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ABSTRACT

MIXTURE INNOVATIONS’ BASED AUTO-REGRESSIVE PROCESSES WITH
APPLICATION TO SEA LEVEL RISE DATA

By

Fatimah Alshahrani

Sea Level Rise (SLR) is one of the major challenges the world is facing in times of

climate change. Using different approaches in obtaining, studying and modeling SLR data

has often resulted in different conclusions for the same data set. This led to a debate between

researchers some of whom reported accelerations whereas others advocated decelerations or

linear trend. In this project, we model SLR as a linear mean reverting time series, also

known as order one autoregressive processes (AR(1)), together with an in-depth study of

the innovations associated with the AR process. In this direction, we define and evaluate

moment ratio test to distinguish between innovations which come either from a Gaussian

distribution, a Gumbel distribution or a mixture of the two. We were motivated by a claim

from members of the Actuarial Climate Index (ACI) collaborative regarding the distribution

of sea-level rise in the US Atlantic states. They claim that the monthly data, recorded over

decades, have no inherent time structure and can be modeled as independent and identically

observations from Gumbel distribution. Based on an exploratory data analysis, fitting a

stationary, Markovian, mean-revering process to the data was essential, to understand its

structure. Since the Ornstein–Uhlenbeck process (OU) is the high-frequency liming process

for AR(1) processes, and our data has a fixed frequency of observations, we investigated

fitting an AR(1) process where the innovations are either Gumbel noise, Gaussian noise, or

a mixture of the two distributions. The result of these fittings, based on our moment-ratio



tests and other diagnostic checks, demonstrates the preference for an AR(1) process with

innovations from a mixture of Gaussian and Gumbel distributions.
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Introduction

Sea Level Rise (SLR) is one of the major consequences the world is facing in times of climate

change. Since the result of SLR involves social-economic response, regional and global SLR

has been widely investigated and studied. Using different approaches in obtaining, studying

and modeling SLR data resulted in different conclusions.”This has led to an intensive debate

on the existence of significant accelerations in regional and global sea level in recent years.

Some researchers report accelerations where others find linear trends or even decelerations,

sometimes based on the same data.” [87]

Sea level data can be obtained either by climate models or measuring sea level, using

methods such as tide gauge stations which is known as the historical observations or through

satellite altimetry. According to sea level research group at university of Colorado, tide gauge

data ”offers the only source of historical, precise, long-term sea level data.”

We obtained tide gauge data from The Actuarial Climate Index (ACI), and they claim

that the monthly data, recorded over decades, of the Central East Atlantic (CEA) region

follow the Gumbel distribution in the absence of any time structure. [5]. This claim is

investigated here, considering the data as a random sample, and fitting the Gumbel dis-

tribution and applying the Kolmogorov–Smirnov test (KS test), we fail to reject the null

hypothesis that the data as a random sample follows the Gumbel distribution. Looking at

the auto-correlation function plot of the data in figure 1, we conclude that the assumption
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that the data is a ”random sample” is not accurate.

Figure 1: Correlogram of the sea level data at the CEA region.

Figure 2shows the path of the data from 1990 to 2000, which looks like the path of the

Ornstein–Uhlenbeck (OU) process. The OU process is a stationary, Gaussian, Markovian and

mean reverting process. Since the Ornstein–Uhlenbeck process (OU) is the high-frequency

limiting process for AR(1) processes, and our data has a fixed frequency of observations [30],

we investigate fitting an AR(1) process where the innovations are Gumbel noise, Gaussian

noise, or a mixture of both distributions.

Having three different models with the earlier debate in mind we defined a non-central chi

square S and K tests based on the ratio of the empirical moments of the AR(1) model, such

that these tests can reject the Gumbel innovations in favor of the Gaussian, the Gaussian

innovations in favor of the Gumbel and the Gumbel or Gaussian innovations in favor of the

mixture of both.
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Employing the moments and the ratio of moments started in the 1930s, under the as-

sumption of independent identically random variables. Many researchers were interested in

checking the skewness, kurtosis and normality [23].

Figure 2: The path of the de-trended data from 1990 to 2000.

The result of fitting the three models to the SLR data, based on our non-central chi-square

tests and other diagnostic checks that are based on the residuals, shows the preference for an

AR(1) process where the innovations follow a mixture of Gaussian and Gumbel distributions.

This thesis is organized as follows: the related work in both parts the goodness of fit

tests of the AR(1) model and modeling the sea level data in chapter 1. In chapter 2, the

moments of the Gumbel random variable and the theoretical moments of the AR(1) model

were calculated. The asymptotic distributions of the empirical second, third and fouth

moments are provided in chapter 3, also the main results which are the defined non-central
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chi-square S and K tests are in chapter 3. The simulations are in chapter 4, while the case

study ”the real data” in chapter 5.
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The Literature review

The hypothesis tests that are related to the distribution

of the innovations in the autoregressive models

The autoregressive process is one of the most successful statistical models for time series

data due to its wide range of applications. An autoregressive process of order p (AR(p)), is

written as:

Xt = φ1Xt−1 + φ2Xt−2 + ...+ φpXt−p + εt (1)

where εt is white noise (WN(. , .)), i.e E(εt) = 0, E(ε2t ) = σ2 and εt is uncorrelated with εs

for each s < t. Autoregressive Processes are a sub-class of a more general linear class called

Autoregressive Moving Average Process, which for orders p and q, (ARMA(p, q)), has the

form:

Xt − φ1Xt−1 − ...− φpXt−p = εt + θ1εt−1 + ...+ θqεt−q (2)

where εt ∼ WN(0, σ2) and the polynomial (1−φ1z−...−φpzp) and (1+θ1z+...+θqz
q) have no

common factors for identifiability. It is further assumed that Xt is stationary and invertible.

Let B be the backward shift operator, (BjXt = Xt−j , Bjεt = εt−j , j = 0,±1,±2, ...), then

2 can be written as

φ(B)Xt = θ(B)εt (3)
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where φ(z) = 1−φ1z− ...−φpzp and θ(z) = 1 + θ1z+ ...+ θqz
q. Xt is an AR(p) if θ(z) ≡ 1,

and a moving average process of order q, (MA(q)) if φ(z) ≡ 1. It is further assumed that

Xt is a stationary and invertible. The necessary and sufficient condition for stationarity is

that for the polynomial φ(z) 6= 0 for all complex z with |z| = 1. Invertibility is equivalent

to the condition θ(z) 6= 0 for all |z| ≤ 1.

In most applications εt is assumed to be Gaussian, hence if the length of realization is

short, exact likelihood estimation can be used to estimate the parameters φi, i=1,2,...,p; θj ,

j=1,2,...,q. Alternatively, they can be asymptotically efficiently estimated by maximizing

the conditional log-likelihood.

Statistical analysis of time series started in the 1920s. In 1927, Udny Yule fitted an AR(2)

to Sunspots data [69, 84], making this the first application of autoregressive models to real

data. Yule introduces the concept of corrolgram ”serial correlation coefficient,” though he did

not invent the name according to [66]. Anderson [3] stated ”Both Yule [94] and Bartlett [6]

have shown that the ordinary test of significance are invalidated if successive observations

are not independent of one another. The serial correlation coefficient has been introduced

as a measure of the relationship between successive values of a variable ordered in time or

space”. This statement indicates a fundamental and standard approach in diagnostic checks

in time series models.

In the early 1970s, with the computer progression and the so-called ”Box–Jenkins method”,

which is a detailed strategy for time series forecasting, The ARMA process was studied and

investigated widely [58]. The Box-Jenkins method is a method for analyzing discrete time se-

ries data, incorporating an iterative cycle of identification, estimation and verification [12, 2].

In the first step, based on the information on the sample path, a preliminary ARMA model is
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suggested. In the second step the estimation of a stationary ARMA model can be done using

the exact or approximation methods. The third step is model diagnostic checking, which

involves techniques like overfitting, residual plots and a group of tests that are preformed on

the residuals.

A good model in time series data should be able to capture the dependence structure

of the data appropriately. That is, checking the whiteness of the residuals, since a good

time series model should produce residuals that are approximately white noise. Box and

Jenkins [12] employ Cramer statistics [24] g1 and g2 for testing the normality of the residuals.

In this frame, these are the residuals skewness and kurtosis defined respectively as:

K3 =
( 1

n

n∑
t=1

ε̂3t

)/( 1

n

n∑
t=1

ε̂2t

)3/2

and

K4 =
( 1

n

n∑
t=1

ε̂4t

)/( 1

n

n∑
t=1

ε̂2t

)2
− 3.

Under the assumption of normality and if the model is correct, K3 ∼ AN(0, 6/n) and

K4 ∼ AN(0, 24/n) [58, 39].

As mentioned by earlier statisticians, one important measurement of dependence is the

autocorrelation function. This led to using the residual autocorrelation function r̂k as a test

statistic, defined as follow:

r̂k =
n∑

t=k+1

ε̂tε̂t−k
/ n∑
t=1

ε̂2t , (4)

k = 1, ...,m.

If the model is appropriate and m >> n, then approximately r̂k
∼= 0, for all k = 1, ...,m.
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An informal analysis of these quantities is the core of the third step of the ”Box–Jenkins

method”. For the ARMA model, Box and Pierce [14] derived the asymptotic distribution of

r̂, while for the AR model, Li [58] stated ”As noted by Hosking [42], Walker [88] was the

first to obtain the distribution under the autoregressive model”.

In addition to the asymptotic distribution of r̂k, Box and Pierce [14] defined a several of

statistics based on rk and r̂k, where

rk =
n∑

t=k+1

εtεt−k
/ n∑
t=1

ε2t .

Using the results of [3, 4], the limiting distribution of r = (r1, ..., rm)′ is multivariate with

mean vector zero, var(rk) = (n−k)
/
n(n+2) ≈ 1/n and cov(rk, rl) = 0 if k 6= l, they showed

that, if the model is appropriate and the parameters are known then:

Q̃(r) = n(n+ 2)
m∑
k=1

(n− k)−1r2
k, (5)

would asymptotically follow χ2
m. Furthermore, they suggested the following approximation

Q(r) = n
m∑
k=1

r2
k ∼ χ2

m (6)

based on the approximated variance. If the parameters are estimated and the model is

appropriate, Box and Pierce [14] showed that,

Q(r̂) = n

m∑
k=1

r̂2
k (7)
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would be asymptotically χ2
m−p−q yielding an approximate test for lack of fit. The statistics

(7) is called the Box-Pierce statistic. Davies, Triggs and Newbold [25] and Prothero and

Wallis [73] doubted the distribution of Q(r̂) and its validity in practice for a moderated n.

