENV, MON, and REL elements. ENV specifies environmental proper-

ties that may or may not be directly observable by the monitoring infrastructure of a

DAS; MON specifies the elements that make up the DAS’s monitoring infrastructure;

and REL defines how to compute the values of ENV properties from available MON

elements.

The semantics of RELAX operators are defined in terms of fuzzy logic in order

to explicitly account for and constrain the extent to which a non-invariant goal may

become temporarily unsatisfied [114]. Table 2.2 gives the current set of RELAX opera-

tors and describes how each can be used to evaluate the satisfaction of a non-invariant

goal. For instance, if the goal (F) in Figure 2.4 is RELAXed into Achieve[AS FEW

Network Partitions AS POSSIBLE], then this goal now states that it is temporarily

acceptable for the network to become partitioned at run time while data messages

continue to be replicated and distributed. The fuzzy logic underpinnings of RELAX

support both ordinal and temporal constraints upon goal satisfaction.

26

Table 2.2: Table of RELAX operators and their semantics [114]

RELAX Operator Informal Definition

AS EARLY AS POSSIBLE φ φ becomes true in some state as close to the
current time as possible

AS LATE AS POSSIBLE TO φ φ becomes true in some state as close to time
t = ∞ as possible

AS CLOSE AS POSSIBLE TO f φ φ is true at periodic intervals where the pe-
riod is as close to f as possible

AS CLOSE AS POSSIBLE TO q φ there is some function ∆ such that ∆(φ) is
quantifiable and (∆(φ) − q) is as close to 0
as possible

AS MANY AS POSSIBLE φ there is some function ∆ such that ∆(φ) is
as close ∞ as possible

AS FEW AS POSSIBLE φ there is some function ∆ such that ∆(φ) is
quantifiable and is as close as possible to 0

RELAX Process. Cheng et al. [13] proposed an approach for introducing RELAX

operators into non-invariant requirements in a KAOS goal model. To apply their goal

modeling approach, a requirements engineer must first informally specify the various

ENV, MON, and REL elements. Next, each goal in the model must be classified either as

an invariant or non-invariant goal. For a non-invariant goal, a requirements engineer

must then determine if environmental uncertainty may cause that goal to become

temporarily unsatisfied. If the non-invariant goal may become unsatisfied at run

time, then a requirements engineer must also apply a corresponding RELAX operator

to constrain the degree to which that goal may be temporarily violated. This last

step must be manually repeated for each non-invariant goal in the model.

2.4 Evolutionary Computation

Evolutionary computation (EC) is a subfield of artificial and computational in-

telligence [33, 51]. Within these fields, EC is a family of stochastic search-based

techniques that includes, but is not limited to, approaches such as genetic algo-

rithms [46], genetic programming [63], evolution strategies [95], digital evolution [82],

27

ant colony optimization [23], and particle swarm optimization [57]. These EC ap-

proaches and techniques are often applied to solve complex optimization problems

in a wide range of domains, including software engineering [39, 40, 44, 49], antenna

design, and robotics [63]. Most EC approaches harness the concept of Darwinian

evolution by natural selection in order to guide the search process towards promis-

ing areas of the solution space. EC approaches tend to be most successful when the

solution space is not deceptive or misleading, and provides sufficient stepping stones

for the evolutionary algorithm to gradually compose solutions of greater complexity.

The data flow diagram in Figure 2.6 depicts the key processes in an evolutionary

algorithm. Specifically, once a developer decides to apply a particular EC approach

or technique for a given problem, she must first encode the elements or parameters

that comprise a candidate solution to the problem being solved. This encoding maps

solution elements to specific data structures that can be operated on by the corre-

sponding evolutionary algorithm [33]. Using biology-based terminology, the elements

and parameters that an evolutionary algorithm can manipulate are known as genes,

and the set of genes comprising a candidate solution are known as a genome. The

particular encoding of a solution can significantly affect the likelihood of a particular

solution being found by reducing or expanding the overall search space. As a result,

different EC approaches tend to encode solutions in different structures depending on

what constitutes a solution and how it may be evaluated. Moreover, in EC candidate

solutions are often referred to as individuals.

In general, EC approaches tend to simultaneously examine multiple individuals

in parallel, storing these candidate solutions in a population. The EC algorithm must

therefore initialize the starting population either by randomly generating a collection

of individuals or by resuming the search process from a previously stored population.

Next, evolutionary algorithms apply a set of fitness functions to evaluate the quality,

or fitness, of each individual in the current population and thus guide the search

28

individuals,
fitness values

Developer

Data StoreProcess Data Flow
Legend:

Actor Solutions

individuals

solution
elements,

type,
cardinality

Encode
solution

parameters

(1)

Initialize
population

(2)
Compute

fitness
value

(3)
encoding

Select
individuals

(4)
Generate

new
individuals

(5)

[not done]
surviving

individuals

surviving individuals,
new individuals

[done]
fittest

individuals

Figure 2.6: Data flow diagram illustrating key processes in evolutionary algorithms.

process towards more promising areas of the solution space. Essentially, a fitness

function maps the solution encoded in an individual to a scalar fitness value that

is proportional to how well it addresses the various concerns of the problem being

solved.

Evolutionary algorithms leverage this fitness value to compare the relative qual-

ities of different individuals in the population and determine where to search in sub-

sequent iterations. Several selection methods can be applied, such as tournament

and roulette wheel selection [46]. Tournament selection randomly selects k individ-

uals from the population, and the individual with the highest fitness value survives

onto the new population. In contrast, roulette wheel, or fitness proportionate, selec-

tion assigns a survival probability to each individual that is proportional to its fitness

value. Ideally, but not necessarily, those individuals who survive this selection process

represent the best solutions found thus far by the evolutionary algorithm.

Next, an evolutionary algorithm generates new solutions by applying operators

such as crossover and mutation. The crossover operator exchanges sets of genes in

29

a genome from two existing individuals in the population, thereby forming two new

individuals. The mutation operator, in contrast, creates new individuals by randomly

inserting, removing, swapping, and/or modifying genes in an existing individual. Ide-

ally, the crossover operator generates new individuals with higher fitness values by

exchanging building blocks, or important groups of genes, between individuals. In

contrast, the mutation operator adds diversity, in the form of new solutions, into

a population that might otherwise not be explored through the crossover operator

alone.

As Figure 2.6 depicts by the bolded conditional guard, EC approaches sequen-

tially apply evaluation, selection, individual generation operators (i.e., crossover and

mutation) either for a given number of iterations or generations, or until a sufficiently

good solution is found. Lastly, after an evolutionary algorithm terminates, it returns

either a single individual with the highest fitness in the population, or a set of individ-

uals, each representing different solutions that represent different tradeoffs between

competing concerns.

2.4.1 Genetic Algorithms

A genetic algorithm [46] is a stochastic search-based heuristic that generates

solutions to complex optimization problems by replicating several biologically-inspired

processes of natural selection; in this work, the Loki, AutoRELAX, and Plato techniques

make use of genetic algorithms. In general, a genetic algorithm encodes candidate

solutions in a representation amenable to evaluation and manipulation. Although

not mandatory, this candidate configuration is often fixed in length throughout the

evolutionary process. Figure 2.7 presents two commonly-used representations in a

genetic algorithm. For instance, Figure 2.7(A) illustrates the simplest and most

common representation in a genetic algorithm, a fixed-length binary string. Similarly,

Figure 2.7(B) illustrates an alternate, fixed-length, vector-based representation where

30

genes can be represented directly as integers, floating-point values, and other more

complex data structures. Each encoded individual can be mapped back to a unique

element in the problem domain.

0 1 1 1 0 1 0 0

 (A) Bit String Representation

9.8 3 2 0 1 1.3

 (B) Numeric Vector-Based
Representation

Figure 2.7: Examples of encodings in a genetic algorithm.

The fitness of each individual in the population must be computed in order to

determine which areas of the solution space the genetic algorithm should explore next.

To compute an individual’s fitness value, a genetic algorithm applies either a single or

multiple domain-specific fitness functions that map an individual’s encoded solution

to a scalar value proportional to its quality. Multiple fitness functions can be combined

in different ways, such as a linear weighted sum. Moreover, each fitness function can

be associated with different weight coefficients, thereby guiding the genetic algorithm

towards a specific type of solution.

A genetic algorithm typically applies a crossover operator in order to generate

new candidate solutions from existing individuals in the population. Two crossover

operators are commonly applied in a genetic algorithm, one- and two-point crossover.

As Figure 2.8 illustrates, in one-point crossover, a genetic algorithm selects a gene

in the genome and then exchanges genes beyond that boundary between the two

parents. In contrast, in two-point crossover, a genetic algorithm randomly selects two

gene boundaries in the genome and then exchanges the parent’s genes that lie within

those bounds.

As with most other evolutionary algorithms, a genetic algorithm also applies

mutation operators to maintain a diverse range of solutions in the population. A

genetic algorithm normally mutates an individual by randomly changing its encoded

31

0 1 1 1 0 1 0 0

 (B) Two-point crossover operator for a bit string
representation in a genetic algorithm.

0 0 0 1 1 0 1 0

0 1 0 1 1 0 0 0 0 0 1 1 0 1 1 0

Individual A Individual B

Offspring AB Offspring BA

0 1 1 1 0 1 0 0

 (A) One-point crossover operator for a bit string
representation in a genetic algorithm.

0 0 0 1 1 0 1 0

0 0 0 1 1 0 0 0 0 1 1 1 0 1 1 0

Individual A Individual B

Offspring AB Offspring BA

Figure 2.8: One-point and two-point crossover in a genetic algorithm.

elements. For instance, Figure 2.9 illustrates a random flip mutation where the value

of a single gene changes from zero to one. More complex genomic representations

might require mutation operators to replace existing genes with randomly drawn

values.

2.4.2 Genetic Programming

Genetic programming [63], often considered to be a specific instance of a genetic

algorithm [46], is a search-based technique that generates executable programs to solve

32

0 1 0 1 1 0 0 0

0 1 0 1 1 0 0 1

Individual A

Individual A'

bit mutation

Figure 2.9: Flip mutation operator in a genetic algorithm.

specific tasks; in this work, the Hermes technique makes use of genetic programming.

As Figure 2.10 illustrates, in a genetic program, an individual encodes a candidate

executable program in a genome that comprises a set of operators (circles) and termi-

nals (squares). Operators typically include mathematical and procedural functions,

and terminals include variables and constant values. Each genetic program can be

executed either directly on a computer, or on a virtual interpreted environment. For

instance, the individual in Figure 2.10 can be executed to compute the value of the

function x2 + x+ x
y − x.

+

*

+

x x

x

Individual

-

/

x y

x

Figure 2.10: Tree-based representation of a genetic programming.

33

A genetic program begins by generating a population of random individuals.

Three methods are commonly applied to generate random candidate programs: full,

grow, and ramped half-and-half [63]. The full method generates a candidate program

where the terminals, or leaves of a tree-based program representation, are all at the

same depth level. The grow method generates a candidate program where the height

of the tree-based representation can vary up to some maximum value. In contrast

with the full and grow methods, which tend to not generate varied tree shapes, the

ramped half-and-half method applies the full method to generate the first half of

the population, and the grow method to generate the second half of the population.

The resulting population stores the starting set of candidate individuals that will be

explored and evaluated by the genetic program.

As with a genetic algorithm, a genetic program also applies a set of fitness func-

tions to compute an individual’s fitness value. In contrast to a genetic algorithm,

a genetic program generally computes an individual’s fitness value by executing the

individual’s encoded program. Furthermore, often the objective of a fitness function

in a genetic program is to measure the difference between a candidate program’s ac-

tual and expected outputs for a given set of input test cases. In traditional Koza

fitness [63], the best possible fitness value that an individual can achieve is 0.0, and it

implies that the evolutionary algorithm found a solution capable of producing exactly

the expected output for every input test case considered.

Genetic programming applies two key operators to generate new candidate pro-

grams: crossover and mutation. In particular, the crossover operator exchanges ge-

netic material, such as operators and terminals, from two existing individuals in the

population to create a new individual that represents a potentially different solution

from either parent. As Figure 2.11 illustrates, the crossover operator for a tree-based

genetic program randomly selects two individuals from the population, and then it

creates a new individual by replacing the subtree of one individual with a randomly

34

selected subtree from the other individual. Although not common in practice, this

crossover operator can also produce another sibling by combining the genetic material

not used for the first offspring.

+

*

+

x x

1

x

Individual A
-

/

x y

x

Individual B

+

*

+

x x

x

Individual AB

-

/

x y

x

Figure 2.11: Crossover operator for a tree-based representation genetic program.

In addition to the crossover operator, a genetic program also applies several

key mutation operators to generate new candidate programs from existing ones in

the population. In general, genetic programming mutation operators operate on

a random subtree element of an individual. As Figure 2.12 illustrates, mutation

operators insert, remove, modify, or swap subtree elements to form new programs.

In particular, insertion randomly adds new operators and terminals to a candidate

program; removal randomly deletes a set of operators or terminals from a candidate

35

program; modification replaces a single operator or terminal in a candidate program;

and swap exchanges operators or terminals within a candidate program.

+

*

+

x x

x

Individual A

-

/

x y

x

 (A) Insertion operator

+

*

+

x x

x

Individual A'

-

/

x y 2

-

 (B) Removal operator

Individual A'

*

+

x x

-

/

x y

x

Individual A'

+

*

+

x x

x

4

 (C) Modification operator

+
+

*

x x

x

-

/

x y

x

Individual A'

 (D) Swap operator

Figure 2.12: Insertion, removal, modification, and swap mutation operators for a
tree-based genetic program.

36

A genetic program typically executes these operations for a fixed number of

generations, or until the Koza fitness of a candidate program achieves a predetermined

quality threshold value. Once the genetic program terminates, the individual with

highest fitness is returned as the answer to the problem. This candidate program may

be the direct solution to the problem being solved or, in the case of an interpreted

virtual instruction set, may need to be translated into executable instructions for the

specific target environment or machine.

2.4.3 Linear Genetic Programming

While a tree-based genomic representation is often used in genetic programming

to facilitate a hierarchical evaluation of the program, other representations also exist.

For instance, the Push-GP language [104] defines a simplified set of instructions that

use type-specific stacks to structure and execute evolved programs. Likewise, as

Figure 2.13 illustrates, linear genetic programming [9] encodes candidate genomes in

a one-dimensional vector of virtual or interpreted instructions that can be sequentially

executed from left to right. As this figure also illustrates, abstract instruction sets,

such as the one used in this example where each operation corresponds to a DCM

Protocol operation [64], can be remapped to executable instructions. By combining

simple instruction sets with flexible execution environments both Push-GP and linear

genetic programs tend to evolve modular programs that are often easier to analyze

and understand than traditional tree-based representations.

blockOutgoing();
while(!done) {
 process();
 ...
}
notifyState(p);

linear genome
encoding

remove
c2

link
c3,c4

unlink
c1,c5

passive
c8

executable
reconfiguration

instruction

Figure 2.13: Linear genetic programming representation with DCM protocol instruc-
tions as instruction set.

37

As with traditional genetic programming, linear genetic programming also applies

crossover and mutation operators to generate new candidate solutions. As Figure 2.14

illustrates, in a linear representation, two-point crossover executes as in a genetic

algorithm, by first randomly selecting two individuals from the population as parents,

A and B. Two indices, such as A1, A2 , B1, and B2, are then randomly selected from

each parent to indicate the range of instructions that will be exchanged. These

instructions are then swapped, creating two new individuals, AB and BA.

remove
c2

link
c3,c4

unlink
c1,c5

passive
c8

insert
c4

activate
c4

link
c2,c9

remove
c3

link
c2, c5

remove
c2

passive
c8

activate
c4

link
c2,c9

remove
c3

link
c3,c4

unlink
c1,c5

insert
c4

link
c2, c5

index A1 index B1index A2
index B2

Parent A Parent B

Offspring AB Offspring BA

Figure 2.14: Two-point crossover in linear genetic program.

In contrast to the crossover operator, the mutation operator introduces variation

into the population by randomly exploring points in the solution space that perhaps

are not currently in the population [63]. To this end, mutation in linear genetic

programming randomly inserts, removes, and replaces instructions and terminals in

randomly selected genomes. Figure 2.15 illustrates an individual who is selected from

the population and mutated. Specifically, in Figure 2.15, “remove(c2)” is replaced

by “insert(c4)” and “insert(c3)” is inserted into the genome, thus producing A′.

Ideally, the mutation operator introduces variation into the population that will form

part of the overall solution.

38

39

remove
c2

link
c3,c4

unlink
c1,c5

passive
c8

Individual A

insert
c4

link
c3,c4

unlink
c1,c5

passive
c8

Individual A'

insert
c3

insertionreplacement

M
utation

Figure 2.15: Mutation in linear-based genetic program.

Chapter 3

Automatic Derivation of Utility

Functions for Requirements

Monitoring

This chapter presents how our model-based framework supports requirements

monitoring in a DAS. First, we motivate the need for automatically deriving utility

functions for monitoring the satisfaction of functional, non-functional, and RELAXed

requirements. We then introduce Athena, the component in our framework respon-

sible for generating utility functions for requirements monitoring, and state its as-

sumptions, inputs, and expected outputs. Next, we use a goal model that captures

the requirements and constraints of the RDM application as an example to describe

the process that Athena uses to generate utility functions. Subsequently, we apply

Athena to the RDM application to show how derived utility functions quantify and

relate different system and environmental conditions with specific requirements at

run time. Lastly, we discuss and summarize main findings.

40

3.1 Motivation

Utility functions have been successfully applied for self-assessment purposes in a

DAS [15, 20, 87, 109]. At run time, a DAS can use utility functions to assess how well

it satisfies requirements, as well as identify conditions conducive to a requirements

violation [28, 29, 97, 98]. As Figure 3.1 illustrates, within the context of a DAS, a

utility function maps monitoring data to a scalar value, typically within the inclusive

ranges of zero and one, that is proportional to how well the DAS satisfies its require-

ments. Significant drops in utility values often suggest undesirable conditions that

may require adaptation. For example, the value of a utility function such as
Lastts

Currentts
,

where Lastts is the last time an environmental property was measured and Currentts

is the current time, will decrease as the gap between Lastts and Currentts increases,

thus signaling the DAS to refresh its monitoring values. In contrast to traditional

requirements monitoring approaches that use state-based model checkers [28, 29, 97],

utility functions provide a light-weight alternative for associating the actions taken

by a decision-making process with the high-level goals, concerns, and requirements of

a DAS [20, 109].

Monitor1

Monitor2

Monitorn

Utility
Functions

sensor
values

scalar
value

Utility
Values

scalar
value...

Decision
-Making
Process

Figure 3.1: Utility functions within a DAS.

Typically, utility functions have been applied for monitoring both functional and

non-functional requirements in DASs. To this end, a requirements engineer often

elicits knowledge from domain experts to manually derive utility functions that can

be used for monitoring functional requirements in a DAS [20]. Not only are these

41

ad hoc approaches for manually eliciting utility functions labor-intensive, but they

may also fail to capture all functional requirements in a DAS. In contrast, statistical

regression-based techniques can be used to indirectly infer, at run time, utility func-

tions for monitoring non-functional requirements in a DAS [12, 20, 80, 116]. These

performance-based utility functions often generate a single application-level utility

value representative of the overall system’s performance. While these statistics-based

approaches facilitate the automatic derivation of performance-based utility functions,

they tend to postpone their integration with the DAS until deployment, when real

execution data becomes available to drive the regression process.

A goal model can be used during the requirements engineering phase to identify,

elaborate, and refine the set of requirements and constraints that a DAS must satisfy.

Perhaps with the exception of requirements-aware systems [5, 6, 103, 111], goal models

are not commonly used after the requirements engineering and early design phases.

Nevertheless, a goal model contains valuable information that can be leveraged at run

time to determine when and how a DAS should self-reconfigure in response to system

and environmental changes. As a result, new goal-oriented model-based techniques

are needed to support the systematic monitoring of functional, non-functional, and

RELAXed requirements.

3.2 Introduction to Athena

Athena is a component in our model-based framework that uses a goal-oriented

requirements model to automatically derive utility functions for requirements mon-

itoring. Derived utility functions directly support self-assessment in a DAS at the

requirements level, using the abstracted goal model as its evaluation reference point.

Moreover, since Athena operates at the requirements level, it facilitates the integration

of derived utility functions throughout the entire development process of the DAS.

42

Lastly, by incorporating fuzzy logic functions, Athena also supports the automatic

derivation of utility functions for monitoring the satisfaction of RELAXed goals. The

resulting utility functions can be further augmented and refined with the aid of a

domain expert, if necessary.

Athena supports the automatic derivation of state-, metric-, and fuzzy logic-based

utility functions from a KAOS goal model [18, 105] that may also include RELAXed

goals [13, 114]. State-based utility functions assess whether a DAS satisfies functional

invariant goals. Metric-based utility functions, on the other hand, detect conditions

that may be conducive to a requirements violation, ideally enabling a DAS to mit-

igate such conditions before an invariant goal becomes unsatisfied. Lastly, fuzzy

logic-based utility functions compute the satisfaction of non-invariant goals that have

been RELAXed to explicitly account for the effects of uncertainty. Collectively, the

values produced by these utility functions enable a DAS to monitor the satisfaction of

requirements, determine when an adaptation is warranted, and identify sets of goals

and agents that may be responsible for a requirements violation.

Athena adopts a bottom-up approach to derive utility functions from a goal model

of the DAS. In particular, Athena analyzes a goal’s definitions and keywords to identify

and map environmental conditions (ENV properties) to their corresponding monitor-

ing elements (MON). Next, Athena extracts keywords for each goal’s specification to

select a corresponding utility function template to evaluate that particular goal. These

utility function templates are conceptually similar to functional template constructs

provided by programming languages and provide generic and reusable structures for

evaluating the satisfaction of goals according to the semantics associated with key-

words in the goal’s definition.

Athena uses different utility function templates for evaluating different goal types.

Namely, we defined state-based utility function templates that preserve the semantics

of linear temporal logic to evaluate the satisfaction of invariant goals [105]. We

43

also defined metric-based utility function templates to measure the degree to which

an observable condition in the goal’s formulation is minimized or maximized with

respect to a given threshold. Lastly, we defined fuzzy logic-based utility function

templates to measure the satisfaction of RELAXed goals [114]. Once Athena selects

the corresponding utility function template for a goal, it then uses the ENV and MON

mappings to instantiate each of these utility function templates such that they refer

to specific system and environmental properties.

3.3 Athena Process

This section states the expected inputs and outputs of Athena, as well as describes

each step that Athena applies to generate utility functions.

3.3.1 Expected Inputs and Outputs

Athena requires two input elements to generate utility functions for requirements

monitoring in a DAS: a KAOS goal model of the DAS that may include RELAXed

goals, and a set of ENV properties, MON elements, and REL relationships. Next, we

describe how Athena uses each of these inputs.

KAOS Goal Model. Athena uses a KAOS goal model [18, 105] that captures

the objectives and constraints of the DAS to derive utility functions. For example,

Figure 3.2 shows a KAOS goal model with RELAXed goals for the RDM application,

where RELAX goals are shown in uppercase. In particular, this goal model captures

a set of goals for establishing and maintaining a connected network of RDMs, as

well as protecting critical data by replicating and distributing copies of data to data

mirrors throughout the network. As this goal model shows, the data mirrors can

distribute data across the RDM network by using either synchronous or asynchronous

propagation methods. This goal model also captures the various adaptation objectives

44

of the RDM network, such as maximizing the number of active data mirrors while

minimizing the number of passive and quiescent data mirrors.

In contrast to the goal model previously presented in Figure 2.4, this model

includes several RELAXed goals to both explicitly address identified sources of uncer-

tainty as well as demonstrate how Athena can derive utility functions for evaluating

the satisficement of RELAXed goals. For instance, Goal (F) was RELAXed since the

RDM network can temporarily tolerate network partitions without necessarily violat-

ing Goal (A). In contrast, Goals (A) and (B) denote invariants that were not RELAXed

as temporary violations of these goals are not acceptable since they would either de-

feat the purpose of remote data mirroring or the constraints under which the system

must protect data, respectively. Furthermore, each goal must also be classified either

as an invariant or a non-invariant goal.

Athena requires that the textual definition of each KAOS goal conforms to the

extended BNF grammar [3] presented in Figure 3.3. This grammar, based on the

KAOS grammar introduced by van Lamsweerde et al. [18, 105], states that a KAOS

goal comprises exactly one KAOS keyword followed by one ENV property and zero

or one logical operator and constraint. Note that ENV properties and constraints are

defined here as placeholder strings; both are application domain-dependent and must

be specified by a requirements engineer. Lastly, a constraint can be defined either as

a fixed threshold, such as a physical property, or in terms of an ENV property that

may change after the DAS is deployed. For example, in Goal (B), Maintain is the

KAOS keyword, OperationalCosts is the ENV property, <= is the logical operator,

and Budget is the constraint.

Likewise, Athena also requires that the textual definition of each RELAX goal con-

forms to the extended BNF grammar presented in Figure 3.4. This grammar, defined

based on the RELAX operators and their semantics [13, 114], states that RELAXed

goals can be expressed either by exactly one KAOS keyword, an ENV property, a

45

Goal
Requirement

Agent
Refinement

Legend:

Network
Actuator

Network
Controller

Link
Sensor

RDM
Sensor

(A)

Maintain[Operational
Costs <= Budget]

(B) Achieve [NumberData
Copies AS CLOSE AS

POSSIBLE TO NumberServers]

(C)

Achieve[Measure
NetworkProperties]

(D) Achieve[AS FEW
AS POSSIBLE

Network Partitions]

(F)

Achieve[AS EARLY
AS POSSIBLE

MessagesDiffused]

(H)

Achieve
[LossRate
Measured]

(L)

Achieve
[Workload
 Measured]

(M)

Achieve
[Capacity
Measured]

(N)

Achieve
[Link

Deactivated]

(O) Achieve
[Link

Activated]

(P)
(K)

Achieve
[Activity

Measured]

Achieve
[Cost

Measured]

(J)
(G)

Achieve[DataAt-
Risk AS CLOSE AS
POSSIBLE TO 0]

Achieve
[AS MANY AS

POSSIBLE
Synchronous
Propagation
Methods]

(Q)

(E)
Achieve[AS FEW

AS POSSIBLE
NumLinksActive]

(I)
Achieve[AS FEW

AS POSSIBLE
AdaptationCosts]

Adaptation
Controller

Achieve
[DataSent AS
CLOSE AS

POSSIBLE TO
DataReceived]

(R)

Achieve [AS
MANY AS
POSSIBLE

Asynchronous
Propagation
Methods]

(S)
Achieve

[Data Sent AS
CLOSE AS
POSSIBLE
TO Data-
Received]

(T)

Achieve
[AS MANY AS

POSSIBLE
NumActive

DataMirrors]

(U)

Achieve
[AS FEW AS
POSSIBLE

NumQuiescent
DataMirrors]

(V)

Maintain [DataAvailable]

Achieve
[AS FEW AS
POSSIBLE
NumPassive
DataMirrors]

(W)

Figure 3.2: RELAXed goal model for RDM application.

46

 KAOS Goal :: KAOS Keyword, (ENV Property, Logical Operator?, Constraint?)
KAOS Keyword :: "Achieve" | "Avoid" | "Maintain"

Logical Operator :: > | <= | > | >= | == | !=
ENV Property :: String, { String }

Constraint :: ENV Property | String, { String }

Digit :: 0 | 1 | … | 9
Letter :: a | b | … Y | Z
Char :: Letter | Digit
String :: " Char, { Char } "

Figure 3.3: Specification grammar for KAOS goals.

RELAX operator, and a constraint, or by one KAOS keyword, a RELAX operator, and

an ENV property. For example, Goal (C) is expressed using the first pattern, where

Achieve is the KAOS keyword, NumberDataCopies is the ENV property, AS CLOSE AS

POSSIBLE TO is the RELAX operator, and NumberServers is the constraint. Goal (F),

on the other hand, is expressed using the second pattern, where Achieve is the KAOS

keyword, AS FEW AS POSSIBLE is the RELAX operator, and NetworkPartitions is

the ENV property.

RELAX Goal :: KAOS Keyword, ENV Property, RELAX Operator, Constraint |
 KAOS Keyword, RELAX Operator, ENV Property
KAOS Keyword :: "Achieve" | "Avoid" | "Maintain"
RELAX Keyword :: "AS EARLY AS POSSIBLE" | "AS CLOSE AS POSSIBLE TO" |
 "AS LATE AS POSSIBLE" | "AS FEW AS POSSIBLE" |

"AS MANY AS POSSIBLE"

Logical Operator :: > | <= | > | >= | == | !=
ENV Property :: String, { String }

Constraint :: ENV Property | String, { String }

Digit :: 0 | 1 | … | 9
Letter :: a | b | … Y | Z
Char :: Letter | Digit
String :: " Char, { Char } "

Figure 3.4: Specification grammar for RELAX goals.

ENV Mappings. In addition to the KAOS goal model of the DAS, Athena also

requires a set of ENV properties, MON elements, and REL relationships. In particular,

ENV specifies environmental conditions observable by the DAS; MON elements specify

the environmental agents, or sensors, that make up the DAS’s monitoring infrastruc-

47

ture; and REL specifies how to compute the values of ENV properties from MON ele-

ments. Note that ENV properties can be either directly observed by MON elements, or

it can be derived from an REL relationship consisting of other ENV properties or MON

elements. To this end, each REL relationship must preserve the dependencies between

MON elements and the types of data required by the corresponding computations.

Table 3.1 presents a subset of these ENV, MON, and REL elements that are rel-

evant to Goal (B) and its subgoals in the RDM goal model. For instance, Rows (1)

and (2) specify that in Goals (J) and (K), the ENV properties OperationalCost and

ActivityStatus can be directly measured by the MON element LinkSensor, respec-

tively. Note that not all ENV properties can be directly observed by a single MON

element and instead require more complex calculations that either manipulate or ag-

gregate the values of individual MON elements. For example, calculating the value of

ENV property NetworkPartitions in Goal (F) requires applying a graph-based reach-

ability algorithm to detect the total number of connected components in the RDM

network [22]. Likewise, calculating the value of ENV property OperationalCosts in

Goal (B) requires summing the cost of each active network link.

Table 3.1: Table with ENV, MON, and REL elements for RDM application.

Row Goal ENV MON REL
1 J Cost LinkSensor LinkSensor.cost
2 K Activity Status LinkSensor LinkSensor.is_active
3 L Loss Rate LinkSensor LinkSensor.loss_rate
4 M Workload RDMSensor RDMSensor.workload
5 N OperationalCapacity RDMSensor RDMSensor.capacity
6 E NumLinksActive All Link Sensors Sum(LinkSensor.is_active)

7 F NetworkPartitions LinkSensor, RDMSensor
|ConnectedComponents(RDMSensor,
LinkSensor if LinkSensor.is_active)| - 1

8 C NumberServers All RDMSensors Sum(RDMSensor.is_active)
9 B OperationalCosts LinkSensors Sum(LinkSensor.cost if LinkSensor.is_active)

As output, Athena produces a set of state-, metric-, and fuzzy logic-based util-

ity functions by instantiating different function templates based on the goal’s type.

As with traditional requirements monitoring approaches [28, 29], Athena generates

48

state-based functions to monitor functional invariant goals since their satisfaction

can be determined in a crisp, true or false manner, such as “Has the RDM network

ever exceeded the allocated operational budget?”. In addition, Athena also generates

metric- and fuzzy logic-based utility functions to monitor the satisficement of non-

invariant goals. Although not commonly done by traditional requirements monitoring

approaches, when possible, Athena also generates a metric-based utility function to

evaluate the degree to which an invariant goal is satisficed; this satisficement informa-

tion can enable a DAS to detect when the violation of an invariant goal is imminent.

3.4 Utility Function Derivation Process

The data flow diagram in Figure 3.5 shows the process that Athena applies in

order to generate a single utility function for a given KAOS or RELAX goal. In

this data flow diagram, we added boolean guards (denoted in bold font) to explicitly

capture the alternate data flows within the derivation process based on the type of

goal being processed. Athena begins the utility function derivation process at each leaf

goal and, following a bottom-up approach, applies the process depicted in Figure 3.5

to each goal in the model until the root goal is reached. This bottom-up approach

enables Athena to incorporate how the satisfaction of subgoals ultimately affect the

satisfaction of their parent goals. Next, we describe each of the key steps of the Athena

process.

(1) Map ENV property. An ENV property is a condition of the execution

environment that can be observed or inferred by a DAS through its monitoring in-

frastructure [13, 114]. Athena uses the KAOS and RELAX grammars presented in

Figures 3.3 and 3.4 to parse a goal’s definition to determine if a textual element refers

to an ENV property. Specifically, Athena matches textual elements in a goal’s specifi-

cation with the set of ENV properties previously identified by a requirements engineer

49

Goals

Map
ENV

property

(1)
Parse

constraint

(2)

goal textual
description

goal text,
ENV property

Table with
MON,

ENV, and
REL

elements

Row with env, mon,
and rel elements

Map RELAX
operator to
fuzzy logic

operator

(3a)

Instantiate
function
template

(4)Derive
metric for

ENV
property

(3b)Map KAOS
keywords to

function
template

(3c)

[RELAXed goal],
ENV, constraint

ENV,
fuzzy logic-

based function

ENV,
metric-based

function
ENV,

state-based
function

[Invariant goal],
ENV, constraint [Real-valued

ENV], goal,
constraint

Utility
Functions

column
env

properties

utility
function

Data StoreProcess Data Flow
Legend:

Utility function
templates

utility
function
template

Figure 3.5: Data flow diagram illustrating how Athena generates a single utility func-
tion for a given KAOS or RELAXed goal.

while applying the RELAX specification process. For example, Goal (B) in Figure 3.2

contains the textual token OperationalCosts that is specified as an ENV property in

Row 8 of Table 3.1. Note that not all goals refer to an ENV property. For instance,

although Goal (D) specifies that NetworkProperties must be measured, this textual

token is not specified as an ENV property in Table 3.1. If a goal does not refer to an

ENV property, then Athena proceeds to step (5).

(2) Parse goal constraints. A constraint is often a logical condition or thresh-

old that can be evaluated in a crisp fashion (i.e., true or false). A goal may specify

50

either an absolute constraint, such as a fixed threshold, or a relative constraint that

states a relationship between properties whose values may change at run time, such

as an ENV property. To this end, Athena parses the textual description of a goal

to extract the specified constraint, if any. If the goal specifies a constraint, then

Athena attempts to match the textual token with an ENV property in the table of

ENV, MON, and REL elements. For example, Goal (C) specifies a relative constraint,

NumberServers, that appears in Row 8 of Table 3.1. As the REL entry for this ENV

property shows, the value of NumberServers depends upon the configuration of the

RDM network and can be measured by aggregating the number of active RDMs in

the network. Athena proceeds to step (5) if a goal does not specify a constraint or the

constraint does not appear in the table of ENV, MON, and REL properties.

(3a) Map RELAX operator to fuzzy logic-based utility function. RELAX

defines a set of operators to constrain how a non-invariant goal may become tem-

porarily unsatisfied at run time due to environmental uncertainty [13, 114]. Athena

uses the RELAX grammar previously presented in Figure 3.4 in order to determine

if a requirements engineer RELAXed a KAOS goal. To achieve this objective, Athena

matches textual elements in a goal’s specification with the set of RELAX operators.

Each RELAX operator, in turn, is associated with a fuzzy logic-based utility function

template that evaluates the degree to which a non-invariant goal is satisficed. While

Athena instantiates the corresponding utility function with parameters extracted from

the goal’s definition, in some cases the specific bounds that define the satisfaction

criteria must be specified by the requirements engineer after the derivation process

completes.

Currently, Athena leverages three utility function templates to measure the sat-

isficement of RELAXed goals. Each utility function template models a different fuzzy

logic function shape, such as triangle, left shoulder, and right shoulder shapes. More-

over, each utility function template can be instantiated either with ordinal or tem-

51

poral property types, thereby supporting all operators defined thus far in the RELAX

specification language [114].

A triangle-shaped fuzzy logic function is often associated with the semantics of

the ordinal and temporal “AS CLOSE AS POSSIBLE TO” RELAX operators [13, 114].

As such, Athena uses the triangle-shaped utility function shown in Figure 3.6(A) in

order to evaluate the satisficement of KAOS goals that have been RELAXed with

this RELAX operator. This utility function template maps a measured property,

either ordinal or temporal, to a triangular-shaped function curve whose output values

range from zero to one, inclusive. Once instantiated, as in Figure 3.6(B), this utility

function produces values that approach one as the measured property approaches

its constraint or desired value. In contrast, this utility function produces values that

linearly approach zero as the measured property diverges from its constraint or desired

value, eventually returning zero once the measured property exceeds the minimum or

maximum values allowed.

double triangle(measured, desired, bound_min,
 bound_max) {
 if(measured > bound_max ||
 measured < bound_min) {
 return 0.0;
 }
 if(measured < desired) {
 return (1 / bounds_min / 2) * (desired -
 measured);
 } else {
 return 1-(1/bounds_max/2) * (measured -
 desired);
 }
}

(B) Utility Function Template(A) Fuzzy Logic Operator Shape

Desired

1

0

Measured Property

Bound
max.

Bound
min.

Figure 3.6: Triangle shape fuzzy logic operator and its corresponding utility function
template.

A left shoulder-shaped fuzzy logic function is often associated with the semantics

52

of the “AS EARLY AS POSSIBLE” and “AS FEW AS POSSIBLE” RELAX opera-

tors [5, 114]. Therefore, Athena uses the left shoulder-shaped utility function shown in

Figure 3.7(A) to evaluate the satisficement of KAOS goals that have been RELAXed

with either of those two RELAX operators. This utility function template maps the

value of a measured property, either ordinal or temporal, to a linearly decreasing

function curve. Once instantiated, as in Figure 3.7(B), this utility function produces

values that approach one as the measured property approaches a time or quantity

equal to 0. In contrast, this utility function produces values that linearly approach

zero as the measured property increases, eventually returning zero once the measured

property exceeds the maximum value allowed.

double left_shoulder(measured, target,
bound_max) {
 if (measured > bound_max) {
 return 0.0;
 }
 if (measured <= target) {
 return 1.0;
 }
 return ((bound_max - measured) /
 (bound_max - target));
}

(A) Fuzzy Logic Operator Shape (B) Utility Function Template

(time = 0
or

quantity = 0)

1

0

Measured
Property

Bound max.

Figure 3.7: Left shoulder shape fuzzy logic operator and its corresponding utility
function template.

Lastly, a right shoulder-shaped fuzzy logic function is often associated with the

semantics of the “AS LATE AS POSSIBLE” and “AS MANY AS POSSIBLE” RELAX

operators [5, 114]. Athena uses the right shoulder-shaped utility function shown in

Figure 3.8(A) to evaluate the satisficement of KAOS goals that have been RELAXed

with either of those two RELAX operators. This utility function template, shown in

Figure 3.8(B), maps the value of a measured property, either ordinal or temporal,

53

to a linearly increasing function curve. Note that this utility function returns values

that approach one as the measured property approaches a time or quantity that is

greater than the minimum value allowed and zero for measured property values less

than the minimum value allowed.

double right_shoulder(measured, target,
 bound_min) {
 if (measured < bound_min) {
 return 0.0;
 }
 if (measured >= target) {
 return 1.0;
 }
 return (target - measured) / (target -
 bound_min);
}

(A) Fuzzy Logic Operator Shape (B) Utility Function Template

1

0
Measured
Property

Bound min

(time = 0
or

quantity = 0)

Figure 3.8: Right shoulder shape fuzzy logic operator and its corresponding utility
function template.

As an example, consider Goal (F) from the RDM goal model in Figure 3.2. This

goal has been RELAXed by applying the “AS FEW AS POSSIBLE” RELAX opera-

tor. As a result, to evaluate the satisficement of Goal (F) at run time, Athena ap-

plies the left shoulder-shaped utility function template presented in Figure 3.7(B).

Athena instantiates this utility function template by assigning the ENV property

NetworkPartitions to the MeasuredQuantity variable, and the absolute threshold

of zero to the DesiredQuantity constraint. This utility function measures the satis-

ficement of RELAXed Goal (F) by explicitly capturing the extent to which the RDM

can tolerate temporary network partitions, as established by the specified bound max

constraint.

(3b) Derive a metric for a real-valued ENV property. Athena generates

a metric-based utility function to measure the satisficement of both invariant and

54

non-invariant goals. Although it is possible to determine whether an invariant goal

is satisfied, Athena also evaluates the degree to which an invariant goal is satisficed

when the goal refers to a real-valued ENV property. Treating an invariant goal as a

non-invariant goal enables a DAS to detect and mitigate conditions conducive to a

requirements violation. To achieve this objective, Athena uses a goal’s fitness criterion,

which is an annotation often associated with soft goals to quantify the extent to which

a goal should be met [105]. Athena maps keywords in this annotation (e.g., Minimize

and Maximize) to a utility function template that either minimizes or maximizes the

divergence between an ENV property and its constraint or threshold. In particular,

the following utility function template measures the degree to which an ENV property

equals a given constraint, Valconstraint:

UTminimize = 1−min
{ |ValENV − ValConstraint|

ValENV
, 1
}

(3.1)

and the following utility function template measures the degree to which an ENV

property diverges from a given constraint, Valconstraint:

UTmaximize = min
{ |ValENV − ValConstraint|

ValENV
, 1
}

(3.2)

For example, consider Goal (C) from the RDM goal model in Figure 3.2 that

specifies that each data item should be stored in each data mirror in the network.

This goal is a non-invariant because it takes the RDM network a certain amount of

time to diffuse data items to all data mirrors, thus it cannot always be satisfied as

stated. As such, Athena measures the satisficement of this goal by deriving a metric-

based utility function that measures the degree to which the RDM minimizes the

difference between NumberDataCopies and NumberServers. In particular, function

template (3.1) can be instantiated as follows:

55

UTC = 1−min
{ |NumberDataCopies− NumberServers|

NumberDataCopies
, 1
}

(3.3)

This utility function evaluates how close the RDM network is replicating each data

item at each data mirror by producing values inversely proportional to the difference

between NumberDataCopies and NumberServers.

(3c) Derive state-based utility function for an invariant goal. An invari-

ant goal describes functionality that the system-to-be must always provide. As part

of the RELAX approach, a requirements engineer classifies goals as an invariant or

non-invariant. To derive a state-based utility function for an invariant goal, Athena

first parses the goal’s definition and identifies which KAOS keyword it contains. Each

keyword (i.e., Achieve, Avoid, and Maintain) can be mapped to precise semantics in

temporal state-based logic [105]. Athena maps these keywords to a state-based utility

function template that returns true or false depending on whether the constraint is

satisfied or not. Figure 3.9 presents the three state-based utility function templates

that Athena uses to generate utility functions for invariant goals. For example, Athena

instantiates the utility function template in Figure 3.9(A) to monitor the satisfac-

tion of Maintain goals, where ENV refers to the environmental condition identified

in step (1), Op refers to a logical operator, such as < and =, and Constraint refers

to the goal’s constraint identified in step (2). This template uses a satisfied guard

to preserve the semantics of a Maintain goal and thus returns true if and only if the

constraint has always been satisfied.

(4) Instantiate utility function template. Each utility function accepts

monitoring information from MON elements (i.e., sensors) in order to evaluate the

satisfaction or satisficement of goals at run time. Athena uses the set of ENV properties,

MON elements, and REL relationships to express each utility function solely in terms

of MON elements. In particular, Athena replaces each ENV term with the set of MON

elements responsible for computing its value. For example, Athena replaces the ENV

56

// (A) Maintain U t i l i t y Function Template :
boolean mainta in template (ENV, Op, Constra int) {

i f (s a t i s f i e d) {
return (s a t i s f i e d = Op(ENV, Constra int)) ;

}
return fa l se ;

}

// (B) Achieve U t i l i t y Function Template :
boolean ach i eve temp la te (ENV, Op, Constra int) {

return Op(ENV, Constra int) ;
}

// (C) Avoid U t i l i t y Function Template :
boolean avo id template (ENV, Op, Constra int) {

i f (! s a t i s f i e d) {
return ! (s a t i s f i e d = Op(ENV, Constra int)) ;

}
return fa l se ;

}

Figure 3.9: State-based utility function templates for Achieve, Avoid, and Maintain
goals.

property term OperationalCosts in the utility functions derived for Goal (B) with

the following expression:

OperationalCosts =
n∑
i=0

LinkSensor.cost ∗ LinkSensor.is active (3.4)

This expression, shown in Row (8) of Table 3.1, specifies that the value of

OperationalCosts can be computed by summing the operational cost of each ac-

tive network link. Here, is active returns 1 (True) if a network link is active and 0

(False) otherwise.