This led to the modified statistic:

Q̃(r̂) = n(n+ 2)
m∑
k=1

(n− k)−1r̂2
k. (8)

which was recommended by Ljung and Box [61]. The statistic Q̃(r̂) is called the Ljung-Box

statistic, and it has a finite sample distribution that is closer to that of χ2
m−p−q. In addition,

they used the result by Anderson and Walker [4] to justify their belief in insensitivity of these

tests to departures from normality of the εt’s.

Another modification on Box-Pierce statistic was suggested by Li and Mcleod [60] as

follows:

Q∗m = Q(r̂) +
k2m(m+ 1)

2n
. (9)

If the model is adequate then Q∗m asymptotically χ2 with k2(m− p− q) degree of freedom.

All the previous statistics to test weather or not a residual series is white noise, under

the assumption of normality of the innovations, are based on the residuals’ or innovations’

autocorrelation functions. There are other approaches to check the whiteness of the residuals.

For example, using nonparametric methods, Ducharme and Micheaux [29] employ a data-

driven smooth test approach to define a goodness of fit test of normality for the innovations

of an ARMA(p, q) model.

Since the sum and the conditional distribution of Gaussian random variables are Gaus-
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sian, these facts encourage widespread interest in and investigation of the Gaussian AR(1)

model. But in many areas of science, the observations of linear time series models are of

non-Gaussian nature and are very common. For instance, one of the earliest applications of

this type of model was in hydrology. O’Connell and Jones [71] consider linear time series

models driven by lognormal white noise. The ARMA models driven by non-Gaussian inno-

vations have been studied and investigated by many scholars, for example, Li and McLeod

[71].

In particular, the simplicity of AR(1) structure, its usefulness and interpretation in a

wide range of context, led to the building and studying of more than 30 non-Gaussian

AR(1) models, according to [36].

One of the approaches in building the non-Gaussian AR(1) model is to specify the dis-

tribution of the innovations. In some cases the marginal distribution will be obtainable,

for example the Cauchy AR(1) model by Brockwell and Davis [15]. Let Xt be an AR(1)

model with εt ∼ C(λ, 1) and λ ∈ R, then the marginal distribution of Xt is Cauchy with

mean λ
1−φ and variance 1

1−φ2 . An example of non-Gaussian AR(1) with unknown marginal

distribution is the Uniform AR(1) defined by Bell and Smith [7]. Let Xt be an AR(1) model

with εt ∼ U(0, 2λ), the Xt is a Uniform AR(1) model with unknown marginal distribution.

Another approach in constructing the non-Gaussian AR(1) model is starting with a

specific marginal distribution of Xt, and then define a distribution for the innovations, even

if it is not a known distribution. An example of this approach is the Logistic AR(1) [76]. Let

Xt be an AR(1) model with εt has a distribution of the form
sin(φπ)

2φπ[cosh(z−λ)+cos(φπ)]
, where

−∞ < z < ∞, then Xt ∼ Lg(µ, 1), where µ = λ
1−φ . Table (1) contains some examples of

non-Gaussian AR(1), note that the parameter µ is a function of the parameter λ as in the

10



Logistic AR(1).

Name Reference
Innovation
distribution

Marginal
distribution

GENTS Lye and Martin [62] GT (µ, σ2) Unknown

Laplace Dewald and Lewis [27]

{
λ w.p.φ2

La(λ, 1) w.p.1− φ2 La(µ, 1)

Bell and Smith [7]
Andĕl [1]

Exp(1/λ) Unknown

EAR Gaver and Lewis [35]

{
0 w.p.φ

Exp(1/µ) w.p.1− φ
Exp(1/µ)

Table 1: Some non-Gaussian time series

Jacobs and Lewis [45, 46] describe steps toward modeling and estimating non-Gaussian

time series, using the predesignated marginal distribution approach. When O’Connell and

Jones [71] consider fitting an autoregressive model with log-normal innovations, the Yule-

Walker equation is used to estimate the autoregressive parameters. Li and McLeod [59]

study the asymptotic normality of the maximum likelihood estimator for non-Gaussian

ARMA models under some general conditions. Other alternative approaches to modeling

non-Gaussian time series have been considered including the Bayesian forecasting models

of West and Migon [90], or state space models approach of Kashiwagi and Yanagimoto

[52], and through the transformation as in Forecasting non-normal time series by Swift and

Janacek [82].

As in the Gaussian ARMA model, Li and McLeod [59] prove the asymptotic normality

of the residual autocorrelation function for the non-Gaussian ARMA model. Under the
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assumption in [59] it can be shown that:

r̂k =
n∑

t=k+1

(ε̂t − ε̄)(ε̂t−k − ε̄)
/ n∑
t=1

(ε̂t − ε̄)2, (10)

where ε̂t are residuals from the fitted non-Gaussian ARMA(p,q) model, ε̄ =
∑n
t=1

ε̂t
n and

k = 1, ...,m , have an asymptotic multivariate normal distribution similar to that of (4) with

a different information matrix.

The theoretical skewness and kurtosis of ARMA models with non-Gaussian innovations

have been studied by Davies, Spedding, and Watson [26, 89]. The purpose of this study

is ”to deduce the appropriate skewness and kurtosis that need to be imposed on the noise

in order to generate a series, Xt, with given skewness and kurtosis” [26]. In their paper,

Davies et al., [26] obtained approximations of skewness and kurtosis of ARMA models with

non-Gaussian innovations in terms of skewness and kurtosis of their innovations by making

use of the Pearson family of distributions.

Let Xt be a series generated by ARMA(1,1) process, which according to (2), can be

written as:

Xt − φXt−1 = εt + θεt−1

Davies et al., [26] claim that,

√
β1(X) =

{1 + θ(3φ2 + 3φθ + θ2)}
{1 + θ(2φ+ θ)}3/2

(1− φ2)3/2

(1− φ3)

√
β1(ε) (11)
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where √
β1(X) =

E[X3
t ]

(E[X2
t ])3/2

is the skewness of Xt and √
β1(ε) =

E[ε3t ]

(E[ε2t ])
3/2

is the skewness of the generating series {εt}.

And

β2(X) =
{(1− φ4) + (φ+ θ)4}
{1− φ2 + (φ+ θ)2}2

(1− φ2)

(1 + φ)2
β2(ε)

+ 6
[ (φ+ θ)2(1− φ)4 + φ2(φ+ θ)4

{(1− φ2) + (φ+ θ)2}2(1 + φ2)

]
(12)

where

β2(X) =
E[X4

t ]

(E[X2
t ])2

is the kurtosis of Xt and

β2(ε) =
E[ε4t ]

(E[ε2t ])
2

is the kurtosis of {εt}. They showed ” it is possible to simulate and match machined metal

surface profiles having significantly non normal skewness and kurtosis” by using these tech-

niques.

As in the diagnostic techniques of the Gaussian ARMA model, other approaches have

been investigated to check the whiteness of the residuals of the non-Gaussian ARMA mod-

els. Using nonparametric approach, Fan and Zhang [34] ”consider generalised likelihood ratio
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tests of whether or not the spectral density function of a stationary time series admits certain

parametric forms,” which can be applied to test the residuals’ whiteness. Taking advantage

of techniques from the empirical processes, many scholars propose goodness of fit tests for

the ARMA models. For AR(1) when the innovations have unknown symmetric distribution,

Koul [54] gives a class of minimum L2-distance estimators of the autoregression parameter,

and based on that discussed a goodness of fit test for symmetry innovations distribution. In

addition, Koul and Stute [56] investigate a class of goodness of fit test for autoregressive

model. ”These tests are based on a class of empirical processes marked by certain residu-

als”, according to the authors. For heavy tailed innovations, Jureckova et al. [51] construct

a class of nonparametric tests on the tail index of the innovation distribution in the linear

autoregressive model.

Studying and modeling the sea level data

Studying and investigating sea level rise (SLR) has received attention since the late nine-

teenth century. According to Byrne [16] ”Sea-level rise has been tracked since the late 1800s

by tide level gauges, and since 1993 changes have been recorded with high precision from

altimeter satellites.”

Traditionally, sea level change has been estimated from tide gauge measurements of the

’still water level’ collected over the last century.The ’still water level’ (without waves) is

averaged over some period of time, such as a month or a year yields Mean Sea Level (MSL)

or ”Sea Level” as in some other literature. This MSL is measured relative to fixed marks on
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the land known as ’benchmarks’. According to Sea Level Research Group at University of

Colorado, ”Although the global network of tide gauges comprises of a poorly distributed sea

level measurement system, it offers the only source of historical, precise, long-term sea level

data”. The Permanent Service for Mean Sea Level (PSMSL) has been responsible for the

collection, publication, analysis and interpretation of sea level data from the global network

of tide gauges since its establishment in 1933.Alternatively, MSL in the context of satellite

altimetry, are the measurements made in a geocentric reference frame (relative to the center

of the Earth).

Due to the heavy density of population and infrastructure that are located at the coast,

sea level rise presents an urgent topic in climate research, with direct socio-economic con-

sequences [17, 77, 70]. ”Impact and risk assessment, adaptation policies and long-term

decision-making in coastal areas are crucially informed by projections of coastal mean sea

level and extreme water level events [47].”

Projection sea level rise focuses on the physical climate system – atmosphere, land surface,

ocean and sea ice- which serves the Fourth Asssessment Report (AR4) of the Intergovern-

mental Panel on Climate Change (IPCC). The Program for Climate Model Diagnosis and

Intercomprison (PCMDI) collects model output contributed by leading modeling centers

around the world. This collection of recent model output is officially known as the “WCRP

CMIP3 multi-model dataset,” where WCRP is ”World Climate Research Programme” and

CMIP3 stands for phase 3 of the Coupled Model Intercomparison Project ”archived data of

climate models output” [63]. Such organizations and activities facilitate studying and inves-

tigating projection of sea level changes widely through different approaches. According to
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PCMDI ”over 250 journal articles, based at least in part on the dataset, have been published

or have been accepted for peer-reviewed publication”.

Three different approaches are commonly considered to calculate the projections of fu-

ture global sea level change based on climate models. The first approach is process-based

projections by estimating the contribution of the primary processes that are causing sea-

level change [8], ”using specified forcing of the climate system” [9]. As stated by Jevrejeva

et al. [47] ”In a process-based approach, such as that used by Church et al. [20], various

sources of information, including numerical simulations, are combined to model the evolu-

tion of different sea level components.” Global mean sea level (GMSL) changes over time (t)

are represented as:

GMSL(t) = T (t) +
∑
i

GICi(t) +GrIS(t) +WAIS(t) + EAIS(t)

+
∑
j

LWSj(t), (13)

where T is thermostatic expansion, GICi ice mass loss from different glaciers, GrIS ice mass

loss from the Greenland Ice Sheet, WAIS and EAIS and ice mass loss from the Antarctic

Ice Sheet (West and East) and the contribution from land water storage LWSj changes.

Church et al. [20] estimate the median and 90% confidence interval (CI) of sea level change

under specific scenarios (representative concentration pathway) as in [68], by the sum of

(14) components with their uncertainties.

Regional sea level (RSL) projections using process-based approach combine multiple fac-

16



tors. The first is the dynamic sea level contribution (DSL), the contribution of sea level

components, scaled by spatial “fingerprints” associated with gravitational, deformation and

rotational effects (as in [67]). The next is the background (Bkgd) processes, that ”unassoci-

ated with contemporary climate change that contribute to local sea level changes” [47], like

localized processes such as sediment compaction.

RSL projections at locations x can be represented as:

RSL(x, t) = T (t) +DSL(x, t) +
∑
i

FGICi(x)GICi(t) + FGrIS(x)GrIS(t)

+ FWAIS(x)WAIS(t) + FEAIS(x)EAIS(t) +
∑
j

FLWSj
(x)LWSj(t)

+Bkgd(x, t), (14)

Where FGICi , FGrIS , FWAIS , FEAIS and FLWSj
are the normalized gravitational, rota-

tional and deformational fingerprints associated, with the different components.

As illustrated by Meehl et al. [64], this approach is both used to construct the past global

sea level changes, and also to project the future. For projecting regional changes, Kopp et

al. [53], Slangen et al. [78] and Spada et al. [79] build their studies based on model data

from CMIP3, while the result of Perrette et al. [72] are based on model data from the latest

suite of coupled climate model results to date CMIP5 [83]. An example of studies based on

model data from combining both CMIP3 and CMIP3 was proposed by Slangen et al. [77].

Yin [93] applies GFDL CM2.1 climate model to model projections of rapid sea-level rise on

the northeast coast of the United States. As stated earlier there is a huge amount of studies
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in this regard, the interested reader is advised to consult [47] for more references.

The second approach to project sea level changes is called the “semi-empirical” approach,

this approach is based on the observed relationship between sea-level change and global

temperature change [8]. Bolin et al. [9] ”construct a time series regression model to predict

global sea level from global temperature”.

Other investigators use the current observations to extrapolate the future behavior of the

cryosphere, and use this information in projecting sea level [8, 65].

As mentioned earlier, climate warming has contributed to global sea levels rise through

the past century, and they are projected to rise throughout the 21st century [22]. Instead of

using climate models or environmental factors as inputs, some authors have used historical

sea level records to show sea level changes in mm/yr, that is, the estimation of long- term

trends. ”Trends in sea level have traditionally been calculated from long term data sets at

a few locations” [44]. Several papers discussing evidence for acceleration from tide gauge

records include Woodworth [91], Douglas [28], Holgate and Woodworth [41], Church and

White [21], Jevrejeva et al. [48] and Woodworth et al. [92].

According to Visser [87], in general, there are three applications of trend estimation.

Trends may be viewed in terms of prediction, highlight nonstationary behavior in a series,

and trends are used for ”calibration of recent attempts to model historic thermal expansion

as well as glacier and ice sheet melting”. There are five main methods for estimating trends

in sea level records, see Chandler and Scott [18] for details on these methods, (i)Exploratory

data analysis (or smoothed time series), (ii)Parametric trend estimation, (iii)Nonparametric
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trend estimation,(iv)Stochastic trend models (examples are ARIMA models and Structural

Time series Models) and (v)Miscellaneous models. Applying trend models to sea level data

has been done by many investigators. For example Vaziri [86] employs artificial neural

network (ANN) and ARIMA models to predict the monthly Caspian Sea level using tide

gauge records, whereas Imani et al. [43] applied the same technique to satellite altimetry

records. In ”Modeling regional sea level rise using local tide gauge data”, Iz et al. [44] use

the empirical trigonometric model to combine various tide gauge data, regardless of their

time span, to estimate the representative of regional mean sea level trends. For a review of

trend models applied to sea level data, the interested reader is referred to [87].

Using different methods to estimate sea level trends, several recent studies show that the

rates of sea level rise (SLR) have been accelerating along the coastal mid-Atlantic region

(the so-called “hotspot” of accelerated SLR, as referred to by Sallenger [74]) [31]. Boon et

al. [11] use the least-square linear curve-fit method ”simple linear regression” and quadratic

regression to calculate the trend after filtering out seasonal and decadal variability, of sea

level measurements at ten Chesapeake Bay water level stations (1975-2009).

Sallenger et al. [74] ”present evidence of recently accelerated SLR in a unique 1,000-

km-long hotspot on the highly populated North American Atlantic coast north of Cape

Hatteras” by analyzing tide-gauge records along the North American Atlantic coast. They

suggest that changes in ocean dynamic contribute significantly to sea level rise. Monthly

mean sea level records from 8 tide gauge stations in the Chesapeake Bay were used as an

application of a new method of trend estimation by Ezer et al. [33]. The new method is based
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on Empirical Mode Decomposition (EMD) and Hilbert-Huang Transform (HHT). The same

method (EMD/HHT) is applied by Ezer et al. [31] to study the relationship between sea

level variations in Chesapeake Bay and the mid-Atlantic coast and the the Gulf Stream,

using both monthly mean sea level records from 10 tide gauge stations and altimeter data

from both regions.

In another study of measurements of sea level at tide stations along the Northeast Atlantic

coastal region of the United States and Canada from 1969 to 2011, Boon [10] obtains results

that are in agreement with the observational study by Sallenger et al. [74] and the pattern of

modeled projections (climate model) by Yin et al. [93]. According to [10] ”The observational

data support the claim that sea level rise is now accelerating at locations from Norfolk,

Virginia, to Halifax, Nova Scotia, at rates as high as 0.30mm/y2”.

In their paper, ”Modeling of Coastal Inundation, Storm Surge, and Relative SeaLevel

Rise at Naval Station Norfolk, Norfolk, Virginia, U.S.A.”,Li et al. [57] applied the coastal

modeling system to calculate the local water-surface elevation and storm-surge inundation in

Norfolk, Virginia, for varying future relative SLR scenarios. They describe the consequences

of potential relative SLR estimates and storm surges on inundation. In the context of low

probability with high impact events ”extreme event”, Sweet and Park [81] studies the sea

level data from different stations in the East and West coasts of the Unite States, including

Norfolk (Sewells Point gauge). Among their results, data from Norfolk shows exponential

growth when fitting growth model.
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The moments of the Gumbel random

variable and the theoretical moments

of the AR(1) model

Since the defined hypothesis tests are based on the empirical skewness and kurtosis of the

AR(1), then the theoretical moments for the AR(1) model and for the innovations are needed.

In this chapter, we started by proving a general formula for the higher moments of Gumbel

random variable, then obtained the first six moments. Then, the second, third, fourth, fifth,

sixth and eighth moments for AR(1) model were calculated in section 2. In section 3 we

calculate the variance of second, third and fourth empirical moments, and covariance of

second and third empirical moments, and second and fourth empirical moments.

The Moments of the Gumbel Random Variable

In this section we start by proving a general formula for the higher moments of Gumbel

random variable.

Theorem 0.0.1. Let X be a Gumbel random variable with location parameter µ and scale

parameter β, ”X ∼ G(µ, β)”. Then the higher moments around the origin τn, E(Xn), are

given by:

τn =
n∑
k=0

(
n

k

)
Γ(k)(1)(−β)kµn−k, n ∈ N (15)
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where Γ(k)(1) is the k-th derivative of Gamma function evaluated at 1, and Γ(0)(1) = Γ(1).

Proof. We will use mathematical induction to prove :

τn = m(n)(0)

= m(t)
∣∣∣
t=0

=
dn

dtn
Γ(1− βt)eµt

∣∣∣
t=0

=
n∑
k=0

(
n

k

)
Γ(k)(1)(−β)kµn−k

When n = 1, then

τ1 = m(1)(0)

=
d

dt
Γ(1− βt)eµt

∣∣∣
t=0

= Γ(1− βt)eµtµ− Γ′(1− βt)eµtβ
∣∣∣
t=0

= Γ(1)µ− Γ′(1)β

=
1∑

k=0

(
1

k

)
Γ(k)(1)(−β)kµ1−k.
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Now, assume the statement is correct for n = i, s.t.

τi = m(i)(0)

=
di

dti
Γ(1− βt)eµt

∣∣∣
t=0

=

(
i

0

)
µieµtΓ(1− βt)−

(
i

1

)
µi−1βeµtΓ′(1− βt) + ...+

+

(
i

i− 1

)
µβi−1eµtΓ(i−1)(1− βt)−

(
i

i

)
βieµtΓ(i)(1− βt)

∣∣∣
t=0

= µiΓ(1)−
(
i

1

)
µi−1βΓ′(1) + ...+

(
i

i− 1

)
µβi−1Γ(i−1)(1)− βiΓ(i)(1),

=
i∑

k=0

(
i

k

)
Γ(k)(1)(−β)kµi−k
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since
(i
0

)
=
(i
i

)
= 1 we get the second last line. And to prove it for n = i+ 1, note that

τi+1 =
di+1

dti+1
m(t)

∣∣∣
t=0

=
d

dt
(mi(t))

∣∣∣
t=0

=
d

dt

[(
i

0

)
µieµtΓ(1− βt)−

(
i

1

)
µi−1βeµtΓ′(1− βt) + ...+

+

(
i

i− 1

)
µβi−1eµtΓ(i−1)(1− βt)−

(
i

i

)
βieµtΓ(i)(1− βt)

]∣∣∣∣∣
t=0

=

[(
i

0

)
µi+1eµtΓ(1− βt)−

(
i

0

)
µieµtβΓ′(1− βt)

−
(
i

1

)
µiβeµtΓ′(1− βt) +

(
i

1

)
µi−1β2eµtΓ′′(1− βt) + ...+

+

(
i

i− 1

)
µ2βi−1eµtΓ(i−1)(1− βt)−

(
i

i− 1

)
µβieµtΓ(i)(1− βt)