(5) Propagate utility values to parent goal. Athena propagates the utility

value associated with a goal, if any, to its parent goal. To a parent goal, this prop-

agated utility value measures how well its subgoals are satisficed. The utility values

of multiple subgoals are combined in different ways depending on the type of goal

57

refinement applied. For an AND-decomposition, Athena computes the product of each

utility value reported by the subgoals in the refinement. For instance, if the utility

value associated with Goals (D), (E), and (F) are 1.0, 0.8, and 1.0, respectively, then,

from the perspective of Goal (B), its subgoals are satisfied to a degree of 0.8. In

contrast, for an OR-decomposition, Athena selects the maximum value of each utility

value produced by the subgoals in the OR-refinement. For example, if the utility

value associated with Goals (Q) and (R) are 0.8 and 0.9, respectively, then from the

perspective of Goal (G), its subgoals are satisficed to a degree of 0.9. These semantics

capture the notion that to satisfy a goal that has been AND-decomposed all subgoals

must be satisfied, whereas to satisfy a goal that has been OR-decomposed, at least

one subgoal must be satisfied.

(6) Repeat steps (1) through (5) until the root goal is reached from

every starting leaf goal.

3.5 Case Study

This section presents two experiments to illustrate how utility functions derived

by Athena can be used for requirements monitoring in a DAS. First, we describe

the experimental setup used throughout each RDM simulation. We then present

results that show how derived utility functions capture the satisfaction of invariant,

non-invariant, and RELAXed goals at run time in response to different system and

environmental conditions.

The following two experiments simulate a network that comprises 25 RDMs and

300 network links that can be activated to distribute data. Each RDM simulation

executes for 300 time steps during which 150 new data items must be diffused across

the network, where each data item is randomly inserted at different time steps and

RDMs. Note that new data is inserted only during the first 80% of the simulation

58

length to provide a sufficiently reasonable amount of time for the RDM network to

diffuse messages before simulation completes.

Overall, the following experiments illustrate how derived utility functions cap-

ture requirements satisfaction in two completely different scenarios. Specifically, the

first experiment does not subject the RDM to any adverse system or environmental

condition, thereby facilitating the data replication and distribution process. In con-

trast, the second experiment introduces various forms of system and environmental

uncertainty, such as repeated network link failures, dropped messages, and so forth.

Since each simulation contains a random component, we performed 30 replicate sim-

ulation trials for each scenario and plot mean values with error bars where applicable

to show statistical significance.

3.5.1 No Adverse Environmental Conditions

Experimental Objective. This experiment, Experiment 3.1, verifies that Athena

derives utility functions that can detect how well the RDM network satisfies its re-

quirements under ideal system and environmental conditions. By the end of each

simulation, derived utility functions should report that all data messages have been

diffused without exceeding the allocated operational budget.

Hypothesis. For this experiment, we define a null hypothesis, H0, that states

that utility functions derived by Athena will not detect any unsatisfied requirements.

Here, an unsatisfied invariant requirement appears in the form of utility values that

are not equal to 1. Likewise, an unsatisfied non-invariant requirement appears in the

form of utility values equal to 0.

Configuration. Since this experiment does not subject the RDM network to

adverse system and environmental conditions, the primary sources of uncertainty

are when and where data messages are inserted into the RDM network. Table 3.2

specifies the base configuration used for this scenario, where “...” specifies a range of

59

inclusive values. As this table illustrates, the random number generator (RNG) uses

different seed values for each simulation and produces values according to a normal

distribution. Within the context of this experiment, a normal distribution tends

to introduce new data messages within the mid-stages of the simulation length and

within a particular subset of data mirrors.

Table 3.2: Configuration for simulation without uncertainty.

Property Value
Seed 1...30
Distribution Normal
Number Data Mirrors 25
Underlying Network Topology Complete
Budget $500000.00
Base Data Mirror Capacity 6.0 Gb
Data Mirror Capacity Variance 0.25
Base Network Link Bandwidth 7.0 Gb per time step
Network Link Bandwidth Variance 0.25
Base Data Message Size 2.0 Gb
Data Message Size Variance 0.25
Probability Data Mirror Failure 0.0
Probability Network Link Failure 0.0
Probability Data Message Drop 0.0
Probability Data Message Delayed 0.0
Probability Data Message Corrupted 0.0
Probability Data Mirror Sensor Failure 0.0
Probability Sensor Fuzz 0.0

Table 3.2 also shows that the processing capacity for each data mirror can vary

by up to 25% of its base processing capacity. Likewise the bandwidth and cost of

each network link can also vary by up to 25% of its base values. In addition to when

and where a data message is inserted, a data message can also vary in size by up to

25% of its base size. Lastly, the likelihood of all sources of system and environmental

uncertainty are explicitly set to 0% , thereby disallowing their occurrence throughout

the simulation.

Results. Since both Goals (A) and (B) are invariant goals in Figure 3.2, Athena

60

derived state-based utility functions to evaluate their satisfaction during each RDM

simulation. Together, these two goals specify that the RDM network should always

maintain data available while never exceeding the allocated operational budget. As

Figures 3.10 and 3.11 respectively show, both Invariant Goals (A) and (B) were

always satisfied across all 30 simulation trials. In addition, Athena also derived a

metric-based utility function for Invariant Goal(B) since both the ENV property and

its corresponding constraint refer to floating-point values. As such, we also plot

the satisficement, or degree of satisfaction, of Goal (B) in Figure 3.11 to capture the

extent to which the RDM network satisfied this constraint. As the metric-based utility

values show, the RDM network managed to satisfice Goal (B) to approximately a 55%

of its maximum potential value, thereby implying that the RDM network activated

redundant network links to improve data diffusion performance and reliability.

M
ea

n
Sa

tis
fa

ct
io

n
of

 G
oa

l A

1.0

0.8

0.6

0.4

0.2

0.0

Timestep
0 50 100 150 200 250 300

Figure 3.10: Utility values for Invariant Goal (A)

Figure 3.12 provides insights on how the RDM network satisfied its data diffusion

requirements. Specifically, this figure plots the mean utility values for Goal (C) that

61

M
ea

n
Sa

tis
fa

ct
io

n
of

 G
oa

l B

1.0

0.8

0.6

0.4

0.2

0.0
0 50 100 150 200 250 300

Timestep
Figure 3.11: Utility values for Invariant Goal (B)

states that each data item should eventually be distributed to every RDM. As this

plot shows, the RDM gradually began satisficing this goal at approximately time step

20 until all messages were replicated by time step 250.

Figure 3.13 plots the ratio of data messages replicated across the RDM network.

As this plot illustrates, the utility values for Goal (C) roughly correlate with the ratio

of data messages diffused. Collectively, Figures 3.12 and 3.13 support the utility values

depicted in Figure 3.12 since they measure the relative availability and protection of

data items in the network during each simulation trial.

As specified by Goal (F), the RDM network must maintain connectivity in order

to completely diffuse all data items. Figure 3.14, which plots utility values for Goal

(F), shows that the RDM network never became partitioned throughout simulations.

This plot concurs with the experimental setup described in Table 3.2 since network

link failures are not possible, thereby preventing the RDM network from becoming

partitioned once it establishes connectivity.

62

Timestep0 50 100 150 200 250 300

Sa
tis

fa
ct

io
n

of
 G

oa
l C

1.0

0.8

0.6

0.4

0.2

0.0

Figure 3.12: Utility values for Goal (C).

150
Timestep0 50 100 200 250 300

1.0

0.8

0.6

0.4

0.2

0.0

M
ea

n
R

at
io

 o
f M

es
sa

ge
 D

is
tri

bu
tio

n

Figure 3.13: Ratio of messages diffused.

63

150
Timestep0 50 100 200 250 300

1.0

0.8

0.6

0.4

0.2

0.0

M
ea

n
Sa

tis
fa

ct
io

n
of

 G
oa

l F

Figure 3.14: Utility Values for Goal (F).

Figure 3.15 provides additional insights regarding the satisfaction of Goals (F)

and (B) by plotting the number of active network links throughout each time step.

Combined with the utility values in Figure 3.14 that show the RDM network was

connected, this additional plot shows how the RDM network minimized the number

of active links in order to reduce operational costs. Specifically, with 25 data mirrors,

at least 24 active network links are required to establish a spanning tree between

all data mirrors. In this particular case, the RDM network activated approximately

three to five redundant network links.

As Goal (H) in Figure 3.2 specifies, in addition to replicating each data item at

each data mirror while minimizing operational costs, it is important for the RDM

network to diffuse data messages efficiently. Figure 3.16 plots utility values for Goal

(H); it depicts how the satisfaction of this goal gradually decreases from 1.0 to ap-

proximately 0.38 as the RDM network becomes congested with large quantities of

data messages to replicate and diffuse. In particular, the operational capacity and

64

150
Timestep0 50 100 200 250 300

30

20

10

5

0

15

25

M
ea

n
N

um
be

r o
f A

ct
iv

e
N

et
w

or
k

Li
nk

s

Figure 3.15: Number of active network links.

bandwidth of data mirrors and network links is insufficient to replicate, archive, and

distribute all new data messages in the network between time steps 54 and 152.

As can be seen in Figure 3.17, this drop in utility values inversely correlates with

an increase in the mean diffusion time across the RDM network. Specifically, the

mean distribution time during the first 50 time steps is approximately 12 simulation

time steps. However, the mean distribution time gradually increases as the network

becomes congested, eventually requiring approximately 54 time steps to diffuse all

data by the end of the simulation.

Lastly, the RDM did not execute any adaptations since this experimental setup

disallowed network link failures and dropped, corrupted, or delayed data messages

at run time. Without triggering self-adaptations, all data mirrors remained active

throughout the simulation and none reached passive or quiescent states. As a result,

Goals (I), (U), (V), and (W) were maximally satisfied with values of 1.0 at every time

step.

65

150
Timestep0 50 100 200 250 300

1.0

0.8

0.6

0.4

0.2

0.0

M
ea

n
Sa

tis
fa

ct
io

n
of

 G
oa

l H

Figure 3.16: Utility values for Goal (H).

150
Timestep0 50 100 200 250 300

50

40

30

20

10

0

M
ea

n
D

is
tri

bu
tio

n
Ti

m
e

Figure 3.17: Mean distribution time.

As this collection of plots illustrate, the utility functions derived by Athena did

not detect any unsatisfied requirements in any of the 30 replicate runs. These plots

66

also provided insights as to how the RDM network was satisfying its requirements at

run time. Specifically, Invariant Goals (A) and (B) always obtained values equal to 1,

thereby implying these goals were always satisfied. Likewise, all non-invariant goals

achieved values greater than 0 by the end of the RDM simulation, thereby implying

these goals were satisficed to some extent. Combined these results enable us to accept

our null hypothesis H0 (p < 0.01, t-test).

3.5.2 Requirements Violation Produced by Environmental

Uncertainty

Experimental Objective. This experiment, Experiment 3.2, verifies that Athena

derives utility functions that can detect unsatisfied requirements under adverse sys-

tem and environmental conditions. Specifically, derived utility functions should detect

that not all data messages were successfully diffused and provide contextual informa-

tion about why not all requirements were satisfied.

Hypothesis. As with the previous experiment (Experiment 3.1), we define a null

hypothesis, H0, that states that utility functions derived by Athena will not detect any

requirements violations. Furthermore, for this experiment we also define an alternate

hypothesis, H1, that states that utility functions derived by Athena will detect unsat-

isfied requirements. Here, an unsatisfied invariant requirement appears as a utility

value that is not equal to one, and an unsatisfied non-invariant requirements violation

appears as a utility value equal to zero.

Configuration. This experiment introduces various forms of system and en-

vironmental uncertainty. As in the previous experiment (Experiment 3.1), there is

uncertainty regarding when and where data messages are inserted into the RDM net-

work. In addition, this experiment configuration also introduces adverse system and

environmental conditions such as noisy monitoring data, data mirror and network link

failures, and dropped, delayed, and corrupted data messages. Table 3.3 specifies the

67

base configuration used for this scenario, where “|” denotes alternate configuration

values and “...” specifies an inclusive range of values.

Table 3.3: Configuration for simulation with uncertainty.

Property Value
Seed 1...25
Distribution Binomial|ChiSquare|Exponential|Gamma|

Normal|Poisson|Uniform
Number Data Messages 100 ... 200
Number Data Mirrors 15...30
Underlying Network Topology Complete|Grid|Random|Social|

Torus|Tree
Budget $500000.00
Base Data Mirror Capacity 6.0 Gb
Data Mirror Capacity Variance 0.25
Base Network Link Bandwidth 7.0 Gb per time step
Network Link Bandwidth Variance 0.25
Base Data Message Size 2.0 Gb
Data Message Size Variance 0.25
Prob. Data Mirror Failure 0.0 ... 0.05
Prob. Network Link Failure 0.0 ... 0.15
Prob. Data Message Drop 0.0 ... 0.15
Prob. Data Message Delayed 0.0 ... 0.1
Prob. Data Message Corrupted 0.0 ... 0.1
Prob. Data Mirror Sensor Failure 0.0 ... 0.1
Prob. Sensor Fuzz 0.0 ... 0.25

As Table 3.3 shows, the random number generator (RNG) uses different seed

values for each simulation trial and produces values according to different possible

distributions. In particular, the RNG can use binomial, exponential, gamma, nor-

mal, poisson, and uniform distributions when drawing pseudo-random values. These

distributions directly affect the likelihood and frequency of different system and envi-

ronmental events, such as a new data message insertion or a network link failure. For

example, while a uniform distribution tends to spread new data message insertions

across all valid time steps and data mirrors, other supported distributions will skew

new data message insertions toward a narrower range of valid time steps and subset

68

of data mirrors. In this manner, these additional distributions help evaluate how

the RDM network responds to different likelihoods, sources, and impacts of adverse

environmental conditions.

This table also shows that the performance characteristics of data mirrors and

network links are the same as in the previous experiment. In contrast to the previous

experimental configuration (see Experiment 3.1), data mirrors can now fail at run

time. When a data mirror fails, its state is lost, including any queued and archived

data messages. In addition, network links can also fail at run time. When a network

link fails, the RDM network may become partitioned. Besides network link failures,

data messages can also be delayed, dropped, or corrupted. Lastly, sensor information

can also be inaccurate and imprecise due to various forms of noise.

Results. In contrast to Experiment 3.1, the RDM network was now unable to

always satisfy its invariant requirements under adverse combinations of system and

environmental conditions. Figures 3.18 and 3.19 show that although the RDM net-

work was almost always able to satisfy Invariant Goal (B), only 19 out of 30 simulation

trials satisfied Invariant Goal (A) throughout the entire simulation. Furthermore, the

corresponding utility value dips plotted in Figure 3.18 suggest that Goal (A) became

unsatisfied at different times in the simulation for various reasons. For instance, in

one scenario, Goal (A) became unsatisfied at the beginning of the simulation when

a newly inserted data message became corrupted. In another scenario, Goal (A) be-

came unsatisfied near the end of the simulation when the congested RDM network

was unable to completely diffuse a data item before the simulation completed.

Figure 3.19 shows that not all simulations satisfied Invariant Goal (B). In the one

case where this invariant became unsatisfied, the initial set of active network links

failed at run time, thereby causing the RDM network to self-reconfigure by activating

less optimal network links that incurred additional costs and ultimately exceeded

the allocated budget, thus violating Goal (B). Furthermore, this plot shows that the

69

150
Timestep0 50 100 200 250 300

1.0

0.8

0.6

0.4

0.2

0.0

M
ea

n
Sa

tis
fa

ct
io

n
of

 G
oa

l A

Figure 3.18: Utility values for Invariant Goal (A).

metric-based utility function for Goal (B) was satisficed at approximately 40% of its

maximum potential value. In comparison with the plot in Figure 3.11, this lower

utility value suggests the RDM network activated a greater number of redundant

network links to improve data diffusion performance and reliability in response to

adverse environmental conditions.

Figure 3.20 plots the utility values for Goal (C) that states that all data messages

should be replicated across all RDMs. As this figure shows, the RDM network began

to gradually satisfy Goal (C) by replicating and distributing data messages around

time step 12. In contrast to the previous experimental scenario, which successfully

diffused all data messages by time step 250, in this experiment the RDM network

was unable to fully replicate all data messages as captured by the lower than zero

utility values by the end of the simulations. Adverse environmental conditions, such

as repeatedly failed network links and dropped data messages prevented the eventual

satisfaction of Goal (C).

70

150
Timestep0 50 100 200 250 300

1.0

0.8

0.6

0.4

0.2

0.0

M
ea

n
Sa

tis
fa

ct
io

n
of

 G
oa

l B

Figure 3.19: Utility values for Goal (B).

150
Timestep0 50 100 200 250 300

1.0

0.8

0.6

0.4

0.2

0.0

M
ea

n
Sa

tis
fa

ct
io

n
of

 G
oa

l C

Figure 3.20: Utility values for Goal (C).

71

Figure 3.21 plots the ratio of data messages replicated and distributed across the

RDM network. This diffusion ratio positively correlates with the trend in the utility

values for Goal (C) (see Figure 3.20. Specifically, the message diffusion ratio increases

as more data messages are replicated across the network yet also depicts how not all

messages were diffused by the end of the simulation. As in the previous experiment,

these two plots support the utility values captured in Figures 3.18 and 3.19 for Goals

(A) and (B), respectively, since they show that not all data messages were protected

against data mirror failures.

150
Timestep0 50 100 200 250 300

1.0

0.8

0.6

0.4

0.2

0.0

M
ea

n
R

at
io

 o
f M

es
sa

ge
 D

is
tri

bu
tio

n

Figure 3.21: Ratio of data messages diffused.

Given that this experiment introduced network link failures, it is quite possible

for the RDM network to become partitioned at run time. Figure 3.22 plots the utility

values for Goal (F) that states that the RDM network should minimize the number

of network partitions in order to distribute data messages to all RDMs. As this plot

shows, mean utility values for Goal (F) were within the ranges of 0.84 and 1.0. This

drop in utility values suggests that the RDM network became partitioned at run time

72

due to recurrent network link failures. Note, however, that the RDM network did not

suffer from more than one concurrent network partition as the utility values would

have dropped below 0.8 in that case.

150
Timestep0 50 100 200 250 300

1.0

0.8

0.6

0.4

0.2

0.0

M
ea

n
Sa

tis
fa

ct
io

n
of

 G
oa

l F

Figure 3.22: Utility values for Goal (F).

Similarly, Figure 3.23 plots the mean number of active network links in the RDM

network throughout each time step. As this plot shows, the RDM network activated

approximately 28 to 29 network links. As such, four to five of these network links were

redundant and improved data diffusion performance and reliability. Specifically, this

redundancy protected the RDM network even when multiple concurrent link failures

occurred such that the network did not end up with more than one partition.

Figure 3.24 plots utility values for Goal (H) in Figure 3.2, which states that the

RDM network must minimize the amount of time taken to diffuse data messages. As

with the previous experiment (see Figure 3.16), this figure depicts how the satisfac-

tion of this goal gradually decreases from 1.0 to approximately 0.4 as the simulation

progresses.

73

150
Timestep0 50 100 200 250 300

30

20

10

5

0

15

25

M
ea

n
N

um
be

r o
f A

ct
iv

e
Li

nk
s

Figure 3.23: Number of network links.

150
Timestep0 50 100 200 250 300

1.0

0.8

0.6

0.4

0.2

0.0

M
ea

n
Sa

tis
fa

ct
io

n
of

 G
oa

l H

Figure 3.24: Utility values for Goal (H).

74

Part of the reason for this drop in the utility values for Goal (H) can be seen in

Figure 3.25, which plots the mean distribution time throughout each time step in the

simulation. Compared with results obtained in Experiment 3.1, the mean diffusion

time for this scenario increased from 54 to 83 time steps by the end of the simulation.

This increase in diffusion time was caused not only by a congested RDM network,

but also by repeatedly dropped, delayed, and corrupted data messages.

150
Timestep0 50 100 200 250 300

80

60

40

20

0

M
ea

n
D

is
tri

bu
tio

n
Ti

m
e

Figure 3.25: Mean distribution time.

Figure 3.26 plots utility values for Goal (I) in Figure 3.2 that specifies that the

RDM network should minimize adaptation costs. In contrast to the previous exper-

iment, this scenario introduces system and environmental uncertainty such that the

RDM network has to self-reconfigure in order to continue satisfying its requirements.

As this figure illustrates, utility values for Goal (I) were within the ranges of 0.86 and

1.0, thus implying that the RDM network was, for the most part, able to continue

replicating and distributing data messages even while adaptations were performed.

Lastly, Figure 3.27 plots the mean cumulative number of adaptations triggered

75

150
Timestep0 50 100 200 250 300

1.0

0.8

0.6

0.4

0.2

0.0

M
ea

n
G

oa
l S

at
is

fa
ct

io
n

G
oa

l I

Figure 3.26: Utility values for Goal (I).

throughout each simulation. In comparison with Experiment 3.1, this plot depicts how

the RDM network had to self-reconfigure anywhere from 2 to 15 times per simulation

in order to re-establish connectivity and continue diffusing data due primarily to

network link failures.

As this collection of plots illustrate, the utility functions derived by Athena man-

aged to detect unsatisfied requirements during all 30 replicate runs. In addition,

these plots also provided insights as to why requirements became unsatisfied at run

time. In particular, Invariant Goals (A) and (B) were not always equal to 1, thus

implying these goals became unsatisfied under certain combinations of adverse system

and environmental conditions. Furthermore, although non-invariant goals were still

satisficed in this experiment, they were satisficed to a lesser degree when compared

with the results obtained in Experiment 3.1. Combined, these results enable us to

reject our null hypothesis H0 (p < 0.05, t-test) and accept our alternate hypothesis

H1 (p < 0.05, t-test).

76

150
Timestep0 50 100 200 250 300

15

10

5

0

M
ea

n
N

um
be

r o
f A

da
pt

at
io

ns
 T

rig
ge

re
d

Figure 3.27: Number of active data mirrors.

3.6 Discussion

Compared to traditional requirements monitoring frameworks [28, 29, 97, 98],

Athena provides a systematic approach for automatically deriving utility functions

that does not rely on ad-hoc or statistics-based approaches. Instead, Athena gener-

ates utility functions for requirements monitoring as specified by the objectives and

constraints captured in a goal model of the DAS and the set of ENV, MON, and

REL elements identified in the RELAX process. By reusing artifacts developed by

a requirements engineer as part of the RELAX process, Athena reduces the manual

efforts that a requirements engineer must perform in order to monitor requirements

satisfaction. Furthermore, by using goal type-specific templates, Athena supports the

monitoring of functional, non-functional, and RELAXed goals via state-, metric-, and

fuzzy logic-based utility functions.

Valetto et al. [20] suggested that utility functions provide a light-weight alter-

77

native for self-assessment purposes when compared to state-based model checking

requirements monitoring approaches [28, 29, 97, 98]. From this perspective, Athena

produces utility functions that comprise simple mathematical computations for as-

sessing a goal’s satisfaction or satisficement. Requirements monitoring approaches,

on the other hand, rely on tracing through state-based model representations of the

system in order to detect a requirements violation that, in comparison with utility

functions, can be computationally expensive depending on the size of the model and

the number of transitions it has. Invoking a utility function either too often or not

often enough, however, could potentially cause problems for a DAS as well. If the

utility function is invoked too often, then it may interfere with the behavior of the

DAS by consuming limited computing resources. Similarly, if the utility function is

not invoked frequently enough, then the DAS may perform decision-making tasks

based on outdated data, potentially leading to inadequate or unsafe adaptations at

run time. Note that Athena does not prescribe how often a utility value should be

computed for a given goal as this is an application-specific parameter.

Athena leverages a set of utility function templates in order to generate and in-

stantiate a utility function for each goal type. Once instantiated and implemented

within the context of a DAS, these utility function templates are capable of de-

tecting requirements violations and conditions leading to these. Since these utility

function templates are generic in nature, they could be augmented or refined by a

requirements engineer as necessary in order to better capture the semantics of goal

satisfaction in specific application domains. For instance, the current suite of utility

function templates used by Athena could be extended to incorporate sigmoidal func-

tion shapes that are commonly found in robotic application domains. Essentially,

these new utility function templates provide different levels of sensitivity to system

and environmental conditions when monitoring the satisfaction or satisficement of a

goal.

78

3.7 Summary

This chapter presented Athena, a technique for automatically deriving a set of

utility functions from a KAOS goal model that may include RELAXed goals. The de-

rived set of utility functions can be implemented within the context of a DAS to assess

the satisfaction of invariant goals as well as the satisficement of non-invariant and RE-

LAXed goals. State- and fuzzy logic-based utility functions enable a DAS to evaluate

whether an invariant or RELAXed goal has been violated, respectively. Metric-based

utility functions, on the other hand, enable a DAS to detect conditions conducive to a

requirements violation, thereby enabling a DAS to mitigate such conditions before a

goal becomes unsatisfied. Experimental results demonstrate that Athena can generate

utility functions for quantifying how different system and environmental conditions

affect how well a DAS satisfies its requirements at run time.

79

Chapter 4

Exploring Environmental

Uncertainty

This chapter describes how our model-based framework supports the automatic

discovery of operational contexts that produce requirements violations and latent

behaviors in a DAS. First, we motivate the importance of automatically exploring

the space of possible operational contexts a DAS may encounter at run time. We

then introduce Loki, 1 the component in our framework that searches for interesting

combinations of system and environmental conditions. Next, we present the Loki

process for exploring the execution environment of a DAS. Subsequently, we apply

Loki to the RDM network application and present and discuss experimental results.

Lastly, we discuss different ways to apply Loki and summarize main findings.

1Loki is the god of trickery and mischief in Norse mythology. In our model-based
framework, Loki attempts to trick and deceive a DAS by introducing various sources
of uncertainty.

80

4.1 Motivation

A key objective in requirements engineering is to progressively identify, ana-

lyze, and refine system requirements and domain assumptions [105]. To augment

goal-oriented models with more comprehensive and realistic requirements, Letier and

van Lamsweerde proposed heuristics, refinement patterns, and formal techniques for

reasoning about obstacles [105, 106, 107] and partial goal satisfaction [69]. Never-

theless, early system requirements and domain assumptions are often ambiguous and

idealized, and can lead to inconsistencies between the specification and run-time be-

havior of a system [106, 107, 111, 112]. For instance, during the testing phase of

an industrial-sized case study, Lutz and Mikulski [71] discovered incomplete require-

ments specifications and unexpected requirements interactions. As such, tools and

techniques are needed to rigorously explore possible inconsistencies between the re-

quirements and run-time behavior of the system-to-be, preferably during the earlier

stages of the software development life cycle.

Uncertainty may lead to inconsistencies between the requirements and run-time

behavior of a DAS. Within a DAS, uncertainty arises primarily from two sources:

inaccurate monitoring data and unanticipated or poorly understood environmental

conditions. Specifically, a DAS relies on its monitoring infrastructure to measure

properties about its execution environment to identify when it should self-reconfigure.

Unfortunately, the monitoring infrastructure of a DAS is potentially unreliable and

can produce inaccurate, imprecise, and unanticipated sensor values. Likewise, as

DASs increase in complexity and become intertwined with the physical elements,

including the environment, it becomes increasingly impractical for a human to ex-

haustively explore or even understand the space of operational contexts that the

DAS will encounter throughout its lifetime [13, 111, 112, 114].

Recently, evolutionary computation techniques have been applied to generate

suites of test cases that cause a failure in the system under test [2, 66, 81]. These

81

approaches test a system by providing different sets of inputs and verifying the cor-

rectness of its output. Although these techniques facilitate the identification of ob-

stacles, they tend to converge upon specific types of failures that explicitly satisfy the

user-defined fitness function that guides the evolutionary algorithm. Moreover, while

these approaches are intended to test systems during the implementation phase, it

would be ideal to explore how the environment affects the behavior of a DAS during

the requirements engineering phase, where there is greater flexibility for resolving

obstacles that prevent the satisfaction of goals [106, 107].

4.2 Introduction to Loki

Loki is an evolutionary computation-based approach that automatically explores

and evaluates how the operational context of a DAS affects its ability to satisfy its

requirements. Instead of searching for specific operational contexts that cause goals

to become unsatisfied, Loki searches for system and environmental conditions that

produce diverse and diverse behaviors in a DAS, including requirements violations

and latent behaviors. Loki achieves this objective by applying novelty search [68,

96] to generalize, or collapse, vast collections of DAS behaviors into fewer sets of

representative behaviors in response to adverse system and environmental conditions.

Loki harnesses the concept of evolutionary computation to automatically gener-

ate interesting operational conditions that produce undesirable behaviors in a DAS,

such as requirements violations and latent behaviors. While a requirements viola-

tion clearly obstructs a specific set of system goals, latent behaviors are unexpected

and potentially undesirable behaviors that manage to satisfy requirements. Those

unwanted behaviors might mean that requirements need to be modified to explic-

itly disallow the unwanted behavior. A requirements engineer can analyze the set

of agents and goals involved in both types of behaviors to refine the goal model.

82

Furthermore, in addition to identifying new obstacles, a requirements engineer can

also augment obstacle mitigations to resolve requirements violations as well as fur-

ther constrain goal specifications to prevent undesirable latent behaviors. The set of

system and environmental conditions that cause such behaviors can also be reused as

test cases to guide the testing process of implemented systems.

4.3 Novelty Search

Novelty search is a search heuristic developed by Lehman and Stanley [68, 96]

for preventing evolutionary algorithms from becoming “trapped” in deceptive and

suboptimal areas of the solution space. To achieve this objective, novelty search

replaces the fitness function of an evolutionary algorithm with a novelty function

or metric. Specifically, the novelty of a newly generated solution is computed by

comparing it to other solutions in the population and solutions stored in an archive

of past solutions whose behaviors were once novel when they were discovered. By

rewarding solutions for being different, novelty search creates a constant selective

pressure for the evolutionary algorithm to discover new behaviors and distinguishable

solutions and behaviors.

A good novelty metric should compute the sparseness of a point in the solution

space. Although there are many different ways to compute the novelty value of a

solution, commonly applied distance metrics include Euclidean and Manhattan dis-

tances [8]. Novelty metrics like these consider areas with dense clusters of solutions

to be less novel, and therefore reward those solutions with lover novelty values. Us-

ing these distance metrics, the novelty search algorithm applies a simple k-nearest

neighbors measure to compute the sparseness of a solution:

ρ(x) =
1

k

k∑
i=1

dist(x, µi) (4.1)

83

where µi is the ith nearest neighbor of solution x with respect to the distance metric,

and k is a fixed parameter usually determined empirically. If the novelty value of

a solution is above a certain user-defined threshold, then that solution is entered

into the permanent archive of previously explored solutions. The current population,

and the archive of novel solutions, provide a comprehensive history of the area the

algorithm has explored. Note that the novelty search algorithm does not degenerate

into a random walk as it cannot backtrack into areas of the solution space that is has

already explored and archived.

4.4 Loki Process

This section states the expected inputs and outputs of Loki, as well as describes

how Loki discovers combinations of system and environmental uncertainty that pro-

duce interesting DAS behaviors.

4.4.1 Expected Inputs and Outputs

Loki requires two input elements to generate operational contexts that produce

diverse DAS behaviors: a set of utility functions for monitoring requirements satis-

faction in a DAS, and an executable specification of the DAS. Next, we describe how

Loki uses each of these input elements:

Utility Functions for Requirements Monitoring. Loki requires a set of

utility functions in order to monitor and record how well the DAS satisfied its re-

quirements in response to specific operational contexts, such as those generated by

Athena. In particular, these utility functions map utility values to specific goals and

requirements in the KAOS goal model of the DAS. Loki then uses this numerical in-

formation as part of the novelty search distance metric calculation when clustering

groups of DAS behaviors.

84

Executable DAS Specification. Loki also requires an executable specification

of the DAS to simulate and evaluate operational contexts. Note that the choice of

the simulation platform may restrict the sources of uncertainty that Loki can control.

For this chapter we reuse the RELAXed KAOS goal model previously presented in

Figure 3.2, as well as the RDM network simulation previously used in Chapter 3.

As output, Loki produces an archive of operational contexts, each of which spec-

ifies sources of system and environmental uncertainty, their likelihood of occurring,

and their impact or severity. Each of these contexts produces a specific DAS behav-

ior. In addition, Loki also records a history or trace of how well the DAS satisfied its

requirements when subjected to each operational context. This information can be

analyzed to identify unsatisfied goals, agents involved in undesirable behaviors, and

the specific conditions that lead to these events and behaviors.

4.4.2 Environmental Assessment Process

The data flow diagram in Figure 4.1 overviews how Loki iteratively generates,

simulates, and evaluates operational contexts, measures the distances between discov-

ered behaviors, and facilitates the identification of missing and inadequate obstacle

mitigations. As this figure illustrates, a requirements engineer (1) identifies possi-

ble sources of uncertainty, their possible likelihoods, and severities. Next, (2) Loki

generates operational contexts by instantiating different combinations of system and

environmental conditions based on the identified sources of uncertainty, their likeli-

hood, and severity. These operational contexts expose the DAS to different scenarios

that may cause it to self-adapt in order to continue satisfying its requirements. Loki

then (3) executes the simulation with the specified operational context and uses utility

functions to monitor and record how the DAS satisfied its requirements. Using this

information, Loki (4) computes the novelty between discovered solutions. Lastly, (5)

a requirements engineer analyzes discovered behaviors, and the operational contexts

85

that caused them, to revise the goal model.

Goal
Model

Prototype

Encode
Sources of
Uncertainty

(1)
Instantiate

Configuration
Template

(2)
Generate
Utility
Values

(3)

Compute
Novelty

(4)

prototype

utility
values

simulation
configuration

utility
values

[max_generations]
novelty values,
utility values

Revise
Goal

Model

(5)

Requirements
Engineer

sources of uncertainty,
likelihood, severity, and

operational limits

Utility
Functions

genome
encoding

Utility
Values

identified
obstacles

novelty
value

Data StoreProcess Data Flow
Legend:

invariant,
non-invariant,

RELAX-ed
utility functions

obstacle
mitigations

Figure 4.1: Data flow diagram describing how Loki explores effects of system and
environmental uncertainty.

Next, we provide details on each step shown in the data flow diagram.

(1) Encode sources of uncertainty. A requirements engineer must define

a genome representation to capture possible sources of uncertainty at the shared

boundary between the DAS and its execution environment. Each genome comprises

a vector of length n, where n is the number of sources of system and environmental

uncertainty that can be introduced during the simulation. For each source of uncer-

86

tainty, the genome must also specify its likelihood of occurring as well as its impact

or severity upon the DAS. For example, Figure 4.2 highlights two different sources of

uncertainty in a sample genome for the RDM application. Namely, uncertainty in the

form of sensor noise will be introduced into the RDM’s monitoring infrastructure with

a likelihood of 5% and will alter the RDM’s operational capacity value by approxi-

mately 4%. In addition, uncertainty in the form of adverse environmental conditions

will be introduced by injecting network link failures with a likelihood of 8% and a

maximum of 3 consecutive failures at any given time. Lastly, the genome must also

specify the underlying distribution to use for generating random numbers and events

such that Loki can change the frequency and timing at which different events occur

throughout the simulation.

Genome:

0.05 0.04

Likelihood Severity

Sources of Uncertainty Processing
Capacity

... Link
Failure

0.05 3

Likelihood Severity

Figure 4.2: Example genome that specifies sensor noise configuration.

(2) Instantiate Configuration Template. The genome structure defined

in step (1) serves as a template that Loki uses to generate specific operational con-

texts with system and environmental uncertainty. Using this template, Loki applies

crossover and mutation operators to generate new genomes, each of which specifies

the likelihood and severity of each uncertainty source. As Figure 4.3(a) illustrates,

the crossover operator randomly selects two indices from an existing genome, such as

A, and exchanges the uncertainty configurations between those two indices with those

from another genome in the population, such as B. As the shading in Figure 4.3(a)

shows, the crossover operator creates two new uncertainty configurations, AB and BA,

87

each comprising uncertainty configurations from both original genomes. In contrast,

as Figure 4.3(b) illustrates, the mutation operator selects an existing operational

context from the population and randomly modifies its uncertainty specification.

 (A) Crossover operator creates new uncertainty configurations by recombining
parts of existing uncertainty configurations.

Genome A Genome B

Genome AB Genome BA

 (B) Mutation operator creates new uncertainty configuration by randomly
modifying elements of existing uncertainty configurations.

Genome A

Genome A'

Figure 4.3: Generating new configurations via crossover and mutation operators.

(3) Generate Utility Values. Loki introduces system and environmental un-

certainty during each simulation. To this end, Loki first directly injects faults into

the system and execution environment of the DAS. For example, environmental un-

certainty in the RDM application might include network link failures and dropped

data messages. Although such events are usually beyond the scope and control of the

DAS, especially when it involves an environmental agent, their occurrence can and

often does adversely affect the extent to which a DAS satisfies its requirements at

88

run time. In the case of the RDM network application, these adverse environmental

conditions hinder the process of data diffusion.

In addition, Loki can also introduce system uncertainty into the monitoring in-

frastructure of the DAS by injecting sensor noise and failures. Specifically, Loki can

replace raw sensor values with fuzzed or invalid monitoring values. For example,

Loki might alter gathered monitoring data to falsely suggest that an operational and

actively used network link has failed. The DAS then computes utility values based

on this potentially unreliable monitoring data. Continuing with the RDM example,

the incorrect perception of a faulty network link might cause the DAS to unneces-

sarily self-reconfigure its network topology. Introducing this combination of system

and environmental uncertainty enables Loki to evaluate how the DAS reacts and

self-reconfigures in response to an altered perception about itself and its execution

environment.

(4) Compute novelty. Next, Loki extracts the recorded collection of utility

values that measure how well the DAS satisfied its requirements under specific oper-

ational contexts. Loki then computes the novelty score for each operational context

by using a pair-wise distance metric between each DAS behavior in the population

and the novelty archive. The novelty score itself is calculated by applying a Manhat-

tan distance metric [8] to measure differences between utility values that characterize

each DAS behavior. These novelty scores or distances are then ranked in increasing

order and used to cluster or compute the k-nearest neighboring values as follows:

ρ(x) =
1

k

k∑
i=1

dist(x, µi)

where µi is the ith nearest neighbor of solution x with respect to the distance metric,

and k is a fixed parameter that limits the cluster size. Operational contexts that

produce DAS behaviors whose novelty exceeds the archive threshold or are within

89

the top 10% of novelty scores in the population are then added to the novelty archive

at each iteration.

Repeat steps (2) through (4) until maximum number of generations

are executed.

(5) Revise goal model. Loki returns the archive of operational contexts once

the search process completes. These operational contexts and their recorded effects

can be analyzed to revise the current goal model of the DAS. Possible goal revisions

include goal mitigation, prevention, strengthening [107], or RELAXation [13, 114].

4.5 Experimental Results

This section applies Loki to the RDM application to explore how sources of system

and environmental uncertainty affect its ability to satisfy requirements. First, we

describe the experimental setup and configuration used for these experiments. We

then present and analyze experimental results, including a comparison between Loki

and a randomized search algorithm used as a baseline.

4.5.1 Simulation and Experimental Setup

Many factors can influence the resulting behavior of a DAS. For example, in the

RDM application, the rate at which network links fail concurrently can determine

the severity of each triggered self-reconfiguration. Likewise, the amount of flexibility

introduced into the satisfaction criteria of a RELAXed goal can also affect the overall

number of self-reconfigurations triggered in response to adverse conditions. These

experiments leverage the concept of evolutionary computation, in the form of Loki,

to address this sheer complexity that arises in terms of possible operational contexts

and how they alter the behavior of a DAS at run time.

To control the search process for new DAS behaviors, a requirements engineer

90

must specify parameters such as population size, crossover and mutation rates, a

novelty threshold, and a termination criterium to constrain how the search process

generates new solutions, as well as when the search process should terminate. The

population size limits the number of operational contexts that Loki generates and eval-

uates each generation. The crossover and mutation rates define how new solutions

are produced by recombining and randomly modifying existing operational contexts

in the population, respectively. The novelty threshold value imposes a criterion for

filtering which behaviors get stored into the archive. Lastly, the termination criterion

specifies when the search process should terminate, either by executing a specified

number of iterations or generations, or discovering a target number of different be-

haviors.

The specific configuration values are often domain-specific and determined em-

pirically. For example, although a larger population size may increase the number of

operational contexts explored in parallel, the overall search process may consume a

greater amount of time to complete. The crossover and mutation rates should also

balance exploitation versus exploration such that operational contexts neither con-

verge within the population nor the search process degenerates into a randomized

search either. The novelty threshold value will also affect the generality of discovered

behaviors. In particular, a smaller threshold value will tend to produce a greater

number of smaller and denser behavioral clusters and vice-versa. Lastly, the termina-

tion criteria must maximize the number of behaviors discovered while simultaneously

minimizing the amount of time required for the search process to complete.

Table 4.1 specifies the configuration of the genetic algorithm and novelty search

for these experiments. With a population size of 20 genomes and a maximum number

of 15 generations, this particular configuration evaluates exactly 300 different oper-

ational contexts. A Manhattan distance metric is used to compute the difference

between the utility vectors associated with genomes in the population and novelty

91

archive. After ranking these distances, the novelty of a genome is assigned by com-

puting the mean distance to the ten nearest genomes in the solution space. At the

end of each generation, genomes with a novelty value in the top 20% are added to

the novelty archive. Lastly, we conducted 25 trials for each subsequent experiment,

each with a different seed value that is stored to ensure results are reproducible.

Table 4.1: Genetic algorithm and novelty search configurations.

Parameter Description Value

Maximum number of generations 15
Population size 20
Mutation rate 0.3
Crossover rate 0.7
Distance metric Manhattan Distance
k-nearest 10
Archive threshold Top 20%

Lastly, we reuse the same simulation platform and derived utility functions for

requirements monitoring from Chapter 3 to evaluate and record how different op-

erational contexts affect the RDM application. Table 4.2 lists the possible range of

values that Loki can specify for each source of uncertainty in the RDM application. In

general, none of these sources of uncertainty act as single points of failure in the RDM

application unless the likelihood and severity exceed the predetermined upper bound

values. In contrast to previous experiments (see Experiment 3.1 and Experiment 3.2),

note that Loki is now responsible for specifying the actual combinations, likelihoods,

and severities of system and environmental conditions.

As this table shows, Loki can also change the underlying RDM network topology

by specifying both the number of data mirrors as well as how they can be intercon-

nected via an underlying topology. Each possible underlying topology results in a

different RDM network structure. For example, in a social topology, certain data

mirrors will be densely connected to other data mirrors. In a tree topology, however,

92

Table 4.2: Possible ranges of uncertainty values.

Property Value
Seed 1...25
Distribution Binomial|ChiSquare|Exponential|Gamma|

Normal|Poisson|Uniform
Number Data Messages 100 ... 200
Number Data Mirrors 15...30
Underlying Network Topology Complete|Grid|Random|Social|

Torus|Tree
Budget $500000.00
Base Data Mirror Capacity 6.0 Gb
Data Mirror Capacity Variance 0.25
Base Network Link Bandwidth 7.0 Gb per time step
Network Link Bandwidth Variance 0.25
Base Data Message Size 2.0 Gb
Data Message Size Variance 0.25
Prob. Data Mirror Failure 0.0 ... 0.05
Prob. Network Link Failure 0.0 ... 0.15
Prob. Data Message Drop 0.0 ... 0.15
Prob. Data Message Delayed 0.0 ... 0.1
Prob. Data Message Corrupted 0.0 ... 0.1
Prob. Data Mirror Sensor Failure 0.0 ... 0.1
Prob. Sensor Fuzz 0.0 ... 0.25

exactly n− 1 network links can be activated to connect the RDM network. This ad-

ditional flexibility is intended to explore how the goal model satisfies different RDM

network instances.

4.5.2 Discovering Behaviors

Experimental Objective. This experiment, Experiment 4.1, explores the range

of RDM behaviors that Loki can discover by harnessing evolutionary computation

when generating combinations of system and environmental uncertainty. Specifically,

this experiment evaluates whether Loki can discover a range of RDM network behav-

iors that include desirable behaviors that satisfy requirements, as well as undesirable

behaviors such as latent behaviors and requirements violations.

Hypothesis. For this experiment, we defined a null hypothesis, H0, that states

93

that the set of operational contexts generated by Loki will not produce significantly dif-

ferent RDM network behaviors. In addition, we also defined an alternate hypothesis,

H1, that states that the operational contexts generated by Loki will produce differ-

ent RDM network behaviors, some that satisfy requirements and others that violate

requirements. Here, we use two metrics to evaluate the resulting RDM network be-

haviors and test these hypotheses. First, we use the novelty value associated with

each operational context to estimate the similarity between each pair of RDM net-

work behaviors. Second, we use the utility values recorded during each RDM network

simulation to determine the extent to which requirements were satisfied or unsatisfied

under each operational context.

Results. Loki consistently discovered different RDM network behaviors. Specif-

ically, out of 300 evaluations performed in each trial, Loki discovered RDM behaviors

with a mean novelty value of 98.27 in response to different operational contexts. In

addition, for each trial, Loki discovered a minimum and maximum of 32 and 178

novelty distance values, respectively. Furthermore, upon inspection, the archived op-

erational contexts storing operational contexts for the 10% to 15% highest novelty

values provided sufficient coverage of all explored operational contexts. As Figure 4.4

shows, within this set of operational contexts, approximately 61.54% of them violated

Goal (A) at some point during the simulation. The other 38.46 operational contexts

enabled the RDM network to satisfy its requirements at run time, though in some

cases by exhibiting latent behaviors. Overall, these results confirm the crucial role

that system and environmental uncertainty plays in determining whether a DAS is

able to satisfy its requirements.