−
(
i

i

)
µβieµtΓ(i)(1− βt) +

(
i

i

)
βi+1eµtΓ(i+1)(1− βt)

]∣∣∣∣∣
t=0

=

[(
i

0

)
µi+1Γ(1)−

(
i

0

)
µiβΓ′(1)−

(
i

1

)
µiβΓ′(1) +

(
i

1

)
µi−1β2Γ′′(1)

+ ...+

(
i

i− 1

)
µ2βi−1Γ(i−1)(1)−

(
i

i− 1

)
µβiΓ(i)(1)−

(
i

i

)
µβiΓ(i)(1)

+

(
i

i

)
βi+1Γ(i+1)(1)

]

notice that
(i
0

)
=
(i
i

)
= 1 implies:

τi+1 =

[
µi+1Γ(1)−

[(i
0

)
+

(
i

1

)]
µiβΓ′(1) + ...+ ...−

[( i

i− 1

)
+

(
i

i

)]
µβiΓ(i)(1)

+ β(i+1)Γ(i+1)(1)

]
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Now applying the identity
(n
k

)
=
(n−1
k−1

)
+
(n−1
k

)
to the two terms inside the previous expres-

sion yields to:

τi+1 =

[
µi+1Γ(1)−

(
i+ 1

1

)
µiβΓ′(1) + ...+ ...−

(
i+ 1

i

)
µβiΓ(i)(1) + β(i+1)Γ(i+1)(1)

]

=
i+1∑
k=0

(
i+ 1

k

)
Γ(k)(1)(−β)kµ(i+1)−k

Which is the required.

Since the formula contains the higher derivatives of Gamma function evaluated at 1, the

following lemma states these values without prove. (see [19] for details)

Lemma 0.0.2. Let Γ(z) be the Gamma function, defined on the complex plane as:

Γ(z) =

∫ ∞
0

e−ttz−1dt , where R(z) > 0

and let ζ(s) be the Riemann Zeta function, defined as

ζ(s) =
1

Γ(s)

∫ ∞
0

xs−1

ex − 1
dx

Euler evaluated ζ(2n), n ∈ N , that is ζ(2) = π2

6 , ζ(4) = π4

90 , and ζ(6) = π6

945 , then:

1. Γ(1) = 1.

2. Γ′(1) = −γ.
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3. The second derivative

Γ′′(1) = γ2 + ζ(2)

= γ2 +
π2

6

4. The third derivative

Γ(3)(1) = −γ3 − 3γζ(2)− 2ζ(3)

= −γ3 − γπ
2

2
− 2ζ(3)

5. The forth derivative

Γ(4)(1) = γ4 + 6γ2ζ(2) + 8γζ(3) +
27

4
ζ(4)

= γ4 + γ2π2 + 8γζ(3) +
3

20
π4

6. The fifth derivative

Γ(5)(1) = −γ5 − 10γ3ζ(2)− 20γ2ζ(3)− 135

2
ζ(4)− 20ζ(2)ζ(3)− 24ζ(5)

= −γ5 − 5

3
γ3π2 − 20γ2ζ(3)− 3

4
γπ4 − 10

3
π2ζ(3)− 24ζ(5)
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7. The sixth derivative

Γ(6)(1) = γ6 + 15γ4ζ(2) + 40γ3ζ(3)

+
404

2
(ζ(4))2 + 120γζ(2)ζ(3)

+ 144γζ(5) + 40(ζ(3))2 +
2745

8
ζ(6)

= γ6 +
5

2
γ4π2 + 40γ3ζ(3)

+
45

20
γ2π4 + 20γπ2ζ(3)

+ 144γζ(5) + 40(ζ(3))2 +
61

168
π6

Using these values with Theorem0.0.1, the first six moments for Gumbel random variable

are obtained in the following Lemma.

Lemma 0.0.3. Let X be a Gumbel random variable with location parameter µ and scale

parameter β, ”X ∼ G(µ, β)”, and define E(Xn) = κn then:

1. τ1 = µ+ βγ.

2. τ2 = µ2 + β2γ2 + π2

6 β
2 + 2βµγ

3. τ3 = µ3 + 3µ2βγ + 3µβ2(γ2 + π2

6 ) + β3(γ3 + γ π
2

2 + 2ζ(3)).

4.

τ4 = µ4 + 4µ3βγ + 6β2µ2(γ2 +
π2

6
) + 4β3µ(γ3 + γ

π2

2
+ 2ζ(3))

+ β4(γ4 + γ2π2 + 8γζ(3) +
3

20
π4)
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5.

τ5 = µ5 + 5µ4βγ + 10µ3β2(γ2 +
π2

6
) + 10µ2β3(γ3 + 3γ

π2

2
+ 2ζ(3))

+ 5µβ4(γ4 + γ2π2 + 8γζ(3) +
3

20
π4)

+ β5(γ5 +
5

3
γ3π2 + 20γ2ζ(3) +

3

4
γπ4 +

10

3
π2ζ(3) + 24ζ(5))

6.

τ6 = µ6 + 6µ5βγ + 15µ4β2(γ2 +
π2

6
) + 20µ3β3(γ3 + γ

π2

2
+ 2ζ(3))

+ 15µ2β4(γ4 + γ2π2 + 8γζ(3) +
3

20
π4) + 6µβ5(γ5 +

5

3
γ3π2 + 20γ2ζ(3)

+
3

4
γπ4 +

10

3
π2ζ(3) + 24ζ(5)) + β6(γ6 +

5

2
γ4π2 + 40γ3ζ(3)

+
45

20
γ2π4 + 20γπ2ζ(3) + 144γζ(5) + 40(ζ(3))2 +

61

168
π6)

Proof. By applying Theorem 0.0.1 and Lemma0.0.2.

Now the moments of a centered ”E(X) = 0 and Var(X) = σ2” Gumbel random variable,

is stated in the following corollary.

Corollary 0.0.4. Suppose X ∼ G(−
√

6
π γσ,

√
6
π σ), where σ > 0 and γ is Euler’s constant,

then

1. τ1 = 0

2. τ2 = σ2

3. τ3 = 2·6
√

6
π3 σ3ζ(3)
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4. τ4 = 3·9
5 σ

4

5. τ5 = 36
√

6
π5 σ5[10

3 π
2ζ(3) + 24ζ(5)]

6. τ6 = 36·6
π6 σ

6[40(ζ(3))2 + 61
168π

6]

Where ζ(.) is the Riemann Zeta function defined in Lemma 0.0.2.

The theoretical moments of the AR(1) model

In this section we calculate the theoretical moments of AR(1) model. Let ξt = IID(0, σ2)

and

Xt+1 = φXt + ξt+1

which implies:

Xt =
∞∑
i=0

φiξt−i,

Let E(Xr
t ) = mr and E(ξrt ) = τr, then

Lemma 0.0.5.

m2 =
τ2

1− φ2
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Proof.

m2 = E[(
∞∑
i=0

φiξt−i)
2]

= E
[
(
∞∑
i=0

φiξt−i)(
∞∑
j=0

φjξt−j)
]

=
∞∑
i=0

φ2iE[ξ2
t−i] =

τ2
1− φ2

Since E(ξt) = 0 we keep only the case where i = j.

And the third moment is:

Lemma 0.0.6.

m3 =
τ3

1− φ3

Proof.

m3 = E[(
∞∑
i=0

φiξt−i)
3]

= E
[
(
∞∑
i=0

φiξt−i)(
∞∑
j=0

φjξt−j)(
∞∑
k=0

φkξt−k)
]

=
∞∑
i=0

φ3iE[ξ3
t−i] =

τ3
1− φ3

Since E(ξt) = 0 we keep only the case where i = j = k.

The fourth moment is:
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Lemma 0.0.7.

m4 =
τ4 − 3τ2

2

(1− φ4)
+

3τ2
2

(1− φ2)2

Proof.

m4 = E[(
∞∑
i=0

φiξt−i)
4]

= E
[
(
∞∑
i=0

φiξt−i)(
∞∑
j=0

φjξt−j)(
∞∑
k=0

φkξt−k)(
∞∑
l=0

φlξt−l)
]

=
∞∑
i=0

φ4iE[ξ4
t−i] + 3

∞∑
i=0

∞∑
j=0,j 6=i

φ2(i+j)E[ξ2
t−i]E[ξ2

t−j ]

=
τ4

1− φ4
+ 3τ2

2

( 1

(1− φ2)2
− 1

(1− φ4)

)
=
τ4 − 3τ2

2

(1− φ4)
+

3τ2
2

(1− φ2)2

in the second line we keep the cases where all the indices are equal and the indices when two

are equal and the other two are equal, and this is the coefficient of the second term in the

second line, from
(4
2

)(2
2

)/
2!. And the summation

∞∑
i=0

∞∑
j=0,j 6=i

φ2(i+j)E[ξ2
t−i]E[ξ2

t−j ]

is done using the fact that ∑
i6=k

=
∑
i,k

−
∑
i=k
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as follows

∞∑
i=0

∞∑
j=0,j 6=i

φ2(i+j)E[ξ2
t−i]E[ξ2

t−j ] = τ2
2

∞∑
i=0

φ2i
∞∑

j=0,j 6=i
φ2j

= τ2
2

∞∑
i=0

φ2i
[ 1

(1− φ2)
− φ2i

]
= τ2

2

[ 1

(1− φ2)2
− 1

(1− φ4)

]

And the fifth moment is:

Lemma 0.0.8.

m5 =
τ5 − 10τ2τ3

(1− φ5)
+

10τ2τ3
(1− φ3)(1− φ2)

Proof.

m5 = E[(
∞∑
i=0

φiξt−i)
5]

= E
[
(
∞∑
i=0

φiξt−i)(
∞∑
j=0

φjξt−j)(
∞∑
k=0

φkξt−k)(
∞∑
l=0

φlξt−l)(
∞∑
m=0

φmξt−m)
]

=
∞∑
i=0

φ5iE[ξ5
t−i] +

(
5

3

) ∞∑
i=0

∞∑
j=0,j 6=i

φ3i+2jE[ξ3
t−i]E[ξ2

t−j ]

=
τ5

1− φ5
+ 10τ2τ3

( 1

(1− φ3)(1− φ2)
− 1

1− φ5

)
=
τ5 − 10τ2τ3

(1− φ5)
+

10τ2τ3
(1− φ3)(1− φ2)
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in the second line we keep the cases where all the indices are equal and the indices when two

are equal and the other three are equal, and this is the coefficient of the second term in the

second line, from
(5
3

)(2
2

)
. Again the summation in the scond line is done using the fact that

∑
i6=k

=
∑
i,k

−
∑
i=k

.