Next, we present some examples of undesirable behaviors discovered by Loki:

Requirements Violations. We analyzed the set of behaviors that involved

a requirements violation to determine which operational contexts had the most im-

pact upon goal satisfaction. In general, the most detrimental sources of uncertainty

94

0 50 100 150 200 250 300
Timestep

0.0

0.2

0.4

0.6

0.8

1.0
M

ea
n

Sa
tis

fa
ct

io
n

of
 In

va
ria

nt
 G

oa
l A

Timestep

Figure 4.4: Mean satisfaction of Goal (A) under operational contexts in novelty
archive.

involved repeated network link, data mirror, and sensor failures. Network link fail-

ures usually disconnected data mirrors from the network and thus prevented them

from replicating and distributing data messages within the allocated simulation time.

Likewise, data mirror failures wiped their state, including queued and archived data

messages that might not yet be replicated elsewhere in the network. Lastly, sensor

failures frequently triggered network self-reconfigurations such that data mirrors spent

a considerable amount of time in passive and quiescent states instead of replicating

and distributing data to other data mirrors.

Figure 4.5 presents the topology of an RDM network after it was exposed to an

operational context with adverse system and environmental conditions. As this fig-

ure illustrates, at one point during the simulation, the RDM network comprises three

partitions as a result of repeated network link failures. In this case, these partitions

95

occurred because the network links connecting data mirrors 5-9 and 18-23 failed at run

time. These network partitions affected the data diffusion process in two key ways.

First, Partition 1 captures an isolated data mirror that cannot receive, replicate, or

distribute data messages with any other data mirror. This isolated data mirror parti-

tion is particularly problematic as a new data message was subsequently introduced

at data mirror 9 and shortly thereafter that data mirror failed, permanently losing

data that was not replicated elsewhere. Second, Partition 2 and Partition 3 capture

a component of RDMs that can distribute data amongst themselves, but not to data

mirrors in other partitions. This network partition prevented the replication and dis-

tribution of data messages between the two other RDM components, thus increasing

the amount of time required to diffuse data. In both cases, Invariant Goal (A) was

unsatisfied either due to data loss or partially diffused messages.

10

1

2

3

4

5 6

78

9 11

12

13

14

15

16 17 18

19

20

21

2223

24

0

Partition 1: Partition 2: Partition 3:

Figure 4.5: Sample partitioned RDM network that leads to a requirements violation.

Figure 4.6 plots the mean satisfaction of Goal (F) under the operational contexts

stored in the novelty archive. As this plot shows, Loki introduced adverse environ-

96

mental conditions such that the RDM network gradually became more partitioned

as the simulation progressed. Moreover, at approximately time step 220, the RDM

network was operating with two to three partitions, which is likely a root cause for

Goal (A) to be unsatisfied in most trials.

150
Timestep0 50 100 200 250 300

1.0

0.8

0.6

0.4

0.2

0.0

M
ea

n
Sa

tis
fa

ct
io

n
of

 G
oa

l F

Figure 4.6: Utility values for Goal (F).

Likewise, Figure 4.7 plots the mean satisfaction of Goal (H) under the opera-

tional contexts stored in the novelty archive. This plot shows how Goal (H) became

gradually unsatisfied as the RDM network became congested with duplicate, dropped,

and delayed data messages, thereby increasing the amount of time required to diffuse

data.

Other forms of system and environmental uncertainty were not as detrimental to

requirements satisfaction in the RDM application. For example, sensor noise caused

the RDM network to either select a suboptimal network configuration or to distribute

data messages to other data mirrors that already contained such data. While these

97

150
Timestep0 50 100 200 250 300

1.0

0.8

0.6

0.4

0.2

0.0

M
ea

n
Sa

tis
fa

ct
io

n
G

oa
l H

Figure 4.7: Utility values for Goal (H).

conditions did not directly impede the RDM from satisfying its invariant goals, as

captured in Figure 4.7, the network became congested with redundant data messages

that consumed limited network link bandwidth. In this manner, the effects of system

and environmental uncertainty were, to some extent, cumulative.

Latent Behaviors. Several of the 38.46% behaviors discovered by Loki man-

aged to satisfy requirements while also exhibiting latent behaviors. Specifically, most

of the latent behaviors exhibited in the RDM network were caused by interactions

between Goals (F) and (I) and its Subgoals (U), (V), and (W). Collectively, these

goals state that the RDM network should minimize network partitions while also re-

ducing the impact of adaptation upon the data diffusion process. To some extent,

Goal (F) competes with Goal (I) and vice-versa since adaptations might be required

to minimize the number of network partitions.

This contention between Goals (F) and (I) can be observed in Figures 4.6, 4.8,

98

and 4.9. In particular, Figure 4.8 shows how the satisfaction of Goal (I) gradually

decreased as the simulation progressed, eventually finishing at approximately 80%

of its maximum possible satisficement. This trend is also shown in Figure 4.9 as

the cumulative number of adaptations increases at an exponential rate during the

simulation. Overall, these three plots collectively show how the number of adaptations

and network partitions are positively correlated and the number of network partitions

and satisfaction of Goal (I) are negatively correlated.

150
Timestep0 50 100 200 250 300

1.0

0.8

0.6

0.4

0.2

0.0

M
ea

n
Sa

tis
fa

tio
n

G
oa

l I

Figure 4.8: Utility values for Goal (I).

These interactions between Goals (F) and (I) basically prevented the RDM net-

work to receive, replicate, and distribute data messages during the data distribution

phases. Specifically, to improve the satisfaction of Goal (F), the RDM network trig-

gered self-reconfigurations that placed active data mirrors into passive and quiescent

states where data messages could not be received, replicated, or distributed. Un-

der these scenarios, the RDM network triggered too many self-reconfigurations in an

99

150
Timestep0 50 100 200 250 300

40

30

20

10

0M
ea

n
N

um
be

r o
f A

da
pt

at
io

ns
 T

rig
ge

re
d

Figure 4.9: Mean cumulative number of adaptations triggered by different operational
contexts.

attempt to satisfy Goal (F) at the expense of Goal (I).

While this tradeoff between satisfying Goal (F) and Goal (I) managed to satisfy

invariant goals, the RDM network took approximately 23.6 more time steps to ac-

complish the data diffusion process. For instance, Figure 4.10 shows the topology of

an RDM network near the end of a simulation. As this figure illustrates, the RDM

network became partitioned after the network link connecting data mirrors 3 and 17

failed. Although this network partition did not isolate any data mirror, new messages

inserted at data mirror 4 were not propagated across the rest of the RDM network

until connectivity was restored at a subsequent time step. These types of network

partitions often increased the time required to diffuse data. Moreover, if the time

required to diffuse data continues increasing, as the trend in Figure 4.7 suggests, then

it is likely that the allocated simulation time will become insufficient to diffuse all

100

data at some point, thereby violating Goal (A).

10

1

2

34

5 6

7

8 9

11

12

13

14

15

16

17

1819

20

21

22

23

24

0

Figure 4.10: Sample RDM network partition that hinders data diffusion.

These experimental results enable us to reject our null hypothesis H0 (p < 0.01 t-

test). That is, results demonstrate that Loki was able to discover a wide range of RDM

network behaviors as measured by the novelty and requirements satisfaction utility

values. Specifically, the RDM network behaviors discovered by Loki included desirable

behaviors that satisfied requirements in expected manners, as well as undesirable

latent behaviors and requirements violations. Moreover, the resulting novelty archives

effectively collapsed each explored operational context into a representative set of

operational contexts. Collectively, these results also enable us to accept our alternate

hypothesis H1 (p < 0.01 t-test).

4.5.3 Randomized Search Comparison

Experimental Objective. It is often challenging to test software systems early

in the development life-cycle as new information about the system-to-be, its require-

ments, and expected operational contexts is discovered. Randomized search-based

101

testing is an effective method for testing software systems when no additional in-

formation is available to guide the testing process [2]. As such, this experiment,

Experiment 4.2, compares Loki with a randomized search algorithm that serves as a

comparison baseline.

Hypothesis. For this experiment we defined a null hypothesis, H0, that states

that the novelty values achieved by Loki will not be different from the novelty values

achieved by randomized search. In addition, we also defined an alternate hypothesis,

H1, that states that the novelty values achieved by Loki will be significantly larger

than the novelty values achieved by randomized search. As in Experiment 4.1, in this

experiment we evaluate the range of discovered RDM network behaviors by examining

the novelty values associated with each generated operational context. We evaluate

these hypothesis under the assumption that whichever algorithm consistently achieves

larger novelty values will have explored a greater range of possible DAS behaviors

within the same number of operational context evaluations.

Configuration. This experiment reuses the novelty archives produced in Exper-

iment 4.1. In particular, each novelty archive stores operational contexts that lead to

sufficiently interesting and new RDM network behaviors as discovered by Loki. More-

over, for this experiment we also reuse the same configuration and RDM network

executable specification as in Table 4.2 and Experiment 4.1, respectively. In contrast

to Experiment 4.1, the novelty search algorithm used by Loki is now replaced with a

randomized search algorithm.

We randomly generated 300 different operational contexts for each replicate trial

in this experiment. Each operational context specifies different sources of uncertainty,

their likelihood, and severity. We then executed one simulation of the RDM network

for each operational context in order to produce corresponding utility value vectors

that capture how well the RDM network satisfied requirements. Since each simulation

executed sequentially and independently, the randomized search algorithm did not

102

have access to knowledge about which areas of the solution space had been explored

already. Next, we computed novelty values for each RDM network behavior produced

by using the same k-nearest neighbors novelty metric used by Loki. Lastly, we com-

pared novelty values between the two approaches. Intuitively, whichever approach

produced larger novelty values managed to cover a larger portion of the solution

space.

Results. In general, the randomized search algorithm also discovered adverse

environmental conditions that produced requirements violations. Specifically, out of

300 evaluations per trial, randomized search discovered a mean of 143.07 behaviors

that involved requirements violations. These results confirm that randomized search

algorithms are valuable tools for discovering test cases that trigger failures in the

system-to-be.

Although it seemed that randomized search discovered a greater number of re-

quirements violations than Loki, upon closer inspection most of the RDM network

behaviors discovered by the randomized search algorithm were similar to each other.

As the box plot in Figure 4.11 shows, the novelty values between Loki and randomized

search were significantly different (Wilcoxon ranksum test, p < 0.001). Specifically,

in this experiment, Loki achieved a median value of 96.4 while the randomized search

algorithm achieved a median value of 28.1. As this box plot also captures, Loki also

consistently found behaviors with larger novelty values than the randomized search

algorithm. That is, in every trial, Loki discovered several behaviors with novelty val-

ues greater than 120.0, which is considerably larger than the mean and median values

obtained by both approaches. Often, the magnitude of the novelty value correlated

with the severity of the requirements violation or latent behavior. As such, behaviors

with larger novelty values tended to be more interesting to requirements engineers.

This difference in novelty values can be attributed to how Loki and the random-

ized search algorithm conducted their search process. In particular, the randomized

103

Novelty Search

Search Technique

0

20

40

60

80

100

120

140

160

180

N
ov

el
ty

 D
is

ta
nc

e

RandomizedLoki

Figure 4.11: Box plot of discovered behaviors by novelty search and randomized
search.

search algorithm was unable to guide its search process by exploiting knowledge about

how a given operational context affects the behavior of a DAS. WIthout reusing this

information about how operational contexts affected the RDM network’s behavior,

the randomized search algorithm effectively explored many operational contexts that

produced relatively similar behaviors. In contrast, Loki gradually leveraged this be-

havioral information to gradually refine the combination of system and environmental

conditions it exposed the RDM network too. Moreover, these results also confirm how

the novelty archive of operational contexts enables Loki to avoid backtracking into ar-

eas of the solution space that have already been explored.

These experimental results enable us to reject our null hypothesis H0 (p < 0.001

Wilcoxon ranksum test). That is, results demonstrate that Loki was able to consis-

104

tently discover RDM network behaviors with larger novelty values than randomized

search. The obtained novelty values and utility values that captured how well the

RDM network satisfied its requirements also demonstrate that Loki was able to ex-

plore a larger portion of the solution space within the same number of evaluated

operational contexts. Collectively, these results also enable us to accept our alternate

hypothesis H1 (p < 0.001 Wilcoxon ranksum test).

4.6 Discussion

A requirements engineer may apply Loki in several ways depending on the sorts of

behaviors being sought. Specifically, the k-nearest parameter in the novelty search al-

gorithm directly affects the fitness value computation by controlling how many other

behaviors are considered when establishing clusters of representative behaviors. Set-

ting low values for the k-nearest parameter in the novelty search algorithm causes

Loki to discover a larger number of representative behaviors and vice-versa. As such,

a requirements engineer who wishes to explore an initially small set of representa-

tive behaviors might prefer a larger k-nearest parameter value in order to generalize

solutions. Once a few interesting behaviors are identified, a requirements engineer

might then wish to explore a broader set of representative behaviors by reducing the

k-nearest parameter value.

Several mitigation strategies can be applied to disallow the undesirable behav-

iors produced by these operational contexts, such as KAOS obstacle mitigations [107].

In addition to specifying obstacle mitigations, engineers can also apply the RELAX

requirements specification language [13, 114] to specify the extent to which require-

ments may be temporarily unsatisfied without violating system invariants. To this

end, Loki supports iterations where the DAS goal model can be RELAXed to explicitly

address discovered adverse operational contexts.

105

4.7 Summary

This chapter described Loki, an evolutionary computation-based approach for au-

tomatically exploring the space and impact of system and environmental conditions

upon the behavior of a DAS. Loki uses a genetic algorithm to generate configurations

that specify sources of uncertainty, their likelihood, and their impact. These sources

of uncertainty manifest themselves at the shared boundary between the DAS and

its execution environment in two ways. First, the environment itself can introduce

adverse conditions that directly hinder the DAS’s ability to satisfy its requirements.

Second, potentially noisy and unreliable sensors can alter how a DAS perceives, and

therefore reacts, to events in its execution environment. By harnessing the concept of

novelty search, Loki can generate and evaluate how operational contexts lead to differ-

ent DAS behaviors, including desirable behaviors, latent behaviors, and requirements

violations.

We demonstrated the use of Loki by applying it to an RDM application to gener-

ate different combinations of link failures and unreliable messaging conditions, such as

dropped, delayed, or corrupted data messages. Throughout this study, we presented

several interesting examples of requirements violations and latent behaviors discov-

ered by Loki. Moreover, experimental results show that Loki is capable of finding a

significantly greater number of different behaviors in response to different operational

contexts when compared with randomized and traditional genetic algorithm-based

testing approaches. Analyzing these operational contexts, and their corresponding

impact upon the DAS’s requirements, enabled us to identify both missing and inad-

equately mitigated obstacles.

106

Chapter 5

Automatically RELAXing Goal

Models to Cope with Uncertainty

This chapter presents how our model-based framework supports the automatic

RELAXation of goal models to mitigate identified sources of system and environmen-

tal uncertainty. First, we motivate the need to automatically explore possible goal

RELAXations and how these affect the ability of a DAS to satisfy its requirements

in unpredictable and uncertain environments. We then introduce AutoRELAX, the

component in our model-based framework responsible for automatically generating

RELAXed goal models. Next, we describe the process AutoRELAX uses to generate

and evaluate candidate RELAXed goal models, including its expected inputs and out-

puts. We then apply AutoRELAX to the RDM application and present and discuss

experimental results. Lastly, we summarize main findings.

5.1 Motivation

As presented in Chapter 4, unreliable monitoring information and unpredictable

or unanticipated environmental conditions can introduce contextual uncertainty into

a DAS and thereby limit its adaptation capabilities. Unfortunately, it is unlikely for

107

a human to manually identify and evaluate all possible combinations of system and

environmental conditions that a DAS may encounter throughout its lifetime. In light

of this implication, the RELAX specification language can be used in goal-oriented

modeling approaches [13] to specify and mitigate sources of uncertainty in a DAS (see

Table 2.2 for a description of RELAX operators). In particular, RELAX can be used

to extend goal modeling languages, such as KAOS, with fuzzy logic-based operators

that specify the extent to which a goal can become temporarily unsatisfied and yet

deliver acceptable behavior. This increased flexibility can be a valuable mitigation

strategy for unanticipated obstacles [13, 105, 107, 114].

While RELAX explicitly models sources of environmental uncertainty that can

affect a DAS and provides greater flexibility in how and when a DAS achieves its

objectives, it is not necessarily a straightforward approach to apply. Specifically,

it can be a challenging task for a requirements engineer to determine at design time

which goals to RELAX, what RELAX operators to apply, and how a goal’s RELAXation

will affect the overall behavior of the DAS at run time. Furthermore, there may be

many possible ways to RELAX a goal model depending on whether a requirements

engineer wants to maximize goal satisfaction flexibility or minimize the number of

RELAXations. As such, having automated support to generate and evaluate RELAXed

goal models could help manage these different tradeoffs and facilitate more effective

use of RELAX.

5.2 Introduction to AutoRELAX

AutoRELAX extends and automates the approach previously introduced by

Cheng et al. [13] for addressing identified sources of environmental uncertainty in

a DAS with the RELAX specification language. Specifically, AutoRELAX introduces

RELAX operators into a KAOS goal model to temporarily tolerate unsatisfied non-

108

invariant goals in a DAS. To this end, AutoRELAX specifies whether a given non-

invariant goal should be RELAXed, and if so, which RELAX operator to apply, and

to what extent to lessen the constraints or bounds that define a goal’s satisfaction

criteria.

A requirements engineer can apply AutoRELAX to automatically generate one or

more RELAXed models. Each of these RELAXed models enables a DAS to satisfy in-

variant requirements, cope with specific manifestations of system and environmental

conditions, and reduce the number of adaptations performed. AutoRELAX leverages

a genetic algorithm as a search heuristic to efficiently search through candidate RE-

LAXed goal models. Throughout this search process, AutoRELAX evaluates the effects

of a RELAXed goal model upon the behavior of a DAS in different environments. Ulti-

mately, a DAS uses the resulting set of RELAXed goal models at run time to monitor

the satisfaction of requirements even in operational contexts that may expose the

adaptive system to sources of system and environmental uncertainty.

5.3 AutoRELAX Process

This section overviews the expected inputs and outputs of AutoRELAX, as well as

describes each step that AutoRELAX applies to generate and evaluate RELAXed goal

models.

5.3.1 Expected Inputs and Outputs

AutoRELAX requires four input elements to generate RELAXed goal models: a

goal model of the DAS, a set of utility functions for requirements monitoring, an

executable specification of the DAS, and operational contexts that subject the DAS

to adverse combinations of system and environmental uncertainty. Next, we describe

how AutoRELAX uses each of these inputs:

109

Goal Model. AutoRELAX requires a goal model that captures the hierarchy

of requirements and constraints that the DAS must satisfy. Currently, AutoRELAX

targets the KAOS goal modeling language [18, 105] given its emphasis on capturing

functional requirements and its support for identifying and resolving obstacles. Note

that each goal must be classified as either an invariant or non-invariant goal since

RELAX operators are only applicable to non-invariant goals.

Utility Functions. AutoRELAX also requires a set of utility functions for re-

quirements monitoring in a DAS at run time. As described in Chapter 3, each utility

function comprises a mathematical relationship to map gathered monitoring data to

a scalar between the inclusive ranges of zero and one. AutoRELAX uses these util-

ity functions, in conjunction with the executable prototype, to evaluate how goal

RELAXations affect the behaviors of a DAS.

Executable Specification. AutoRELAX uses an executable specification of the

DAS, such as a simulation or prototype, to evaluate the effectiveness of goal RE-

LAXations at addressing system and environmental uncertainty. This executable

specification must support the specification of sources of uncertainty that can affect

the DAS at run time. Furthermore, this executable specification must incorporate

the utility functions for requirements monitoring such that AutoRELAX may trace how

well the DAS satisfied each goal at run time in response to different conditions.

Uncertain Operational Contexts. Lastly, AutoRELAX requires a set of op-

erational contexts that specify different combinations of system and environmental

uncertainty. Ideally, this set of operational contexts should exercise different parts

of the DAS’ adaptive logic and produce different types of behaviors ranging from

desirable behaviors to requirements violations. For this chapter, AutoRELAX reuses

Loki’s archive of operational contexts that produce a wide range of representative DAS

behaviors.

As output, AutoRELAX generates a suite of RELAXed goal models. Each RELAXed

110

goal model addresses different tradeoffs between reducing the number of RELAXed

goals and minimizing the number of adaptations triggered.

5.3.2 AutoRELAX Process Description

The data flow diagram in Figure 5.1 overviews the AutoRELAX process. Next, we

present each step in detail:

process data store

agent data flow

Legend:

Goal
Model

Executable
Specification

Define
Solution
Structure

(1)

genome
structure

simulation

Requirements
Engineer

Configure
Search
Process

(2)
Select

RELAXed
Models

(4)

Generate
RELAXed Models

(crossover,
mutation,
selection)

(5)

no
n-

in
va

ria
nt

 g
oa

ls

configuration

Utility
Functions

candidate goal
models

new
RELAXed

models

[not done]
models with

 fitness
values

utility
functions

most fit
RELAXed models

RELAXed
Models

goals,
constraints

Weighting
Scheme

Evaluate
RELAXed

Models

(3)

[done]

coefficients

goal
models

Figure 5.1: DFD diagram of AutoRELAX process

(1) Define Solution Structure. Each candidate solution in AutoRELAX com-

prises a vector of n elements or genes, where n is equal to the total number of non-

invariant goals in the KAOS goal model of the DAS. Figure 5.2(A), in turn, shows

the structure of each gene. As this figure illustrates, each gene comprises a boolean

variable that specifies whether a non-invariant goal will be RELAXed, a corresponding

111

RELAX operator (see Table 2.2), and two floating point values that define the left and

right boundaries of the fuzzy logic function, respectively.

Genome:

Elements:

Example:

...

Number of Non-Invariant Goals

Gene for ith Non-Invariant Goal
RELAXed
(Boolean)

RELAX
Operator

Left Base
(Float)

Right Base
(Float)

True AS FEW AS
POSSIBLE 0 3.0

(A) AutoRELAX solution encoding

Number of
Network Partitions

Desired Value

1.0

0.0
0 3

Measured Property

Max. Value
Allowed

(B) Mapping a gene to a RELAXed goal

Figure 5.2: Encoding a candidate solution in AutoRELAX

Figure 5.2(B) shows how each gene is mapped to a corresponding fuzzy logic func-

tion that can evaluate the satisfaction of a goal. In this example, the unRELAXed

satisfaction for Goal (F) in the RDM application (see Figure 2.4) returns 1.0 if the

network is connected (i.e., number of network partitions equals zero) and 0.0 other-

wise. However, as long as the network partition is transient, then it might be possible

112

to continue diffusing data amongst connected data mirrors while the network topology

is reconfigured. As the bolded lines in Figure 5.2(B) depicts, this goal can be made

more flexible by introducing the “AS FEW AS POSSIBLE” ordinal RELAX operator

that maps to a left shoulder -shaped fuzzy logic function [114]. For this RELAXed goal,

the apex is centered upon the ideal value of a system or environmental property, zero

network partitions in this case, and the downward slope from the apex to the right

endpoint reflects values that are not ideal but might be temporarily tolerated at run

time.

In terms of complexity, an individual with this representation scheme comprises

a vector of n genes that can be configured to RELAX non-invariant goals in the model.

Applying the six operators defined in the RELAX specification language yields a base

solution landscape that comprises 2n ∗6n possible configurations. This base represen-

tation means that the RDM goal model presented in Figure 3.2 can be RELAXed in

88 possible ways. Furthermore, each gene must also specify the left and right bounds

that establish the new satisficement criteria for its corresponding non-invariant goal.

These bounds are defined as unbounded floating-point values, thus adding significant

complexity to the solution space. Overall, the total number of possible configurations

makes it infeasible to exhaustively evaluate all possible configurations in a reasonable

amount of time.

(2) Configure Search Process. A requirements engineer must configure Au-

toRELAX by specifying a population size, crossover and mutation rates, and a ter-

mination criterion. The population size determines how many candidate RELAXed

goal models AutoRELAX can explore in parallel during each generation; the crossover

and mutation rates specify how AutoRELAX will generate new RELAXed goal models;

and the termination criteria specifies when AutoRELAX will stop searching for new

solutions and output the resulting RELAXed goal models.

(3) Evaluate RELAXed Models. To evaluate the quality of a RELAXed

113

goal model, AutoRELAX first maps the RELAX operators encoded in an individual to

their corresponding utility functions for requirements monitoring in the executable

specification (see Step 1). Next, AutoRELAX simulates the executable specification and

records the satisfaction of each goal as well as the number of adaptations performed

by the DAS. Two fitness sub-functions use this information to reward candidate

RELAXed goal models for minimizing the number of RELAXed goals as well as how

many adaptations are triggered by minor environmental conditions.

The first fitness sub-function, FFnrg, rewards candidate solutions that minimize

the number of RELAXed goals in order to limit the introduction of unnecessary flexi-

bility into a goal model:

FFnrg = 1.0−
(|relaxed|
|Goalsnon−invariant|

)
(5.1)

where |relaxed| and |Goalsnon−invariant| are the number of RELAXed and non-

invariant goals in the DAS goal model, respectively. This fitness sub-function ex-

plicitly discourages AutoRELAX from unnecessarily introducing RELAX operators.

The second fitness sub-function, FFna, rewards candidate solutions that min-

imize the number of adaptations performed by the DAS in response to minor and

transient environmental conditions, in order to reduce overhead incurred on perfor-

mance and cost:

FFna = 1.0−
(|adaptations|
|faults|

)
(5.2)

where |adaptations| represents the total number of adaptations performed by the

DAS, and |faults| measures the total number of adverse environmental conditions in-

troduced throughout a simulation. This fitness sub-function rewards RELAXed goal

models that better tolerate unanticipated environmental conditions, thereby reducing

the number of adaptations a DAS performs. Reducing the number of adaptations a

DAS performs, in turn, also reduces the number of passive and quiescent components

114

at run time (see Chapter 2). Moreover, by reducing the number of passive and quies-

cent components at run time, this fitness sub-function seeks to minimize the impact

of an adaptation by enabling the DAS to continue providing important functionality

to its stakeholders even during the reconfiguration process.

These two fitness sub-functions can be combined with a linear weighted sum:

FitnessV alue =

 αnrg ∗ FFnrg + αna ∗ FFna iff invariants true

0.0 otherwise
(5.3)

where the αnrg and αna coefficients reflect the relative importance of each fitness

sub-function, the sum of which must equal 1.0. Although fitness sub-functions can be

combined in different ways, we find that a linear-weighed sum facilitates the balancing

of competing concerns.

Lastly, the fitness value of a RELAXed goal model depends upon the satisfaction

of all invariant goals. For example, if a RELAXed goal model in our RDM application

does not replicate every data item or does so while exceeding the allocated budget,

then its fitness value is 0.0. This penalty ensures that AutoRELAX only outputs viable

RELAXed goal models that satisfy all invariant goals.

(4) Select RELAXed Models. AutoRELAX uses the fitness value associated

with each evaluated RELAXed goal model to select the most promising individuals

from the population and thus guide the search process towards that area of the

solution space. To this end, AutoRELAX applies tournament selection [46], a technique

that randomly selects k individuals from the population and competes them against

one another. The RELAXed goal model with the highest fitness value amongst these

k solutions survives onto the next generation.

(5) Generate RELAXed Models. AutoRELAX uses two-point crossover and

single-point mutation to generate new RELAXed goal models, which were set to 50%

and 40% for this work, respectively. As Figure 5.3(A) shows, two-point crossover

115

takes two individuals from the population as parents and produces two new RELAXed

goal models as offspring. As this figure illustrates with different shading, two-point

crossover exchanges the genes that lie between the boundaries of two randomly cho-

sen indices. In contrast, Figure 5.3(B) shows how single-point mutation takes an

individual from the population and randomly modifies the values of a single gene. In

this particular example, the effect of the mutation operator is to change a gene such

that its corresponding non-invariant goal is now RELAXed with the “AS MANY AS

POSSIBLE” RELAX operator. In this manner, while crossover attempts to construct

better solutions by combining good elements from existing RELAXed goal models,

mutation introduces diverse goal RELAXations that might not be obtainable via the

crossover operator alone.

(6) Output RELAXed Models. AutoRELAX iteratively applies steps (3)

through (5) until it reaches its generational limit. Then, AutoRELAX outputs one

or more RELAXed goal models with the highest fitness values in the population.

5.4 Experimental Results

This section applies AutoRELAX to automatically RELAX goals and thereby ad-

dress identified sources of uncertainty in the RDM application. First, we state the

objective of the experiment, as well as identify possible sources of uncertainty that

might cause a DAS to unnecessarily adapt. We then state experimental hypothe-

ses, as well as the RDM simulation configuration used to evaluate these hypotheses.

Lastly, we present experimental results and compare these with both unRELAXed and

manually RELAXed goal models as baselines.

Experimental Objectives. This experiment, Experiment 5.1, serves two key

purposes. First, this experiment evaluates the effectiveness of introducing RELAX

operators as an uncertainty mitigation strategy. Second, this experiment evaluates

116

(A) Two-point crossover

Parent I: Parent II:

Offspring I Offspring II

(B) Single-point mutation

Individual I:

Individual I'

RELAXed
RELAX
Operator

Left
EndPoint

Right
EndPoint

False
AS FEW AS
POSSIBLE

2.3

3.4

RELAXed
RELAX
Operator

Left
EndPoint

Right
EndPoint

True
AS MANY AS

POSSIBLE
2.3

3.4

ge
ne

 m
ut

at
io

n

Figure 5.3: Generating new RELAXed goal models with crossover and mutation op-
erators

whether AutoRELAX is capable of automatically generating RELAXed goal models

that address sources of system and environmental uncertainty in a DAS. To this end,

we compare the quality of goal models generated by AutoRELAX with the quality of

unRELAXed and manually RELAXed goal models.

Hypothesis. For this experiment, we defined the first null hypothesis, H10,

117

to state that there is no difference in fitness values achieved by a RELAXed and an

unRELAXed goal model. In addition, we also defined a second null hypothesis, H20, to

state that there is no difference in fitness values between RELAXed goal models gen-

erated by AutoRELAX and those manually created by a requirements engineer. Lastly,

we also defined an alternate hypothesis, H21, to state that RELAXed goal models gen-

erated by AutoRELAX will achieve a higher fitness value than those manually created

by a requirements engineer.

Configuration. This experiment reuses the RDM goal model, utility functions,

and executable specification previously used in Chapters 3 and 4. As in the previous

chapters, the executable specification can introduce system and environmental uncer-

tainty. Specifically, system uncertainty is introduced in the monitoring infrastructure

of the RDM network by fuzzing raw monitoring data and thereby rendering it po-

tentially unreliable. Environmental uncertainty is introduced into the RDM network

by failing network links and delaying, dropping, and corrupting data messages. In

contrast to previous chapters, the RDM network only executes for 150 time steps and

must distribute 20 data items throughout each simulation. These parameters were

scaled back to reduce the amount of time required for AutoRELAX to complete and

output valid goal models.

As with Experiment 3.2, Experiment 4.1, and Experiment 4.2, system and envi-

ronmental uncertainty can cause the RDM network to self-reconfigure at run time.

Throughout each simulation time step, the RDM network uses collected monitoring

data to compute utility values and monitor how well it satisfies its requirements.

Unsatisfied goals serve as adaptation triggers that cause the RDM to re-evaluate its

current configuration and goal realization strategy. If an adaptation is warranted,

then the RDM network selects a more suitable network topology and data propa-

gation configuration. Once a target system configuration is selected, the dynamic

change management protocol (see Section 2.2.2) is applied to generate an adaptation

118

path to safely transition the executing system to its target configuration

For the following experiments we reuse the AutoRELAX fitness sub-functions (i.e.,

equations 5.1, 5.2, and 5.3) to uniformly compare different goal models that may

include goal RELAXations. Reusing these fitness functions for comparing goal models

serves two key purposes. First, this objective evaluation criteria enables us to assess

the benefits of RELAXing a goal model to address different sources of environmental

uncertainty. Second, these fitness functions enable us to demonstrate whether Au-

toRELAX is capable of generating viable RELAXed models that are as good, if not

better, than those manually created by a requirements engineer. Note that for this

experiment, we manually balanced competing concerns in the set of fitness functions

used by AutoRELAX. Specifically, we set αnrg to 0.3 and αna to 0.7, thus emphasizing

the reduction in the number of performed adaptations.

As stated in the objectives, this experiment evaluates and compares the resulting

RELAXed goal models produced by AutoRELAX with two different goal models of the

same RDM application: the unRELAXed goal model partially shown in Figure 2.4

and several goal models that were manually RELAXed by different requirements engi-

neers. 1 In general, requirements engineers introduced the following five different goal

RELAXations into the RDM’s goal model: Goal (C) was RELAXed to allow larger ex-

posures to data loss, Goal (D) was RELAXed to add temporal flexibility when diffusing

data, Goal (F) was RELAXed to allow up to there simultaneous network partitions,

and Goals (I) and (J) were RELAXed to tolerate dropped data messages.

Lastly, since there is a randomized component in both AutoRELAX and the RDM

network simulation, we conducted 50 trials of each experiment and, where applicable,

plot mean values with corresponding error bars.

Results. Not all adaptations incur the same cost. As such, Figure 5.4 presents

three sets of box plots that capture the fitness values achieved by 1) AutoRELAX-

1This study involved requirements engineers besides the author of this dissertation.

119

generated models, 2) a manually created RELAXed goal model, and 3) an unRELAXed

goal model, respectively. As these box plots illustrate, despite the fitness boost

unRELAXed goal models obtain by not introducing any goal RELAXations (see Equa-

tion 5.1, FFnrg), RELAXed goal models achieved statistically significant higher fitness

values than unRELAXed goal models (p < 0.001, Welch Two Sample t-test). These re-

sults enable us to reject our first null hypothesis, H10, as well as conclude that RELAX

does reduce the number of adaptations when addressing system and environmental

uncertainty.

AutoRELAXed Manually
RELAXed

UnRELAXed

0.
55

0.
60

0.
65

0.
70

0.
75

0.
80

0.
85

Fi
tn

es
s

Figure 5.4: Fitness value comparison between AutoRELAX, manually RELAXed and
unRELAXed goal models.

The box plots in Figure 5.4 also demonstrate that AutoRELAX generated RELAXed

goal models achieved statistically significant higher fitness values than those manually

120

RELAXed by a requirements engineer (p < 0.001, Welch Two Sample t-test). As

a result, we also reject our second null hypothesis, H20, and accept our alternate

hypothesis, H21. These results enable us to conclude that AutoRELAX is capable of

generating RELAXed goal models that better address specific sources of uncertainty

than manually RELAXed goal models.

Figure 5.5 presents three sets of box plots that capture the adaptation costs

incurred by 1) AutoRELAX-generated models, 2) a manually created RELAXed goal

model, and 3) an unRELAXed goal model, respectively. Specifically, each set of box

plots measures the amount of time that components in the RDM network spent in ac-

tive, passive, and quiescent modes during reconfigurations (these plots do not include

time outside of a reconfiguration). As Figure 5.5 shows, option (1) (AutoRELAX) is

preferable because it has less negative impact on overall system functionality. Specifi-

cally, by carefully lessening the satisfaction criteria of non-invariant goals, the number

of adaptations decrease and so does the cumulative amount of time components spend

in passive and quiescent modes during a reconfiguration.

Within the RDM application, adaptations are particularly disruptive because

data mirrors may be unable to continue the data replication and distribution pro-

cess required to ultimately satisfy Goal (A). In particular, self-reconfigurations in the

RDM network attempt to improve the satisfaction of Goals (C), (D), and (F) by

reconnecting a partitioned network and balancing performance and reliability data

propagation concerns in response to adverse system and environmental conditions.

Nevertheless, adaptations can directly hinder the data diffusion task by placing data

mirrors in passive and quiescent states. While passive data mirrors are unable to

distribute new data, quiescent data mirrors are unable to receive, replicate, and dis-

tribute new data across the network. In this manner, an adaptation can temporarily

restrict the process of message diffusion such that Goals (C), (D), (G), (H), (I), and

(J) are unsatisfied until the reconfiguration completes.

121

Active Passive Quiescent

0
5

0
0

1
0

0
0

1
5

0
0

AutoRELAXed

T
im

e
st

ep
s

Active Passive Quiescent

0
5

0
0

1
0

0
0

1
5

0
0

Manually RELAXed

T
im

e
st

ep
s

Active Passive Quiescent
0

5
0

0
1

0
0

0
1

5
0

0

UnRELAXed

T
im

e
st

ep
s

Figure 5.5: Adaptation costs comparison between RELAXed and unRELAXed goal
models.

Both Figures 5.4 and 5.5 show that AutoRELAX is able to generate RELAXed

goal models that perform better than manually RELAXed goal models. While the

manually RELAXed goal model introduced RELAXations to Goals (C), (D), (F), (I),

and (J), AutoRELAX mostly introduced RELAX operators to Goals (F), (I), and (J),

thereby slightly boosting its fitness value in comparison. Furthermore, the manually

RELAXed goal model contained some goal RELAXations that were too constrained.

For instance, AutoRELAX was able to extend the goal satisfaction boundary of Goal

(F) beyond the bounds applied in the manually RELAXed goal model.

In general, the goal models produced by AutoRELAX were able to tolerate a greater

122

number of temporary network partitions while allowing components to remain actively

distributing data throughout the network. For instance, Figure 5.6 shows an RDM

network that becomes partitioned after the network link between data mirrors 3 and 6

failed. Without RELAXing Goal (F), that RDM network would have been immediately

self-reconfigured after such a partition occurred. Nevertheless, RELAXing that goal

enables the data diffusion process to continue within Partition 1 and Partition 2.

In this manner, AutoRELAX coalesces adaptations in order to reduce functionality

disruption at run time.

Partition 1: Partition 2:

1

46

789

13

14

15

19

10

2

35

1112 16

17

1820

21

22

23

24 0

Figure 5.6: Partitioned RDM network that facilitates partial data diffusion.

Figure 5.7 provides additional information about the types of goal models gener-

ated by AutoRELAX for varying degrees of uncertainty. In particular, this figure plots

the sorted number of RELAXed goals per trial where the first environment has a low

degree of uncertainty and the second environment has a high degree of uncertainty.

As this figure illustrates, in 49 out of 50 trials, AutoRELAX introduced a greater than

or equal number of RELAX operators to the goal model subjected to a higher degree

of uncertainty than to the goal model subjected to a lower degree of uncertainty.

In contrast, in 29 out of 50 trials, AutoRELAX introduced either zero or one RELAX

operator to the goal model subjected to a lower degree of uncertainty. Moreover,

the positive correlation between the two curves suggest that AutoRELAX gradually

123

introduces goal RELAXations in response to increasing degrees of system and envi-

ronmental uncertainty. This plot suggests that AutoRELAX introduces flexibility in

how a goal can be satisficed only if necessary.

0 10 20 30 40 50

0
2

4
6

8

Trial

Nu
mb

er
of

 R
EL

AX
ed

 G
oa

ls

Low Uncertainty Environment
High Uncertainty Environment

Figure 5.7: Mean number of RELAXed goals for varying degrees of system and envi-
ronmental uncertainty

Lastly, Figure 5.8 presents a complementary view of the plot shown in Figure 5.7.

This plot shows the effects of goal RELAXation upon the number of adaptations trig-

gered during each experiment trial, sorted again in the x-axis by the number of goal

RELAXations introduced in the goal model per trial. This figure illustrates that as

the number of goal RELAXations increased, the number of adaptations triggered due

to system and environmental uncertainty decreased. These observations confirm that

124

goal RELAXation can prevent possibly unnecessary run-time self-reconfigurations in

response to minor and transient environmental conditions. In particular, AutoRELAX

introduced RELAX operators that enabled the RDM network to tolerate minor vari-

ance in the set of encountered operational contexts. Conversely, as the variance in

operational contexts increased, more adaptations were required for the RDM network

to continue satisfying its requirements.

0 10 20 30 40 50

0
20

40
60

80
10

0
12

0
14

0

Trial

Nu
mb

er
of

 A
da

pta
tio

ns

Low Uncertainty Environment
High Uncertainty Environment

Figure 5.8: Mean number of adaptations triggered, sorted by number of RELAXed
goals

125

5.5 Discussion

Cheng et al. [13] introduced four strategies for addressing sources of environmen-

tal uncertainty in goal-oriented requirements models of a DAS. The first mitigation

strategy revises an unsatisfied goal such that it is no longer affected by the same

sources of environmental uncertainty. The second mitigation strategy also revises an

unsatisfied goal except it achieves this objective by introducing RELAX operators to

add flexibility in how and when a DAS must satisfy its requirements. The third, and

possibly most drastic, mitigation strategy introduces a new higher-level goal to pre-

vent or resolve the occurrence of an obstacle that would otherwise lead to unsatisfied

goals. The fourth mitigation strategy simply tolerates the obstacle “as is” and does

not change the goal model or the DAS in any way.

AutoRELAX automates the second and fourth uncertainty mitigation strategies

introduced by Cheng et al.. Specifically, AutoRELAX introduces RELAX operators

to non-invariant goals to lessen their satisfaction criteria without adversely affecting

the satisfaction of invariant goals. In this manner, AutoRELAX automates the second

uncertainty mitigation strategy to address adverse environmental conditions that may

not have been identified or fully understood at design time. As experimental results

suggest, this additional flexility enables adaptive systems to reduce the number of

adaptations performed in response to minor and transient sources of uncertainty.

Moreover, by reducing the number of adaptations performed, the DAS is able to

deliver more functionality to its stakeholders at run time.

This chapter presented one of the first empirical results about how goal RE-

LAXation can affect the abilities of a DAS to satisfy its requirements in the presence

of system and environmental uncertainty. Experimental results demonstrate that flex-

ibility in how and when a DAS satisfies its requirements can be desirable. However,

too much flexibility can also be detrimental to how a DAS provides its functionality

to stakeholders. To this end, AutoRELAX explicitly rewards candidate goal models for

126

balancing competing concerns between minimizing goal RELAXations and minimizing

the number of adaptations triggered due to uncertainty. As such, AutoRELAX only

introduces goal RELAXations when it provides a benefit to the DAS. This observa-

tion implies that AutoRELAX can and will produce goal models without any RELAX

operators if the DAS can handle such system and environmental uncertainty on its

own, as was the case in several experiment trials.

Lastly, we fixed the weights for the AutoRELAX fitness sub-functions throughout

each experiment presented in this Chapter. However, with a technique such as Loki,

a DAS can be subjected to a wide range of system and environmental conditions

across different AutoRELAX executions. As such, different weighting schemes may be

more suitable than the ones selected for this chapter in order to address each of these

specific operational contexts. While this weighting scheme must be currently derived

manually by a requirements engineer, evolutionary algorithms can also be leveraged

at this stage to automatically optimize the weighting scheme between fitness sub-

functions.

5.6 Summary

This chapter discussed AutoRELAX, a component in our model-based framework

that automatically generates RELAXed goal models. AutoRELAX leverages a genetic

algorithm to explore possible goal RELAXations to be used in order to mitigate system

and environmental uncertainties, relieving requirements engineers from having to con-

sider the large amount of possible strategies for handling uncertainty during system

design. We applied AutoRELAX to an RDM application that distributes data to all

data mirrors while self-reconfiguring as adverse system and environmental conditions

arise. Results suggest that AutoRELAXed goal models were as good, if not better, than

those manually RELAXed by a requirements engineer or simply not RELAXed at all.

127

Chapter 6

Generating Reconfigurations

This chapter describes how our model-based framework supports the on-demand

generation of target reconfigurations. First, we motivate the need to automatically

generate reconfigurations that specify how a DAS should modify its system compo-

nents, and if necessary also its monitoring infrastructure elements, in response to

changing system and environmental conditions while balancing non-functional con-

cerns. We then introduce Plato, the component in our model-baed framework re-

sponsible for generating target reconfigurations. Next, we use the RDM application

to describe how to apply Plato within the decision-making process of a DAS. Subse-

quently, we present experimental results obtained by applying Plato to the RDM case

study. Lastly, we discuss Plato and summarize main findings.

6.1 Motivation

Once an adaptation is triggered, a DAS must then determine precisely how to

self-reconfigure in order to either prevent or mitigate the occurrence of an obstacle.

A DAS must first determine what kinds of parameter modifications or compositional

adaptations must be performed in order to better address current system and en-

vironmental conditions [73]. While parameter adaptations fine-tune the behavior of

128

the DAS, compositional adaptations involve the addition, removal, and modification

of structural components. As such, a target system reconfiguration must specify

both the structure and behavior that a DAS should exhibit after an adaptation is

performed. Moreover, a target system reconfiguration must conform to system and

environmental constraints and domain assumptions.

In general, developers have traditionally encoded target reconfigurations at de-

sign time, where reconfiguration tasks are influenced by anticipated future execution

conditions [15, 39, 53, 109]. These rule-based decision-making engines typically match

events and conditions with specific actions (i.e., reconfigurations) that address mul-

tiple reconfiguration objectives [15, 20, 35, 53, 99, 109, 117]. For example, in the

RDM application, an adaptation engineer might encode several reconfiguration rules

to switch network link propagation parameters to synchronous modes in anticipa-

tion of possible network link failures at run time. In this manner, the rule-based

decision-making engine analyzes monitoring information at run time to detect net-

work link failures and, if applicable, then reconfigures the RDM network by switching

to synchronous propagation modes that improve data reliability.