Where as the sixth moment is:

Lemma 0.0.9.

m6 =
τ6 − 15τ2τ4 − 10τ2

3 + 30τ3
2

(1− φ6)
+

15τ2τ4 − 45τ3
2

(1− φ4)(1− φ2)
+

10τ2
3

(1− φ3)2
+

15τ3
2

(1− φ2)3
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Proof.

m6 = E[(
∞∑
i=0

φiξt−i)
6]

=
∞∑
i=0

φ6iE[ξ6
t−i] +

(
6

2

) ∞∑
i=0

∞∑
j=0,j 6=i

φ4i+2jE[ξ4
t−i]E[ξ2

t−j ]

+

(6
3

)
2

∞∑
i=0

∞∑
j=0,j 6=i

φ3i+3jE[ξ3
t−i]E[ξ3

t−j ]

+

(6
2

)(4
2

)
6

∞∑
i=0

∞∑
j=0

∞∑
k=0,k 6=j 6=i

φ2i+2j+2kE[ξ2
t−i]E[ξ2

t−j ]E[ξ2
t−k]

=
τ6

1− φ6
+ 15τ2τ4

( 1

(1− φ4)(1− φ2)
− 1

1− φ6

)
+ 10τ2

3

( 1

(1− φ3)2
− 1

1− φ6

)
+ 15τ3

2

( 1

(1− φ2)3
− 3

(1− φ4)(1− φ2)
+

2

(1− φ6)

)
=
τ6 − 15τ2τ4 − 10τ2

3 + 30τ3
2

(1− φ6)
+

15τ2τ4 − 45τ3
2

(1− φ4)(1− φ2)
+

10τ2
3

(1− φ3)2
+

15τ3
2

(1− φ2)3

Again, by repeating the same logic to count the indices, and using the fact

∑
i6=k

=
∑
i,k

−
∑
i=k

.

Lastly the eighth moment is:
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Lemma 0.0.10.

m8 = =
τ8 − 28τ2τ6 − 56τ3τ5 − 35τ2

4 + 420τ2
2 τ4 + 560τ2τ

2
3 − 630τ4

2

(1− φ8)

+
28τ2τ6 − 420τ2

2 τ4 − 280τ2τ
2
3 + 840τ4

2

(1− φ6)(1− φ2)
+

56τ3τ5 − 560τ2τ
2
3

(1− φ5)(1− φ3)

+
35τ2

4 − 210τ2
2 τ4 + 315τ4

2

(1− φ4)2
+

210τ2
2 τ4 − 630τ4

2

(1− φ4)(1− φ2)2
+

280τ2τ
2
3

(1− φ3)2(1− φ2)
+

105τ4
2

(1− φ2)4
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Proof.

m8 = E[(
∞∑
i=0

φiξt−i)
8]

=
∞∑
i=0

φ8iE[ξ8
t−i] +

(
8

6

) ∞∑
i=0

∞∑
j=0,j 6=i

φ6i+2jE[ξ6
t−i]E[ξ2

t−j ]

+

(
8

5

) ∞∑
i=0

∞∑
j=0,j 6=i

φ5i+3jE[ξ5
t−i]E[ξ3

t−j ] +

(8
4

)
2

∞∑
i=0

∞∑
j=0,j 6=i

φ4i+4jE[ξ4
t−i]E[ξ4

t−j ]

+

(8
4

)(4
2

)
2

∞∑
i=0

∞∑
j=0

∞∑
k=0,k 6=j 6=i

φ4i+2j+2kE[ξ4
t−i]E[ξ2

t−j ]E[ξ2
t−k]

+

(8
3

)(5
3

)
2

∞∑
i=0

∞∑
j=0

∞∑
k=0,k 6=j 6=i

φ3i+3j+2kE[ξ3
t−i]E[ξ3

t−j ]E[ξ2
t−k]

+

(8
2

)(6
2

)(4
2

)
24

∞∑
i=0

∞∑
j=0

∞∑
k=0

∞∑
l=0,i 6=j 6=k 6=l

φ2i+2j+2k+2lE[ξ2
t−i]E[ξ2

t−j ]E[ξ2
t−k]E[ξ2

t−l]

=
τ8

(1− φ)8
+ 28τ2τ6

( 1

(1− φ6)(1− φ2)
− 1

(1− φ8)

)
+ 56τ3τ5

( 1

(1− φ5)(1− φ3)
− 1

(1− φ8)

)
+ 35τ2

4

( 1

(1− φ4)2
− 1

(1− φ8)

)
+ 210τ2

2 τ4

( 1

(1− φ4)(1− φ2)2
− 2

(1− φ2)(1− φ6)
− 1

(1− φ4)2
+

2

(1− φ8)

)
+ 280τ2τ

2
3

( 1

(1− φ3)2(1− φ2)
− 1

(1− φ6)(1− φ2)
− 2

(1− φ3)(1− φ5)
+

2

(1− φ8)

)
+ 105τ4

2

( 1

(1− φ2)4
− 6

(1− φ4)(1− φ2)2
+

8

(1− φ6)(1− φ2)
+

3

(1− φ4)2
− 6

(1− φ8)

)
=
τ8 − 28τ2τ6 − 56τ3τ5 − 35τ2

4 + 420τ2
2 τ4 + 560τ2τ

2
3 − 630τ4

2

(1− φ8)

+
28τ2τ6 − 420τ2

2 τ4 − 280τ2τ
2
3 + 840τ4

2

(1− φ6)(1− φ2)

+
56τ3τ5 − 560τ2τ

2
3

(1− φ5)(1− φ3)
+

35τ2
4 − 210τ2

2 τ4 + 315τ4
2

(1− φ4)2

+
210τ2

2 τ4 − 630τ4
2

(1− φ4)(1− φ2)2
+

280τ2τ
2
3

(1− φ3)2(1− φ2)
+

105τ4
2

(1− φ2)4
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End of the proof.

The asymptotic variances and covariances of the empir-

ical moments of the AR(1) model

In this section we calculate the variances and covariances of m̂i =
∑T
t=1X

i
t/T where

Xt =
∑∞
i=0 φ

iξt−i, and ξt = IID(0, σ2) with E(ξr) = τr and τr <∞ for r = 2, 3, 4, 5, 6, 8.

We start by the asymptotic variance of the second empirical moment.

Theorem 0.0.11.

TVar[m̂2] = (m4 −m2
2)

(
2

(1− φ2)
− 1

)
+ o(1)

Proof.

Var[m̂2] =
(m4 −m2

2)

T
+

1

T 2

T∑
i=1

T∑
j=1

Cov(X2
i , X

2
j )

Now verify there are exactly T − r terms whose covariance values are same and equal to

Cov(X2
1 , X

2
1+r). Thus,

Var[m̂2] =
(m4 −m2

2)

T
+

2

T 2

T−1∑
r=1

(T − r)Cov(X2
1 , X

2
1+r)︸ ︷︷ ︸

CT,r
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Thus, the problem boils down to the computation of Cov(X2
1 , X

2
1+r). Now note that

X1+r = φrX1 +
r∑
i=1

φr−iξ1+i︸ ︷︷ ︸
Rr

where Rr is independent of X1. Thus,

Cov(X2
1 , X

2
1+r) = Cov(X2

1 , φ
2rX2

1 + 2φrX1Rr +R2
r)

= φ2rVar(X2
1 ) + 2φrCov(X2

1 , X1Rr)

= φ2r(m4 −m2
3) + 2φr(m3E[Rr]−m2m1E[Rr])

First note that m1 = 0 and E[Rr] = 0 which allows us to simplify a bit.

Cov(X2
1 , X

2
1+r) = φ2r(m4 −m2

3)

This implies:

CT,r =
2

T 2

T−1∑
r=1

(T − r)φ2r(m4 −m2
3)

=
2

T 2

T−1∑
r=0

(T − r)φ2r(m4 −m2
3)−

2(m4 −m2
3)

T

=
2(m4 −m2

3)

T

( 1

(1− φ2)
− 1
)

+ o
( 1

T

)
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The following theorem is for the asymptotic variance of the third empirical moment.

Theorem 0.0.12.

TVar[m̂3] = 2
[
(m6 −m2

3)

(
1

(1− φ3)
− 1/2

)
+ 3m4τ2

(
1

(1− φ)(1− φ2)
− 1

(1− φ3)(1− φ2)

)]
+ o(1)

Proof.

Var[m̂3] =
(m6 −m2

3)

T
+

1

T 2

T∑
i=1

T∑
j=1

Cov(X3
i , X

3
j )

Now verify there are exactly T − r terms whose covariance values are same and equal to

Cov(X3
1 , X

3
1+r). Thus,

Var[m̂3] =
(m6 −m2

3)

T
+

2

T 2

T−1∑
r=1

(T − r)Cov(X3
1 , X

3
1+r)︸ ︷︷ ︸

CT,r

Thus, the problem boils down to the computation of Cov(X3
1 , X

3
1+r). Now note that

X1+r = φrX1 +
r∑
i=1

φr−iξ1+i︸ ︷︷ ︸
Rr
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where Rr is independent of X1. Thus,

Cov(X3
1 , X

3
1+r) = Cov(X3

1 , φ
3rX3

1 + 3φ2rX2
1Rr + 3φrX1R

2
r +R3

r)

= φ3rVar(X3
1 ) + 3φ2rCov(X3

1 , X
2
1Rr) + 3φrCov(X3

1 , X1R
2
r)

= φ3r(m6 −m2
3) + 3φ2r(m5E[Rr]−m3m2E[Rr])

+ 3φr(m4E[R2
r ]−m3m1E[R2

r ])

First note that m1 = 0 and E[Rr] = 0 which allows us to simplify a bit.

Cov(X3
1 , X

3
1+r) = φ3r(m6 −m2

3) + 3φrm4E[R2
r ]

We simplify further by noting

E[R2
r ] =

τ2(1− φ2r)

1− φ2

CT,r =
2

T 2

T−1∑
r=1

(T − r)φ3r(m6 −m2
3) + 3φrm4

τ2(1− φ2r)

1− φ2

=
2

T 2

T−1∑
r=0

(T − r)
(

(m6 −m2
3)φ3r + 3m4τ2

φr(1− φ2r)

1− φ2

)
−

2(m6 −m2
3)

T

=
2

T

(m6 −m2
3

(1− φ3)
− 3m4τ2

(1− φ3)(1− φ2)
+

3m4τ2
(1− φ)(1− φ2)

)
−

2(m6 −m2
3)

T
+ o
( 1

T

)

And the following theorem calculates the covariance between m̂2 and m̂3
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Theorem 0.0.13.

TCov[m̂3, m̂2] = (m5 −m3m2)

(
1

1− φ2
+

1

1− φ3
− 1

)
+ 3τ2m3

(
1

(1− φ)(1− φ2)
− 1

(1− φ3)(1− φ2)

)
+ o(1)

Proof.

Cov[m̂3, m̂2] =
Cov(X3

1 , X
2
1 )

T
+

1

T 2

T−1∑
r=1

(T − r)Cov(X3
1 , X

2
1+r)︸ ︷︷ ︸

C1
T,r

+
1

T 2

T−1∑
r=1

(T − r)Cov(X2
1 , X

3
1+r)︸ ︷︷ ︸

C2
T,r

By repeating logic of the previous proof:

Cov(X3
1 , X

2
1+r) = Cov(X3

1 , φ
2rX2

1 + 2φrX1Rr +R2
r)

= φ2rCov(X3
1 , X

2
1 ) + 2φrCov(X3

1 , X1Rr)

= φ2r(m5 −m3m2) + 2φr(m4E[Rr]−m3m1E[Rr]) = φ2r(m5 −m3m2)
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since E[Rr] = 0. Also,

Cov(X2
1 , X

3
1+r) = Cov(X2

1 , φ
3rX3

1 + 3φ2rX2
1Rr + 3φrX1R

2
r +R3

r)

= φ3rCov(X2
1 , X

3
1 ) + 3φ2rCov(X2

1 , X
2
1Rr) + 3φrCov(X2

1 , X1R
2
r)

= φ3r(m5 −m3m2) + 3φ2r(m4E[Rr]−m2
2E[Rr])

+ 3φr(m3E[R2
r ]−m2m1E[R2

r ])

= φ3r(m5 −m3m2) + 3τ2m3
φr(1− φ2r)

1− φ2

since m1 = 0, E[Rr] = 0 and E[R2
r ] = τ2(1− φ2r)/(1− φ2). Substituting we get,

C1
T,r =

(m5 −m3m2)

T 2

T−1∑
r=1

(T − r)φ2r =
(m5 −m3m2)

T

( 1

1− φ2
− 1
)

+ o
( 1

T

)

C2
T,r =

(m5 −m3m2)

T 2

T−1∑
r=1

(T − r)φ3r + 3τ2m3

T−1∑
r=1

(T − r)φ
r(1− φ2r)

1− φ2

=
(m5 −m3m2)

T

( 1

1− φ3
− 1
)

+ 3τ2m3

( 1

(1− φ)(1− φ2)
− 1

(1− φ3)(1− φ2)

)
+ o
( 1

T

)

Here is the asymptotic variance of m̂4
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Theorem 0.0.14.

TVar[m̂4] = 2
[
(m8 −m2

4)

(
1

(1− φ4)
− 1/2

)
+ 6τ2(m6 −m4m2)

(
1

(1− φ2)2
− 1

(1− φ2)(1− φ4)

)
+ 4m5τ3

(
1

(1− φ)(1− φ3)
− 1

(1− φ3)(1− φ4)

)]
+ o(1)

Proof.

Var[m̂4] =
(m8 −m2

4)

T
+

1

T 2

T∑
i=1

T∑
j=1

Cov(X4
i , X

4
j )

Now verify there are exactly T − r terms whose covariance values are same and equal to

Cov(X4
1 , X

4
1+r). Thus,

Var[m̂4] =
(m8 −m2

4)

T
+

2

T 2

T−1∑
r=1

(T − r)Cov(X4
1 , X

4
1+r)︸ ︷︷ ︸

CT,r

Thus, the problem boils down to the computation of Cov(X4
1 , X

4
1+r). Now note that

X1+r = φrX1 +
r∑
i=1

φr−iξ1+i︸ ︷︷ ︸
Rr
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where Rr is independent of X1. Thus,

Cov(X4
1 , X

4
1+r) = Cov(X4

1 , φ
4rX4

1 + 4φ3rX3
1Rr + 6φ2rX2

1R
2
r + 4φrX1R

3
r +R4

r)

= φ4rVar(X4
1 ) + 4φ3rCov(X4

1 , X
3
1Rr) + 6φ2rCov(X4

1 , X
2
1R

2
r)

+ 4φrCov(X4
1 , X1R

3
r)

= φ4r(m8 −m2
4) + 4φ3r(m7E[Rr]−m4m3E[Rr])

+ 6φ2r(m6E[R2
r ]−m4m2E[R2

r ]) + 4φr(m5E[R3
r ]−m4m1E[R3

r ])

First note that m1 = 0 and E[Rr] = 0 which allows us to simplify a bit.

Cov(X4
1 , X

4
1+r) = φ4r(m8 −m2

4) + 6φ2r(m6E[R2
r ]−m4m2E[R2

r ]) + 4φrm5E[R3
r ]

Now note that

E[R2
r ] =

τ2(1− φ2r)

1− φ2

E[R3
r ] =

τ3(1− φ3r)

1− φ3
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Substituting we get,

CT,r =
2

T 2

T−1∑
r=1

(T − r)
(
φ4r(m8 −m2

4) +
6τ2(1− φ2r)

1− φ2
φ2r(m6 −m4m2) +

4φm5τ3(1− φ3r)

1− φ3

)

=
2

T 2

T−1∑
r=0

(T − r)
(
φ4r(m8 −m2

4) +
6τ2(1− φ2r)

1− φ2
φ2r(m6 −m4m2) +

4φm5τ3(1− φ3r)

1− φ3

)
−

2(m8 −m2
4)

T

=
2

T

(m8 −m2
4

(1− φ4)
− 6τ2(m6 −m4m2)

(1− φ2)(1− φ4)
− 4m5τ3

(1− φ3)(1− φ4)
+

6τ2(m6 −m4m2)

(1− φ2)2

)
+

8m5τ3
T (1− φ)(1− φ3)

−
2(m8 −m2

4)

T
+ o
( 1

T

)

where o(1/T ) involves terms like TαT .

And lastly the asymptotic covariance between m̂2 and m̂4

Theorem 0.0.15.

Cov[m̂4, m̂2] = (m6 −m4m2)

(
1

1− φ2
+

1

1− φ4
− 1

)
+ 6τ2(m4 −m2

2)

(
1

(1− φ2)2
− 1

(1− φ2)(1− φ4)

)
+ 4m3τ3

(
1

(1− φ)(1− φ3)
− 1

(1− φ3)(1− φ4)

)
+ o(1)
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Proof.

Cov[m̂4, m̂2] =
Cov(X4

1 , X
2
1 )

T
+

1

T 2

T−1∑
r=1

(T − r)Cov(X4
1 , X

2
1+r)︸ ︷︷ ︸

C1
T,r

+
1

T 2

T−1∑
r=1

(T − r)Cov(X2
1 , X

4
1+r)︸ ︷︷ ︸

C2
T,r

By repeating logic of the previous proof:

Cov(X4
1 , X

2
1+r) = Cov(X4

1 , φ
2rX2

1 + 2φ2rX1Rr +R2
r)

= φ2rCov(X4
1 , X

2
1 ) + 2φrCov(X4

1 , X1Rr)

= φ2r(m6 −m4m2) + 2φr(m5E[Rr]−m1E[Rr]) = φ2r(m6 −m4m2)

since E[Rr] = 0. Also,

Cov(X2
1 , X

4
1+r) = Cov(X2

1 , φ
4rX4

1 + 4φ3rX3
1Rr + 6φ2rX2

1R
2
r + 4φX1R

3
r +R4

r)

= φ4rCov(X2
1 , X

4
1 ) + 4φ3rCov(X2

1 , X
3
1Rr) + 6φ2rCov(X2

1 , X
2
1R

2
r)

+ 4φrCov(X2
1 , X1R

3
r)

= φ4r(m6 −m4m2) + 4φ3r(m5E[Rr]−m2m3E[Rr])

+ 6φ2r(m4E[R2
r ]−m2

2E[R2
r ]) + 4φr(m3E[R3

r ]−m2m1E[R3
r ])

= φ4r(m6 −m4m2) + 6τ2(m4 −m2
2)

(1− φ2r)φ2r

1− φ2
+ 4τ3m3

(1− φ3r)φr

1− φ3
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since E[Rr] = 0, E[R2
r ] =

τ2(1−φ2r)

1−φ2 , E[R3
r ] =

τ3(1−φ3r)

1−φ3 . Substituting we get,

C1
T,r =

1

T 2

T−1∑
r=1

(T − r)(m6 −m4m2)φ2r =
1

T

(m6 −m4m2)

1− φ2
− (m6 −m4m2)

T
+ o
( 1

T

)

C2
T,r =

1

T (1− φ4)

(
m6 −m4m2 −

6τ2(m4 −m2
2)

1− φ2
− 4m3τ3

1− φ3

)
+

1

T

(6τ2(m4 −m2
2)

(1− φ2)4
+

4m3τ3
(1− φ)(1− φ3)

)
− (m6 −m4m2)

T
+ o
( 1

T

)
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The asymptotic distributions of m̂2,

m̂3 and m̂4 and the non-central

chi-square S and K tests

Asymptotic theory plays a very important role in time series, since the exact distributions of

statistics of time series can be impossible and complicated to derive, even for Gaussian pro-

cesses unless in limited known very special cases. Many classical theorems were first proved

under the independent and identically distribution assumptions, and extended to the depen-

dent case.One way to do it, is through m-dependence approximation, which first introduced

by HOEFFDING AND ROBBINS (1948) [40]. In this chapter we proved the asymptotic

normality of the empirical second, third and fourth moments of a class of stationary linear

process, in the first section. Then apply the Delta method a conjecture to prove the asymp-

totic normality of the empirical skewness and kurtosis of the same class of processes, in

section 2. In section 3, we define the non-central chisquare distribution goodness of fit tests

S and K, to reject the null hypotheses of Gaussian innovations in favor of Gumbel, Gumbel

innovations and Gussian in favor of mixture of both and Gumbel innovations in favor of the

Gaussian.
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The asymptotic normality of m̂2, m̂3 and m̂4

The sequence X1, X2, ... is m-dependent for some m > 0 if the vector (X1, X2, ..., Xi) is

independent of (Xi+j , Xi+j+1, ...) whenever j > m. The central limit theorem (CLT) for

stationary m-dependent sequence is used to prove the asymptotic normality of the second,

third and fourth empirical moments of stationary linear processes.