While rule-based adaptation approaches enable efficient mapping of specific con-

ditions to reconfigurations, they only enable a DAS to self-adapt against scenarios

considered at design time. Unfortunately, it is often infeasible for an adaptation en-

gineer to identify all possible system and environmental conditions that a DAS may

encounter at run time and might warrant an adaptation [13, 110, 111, 112, 114]. Fur-

thermore, as the complexity of adaptive logic grows, designing and managing the set of

reconfiguration rules becomes unmanageable and potentially inconsistent [15]. These

observations imply that rule-based decision-making engines may be unable to safely

reconfigure a DAS in response to unanticipated or poorly understood conditions. For

example, a DAS may self-reconfigure elements in its monitoring infrastructure to

balance tradeoffs between monitoring costs and accuracy. However, inadequate rule-

129

based reconfigurations might lead to excessive monitoring where monitoring accuracy

improves at the expense interfering with and possibly altering the behavior of a DAS

in unpredictable ways. Inadequate rule-based reconfigurations might also lead to in-

sufficient monitoring that may conserve system resources at the expense of failing to

detect events leading to a requirements violation.

To address these concerns, several researchers have applied evolutionary com-

putation techniques to the design of adaptive and autonomic systems [39, 41, 61].

Although these approaches enable developers to explore richer sets of structural and

behavioral models that satisfy system and adaptation requirements, most are applica-

ble only at design time due to the significant amount of computational time required

to evolve target reconfigurations. Moreover, this uncertainty about what conditions

a DAS may encounter throughout its lifetime implies that certain adaptation-specific

decisions must be deferred until run-time, when a DAS has access to data about

current system and environmental conditions to guide its reconfiguration needs. As

a result, it is desirable to leverage evolutionary algorithms with light-weight evalua-

tion techniques to generate target system reconfigurations at run time, when actual

system and environmental conditions can be observed by a DAS.

6.2 Introduction to Plato

Whenever possible, an adaptation engineer should identify, analyze, and encode

target system reconfigurations to handle common adverse system and environmental

conditions. Since rule-based adaptations may not be sufficient for an adaptive system

to self-reconfigure at run time when it encounters unanticipated operational contexts,

an adaptation engineer should also introduce alternate reconfiguration strategies that

can be generated on-demand. To this end, evolutionary algorithms can be harnessed

at run time to generate target system reconfigurations in response to changes in

130

system and environmental conditions while simultaneously balancing competing ob-

jectives.

Plato is a component in our model-based framework that supports the automatic

identification of target system reconfigurations by incorporating a genetic algorithm

into the decision-making process of a DAS. Specifically, Plato efficiently searches parts

of the vast space of all possible adaptations to identify a target system reconfiguration

that satisfies functional concerns while balancing non-functional properties based on

current system and environmental conditions. To achieve this objective, Plato in-

tegrates monitoring information with a set of domain-specific fitness functions to

generate suitable reconfigurations. A key feature of Plato is that developers need not

prescribe reconfigurations in advance to address specific situations that warrant re-

configuration. Instead, Plato harnesses the power of Darwinian evolution by natural

selection to evolve suitable target reconfigurations at run time, when actual system

and environmental conditions can be observed by a DAS.

6.3 Plato Process Description

In this section, we state assumptions that must hold true when applying Plato.

We then describe each step that a developer must apply in order to integrate Plato

within the decision-making process of a DAS.

6.3.1 Assumptions

Several assumptions must hold true in order for Plato to automatically generate

target system reconfigurations in response to changing system and environmental

conditions. In particular, we assume that:

• a requirements engineer has constructed a KAOS goal model capturing the

functional and non-functional goals of the DAS.

131

• the genetic algorithm used by Plato can access current system and environmental

monitoring data.

• a requirements engineer or developer has identified parameters and components

that can be adapted in the DAS.

• domain-specific criteria can be applied to evaluate the viability of a candidate

solution in terms of satisfying functional and non-functional requirements.

In addition, the following assumptions must hold true in order for Plato to auto-

matically reconfigure the monitoring infrastructure of a DAS at run time:

• sensors in the monitoring infrastructure of the DAS must be passive. In partic-

ular, a DAS must pull monitoring data from passive sensors, thereby enabling

Plato to control how often monitoring data is collected from each sensor.

6.3.2 Target Reconfiguration Generation Process

We designed Plato with the objective of automatically deciding how a DAS should

self-reconfigure in response to changing requirements and environmental conditions.

Throughout this process, a developer first identifies parameters and components in

the DAS that can be reconfigured and encode these within a genome. Based on

this representation, a developer then defines and implements a set of crossover and

mutation operators to generate candidate target system configurations. In addition,

a developer also configures the search parameters of the genetic algorithm and im-

plements domain-specific fitness sub-functions to evaluate how each candidate target

system configuration addresses current system and environmental conditions.

We continue to reuse the RDM application as a working example to present

and describe each step that must be performed in order to integrate Plato with the

decision-making process of a DAS. In particular, the RDM application leverages Plato

132

to automatically reconfigure system components, such as RDMs and network links,

as well as elements in its monitoring infrastructure, such as RDM and network link

sensors.

Select Representation. Developers start by selecting a suitable representation

scheme for encoding candidate solutions as individuals in a genetic algorithm. For ex-

ample, in the RDM application, each individual in the population encodes a complete

overlay network, where each link is either active or inactive and is associated with

one of seven possible propagation methods (see Table 2.1). In particular, synchronous

propagation (time interval equal to 0) provides the maximum amount of data protec-

tion while asynchronous propagation with a 24-hour time interval provides the least

amount of data protection. Nonetheless, as the level of data protection increases,

the overall performance of the network decreases. Specifically, as the average data

batch size decreases, fewer opportunities arise for coalescing data writes. As a result,

synchronous propagation methods typically incur worse network performance than

asynchronous propagation methods with larger data batch sizes [55].

For this application domain, Plato uses a representation scheme similar to the

one illustrated in Figure 6.1, where each overlay network link can be set to either

active or inactive and is associated with one of the seven propagation methods pre-

sented in Table 2.1. In terms of complexity, an individual with this representation

scheme comprises a vector of
n(n−1)

2 links that can be activated and configured to

form an overlay network. With 25 nodes, for example, there are 2300 ∗ 7300 possible

overlay network configurations. The total number of possible configurations makes it

infeasible to exhaustively evaluate all possible configurations in a reasonable amount

of time.

Likewise, Figure 6.2 shows another presentation scheme that Plato uses in order

to reconfigure the monitoring infrastructure of the RDM network at run time. As

this figure illustrates, Plato represents each candidate monitoring configuration as a

133

a

b

c

d

A

B
C

D

a

b

c

d

A

B
C

D

Underlying Physical Network

Overlay Network

Encoding = <1, 1, 1, 0, 0, 0> Encoding = <1, 0, 0, 1, 1, 0>

Network Representation:

Remote Data Mirror Overlay Network Link
Overlay Network LinkUnderlying Physical Network LInks

Legend:

Figure 6.1: Encodings of two overlay network solutions as individuals in a genetic
algorithm.

fixed-length vector of integers. Each integer in this vector encodes how often each

system component and sensor should probe or gather data. Depending upon software

or hardware limitations, each frequency value in this vector may need to be specified

as a multiple of some time unit. For example, each monitoring frequency in the RDM

application must be specified as a multiple of the predefined time step unit. As a

result of this representation scheme, each frequency in the vector corresponds to an

integer within the bounds of 1 and fmax, the maximum timespan allowed between

monitoring data gathering.

Probing
Frequency

Sensor 1 Sensor n...

f
1

f
n

Figure 6.2: GA encoding for monitoring configurations.

134

As with the encoding scheme selected for representing the RDM network itself,

the encoding defined for the monitoring infrastructure of the RDM network also de-

fines the complexity of the solution space that the genetic algorithm will search at

run time to generate new monitoring configurations. In particular, if we define fmax

as above, and n to be the number of sensors or components that can be probed

for monitoring data, then exactly (fmax)n possible monitoring configurations can be

generated. As an example, with 25 RDMs and 300 network links, each one config-

urable with 10 different probing frequencies (fmax), the solution space would comprise

over 1.3147×1025 different monitoring configurations. The vast number of possible

monitoring configurations motivates the need for efficient search heuristics, such as a

genetic algorithm, to generate near-optimal solutions in a short amount of time.

GA Operators. Crossover and mutation operators are specific to the encoding

scheme used. The default crossover and mutation operators are designed to work on

fixed-length binary string representations [46]. If a different representation scheme is

used to encode candidate solutions for a particular domain, then specialized crossover

and mutation operators need to be developed and applied. For example, for this ap-

plication domain each individual in Plato encodes a candidate solution that comprises

binary, integer, and floating-point values. As a result, Plato uses domain-specific

crossover and mutation operators to directly manipulate overlay network topologies.

The crossover operator used by Plato in this application, as shown in Figure 6.3, ex-

changes link properties between two parents (underlined elements represent portion

of genome affected). Specifically, two network links in the link vector are selected at

random, and the segments between them are exchanged, thereby producing two new

candidate network configurations

In addition to the crossover operator, a genetic algorithm uses a mutation op-

erator to introduce variation into the current population. Figure 6.4 presents the

mutation operator used for this network-based representation. As this figure illus-

135

A

B
C

D A

B
C

D

Two-Point Offspring

A

B
C

D A

B
C

D

Parent I

Encoding = <1, 1, [1, 0,] 0, 0> Encoding = <1, 0, [0, 1], 1, 0>

Encoding = <1, 1, [0, 1], 0, 0> Encoding = <1, 0, [1, 0], 1, 0>

Two-Point Crossover:
Parent II

Offspring I Offspring II

Remote Data Mirror Overlay Network Link
Overlay Network LinkPhysical Network Links

Legend:

Figure 6.3: Crossover operator for network-based representation.

trates, a mutation can randomly activate or deactivate a network link, as well as

change its propagation method.

A

B
C

D

Encoding = <1, 1, 0, 1, 0, 1>
Activated Link

Mutation:

Figure 6.4: Mutation operator for network-based representation.

GA Setup. A developer also configures the genetic algorithm for the problem

being solved. Typical parameters include population size, crossover type, crossover

and mutation rates, selection methods, and the allotted execution time, typically

136

expressed in generations. To this end, Plato uses two-point crossover and single point

crossover. In addition, Plato applies tournament selection to select which individuals

survive to the next generation. In tournament selection, the fitness value of two

randomly selected individuals from the current population are compared and the

individual with the highest fitness value survives onto the next generation.

Fitness Sub-Functions. In general, a single fitness function is not sufficient to

quantify all possible effects of a particular reconfiguration when balancing multiple

objectives [15, 21]. Instead, developers should define a set of fitness sub-functions to

evaluate a target reconfiguration according to the optimization dimensions specified

by end-users. Each fitness sub-function should have an associated coefficient that

determines the relative importance of that sub-function in comparison to others.

As in previous techniques in our model-based framework, a weighted sum can be

used to combine the values obtained from each fitness sub-function into one scalar

value [27, 70, 76].

Next, we present two collections of fitness functions that Plato uses to evaluate

the quality of target reconfigurations for the RDM network and its monitoring in-

frastructure, respectively. Specifically, these two collections of fitness functions are

orthogonal to each other. Subsequently, the RDM application executes two indepen-

dent Plato instances to reconfigure both the network topology and its propagation

parameters, as well as its monitoring infrastructure.

Network Reconfiguration Fitness Sub-Functions. For the RDM applica-

tion, Plato uses several fitness sub-functions to approximate the effects of a particular

overlay network in terms of costs, network performance, and data reliability. Most

of the fitness sub-functions used by Plato were derived from studies on optimizing

data reliability solutions [55] and modified for our specific problem. This set of sub-

functions enables Plato to search for overlay networks that not only satisfy the previ-

ously mentioned properties, but that also yield the highest fitness based on how the

137

end-user defined the sub-function coefficients to reflect the priorities for the various

fitness sub-functions.

We use the following fitness sub-function to calculate an overlay network’s fitness

in terms of cost :

Fcost = 100−
(

100 ∗ cost

budget

)
(6.1)

where cost is the sum of operational expenses incurred by all active links, and

budget is an end-user supplied constraint that places an upper bound on the maximum

amount of money that can be allocated for operating the overlay network. This fitness

sub-function, Fcost, guides the genetic algorithm toward overlay network designs that

minimize operational expenses.

Likewise, we use the following two fitness sub-functions to calculate an overlay

network’s fitness in terms of performance:

Fperf1 = 50−
(

50 ∗
latencyavg
latencywc

)
, (6.2)

and

Fperf2 = 50 ∗
(bandsys − bandeff

bandsys + bound

)
, (6.3)

where latencyavg is the average latency over all active links in the overlay network,

latencywc is the largest latency value measured over all links in the underlying net-

work, bandsys is the total available bandwidth across the overlay network, bandeff is

the total effective bandwidth across the overlay network after data has been coalesced,

and bound is a limit on the best value that can be achieved throughout the network

in terms of bandwidth reduction. The first fitness sub-function, Fperf1, accounts for

the case where choosing links with lower latency will enable faster transmission rates.

Likewise, the second fitness sub-function, Fperf2, accounts for the case where network

performance can be increased by reducing the amount of data sent across a network

due to write coalescing. We note that the maximum achievable value of Fperf1 +

138

Fperf2 is 100.

Lastly, we use the following two fitness sub-functions to calculate an overlay

network’s fitness in terms of reliability :

Frel1 = 50 ∗
(linksused
linksmax

)
; (6.4)

and

Frel2 = 50−
(

50 ∗
datalosspotential
datalosswc

)
; (6.5)

where linksused is the total number of active links in the overlay network, linksmax

is the maximum number of possible links that could be used in the overlay network

given the underlying network topology, datalosspotential is the total amount of data

that could be lost during transmission as a result of the propagation method (see

Table 2.1), and datalosswc is the amount of data that could be lost by selecting the

propagation method with the largest time window for write coalescing. The first

reliability fitness function, Frel1, accounts for the case where an overlay network with

redundant links may be able to tolerate link failures while maintaining connectivity.

The second reliability fitness function, Frel2, accounts for the case where propagation

methods leave data unprotected for a period of time. We note that the maximum

achievable value of Frel1 + Frel2 is 100, the same as the fitness sub-functions for cost

and performance.

The following fitness function combines the previous fitness sub-functions into

one scalar value:

FF = αcost ∗ Fcost + αperf ∗ (Fperf1 + Fperf2) + αrel ∗ (Frel1 + Frel2), (6.6)

where αi’s represent weights for each dimension of optimization as encoded into the

genetic algorithm by the end user. These coefficients can be scaled to guide the genetic

139

algorithm towards particular designs that reflect different priorities of non-functional

properties. For example, if developers want to evolve types of overlay network designs

that optimize only with respect to cost, then αcost could be set to 1 and αperf and

αrel could be set to 0.

Adaptive Monitoring Fitness Sub-Functions. In addition, for the RDM ap-

plication, Plato uses the following fitness sub-functions to evaluate the quality of candi-

date monitoring configurations. Each fitness sub-function focuses on a single concern

when evaluating monitoring configurations. The first set of fitness sub-functions focus

on minimizing monitoring costs, as measured by energy consumption or the amount

of times a sensor is probed. In contrast, the second set of fitness sub-functions maxi-

mizes the monitoring data accuracy by probing system components and sensors more

frequently. Combined, these two sets of fitness sub-functions search for monitoring

configurations that maximize monitoring accuracy while minimizing monitoring costs.

We use the following fitness sub-function, Fe, to evaluate a monitoring configu-

ration from the perspective of minimizing monitoring costs:

Fe = 100− 100 ∗
(∑|sensors|

i=1 cost(i) ∗ freq(i)
max cost

)
(6.7)

where |sensors| is the number of sensors and components that produce monitoring

data, cost(i) returns the energy consumed by probing the ith sensor, freq(i) measures

the number of times a sensor is probed within a specified time frame, and max cost

measures the maximum amount of energy that can be consumed by configuring all

sensors to probe for monitoring data as often as possible. As such, this fitness sub-

function guides Plato towards solutions that reduce the monitoring frequency of most

sensors, thus minimizing monitoring costs.

We use the following fitness sub-function, Fa1, to evaluate a monitoring config-

140

uration from the perspective of maximizing the coherency of monitoring data:

Fa1 = 50 ∗
(∑

(fi ∗ φi)
|sensors| ∗ fmax

)
(6.8)

where |sensors| and fmax are the same as previously defined, fi is the frequency at

which the ith sensor gathers data, and φi is a value between 0 and 1 proportional to the

change in monitoring values of the ith sensor. In particular, φi is computed as a ratio

between the magnitude of change in gathered values and the current value reported

by the ith sensor. This fitness sub-function rewards monitoring configurations that

increase probing frequencies of sensors whose monitoring data indicates changing sys-

tem and environmental conditions. As a result, this fitness sub-function guides Plato

towards solutions that proportionally allocate monitoring resources towards monitor-

ing components and sensors reporting changing system and environmental conditions.

Similarly, the following fitness sub-function, Fa2, evaluates a monitoring config-

uration from the perspective of maximizing the coverage of monitoring data:

Fa2 = 50 ∗
(∑

|fiprev − finew|
|sensors| ∗ (fmax − 1)

)
(6.9)

where |sensors| and fmax are the same as previously defined, fiprev is the current

probing frequency for the ith sensor, and finew is the probing frequency for the ith sen-

sor as specified by the generated monitoring configuration. This fitness sub-function

rewards monitoring configurations that allocate monitoring resources to sensors cur-

rently probed at low frequencies. As a result, this fitness sub-function guides Plato

towards solutions that cycle the set of sensors that are probed at high frequencies,

thus maximizing monitoring coverage.

As with the set of fitness sub-functions for reconfiguring the topology and prop-

agation parameters of the RDM network, the set of fitness sub-functions for adaptive

141

monitoring can be combined using a linear-weighed sum as follows:

F = αe ∗ (Fe) + αa ∗ (Fa1 + Fa2) (6.10)

If requirements are likely to change while the application executes, then develop-

ers should introduce code to rescale the coefficients of individual fitness sub-functions

at run time. In particular, the fitness landscape is shifted when the coefficients of a fit-

ness sub-function are rescaled. By updating the relevance of each fitness sub-function

at run time, the genetic algorithm will be capable of evolving target reconfigurations

that address changes in requirements and environmental conditions without specify-

ing how the system should be reconfigured. For example, when an overlay network

link fails, Plato automatically doubles the current coefficient for network reliability.

Note that although we prescribe how these coefficients should be rescaled in the RDM

case study in response to high-level monitoring events, our model-based framework

does not explicitly specify target reconfigurations. That is, Plato does not prescribe

how many network links should be activated in the overlay network nor what their

propagation methods ought to be.

6.4 Case Study

This section applies our model-based framework to the dynamic reconfiguration

of both a network of RDMs, as well as its monitoring infrastructure. In particular, the

following experiments are intended to study whether Plato can evolve target system

reconfigurations for RDMs operating across dynamic and unreliable networks. Each

of these experiments focuses on a single aspect of this problem, namely constructing

and maintaining an overlay network that enables the distribution of data to all nodes.

Different environmental factors and scenarios presented throughout these experiments

provide insight with respect to the suitability of genetic algorithms for supporting the

142

decision-making process of an adaptive and autonomic system. For each set of results

presented, we performed 30 trials of the experiment to account for the stochastic

variation of genetic algorithms. Each experiments presented throughout this section

was run on a MacBook Pro with a 2.53GHz Intel Core 2 Duo Processor and 4GB of

RAM. Moreover, each plot presents mean values obtained from these trials.

Single Dimensional Optimization

Experimental Objective. This experiment, Experiment 6.1, confirms that,

for degenerate scenarios involving single fitness sub-functions (i.e., operational cost,

performance, and reliability), Plato will produce solutions consistent with those that

can be predicted.

Hypothesis. For this experiment we defined a null hypothesis, H0, that states

that Plato will not generate viable target system reconfigurations. We also defined

an alternate hypothesis, H1, that states that Plato will generate viable target system

reconfigurations. Here, the viability of a target system reconfiguration is evaluated

by using the same fitness sub-functions for network reconfigurations (i.e., equations

6.1-6.5). Moreover, the viability of a specific solution also depends on the weighting

scheme used for each fitness sub-function.

Configuration. In this experiment we configured Plato to only consider a single

optimization dimension at once. That is, we scaled the network reconfiguration fitness

sub-functions as a zero-sum game where only one optimization dimension, such as

minimizing operational costs or maximizing network reliability, can be maximized.

Results. First, we explored whether Plato was able to minimize operational

costs. Specifically, we set the network reconfiguration fitness sub-function coefficients

as follows: αcost = 1, αperf = 0, αrel = 0. As a representative example, consider

the evolved overlay network shown in Figure 6.5. This overlay network comprises 24

links and connects all remote data mirrors. Thus, the genetic algorithm was able to

143

reduce the overlay network to a spanning tree that connects all remote data mirrors

while incurring operational costs significantly below the maximum allocated budget.

0
1

2

345 6
7

8

910 11

12

13

14

15

16

17

18 1920 21

2223 24

Figure 6.5: Overlay network produced when optimizing for cost.

Figure 6.6 shows the maximum fitness achieved by the candidate overlay net-

works as Plato executed. Plato converged upon an overlay network topology with

a fitness value of approximately 50, indicating that Plato found overlay networks

whose operational costs were roughly 50% of the allocated budget. Although the first

few hundred generations obtained negative fitness values due to ill-formed candidate

topologies that were either disconnected or exceeded the allocated budget, Plato found

suitable overlay network designs by generation 500 (approximately 30 seconds), well

within the practical range for applications such as remote data mirroring.

Next, we explored whether Plato was able to maximize network reliability. Specif-

ically, we set the network reconfiguration fitness sub-function coefficients as follows:

αcost = 0, αperf = 0, αrel = 1. The evolved overlay network provides the maxi-

mum amount of reliability possible by activating all 300 links, thereby constructing a

complete overlay network. Furthermore, the dominant propagation method for this

overlay network was synchronous propagation, which minimizes the amount of data

that can be lost during transmission.

144

0 500 1000 1500 2000−400

−300

−200

−100

0

Generation

M
ax

. F
itn

es
s

Max. Fitness

Figure 6.6: Fitness of overlay networks when optimizing for cost only.

Figure 6.7 plots the maximum fitness achieved by Plato in this experiment. Specif-

ically, Plato converged upon a maximum fitness value of 88. In the context of relia-

bility, a value of 88 means that although the overlay network provides a high-level

of data reliability, it is not completely immune against data loss. Although all 300

links were activated in the overlay network to provide redundancy against link fail-

ures, not every link in the overlay network used a synchronous propagation method.

Instead, a few links in the overlay network used asynchronous propagation methods

with 1 and 5 minute time bounds. Nonetheless, we note the rapid development of

fit individuals achieved by generation 600; by this point, Plato had evolved complete

overlay networks with most links using synchronous propagation.

As these results demonstrate, Plato was able to evolve viable target system re-

configurations for both scenarios considered. As such, these results enable us to reject

our null hypothesis, H0 (t-test, p < 0.05). In addition, when minimizing operational

costs, Plato consistently generated target RDM networks that comprised a spanning

tree of data mirrors, thus reducing operational costs. Similarly, when maximizing

145

0 500 1000 1500 2000

72

74

76

78

80

82

84

86

88

Generation

M
ax

. F
itn

es
s

70

Max. Fitness

Figure 6.7: Fitness of overlay networks when optimizing for reliability only.

network reliability, Plato consistently generated target RDM networks that formed

a complete graph with most network links using synchronous propagation methods.

These results enable us to accept our alternate hypothesis, H1, as Plato discovered

viable RDM network configurations that satisfied requirements as specified by the

scaled fitness sub-functions (t-test, p < 0.05).

Multi-Dimensional Optimization

This experiment, Experiment 6.2, evaluates whether Plato is able to efficiently

balance multiple objectives, such as minimizing operational costs while maximizing

network performance and data reliability. For this experiment we configured Plato to

produce network designs that emphasize network performance and reliability over op-

erational costs, i.e., αcost = 1, αperf = 2, αrel = 2. Figure 6.8 shows a representative

overlay network design that Plato evolved. This overlay network comprises 32 active

146

links, the majority of which uses asynchronous propagation methods with 1 and 5

minute time bounds. Overall, this overlay network provides a combination of per-

formance and reliability while keeping operational expenses well below the allocated

budget.

01 23

4

5

6 7

8 9

10

1112

1314

15 16

17 1819 2021

2223 24

Figure 6.8: Overlay network produced when optimizing for cost, performance, and
reliability.

Figure 6.9 plots the average rate at which Plato converged on the resulting overlay

network designs. On average, Plato terminated within 3 minutes. In particular, Plato

found relatively fit overlay networks by generation 500 (approximately 30 seconds).

Thereafter, Plato fine-tuned the overlay network to produce increasingly more fit

solutions.

Figure 6.10 provides additional information about the fitness achieved in Fig-

ure 6.9 by plotting the mean number of active links in the evolved overlay network.

At first, fitter overlay networks comprised the fewest number of active links while still

maintaining connectivity. Before Plato terminated, 8 additional links had been added

to the overlay network. Although these additional edges increased the overall oper-

ational cost of the overlay network, they also increased the network’s fault tolerance

against link failures, thus improving the overlay’s reliability fitness value. Moreover,

subsequent generations achieved higher fitness values by using asynchronous propa-

gation methods of 5 minutes and 1 hour, thus improving network performance while

providing some level of data protection during transmission.

147

0 500 1000 1500 2000

50

100

150

200

250

300

350

400

450

Generation

M
ax

. F
itn

es
s

Max. Fitness

Figure 6.9: Maximum fitness of overlay networks when optimizing for cost, perfor-
mance, and reliability.

Reconfiguration Against Link Failures

Experimental Objective. This experiment, Experiment 6.3, evaluates the fea-

sibility of using Plato to dynamically reconfigure the overlay network topology in

real-time.

Hypothesis. For this experiment we defined a null hypothesis, H0, that states

that Plato will not generate viable RDM network reconfigurations in response to ad-

verse system and environmental conditions. We also defined an alternate hypothesis,

H1, that states that Plato will generate viable RDM network reconfigurations in re-

sponse to adverse system and environmental conditions. As with Experiment 6.1, we

evaluate the viability of a target RDM network reconfiguration by reusing the network

reconfiguration fitness sub-functions defined in equations 6.1-6.5.

Configuration. We configured this experiment as a three-step process where

148

0 500 1000 2000
30
40
50
60
70
80
90

100
110
120
130

N
um

. L
in

ks

Num. Links

1500
 Generation

Figure 6.10: Number of active links in overlay network when optimizing for cost,
performance, and reliability.

we first ran Plato to produce an initial overlay network design whose primary design

objective was to minimize operational costs, i.e., αcost = 1, αperf = 0, and αrel = 0.

Figure 6.11 presents a representative overlay network evolved by Plato that comprises

24 active links, a spanning tree. Although we could have generated a design to

account for both cost and reliability, the objective of this experiment was to force the

reconfiguration of the overlay network.

Next, we randomly selected an active network link in the overlay network and set

its operational status to faulty. Since this link failure disconnected the RDM network

and produced an isolated data mirror, the utility functions for Goals (F) and (F’)

became unsatisfied. Thus, our model-based framework reran Plato to evolve a target

system configuration that addressed changes in the underlying network topology.

Results. In response to the network link failure, Plato evolved a new overlay net-

work topology that addressed these environmental changes. Since the initial overlay

149

0

1

2

3

4

5

6

78

9

10

11 12

13 14

15

16

17

18

1920

21

22

23

24

Figure 6.11: Initial overlay network topology with cost being the lone design factor.

network suffered from a link failure, the individual fitness sub-functions were auto-

matically rescaled such that reliability became the primary design concern. Whenever

an individual was evaluated, if the encoded overlay network made use of the faulty

link, then it was severely penalized by assigning it a low fitness value. Figure 6.12

shows the overlay network evolved in response to the environmental change in the

underlying network. This new overlay network, with 6 redundant links, provides more

reliability against link failures than the initial overlay network.

Figure 6.13 plots the maximum fitness achieved by Plato as it evolved both the

initial and the reconfigured overlay network designs. Specifically, we failed an active

link at generation 2500. As a result, the maximum fitness achieved at generation

2501 dropped to negative values. Within roughly 1000 generations (1 min.), Plato

had evolved considerably fitter overlay network topologies. Notice the relative dif-

ference in maximum fitness achieved by Plato before and after reconfiguration. The

initial overlay network optimizes only with respect to operational costs, while the

reconfigured overlay network optimizes primarily for reliability, but also optimizes

150

�

�

�

�

�

��

�

	

��

��

��

��

��

��

��

��

�	

�
 ��

����

�� ��

Figure 6.12: Overlay network evolved in response to a link failure.

with respect to operational costs. Since Plato doubled the coefficients for reliability in

comparison to cost (αcost = 1, αperf = 2, and αrel = 2), candidate overlay networks

after generation 2500 achieved a higher relative fitness value than the initial overlay

network.

���� ���� ���� ���� ����
����

����

�

���

���

�������

�
�
�
��
	
��
�

�
�

�

�

	�����

Figure 6.13: Maximum fitness achieved before and after reconfiguration.

Likewise, Figure 6.14 plots the mean number of active links in both the initial and

151

reconfigured overlay network designs. While the initial overlay design obtains a higher

fitness value by reducing the number of active links, the reconfigured overlay design

obtains a higher fitness value by adding several active links to improve robustness

against future link failures. As this plot illustrates, after the network link failure

violates goals (F) and (F’), Plato rebalanced non-functional requirements such that

maximizing reliability became more important than minimizing operational costs.

As such, after the reconfiguration, the resulting overlay network comprises a greater

number of active network links than before the reconfiguration.

1000 2000 3000 4000 5000

20
40
60
80

100
120

Generation

N
um

be
r o

f L
in

ks Num. of Links

Figure 6.14: Number of active links in overlay network before and after reconfigura-
tion.

Lastly, Figure 6.15 plots the mean potential data loss for a remote data mirror in

both the initial and reconfigured overlay networks. The average potential data loss,

which is a byproduct of the propagation methods, measures the amount of data, in

gigabytes, that may be lost at a remote data mirror as a result of some failure. Lower

average potential data loss values imply data is better protected against link failures

and vice-versa. As this plot illustrates, after a link failure occurs, the reconfigured

overlay network design reset most propagation methods to either synchronous or

152

asynchronous propagation with a 1 or 5 minute time bound, thus improving data

protection at the expense of degraded network performance.

1000 2000 3000 4000 5000

0.5

1

1.5
Po

te
nt

ia
l A

vg
. D

at
a

Lo
ss

0

Generation

Figure 6.15: Potential average data loss across overlay network before and after re-
configuration.

Collectively, these results show that Plato was able to find viable target RDM

network reconfigurations in response to the network link failure. As such, we reject

our null hypothesis, H0 (t-test, p < 0.05). Based on these results, we also accept

our alternate H1 hypothesis. Specifically, these results show how Plato automatically

rebalanced concerns in response to adverse system and environmental conditions,

thereby producing an RDM network topology that improves reliability. These results

also confirm that Plato can evolve these target reconfigurations within a minute or

less, which is well within the operational limits for an application domain such as

RDM.

153

6.4.1 Reconfiguration of Monitoring Infrastructure

Experimental Objective. This experiment, Experiment 6.4, evaluates the fea-

sibility of using Plato to reconfigure the monitoring infrastructure of the RDM net-

work. This experiment compares the tradeoffs between monitoring costs and monitor-

ing accuracy between Plato and both a static monitoring configuration that is never

reconfigured at run time, and an adaptive sampling approach that rescales monitoring

intensity in response to changing environmental conditions.

Hypothesis. For this experiment we defined a null hypothesis, H0, that states

that monitoring reconfigurations evolved by Plato will detect requirements violations

while incurring monitoring costs that are not different from static monitoring or adap-

tive sampling approaches. We also defined an alternate hypothesis, H1, that states

that monitoring reconfigurations evolved by Plato will detect requirements violations

while incurring fewer monitoring costs when compared with static monitoring and

adaptive sampling approaches. Here, monitoring costs are measured in terms of the

number of times the RDM network pulls data from a sensor.

Configuration. This experiment comprises three different configurations. First,

we configured the static monitoring approach to gather data from each sensor in the

RDM network at each time step. Next, we configured an adaptive sampling approach

to initially gather data from all RDM network sensors every 4 time steps. If monitor-

ing data changes by more than 15%, then the adaptive sampling approach doubles

the frequency for each sensor, with a maximum frequency equivalent to gathering

dat at every time step. In contrast, if monitoring data does not change, then the

adaptive sampling approach halves the frequency for each RDM network sensor, with

a minimum frequency equivalent to gathering data every 8 time steps. Lastly, we

configured Plato to balance competing concerns between minimizing monitoring costs

and maximizing monitoring accuracy (i.e., αe = 0.5 and αa = 0.5). In this manner,

Plato executes at each time step and, if necessary, reconfigures the monitoring in-

154

frastructure by specifying the rate at which individual RDM network sensors should

gather data in response to changes in the execution environment.

For this experiment, we evaluate the three different monitoring strategies by

subjecting the RDM network to the same operational context. Specifically, this ex-

periment reuses an operational context that Loki discovered in Experiment 4.1 that

introduces most adverse system and environmental conditions during the middle to

late data replication and distribution phases. We performed 30 replicate trials for

statistical significance and we plot the mean values obtained from these simulations.

Results. Figure 6.16 plots the mean fitness progression achieved by Plato when

generating target monitoring configurations at run time. This plot illustrates how

Plato initially achieved fitness values that were around 50% of the maximum pos-

sible fitness value; here, both fitness sub-functions were diametrically opposed such

that randomly generated configurations often balanced concerns approximately equal.

From that initial configuration, Plato searched for new monitoring configurations to

minimize monitoring costs while maximizing monitoring accuracy. By the last gener-

ation, Plato found monitoring configurations that achieved a mean fitness value that

was approximately 72% of the maximum possible fitness value. In general, fitter mon-

itoring configurations probed RDM network sensors whose values changed more often,

thereby conserving resources by reducing probing frequencies on relatively static sen-

sors.

Figure 6.17 plots the cumulative monitoring costs incurred by each of the three

different monitoring approaches as the RDM network replicated and distributed data

messages. As this figure illustrates, the static monitoring approach incurred the

highest monitoring costs by constantly gathering data from all RDM network sensors

regardless of whether system and environmental conditions change. Given a total

of 25 RDM Sensors and 300 Link Sensors, static monitoring probed sensors a total

number of 48, 750.0 times.

155

0 100 200 300 400 500
Timestep

0.0

0.2

0.4

0.6

0.8

1.0

M
ea

n
Fi

tn
es

s V
al

ue

Figure 6.16: Mean fitness progression of Plato when evolving monitoring configura-
tions.

As Figure 6.17 shows, adaptive sampling probed RDM sensors a cumulative

number of 30, 199.36 times, and Plato probed RDM sensors a cumulative number

of 23, 155.28 times. Compared with static monitoring, adaptive sampling and Plato

reduced monitoring costs by approximately 38.05% and 52.52%, respectively. These

results confirm that both adaptive sampling and Plato are able to significantly reduce

monitoring costs by reducing the frequency at which the RDM network sensors are

probed based on changes in the execution environment.

Although both adaptive sampling and Plato were able to reduce monitoring costs,

Plato was able to further reduce monitoring costs by fine-tuning the frequency at

which individual RDM network sensors were probed. In particular, adaptive sampling

rescales monitoring frequencies uniformly throughout the RDM network. As such, a

significant change in one part of the RDM network, such as an individual network link

failure, may cause the entire RDM network to increase the rate at which it collects

156

0 20 40 60 80 100 120 1400

10000

20000

30000

40000

50000 Static Monitoring
Adaptive Sampling
Plato Adaptive Monitoring

C
um

ul
at

iv
e

N
um

be
r o

f T
im

es
 S

en
so

rs
 P

ro
be

d

Timestep

Figure 6.17: Comparison of monitoring costs between static configuration, adaptive
sampling, and Plato techniques.

data from all its sensors. Plato, on the other hand, was able to further isolate changes

in the execution environment such that it increases the rate at which affected sensors

are probed while conserving resources in other areas of the RDM network that are

not changing.

Reconfiguration Against Complete Network Failure

Experimental Objective. This experiment, Experiment 6.5, evaluates the op-

erational limits of applying Plato to dynamically reconfigure an overlay network in

real-time in response to a degenerate number of link failures. While Experiment 6.2

previously assessed whether Plato could evolve suitable target reconfigurations in re-

sponse to a network link failure, this experiment seeks to assess whether Plato can

157

evolve target reconfigurations in response to a continuously degrading network envi-

ronment.

Hypothesis. For this experiment we defined a null hypothesis, H0, that states

that Plato will not be able to repeatedly evolve target RDM network reconfigurations

in a continuously degrading network environment. We also defined an alternate hy-

pothesis, H1, that states that Plato will repeatedly evolve target RDM network re-

configurations in a continuously degrading network environment. Here, we evaluate

the feasibility of Plato to evolve target RDM network reconfigurations by using the

network reconfiguration fitness sub-functions in equations 6.1-6.5.

Configuration. Initially, Plato produced an initial overlay network design that

maximized data reliability while balancing performance and operational costs, i.e.,

αcost = 1, αperf = 1, and αrel = 3. Next, we selected 5 active overlay network links

and set their operational status to faulty such that either Goal (F) or (F’) became

unsatisfied. Our model-based framework then restarted Plato in response to these

unsatisfied goals to generate target reconfigurations that addressed specific changes

in the environment. We repeated this process every 2, 500 generations, which is the

equivalent to one full Plato iteration, for a total of 60 iterations. By the end of the

experiment all network links in the underlying network topology were set to faulty

status.

Results. Figure 6.18 plots the mean fitness achieved by Plato as it evolved

target reconfigurations in response to repeated link failures. This plot illustrates the

resilience of evolved Plato reconfigurations even as the entire overlay network suffered

major failures. For example, this plot shows how Plato was able to rapidly evolve

suitable target reconfigurations, within 30 seconds, of each link failure. In addition,

note how the mean fitness value of the generated target overlay networks remains

relatively stable at around a value of 400 during the majority of the experiment.

This slow decay in fitness values implies that Plato was able to generate solutions at a

158

consistent level of quality even though network conditions were severely deteriorating.

A sharp decay in fitness values is evident after 80% of the overlay network links have

failed, which occurs after approximately 125, 000 generations. Shortly after 90% of

links have failed, fitness values plummet to a value of -400 as there are not enough

non-faulty links available for Plato to maintain connectivity across data mirrors.

0 20 40 60 80 100−400

−300

−200

−100

0

100

200

300

400

% of Links Failed

M
ax

. F
itn

es
s

Figure 6.18: Mean fitness of overlay networks achieved throughout multiple reconfig-
urations until complete network failure.

The plot in Figure 6.19 shows the mean number of active network links in the

evolved target reconfigurations. Initially, Plato reduced the number of active network

links to create a spanning tree that minimized operational costs. As network links

failed, however, Plato increased the number of redundant active network links to max-

imize data reliability while minimizing operational costs. As Figure 6.19 illustrates,

throughout the majority of this experiment, Plato generated target reconfigurations

where overlay networks comprised approximately 30 active network links. Moreover,

159

note how the starting number of active network links in the target reconfigurations is

progressively lower during each successive reconfiguration, most likely because there

are fewer non-faulty network links available for Plato to activate. This plot also high-

lights how Plato attempts to re-establish connectivity across the RDM network after

slightly more than 90% of the network links have failed. Unfortunately, beyond this

point it is impossible for Plato, or any other system, to generate target reconfigurations

that satisfy the main functional requirement of maintaining network connectivity.

0 20 40 60 80 1000

20

40

60

80

100

120

140

% of Links Failed

N
um

be
r o

f A
ct

iv
e

Li
nk

s

Figure 6.19: Mean number of active links throughout multiple reconfigurations until
complete network failure.

Lastly, Figure 6.20 plots the mean potential data loss in the initial and reconfig-

ured overlay network designs until all network links in the fail. The mean potential

data loss measures the amount of data, in gigabytes, that could be lost as a result

of some failure. This plot demonstrates how Plato repeatedly minimized the mean

potential data loss across the RDM network during the majority of the experiment.

160

Note, however, that the mean potential data loss gradually increased as the number

of faulty network links increased, resulting in Plato having fewer usable network links

to select from when constructing a target overlay network. Eventually, the mean po-

tential data loss reached its maximum possible value when Plato was unable to build

an overlay network that maintained connectivity. At that point data was no longer

protected against failures.

0 20 40 60 80 1000

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

% of Links Failed

Po
te

nt
ia

l A
vg

. D
at

a
Lo

ss
 (G

B
.)

Figure 6.20: Mean potential data loss throughout multiple reconfigurations until
complete network failure.

These results confirm that Plato can continuously generate viable target RDM

network reconfigurations in response to degenerating network conditions. Based on

these results, we reject our null hypothesis, H0 (t-test, p < 0.01). Furthermore, these

results enable us to accept our alternate hypothesis, H1 (t-test, p < 0.01). Collec-

tively, these results show how Plato was able to automatically generate target RDM

networks throughout each consecutive network link failure until it was impossible for

161

Plato, or any other reconfiguration engine, to reconnect the RDM network.

6.5 Discussion

These experiments demonstrate how our model-based framework leverage evolu-

tionary computation to support the dynamic reconfiguration of adaptive and auto-

nomic computing systems. By using computationally inexpensive fitness functions,

Plato was able to evaluate many candidate reconfiguration in a reasonably short

amount of time. In terms of execution time, Plato typically terminated within 3

minutes or less, and typically converged upon a solution within one minute. In this

amount of time, Plato typically evaluated approximately 100, 000 candidate target

reconfigurations. Furthermore, Plato found viable solutions within 30 or less, well

within the practical range for applications such as RDM.

Plato provides several advantages over more traditional approaches for decision-

making in self-adaptive and autonomic computing systems. Specifically, Plato does

not require developers to explicitly encode prescriptive reconfiguration strategies to

address particular scenarios that might arise at run time. Instead, Plato exploits

user-defined fitness functions to evolve target reconfigurations in response to chang-

ing system and environmental conditions. For instance, when an active network link

failed, Plato did not explicitly encode how many network links to activate, which

network links to activate, nor which propagation methods to select in response. In-

stead, Plato automatically evolved viable target reconfigurations while simultaneously

balancing competing objectives as captured by non-functional goals. This approach

enables Plato to automatically handle a richer set of reconfiguration scenarios than

traditional prescriptive approaches.

Genetic algorithms are susceptible to changes in their configuration parameters

and solution encodings. For instance, we experimented with various mutation rates

162

during the design phase to determine which value worked best when applying Plato

to the RDM application. Although Plato was able to evolve viable target reconfig-

urations with modest changes in the mutation rate, higher mutation rates typically

caused Plato to require additional computational time to converge upon particular

solutions as considerable variation was being introduced into the population each

generation. Similarly, the encoding used to represent adaptive systems is extremely

important. While more compact representations are possible for encoding a network

of remote data mirrors and the propagation methods of each network link, tradeoffs

must be made between reducing the search space and altering the probability of dif-

ferent configurations emerging. For example, a more compact genome representation

in Plato might encode the operational status and propagation method of each overlay

network link as a binary string 3 bits long, thus enumerating each of the possibil-

ities from 0 (a link not used) to 7 (an active link with asynchronous propagation

with a 24 hour time bound). Even though this encoding reduces the search space,

the probability of deactivating a link now drops from 1
2 to 1

8 , possibly affecting the

quality of solutions evolved by Plato. As a result, it is typically best to begin with

default configurations [46] and experiment how the evolutionary algorithm behaves

with different parameters.

One potential drawback of Plato is that a genetic algorithm is not guaranteed

to find neither optimal nor viable solutions [46]. Although this problem did not

arise in any of our experimental trials, it is possible for Plato to converge on sub-

optimal solutions that are not suitable for particular problems and domains. Genetic

algorithm-based approaches tend to be most useful when solution landscapes are vast,

complex, and non-linear. For this reasoning, Plato should not be used in autonomic

systems where globally optimal solutions are required. Rather, Plato should be applied

when acceptable solutions are viable. Finally, it may be possible to integrate Plato

with traditional decision-making approaches. For instance, Plato could be leveraged

163

in the background of a traditional decision-making approach in case a reconfiguration

strategy is not available for current system conditions, thereby serving as a backup.

6.6 Summary

In this chapter we presented how our model-based framework supports the dy-

namic reconfiguration of a DAS. Specifically, throughout this chapter we presented

Plato, an evolutionary computation-based technique that generates target system re-

configurations. We showed that it is possible to integrate an evolutionary algorithm

within the decision-making process of an autonomic system to dynamically evolve

adaptations that balanced competing objectives at run time. By leveraging evolu-

tionary algorithms to generate target reconfigurations, our model-based framework

does not require a developer to provide prescriptive rules to address specific scenarios

that warrant reconfiguration. Instead, Plato incorporates system and environmental

monitoring information to evolve target reconfigurations that address these situations,

which were not necessarily anticipated at design time.