Let Xt be a linear process of the form:

Xt =
∞∑

i=−∞
φiξt−i (16)

where ξt = IID(0, σ2), and the coefficients satisfy
∑∞
i=−∞|φi| <∞. then the second empir-

ical moment is:

m̂2 =
T∑
t=1

X2
t /T,

and the third and fourth empirical moments respectively are:

m̂3 =
T∑
t=1

X3
t /T and m̂3 =

T∑
t=1

X3
t /T.

The CLT for stationary m-dependent sequence and ”an approximation” theorem are the

main tools used in the proof. Define

Xm
t =

m∑
i=−m

φimξt−i (17)

where φim = φi if |i| ≤ m and 0 otherwise, then Xm
t is 2m-dependent and strictly stationary.
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The idea of the proof is using truncation to construct an approximating sequence ynm of

random variables, that is similar to Xn, but their asymptotic distribution is obtainable.

These theorems are stated as follow respectively without proofs, where the proofs can be

found in [85, 75].

Theorem 0.0.16. If Xt is a strictly stationary m-dependent sequence of random variables

with mean zero and autocovariance function γ(·) and if

Vm =
u=m∑
u=−m

γ(u)

where Vm 6= 0, then

X̄n ∼ AN(0, Vm/n)

.

Theorem 0.0.17. Let xn for n = 1, 2, .... and ymn for m = 1, 2, ... be random K × 1 vector

such that:

(i) ymn
d−→ ym as n→∞ for each m;

(ii) ym
d−→ y as n→∞;

(iii) lim
m→∞

lim sup
n→0

Pr{|xn − ymn| > ε} = 0 for every ε > 0. By Tchebycheff inequality, this

condition is equivalent to E{|xn − ymn|2} → 0, which is easier to verify.

Then, xn
d−→ y

We begin by providing LLN for Stationary and Ergodic Time Series (Hamilton [38]).
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LetXt be a stationary process with mean E[Xt] = µ and autocovariance γj = cov(Xt, Xt−j).

If
∞∑
j=o

|γj | <∞

then Xt is ergodic for the mean. That is, X̄
p→ E[Xt] = µ. We state Ergodic Theorem as

follows:

Theorem 0.0.18. Let Xt be stationary and ergodic with E[Xi] = µ. Then

X̄ =
1

T

T∑
t=1

Xt
p→ E[Xt] = µ.

Remark 0.0.19. The ergodic theorem says that for a stationary and ergodic sequence {Xt}

the time average converges to the ensemble average as the sample size gets large.

Remark 0.0.20. Any transformation g(·) of a stationary and ergodic process {Xt} is also

stationary and ergodic. That is,{g(Xt)} is stationary and ergodic. Therefore, if E[g(Xt)]

exists then the ergodic theorem gives

ḡ =
1

T

T∑
t=1

g(Xt)
p→ E[g(Xt)].

as an application by take, g(x) = xi, where i = 2, 3, 4 we get m̂i
p→ mi, where m̂i =

1
T

∑T
t=1X

i and mi = E[Xi].

Next we prove formulas for the variance and the asymptotic variance of m̂2.

51



Theorem 0.0.21. Let Xt be a linear process of the form:

Xt =
∞∑

i=−∞
φiξt−i

where ξt = IID(0, σ2), and the coefficients satisfy
∑∞
i=−∞|φi| <∞, and E(ξ4

t ) <∞, then

TVar(m̂2)→
∞∑

r=−∞
γ2(r)

where

γ2(r) = Cov(X2
t , X

2
t+r)

= φ2r(m4 −m2
2)

m4 = E(X4
t ) and m2 = E(X2

t )

Proof.

Var(m̂2) =
1

T 2

T∑
i=1

n∑
j=1

Cov(X2
i , X

2
j ),

=
1

T 2

T−1∑
r=−(T−1)

(T − r)Cov(X2
1 , X

2
1+r)
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Now write Xt as:

X1+r = φrX1 +
r∑
i=1

φr−iξ1+i︸ ︷︷ ︸
Rr

where Rr is independent of X1, with E[Rr] = 0 and Var[Rr] =
σ2(1−φ2r)

1−φ2 . Then the cross-

covariance function look like the covariance function of X1. Thus,

Cov(X2
1 , X

2
1+r) = Cov(X2

1 , φ
2rX2

1 + 2φrX1Rr +R2
r)

= φ2rVar(X2
1 ) + 2φrCov(X2

1 , X1Rr)

= φ2r(m4 −m2
2) + 2φr(m3E[Rr]−m2m1E[Rr])

= φ2r(m4 −m2
2)

Let γ2(r) = Cov(X2
t , X

2
t+r), then

TVar(m̂2) =
T−1∑

r=−(T−1)

(
1− |r|

T

)
γ2(r),

and since
∑
i
|φi| <∞, this implies

∑
r
|γ2(r)| <∞. Note that:

∣∣(1− |r|T )γ2(r)
∣∣ < |γ2(r)| and(

1− |r|T
)
γ2(r)→ γ2(r), and take fn(r) =

(
1− |r|n

)
γ2(r), for |r| < n and zero for |r| > n. Let

µ(r) = 1 for r = ±1,±2, ... be the counting measure then by the Dominated Convergence

Theorem we have TVar(m̂2)→
∑∞
r=−∞ γ2(r).

The above result for the variance enables proving the following CLT for the statistic m̂2.

Theorem 0.0.22. If Xt is a stationary linear process and under the assumption of Theorem
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0.0.21, then:

m̂2 ∼ AN(m2, V/T )

Where m2 = E(X2
t ) and V =

∑∞
r=−∞ γ2(r).

Proof. First define the stationary 2m-dependent process

ymt = (Xm
t )2,

where Xm
t is the approximation defined in (17) to Xt, then:

ȳmT = T−1
T∑
t=1

ymt

= T−1
[
(Xm

1 )2 + ...+ (Xm
T )2

]

also E(ymt ) = E(Xm
t )2 is the second theoretical moment of the 2m dependent process Xm

t .

Then consider

ymT = T 1/2 [ȳmT − E(ȳmT )]

as an approximation to

yT = T 1/2(m̂2 −m2),

where E(ȳmT ) is the same as E(ymt ) given above. To obtain an asymptotic distribution for

yT , we apply Theorem 0.0.17, using ymT as our approximation.Now verfying (i),(ii) and (iii)

of Theorem 0.0.17.

(i) Applying Theorem 0.0.16, (CLT for m-dependent sequence), to the 2m dependent series
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ymT we obtain:

ymT = T 1/2 [ȳmT − E(ȳmT )]
d−→ ym ∼ N(0, Vm)

as T →∞ where Vm =
∑m
r=−m γ2(r). (ii) Note that as m→∞, Vm → V , using the Domi-

nated Convergence Theorem, where V is defined in Theorem 0.0.22. Hence the characteristic

function of ym,

ϕm(λ) = exp{−1/2λ2Vm} → exp{−1/2λ2V }

as m→∞, which is the characteristic function of a random variable y ∼ N(0, V ) (character-

izing convergence of distribution of Fn(.) in terms of convergence of sequence of characteristic

functions ϕn(.), i.e., ϕn(λ)→ ϕ(λ)⇔ Fn(x)
d−→ F (x)). (iii)To verify the last condition, note

that:

E(yT − ymn)2 = TE
[
(m̂2 − E(X2

t ))− (ȳmT − E(ȳmT ))
]2

= TE
(
m̂2 − E(X2

t )
)2

+ TE
(
ȳmT − E(ȳmT )

)2
− 2TE

(
(m̂2 − E(X2

t ))(ȳmT − E(ȳmT ))
)

= TVar(m̂2) + TVar(ȳmT )− 2TCov(m̂2, ȳmT )

using the calculations that led to the result in Theorem 0.0.21, and letting m→∞, we get

TVar(m̂2) + TVar(m̂2)− 2TVar(m̂2),

hence

(V + V − 2V ) = 0
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as T →∞.

In order to prove the limiting distribution of m̂3 we start by providing formulas for the

variance and asymptotic variance of m̂3.

Theorem 0.0.23. Let Xt be a linear process of the form:

Xt =
∞∑

i=−∞
φiξt−i

where ξt = IID(0, σ2), and the coefficients satisfy
∑∞
i=−∞|φi| <∞, and E(ξ6

t ) <∞, then

TVar(m̂3)→
∞∑

r=−∞
γ3(r)

where

γ3(r) = Cov(X3
t , X

3
t+r)

= φ3r(m6 −m2
3) + 3φrm4

τ2(1− φ2r)

1− φ2
,

m6 = E(X6
t ), m3 = E(X3

t ) and m4 = E(X4
t ).
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Proof.

Var(m̂3) =
1

T 2

T∑
i=1

T∑
j=1

Cov(X3
i , X

3
j ),

=
1

T 2

T−1∑
r=−(T−1)

(T − r)Cov(X3
1 , X

3
1+r)

By repeating the same argument in proof of Theorem 0.0.21 we get:

Cov(X3
1 , X

3
1+r) = Cov(X3

1 , φ
3rX3

1 + 3φ2rX2
1Rr + 3φrX1R

2
r +R3

r)

= φ3rVar(X3
1 ) + 3φ2rCov(X3

1 , X
2
1Rr) + 3φrCov(X3

1 , X1R
2
r)

= φ3r(m6 −m2
3) + 3φ2r(m5E[Rr]−m3m2E[Rr])

+ 3φr(m4E[R2
r ]−m3m1E[R2

r ])

= φ3r(m6 −m2
3) + 3φrm4E[R2

r ]

= φ3r(m6 −m2
3) + 3φrm4

τ2(1− φ2r)

1− φ2

Let γ3(r) = Cov(X3
t , X

3
t+r), then

TVar(m̂3) =
T−1∑

r=−(T−1)

(
1− |r|

T

)
γ3(r),

and since
∑
i
|φi| <∞, this implies

∑
r
|γ3(r)| <∞. Note that:

∣∣(1− |r|T )γ3(r)
∣∣ < |γ3(r)| and(

1− |r|T
)
γ3(r)→ γ3(r), and take fn(r) =

(
1− |r|n

)
γ3(r), for |r| < n and zero for |r| > n. Let
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µ(r) = 1 for r = ±1,±2, ... be the counting measure then by the Dominated Convergence

Theorem we have TVar(m̂3)→
∑∞
r=−∞ γ3(r).