Experimental results show that Plato resiliently evolved suitable target reconfig-

urations against severely deteriorating environmental conditions. Moreover, rescaling

the relative importance of different non-functional concerns, obtained from the DAS’s

goal model, enabled Plato to evolve different types of networks in response to chang-

ing requirements and environmental conditions. Lastly, while Plato can be applied at

design time to explore larger sets of adaptations, it may also be applied at run time

if the application domain allows it.

164

Chapter 7

Generating Safe Adaptation Paths

This chapter presents how our model-based framework supports the automatic

generation of safe adaptation paths that transition an executing system towards its

target system configuration. First, we motivate the need to automatically generate

adaptation paths that not only preserve system consistency before, during, and after

adaptation, but also account for current system and environmental conditions. We

then introduce Hermes, the component in our model-based framework that generates

safe adaptation paths, and describe how to apply it within the decision-making process

of a DAS. We then present experimental results obtained by applying Hermes to

the dynamic reconfiguration of an RDM network. Lastly, we discuss Hermes and

summarize main findings.

7.1 Motivation

While Plato supports the automatic generation of target system reconfigurations

for a DAS, it does not specify how to safely reach that target configuration from its

current configuration. As Figure 7.1 illustrates, once a DAS determines its target

system reconfiguration, it must either select or generate an adaptation path to trans-

fer the executing system to that target system configuration. An adaptation path

165

comprises a series of reconfiguration steps that modify the structure and behavior of

a DAS. For instance, the reconfiguration steps that comprise the adaptation path in

Figure 7.1 specify that data mirror 2 must be passivated before it may be removed

from the RDM network. To prevent the loss of state or introduction of erroneous

results during a reconfiguration, a safe adaptation path preserves dependency rela-

tionships and ensures component communications are not interrupted [64, 65, 121].

1 2 5

4

3

6

Current System Configuration:

1 5

4

3

6

Target System Configuration:

Adaptation Path:

Passivate(2) … Remove(2)

Figure 7.1: Adaptation path overview.

A safe adaptation path preserves system consistency during adaptation [64, 108,

120, 121]. To this end, component-dependency analysis approaches [64, 108, 121] first

identify sets of system components that are affected by a reconfiguration and must

thus be guided to active, passive, and quiescent states in bounded time. An active

component may initiate and service transaction requests. In contrast, a passive com-

ponent may service transaction requests, but may not initiate requests or be currently

engaged in a transaction it initiated. A queiscent component, on the other hand, is

neither engaged in a transaction nor can it receive or initiate new transactions. A

safe adaptation path, therefore, orders and interleaves activate and passivate instruc-

tions with reconfiguration operations to eventually transfer the executing system to

its desired target configuration without losing or corrupting system data.

Given a starting and a target system configuration, developers can either hand

code or automatically generate these adaptation paths. For instance, developers can

design and implement adaptation paths at design time to address specific reconfig-

166

uration scenarios that might arise at run time [15, 35, 53, 120]. Similarly, several

automated approaches [108, 121] extend Kramer and Magee’s dynamic change man-

agement protocol [64] to automatically generate safe adaptation paths that reconfig-

ure distributed computing systems while preserving system consistency during the

adaptation. Although multiple safe adaptation paths may exist for a given situation,

the identification and selection process is non-trivial, as different paths may represent

different tradeoffs between reconfiguration costs, performance, and reliability. Never-

theless, current automated approaches for generating safe adaptation paths consider

only one optimization criterion, such as minimizing system disruption, when selecting

an adaptation path [108, 121]. As a result, it is desirable to generate adaptation paths

that are not only safe, but also balance competing concerns based on current system

and environmental conditions.

7.2 Introduction to Hermes

Evolutionary computation can be harnessed to generate safe adaptation paths

in response to current system and environmental conditions. Hermes, a component

in our model-based framework, supports the automatic generation of safe adaptation

paths. The adaptation paths generated by Hermes safely transition an executing sys-

tem from its current configuration to its desired target configuration, as specified by

Plato. Instead of focusing on a single criterion when generating adaptation paths,

Hermes evolves solutions that balance competing objectives between functional and

non-functional requirements, such as minimizing reconfiguration costs while maximiz-

ing reconfiguration performance and reliability.

As with Plato, Hermes can be applied at design time to generate alternative adap-

tation paths, and applied at run time to generate safe adaptation paths that han-

dle changing system and environmental conditions. Hermes achieves this objective

167

by gradually transforming and improving an adaptation path by adding, removing,

replacing, and reordering reconfiguration instructions in order to better balance com-

peting objectives, while safely reaching the desired target configuration.

7.3 Hermes Process Description

In this section we state assumptions that must hold true when applying Hermes.

We then describe each step that a developer applies in order to integrate Hermes into

the decision-making process of a DAS.

7.3.1 Assumptions

The following assumptions must hold true for Hermes in order for it to automat-

ically generate safe adaptation paths:

• the set of reconfiguration instructions allows a DAS to reach any possible valid

target configuration.

• dependencies between reconfiguration instructions are known and documented.

• components in the DAS can be guided towards active and passive states in

bounded time [64].

7.3.2 Safe Adaptation Path Generation Process

To generate safe adaptation paths between starting and target system configura-

tion, Hermes applies genetic programming (see Sections 2.4.2 and 2.4.3) to efficiently

evolve safe adaptation paths. In contrast, to many other evolutionary computation-

based techniques, genetic programing [63] generates executable programs that solve

specific and complex tasks, such as regression and robotic control. As such, each

program evolved by Hermes comprises executable reconfiguration instructions that

168

specify structural and behavioral changes that a DAS must perform to safely reach a

target system configuration.

Evolved solutions must satisfy two constraints while balancing multiple, poten-

tially competing, factors affecting the system. First, evolved adaptation paths may

not reconfigure the executing system to configurations other than those identified for

the specified target system. Second, evolved adaptation paths may never cause a

DAS to reach an inconsistent or erroneous state. Therefore, if an adaptive system

begins a reconfiguration in a consistent state, then it will also reach the target system

configuration in a consistent state. We next describe how we applied Hermes to the

dynamic reconfiguration of a remote data mirror network with the primary objective

of minimizing reconfiguration costs while maximizing reconfiguration performance

and reliability.

The following steps describe Hermes’s design and implementation for reconfigur-

ing networks of RDMs. Note that Hermes may be applied to other application domains

by extending the instruction set with application-specific reconfiguration instructions.

Instruction Set. The core instruction set that Hermes uses to construct safe

adaptation paths is derived from Kramer and Magee’s dynamic change management

approach [64]. These instructions, comprising primitive reconfiguration operators,

are overviewed in Table 7.1. An adaptation driver can issue these instructions to

control the operational status of system components and reconfigure the application

at run time. In addition, each reconfiguration instruction in Hermes is associated

with a specific cost that measures the approximate amount of time required for the

instruction to complete. For this chapter, cost values reflect approximate and relative

estimates for the RDM domain. In practice, these costs may be refined with empirical

measurements gathered by the monitoring infrastructure.

Terminal Set. In genetic programming, the terminal set specifies which objects

are operands for the instructions. The terminal set in Hermes comprises remote data

169

Table 7.1: Description of reconfiguration instructions used by Hermes.

Instruction Description Cost (s)

Insert Component Adds component to the network. 10
Remove Component Removes component from the network. 3
Link Components Establishes a communication path between

the specified components.
3

Unlink Components Removes a communication path between the
specified components.

2

Activate Component Sets the operational status of a component
to active mode.

1

Passivate Component Sets the operational status of a component
to passive mode.

5

mirrors (components), as well as network links (connectors) that can be established

between pairs of remote data mirrors. The specific terminal set is derived at run time

by analyzing structural differences between starting and target system configurations.

Thus, for this application the terminal set only includes remote data mirrors and

network links involved in the reconfiguration.

GP Operators. For this application domain, we implemented Hermes as an

interpreted linear genetic program [9]. As a result, the genetic program operators

include two-point crossover. In terms of mutation operators, Hermes uses insertion,

removal, modification, and swap operators. While the insertion operator adds a new

instruction into the genome, the removal instruction deletes an instruction from the

genome. Similarly, the modification instruction changes parameters for an existing

instruction, such as the operand’s target component. Lastly, the swap operator ran-

domly exchanges the locations of two instructions in the genome and thus explores

the effects of executing reconfiguration instructions in different orders.

Selection. In evolutionary algorithms, selection is the process by which better

solutions thrive and sometimes even dominate the population. As with Plato, Hermes

also applies tournament selection, a variation that randomly selects k individuals from

the population and then competes them against each other. The individual with the

170

highest fitness value survives into the next generation where it may undergo further

recombination and mutation.

Initialization. Genetic programs must be properly configured for the specific

task being solved. Table 7.2 lists several genetic program parameters along with the

specific values used in Hermes. Although these values were effective in the remote data

mirroring case study, developers should explore various parameters when applying

Hermes to other application domains.

Table 7.2: Genetic program configuration.

Parameter Value

Population Size 1000
Crossover Type Two-point
Crossover Rate 20%
Mutation Rate 50%
Selection Type Tournament, k = 5
Selection Rate 30%
Max. Generations 1500

In addition to the common genetic program configurations, Hermes requires an

additional setup step. While most genetic programs begin execution from a “blank

slate” population comprising random individuals, Hermes initializes each individual’s

encoded program with an initial adaptation path comprising specific instructions re-

quired to safely transition a system to its target configuration. These instructions

are derived through component-dependency analysis [64, 121]. For example, if two

remote data mirrors are connected in the target configuration but not in the start-

ing configuration, then it can be deduced that somewhere in the adaptation path,

both remote data mirrors must be linked. To preserve these required reconfiguration

instructions in the population, no mutation operator in Hermes may remove them.

This additional constraint, which is not typical of genetic programming, is needed

because the starting and ending points of the evolutionary process are known; tradi-

tional genetic programming is more open-ended, where the objective of evolution is

171

finding interesting endpoints. In contrast, Hermes is looking for interesting paths to

get to known endpoints (i.e., target configuration). As a result, Hermes may modify

the initial adaptation path in any possible way as long as it safely reconfigures the

adaptive system to its target configuration.

It is important to consider the complexity of the solution space comprising all

possible adaptation paths. First, we define n to be the number of instructions re-

quired to safely transition the system to its target configuration, as determined by

component-dependency analysis. Exactly n! possible alternative solutions may be

constructed by simply reordering the initial genome. Given that most non-trivial

reconfigurations may comprise well over 20 instructions, the solution space comprises

over 2.43×1018 different adaptation path alternatives, some of which safely transi-

tion the system to its desired target configuration, while many others do not. Given

the vast number of combinations possible, no current method (manual or automated,

heuristic or brute-force exhaustive) is capable of exploring all possibilities in a rea-

sonable amount of time.

Fitness Sub-Functions. A set of fitness sub-functions can be used to evaluate

competing objectives, each focusing on a different concern. To this end, Hermes applies

a set of fitness sub-functions derived and elaborated from published results in remote

data mirroring [50, 55] and search-based software engineering [39, 121] domains.

The first criterion we consider in remote data mirroring is the cost of a recon-

figuration. We measure reconfiguration costs as the time required to execute an

adaptation path. The following fitness sub-function measures the cost of reconfigu-

ration:

Fcost = 100−
(
timeev − timeinit

timeinit
∗ 100

)
(7.1)

where timeinit and timeev measure the amount of time required for the initial and

evolved adaptation paths to complete, respectively. This fitness sub-function guides

172

the selection of individuals whose encoded solution reconfigures the network of remote

data mirrors in less time. While Hermes associates reconfiguration costs with the time

required to complete a reconfiguration, this time measurement could also be further

refined into lost profits due to system disruption.

Another important criterion in remote data mirroring is the performance degra-

dation caused by a reconfiguration. We determine the performance of a reconfigura-

tion by measuring the amount of data produced and diffused by remote data mirrors

through the network during reconfiguration. The following two fitness sub-functions

measure the performance of an encoded solution:

Fact = 100 ∗
(
componentsact
componentstot

)
(7.2)

and

Fdatasent =

componentstot∑
i=1

timeact(i) ∗ capacity(i) (7.3)

where componentsact is the number of components in active mode during reconfig-

uration, componentstot is the total number of components in the system, timeact(i)

measures the time a remote data mirror i is actively diffusing data during reconfigu-

ration, and capacity(i) measures the data output produced by a remote data mirror

per time unit. The first performance fitness sub-function, Fact, measures the per-

centage of components in the system in active mode throughout the reconfiguration.

The second performance fitness sub-function, Fdatasent, measures the amount of data

diffused through the network by remote data mirrors during reconfiguration. To-

gether, these two fitness sub-functions guide the genetic program towards solutions

that maximize the number of components actively diffusing data through the network

during reconfiguration.

The third criterion we consider for remote data mirroring is the reliability, or

173

potential for data loss, of a reconfiguration. We determine the reliability of a re-

configuration by measuring the amount of data queued during reconfiguration. The

following two fitness sub-functions measure the reliability of an encoded solution:

Fpass = 100 ∗
(
componentspass
componentstot

)
(7.4)

and

Fqueued =

componentstot∑
i=1

timepass(i) ∗ capacity(i) (7.5)

where componentspass is the number of components in passive mode during reconfig-

uration, componentstot and capacity(i) are the same as defined above, and timepass

measures the time a remote data mirror i is in passive mode throughout the reconfig-

uration process. The first fitness sub-function, Fpass, measures the percentage of pas-

sivated remote data mirrors in the system. The second fitness sub-function, Fqueued,

measures the amount of data produced by remote data mirrors that is queued be-

cause the remote data mirror was in passive mode at the time. Together, these two

fitness sub-functions guide the genetic program towards solutions that create large

regions of quiescence during reconfiguration. From the perspective of data reliability,

establishing large regions of quiescence throughout the system is desirable because it

implies data is better protected against failures during reconfiguration.

In Hermes, each set of fitness sub-functions is associated with a vector of co-

efficients that determines the relative priority of each design concern. By default,

coefficients in this vector are all equivalent, implying that no one competing design

objective is more significant than others. However, system requirements and envi-

ronmental conditions may impose different constraints upon the type and quality of

the evolved adaptation path. For instance, if the cost of losing data outweighs per-

formance requirements, then the coefficient for reliability should be set to a value

larger than that of performance and cost, thus guiding the evolutionary algorithms

174

towards solutions that provide greater measures of reliability during reconfiguration.

This vector of coefficients can also be updated at run time to address changing sys-

tem and environmental conditions. Moreover, the set of fitness sub-functions and

the vector of coefficients can be combined into a single scalar fitness value through a

linear weighted sum, as follows:

F = αcost∗Fcost+αperf ∗(Fact+Fdatasent)+αrel∗(Fpass+Fqueued)−penalties (7.6)

where penalties are reductions in fitness meant to punish individuals whose encoded

solution produces undesirable effects or behaviors. For instance, any evolved adapta-

tion path that either fails to transition the system to its desired target configuration,

or does so while violating safety constraints, is severely penalized. The objective

of penalizing individuals is to guide the evolutionary algorithm towards valid and

meaningful solutions by removing individuals from the population with undesirable

behaviors that do not promote safe adaptation.

7.4 Case Study

In this chapter we present a set of experiments we conducted to evolve safe

adaptation paths that reconfigure a network of RDMs. Each experiment compares

the relative fitness value of adaptation paths evolved by Hermes with those derived by

component-dependency analysis. Specifically, we compare our results with Kramer

and Magee’s dynamic change management algorithm [64]. We selected this partic-

ular algorithm because it generates safe adaptation paths and is scalable. While

the algorithm presented by Zhang et al. [121] generates globally optimal solutions

that minimize system disruption, the algorithm is not scalable for the input sizes

considered in these experiments. Similarly, the tranquility approach introduced by

175

Vandewoude et al. [108] may not be practical for this domain as remote data mirrors

frequently propagate large amounts of data and bounded time adaptation is essential.

To compare our results, we implemented Kramer and Magee’s dynamic change

management protocol [64], which is shown in Figure 7.2. The input for this algorithm

comprises a set of components to be inserted (Nc) and removed (Nr), a set of links to

be created or removed (LS), and a set of components that must be passivated (CPS).

The set of components to be passivated (CPS) comprises all components in Nr, all

components with links to any component in Nr, and all components with a link in LS.

The algorithm proceeds by passivating all components in CPS, thereby establishing

a region of quiescence to preserve system consistency during reconfiguration. The

algorithm then removes links from LS present in the system, followed by all compo-

nents in Nr. Next, components in Nc are inserted, followed by creating all remaining

links in LS. Finally, all inserted components, as well as those in CPS that were not

removed, are set to active mode, thereby completing the reconfiguration process.

We performed 100 trials for each set of results presented in this subsection and

plot the mean value along with corresponding standard error bars. Random starting

and target system configurations were generated for each trial. Although the following

experiments explore a wide range of possible reconfigurations, including the insertion

and removal of several remote data mirrors at run time, each trial focuses mostly

on reconfiguring the network topology. This decision was based on the observation

that inserting and removing numerous remote data mirrors at run time is generally

impractical due to excessive operational costs. Each experiment presented throughout

this section was run on a MacBook Pro with a 2.53GHz Intel Core 2 Duo Processor

and 4GB of RAM.

Finally, for the following set of experiments, we defined the null hypothesis, H0,

to state that adaptation paths evolved by Hermes will show no difference in quality

when compared to adaptation paths generated through component-dependency analy-

176

% Algorithm 1 Reconfigure(Nc, Nr, LS, CPS):

for all i in CPS do
 Passivate i
end for

for all i in LS do
 if LS(i) exists then
 Unlink i
 LS = LS - LS(i)
 end if
end for

for all i in Nr do

 Remove i
end for

for all i in Nc do

 Create i
end for

for all i in LS do
 Link i
end for

for all i in {CPS - Nr + Nc} do

 Activate i
end for

Figure 7.2: Dynamic change management algorithm for reconfiguring dynamic adap-
tive systems.

sis. Furthermore, we define the alternate hypothesis, H1, to state that Hermes will

generate solutions better in quality than those produced through component-dependency

analysis. For each of these experiments, the quality of two different adaptation paths

is determined by comparing the fitness values associated with each adaptation path.

Base Comparison

Experimental Objective. This experiment, Experiment 7.1, compares the

relative quality of adaptation paths evolved by Hermes with those obtained from

177

component-dependency analysis.

Hypothesis. For this experiment we defined a null hypothesis, H0, that states

that the quality of adaptation paths evolved by Hermes will not be different from the

quality of adaptation paths generated by component-dependency analysis. We also

defined an alternate hypothesis, H1, that states that the quality of adaptation paths

evolved by Hermes will be better than the quality of adaptation paths generated by

component-dependency analysis. Here, we measure the quality of an adaptation path

by using the collection of fitness sub-functions previously defined in equations 7.1-7.6.

Configuration. In this experiment we consider a typical scenario where the

primary objective is to safely reconfigure the network of remote data mirrors while

minimizing reconfiguration costs and maximizing reconfiguration performance and

reliability, i.e., αcost = αperf = αrel = 0.333. In addition, we explore the perfor-

mance characteristics of Hermes by applying our approach to networks of varying

sizes and topologies, where a larger network size typically implies a more complex

reconfiguration.

Results. Figure 7.3 shows the average maximum fitness values for adaptation

paths in this experiment. In particular, adaptation paths evolved by Hermes achieved

greater fitness values than those produced by component-dependency analysis, with

a statistical significance of p < 0.01 using a t-test. This difference in fitness values

implies that our model-based framework can optimize the adaptation paths generated

by component-dependency analysis to provide better reconfiguration performance and

reliability with a minimal increase in reconfiguration costs. Furthermore, the differ-

ence in fitness values gradually increases as the networks and adaptation paths grow in

size and complexity (n=15 and n=25). This observation suggests that more opportu-

nities for balancing competing objectives arise as the complexity of a reconfiguration

increases. This observation also suggests that Hermes is capable of exploiting such

opportunities to improve the overall quality of a safe adaptation path.

178

n=5 n=25

500

1000

1500

2000

2500

n=15
Avg. Network Size

M
ax

. A
vg

. F
itn

es
s

0

Component−Dependency
Hermes

Figure 7.3: Comparison of adaptation path quality.

Figure 7.4 plots the average maximum fitness values of solutions evolved by

Hermes for different sized networks per generation. This plot illustrates the rapid rate

at which Hermes builds upon and improves the quality of adaptation paths generated

by component-dependency analysis, which are represented by the fitness value plotted

at the 0 generation before Hermes modifies them (filled icon). Specifically, Hermes

achieves large boosts in fitness values within the first 600 generations (< 35 seconds),

depending upon the relative size of the network. Thereafter, Hermes continues to

fine-tune evolved adaptation paths until the maximum number of generations are

exhausted.

Collectively, these results demonstrate how adaptation paths evolved by Hermes

achieved greater fitness values than those generated by component-dependency anal-

ysis in a variety of different network sizes and topology configurations. As such, these

results enable us to reject our null hypothesis, H0, as well as accept our alternate

179

0 500 1500

500

1000

1500

2000

2500

1000
Generation

M
ax

. F
itn

es
s

Hermes (n=5)
Hermes (n=15)
Hermes (n=25)

DCM (n=5)
DCM (n=15)
DCM (n=25)

Figure 7.4: Progression of average maximum fitness values for different network sizes.

hypothesis, H1 (in both cases using a t-test with p < 0.01).

Optimizing for Performance and Reconfiguration Costs

Experimental Objective. This experiment, Experiment 7.2, compares the

relative quality of solutions evolved by Hermes with those obtained by component-

dependency analysis when the main objective is to minimize reconfiguration costs

while maximizing reconfiguration performance.

Hypothesis. As with Experiment 7.1, for this experiment we defined a null

hypothesis, H0, that states that the quality of adaptation paths evolved by Hermes

will not be different from the quality of adaptation paths generated by component-

dependency analysis. We also defined an alternate hypothesis, H1, that states that

the quality of adaptation paths evolved by Hermes will be better than the quality of

adaptation paths generated by component-dependency analysis. Here, we measure

180

the quality of an adaptation path by using the collection of fitness sub-functions

previously defined in equations 7.1-7.6.

Configuration. In this experiment we configured Hermes to minimize reconfig-

uration costs while maximizing reconfiguration performance, i.e., αcost = 0.4, αperf

= 0.4, and αrel = 0.2. Such trade-off preferences may arise in scenarios where the

reconfiguration is driven by variations in system performance rather than by fail-

ures that may threaten the functionality of the system. For example, communication

paths between remote data mirrors may be reconfigured at run time as environmental

conditions such as throughput and loss rate change. For all following experiments,

the starting network of remote data mirrors comprises 25 components and at least 35

active network links.

Results. Figure 7.5 plots the average maximum fitness values of adapta-

tion paths evolved by Hermes per generation. Solutions evolved by Hermes achieve

an approximate fitness value of 3398. In contrast, adaptation paths generated by

component-dependency analysis achieve an approximate fitness value of 1536, which

is represented by the filled circle plotted at generation 0 before Hermes modifies it. In

general, Hermes evolved solutions that maximized performance without significantly

increasing reconfiguration costs and thus improved fitness by 220%. To achieve this

objective, Hermes reordered sets of reconfiguration instructions to sequentially re-

configure small subsets of remote data mirrors and connections at any given time,

thereby enabling the majority of remote data mirrors to continue propagating data

in the meantime. On the average, Hermes increased reconfiguration costs by approx-

imately 12 seconds, less than a 3% increase. As such, the 220% difference in fitness

values emphasizes how reordering the initial adaptation path may improve a reconfig-

uration’s performance by reducing system disruption during reconfiguration. Lastly,

as this plot illustrates, Hermes achieved large fitness gains within the first 500 gen-

erations (< 30 seconds), suggesting that tradeoffs may be balanced in a reasonable

181

amount of time within the context of remote data mirroring.

 0 500 1000 1500

500

1000

1500

2000

2500

3000

3500

4000

4500

Generation

M
ax

. F
itn

es
s

0

Hermes (n=25)
Component−Dependency (n=25)

Figure 7.5: Progression of average fitness values when minimizing reconfiguration
costs and maximizing reconfiguration performance.

Similarly, Figure 7.6 plots the average amount of data (in MB) sent and queued

by remote data mirrors during reconfiguration. This plot is generated by analyzing

evolved adaptation paths to determine the time period in which a remote data mirror

is either in active or passive mode. As this plot illustrates, Hermes gradually evolves

solutions that diffuse larger amounts of data, while queueing less data. These results

confirm that adaptation paths are multi-dimensional. Furthermore, these results also

suggest the inherent tradeoff between the performance and reliability of a reconfigura-

tion. Specifically, minimizing system disruption enables remote data mirrors to diffuse

greater amounts of data, but a single failure during reconfiguration could potentially

lose significant amounts of data.

Independently of whether Hermes is generating an adaptation path to minimize

182

0 500 1000 1500

1000

2000

3000

4000

5000

6000

7000

Generation

A
m

ou
nt

 o
f D

at
a

in
 N

et
w

or
k

(M
B

) Data Sent
Data Queued

Figure 7.6: Performance and reliability tradeoffs in evolved solutions.

reconfiguration costs or not, it must still place the same number of data mirrors in

passive and quiescent modes during the adaptation. Nevertheless, the sequence in

which those reconfiguration instructions are applied can affect the resulting recon-

figuration costs. As Figures 7.5 and 7.6 suggest, Hermes reorganized the initial safe

adaptation path in order to group reconfiguration instructions that concurrently af-

fect subsets of data mirrors. Specifically, for an RDM network comprising 25 data

mirrors, Hermes placed a mean maximum of 4.3 data mirrors in quiescent mode dur-

ing a reconfiguration. Likewise, Hermes placed a mean maximum of 7.2 data mirrors

in passive mode during a reconfiguration, not counting those already in quiescent

mode. This enables the remaining 13.5 data mirrors, over half of the RDM network,

to continue diffusing data even as the system is being reconfigured.

These results demonstrate how adaptation paths evolved by Hermes achieved

greater fitness values than those generated by component-dependency analysis

183

when minimizing reconfiguration costs and maximizing reconfiguration performance.

Specifically, when compared with the adaptation paths generated by component-

dependency analysis, the evolved adaptation paths achieved lower operational costs

as well as achieved better reconfiguration performance. Collectively, these results en-

able us to reject our null hypothesis, H0, as well as accept our alternate hypothesis,

H1 (in both cases using a t-test with p < 0.01).

7.5 Discussion

The set of experiments described in this chapter demonstrate how our model-

based framework leverages evolutionary algorithms to support the generation of safe

adaptation paths that can be used by adaptive and autonomic computing systems

to reach their target system configuration. In terms of execution time, Hermes typ-

ically terminated within 2 minutes or less, and typically converged upon a solution

within one minute while evaluating 1.5 million candidate solutions. By using com-

putationally inexpensive fitness functions, Hermes was able to find viable solutions

within 30 seconds, well within the practical range for applications such as RDM.

Moreover, since Hermes always starts with a viable safe adaptation path generated

by component-dependency analysis, solutions produced by Hermes can only improve.

In this manner, Hermes does not require a predetermined amount of execution time

before viable safe adaptation paths are available.

Similarly, experimental results in this chapter confirm that adaptation paths

are multi-dimensional in nature and that the specific sequence of reconfiguration in-

structions produce non-linear effects upon the cost, performance, and reliability of

a reconfiguration. Specifically, in each experiment trial Hermes evolved safe adapta-

tion paths that achieved a higher fitness value than those produced by component-

dependency analysis, with a significance of p < 0.01. As a result, we conclude that

184

Hermes is capable of not only evolving higher quality adaptation paths when com-

pared to those generated by component-dependency analysis, but also of balancing

multidimensional tradeoffs between non-functional requirements, as captured by the

non-functional goals in the goal model of the DAS.

7.6 Summary

In this chapter we presented how Hermes supports the generation of safe adapta-

tion paths in a DAS. Hermes is a genetic programming-based technique that generates

adaptation paths that not only reach a target system configuration, but also preserve

system consistency before, during, and after adaptation. We showed that it is pos-

sible to integrate an approach such as Hermes within the decision-making process

of a DAS to dynamically evolve adaptations that balance competing objectives at

run time. By leveraging evolutionary algorithms to generate safe adaptation paths,

our framework does not require a developer to manually design adaptation paths for

anticipated scenarios that warrant reconfiguration. Instead, Hermes incorporates sys-

tem and environmental monitoring information to evolve safe adaptation paths that

address situations that were perhaps not considered or anticipated at design time.

Experimental results show Hermes evolved suitable adaptation paths against differ-

ent sets of environmental conditions. Moreover, rescaling the relative importance of

different non-functional concerns, obtained from the DAS’s goal model, enabled Her-

mes to evolve different adaptation paths to balance competing concerns. Lastly, we

discussed how Hermes can be applied at run time to generate safe adaptations.

185

Chapter 8

End-to-End RDM Example

Thus far, this dissertation has presented each component in our model-based

framework and showed results of their application to the RDM network case study.

This chapter presents an example workflow to illustrate how each component in our

model-based framework can be applied from beginning to end when specifying, mon-

itoring, and dynamically reconfiguring an RDM network. Specifically, this chapter

describes how to use the suite of tools to start with a goal model and progress through

refinements to RELAX goals according to identified sources of uncertainty and con-

clude with the dynamic reconfiguration of the system to mitigate the adverse effects

of uncertainty. To this end, this chapter both reuses experimental results previously

presented throughout this dissertation, as well as presents additional results based on

refinements to the RDM goal model.

Given a goal model of the RDM application, in this chapter we first derive utility

functions for requirements monitoring. Next, we anticipate possible sources of system

and environmental uncertainty. We then analyze these sources of uncertainty and

revise the RDM goal model to resolve adverse system and environmental conditions

that lead to the violation of RDM invariant goals. Using the revised RDM goal model,

we then regenerate the utility functions for requirements monitoring and show how

186

the revised goal model improves requirements satisfaction under the same scenarios.

We then fine-tune these utility functions to account for sources of minor and transient

uncertainty that might cause the RDM network to incorrectly self-reconfigure at

run time. Lastly, we show how our model-based framework supports the dynamic

reconfiguration of the RDM network.

8.1 Deriving Utility Functions

This section describes how our model-based framework supports the automatic

derivation of utility functions for requirements monitoring in a DAS. To this end,

we first describe an example KAOS goal model of the RDM application that does

not contain any RELAXed goals. Next, we introduce several RELAX operators to ad-

dress possible sources of system and environmental uncertainty that might prevent

the RDM from satisfying its invariants. We then automatically derive invariant, non-

invariant, and RELAXed utility functions for requirements monitoring in the RDM

application. Lastly, we present simulation results that show how the derived util-

ity functions capture requirements satisfaction in response to different system and

environmental conditions.

RDM Goal Model. Athena requires a KAOS goal model of the RDM appli-

cation in order to automatically derive utility functions for requirements monitoring.

Figure 8.1 presents an example KAOS goal model that captures the requirements

and constraints that the RDM application must satisfy. As this model illustrates, the

primary objective of RDM is to maintain data available at all times by replicating

and distributing copies of data to physically isolated RDMs while maintaining opera-

tional costs at or below the allocated budget. More specifically, Goals (A) and (B) are

invariants that the RDM application must always satisfy. Other non-invariant goals

in this model capture various ways for the RDM application to establish and main-

187

tain network connectivity between RDMs, distribute data messages, and minimize

adaptation costs.

RELAXing the RDM Goal Model. The initial RDM goal model does not

contain RELAX operators since sources of system and environmental uncertainty have

not yet been identified. Nevertheless, at this stage we can anticipate several sources of

system and environmental uncertainty that can prevent the RDM network from satis-

fying its objectives at run time. Figure 8.2 shows the RELAXed KAOS goal model for

the RDM application. In general, this revised goal model introduces various RELAX

operators to account for imperfect network links that can introduce uncertainty in

the form of network link failures and dropped or delayed data messages. For example,

a network link failure can disconnect the RDM network and thus violate the satis-

faction of Goal (F). As such, we RELAX goal (F) to allow temporary RDM network

partitions while the data diffusion process continues. Likewise, lossy network links

can drop or delay data messages and thus hinder the satisfaction of Goals (A), (C),

(G), (H), (R), and (T). Therefore, we also RELAX goals (C), (G), (H), (Q), (R), (S),

and(T) to introduce flexibility in how and when the RDM network propagates data

between data mirrors such that data is sufficiently protected from failures, as well as

the data diffusion process completes in a reasonable amount of time.

Derived Utility Functions. In general, Athena uses a KAOS goal model of

the DAS to automatically generate utility functions for requirements monitoring. As

such, we now use Athena to derive utility functions from the RELAXed goal model of

the RDM application shown in Figure 8.2. These utility functions are intended to

capture how various system and environmental conditions affect the RDM network’s

ability to satisfy its requirements at run time. Applying Athena to the RELAXed

RDM goal model yields a total of 15 utility functions for requirements monitoring. In

particular, two state-based utility functions measure the satisfaction of Goals (A) and

(B). In addition, thirteen fuzzy logic-based utility functions measure the satisficement

188

Goal
Requirement

Agent
Refinement

Legend:

Link
Sensor

Network
Actuator

Network
Controller

RDM
Sensor

Maintain[Operational
Costs <= Budget]

(B) Achieve [NumberData
Copies == NumberServers]

(C)

Achieve[Measure
NetworkProperties]

(D) Achieve
[Network

Partitions == 0]

(F)

Achieve
[DiffusionTime
<= MaxTime]

(H)

Achieve
[LossRate
Measured]

(L)

Achieve
[Workload
 Measured]

(M)

Achieve
[Capacity
Measured]

(N)

Achieve
[Link

Deactivated]

(O) Achieve
[Link

Activated]

(P)

(K)
Achieve
[Activity

Measured]

Achieve
[Cost

Measured]

(J)

(G)
Achieve

[DataAtRisk <=
RiskThreshold]

Achieve
[Send Data

Synchronously]

(Q)

(E)
Achieve[Minimum
NumLinksActive]

(I)
Achieve

[Adaptation
Costs == 0]

Adaptation
ControllerAchieve

[Send Data
Asynchro-

nously]

(S)

Achieve
[Data

Received ==
DataSent]

(T)

Achieve
[NumActive

DataMirrors ==
NumMirrors]

(U)

Achieve
[NumPassive

DataMirrors == 0]

(V)

(A) Maintain [DataAvailable]

Achieve
[NumQuiescent
DataMirrors ==

0]

(W)

(R)
Achieve

[DataSent ==
DataReceived]

Figure 8.1: KAOS goal model for RDM application.

189

Goal
Requirement

Agent
Refinement

Legend:

Network
Actuator

Network
Controller

Link
Sensor

RDM
Sensor

(A)

Maintain[Operational
Costs <= Budget]

(B) Achieve [NumberData
Copies AS CLOSE AS

POSSIBLE TO NumberServers]

(C)

Achieve[Measure
NetworkProperties]

(D) Achieve[AS FEW
AS POSSIBLE

Network Partitions]

(F)

Achieve[AS EARLY
AS POSSIBLE

MessagesDiffused]

(H)

Achieve
[LossRate
Measured]

(L)

Achieve
[Workload
 Measured]

(M)

Achieve
[Capacity
Measured]

(N)

Achieve
[Link

Deactivated]

(O) Achieve
[Link

Activated]

(P)
(K)

Achieve
[Activity

Measured]

Achieve
[Cost

Measured]

(J)
(G)

Achieve[DataAt-
Risk AS CLOSE AS
POSSIBLE TO 0]

Achieve
[AS MANY AS

POSSIBLE
Synchronous
Propagation
Methods]

(Q)

(E)
Achieve[AS FEW

AS POSSIBLE
NumLinksActive]

(I)
Achieve[AS FEW

AS POSSIBLE
AdaptationCosts]

Adaptation
Controller

Achieve
[DataSent AS
CLOSE AS

POSSIBLE TO
DataReceived]

(R)

Achieve [AS
MANY AS
POSSIBLE

Asynchronous
Propagation
Methods]

(S)
Achieve

[Data Sent AS
CLOSE AS
POSSIBLE
TO Data-
Received]

(T)

Achieve
[AS MANY AS

POSSIBLE
NumActive

DataMirrors]

(U)

Achieve
[AS FEW AS
POSSIBLE

NumQuiescent
DataMirrors]

(V)

Maintain [DataAvailable]

Achieve
[AS FEW AS
POSSIBLE
NumPassive
DataMirrors]

(W)

Figure 8.2: RELAXed goal model for RDM application.

190

of Goals (C), (E), (F) through (I), and (O) through (W).

Next, we use an executable specification of the RDM application to show how

derived utility functions capture how system and environmental conditions affect the

ability of the RDM network to satisfy its requirements. As Table 8.1 shows, we

configured the RDM network simulation such that it randomly introduces adverse

system and environmental conditions such as sensor noise, network link failures, and

dropped, delayed, and corrupted data messages. These adverse system and environ-

mental conditions may cause the RDM network to self-reconfigure at run time if goals

become unsatisfied.

Table 8.1: Configuration for simulation with uncertainty.

Property Value
Seed 1...30
Distribution Binomial|Exponential|Normal|

Poisson|Uniform
Number Data Mirrors 25
Underlying Network Topology Complete
Budget $500000.00
Base Data Mirror Capacity 6.0 Gb
Data Mirror Capacity Variance 0.25
Base Network Link Bandwidth 7.0 Gb per time step
Network Link Bandwidth Variance 0.25
Base Data Message Size 2.0 Gb
Data Message Size Variance 0.25
Prob. Data Mirror Failure 0.01
Prob. Network Link Failure 0.1
Prob. Data Message Drop 0.1
Prob. Data Message Delayed 0.05
Prob. Data Message Corrupted 0.05
Prob. Data Mirror Sensor Failure 0.05
Prob. Sensor Fuzz 0.05

The RDM network is unable to always satisfy its invariant requirements un-

der these system and environmental conditions. Figure 8.3 shows that the RDM

network only satisfies Invariant Goal (A) in 19 out of 30 different simulation trials.

Furthermore, the corresponding utility value dips plotted in Figure 8.3 suggest that

191

Invariant Goal (A) becomes unsatisfied at different times in the simulation for various

reasons. For instance, in one scenario, Goal (A) becomes unsatisfied at the begin-

ning of the simulation when a newly inserted data message becomes corrupted. In

another scenario, Goal (A) becomes unsatisfied near the end of the simulation when

the congested RDM network was unable to completely diffuse data items before the

simulation completed.

150
Timestep0 50 100 200 250 300

1.0

0.8

0.6

0.4

0.2

0.0

M
ea

n
Sa

tis
fa

ct
io

n
of

 G
oa

l A

Figure 8.3: Utility values for Invariant Goal (A)

Figure 8.4 plots the satisfaction of Invariant Goal (B) across all 30 simulation

trials. As this plot illustrates, in addition to violating Invariant Goal (A), the RDM

network also violated Invariant Goal (B) in at least one simulation trial. In this

particular scenario, the constructed RDM network exceeded the operational budget

thereby violating Goal (B). Note that the RDM network satisfies Goal (B) in all other

29 simulation trials.

Figure 8.5 plots mean utility values for Goal (C) that states that the RDM

network should store data replicates in as many data mirrors as possible. As this figure

192

150
Timestep0 50 100 200 250 300

1.0

0.8

0.6

0.4

0.2

0.0

M
ea

n
Sa

tis
fa

ct
io

n
of

 G
oa

l B

Figure 8.4: Utility values for Invariant Goal (B)

shows, the RDM network gradually satisfices Goal (C) by replicating and distributing

data messages around time step 12. Thereafter the RDM continues replicating and

distributing data messages in order to gradually increase the satisficement of Goal (C).

Note, however, that the RDM network was unable to fully replicate and distribute

all data messages by the end of the simulation, as shown by the final satisficement

value of Goal (C) that is less than 1.0.

Figure 8.6 provides additional insight into how the RDM satisficed Goal (C) by

plotting the mean ratio of total data messages replicated and distributed across the

RDM network at each simulation time step. As this figure shows, the mean ratio of

diffused data messages and the satisficement of Goal (C) are positively correlated;

that is, as the mean ratio of diffused data messages increases, so does the satisfice-

ment of Goal (C). Moreover, this figure also captures how the RDM network is unable

to diffuse all data messages by the end of the simulation due to adverse environmen-

tal conditions, such as repeatedly failed network links and dropped data messages.

193

150
Timestep0 50 100 200 250 300

1.0

0.8

0.6

0.4

0.2

0.0

M
ea

n
Sa

tis
fa

ct
io

n
of

 G
oa

l C

Figure 8.5: Utility values for Invariant Goal (C).

Combined, Figures 8.5 and 8.6 also support the utility values captured in Figures 8.3

and 8.4 since they show that not all data messages are protected against data mirror

failures by the end of the simulation.

Given the possibility of network link failures, it is quite likely for the RDM

network to become partitioned at run time. Figure 8.7 plots the mean utility values

for Goal (F) that states that the RDM network should minimize the number of

network partitions in order to distribute data messages to all RDMs in the network.

As this plot shows, mean utility values for Goal (F) were within the inclusive ranges

of 0.84 and 1.0. These range of utility values shows that at no point in any simulation

did the RDM network suffer from more than one concurrent network partition.

Figure 8.8 provides additional insights regarding the satisficement of Goal (F) by

showing a sample RDM network topology. As this figure shows, the RDM network

became partitioned after the network link connecting data mirrors 16 and 24 failed.

Although this network link failure partitioned the RDM network, it still allows data

194

150
Timestep0 50 100 200 250 300

1.0

0.8

0.6

0.4

0.2

0.0

M
ea

n
R

at
io

 o
f M

es
sa

ge
 D

is
tri

bu
tio

n

Figure 8.6: Ratio of data messages diffused.

150
Timestep0 50 100 200 250 300

1.0

0.8

0.6

0.4

0.2

0.0

M
ea

n
Sa

tis
fa

ct
io

n
of

 G
oa

l F

Figure 8.7: Utility values for Goal (F).

195

mirrors {0, 3, 4, 5, 8, 15, 16, 18, 19} and {1, 2, 6, 7, 9, 10, 11, 12, 13, 14, 17, 20,

21, 22, 23, 24} to diffuse data messages amongst themselves. Eventually, the RDM

network is reconfigured and the data diffusion process continues.

3

4

5 18

8

15

1619

0

13

1

12

7

9

11

2

10

14

17

6

20 2122

23

24

Figure 8.8: Partitioned RDM network.

Similarly, Figure 8.9 plots the mean number of active network links in the RDM

network throughout each time step. As this plot shows, the RDM network activated

approximately 28 to 29 network links. As such, four to five of these network links were

redundant and improved data diffusion performance and reliability. Specifically, this

redundancy protects the RDM network even when multiple concurrent link failures

occurred such that the network did not end up with more than one partition.

Lastly, Figure 8.10 plots utility values for Goal (I) in Figure 8.2 that specifies

that the RDM network should minimize adaptation costs. As this figure illustrates,

utility values for Goal (I) were within the ranges of 0.86 and 1.0, thus implying that

the RDM network is, for the most part, able to continue replicating and distributing

data messages even while adaptations are performed.

Figure 8.11 plots the mean cumulative number of adaptations triggered through-

out each simulation. This plot depicts how the RDM network self-reconfigured any-

where from 2 to 15 times per simulation in order to re-establish connectivity and

196

150
Timestep0 50 100 200 250 300

30

20

10

5

0

15

25

M
ea

n
N

um
be

r o
f A

ct
iv

e
Li

nk
s

Figure 8.9: Number of active network links.

150
Timestep0 50 100 200 250 300

1.0

0.8

0.6

0.4

0.2

0.0

M
ea

n
G

oa
l S

at
is

fa
ct

io
n

G
oa

l I

Figure 8.10: Utility values for Goal (I).

197

continue diffusing data due primarily to network link failures.

150
Timestep0 50 100 200 250 300

15

10

5

0

M
ea

n
N

um
be

r o
f A

da
pt

at
io

ns
 T

rig
ge

re
d

Figure 8.11: Number of adaptations triggered.

8.2 Identifying and Resolving Obstacles

This section presents how our model-based framework supports the iterative re-

vision of a DAS’s goal model to address identified sources of uncertainty. Specifically,

this section presents how a requirements engineer can analyze the results produced

by Loki in order to identify goals that might need revision via goal strengthening or

RELAXation. The resulting goal model can then be further improved by reapplying

Loki and Athena as necessary.

Identifying Obstacles. Our model-based framework supports iterations be-

tween the Athena and Loki techniques where a requirements engineer identifies, an-

alyzes, and resolves sources of system and environmental uncertainty by modifying

the DAS goal model. Next, we apply our Loki technique to identify combinations

198

of system and environmental conditions that produce diverse sets of RDM network

behaviors.

Applying Loki to the RELAXed RDM goal model produces an archive of opera-

tional contexts that repeatedly cause network link, data mirror, and sensor failures

at run time. Network link failures are, by far, the most common adverse environ-

mental condition and typically result in a disconnected network that prevents data

mirrors from replicating and distributing data within the allocated simulation time.

Figure 8.12 plots the satisfaction of Goal (A) when the RDM was subjected to these

operational contexts. As this figure shows, 60% of archived operational contexts

caused Goal (A) to become unsatisfied at some point in the RDM simulation. Since

Goal (A) is both an invariant and the root goal in the model, the model likely requires

further revision to improve reliability in the RDM system.

0 50 100 150 200 250 300
Timestep

0.0

0.2

0.4

0.6

0.8

1.0

M
ea

n
Sa

tis
fa

ct
io

n
of

 In
va

ria
nt

 G
oa

l A

Timestep

Figure 8.12: Mean satisfaction of Goal (A) under operational contexts in novelty
archive.

Next, we search for two types of recurrent patterns in Loki’s novelty archive. First,

we rank goals by their depth within the goal model (i.e., placement). We then rank

199

goals within the same depth level by the number of times they were unsatisfied during

simulations. When analyzed across all behaviors that involved a requirements viola-

tion, this sorting operation basically identifies finer-grained goals that are commonly

unsatisfied. Second, for each candidate failed goal, we enumerate the combination

of system and environmental conditions leading up to the time step when the goal

became unsatisfied. Ideally, these patterns suggest operational contexts that are not

properly addressed by the current goal model.

Based on the first filtering criteria described above, we identify Goal (F) as a

common failure point in the RDM goal model. As Figure 8.1 shows, Goal (F) origi-

nally stated that the RDM network should remain connected during the data diffusion

process. Nevertheless, as Figure 8.2 shows, we RELAXed this goal to explicitly account

for temporary network partitions due to possible data mirror and network link fail-

ures at run time. Specifically, by introducing the “AS FEW AS POSSIBLE” RELAX

operator to this goal, we allow temporary network partitions under the assumption

that other data mirrors can continue diffusing data while segmented data mirrors are

self-reconfigured.

Figure 8.13 depicts a representative and valid RDM network topology after in-

troducing the “AS FEW AS POSSIBLE” RELAX operator to goal (F) and subjecting

it to the operational contexts in the novelty archive. This figure shows an RDM

network that comprises three partitions as a result of adverse operational contexts,

such as repeated network link failures. In this case, these partitions occur when the

network links connecting data mirrors 5-9 and 18-23 fail. These network partitions

affect data diffusion in two key ways. First, Partition 1 captures an isolated data

mirror that cannot receive, replicate, or distribute data messages. This isolated data

mirror allows the possibility of data loss either by a data mirror failure or a data

message corruption. Likewise, Partition 2 and Partition 3 capture a component of

RDMs that can distribute data amongst themselves, but not to data mirrors in other

200

partitions. This partition prevents the replication and distribution of data messages

between the two other RDM components, thereby increasing the amount of time

required to diffuse data.

10

1

2

3

4

5 6

78

9 11

12

13

14

15

16 17 18

19

20

21

2223

24

0

Partition 1: Partition 2: Partition 3:

Figure 8.13: Partitioned RDM network that leads to a requirements violation.

In addition, Figure 8.14 plots the mean satisfaction of Goal (F) under the oper-

ational contexts in the novelty archive. As this figure shows, Loki introduces adverse

environmental conditions such that the RDM network gradually becomes more par-

titioned as the simulation progresses. As captured in both Figures 8.13 and 8.14,

adverse operational contexts caused the RDM network to operate with two to three

partitions during the simulation. These RDM network partitions, and their effects

upon the data diffusion process, are likely root causes for Goal (A) to become unsat-

isfied in most trials.

Similarly, Figure 8.15 plots the mean satisfaction of Goal (H) under the op-

erational contexts in the novelty archive. As this figure shows, Goal (H) becomes

gradually unsatisfied as the RDM network gets congested with duplicate, dropped,

and delayed data message, thereby increasing the amount of time required to diffuse

201

150
Timestep0 50 100 200 250 300

1.0

0.8

0.6

0.4

0.2

0.0

M
ea

n
Sa

tis
fa

ct
io

n
of

 G
oa

l F

Figure 8.14: Utility values for Goal (F).

data. Together, Figures 8.14 and 8.15 capture the combined effects of adverse envi-

ronmental uncertainty and how these ultimately prevent the satisfaction of Invariant

Goal (A).

While this goal RELAXation seems reasonable, it is insufficiently strong to disal-

low the violation of other invariant goals in the model. Most notably, the weakened

satisfaction criteria of Goal (F) affects the satisfaction of Invariant Goal (A) and

non-invariant Goal (C) by exposing new data to loss and unavailability. Examining

the operational contexts associated with this behavior suggests one recurring environ-

mental pattern where network link failures can completely isolate a single data mirror

in the RDM network. Unfortunately, new data introduced at an isolated data mirror

is at extreme risk in the event of a data mirror failure (somewhat unlikely) or a data

message corruption (more likely). Moreover, the RDM network cannot recover from

the loss or corruption of a new data item as it automatically violates the satisfaction

of invariant Goal (A).

202

150
Timestep0 50 100 200 250 300

1.0

0.8

0.6

0.4

0.2

0.0

M
ea

n
Sa

tis
fa

ct
io

n
G

oa
l H

Figure 8.15: Utility values for Goal (H).

8.3 RDM Goal Model Revision

Based on this analysis, we determine that Goal (F) is a prime candidate for goal

revision. Although different goal revision strategies exist, such as obstacle prevention

and requirement strengthening [107], we apply two uncertainty mitigation strategies

for RELAXed goal models previously introduced by Cheng et al. [13]. As the elided

goal model in Figure 8.16 shows, we introduce another high-level Goal (F’), in this case

a sibling to Goal (F), and also introduce a RELAX operator to Goal (F’) to account

for already identified sources of environmental uncertainty. This specific revision

effectively merges the third and second uncertainty mitigation strategies defined for

RELAXed goals [13].

Combined, Goals (F) and (F’) now state that RDM network partitions can be

temporarily tolerated as long as the order of each connected component of data

mirrors is greater than one. Figure 8.17 presents a sample RDM network that captures

this goal model revision. As this figure shows, if a network partition occurs, then

203

Goal
Requirement
Agent
Refinement

Legend:

Link
Sensor

Network
Actuator

Achieve[Measure
NetworkProperties]

Achieve
[Link

Activated]

Achieve
[Link

Deactivated]

RDM
Sensor

(D)

Achieve
[AS FEW AS
POSSIBLE

Network
Partitions]

(F)

Achieve
[LossRate
Measured]

(L) Achieve
[Workload
 Measured]

(M)

Achieve
[Capacity
Measured]

(N) (O) (P)
(K)

Achieve
[Activity

Measured]

Achieve
[Cost

Measured]

(J)

(E)
Achieve[AS FEW

NumLinksActive AS
POSSIBLE]

Maintain[Operational
Costs <= Budget]

(B)

...

Achieve
[AS MANY

NumDataMirrorsPer
Component AS

POSSIBLE]

(F')

Figure 8.16: Revised goal model with applied uncertainty mitigation strategies for
RELAXed goals.

ideally it splits the RDM network into two connected components where the size of

each component is approximately half the number of data mirrors in the network.

With this change, the RDM network would immediately trigger a self-reconfiguration

if a network link or data mirror failure partitions the network such that a data mirror

is isolated, regardless of whether the number of partitions exceeds the RELAXed

204

constraint of Goal (F).

3

4

5 18

8

15

1619

0

20 2122 13

1

12

7

9

11

2

10

14

17

6

23

24

Partition 1: Partition 2:

Figure 8.17: Desirable network partition that reduces chances of data loss.

Next, we evaluate the effectiveness of this goal model revision by reusing the

operational contexts in the novelty archive as test cases. First, we execute Athena to

regenerate utility functions for Goals (F) and (F’) that reflect these revisions. We

then reuse the same operational contexts that previously caused Goals (F), (C), and

(A) to become unsatisfied via isolated data mirrors.

Figure 8.18 plots the satisfaction of Goal (A) after revising the RDM goal model

and, subsequently, regenerating its corresponding utility functions for requirements

monitoring. As this figure shows, about 80% of the RDM simulations now manage

to satisfy all invariant requirements even when subjected to a wide range of adverse

operational contexts. Moreover, as Figures 8.12 and 8.18 illustrate, this goal revi-

sion alone doubles the number of RDM simulation instances that manage to satisfy

Invariant Goal (A).

Likewise, Figure 8.19 plots the satisficement of Goal (F) after the goal model and

utility functions were revised. As this figure illustrates, Goal (F) is now satisficed at

approximately 80% of its maximum possible value, which corresponds to the RDM

network being connected. As such, this satisficement value implies that the RDM

205

M
ea

n
Sa

tis
fa

ct
io

n
of

 In
va

ria
nt

 G
oa

l A 1.0

0.8

0.6

0.4

0.2

0.0
100 150

Timestep0 50 200 250 300

Figure 8.18: Mean satisfaction of Goal (A) under operational contexts in novelty
archive after goal model revision.

network was partitioned at most once at any given time. Furthermore, the RDM

network does not contain isolated data mirrors at any point during the simulation

since it would automatically trigger an adaptation that reconfigures the network.

Simulating this scenario confirms that the RDM network suffers fewer data losses

as a result of isolated data mirrors, thus suggesting that our goal revision is effective.

Nevertheless, this goal model revision is unable to prevent all data loss as a result

of an isolated data mirror. Specifically, one simulation instance still failed to satisfy

Goals (A) and (C) because Loki introduced the following events at the same time step

before the reconfiguration could be triggered: (1) a new data item is introduced at a

data mirror, (2) the network link connecting that data mirror to the RDM network

fails, and (3) the data mirror also fails thereby wiping its state clean, including the

newly inserted data message. Unfortunately, this requirements violation cannot be

prevented by further revising Goals (F) and (F’) nor the RDM goal model itself as

there is no mitigation strategy that can prevent the immediate corruption of a new

206

M
ea

n
Sa

tis
fa

ct
io

n
of

 G
oa

l F

100 150
Timestep0 50 200 250 300

1.0

0.8

0.6

0.4

0.2

0.0

Figure 8.19: Mean satisficement of Goal (F) under operational contexts in novelty
archive after goal model revision.

data item that has not been replicated yet.

8.4 Fine-Tuning Utility Functions

The revised RDM goal model and its associated utility functions for requirements

monitoring enable the RDM application to better identify and address certain com-

binations of adverse system and environmental conditions. Nevertheless, system and

environmental uncertainty can still prevent the RDM network from fully satisfying

its requirements at run time. For example, minor and transient forms of uncer-

tainty may cause the RDM network to unnecessarily self-reconfigure multiple times,

thereby diverting resources towards adaptation concerns rather than replicating and

distributing data messages. As such, we now continue with our end-to-end example

and apply our AutoRELAX technique to the revised RDM KAOS goal models, both

the unRELAXed and manually RELAXed versions (see Figures 8.1, 8.2, and 8.16). The

207

resulting fine-tuned non-invariant utility functions should enable the RDM network

to better distinguish when an adaptation is warranted, as well as when minor forms

of uncertainty can be temporarily tolerated at run time.

Figure 8.20 presents three sets of box plots that capture the fitness values

achieved by 1) AutoRELAX-generated models, 2) a manually created RELAXed goal

model (Figures 8.2 and 8.16), and 3) an unRELAXed goal model, respectively. As

these box plots illustrate, AutoRELAX generates goal models that achieve a statisti-

cally significant higher fitness value than unRELAXed and manually RELAXed goal

models (p < 0.001, Welch Two Sample t-test). These differences in fitness values

show how AutoRELAX is capable of refining the initial set of goal RELAXations, and

their corresponding utility functions, such that the RDM network satisfies its invari-

ant requirements while minimizing the number of goal RELAXations and the number

of triggered adaptations.

AutoRELAX Manually RELAXed UnRELAXed

0.
55

0.
65

0.
75

0.
85

Fitness Comparison

Fi
tn

es
s V

al
ue

Figure 8.20: Fitness value comparison between AutoRELAX, manually RELAXed and
unRELAXed goal models.

Figure 8.21 presents three sets of box plots that capture the adaptation costs

incurred by 1) AutoRELAX-generated models, 2) a manually created RELAXed goal

model, and 3) an unRELAXed goal model, respectively. Specifically, each set of box

208

plots measures the amount of time that components in the RDM network spent in ac-

tive, passive, and quiescent modes during reconfigurations (these plots do not include

time outside of a reconfiguration). As Figure 8.21 shows, option (1) (AutoRELAX) is

preferable because it has less negative impact on overall system functionality. Specifi-

cally, by carefully lessening the satisfaction criteria of non-invariant goals, the number

of adaptations decrease and so does the cumulative amount of time components spend

in passive and quiescent modes during a reconfiguration.

Active Quiescent

0
50

0
10

00
15

00

AutoRELAXed

Ti
m

e s
tep

s

Active Quiescent

0
50

0
10

00
15

00
Manually RELAXed

Ti
m

e s
tep

s

Active Quiescent

0
50

0
10

00
15

00

UnRELAXed

Ti
m

e s
tep

s

Figure 8.21: Adaptation costs comparison between RELAXed and unRELAXed goal
models.

209

8.5 Dynamic Reconfiguration

Thus far, this chapter has shown how our model-based framework supports the

iterative revision of a DAS’ goal model. Specifically, we have revised the original RDM

goal model (see Figure 8.1) based on the feedback obtained from applying Athena, Loki,

and AutoRELAX. Although the revised RDM goal model does improve the reliability of

the RDM network by triggering adaptations whenever a data mirror becomes isolated

at run time, there are certain additional scenarios that still warrant reconfiguration

in order to prevent data loss. This section presents additional experimental results

that demonstrate how our model-based framework can leverage Plato and Hermes

to dynamically reconfigure the RDM network in response to adverse system and

environmental conditions.

Reconfiguration Against Successive Link Failures. As previously de-

scribed, the RDM goal model revision 8.16 introduces Goal (F’) to trigger a self-

reconfiguration whenever the RDM network detects an isolated data mirror. We now

present how Plato can be applied to our end-to-end RDM case study to dynamically

reconfigure an overlay RDM network in real-time in response to multiple link failures.

Note that these link failures are likely to disconnect the RDM network and isolate

data mirrors.

As in Experiment 6.1, Experiment 6.2, and Experiment 6.3, we first ran Plato

to produce an initial overlay network design whose primary design objective was to

minimize operational costs, i.e., αcost = 1, αperf = 0, and αrel = 0. Figure 8.22 shows

the initial overlay network design, essentially a spanning tree. Next, the simulation

randomly selects active overlay network links and set their operational status to faulty.

Since these network link failures tend to disconnect the RDM network and, more

importantly, isolate at least one data mirror, Plato was triggered to evolve new target

reconfigurations in response to the changing underlying network. This process is

repeated several times during the simulation for a maximum of ten consecutive link

210

failures.

0
1

2

345 6
7

8

910 11

12

13

14

15

16

17

18 1920 21

2223 24

Figure 8.22: Sample RDM network generated by Plato when optimizing for cost.

Figure 8.23 plots the mean maximum fitness achieved by Plato as it evolved over-

lay network designs. After the initial overlay network design became disconnected

as a result of link failures, Plato automatically rescaled reconfiguration priorities to

emphasize data reliability, i.e., αcost = 1, αperf = 2, and αrel = 2. This plot illus-

trates how Plato evolved target reconfigurations that withstood various successive link

failures (depicted by the valleys) without the overlay network necessarily becoming

disconnected. Specifically, on average, each generated target reconfiguration main-

tained a fitness value well above −400, which was the numerical penalty assigned to

disconnected overlay networks.

Figure 8.24 presents a sample RDM network topology generated in response

to adverse environmental conditions, such as network link failures. Plato generated

this overlay network such that it comprises 32 active network links, the majority of

which use asynchronous propagation methods with either 1 or 5 minute time bounds.

Overall, this overlay network provides a combination of performance and reliability

while maintaining operational expenses well below the allocated budget.

It is also interesting to observe that during each successive reconfiguration, the

first few target reconfigurations generated by Plato were progressively lower in fitness,

211

0 0.5 1 2 2.5
x 104

−400

−300

−200

−100

0

100

200

300

400

1.5

M
ax

. F
itn

es
s

Generation
Figure 8.23: Maximum fitness of overlay networks achieved throughout multiple re-
configurations.

01 23

4

5

6 7

8 9

10

1112

1314

15 16

17 1819 2021

2223 24

Figure 8.24: Sample RDM network generated by Plato when optimizing for cost,
performance, and reliability.

suggesting that as more network links failed in the overlay network, it became more

difficult for Plato to find promising areas in the solution space to explore further.

Nevertheless, Plato evolved suitable target reconfigurations of the same overall fitness

value in response to successive network link failures. Moreover, Plato was able to con-

sistently evolve viable target reconfigurations within 500 generations (approximately

212

30 seconds).

The plot in Figure 8.25 shows the mean number of active network links in the

initial and reconfigured overlay network designs. In the initial overlay network de-

sign, Plato reduced the number of active links to form a spanning tree and minimize

operational costs. In contrast, throughout each reconfiguration iteration, Plato in-

creased the number of redundant active links to maximize data reliability while still

attempting to minimize operational costs. As this plot illustrates, after each suc-

cessive network link failure, Plato generated target reconfigurations where overlay

networks comprised approximately 30 active links.

0 0.5 1 1.5 2 2.5
x 104

0

20

40

60

80

100

120

140

Generation

N
um

be
r o

f A
ct

iv
e

Li
nk

s

Figure 8.25: Number of active links in overlay network throughout multiple reconfig-
urations.

Figure 8.25 also provides insights as to how Plato is able to evolve suitable target

reconfigurations that balanced maximizing data reliability and minimizing operational

costs. Specifically, Plato activated many overlay network links during the first few

iterations of the genetic algorithm. Eventually, Plato pruned back the size of the

213

overlay network by deactivating most redundant network links in order to reduce

operational costs. Note that while some redundant network links in the overlay

network do increase operational costs, they also improve the robustness of the overlay

network design against potential future link failures.

Finally, Figure 8.26 plots the mean potential data loss for a data mirror in the

initial and reconfigured overlay network designs. The mean potential data loss mea-

sures the amount of data, in gigabytes, that may be lost at a given data mirror as a

result of some type of failure. As this plot illustrates, after the initial overlay network

design became disconnected, Plato rapidly evolved target reconfigurations where most

propagation methods in the overlay network were set to either synchronous mode or

asynchronous mode with a 1 or 5 minute time bound. These particular data propaga-

tion settings reduced the average potential data loss across the network by providing

a higher level of data protection at the expense of degraded network performance.

0 0.5 1 1.5 2 2.5
x 104

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

Generation

Po
te

nt
ia

l A
vg

. D
at

a
Lo

ss
 (G

B
.)

Figure 8.26: Potential average data loss across overlay network throughout multiple
reconfigurations.

214

Optimizing for Reliability. Given the combinations of adverse system and

environmental conditions that the RDM network is subjected in this end-to-end case

study, we configured Hermes to maximize the reliability of a reconfiguration. Specif-

ically, we set the fitness sub-functions for Hermes as follows: αcost = 0.2, αperf =

0.2, and αrel = 0.6. Such trade-off preferences may arise when the reconfiguration

is driven by failures that threaten the functionality of the system rather than by

variations in system performance. For example, as Experiment 3.2 and Experiment

4.1 demonstrated, the failure of either a remote data mirror or a connection between

remote data mirrors may cause data to be permanently lost. As such, this portion of

the end-to-end case study explores scenarios where the cost of losing data is severe.

Figure 8.27 plots the mean maximum fitness values of adaptation paths per

generation. As this plot shows, Hermes evolved adaptation paths that achieved an

approximate fitness value of 4502. This fitness value represents a 139% improvement

over component-dependency analysis whose fitness value is represented by the filled

circle plotted at generation 0, before Hermes modifies the initial safe adaptation path.

In general, Hermes achieves higher fitness values by evolving solutions different

from the initial adaptation path in two key ways. First, Hermes adds pairs of “passi-

vate” and “activate” instructions not present in the initial adaptation path. Second,

Hermes reorders the sequence of reconfiguration instructions to establish large re-

gions of quiescence throughout most of the reconfiguration. Specifically, passivate

instructions are shifted to the beginning of the adaptation path, thereby temporarily

pausing most remote data mirrors. Hermes then reconfigures the RDM network be-

fore finally reactivating data mirrors. Although this strategy is similar to Kramer and

Magee’s dynamic change management protocol, Hermes also balances tradeoffs with

factors such as performance and cost. Moreover, as Figure 8.27 also illustrates,Hermes

achieves large fitness gains within the first 500 generations (< 30 seconds), reaffirming

our findings that Hermes can balance competing tradeoffs in a reasonable amount of

215

0 500 1000 1500

500

1000

1500

2000

2500

3000

3500

4000

4500

Generation

M
ax

. F
itn

es
s

Hermes (n=25)
Component−Dependency (n=25)

Figure 8.27: Progression of average fitness values when maximizing reconfiguration
reliability.

time within the RDM application context.

In contrast to Experiment 7.2, where minimizing reconfiguration disruption was

the primary concern, in this end-to-end case study we maximized the reliability of

the reconfiguration itself. As Figure 8.28 illustrates, Hermes increased reconfigura-

tion costs by approximate 33 seconds more than the initial adaptation path. This

12% increase in reconfiguration costs is a direct result of the additional passivate

and activate instructions inserted by Hermes. Interestingly, these pairs of additional

instructions were sometimes applied to data mirrors that were not directly involved

in the reconfiguration process. Were it not for these additional instructions, these

remote data mirrors would have propagated data during the entire reconfiguration.

Thus, by passivating most data mirrors, Hermes provided better data reliability at the

expense of higher reconfiguration costs.

Lastly, Figure 8.29 plots the amount of data (in MB) sent and queued by RDMs

216

0 500 1000 1500

260

270

280

290

300

310

320

330

Generation

M
ea

n
R

ec
on

fig
ur

at
io

n
Ti

m
e

(s
ec

)

250

Hermes (n=25)
Component−Dependency (n=25)

Figure 8.28: Average time required to complete reconfiguration when maximizing
reconfiguration reliability.

during reconfiguration. Data sent measures the amount of data RDMs diffused during

reconfiguration as a result of being active. Likewise, data queued measures the amount

of data produced but not diffused by RDMs because their operational status was set to

passive state. As this plot illustrates, Hermes gradually evolved solutions that queued

larger amounts of data than was being diffused throughout the network. Furthermore,

this plot also illustrates how reconfiguration time increased as a result of passivating a

greater number of data mirrors, thus also increasing the amount of data produced and

diffused during this time. Lastly, these results also confirm the tradeoffs observed in

Experiment 7.2 between the performance and reliability of adaptation paths. Namely,

maximizing reliability typically implies a higher level of system disruption. While it

is generally undesirable to disrupt system services by passivating large numbers of

remote data mirrors, doing so creates a region of quiescence that better protects data

against failures during reconfiguration.

217

218

 0 500 1000 1500

1000

2000

3000

4000

5000

6000

7000

Generation

A
m

ou
nt

 o
f D

at
a

in
 N

et
w

or
k

(M
B

)

Data Sent
Data Queued

Figure 8.29: Reconfiguration and performance tradeoffs in evolved solutions.

Chapter 9

Related Work

Although DASs have steadily gained attention over the past several years from

a wide range of engineering disciplines [15, 65, 83], the concept of dynamic reconfig-

uration has existed since the early days of computing. Specifically, first attempts at

self-modifying code supported run-time program optimization and explicit manage-

ment of physical memory [73]. Due to the lack of tools and techniques to abstract

low-level adaptation details, these programs were often complex and difficult to un-

derstand. Eventually, new approaches and techniques for building adaptive systems

emerged. For example, error detection and error handling capabilities essentially pro-

vided systems with self-adaptive behaviors to prevent or resolve undesirable behaviors

or actions [37]. While these approaches demonstrated that adaptation was both pos-

sible and powerful, they were often tightly coupled with application-specific source

code and applied in ad hoc manners. As a result, the first generation of adaptive

systems were often difficult to write, debug, and maintain.

This chapter presents related work on model-based approaches for designing and

implementing DASs. First, we overview approaches that use goal-oriented require-

ments models to guide the design and dynamic reconfiguration of a DAS. We then

present approaches that use design-level models to guide the development and dy-

219

namic reconfiguration of a DAS.

9.1 Requirements Models for Adaptive Systems

In this section we present related work that leverages goal-oriented requirements

models in the order in which they would most likely be used to guide the design and

dynamic self-reconfiguration of a DAS. First, we overview approaches for specifying

and modeling the requirements of a DAS. We then describe approaches for identifying

and resolving obstacles that can prevent the satisfaction of requirements in a DAS.

Next, we overview approaches for identifying, modeling, and mitigating sources of

uncertainty that can affect the behavior of a DAS. Lastly, we present approaches for

monitoring the satisfaction of requirements at run time in adaptive systems.

9.1.1 Specifying Dynamically Adaptive Systems

Berry et al. [7] identified four different levels of requirements engineering for

DASs. The first level, similar to traditional requirements engineering for computer-

based systems, focuses on eliciting and specifying the functionalities that a DAS must

provide. To this end, a requirements engineer must specify how a target program

should react in response to each possible input that it can receive. The second level

consists of a DAS deciding if, when, and how it should adapt in response to the

monitoring information it gathers from its execution environment. The third level

focuses on identifying and designing the various adaptation elements needed for a

DAS to support the adaptations that will be performed at the second level. At

this level, an adaptation engineer must evaluate both the mechanisms and effects

of possible adaptations in response to new environmental inputs. Lastly, the fourth

level consists of researching different adaptation mechanisms, such as middleware and

frameworks, to support dynamic adaptation.

220

Goldsby and Cheng [38] presented a goal-oriented approach that captured each of

the four levels of requirements engineering for DASs using the KAOS specification and

modeling language [18]. In their approach, the first level of requirements engineering

for DASs uses a goal model to specify the functionality that a DAS must provide

to its clients. Similarly, in the second level, a requirements engineer uses a goal

model to specify the environmental conditions and appropriate target systems that a

DAS can reach by self-adapting. Lastly, the third and fourth levels use goal models

to specify and select amongst different adaptation infrastructure elements. In this

manner, the goal-oriented approach by Goldsby and Cheng explicitly captures the

roles and contributions of each stake holder throughout each of the four levels of the

requirements engineering process for DASs.

Although the second level of requirements engineering for DASs focuses on spec-

ifying how a DAS should react in response to each possible input that it can receive,

achieving this objective is often infeasible due to system and environmental uncer-

tainty [114]. Specifically, it is often infeasible for a human to identify, at design time,

all possible combinations of environmental conditions that might arise at run time and

how these affect the behavior of the DAS. As such, Whittle et al. [114] introduced the

RELAX requirements specification language to identify and assess sources of uncer-

tainty in a DAS. The RELAX language, previously described in Chapter 2, uses fuzzy

logic-based operators to relax the satisfaction criteria of non-invariant requirements

and explicitly address the effects of uncertainty.

The model-based framework presented in this dissertation spans the third and

fourth levels of the four levels of requirements engineering for DASs. Specifically,

this dissertation presents research on new adaptation mechanisms that form part of

the fourth level of requirements engineering for DASs. In turn, these new adaptation

mechanisms can be applied to automatically perform several tasks at the third level

of requirements engineering for DASs, such as automatically identifying sets of en-

221

vironmental conditions that might cause a DAS to reconfigure and discovering safe

adaptations in response to these inputs.

9.1.2 Requirements Modeling in a Dynamically Adaptive

System

Several techniques have been proposed and used to model software requirements

in DAS [13, 28, 38, 67, 77, 78]. In general, most of these goal-oriented modeling

approaches capture the adaptation capabilities of a DAS as alternate goal opera-

tionalizations. For instance, Morandini et al. [77, 78] explicitly model system goals,

as well as goal achievement conditions and specific recovery actions in the form of al-

ternate goal realizations. Specifically, if goals are unsatisfied, then the DAS switches

between different goal realization strategies.

In a different approach, Feather et al. [28] used the KAOS goal specification lan-

guage to model the requirements and constraints of the DAS, as well as the conditions

that the DAS should monitor and the possible adaptations that the DAS could ap-

ply. At run time, the DAS traces its behavior through these models in order to detect

conditions that warrant reconfiguration, such as a requirements violation. Likewise,

Lapouchnian et al. [67] used hybrid goal models to capture system-wide goals of

a DAS. Their approach combined elements from the KAOS and i* [118] modeling

languages to specify conditions that might require adaptation in a DAS.

In contrast to these goal modeling approaches, our model-based framework does

not explicitly focus on how to specify and model the requirements, constraints, and

possible adaptations of a DAS. Instead, our model-based framework uses these goal

modeling approaches as enabling technologies to focus on explicitly supporting the

automatic identification of obstacles in a DAS and the generation of safe adaptations

in response to adverse environmental conditions. The new set of obstacles and adap-

tations identified by our model-based framework can then be modeled using any of

222

these goal-based modeling approaches for DASs.

While useful throughout the design and execution of a DAS, the previous set

of goal-oriented requirements modeling approaches are static in nature and do not

normally support the evolution of models at run time in response to changes in re-

quirements and environmental conditions. As such, Bencomo et al. [6, 100] suggested

promoting requirements to live run-time entities whose satisfaction can be evaluated

in support of adaptation decisions. Similarly, Souza et al. [103] introduced a feedback

loop-based Awareness Requirements (AwReqs) construct where meta-level require-

ments capture, monitor, and manage the satisfaction of other system requirements.

These requirements aware approaches integrate requirements into the decision-making

process of a DAS, thus linking adaptation decisions with the requirements they are

intended to satisfy.

Our model-based framework also treats requirements as live entities that can

evolve and be leveraged at run time. Specifically, through Athena, our model-based

framework directly supports run-time requirements monitoring as well as linking DAS

self-reconfigurations to specific goals and requirements that must be satisfied. In con-

trast to the goal-oriented modeling approaches by Feather [28] and Lapouchnian [67],

and the requirements-aware approaches by Souza et al. and Bencomo et al., our

model-based framework supports the management and run-time monitoring of RE-

LAXed requirements to account for system and environmental uncertainty.

9.1.3 Obstacle Identification, Analysis, and Resolution

Obstacle analysis facilitates the systematic identification and resolution of con-

ditions that prevent a system from satisfying its goals and requirements at run time.

Letier and van Lamsweerde proposed a set of heuristics, refinement patterns, and

formal techniques from for systematically identifying, analyzing, and resolving ob-

stacles from goal specifications [105, 106, 107]. In these approaches, a requirements

223

engineer first identifies an obstacle by selecting a goal, requirement or assertion that

might become unsatisfied at run time and then analyzing its likelihood and criticality.

Different mitigation strategies, such as prevention, resolution, or toleration, can be

applied to address each identified obstacles.

Although it is ideal to identify and mitigate every possible obstacle that might

prevent a DAS from satisfying its goals, achieving this objective for many application

domains is infeasible given the large space of potential obstacles that might arise at

run time [13, 28, 114]. Our model-based framework complements the obstacle anal-

ysis process introduced by Letier and van Lamsweerde by facilitating the automatic

discovery of system and environmental conditions that produce diverse behaviors,

including requirements violations and latent behaviors. The new set of obstacles

identified by Loki can then be analyzed and disallowed via the same obstacle analysis

mechanisms that Letier and van Lamsweerde presented.

In a related approach, Letier and van Lamsweerde introduced a framework for

specifying partial degrees of goal satisfaction [69], where satisfaction is expressed in

terms of probabilities. These probabilities can be obtained directly from stakeholders

or derived from actual system usage data. The satisfaction of each goal is then

evaluated by applying application-specific refinement equations or objective functions.

Several heuristics are proposed for deriving such objective functions in terms of system

goals. Furthermore, the authors also provide a top-down and bottom-up approach for

propagating satisfaction probabilities throughout the goal model. Ultimately, these

probabilities can be used to prioritize the set of goals that should be revised in order

to maximize the degree of goal satisfaction.

Our model-based framework and the probabilistic partial goal satisfaction frame-

work presented by Letier and van Lamsweerde share the same objectives of identifying

unsatisfied goals and how these may affect the satisfaction of other system goals. Nev-

ertheless, several key differences exist between the two approaches. First, a require-

224

ments engineer may only apply their framework during the requirements and design

phases of the software development cycle. Our model-based framework, on the other

hand, can be applied during those same phases of the software development lifecycle,

as well as at run time to monitor requirements after the system has been deployed.

Second, their framework requires not only a goal model of the system, but also real

usage data that captures different instances where goals and requirements have been

satisfied and violated. Unfortunately, this information may be unavailable or difficult

to acquire for various application domains. In contrast, our model-based framework

only requires a goal model to derive utility functions for requirements monitoring.

Notwithstanding these differences, our model-based framework and Letier and

van Lamsweerde’s partial goal satisfaction framework can complement each other in

multiple ways. For instance, our model-based framework can leverage the likelihood

and severity of goal violations identified by their probabilistic framework to prioritize

how often to compute utility values at run time. Likewise, our model-based frame-

work can output traces of utility values at run time to archive the extent to which

goals were satisfied during execution. These utility value traces can then be analyzed

to derive and refine the likelihood and effects of goal violations in their partial goal

satisfaction framework. Moreover, the obstacles (i.e., system and environmental con-

ditions) identified by Loki can also be reused to validate and refine the probabilistic

values assigned to each goal in their partial satisfaction framework, as well as refine

the impact of that goal becoming unsatisfied at run time.

Lutz and Mikulski [71] identified mechanisms for discovering and resolving re-

quirements errors during the software testing phase. The objective of these mech-

anisms is to resolve incomplete requirements, unexpected requirements interactions,

and requirements confusions by testers. Through Loki, our model based-framework

supports these mechanisms for requirements discovery and resolution as it supports

the automatic discovery of both incomplete requirements, in the form of latent and

225

unexpected behaviors, and unexpected requirements interactions, in the form of re-

quirements violations due to missing or inadequate obstacle mitigations.

Glinz et al. [101] proposed simulating the specification of a system in order to

either validate or localize defects in the requirements of the system-to-be. In their

approach, a requirements engineer manually configures the simulation to test the

specification. More recently, genetic algorithms have also been applied to generate

test cases in simulation-based validations of software specifications where the objective

is to exercise as much of the specification as possible [66, 81]. For example, Nguyen et

al. [81] proposed an approach for testing the behavior of an autonomous agent in

response to, among other things, environmental conditions generated by a genetic

algorithm. To leverage these approaches, however, developers must extend the genetic

algorithm with domain-specific fitness functions that evaluate the quality of generated

test cases. Through Loki, our model-based framework supports the same objective

of exercising the specification of a DAS. However, in contrast to the approaches by

Lajolo and Nguyen, Loki replaces the fitness function of a genetic algorithm with a

novelty metric that does not need to be redefined across different application domains.

9.1.4 Identifying and Mitigating Sources of Uncertainty

Researchers are acknowledging the fact that uncertainty permeates the design,

implementation, and execution of a DAS [5, 6, 13, 25, 26, 69, 92, 100, 111, 112].

Much recent work has focused on explicitly identifying and documenting sources of

uncertainty and evaluating their possible effects upon the DAS. These approaches,

and others, attempt to raise awareness about how uncertainty affects a DAS all the

way from requirements elicitation to run-time decision-making. In general, these

approaches explore the effects of uncertainty in the form of missing requirements, un-

expected requirements interactions, and unpredictable or misunderstood system and

environmental conditions [71, 112]. For instance, Welsh et al. [111, 112] introduced

226

the concept of a Claim as a marker of uncertainty in requirements and design decisions

baed on possibly incorrect assumptions. Likewise, Esfahani et al. [25, 26] proposed

an analytical framework that combines mathematical approaches for modeling and

assessing uncertainty in adaptation decisions from a risk-management perspective.

In addition to designing frameworks for documenting and managing sources of

uncertainty, researchers have also focused on leveraging fuzzy set theory to represent

and analyze the effects of uncertainty in requirements. For instance, Whittle et

al. [114] introduced the RELAX requirements specification language to facilitate the

identification and analysis of sources of environmental uncertainty in a DAS. Cheng et

al. [13] extended the RELAX requirements specification language with a goal-oriented

modeling process that can be applied to explicitly address uncertainty in a DAS. In

their proposed process, a requirements engineer identifies non-invariant goals in a

KAOS goal model of the DAS whose satisfaction can be affected due to uncertainty

and then selects an appropriate RELAX operator to relax that goal’s satisfaction

criteria accordingly. In a similar approach, Pasquale et al. [5, 84] introduced FLAGS,

a KAOS goal modeling framework that introduces the concept of a fuzzy goal whose

satisfaction can also be evaluated through fuzzy logic functions. Both goal-modeling

approaches use fuzzy logic-based functions to relax the satisfaction criteria of goals

in a goal-oriented model. In contrast to RELAX, however, FLAGS does not focus on

identifying sources of uncertainty, but rather evaluating the degree to which a goal is

satisfied.

These approaches for documenting, representing, analyzing, and managing un-

certainty ultimately depend on a requirements engineer who evaluates the likelihood

of various sources of uncertainty arising at run time, as well as their effects upon a

DAS. In particular, a requirements engineer using either RELAX, FLAGS, or Claims

must currently manually determine which goals may become unsatisfied at run time

without disrupting invariant requirements, as well as how much flexibility can be in-

227

troduced into each non-invariant goal’s satisfaction criteria. Our model-based frame-

work complements these approaches in two key ways. First, Loki supports the auto-

matic identification of sources of uncertainty and how these may affect the abilities

of a DAS to satisfy its requirements. In addition, AutoRELAX automates the entire

identification and assessment process by generating goal RELAXations that specify

the extent to which goals may become temporarily unsatisfied at runtime without

violating invariant requirements. Although our model-based framework currently fo-

cuses on RELAXing functional non-invariant KAOS goals, it can also be extended to

automatically identify fuzzy goals in FLAGS, as well as automatically RELAX the

satisficement criteria of soft goals [16].

9.1.5 Requirements Monitoring in Adaptive Systems

Feather [28], Fickas [29], and Robinson [97, 98] developed requirements moni-

toring frameworks intended to detect when an executing system fails to satisfy its

requirements. These frameworks support the instrumentation, monitoring, and diag-

nosis of an executing system. To leverage these frameworks, a requirements engineer

first models a DAS with a goal-based modeling language, such as KAOS [18, 105].

Assumptions and constraints that can become violated at run time can then be identi-

fied from these goal models. A requirements engineer then creates state-based models

of the DAS such that the requirements monitoring framework can trace through them

with execution data. At run time, the monitoring framework observes traces of the

executing system and logs any unsatisfied requirement or constraint.

The requirements monitoring frameworks by Feather, Fickas, and Robinson share

similar objectives with our model-based framework. In particular, their frameworks

support the identification of conditions that signal when a DAS has deviated from its

expected behavior, such as when a requirement is no longer satisfied. Nevertheless,

while their frameworks use state-based models to monitor requirements, our model-

228

based framework uses a goal-oriented model to automatically generate utility func-

tions that can monitor the satisfaction of functional, non-functional, and RELAXed

requirements. In this manner, our model-based framework automates the task of en-

coding conditions that a DAS should monitor at run time. Additionally, our model-

based framework supports the monitoring of RELAXed requirements, which, to the

best of our knowledge, are not supported by other requirements monitoring frame-

work. Lastly, unlike their requirements monitoring frameworks, our model-based

framework also supports the on-demand generation of safe adaptations in response

to current system and environmental conditions.

Recently, utility functions have been applied for self-assessment purposes in

DASs [15, 20, 109]. For instance, Walsh et al. [109] manually developed and ap-

plied utility functions to map monitoring data to a single scalar value representative

of how well the system was executing, akin to the concept of a health value. Leveraged

in this manner, utility functions provide not only an objective and quantitative basis

for automated decision-making, but also facilitate the mapping of those decisions to

higher-level goals, requirements and concerns. Similarly, utility functions have also

been applied within the context of a DAS to guide the selection of self-optimization

strategies. For example, Garlan et al. [15] applied utility functions to evaluate and se-

lect among among different reconfiguration strategies depending on how each strategy

satisfied different architectural and performance-based constraints. Although these

utility functions provide numerous benefits for decision-making within a DAS, they

are usually manually elicited from either a domain expert or an application user [20].

As such, these ad-hoc approaches for manually eliciting utility functions may not cap-

ture a comprehensive set of utility functions to monitor all application requirements.

In addition to out model-based framework, several automated approaches have

been developed for automatically deriving utility functions for requirements monitor-

ing in a DAS. For instance, several statistical regression-based techniques have been

229

applied to infer utility values that capture the overall performance of a DAS at run

time [12, 20]. Likewise, Wong et al. [116] developed a genetic programming-based ap-

proach to compose various metrics that can detect when a DAS behaves abnormally.

While these approaches automate the task of deriving performance-oriented utility

functions, their success ultimately depends on the quality of monitoring data gath-

ered by the DAS. Specifically, regressed utility functions may inadvertently miss the

detection of anomalous behaviors if the training data is either incomplete or contains

undesirable behaviors. Moreover, these approaches tend to delay the integration of

utility functions until deployment-time when real execution data is available to drive

the regression process. Our model-based framework does not suffer from either draw-

back as it derives utility functions directly from a goal model.

Requirements monitoring frameworks and self-assessment utility functions can

also be extended to leverage the operational contexts discovered, evaluated, and

archived by our model-based framework. Specifically, Loki’s novelty archive contains

a generalized collection of system and environmental conditions that are associated

with specific DAS behaviors and how these affect the ability of the DAS to satisfy its

requirements. If a requirements monitoring framework determines that the DAS is

not executing within any of its archived operational contexts, then it might reflect an

unanticipated system and environmental condition. In such scenarios, the DAS can

instruct the requirements monitoring framework to collect additional data, diagnose

the effects of the new operational context, and if applicable, add it to the archive

along with its reconfiguration decision and outcome.

9.2 Design Models for Adaptive Systems

This section presents related work that uses design-level models to guide the

implementation and dynamic reconfiguration of a DAS. First, we present approaches

230

that use design-level models to guide the systematic and rigorous development of a

DAS. We then present several frameworks that leverage models, such as architectural

models, to guide the dynamic reconfiguration of a DAS.

9.2.1 Model-based Approaches for Developing Adaptive Sys-

tems

Zhang and Cheng [120] previously introduced a model-based development process

to guide the rigorous development of adaptive programs. A key benefit of their

process is that it separates the adaptive and non-adaptive behavior specifications of

an adaptive program. Doing so results in models that are easier to specify and more

amenable to visual inspection. Starting with high-level goals, their proposed process

begins by identifying sets of invariant properties that should always be satisfied by the

DAS. Their process then progresses through to design models that specify, for different

domains, the environmental conditions under which a specific target program will

execute. Next, their process focuses on identifying and verifying the correctness and

safety of adaptation transitions responsible for transitioning the DAS between pairs

of target programs. Lastly, these models can serve to either generate rapid prototypes

or to guide the development of the resulting DAS. In this manner, the focus of their

process is the specification of key properties at each of the major development phases.

The model-based development process proposed by Zhang and Cheng is comple-

mentary to the model-based framework we present in this dissertation. In particular,

our model-based framework supports the automatic identification of different do-

mains, and their corresponding system and environmental conditions, that a DAS

may need to execute in. Furthermore, our model-based framework supports the gen-

eration of both target system reconfigurations and safe adaptation paths in response

to system and environmental changes. Within their model-based development pro-

cess, these operational domains, target system reconfigurations and safe adaptation

231

paths correspond to local models applicable under a specific set of environmental

conditions and adaptive models that safely transition the executing system from a

source program to a target program, respectively.

Software engineering researchers have also developed design patterns for guiding

the development of a DAS. In particular, a design pattern is a generic design-level so-

lution that can be reused to address recurring problems in a particular domain [34]. To

this end, Gomaa et al. [42] developed four design patterns for reconfiguring software

architectures at run time. These four design patterns specify the behavior required

to dynamically reconfigure specific types of architectures; supported architectures in-

clude master/slave, centralized, server/client, and decentralized architectures. For

each design pattern, Gomaa et al. identified when it is safe to perform a recon-

figuration and provided hierarchical UML state diagrams illustrating the necessary

behavior. Although these reconfiguration design patterns are helpful to developers

implementing a DAS from scratch, their contents are not organized in template for-

mat and they do not address safety and assurance concerns. Subsequently, Ramirez

and Cheng [85, 88] harvested twelve adaptation-oriented design patterns from more

than thirty existing designs of adaptive systems to support the reuse of solutions

for recurrent problems in dynamic adaptation. These design patterns support the

monitoring, decision-making, and reconfiguration of a DAS. In contrast to the de-

sign patterns introduced by Gomaa et al., these design patterns are catalogued and

organized using a design pattern template akin to the one developed by Gamma et

al. [34].

The adaptation-oriented design patterns proposed by Gomaa et al. and by

Ramirez and Cheng are orthogonal to the model-based framework presented in this

dissertation. That is, these design patterns can be leveraged to guide the design and

implementation details of a DAS as it relates to specific activities such as monitoring,

decision-making, and reconfiguration.

232

9.2.2 Model-based Frameworks for Dynamically Reconfigur-

ing Adaptive Systems

Research into adaptive software techniques has also focused on designing and de-

veloping frameworks for building adaptive systems [11, 35]. A object-oriented frame-

work is a set of cooperating classes that make up a reusable design for a specific class

of software [34]. Among other services, a framework dictates the overall architecture

of the application and its thread of control. This control thread often leads to an

inversion of control where developers write code that gets called by the framework.

A major benefit of a framework is that it provides large amounts of reusable code,

thereby enabling developers to building applications faster. Nevertheless, to certain

degree, creating freedom is lost because many design decisions have already been

made by the framework developers [34]. Additionally, framework-based applications

are sensitive to changes in the framework’s interface.

Separating the adaptive logic from the functional logic often simplifies the de-

velopment and maintenance of adaptive systems while promoting software reuse. In

the same spirit, several model-based architectures have been developed to separate

concerns in the design and implementation of a DAS [4, 35, 45, 83]. For instance, Or-

eizy et al. [83] proposed an infrastructure that supported two simultaneous processes

in a DAS. While the first process managed the evolution of the system in response to

environmental changes, the second process used models to detect changing require-

ments and environmental conditions and planning responsive modifications. More-

over, other researchers [29, 36, 37] also explored how monitoring and decision-making

tasks interact within a DAS, often by exploiting models of the system at design time

and at run time. Garlan and Shaw [35, 102] further decomposed the architecture of

a DAS by applying control theory approaches. As a result, the most common archi-

tecture found in adaptive systems today comprises monitoring, decision-making, and

reconfiguration processes.

233

Although finer-grained models can be used to guide adaptation, software engi-

neering adaptive research focused primarily on using architectural description lan-

guages (ADLs) to capture and manage system evolution and system adaptation.

Architecture-based approaches for self-adaptive software usually view systems as net-

works of concurrent components bound together by connectors [83]. In this manner,

architectural-based representations of a system shift focus away from source code to

coarse-grained components and their interconnections. Within these representations,

a component is responsible for providing application functionality and maintaining

state information. Connectors, on the other hand, offer transport and routing services

for messages and data objects. Thus, in architectural-based approaches, dynamic re-

configuration involves not only adding, removing, and modifying components and

their connections, but also managing the evolution of the system and the consistency

of the component-connector representations.

Kramer and Magee [65] proposed a three-layer architecture-based model for self-

adaptation. The component control layer, which is the lowest layer, is responsible for

creating, interconnecting, and deleting components. The change management layer,

the middle layer, comprises a predetermined set of reconfiguration plans that can be

applied to repair the architecture at run time. Lastly, the goal management layer,

the highest layer, is responsible for creating new change management plans as neces-

sary in order to facilitate the overall evolution of the system and its reconfiguration

mechanisms.

Other examples of architectural-based approaches for self-adaptive systems in-

clude Taylor et al.’s C2 [83] and Gorlick’s Weave [43]. C2 [83], composes systems

as a hierarchy of concurrent components bound together by connectors such that a

component within the hierarchy can only be aware of components residing at the

same level or beneath it. Weaves, on the other hand, is a dynamic, object-centric

architecture targeted towards applications with large volumes of data flow and real-

234

time constraints [43]. One interesting characteristic of Weaves is that no component

in a network knows the sources of its input objects or the destination of its output

objects.

Similarly, Garlan et al.’s Rainbow [35] is an object-oriented framework that

provides reusable code and infrastructure for monitoring and adapting distributed

components. Rainbow uses external adaptation mechanisms to avoid intruding upon

functional logic and thus facilitate its application to legacy systems. Rainbow’s adap-

tation infrastructure incorporates control theory concepts [10, 102] to monitor and

report values to gauges and gauge consumers. These values are then related to prop-

erties in an architectural models, where the architecture is analyzed to ensure no

constraint is violated. If a constraint is violated, then the architecture is reconfig-

ured by selecting a reconfiguration plan that best addresses monitored conditions and

architectural constraints as specified by utility theory-based models.

One significant difference between our model-based framework and these

adaptation-oriented frameworks is the level of abstraction at which they operate.

That is, our model-based framework uses goal-oriented requirement models to guide

the design and dynamic adaptation of a DAS, whereas the other adaptation-oriented

frameworks use architectural models. Furthermore, these adaptation-oriented frame-

works use a repository of architectural models to determine how the DAS should

reconfigure itself at run time. In contrast, our model-based framework can generate

safe adaptations at run time to support reconfigurations against unanticipated adap-

tation scenarios. Ultimately, however, our model-based framework complements these

adaptation-oriented frameworks in one important way. Specifically, our model-based

framework can automatically explore the space of possible reconfigurations and thus

generate architectural models that can then be used to guide the reconfiguration of

a DAS.

Fleurey et al. [30, 31] developed DiVA, a model-based approach and framework

235

for constructing and managing a DAS. The primary objective of DiVA was to address

the combinatorial explosion of artifacts, such as configurations and adaptation rules,

that result from the complexity of a DAS both at design time and at run time.

Their approach encodes the parameters and components that a DAS can dynamically

reconfigure into sets of variation points. Abstracting possible reconfigurations in

this manner enables DiVA to exploit aspect-oriented techniques [59] and thereby

represent variability dimensions as aspects that can be woven in and out of the DAS

as necessary. As a result, a developer need not consider, at design time, all possible

combinations of reconfigurations that a DAS might need to support. At run time,

only the selected target configuration needs to be evaluated to ensure it satisfies

constraints and domain assumptions.

At run time, DiVA selects reconfigurations by applying utility theory to evalu-

ate all possible configurations that the DAS might reach from its current state and

select the optimal one. While DiVA exploits variability points and aspect-oriented

techniques to manage the complexity of adaptation policies specified at design time,

this approach merely defers this combinatorial complexity until the run time phase.

To address this run time optimization problem, DiVA combines both rule-based and

optimization-based techniques to provide efficient adaptation validation capabilities.

Specifically, DiVA uses both domain-specific modeling languages and optimization

techniques, such as value discretization (i.e., qualitative values such as low, medium,

or high) to reduce the possible space of adaptations into more manageable sizes that

can be evaluated at run time.

Our model-based framework shares a similar set of objectives as with those used

by DiVA, yet both achieve these objectives through a complementary set of strategies

and techniques. Both frameworks support the on-demand generation of adaptations

at run time based on current system and environmental conditions. In this manner,

neither approach requires a developer at design time to prescribe specific sets of adap-

236

tations that the DAS will need to support at run time. Similarly, both approaches

are able to efficiently generate adaptations that preserve system consistency before,

during, and after reconfiguration. To select optimal adaptations at run time, how-

ever, the DiVA framework combines both rule-based and optimization strategies. In

contrast, our framework leverages evolutionary algorithms to generate and optimize

target system configurations and adaptation paths.

Goldsby et al. [39, 41] applied digital evolution [82] to evolve suites of struc-

tural and behavioral UML models of adaptive systems. These models specified target

system configurations that satisfied functional requirements while balancing trade-

offs between non-functional properties. Their approach is similar to our model-based

framework in that both apply evolutionary computation techniques to explore broader

sets of target system configurations than would normally be considered by a human

developer. As with Goldsby’s approach, our model-based framework can also be ap-

plied at design time to explore the space of possible adaptations and how these satisfy

different functional and non-functional properties. Nevertheless, for some application

domains, such as remote data mirroring, our framework can also be applied at run

time to generate target reconfigurations on-demand in response to current system and

environmental conditions. Furthermore, Goldsby et al.’s approach does not specify

the sequence of reconfiguration instructions required to safely transition the executing

system from one target configuration to another. To this end, our model-based frame-

work complements Goldsby’s approach by providing the sequence of reconfiguration

instructions that can safely transfer the system to its target configuration.

Within their evolutionary computation-based framework, Goldsby et al. [40] in-

troduced an approach that applies novelty search to generate properties that specify

latent behaviors of a system in UML class and state diagrams. Marple uses novelty

search to facilitate the discovery of a set of properties that describe the UML model

but are not explicitly stated in the system’s requirements. Although our model-based

237

framework facilitates the discovery of latent behaviors in a DAS, it differs from Marple

by focusing on generating operational contexts that violate requirements. Marple, on

the other hand, is used to detect (unwanted) latent properties. Furthermore, Marple

uses model checking techniques to evaluate models for the existence of latent prop-

erties, and Loki uses an executable specification of the system, in the form of a sim-

ulation, that can identify system and environmental conditions that produce latent

behaviors and requirements violations.

To adapt the DAS, these frameworks often leverage the dynamic change manage-

ment (DCM) protocol introduced by Kramer and Magee [64]. As stated in Chapter 2,

in the DCM protocol, components can reach active, passive, and quiescent states. In

an active state, a component can service and initiate transaction requests with other

components. In contrast, in a passive state, a component can service but not ini-

tiate transaction requests with other components. A quiescent component, on the

other hand, can neither service nor initiate transaction requests with other compo-

nents. Kramer and Magee identify quiescence as a requirement for preserving system

consistency during adaptation. However, this requirement may result in significant

degradation of system performance because components not involved in an adapta-

tion may need to temporarily reach passive states. Although our framework leverages

the dynamic change management protocol established by Kramer and Magee, Her-

mes supports the reordering of those reconfiguration instructions to minimize service

disruption while preserving the safety of the adaptation path.

Vandewoude et al. [108] introduced the concept of tranquility as a weaker but

sufficient condition for preserving system consistency during adaptation. In contrast

to quiescence, tranquility does not require neighboring components to reach passive

states before a component undergoes a reconfiguration. Specifically, only components

involved in a reconfiguration must reach passive states, thus providing tranquility an

advantage of being less disruptive than quiescence. However, Vandewoude et al. also

238

showed that reaching tranquility in a bounded time is not guaranteed. For instance,

a component undergoing adaptation may receive requests from active neighboring

components at any time. As such, reaching tranquility is considerably influenced

not only by the order in which requests from neighboring components arrive, but

also by whether those requests overlap or not. Although experimental evaluations

conducted by Vandewoude et al. showed this scenario to be rare, if tranquility is not

reachable in bounded time, then the system must regress to a quiescent state. In this

manner, our model-based framework provides a complementary approach for safely

reconfiguring a DAS while minimizing system disruption in application domains where

tranquility may be difficult to reach in bounded time. Specifically, Hermes reorders the

sequence in which reconfiguration instructions are applied in order to minimize the

time required to reconfigure a DAS. In contrast to Vandewoude’s approach, Hermes

still guides components towards quiescent states to preserve system consistency during

adaptation.

Zhang et al. [121] further extended Kramer and Magee’s approach by generating

graphs of all possible safe adaptations. Each edge in the safe adaptation graph encodes

a safe reconfiguration step, and each reconfiguration step in the graph is associated

with a relative cost that measures the approximate time required for the reconfigu-

ration step to complete. Once the safe adaptation graph is generated, Zhang et al.

apply Dijkstra’s algorithm [22] to search for a safe reconfiguration that minimizes

system disruption. While their approach guarantees globally optimal solutions, the

complexity of the algorithm is exponential with respect to the number of compo-

nents involved in the reconfiguration, which may be impractical if the reconfiguration

involves many components. In contrast to the safe adaptation graph approach intro-

duced by Zhang et al., our framework applies evolutionary computation to efficiently

generate adaptation paths that preserve system consistency. As our experimental

results suggest, Hermes can exploit more opportunities when balancing multiple con-

239

cerns as the complexity of a reconfiguration increases.

240

Chapter 10

Conclusions & Future

Investigations

Increasingly, software systems need to self-adapt in response to changes in their

requirements and execution environment. The self-adaptive and software engineer-

ing communities have proposed numerous techniques, approaches, and processes for

rigorously designing, implementing, and validating DASs [10, 35, 53, 65, 73, 78, 83,

88, 119, 120]. A few of these techniques and methods have attempted to address as-

surance issues surrounding how a DAS satisfies its requirements before, during, and

after a reconfiguration [38, 40, 64, 119, 120, 121, 122].

An underlying and recurrent motivation throughout this dissertation is the real-

ization that it is often impossible for a human to fully anticipate and understand the

effects of all operational contexts that a DAS can encounter. Based on this assump-

tion, this dissertation presented a model-based framework that supports the specifi-

cation, monitoring, and dynamic reconfiguration of a DAS in order to address sources

of system and environmental uncertainty. In particular, our model-based framework

comprises five key processes, each of which uses a goal model as a reference point to

link adaptation-specific decisions with the requirements they are intended to support

241

or satisfy. By using goal models as reference points for adaptation, our framework

can be leveraged at any point from requirements engineering all the way to run time

time.

In our model-based framework, three design-time components automate the dis-

covery and analysis of sources of uncertainty such that a DAS can be hardened to

handle their occurrence at run time. Specifically, Athena supports the generation of

utility functions that can monitor how system and environmental conditions affect

requirements satisfaction at run time. Loki, on the other hand, leverages these utility

functions and exposes a DAS to a wide range of operational contexts to discover in-

teresting behaviors that might include requirements violations and latent behaviors.

Lastly, AutoRELAX leverages sources of uncertainty discovered by Loki to refine the

utility functions derived by Athena such that a DAS can better tolerate certain sources

of uncertainty that might not necessarily require an immediate adaptation.

Our model-based framework also recognizes that certain adaptation decisions

must be deferred until run time when actual system and environmental conditions

can be measured and analyzed. Specifically, even with automated techniques such as

Athena, Loki, and AutoRELAX, it is unlikely that a DAS will be fully capable of prop-

erly interpreting and handling all operational contexts that it encounters at run time.

To this end, two components in our model-based framework, Plato and Hermes, sup-

port the on-demand generation of target system reconfigurations and safe adaptation

paths. Overall, these key processes should produce more resilient adaptive systems

that can better handle uncertainty at run time.

We demonstrated our model-based framework by applying each of its components

to an industrial case study that involves the run-time reconfiguration of a remote data

mirroring network. Moreover, this end-to-end case study demonstrated how both

goal models and evolutionary algorithms can directly support the identification and

mitigation of sources of uncertainty at both design time and at run time.

242

10.1 Summary of Contributions

There were three major objectives for this research:

1. To use lightweight, computationally inexpensive techniques to assess the envi-

ronment and its impact on system functionality.

2. To maximize the automation for the overall process of specifying, monitoring,

and adapting a DAS.

3. To minimize the need to identify a predetermined set of adaptations in response

to anticipated reconfiguration scenarios at design time.

Guided by these research objectives, this dissertation makes the following re-

search contributions:

• Defines an overarching model-based framework for specifying, monitoring, and

dynamically reconfiguring a DAS that explicitly accounts for the effects of sys-

tem and environmental uncertainty [72].

• Automatically generates and fine-tunes utility functions for requirements mon-

itoring in a DAS. These utility functions enable a DAS to detect requirements

violations and other conditions that either lead to unsatisfied goals or war-

rant adaptation. In addition, these utility functions explicitly account for the

effects of environmental uncertainty in order to reduce false adaptation posi-

tives [87, 89, 91].

• Automatically explores and evaluates different combinations of system and en-

vironmental conditions that a DAS may encounter throughout its lifetime. This

analysis can suggest alternate design choices for resolving obstacles at the re-

quirements level [92].

243

• Automatically generates adaptations that specify the target system configura-

tion, as well as the series of reconfiguration steps required to safely reach that

target configuration from the system’s current configuration. These adaptations

can be generated by only specifying, at a high-level of abstraction, the general

objectives that the DAS should satisfy [86, 90, 93, 94].

10.2 Future Investigations

Several research areas can be explored based on the results presented in this

dissertation. In particular, several complementary investigations can be pursued

to extend our model-based framework for specifying, monitoring, and dynamically

adapting a software system to explicitly address system and environmental uncer-

tainty. We now describe each of these future investigations and relate them to our

model-based framework.

Automatic Updates of Utility Functions. Athena currently generates utility

function templates for requirements monitoring in a DAS. Although Athena supports

partial code generation, these utility functions must ultimately be implemented within

the adaptation logic of the DAS. As such, two possible future investigations include:

(1) further developing Athena such that it generates and, if applicable, compiles utility

functions into application code that can be linked or loaded into a DAS at run time,

and (2) extend our model-based framework such that changes to the goal model at run

time causes Athena to regenerate utility functions for the affected portion of the goal

model. Combined, these two extensions would enable a DAS to regenerate and reload

utility functions for requirements monitoring at run time in response to changes in the

system’s requirements. Moreover, this research line might require introducing new

modeling and implementation techniques for introducing and maintaining traceability

links between the goal model and its utility functions.

244

Visualization Techniques. Another interesting line of research based on

Athena includes developing tools and techniques for visualizing the satisfaction of

functional, non-functional, and RELAXed goals in real time. Specifically, our model-

based framework treats goal satisfaction as adaptation triggers that can automatically

cause a DAS to self-reconfigure in response to adverse system and environmental con-

ditions. However, some adaptive systems might require humans in the loop to make

high-level adaptation decisions. In these systems, humans might benefit from tools

and strategies that quickly depict the degree to which a DAS is satisfying its require-

ments without having to manually inspect goal satisficement values.

Interpreting Loki Conditions. The novelty archive produced by Loki can

also serve as an additional information repository that can be leveraged by a DAS

at run time to detect when it is executing either in an unanticipated or adverse

operational context. Specifically, the DAS could attempt to map current system and

environmental conditions to operational contexts stored in its novelty archive. If the

DAS successfully matches these conditions to an existing operational context, then

it can evaluate and anticipate how well it will be able to satisfy its requirements.

However, if the DAS cannot match current conditions to an existing operational

context, then it might need to trigger possible adaptations to either collect additional

monitoring information and diagnose the effects of its operational context or switch

to a safe or protected operational mode until it reaches a more desirable operational

context.

Loki Extensions. It may also be possible to apply Loki at different levels of

abstraction. For instance, Loki could be extended and applied at the application-

code level to discover how operational contexts exercise the application and adaptive

logic at run time. To this end, the main novelty search mechanism used by Loki can

be directly reused such that it searches for distinct behaviors at the code level as

captured by logging statements generated as the DAS executes. Identifying novel

245

behaviors in this manner, and tracing them to specific code segments, might suggest

specific functions or classes that require revisions. Moreover, it may be possible to

transparently introduce these logging statements via aspect-oriented programming

techniques (AOP) [59, 60], thereby separating Loki from core functionality.

Automatic Generation of Fitness Weighting Schemes. AutoRELAX uses

fitness sub-function coefficients to balance competing concerns between minimizing

the number of RELAXed goals and minimizing the number of adaptations triggered.

Currently, these fitness sub-function coefficients are static and manually derived by a

requirements engineer. As such, another future research direction might explore how

different optimization algorithms, including evolutionary algorithms such as the step-

wise adaptation of weights (SAW) technique [24], might be applied to automatically

balance concerns as captured by these fitness sub-function coefficients. This exten-

sion would enable requirements engineer to reuse AutoRELAX as a black-box technique

without having to empirically determine how fitness sub-function coefficients should

be configured.

Decentralizing Adaptive Logic Generation. Both Plato and Hermes are cur-

rently implemented as a collection of centralized components and algorithms in our

model-based framework. Unfortunately, it can be expensive for centralized compo-

nents to gather, analyze, and process all monitoring information to determine if a

reconfiguration is warranted at run time. Furthermore, centralized implementations

of Plato and Hermes can also become single points of failure that prevent a DAS from

self-reconfiguring at run time. Based on this reasoning, another interesting line of

research could explore the feasibility of executing Plato and Hermes in a distributed

manner. Dividing the responsibilities of Plato and Hermes among various independent

DAS components might improve both fault tolerance as well as adaptation perfor-

mance.

Extending Monitoring Capabilities. Currently, Hermes uses static values to

246

evaluate the effects of a safe adaptation path at run time. These values are determined

empirically by an adaptation engineer using our model-based framework and reflect

anticipated adaptation costs. It might be interesting to explore how the monitoring

infrastructure of a DAS can be leveraged to observe not only system and environmen-

tal properties, but also actual adaptation costs at run time. In this manner, a DAS

could use its monitoring infrastructure to refine adaptation costs at run time based

on actual execution data. Refining anticipated adaptation cost values at run time

could improve the quality of adaptation paths generated by Hermes as it can evaluate

its effects more accurately and precisely.

Lastly, it would be interesting to explore how our model-based framework can be

extended to leverage tests at run time in order to detect whether a DAS satisfies, or is

even capable of satisfying, its requirements. One possible direction recently proposed

by Fredericks, Ramirez, and Cheng [32] extends the traditional monitoring, analysis,

planning, and execution (MAPE-K) architecture loop for adaptive and autonomic

systems such that it focuses on testing activities. Specifically, within a MAPE-T

architecture, a DAS would continuously monitor the satisfaction of test cases and how

the satisfaction of these relate to specific requirements. Furthermore, the MAPE-T

architecture would also evaluate whether test cases are applicable under the current

operational context of the DAS and, if necessary, adapt their expected inputs and

outputs to reflect current system and environmental conditions. In addition, the

MAPE-T architecture would also determine when tests could be safely run at run

time without adversely affecting the DAS.

247

APPENDICES

248

Appendix A

Intelligent Vehicle System Case

Studies

This appendix presents additional experimental results that illustrate how tech-

niques in our model-based framework can be applied to an intelligent vehicle system

(IVS) application. First, we overview the IVS application domain and state the var-

ious goals and constraints that it must satisfy. Next, we present and describe a goal

model that captures the requirements of the adaptive cruise control and lane keeping

features of the IVS. When then present experimental results obtained by leveraging

the utility functions derived by Athena to support requirements monitoring in the

IVS under different simulation scenarios. Lastly, we present experimental results ob-

tained by applying Loki to the IVS executable specification when exploring sources of

uncertainty.

A.1 Intelligent Vehicle Systems

Intelligent transportation systems (ITS) are envisioned to provide safe and ef-

ficient transportation of passengers across roadways. Within the ITS domain, an

intelligent vehicle system (IVS) provides a human driver with the convenience of au-

249

tonomous vehicle control through a combination of adaptive cruise control (ACC),

lane keeping, and collision avoidance features. As Figure A.1 illustrates, the ACC

module is responsible for maintaining a SafeDistance between the IVS and any ob-

stacles in front of the IVS, such as a Lead Vehicle. To this end, the ACC module

commands the vehicle’s engine to achieve and maintain either a DesiredSpeed or a

SafeSpeed, depending on the presence of any obstacles, and thus keep the IVS within

the CoastingZone. The lane keeping module, on the other hand, detects roadway

markings and commands the vehicle’s steering mechanisms to maintain the IVS within

the center of the lane. Lastly, the collision avoidance module uses a set of cameras

and distance sensors to detect nearby obstacles and adjust the vehicle’s engine and

steering mechanisms in response.

Distance Sensors, CamerasIVS LeadVehicle

Safe DistanceCoasting Zone

Figure A.1: Overview of an Intelligent Vehicle System.

The Webots simulation platform [74] provides a generic implementation of an IVS

vehicle that is capable of cruise control and lane keeping features. This generic IVS

model comprises a single GPS unit for computing the vehicle’s position and velocity,

two cameras for detecting roadway markings, and a single accelerometer to compute

acceleration and deceleration rates. For this dissertation research, we extended the ba-

sic Webots IVS implementation with a monitoring infrastructure that supports ACC,

lane keeping, and collision avoidance features. In particular, we extended the basic

Webots IVS to also include a single compass and gyroscope for computing changes in

the vehicle’s heading and velocity, two additional cameras to detect roadway markings

and nearby obstacles, and ten laser- and sonar-based distance sensors that measure

the distance between the IVS and any nearby obstacles. For the remainder of this

dissertation, the term IVS refers to the extended IVS implementation.

250

A.2 IVS Goal Model

Figure A.2 presents the first part of a KAOS goal model for the IVS application.

Specifically, this part of the goal model presents the adaptive cruise control (ACC)

feature of the IVS. This goal model captures the set of goals responsible for computing

the IVS’s current speed and its distance to nearby vehicles in front of the IVS. As

this goal model illustrates, the IVS can use either a GPS unit or a set of wheel

sensors to measure and compute its current speed. Likewise, the IVS can use a set of

cameras and distance sensors to detect and compute the distance to a nearby obstacle,

respectively. These alternative goal refinements enable the IVS to adapt how it senses

its environment in response to different system and environmental conditions, such

as sensor failures.

Figure A.3 presents the second part of the KAOS goal model for the IVS appli-

cation. In particular, this goal model captures the objectives and constraints of the

lane keeping feature. Note that goal (A) refers to the same goal as in Figure A.2.

This goal model captures goal specifications for computing and adjusting the posi-

tion of the IVS relative to the center of its lane. To achieve these objectives, the IVS

uses a set of front-facing cameras to detect road markings and compute any neces-

sary corrections to the vehicle’s current steering angle. Specifically, the IVS uses its

L/R Steers to adjust its heading and or direction according to these steering angle

corrections, thereby maintaining the IVS within its lane boundaries. Lastly, this goal

model also captures a non-functional goal that specifies that the IVS should minimize

its acceleration and deceleration rates in order to assure passenger comfort.

To capture the interactions across the shared boundary between system and

environmental agents, we applied the unmonitorability refinement pattern [19] to goals

(I, L, M), (J, N, O), (K, P, Q), and (T, V, W). This refinement pattern is applicable

whenever a system agent is unable to directly measure an environmental property

specified in a goal formulation. For instance, the ENV property VehicleSpeed in goal

251

Goal

Requirement

AgentRefinement

Complete Refinement

Legend:

Goal ID()

navigation
component

Speed
Controller

distance
sensor

GPS

wheel
sensor

...

accelerometer

...

Maintain[Autonomous
Navigation]

(A)

(B)
Maintain[DistanceTo-

Obstacle >= SafeDistance]

(C)
Achieve[VehicleSpeed
== DesiredSpeed if not

ObstacleDetected]

(E)
ObstacleDetected
iff NearObstacle(D)

Achieve[VehicleSpeed
== SafeSpeed if

ObstacleDetected]

(F) Achieve[Vehicle-
SpeedComputed]

(G)
Achieve[Vehicle-

Speed == SetSpeed]

(H)
Achieve[Safe-

SpeedComputed]

(I) Achieve[Vehicle-
SpeedComputed

While WheelsTurning] (J)
Achieve[Vehicle-

SpeedComputed While
VehicleMoving]

(K)
Achieve[DistanceTo-
ObstacleComputed]

(Q)
Measure-

Proximity if
NearObstacle

(P)
Achieve[Measure-

DistanceToObstacle
While Proximity]

(O)
Measure-

Coordinates if
VehicleMoving

(N)
Achieve[Vehicle-
SpeedMeasured

While Coordinates]

(M)
MeasureWheel-

Rotation if
WheelsTurning

(L) Achieve[Vehicle-
SpeedMeasured

While WheelRotation]

Figure A.2: KAOS goal model for adaptive cruise control in IVS.

252

navigation
component

L/R Steers

...

camera

Maintain[Autonomous
Navigation]

(A)

Speed
Controller

(R) Achieve[Vehicle-
Position LaneCenter]

(S) Achieve[Vehicle-
Acceleration == 0]

(U)

Achieve[SteeringAngle
== SetSteeringAngle]

(T) Achieve[Vehicle-
PositionComputed]

(V) Achieve[Vehicle-
Position Computed

While VehicleMoving]

(W)

VehicleMoving if
ImageChanging

Goal

Requirement

AgentRefinement

Complete Refinement

Legend:

Goal ID()

Figure A.3: KAOS Goal model for lane keeping feature in IVS.

(I) cannot be directly measured by system agents. Instead, we applied this refinement

pattern to reassign the responsibility of measuring that environmental property to an

environmental agent capable of doing so, WheelSensor. The measurements by this

environmental agent are then processed by the NavComputer system agent.

Combined, the goal models in Figure A.2 and A.3 capture the adaptive cruise

control and lane keeping features that the IVS must support, respectively. Note

that several goals have been RELAXed in these goal models to explicitly address

uncertainty. For instance, as these goal models illustrate, the IVS can tolerate minor

deviations from its center lane without necessarily causing a collision with another

vehicle. Likewise, the IVS can also tolerate minor deviations between its measured

253

speed and its desired target speed, as long as no obstacles are detected. Lastly,

these goal models also capture non-functional goals that specify that the IVS should

minimize its acceleration and deceleration rates through its SpeedController actuator.

A.3 Derived Utility Functions for Requirements

Monitoring

In this section, we apply Athena to the IVS goal model in order to derive utility

functions for requirements monitoring. First, we present a subset of the utility func-

tions derived by Athena for monitoring invariant, non-invariant, and RELAXed goals.

Next, we present results from applying these utility functions to monitor how well

the IVS satisfies its requirements under different simulation scenarios.

A.3.1 Sample Derived Utility Functions

As previously shown in Chapter 3, Athena accepts as input a set of ENV prop-

erties, MON elements, and REL relationships for every RELAXed goal in the KAOS

goal model. Table A.1 presents a subset of these elements that are relevant to the

ACC feature in the IVS goal model. For instance, Row (1) specifies that inGgoal

(M), the ENV property WheelRotation can be directly measured by the MON element

WheelSensor. Rows where no MON elements are specified are instances of the un-

monitorability refinement pattern and explicitly denote that ENV property cannot be

directly observed by MON elements. For instance, Row (2) specifies that in Goal (L)

the ENV property VehicleSpeed cannot be directly measured by a MON element, and

must instead be computed by the corresponding REL relationship.

Overall, Athena derived a total of 11 utility functions for requirements monitoring

based on the IVS goal model. Next, we present a subset of these utility functions.

State-based Utility Functions. Figure A.4 presents the state-based utility

254

Table A.1: Table with ENV, MON, and REL elements for IVS application.

Row Goal MON REL
1 M WheelSensor WheelSensor.value

2 L VehicleSpeed = (IVS.wheel_diameter * 3.14 *
WheelRotation)

3 O GPS Coordinates = GPS.value

4 N VehicleSpeed = (NavigationComponent.prev_pos -
Coordinates) / GPS.time_unit

5 Q DistanceSensor Proximity = DistanceSensor.value

6 P DistanceToObstacle = (Proximity *
DistanceSensor.max_range)

7 H WheelSensor,
GPS

SafeSpeed = VehicleSpeed - 0.1 * VehicleSpeed *
(1.0 - SafeDistance / DistaneToObstacle)

8 E DistanceSensor ObstacleDetected = Proximity > 0.95

9 B WheelSensor,
GPS SafeDistance = 2.5 * VehicleSpeed * 1000 / 3600

function that Athena derived for monitoring the satisfaction of Invariant Goal (B),

which states that the IVS should maintain a safe distance between itself and nearby

obstacles in front. This utility function is based on the template shown in Figure 3.9.

In particular, this utility function first computes the distance to an obstacle by mea-

suring the values that the IVS’s distance sensors produce. Next, this utility function

verifies whether this invariant goal has been previously violated (the satisfied variable

stores this history). If the IVS has satisfied this goal, then it computes whether it

is currently maintaining a distance that is at least as great as the target distance

threshold. Otherwise, this utility function returns false.

Continuing with the IVS ACC goal model in Figure A.2, Goal (D) is also an

invariant goal that refers to both the ENV property VehicleSpeed as well as the rel-

ative constraint SafeSpeed. Since this goal refers to the real-valued ENV property

VehicleSpeed, Athena generates a metric-based utility function for this invariant goal

even though its satisfaction can also be assessed in a crisp fashion. Specifically, Athena

measures the satisficement of this goal by deriving a metric-based utility function that

measures the degree to which the IVS minimizes the difference between VehicleSpeed

255

// Derived U t i l i t y Function f o r Goal B (Safe Distance)
boolean mainta inSafeSpeedStateFunct ion (double proximity ,

S t r ing operator , double t a r g e t d i s t a n c e) {

// c a l c u l a t e d i s t a n c e to o b s t a c l e :
double d i s t a n c e t o o b s t a c l e = proximity ∗

IVS . Di s tance Sensor . max range ;

// re turn u t i l i t y v a l u e :
i f (operator . equa l s (”<=”)) {

i f (! s a t i s f i e d) {
return ! (s a t i s f i e d = d i s t a n c e t o o b s t a c l e

<= ta r g e t d i s t a n c e) ;
} else {

return fa l se ;
}

} else (. . .)
}

Figure A.4: State-based utility function derived by Athena for goal (B)

and SafeSpeed. In this manner, Athena instantiates function templates (3.1) as fol-

lows:

UTSafeSpeed = 1−min { |VehicleSpeed− SafeSpeed|
VehicleSpeed

, 1 } (A.1)

This utility function produces a utility value that is inversely proportional to the dif-

ference between VehicleSpeed and SafeSpeed, and may be used to detect conditions

conducive to a requirements violation. For instance, a significant drop in this utility

value may suggest the IVS is exceeding its SafeSpeed constraint, possibly leading to

a collision with a nearby obstacle.

Metric-based Utility Functions. Figure A.5 presents the metric-based utility

function that Athena derived for non-invariant goal (C), which states that the IVS

should achieve and maintain a desired speed. To derive this utility function, Athena

instantiated utility function (3.1) with the ENV to MON mappings previously shown

in Table A.1. Specifically, this utility function first computes the current speed of the

256

IVS by using the wheel rotation values that the IVS’s Wheel Sensors produce. Next,

this utility function computes a value proportional to how close the IVS’s Vehicle

Speed is to its Desired Speed.

// Derived U t i l i t y Function f o r Goal C (Veh ic l e Speed)
double de s i r edSpeedUt i l i t yFunc t i on (double whee l ro ta t i on ,

double de s i r ed spe ed) {

// c a l c u l a t e curren t speed :
double cu r r en t speed = IVS . whee l d iameter ∗ 3 .1415 ∗

whee l r o t a t i on ;
// re turn u t i l i t y v a l u e :
return Math . min (Math . abs (cu r r en t speed −

de s i r ed spe ed) / current speed , 1 . 0) ;
}

Figure A.5: Metric-based utility function derived by Athena for goal (C)

This utility function produces a utility value that is inversely proportional to the

difference between VehicleSpeed and DesiredSpeed. Thus, the primary objective

of this utility function is to assess whether the IVS is able to achieve and maintain a

desired target speed while no obstacles are detected nearby.

RELAXed Utility Functions. Lastly, Goal (R) in the IVS lane keeping goal

model (see Figure A.3) has been RELAXed by applying the “AS CLOSE AS POS-

SIBLE TO” RELAX operator. As a result, to evaluate the satisficement of goal (R)

at run time, Athena applies the triangle-shaped utility function presented in Fig-

ure 3.6. Athena instantiates this utility function template by assigning the ENV prop-

erty Vehicle Position to the Measured Quantity variable, and the absolute thresh-

old Lane Center assigned to the Desired Quantity constraint. This utility function

measures the satisfaction of RELAXed Goal (R) by explicitly capturing the extent to

which the IVS can tolerate temporary deviations in its positioning within the center

of the driving lane.

257

A.3.2 Simulation Results

The following experiments were conducted by executing the IVS model and its

controller on the Webots simulation platform [74]. Each simulation executes for 2000

time steps, where each time step is 32 milliseconds of simulated time. At the end of

each time step, Webots pauses the simulation, executes one iteration of the controller

code, and then continues with the simulation process. As the controller executes,

the IVS first probes its set of sensors and then uses this monitoring information to

recompute its set of utility values. We performed 30 simulation trials for each scenario

that involves environmental noise to establish statistical significance and plot mean

values.

Normal Behavior. In this simulation, the IVS is initially placed 400 meters

behind the Lead Vehicle in between two driving lanes. Initially, the IVS and the Lead

Vehicle are set to achieve and maintain desired target speeds of 65km/h and 45km/h,

respectively. As a result, in this scenario the IVS first attempts to satisfy Goal (C) in

Figure A.2 by achieving its desired target speed while simultaneously satisfying Goal

(R) in Figure A.3 by steering the vehicle towards the center of its lane. However,

before the IVS can achieve its desired target speed, it detects the presence of the

Lead Vehicle and must therefore adapt its behavior to satisfy Goal (D) in Figure A.2

by achieving and maintaining a safe target speed. After 1200 simulation time steps

elapse, the Lead Vehicle sets its desired target speed to 75km/h. Therefore, the IVS is

able to once more achieve and maintain its desired target speed once the Lead Vehicle

moves away from its sensors.

Figure A.6 plots the utility values produced by the utility functions that Athena

derived for Goal (B) in Figure A.2, which specifies that the IVS should maintain

a safe distance between itself and nearby obstacles. Since this goal is an invariant,

Athena generated a state-based utility function to evaluate whether the goal has always

been satisfied throughout the simulation. In addition, since both the ENV property

258

and constraint referred by this invariant goal are floating-point values, Athena also

generated a metric-based utility function to determine the degree to which the IVS

satisfices [16] that goal. As this figure illustrates, the metric-based utility function

suggests at time step 600 the IVS is approaching the Lead Vehicle. As such, the IVS

begins to decelerate until it achieves a safe target speed. The IVS maintained this

safe speed until its distance to the Lead Vehicle increased, as the plot shows around

time step 800. Moreover, as this figure illustrates, the IVS did not violate Goal (B)

as its state-based safe distance metric remained at a value of one (true) throughout

the entire simulation.

0 200 400 600 800 1000 1200 1400 1600 1800 2000

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Timestep (30 ms)

U
til

ity
 V

al
ue

0

Safe Distance (Goal B, State−Based)
Safe Distance (Goal B, Metric-Based)

Figure A.6: Utility values for “maintain safe distance” goal.

Figure A.7 plots the metric-based utility functions for Goals (C) and (D) in

Figure A.2, which specify that the IVS should achieve and maintain either a desired

(denoted by hollow circles) or safe target speed (denoted by triangles) depending on

the presence of an obstacle, respectively. From time steps 0 to 150, the IVS begins

to accelerate in order to achieve and maintain its desired target speed, eventually

259

reaching its target speed at approximately time step 500. At this time, the IVS also

detects the presence of the Lead Vehicle and adapts its behavior in order to achieve

its safe target speed. This figure also captures the tradeoffs between these two goals,

as the IVS decelerates from time step 550 to time step 1100 until it achieves its safe

speed. Thus, the satisfaction of Goal (D) gradually increases as the satisfaction of

Goal (C) decreases. Once the IVS no longer detects the Lead Vehicle, it begins to

accelerate once more until it achieves its safe target speed, at which point both Goals

(C) and (D) are considered to be satisfied.

0 200 400 600 800 1000 1200 1400 1600 1800 2000

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Timestep (30 ms)

U
til

ity
 V

al
ue

0

Safe Speed (Goal D Metric−Based)
Desired Speed (Goal C Metric−Based)

Figure A.7: Utility values for achieve safe and desired speed goals.

Throughout this simulation, the IVS maintained an acceptable acceleration and

deceleration rate. Figure A.8 plots the utility values produced by the utility function

that Athena derived for measuring the satisficement of non-functional Goal (S) from

the goal model in Figure A.3. The IVS maximized the satisficement of this goal as

its utility value never dropped beneath a value of 0.85. In addition, this plot also

illustrates how this utility function captures the behaviors of the IVS in response to

260

the detection of a nearby vehicle. That is, whenever the IVS accelerated or decel-

erated, such as to achieve a desired or safe target speed, the satisficement of this

non-functional goal dropped.

0 200 400 600 800 1000 1200 1400 1600 1800 2000

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Timestep (30 ms)

U
til

ity
 V

al
ue

0

Minimize Acceleration (Goal S)

Figure A.8: Utility values for “minimizing acceleration and deceleration rates”.

Lastly, Figure A.9 plots the utility values produced by the utility function that

Athena derived for measuring the satisfaction of goal (R) (“maintain center lane”,

see Figure A.3). As this figure illustrates, the IVS is initially placed between two

lanes. As a result, the initial satisfaction of this goal is approximately 0.15. By time

step 200, the IVS manages to steer towards the center of its lane. Thereafter, the IVS

maintained the center of that lane until the simulation completed.

Stopped Lead Vehicle. This next simulation is similar to the previous one,

with one key difference. Specifically, both the IVS and the Lead Vehicle begin to execute

as in the previous simulation. However, instead of the Lead Vehicle slowing down to

a target velocity of 45 km/h, it now stops in the highway, in the middle of the two

261

0 200 400 600 800 1000 1200 1400 1600 1800 2000

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Timestep (30 ms)

U
til

ity
 V

al
ue

0

Center Lane (Goal R RELAX-Based)

Figure A.9: Utility values for “achieve and maintain center lane goal”.

driving lanes, thereby obstructing part of the IVS’s center lane. As a result, the IVS

must swerve to the side to avoid a collision with the stopped Lead Vehicle and then

return to the center of the lane.

As Figure A.10 shows, the IVS successfully maintained a safe distance between

itself and the Lead Vehicle throughout the entire simulation. In particular, both the

state-based and metric-based utility functions associated with Goal (B) in Figure A.2

reported utility values of 1.0 at each time step. Although the Lead Vehicle partially

obstructs the edge of the IVS’s lane in this simulation scenario, it does not actually

block the lane to the extent where it would cause a collision with the IVS. This can be

captured by the IVS’s sensors, as the metric-based utility function does not suggest a

dip in utility values.

Figure A.11 plots values produced by the utility function responsible for mea-

suring the satisficement of Goal (C) in Figure A.2, which states that the IVS should

262

0 200 400 600 800 1000 1200 1400 1600 1800 2000

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Timestep (30 ms)

U
til

ity
 V

al
ue

0

Safe Distance (Goal B, State-Based)
Safe Distance (Goal B, Metric-Based)

Figure A.10: Utility values for “maintain safe distance” goal.

achieve and maintain a target desired speed. Given that the Lead Vehicle exits the

lane where the IVS is driving, the IVS continues to accelerate until it achieves its

target desired speed. Since its forward-bearing distance sensors do not detect the

presence of the Lead Vehicle, it maintains this velocity throughout the remainder of

the simulation.

Figure A.12 plots values produced by the utility function responsible for mea-

suring the satisficement of Goal (S) in Figure A.3, which states that the IVS should

minimize acceleration and deceleration rates. This utility function registers a sharp

drop in value at approximately time step 600, when the IVS passes the Lead Vehicle.

Specifically, at this point in the simulation, one of the left-most distance sensors in

the IVS, (LL DS) registers part of the Lead Vehicle in the IVS’s driving lane. Thus,

to prevent a collision, the IVS readjusts its steering mechanisms to move the vehicle

towards the right portion of the lane. In this manner, this slightly abrupt change in

263

0 200 400 600 800 1000 1200 1400 1600 1800 2000

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Timestep (30 ms)

U
til

ity
 V

al
ue

0

Desired Speed (Goal C Relax−Based)

Figure A.11: Utility values for “achieve and maintain desired speed goals”.

the IVS’s heading is explicitly captured by this utility function.

Lastly, Figure A.13 plots values produced by the utility function responsible for

measuring the satisficement of goal (R) in Figure A.3, which states that the IVS should

achieve and maintain the center of its driving lane. As with the previous simulation,

this utility plot captures how the IVS achieves and maintains the center of its driving

lane by time step 400. This plot shows a moderate drop in the utility values produced

by this utility function at approximately time step 60, when the IVS slightly swerves

to the right in order to avoid a collision with the Lead Vehicle. Thereafter, the IVS

re-achieves and maintains the center of its driving lane.

Requirements Violation Produced by Environmental Uncertainty. This

next simulation presents a scenario that is similar to the first simulation. Specifically,

the IVS is initially placed 400 meters behind the Lead Vehicle, in between two driving

lanes. As with the first simulation, both vehicles will attempt to achieve and maintain

264

0 200 400 600 800 1000 1200 1400 1600 1800 2000

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Timestep (30 ms)

U
til

ity
 V

al
ue

0

Minimize Acceleration (Goal S)

Figure A.12: Utility values for “minimizing acceleration and deceleration rates”.

0 200 400 600 800 1000 1200 1400 1600 1800 2000

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Timestep (30 ms)

U
til

ity
 V

al
ue

0

Center Lane (Goal R RELAX-Based)

Figure A.13: Utility values for “achieving and maintaining center lane goal”.

265

a desired target speed as well as steer towards the center of the right-most lane. In

contrast to the previous simulations, however, the IVS’s monitoring infrastructure is

now exposed to different severities of static noise (see Table A.2). This uncertainty

prevents the IVS from accurately measuring properties about its environment, such

as the distance between itself and the Lead Vehicle. As a result of this uncertainty, the

measurements and calculations performed by the IVS are unreliable and ultimately

produce a requirements violation, in the form of a collision with the Lead Vehicle.

Table A.2: Severity of noise applied to monitoring infrastructure in the IVS

Sensor Value
Accelerometer 0.05
Camera (Top-right) 0.15
Camera (Top-left) 0.15
Camera (Bottom-right) 0.15
Camera (Bottom-left) 0.15
Compass 0.1
Distance Sensor (Top-right) 0.2
Distance Sensor (Top-left) 0.2
DIstance Sensor (Right) 0.15
Distance Sensor (Mid-right) 0.15
Distance Sensor (Mid-left) 0.15
Distance Sensor (Left) 0.15
GPS 0.005
Gyroscope 0.05
Wheel Sensor 0.15

Figure A.14 plots the utility values produced by the two utility functions respon-

sible for monitoring the satisfaction of Goal (B) in Figure A.2, which states that the

IVS should maintain a safe distance to nearby obstacles. As the state-based utility

function captures, the IVS failed to maintain a safe distance between itself and the

Lead Vehicle. Specifically, the utility values produced by this state-based function

changed from true to false at approximately time step 600, when the IVS crossed the

minimum safe distance threshold. Since this behavior violated an invariant goal, the

value produced by this utility function remains false throughout the remainder of the

266

simulation. On its own, this state-based utility function is not sufficient to determine

whether the IVS collided with the Lead Vehicle. Nevertheless, the metric-based utility

function responsible for measuring the satisficement of this goal captures that the

IVS did collide with the Lead Vehicle shortly after crossing the minimum safe distance

threshold. This collision can be inferred from the utility values that drop to zero.

0 200 400 600 800 1200 1400 1600 1800 2000

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1000

U
til

ity
 V

al
ue

0

Goal B, State−Based
Goal B, Metric−Based

Timestep (30ms)

Figure A.14: Utility values for “maintain safe distance goal”.

Figure A.15 plots the utility values produced by the metric-based utility function

responsible for monitoring the satisfaction of Goal (D) in Figure A.2, which states that

the IVS should achieve and maintain a safe speed if an obstacle is detected. As this

figure illustrates, the IVS detected the presence of the Lead Vehicle at approximately

time step 400. Furthermore, this figure also illustrates how the IVS unsuccessfully

attempted to decelerate in order to achieve a safe speed. Lastly, this figure also

shows how the IVS was no longer able to achieve a safe speed after time step 700, at

it had already crossed the minimum safe distance threshold.

267

0 200 400 600 800 1000 1200 1400 1600 1800 2000

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Timestep (30 ms)

U
til

ity
 V

al
ue

0

Safe Speed (Goal D, Metric-Based)

Figure A.15: Utility values for “achieve and maintain a safe speed”.

Figure A.16 plots the utility values produced by the metric-based utility function

responsible for monitoring the satisficement of non-functional Goal (S) in Figure A.3,

which states that the IVS should minimize the acceleration and deceleration rates

throughout the simulation when changing its speed or heading. As this figure il-

lustrates, the IVS was able to maintain a degree of satisficement of 0.85 or above

throughout the majority of the simulation. Nevertheless, this utility function regis-

tered a downward spike in the satisficement of this goal at approximately time step

720, where values suddenly dropped to 0.1. This downward spike captures the rapid

deceleration in the IVS’s speed produced by the collision between the IVS and the Lead

Vehicle.

Lastly, Figure A.17 plots the utility values produced by the metric-based util-

ity function responsible for monitoring the satisficement of RELAXed Goal (R) in

Figure A.3, which states that the IVS should achieve and maintain the center of its

268

0 200 400 600 800 1000 1200 1400 1600 1800 2000

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Timestep (30 ms)

U
til

ity
 V

al
ue

0
Minimize Acceleration (Goal S)

Figure A.16: Utility values for “minimize acceleration and deceleration rates”.

lane. As this figure illustrates, the IVS is able to achieve the center of its lane at

approximately time step 250. Furthermore, this plot also illustrates how the colli-

sion between the two vehicles caused the IVS to slightly shift its heading and thus

momentarily depart from the center of the lanes.

A.4 Exploring the Space of Uncertainty

In this section we apply Loki to evaluate how introducing uncertainty at the mon-

itoring infrastructure affects the behavior of the IVS. This case study is intended to

explore whether Loki can be applied to a closed commercial simulation platform that

does not readily facilitate the automatic modification of fine-grained environmental

conditions. To this end, Loki introduces such conditions indirectly via sensory uncer-

tainty. We next describe the simulation and experimental setup, as well as present

sample discovered behaviors and a comparison with randomized testing as a baseline.

269

0 200 400 600 800 1000 1200 1400 1600 1800 2000

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Timestep (30 ms)

U
til

ity
 V

al
ue

0

Center Lane (Goal R, RELAX-Based)

Figure A.17: Utility values for “achieve and maintain center lane”.

Simulation and Experimental Setup. For this study, the simulation scenario

comprises two autonomous vehicles, an IVS and a Lead Vehicle. Initially, the IVS

is positioned 900 meters behind the Lead Vehicle in the same driving lane. Both

vehicles begin to accelerate at the same time. While the Lead Vehicle accelerates

until it achieves a desired speed of 35 km/h, the IVS continues to accelerate until it

reaches a desired speed of 55 km/h. As the IVS approaches the Lead Vehicle from

behind, its sensors detect the obstacle and the IVS reconfigures its operational mode

to achieve and maintain a safe speed to avoid a potential collision. This safe speed

prevents the IVS from crossing into the safe distance zone (see Figure A.1). Shortly

thereafter, the Lead Vehicle gradually accelerates until it reaches its new desired

speed of 65 km/h, thus increasing its distance from the IVS and enabling the IVS to

accelerate, once more, to its desired speed of 55 km/h.

The same scenario is replayed in each simulation throughout this experiment.

270

However, different operational contexts are applied in each simulation. Note that no

sensor is considered to be a single point of failure in this scenario. That is, even after

applying the maximum permissible amount of noise to each sensor independently, the

IVS is still capable of satisfying its requirements.

Table A.3 specifies the configuration of the genetic and novelty search algorithms

for this experiment. With a population of 100 genomes, and a maximum number of

ten generations, this particular configuration evaluates exactly 1000 different opera-

tional contexts. A Manhattan distance metric is used to compute the distance be-

tween utility vectors associated with genomes in the population and novelty archive.

After ranking these distances, the novelty of a genome is assigned by computing the

mean distance to the seven nearest genomes in the solution space. At the end of each

generation, genomes with a novelty value in the top 10% are added to the novelty

archive. Lastly, we conducted 25 trials of this experiment for statistical purposes,

each with a different seed value that is stored to ensure that results are reproducible.

Table A.3: Loki configuration for IVS experiments.

Parameter Description Value

Maximum number of generations 10
Population size 100
Mutation rate 0.1
Crossover rate 0.6
Distance metric Manhattan Distance
k-nearest 7
Archive threshold Top 10%

Discovered Behaviors. Loki discovered a mean of 142.42 different behaviors

in response to operational contexts out of 1000 evaluations performed in each trial.

In addition, for each trial, Loki discovered a minimum and maximum of 77 and 201

different behaviors, respectively. These results suggest that 15% of the operational

contexts generated and evaluated by Loki resulted in considerably different behaviors.

271

Within this set of behaviors, approximately 7.7% of behaviors involved a require-

ments violation. Upon closer inspection, every requirements violation resulted from

impaired self-assessment capabilities in the IVS such that it failed to detect conditions

that would indicate a requirement violation. The other 92.3% of behaviors satisfied

requirements at run time, though some exhibited latent behaviors. These results con-

firm the crucial role that system uncertainty plays in determining whether a DAS is

able to satisfy its requirements or not.

We analyzed operational contexts that involved requirements violations to de-

termine which combinations of sensor uncertainty had the most impact upon goal

satisfaction. As expected, the most detrimental combination of sensor uncertainty

involved multiple sensor failures. Although slightly less severe, sensor noise was also

detrimental to goal satisfaction. In both cases, a requirements violation occurred

because goals were either unfulfilled or their computations unreliable, thereby pre-

venting the IVS from correctly interpreting monitoring data. Results also suggested

that noise spikes, where monitoring values were significantly altered for short periods

of time, were not as detrimental to goal satisfaction as these had to occur at precise

points in time, such as when the IVS makes key decisions, in order to obstruct a goal.

To illustrate the range of behaviors discovered by Loki, we now examine a require-

ments violation where the IVS was unable to accurately estimate the coasting zone

distance due to moderate levels of sensor noise across the GPS and distance sensor

agents. In this operational context, the IVS suffered from noise in the GPS, as well

as a failed camera and two distance sensors. As a result of this sensory uncertainty,

the IVS failed to decelerate in time, crossed into the safe distance zone, collided with

the Lead Vehicle, departed from its driving lane temporarily because of the collision

and then continued to collide with the Lead Vehicle in order to re-enter the driving

lane (in an attempt to satisfy the lane keeping goal), eventually pushing the Lead

Vehicle off the road. This behavior captures an undesirable requirements interaction

272

between the ACC and lane keeping modules.

Careful examination of the interactions between system agents and goals involved

in the requirements violation suggest that the root of this failure cascade was the

inaccurate computation of the IVS’s current velocity. Specifically, although the IVS

can choose from two different OR-refinements to estimate its current velocity, if both

branches are affected by uncertainty, then the obstacle mitigation is insufficient. In

either case, the current velocity estimate is also used to compute the safe speed and

safe distance values in the IVS. For example, Figure A.18 plots the real and perceived

safe speeds, as calculated based on the current speed of the IVS; the difference between

both values is produced by uncertainty in the measurements made by the DAS. As

this figure illustrates the IVS consistently calculated a safe speed value that was

greater than what the real safe speed value should have been. This difference between

perceived and real safe speed values caused the IVS to assume it had a greater stopping

distance than it actually had.

Similarly, Figure A.19 plots the actual and perceived distance to obstacles, as

measured by distance sensors in the IVS. Again, here the difference between both

values is produced by uncertainty in the measurements performed by the IVS’s mon-

itoring infrastructure. As this figure illustrates, uncertainty caused the IVS to con-

sistently compute a distance to obstacle that was greater than the real value. Thus,

the IVS was unable to accurately compute its safe speed and stopping distance, and

thus was also unable to decelerate in a timely manner, resulting in a collision.

Most of the different behaviors discovered by Loki satisfied requirements. How-

ever, in several instances Loki also discovered latent behaviors that should be disal-

lowed. For example, in one latent behavior, the IVS decelerated and achieved its

safe speed without crossing into the safe distance zone. Thereafter, the IVS began

to abruptly accelerate and decelerate in order to maintain its safe speed, causing a

jerking motion. In a different latent behavior, the IVS abruptly decelerated just be-

273

0 200 400 600 800 1000 1200 1400 1600 1800 2000

20

40

60

80

100

120

Timestep (30 ms)

V
eh

ic
le

 S
pe

ed
 (k

m
/h

)

0

Actual Vehicle Speed
Perceived Vehicle Speed

Figure A.18: Effects of uncertainty upon the IVS’s current speed self-assessment
abilities.

fore crossing into the safe distance zone and, instead of achieving its safe speed as

in the previous behavior, the IVS now continued decelerating almost to a complete

stop before eventually accelerating. In both cases, such latent behaviors should be

prevented as they negatively impact passenger comfort and may cause a collision with

other vehicles trailing the IVS, respectively.

Randomized Search Comparison. We now compare Loki with a randomized

search algorithm as a baseline comparison. Randomized testing is an effective method

for testing software units when no additional information is available to guide the

testing process [2]. In this experiment, we randomly generated 1000 operational

contexts and evaluated their effects upon the IVS. Since each simulation was executed

sequentially and independently, the randomized search algorithm had no knowledge

about what areas of the solution space had been explored. Once all simulations

completed, we proceeded to compute the differences between the utility values for

274

0 200 400 600 800 1000 1200 1400 1600 1800 2000

20

40

60

80

100

120

140

Timestep (30 ms)

D
is

ta
nc

e
To

 O
bs

ta
cl

e
(m

)

0

Actual Distance To Obstacle
Perceived Distance To Obstacle

Figure A.19: Effects of uncertainty upon the IVS’s safe distance self-assessment abil-
ities.

each sensor configuration (i.e., the novelty value) by using the k-nearest neighbors

novelty metric. Once we computed novelty values for each behavior produced by

the randomly generated sensor configuration, we compared them with the results

generated by Loki. Intuitively, the approach that produced the larger set of novelty

values managed to cover a larger portion of the solution space.

In general, randomized search also discovered operational contexts that produced

requirements violations. Out of 1000 evaluations per trial, randomized search discov-

ered a mean of 194.1 behaviors that involved requirements violations. These results

confirm that randomized search is a valuable tool for discovering test cases that trigger

failures in the system-to-be. Although it seemed that randomized search discovered

more requirements than Loki, upon closer inspection, most of the randomly discovered

behaviors were similar to each other. As the box plot in Figure A.20 shows, we found

statistically significant differences in the novelty values between Loki and randomized

275

search (Wilcoxon ranksum test, p < 0.001), where Loki had a median value of 14.7 and

randomized search had a median value of 12.3. As this box plot also captures, Loki

was able to consistently find behaviors with larger novelty values than randomized

search. That is, in every trial, Loki discovered several behaviors with novelty values

greater than 40, which are considerably larger than the mean and median values ob-

tained by both approaches. Often, the magnitude of the novelty value correlated with

the severity of the latent behavior and requirements violation.

0

5

10

15

20

25

30

35

40

45

Search Technique

B
eh

av
io

ra
l D

is
ta

nc
es

Novelty Search Randomized Search

Figure A.20: Box plot comparison of discovered behaviors between Loki and random-
ized search.

276

BIBLIOGRAPHY

277

BIBLIOGRAPHY

[1] Guillermo A. Alvarez, Elizabeth Borowsky, Susie Go, Theodore H. Romer,
Ralph Becker-Szendy, Richard Golding, Arif Merchant, Mirjana Spasojevic, Al-
istair Veitch, and John Wilkes. Minerva: An automated resource provisioning
tool for large-scale storage systems. ACM Transactions Compututing Systems,
19(4):483–518, 2001.

[2] James H. Andrews, Tim Menzies, and Felix C.H. Li. Genetic algorithms for
randomized unit testing. IEEE Transactions on Software Engineering, 37(1):80–
94, January 2011.

[3] J. W. Backus. The syntax and semantics of the proposed international alge-
braic language of zurich. In Proceedings of the International Conference on
Information Processing, ICIP, pages 125–132. UNESCO, 1959.

[4] Luciano Baresi, Sam Guinea, and Giordano Tamburrelli. Towards decentral-
ized self-adaptive component-based systems. In Proceedings of the 2008 Inter-
national Workshop on Software Engineering for Adaptive and Self-Managing
Systems, SEAMS’08, pages 57–64, Leipzig, Germany, May 2008. ACM.

[5] Luciano Baresi, Liliana Pasquale, and Paola Spoletini. Fuzzy goals for
requirements-driven adaptation. In Proceedings of the 18th IEEE International
Requirements Engineering Conference, pages 125–134, Sydney, Australia, Oc-
tober 2010. IEEE.

[6] Nelly Bencomo, Jon Whittle, Peter Sawyer, Anthony Finkelstein, and Em-
manuel Letier. Requirements reflection: Requirements as runtime entities. In
Proceedings of the 32nd ACM/IEEE International Conference on Software En-
gineering, pages 199–202, Cape Town, South Africa, May 2010. ACM.

[7] Dan M. Berry, Betty H.C. Cheng, and Ji Zhang. The four levels of requirements
engineering for and in dynamic adaptive systems. In Proceedings of the 11th
International Workshop on Requirements Engineering Foundation for Software
Quality, REFSQ, 2005.

[8] Paul E. Black. Dictionary of Algorithms and Data Structures. U.S. National
Institute of Standards and Technology, May 2006.

[9] Markus Brameier and Wolfgang Banzhaf. Linear Genetic Programming. Num-
ber XVI in Genetic and Evolutionary Computation. Springer, 2007.

[10] Yuriy Brun, Giovanna Marzo Serugendo, Cristina Gacek, Holger Giese, Holger
Kienle, Marin Litoiu, Hausi Muller, Mauro Pezze, and Mary Shaw. Engineering
self-adaptive systems through feedback loops. In Betty H.C. Cheng, Rogerio

278

de Lemos, Holger Giese, Paola Inverardi, and Jeff Magee, editors, Software
Engineering for Self-Adaptive Systems, pages 48–70. Springer-Verlag, Berlin,
Heidelberg, 2009.

[11] Javier Cámara, Carlos Canal, Javier Cubo, and Juan Manuel Murillo. An
aspect-oriented adaptation framework for dynamic component evolution. Elec-
tron. Notes Theor. Comput. Sci., 189:21–34, 2007.

[12] Urszula Chajewska, Daphne Koller, and Dirk Ormoneit. Learning an agent’s
utility function by observing behavior. In Proceedings of the Eighteenth Inter-
national Conference on Machine Learning, ICML, pages 35–42, San Francisco,
CA, USA, 2001. Morgan Kaufmann Publishers Inc.

[13] B H.C. Cheng, Pete Sawyer, Nelly Bencomo, and Jon Whittle. A goal-based
modeling approach to develop requirements of an adaptive system with environ-
mental uncertainty. In ACM/IEEE International Conference on Model Driven
Engineering Languages and Systems (MODELS’09), Lecture Notes in Com-
puter Science, pages 468–483, Denver, Colorado, USA, October 2009. Springer-
Verlag.

[14] Betty H. Cheng, Rogério Lemos, Holger Giese, Paola Inverardi, Jeff Magee,
Jesper Andersson, Basil Becker, Nelly Bencomo, Yuriy Brun, Bojan Cukic,
Giovanna Marzo Serugendo, Schahram Dustdar, Anthony Finkelstein, Cristina
Gacek, Kurt Geihs, Vincenzo Grassi, Gabor Karsai, Holger M. Kienle, Jeff
Kramer, Marin Litoiu, Sam Malek, Raffaela Mirandola, Hausi A. Müller, Sooy-
ong Park, Mary Shaw, Matthias Tichy, Massimo Tivoli, Danny Weyns, and Jon
Whittle. Software engineering for self-adaptive systems: A research roadmap. In
Betty H. Cheng, Rogério Lemos, Holger Giese, Paola Inverardi, and Jeff Magee,
editors, Software Engineering for Self-Adaptive Systems, chapter Software En-
gineering for Self-Adaptive Systems: A Research Roadmap. Springer-Verlag,
2009.

[15] Shang Wen Cheng, David Garlan, and Bradley Schmerl. Architecture-based
self-adaptation in the presence of multiple objectives. In Proceedings of the
2006 International Workshop on Self-adaptation and Self-Managing Systems,
pages 2–8, Shanghai, China, 2006. ACM.

[16] L. Chung, B. Nixon, E. Yu, and J. Mylopoulos. Non-Functional Requirements
in Software Engineering. Kluwer Academic Publishers, 2000.

[17] Geoff Coulson, Paul Grace, Gordon Blair, Wei Cai, Chris Cooper, David Duce,
Laurent Mathy, Wai Kit Yeung, Barry Porter, Musbah Sagar, and Wei Li.
A component-based middleware framework for configurable and reconfigurable
grid computing. Concurr. Comput. : Pract. Exper., 18(8):865–874, 2006.

[18] Anne Dardenne, Axel van Lamsweerde, and Stephen Fickas. Goal-directed re-
quirements acquisition. Science of Computer Programming, 20(1-2):3–50, 1993.

279

[19] Robert Darimont and Axel van Lamsweerde. Formal refinement patterns for
goal-driven requirements elaboration. SIGSOFT Software Engineering Notes,
21(6):179–190, October 1996.

[20] Paul de Grandis and Giuseppe Valetto. Elicitation and utilization of
application-level utility functions. In In the Proceedings of the Sixth In-
ternational Conference on Autonomic Computing (ICAC’09), pages 107–116,
Barcelona, Spain, June 2009. ACM.

[21] K. Deb. Multi-Objective Optimization Using Evolutionary Algorithms. Wiley,
2001.

[22] Edsger W. Dijkstra. A note on two problems in connexion with graphs. Nu-
merische Mathematik, 1:269–271, 1959.

[23] Marco Dorigo and Luca Maria Gambardella. Ant colony system: A cooperative
learning approach to the traveling salesman problem. IEEE Transactions on
Evolutionary Computation, 1:53–66, 1996.

[24] J. Eggermont and J. I. van Hemert. Stepwise adaptation of weights for sym-
bolic regression with genetic programming. In Proceedings of the Twelfth Bel-
gium/Netherlands Conference on Artificial Intelligence, pages 259–266, January
2008.

[25] Naeem Esfahani. A framework for managing uncertainty in self-adaptive soft-
ware systems. In Proceedings of the 26th IEEE/ACM International Conference
on Automated Software Engineering, Lawrence, Kansas, USA, November 2011.

[26] Naeem Esfahani, Ehsan Kouroshfar, and Sam Malek. Taming uncertainty in
self-adaptive software. In Proceedings of the 19th ACM SIGSOFT symposium
and the 13th European conference on Foundations of software engineering, pages
234–244, Szeged, Hungary, September 2011.

[27] Ramon Fabregat, yezid Donoso, Bejamin Baran, Fernando Solano, and Jose L.
Marzo. Multi-objective optimization scheme for multicast flows: A survey, a
model and a MOEA solution. In Proceedings of the 3rd International IFIP/ACM
Latin American Conference on Networking, pages 73–86, New York, NY, USA,
2005. ACM.

[28] M. S. Feather, S. Fickas, A. van Lamsweerde, and C. Ponsard. Reconciling sys-
tem requirements and runtime behavior. In Proceedings of the 8th International
Workshop on Software Specification and Design, pages 50–59, Washington, DC,
USA, 1998. IEEE Computer Society.

[29] Stephen Fickas and Martin S. Feather. Requirements monitoring in dynamic
environments. In Proceedings of the Second IEEE International Symposium on
Requirements Engineering, pages 140–147, Washington, DC, USA, 1995. IEEE
Computer Society.

280

[30] Franck Fleurey and Arnor Solberg. A domain specific modeling language sup-
porting specification, simulation and execution of dynamic adaptive systems. In
Proceedings of the 2009 International Conference on Model Driven Engineering
Languages and Systems (Models ’09), volume 5795 of Lecture Notes in Com-
puter Science, pages 606–621, Denver, Colorado, USA, October 2009. Springer.

[31] Frank Fleury, V. Dehlen, Nelly Bencomo, Brice Morin, and Jean Marc Jezequel.
Modeling and validating dynamic adaptation. In Proceedings of International
Workshop on Models at Run Time, Toulousse, France, October 2008.

[32] Erik M. Fredericks, Andres J. Ramirez, and Betty H.C. Cheng. Towards run-
time testing of dynamic adaptive systems. In To Appear in the Proceedings of
the 2013 International Symposium on Software Engineering for Self-Adaptive
Systems, San Francisco, CA, USA, May 2013.

[33] Christian Gagne and Marc Parizeau. Genericity in evolutionary computation
software tools: Principles and case-study. International Journal on Artificial
Intelligence Tools, 15(2):173–194, 2006.

[34] Erich Gamma, Richard Helm, Ralph Johnson, and John Vlissides. Design Pat-
terns: Elements of Reusable Object-Oriented Software. Addison-Wesley Profes-
sional, 195.

[35] David Garlan, Shang Wen Cheng, An-Cheng Huang, Bradley Schmerl, and
Peter Steenkiste. Rainbow: Architecture-based self-adaptation with reusable
infrastructure. Computer, 37(10):46–54, 2004.

[36] David Garlan, Bradley Schmerl, and Jichuan Chang. Using gauges for
architecture-based monitoring and adaptation. In In the Proceedings of the
Working Conference on Complex and Dynamic Systems Architecture, Brisbane,
Australia, December 2001.

[37] Debanjan Ghosh, Raj Sharman, Rao H. Raghav, and Shambhu Upadhyaya.
Self-healing systems - survey and synthesis. Decision Support Systems,
42(4):2164–2185, January 2007.

[38] Heather J. Goldsby and Betty H.C. Cheng. Goal-oriented modeling of require-
ments engineering for dynamically adaptive systems. In Proceedings of the
14th International Conference on Requirements Engineering, RE, pages 345–
346, Minneapolis, Minnesota, USA, September 2006. IEEE Computer Society.

[39] Heather J. Goldsby and Betty H.C. Cheng. Automatically generating behavioral
models of adaptive systems to address uncertainty. In Proceedings of the 11th
International Conference on Model Driven Engineering Languages and Systems,
pages 568–583, Berlin, Heidelberg, 2008. Springer-Verlag.

[40] Heather J. Goldsby and Betty H.C. Cheng. Automatically discovering proper-
ties that specify the latent behavior of uml models. In Proceedings of the 13th

281

International Conference on Model Driven Engineering Languages and Systems,
pages 316–330, Oslo, Norway, October 2010. Springer-Verlag.

[41] Heather J. Goldsby, Betty H.C. Cheng, Philip K. McKinley, David B. Knoester,
and Charles A. Ofria. Digital evolution of behavioral models for autonomic sys-
tems. In Proceedings of the Fifth IEEE International Conference on Autonomic
Computing, pages 87–96, Chicago, Illinois, 2008. IEEE Computer Society.

[42] Hasaan Gomaa and Mohamed Hussein. Software reconfiguration patterns for
dynamic evolution of software architectures. In WICSA’04: Proceedings of
the Fourth Working IEEE/IFIP Conference on Software Architecture, page 79,
Washington, DC, USA, 2004.

[43] Michael M. Gorlick and Rami R. Razouk. Using weaves for software construc-
tion and analysis. In Proceedings of the 13th International Conference on Soft-
ware Engineering, ICSE’91, pages 23–34, Austin, Texas, United States, May
1991. IEEE Computer Society Press.

[44] Mark Harman. The current state and future of search based software engineer-
ing. In IEEE International Conference on Software Engineering 2007, Future
of Software Engineering, pages 342–357, Minneapolis, Minnesota, 2007. IEEE
Computer Society.

[45] Matthew J. Hawthorne and Dewayne E. Perry. Exploiting architectural pre-
scriptions for self-managing, self-adaptive systems: A position paper. In Pro-
ceedings of the First ACM SIGSOFT Workshop on Self-Managed Systems,
WOSS’04, pages 75–79, Newport Beach, California, 2004. ACM.

[46] John H. Holland. Adaptation in Natural and Artificial Systems. MIT Press,
Cambridge, MA, USA, 1992.

[47] Michael Jackson and Pamela Zave. Deriving specifications from requirements:
an example. In Proceedings of the 17th International Conference on Software
Engineering, pages 15–24, Seattle, Washington, USA, April 1995. ACM.

[48] Divyesh Jadav and A. Choudhary. Designing and implementing high-
performance media-on-demand servers. IEEE Parallel Distributed Technology:
Systems Applications, 3(2):29–39, 1995.

[49] Adam C. Jensen and Betty H.C. Cheng. On the use of genetic programming for
automated refactoring and the introduction of design patterns. In Proceedings
of the 2010 Genetic and Evolutionary Computation Conference (GECCO 2010),
Portland, OR, USA, 2010. ACM.

[50] Minwen Ji, Alistair Veitch, and John Wilkes. Seneca: Remote mirroring done
write. In USENIX 2003 Annual Technical Conference, pages 253–268, Berkeley,
CA, USA, June 2003. USENIX Association.

282

[51] Keneth A. De Jong. Evolutionary Computation, A Unified Approach. The MIT
Press, March 2002.

[52] Ivan J. Jureta, Stephane Faulkner, and Pierre-Yves Schobbens. Achieving,
satisficing, and excelling. In Proceedings of the 2007 Conference on Advances
in Conceptual Modeling: Foundations and Applications, ER’07, pages 286–295,
Auckland, New Zealand, 2007. Springer-Verlag.

[53] Gail Kaiser, P. Gross, G. Kc, and J. Parekh. An approach for autonomizing
legacy systems. In Proceedings of the First Workshop on Self-Healing, Adaptive,
and Self-MANaged Systems, 2002.

[54] Kimberly Keeton, Dirk Beyer, Ernesto Brau, and Arif Merchant. On the road
to recovery: Restoring data after disasters. SIGOPS Operating Systems Review,
40(4):235–248, April 2006.

[55] Kimberly Keeton, Cipriano Santos, Dirk Beyer, Jeffrey Chase, and John Wilkes.
Designing for disasters. In Proceedings of the 3rd USENIX Conference on File
and Storage Technologies, pages 59–62, Berkeley, CA, USA, 2004. USENIX
Association.

[56] Kimerbly Keeton and Arif Merchant. Challenges in managing dependable data
systems. SIGMETRICS Performance Evaluation Review, 33(4):4–10, 2006.

[57] J. Kennedy and R. Eberhart. Particle swarm optimization. In Proceedings of
the 1995 IEEE International Conference on Neural Networks, pages 1942–1948,
Perth, WA, Australia, November 1995.

[58] Jeffrey O. Kephart and David M. Chess. The vision of autonomic computing.
Computer, 36(1):41–50, 2003.

[59] Gregor Kiczales and Erik Hilsdale. Aspect-oriented programming. In Proceed-
ings of the 8th European Software Engineering Conference held jointly with 9th
ACM SIGSOFT International Symposium on Foundations of Software Engi-
neering, page 313, Vienna, Austria, 2001. ACM.

[60] Gregor Kiczales, Erik Hilsdale, Jim Hugunin, Mik Kersten, Jeffrey Palm, and
William G. Griswold. An overview of aspectj. In In the Proceedings of the
15th European Conference on Object-Oriented Programming, pages 327–353,
London, UK, 2001. Springer-Verlag.

[61] David B. Knoester, Andres J. Ramirez, Betty H.C. Cheng, and Philip K.
McKinley. Evolution of robust data distribution among digital organisms. In
Proceedings of the 11th annual conference on Genetic and Evolutionary Com-
putation (GECCO ’09), pages 137–144 (Nominated for Best Paper), Montreal,
Canada, July 2009.

283

[62] Fabio Kon, Manuel Román, Ping Liu, Jina Mao, Tomonori Yamane, Claudio
Magalh, and Roy H. Campbell. Monitoring, security, and dynamic configuration
with the dynamictao reflective orb. In Middleware’00: IFIP/ACM Intl. Conf.
on Dist. Sys. Platforms, pages 121–143. Springer-Verlag, 2000.

[63] John R. Koza. Genetic Programming: On the Programming of Computers by
Means of Natural Selection (Complex Adaptive Systems). The MIT Press, De-
cember 1992.

[64] Jeff Kramer and Jeff Magee. The evolving philosophers problem: Dynamic
change management. IEEE Trans. on Soft. Eng., 16(11):1293–1306, 1990.

[65] Jeff Kramer and Jeff Magee. Self-managed systems: an architectural chal-
lenge. In Future of Software Engineering 2007, pages 259–268, Minneapolis,
Minnesota, May 2007. IEEE Computer Society.

[66] M. Lajolo, L. Lavagno, and M. Rebaudengo. Automatic test bench genera-
tion for simulation-based validation. In Proceedings of the Eighth International
Workshop on Hardware/Software Codesign, pages 136–140, San Diego, Califor-
nia, United States, 2000. ACM.

[67] Alexei Lapouchnian, Sotirios Liaskos, John Mylopoulos, and Yijun Yu. Towards
requirements-driven autonomic systems design. SIGSOFT Software Engineer-
ing Notes, 30(4):1–7, May 2005.

[68] Joel Lehman and Kenneth O. Stanley. Exploiting open-endedness to solve prob-
lems through the search for novelty. In Proceedings of the Eleventh International
Conference on Artificial Life (ALIFE XI), Cambridge, MA, USA, 2008. MIT
Press.

[69] Emmanuel Letier and Axel van Lamsweerde. Reasoning about partial goal sat-
isfaction for requirements and design engineering. In Proceedings of the 12th
ACM SIGSOFT International Symposium on Foundations of Software Engi-
neering, pages 53–62, Newport Beach, California, 2004. ACM.

[70] Thanasis Loukopoulos and Ishfaq Ahmad. Static and adaptive distributed data
replication using genetic algorithms. Journal Parallel Distributed Computing,
64(11):1270–1285, 2004.

[71] Robyn R. Lutz and Ines Carmen Mikulski. Requirements discovery during
the testing of safety-critical software. In Proceedings of the 25th International
Conference on Software Engineering, pages 578–583, Portland, OR, USA, 2003.
IEEE Computer Society.

[72] Philip K. McKinley, Betty H.C. Cheng, Andres J. Ramirez, and Adam C.
Jensen. Applying evolutionary computation to mitigate uncertainty in
dynamically-adaptive, high-assurance middlware. Journal of Internet Services
and Applications Special Issue on the Future of Middleware, 3(1):51–58, Novem-
ber 2011.

284

[73] Philip K. McKinley, Seyed Masoud Sadjadi, Eric P. Kasten, and Betty H.C.
Cheng. Composing adaptive software. Computer, 37(7):56–64, 2004.

[74] O. Michel. Webots: Professional mobile robot simulation. Journal of Advanced
Robotics Systems, 1(1):39–42, 2004.

[75] Marius Mikalsen, Nearchos Paspallis, Jacqueline Floch, Erlend Stav, George A.
Papadopoulos, and Akis Chimaris. Distributed context management in a mo-
bility and adaptation enabling middleware. In Proceedings of the 2006 ACM
symposium on Applied Computing, pages 733–734, New York, NY, USA, 2006.
ACM.

[76] David Montana, Talib Hussain, and Tushar Saxena. Adaptive reconfiguration
of data networks using genetic algorithms. In Proceedings of the Genetic and
Evolutionary Computation Conference, pages 1141–1149, San Francisco, CA,
USA, 2002.

[77] Mirko Morandini, Loris Penserini, and Anna Perini. Modelling self-adaptivity:
A goal-oriented approach. In Proceedings of the Second IEEE International Con-
ference on Self-Adaptive and Self-Organizing Systems, pages 469–470, Venice,
Italy, October 2008. IEEE Computer Society.

[78] Mirko Morandini, Loris Penserini, and Anna Perini. Towards goal-oriented
development of self-adaptive systems. In In the Proceedings of the 2008 Inter-
national Workshop on Software Engineering for Adaptive and Self-Managing
Systems, pages 9–16, Leipzig, Germany, May 2008. ACM.

[79] Hausi Muller, Mauro Pezze, and Mary Shaw. Visibility of control in adaptive
systems. In Proceedings of the Second International Workshop on Ultra-Large-
Scale Software-Intensive Systems, ULSSIS’08, pages 23–26, Leipzig, Germany,
May 2008. ACM.

[80] Mohammad A. Munawar, Michael Jiang, and Paul A.S. Ward. Monitoring
multi-tier clustered systems with invariant metric relationships. In In the Pro-
ceedings of the 2008 International Workshop on Software Engineering for Adap-
tive and Self-Managing Systems, pages 73–80, Leipzig, Germany, May 2008.
ACM.

[81] Cu D. Nguyen, Anna Perini, Paolo Tonella, Simon Miles, Mark Harman, and
Michael Luck. Evolutionary testing of autonomous software agents. In Proceed-
ings of the Eighth International Conference on Autonomous Agents and Mul-
tiagent Systems, pages 521–528, Budapest, Hungary, May 2009. International
Foundation for Autonomous Agents and Multiagent Systems.

[82] Charles A. Ofria and Claus O. Wilke. Avida: A software platform for research
in computational evolutionary biology. Artificial Life, pages 191–229, 2004.

285

[83] Peyman Oreizy, Michael Gorlick, Richard N. Taylor, Dennis Heimbigner, Gre-
gory Johnson, Nenad Medvidovic, Alex Quilici, David S. Rosenblum, and
Alexander L. Wolf. An Architecture-Based Approach to Self-Adaptive Soft-
ware. IEEE Intelligent Systems, 14(3):54–62, 1999.

[84] Liliana Pasquale and Paola Spoletini. Monitoring fuzzy temporal requirements
for service compositions: Motivations, challenges, and experimental results. In
Proceedings of the 2011 International Workshop on Requirements Engineering
for Systems, Services and Systems of Systems, RESS, pages 63–69, Trento, Italy,
August 2011. IEEE.

[85] Andres J. Ramirez. Design patterns for developing dynamically adaptive sys-
tems. Master’s thesis, Michigan State University, East Lansing, MI 48823, 2008.

[86] Andres J. Ramirez and Betty H.C. Cheng. Evolving models at run time to
address functional and non-functional adaptation requirements. In Proceedings
of the Fourth Workshop on Models at Run Time, volume 509, pages 31–40,
Denver, Colorado, USA, October 2009. ACM.

[87] Andres J. Ramirez and Betty H.C. Cheng. Adaptive monitoring of software
requirements. In Proceedings of the 2010 Workshop on Requirements at Run
Time, RE@RunTime, pages 41–50, Sydney, Australia, September 2010. IEEE
Computer Society.

[88] Andres J. Ramirez and Betty H.C. Cheng. Design patterns for developing dy-
namically adaptive systems. In Proceedings of the Workshop on Software En-
gineering for Adaptive and Self-Managed Systems (SEAMS), Capetown, South
Africa, May 2010.

[89] Andres J. Ramirez and Betty H.C. Cheng. Automatically deriving utility func-
tions for monitoring software requirements. In Proceedings of the 2011 In-
ternational Conference on Model Driven Engineering Languages and Systems
Conference, pages 501–516, Wellington, New Zealand, 2011.

[90] Andres J. Ramirez, Betty H.C. Cheng, Philip K. McKinley, and Benjamin E.
Beckmann. Automatically generating adaptive logic to balance non-functional
tradeoffs during reconfiguration. In Proceedings of the 7th International Confer-
ence on Autonomic Computing, ICAC, pages 225–234, Washington, DC, USA,
June 2010. ACM.

[91] Andres J. Ramirez, Erik M. Fredericks, Adam C. Jensen, and Betty H.C. Cheng.
Automatically relaxing a goal model to cope with uncertainty. In Proceedings
of the Fourth Inernational Symposium on Search Based Software Engineering,
volume 7515, pages 198–212, Riva del Garda, Italy, September 2012. Lecture
Notes in Computer Science.

[92] Andres J. Ramirez, Adam C. Jensen, Betty H.C. Cheng, and David B. Knoester.
Automatically exploring how uncertainty impacts behavior of dynamically

286

adaptive systems. In Proceedings of the 2011 International Conference on Auto-
matic Software Engineering, ASE’11, pages 568–571, Lawrence, Kansas, USA,
November 2011.

[93] Andres J. Ramirez, David B. Knoester, Betty H.C. Cheng, and Philip K.
McKinley. Applying genetic algorithms to decision making in autonomic com-
puting systems. In Proceedings of the Sixth International Conference on Auto-
nomic Computing, pages 97–106, Barcelona, Spain, June 2009.

[94] Andres J. Ramirez, David B. Knoester, Betty H.C. Cheng, and Philip K.
McKinley. Plato: A genetic algorithm approach to run-time reconfiguration
of autonomic computing systems. Journal of Cluster Computing, 14(3):229–
244, September 2011.

[95] Ingo Rechenberg. Evolutionsstrategie - Optimierung technischer Systeme nach
Prinzipien der biologischen Evolution. PhD thesis, Technical University of
Berlin, 1973.

[96] Sebastian Risi, Sandy D. Vanderbleek, Charles E. Hughes, and Kenneth O.
Stanley. How novelty search escapes the deceptive trap of learning to learn. In
Proceedings of the Eleventh Annual Conference on Genetic and Evolutionary
Computation, pages 153–160, Montreal, Quebec, Canada, July 2009. ACM.

[97] William N. Robinson. Monitoring software requirements using instrumented
code. In HICSS ’02: Proceedings of the 35th Annual Hawaii International Con-
ference on System Sciences, pages 276–285, Hawaii, USA, 2002. IEEE Computer
Society.

[98] William N. Robinson. A requirements monitoring framework for enterprise
systems. Requirements Engineering, 11(1):17–41, March 2006.

[99] S. Masoud Sadjadi, Philip K. McKinley, and Betty H.C. Cheng. Transparent
shaping of existing software to support pervasive and autonomic computing. In
DEAS’05: Proc. of the 2005 workshop on Design and Evolution of Autonomic
Application Software, New York, NY, USA, 2005. ACM.

[100] Pete Sawyer, Nelly Bencomo, Emmanuel Letier, and Anthony Finkelstein.
Requirements-aware systems: A research agenda for re self-adaptive systems.
In Proceedings of the 18th IEEE International Requirements Engineering Con-
ference, pages 95–103, Sydney, Australia, September 2010.

[101] Christian Seybold, Martin Glinz, and Silvio Meier. Simulation-based validation
and defect localization for evolving, semi-formal requirements models. In Pro-
ceedings of the 12th Asia-Pacific Software Engineering Conference (APSEC’05),
pages 1–10. IEEE Computer Society, 2005.

[102] Mary Shaw. Beyond objects: a software design paradigm based on process
control. SIGSOFT Software Engineering Notes, 20(1):27–38, 1995.

287

[103] Vitor E. Silva Souza and John Mylopoulos. From awareness requirements to
adaptive systems: A control-theoretic approach. In Proceedings of the Second
International Workshop on Requirements at Run Time, pages 9–15, Trento,
Italy, August 2011. IEEE Computer Society.

[104] Lee Spector and A. Robinson. Genetic programing and autoconstructive evolu-
tion with the push programming language. Genetic Programming and Evolvable
Machines, 3(1):7–40, 2002.

[105] Axel van Lamsweerde. Requirements Engineering: From System Goals to UML
Models to Software Specifications. Wiley, March 2009.

[106] Axel van Lamsweerde and Emmanuel Letier. Integrating obstacles in goal-
driven requirements engineering. In Proceedings of the 20th International Con-
ference on Software Engineering, pages 53–62, Kyoto, Japan, 1998. IEEE Com-
puter Society.

[107] Axel van Lamsweerde and Emmanuel Letier. Handling obstacles in goal-
oriented requirements engineering. IEEE Transactions on Software Engineering,
26(10):978–1005, October 2000.

[108] Yves Vandewoude and Peter Ebraert. Tranquillity: A low disruptive alterna-
tive to quiescence for ensuring safe dynamic updates. IEEE Transactions on
Software Engineering, 33(12):856–868, December 2007.

[109] William E. Walsh, Gerald Tesauro, Jeffrey O. Kephart, and Rajarshi Das. Util-
ity functions in autonomic systems. In Proceedings of the First IEEE Inter-
national Conference on Autonomic Computing, pages 70–77, New York, NY,
USA, 2004. IEEE Computer Society.

[110] Kristopher Welsh and Pete Sawyer. When to adapt? identification of problem
domains for adaptive systems. In Proceedings of the 14th International Con-
ference on Requirements Engineering: Foundations for Software Quality, pages
198–203, Montpellier, France, 2008. Springer-Verlag.

[111] Kristopher Welsh, Pete Sawyer, and Nelly Bencomo. Towards requirements
aware systems: Run-time resolution of design-time assumptions. In Proceed-
ings of the 26th IEEE/ACM International Conference on Automated Software
Engineering, pages 560–563, Lawrence, Kansas, USA, November 2011. IEEE
Computer Society.

[112] Kristopher Welsh and Peter Sawyer. Understanding the scope of uncertainty
in dynamically adaptive systems. In Proceedings of the Sixteenth International
Working Conference on Requirements Engineering: Foundation for Software
Quality, volume 6182, pages 2–16, Essen, Germany, June 2010. Springer.

[113] Steve R. White, James E. Hanson, Ian Whalley, David M. Chess, and Jeffrey O.
Kephart. An architectural approach to autonomic computing. In Proceedings

288

of the First International Conference on Autonomic Computing, ICAC, pages
2–9, New York, NY, USA, May 2004. ACM.

[114] Jon Whittle, Pete Sawyer, Nelly Bencomo, Betty H.C. Cheng, and Jean-Michel
Bruel. RELAX: Incorporating uncertainty into the specification of self-adaptive
systems. In Proceedings of the 17th International Requirements Engineering
Conference (RE ’09), pages 79–88, Atlanta, Georgia, USA, September 2009.
IEEE Computer Society.

[115] R. Witty and D. Scott. Disaster recovery plans and systems are essential.
Technical Report FT-14-5021, Gartner Research, September 2001.

[116] Sunny Wong, Melissa Aaron, Jeffrey Segall, Kevin Lynch, and Spiros Man-
coridis. Reverse engineering utility functions using genetic programming to de-
tect anomalous behavior in software. In Proceedings of the 17th Working Confer-
ence on Reverse Engineering, WCRE, pages 141–149, Beverly, Massachussetts,
USA, October 2010. IEEE.

[117] Z. Yang, Betty H.C. Cheng, R. E. Kurt Stirewalt, J. Sowell, S. M. Sadjadi, and
Philip K. McKinley. An aspect-oriented approach to dynamic adaptation. In
Proceedings of the First Workshop on Self-Healing Systems, pages 85–92, New
York, NY, USA, 2002. ACM.

[118] Eric S.K. Yu. Towards modeling and reasoning support for early-phase require-
ments engineering. In Proceedings of the Third IEEE International Symposium
on Requirements Engineering, pages 226–235, Annapolis, MD, USA, January
1997. IEEE Computer Society.

[119] Ji Zhang and Betty H.C. Cheng. Specifying adaptation semantics. In WADS’05:
Proceedings of the 2005 workshop on Architecting dependable systems, pages 1–
7, New York, NY, USA, 2005. ACM.

[120] Ji Zhang and Betty H.C. Cheng. Model-based development of dynamically
adaptive software. In Proceedings of the 28th International Conference on Soft-
ware Engineering, pages 371–380, New York, NY, USA, 2006. ACM.

[121] Ji Zhang, Betty H.C. Cheng, Zhenxiao Yang, and Philip K. McKinley. En-
abling safe dynamic component-based software adaptation, volume 3549 of Lec-
ture Notes in Computer Science, pages 194–211. Springer Berlin / Heidelberg,
2005.

[122] Ji Zhang, Heather J. Goldsby, and Betty H.C. Cheng. Modular verification
of dynamically adaptive systems. In Proceedings of the Eighth International
Conference on Aspect-Oriented Software Development, 2009.

289