Now the following theorem proves the asymptotic distribution for m̂3. Note that the

proof will be very similar to the proof of Theorem0.0.22, where the same method and theo-

rems are used, but suitable approximations and estimators.

Theorem 0.0.24. If Xt is a stationary linear process and under the assumption of Theorem

0.0.23, then:

m̂3 ∼ AN(m3, V/T )

Where m3 = E(x3
t ) and V =

∑∞
r=−∞ γ3(r).

Proof. First define the stationary 2m-dependent process

ymt = (Xm
t )3,

where Xm
t is the approximation defined in (17) to Xt, then:

ȳmT = T−1
T∑
t=1

ymt

= T−1
[
(Xm

1 )3 + ...+ (Xm
n )3

]

also E(ymt ) = E(Xm
t )3 is the third theoretical moment of the 2m dependent process Xm

t .
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Then consider

ymT = T 1/2 [ȳmT − E(ȳmT )]

as an approximation to

yT = T 1/2(m̂3 −m3),

where E(ȳmT ) is the same as E(ymt ) given above. To obtain an asymptotic distribution for

yT , we apply Theorem 0.0.17, using ymT as our approximation.Now verifying (i),(ii) and

(iii) of Theorem 0.0.17.

(i) Applying Theorem 0.0.16, (CLT for m-dependent sequence), to the 2m dependent series

ymT we obtain:

ymT = T 1/2 [ȳmT − E(ȳmT )]
d−→ ym ∼ N(0, Vm)

as T →∞ where Vm =
∑m
r=−m γ3(r). (ii) Note that as m→∞, Vm → V , using the Domi-

nated Convergence Theorem, where V is defined in Theorem 0.0.24. Hence the characteristic

function of ym,

ϕm(λ) = exp{−1/2λ2Vm} → exp{−1/2λ2V }

as m→∞, which is the characteristic function of a random variable y ∼ N(0, V ) (character-

izing convergence of distribution of Fn(.) in terms of convergence of sequence of characteristic

functions ϕn(.), i.e., ϕn(λ)→ ϕ(λ)⇔ Fn(x)
d−→ F (x)). (iii)To verify the last condition, note
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that:

E(yT − ymT )2 = TE
[
(m̂3 − E(X3

t ))− (ȳmT − E(ȳmT ))
]2

= TE
(
m̂3 − E(X3

t )
)2

+ TE
(
ȳmT − E(ȳmT )

)2
− 2TE

(
(m̂3 − E(X3

t ))(ȳmT − E(ȳmn))
)

= TVar(m̂3) + TVar(ȳmT )− 2TCov(m̂3, ȳmT )

using the calculations that led to the result in Theorem 0.0.23, and letting m→∞, we get

TVar(m̂3) + TVar(m̂3)− 2TVar(m̂3),

hence

(V + V − 2V ) = 0

as T →∞.

The same technique above applied to find the limiting distribution of m̂4. First we start

by providing formulas for the variance and asymptotic variance of m̂4.

Theorem 0.0.25. Let Xt be a linear process of the form:

Xt =
∞∑

i=−∞
φiξt−i
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where ξt = IID(0, σ2), the coefficients satisfy
∑∞
i=−∞|φi| <∞ and E(ξ8

t ) <∞, then

TVar(m̂4)→
∞∑

r=−∞
γ4(r)

where

γ4(r) = Cov(X4
t , X

4
t+r)

= φ4r(m8 −m2
4) +

6τ2(1− φ2r)

1− φ2
φ2r(m6 −m4m2) +

4φm5τ3(1− φ3r)

1− φ3

mi = E(Xi
t) for i = 2, 4, 5, 6, 8, and τi = E(ξi) for i = 2, 3, 4, 5, 6, 8.

Proof.

Var(m̂4) =
1

T 2

T∑
i=1

T∑
j=1

Cov(X4
i , X

4
j ),

=
1

T 2

T−1∑
r=−(T−1)

(T − r)Cov(X4
1 , X

4
1+r)
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By repeating the same argument in proof of Theorem 0.0.21 we get:

Cov(X4
1 , X

4
1+r) = Cov(X4

1 , φ
4rX4

1 + 4φ3rX3
1Rr + 6φ2rX2

1R
2
r + 4φrX1R

3
r +R4

r)

= φ4rVar(X4
1 ) + 4φ3rCov(X4

1 , X
3
1Rr) + 6φ2rCov(X4

1 , X
2
1R

2
r)

+ 4φrCov(X4
1 , X1R

3
r)

= φ4r(m8 −m2
4) + 4φ3r(m7E[Rr]−m4m3E[Rr])

+ 6φ2r(m6E[R2
r ]−m4m2E[R2

r ]) + 4φr(m5E[R3
r ]−m4m1E[R3

r ])

Let γ4(r) = Cov(X4
t , X

4
t+r), then

TVar(m̂4) =
T−1∑

r=−(T−1)

(
1− |r|

T

)
γ4(r),

and since
∑
i
|φi| <∞, this implies

∑
r
|γ4(r)| <∞. Note that:

∣∣(1− |r|T )γ4(r)
∣∣ < |γ4(r)| and(

1− |r|T
)
γ4(r)→ γ4(r), and take fn(r) =

(
1− |r|n

)
γ4(r), for |r| < n and zero for |r| > n. Let

µ(r) = 1 for r = ±1,±2, ... be the counting measure then by the Dominated Convergence

Theorem we have TVar(m̂4)→
∑∞
r=−∞ γ4(r).

Now the following theorem proves the asymptotic distribution for m̂4. Note that the

proof will be very similar to the proof of Theorem0.0.22, where the same method and theo-

rems are used, but suitable approximations and estimators.

Theorem 0.0.26. If Xt is a stationary linear process and under the assumption of Theorem
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0.0.25, then:

m̂4 ∼ AN(m4, V/T )

Where m4 = E(x4
t ) and V =

∑∞
r=−∞ γ4(r).

Proof. First define the stationary 2m-dependent process

ymt = (Xm
t )4,

where Xm
t is the approximation defined in (17) to Xt, then:

ȳmT = T−1
T∑
t=1

ymt

= T−1
[
(Xm

1 )4 + ...+ (Xm
n )4

]

also E(ymt ) = E(Xm
t )4 is the fourth theoretical moment of the 2m dependent process Xm

t .

Then consider

ymT = T 1/2 [ȳmT − E(ȳmT )]

as an approximation to

yT = T 1/2(m̂4 −m4),

where E(ȳmT ) is the same as E(ymt ) given above. To obtain an asymptotic distribution for

yT , we apply Theorem 0.0.17, using ymT as our approximation.Now verifying (i),(ii) and

(iii) of Theorem 0.0.17.

(i) Applying Theorem 0.0.16, (CLT for m-dependent sequence), to the 2m dependent series
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ymT we obtain:

ymT = T 1/2 [ȳmT − E(ȳmT )]
d−→ ym ∼ N(0, Vm)

as T →∞ where Vm =
∑m
r=−m γ4(r). (ii) Note that as m→∞, Vm → V , using the Domi-

nated Convergence Theorem, where V is defined in Theorem 0.0.25. Hence the characteristic

function of ym,

ϕm(λ) = exp{−1/2λ2Vm} → exp{−1/2λ2V }

as m→∞, which is the characteristic function of a random variable y ∼ N(0, V ) (character-

izing convergence of distribution of Fn(.) in terms of convergence of sequence of characteristic

functions ϕn(.), i.e., ϕn(λ)→ ϕ(λ)⇔ Fn(x)
d−→ F (x)). (iii)To verify the last condition, note

that:

E(yT − ymT )2 = TE
[
(m̂4 − E(X4

t ))− (ȳmT − E(ȳmT ))
]2

= TE
(
m̂4 − E(X4

t )
)2

+ TE
(
ȳmT − E(ȳmT )

)2
− 2TE

(
(m̂4 − E(X4

t ))(ȳmT − E(ȳmn))
)

= TVar(m̂4) + TVar(ȳmT )− 2TCov(m̂4, ȳmT )

using the calculations that led to the result in Theorem 0.0.23, and letting m→∞, we get

TVar(m̂4) + TVar(m̂4)− 2TVar(m̂4),

hence

(V + V − 2V ) = 0
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as T →∞.

We state the following lemmas which contain the asymptotic covariances of (m̂2, m̂3) and

(m̂2, m̂4), without proof, since the idea of the proofs is the same as of the previous theorems

0.0.21 , 0.0.23 and 0.0.25.

Lemma 0.0.27. Let Xt be a linear process of the form:

Xt =
∞∑

i=−∞
φiξt−i

where ξt = IID(0, σ2), the coefficients satisfy
∑∞
i=−∞|φi| <∞, and E(ξ5

t ) <∞, then

TCov[m̂3, m̂2]→
∞∑

r=−∞
γ23(r) +

∞∑
r=−∞

γ32(r)

where

γ23(r) = Cov(X2
t , X

3
t+r)

= φ3r(m5 −m3m2) + 3τ2m3
φr(1− φ2r)

1− φ2

and

γ32(r) = Cov(X3
t , X

2
t+r)

= φ2r(m5 −m3m2)
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Lemma 0.0.28. Let Xt be a linear process of the form:

Xt =
∞∑

i=−∞
φiξt−i

where ξt = IID(0, σ2), the coefficients satisfy
∑∞
i=−∞|φi| <∞, and E(ξ6

t ) <∞, then

TCov[m̂4, m̂2]→
∞∑

r=−∞
γ24(r) +

∞∑
r=−∞

γ42(r)

where

γ24(r) = Cov(X2
t , X

4
t+r)

= φ4r(m6 −m4m2) + 6τ2(m4 −m2
2)

(1− φ2r)φ2r

1− φ2
+ 4τ3m3

(1− φ3r)φr

1− φ3

and

γ42(r) = Cov(X4
t , X

2
t+r)

= φ2r(m6 −m4m2)

The asymptotic normality of the empirical skewness and

kurtosis

In this section, the delta method was applied to get the asymptotic distribution of the em-

pirical skewness and kurtosis of a stationary linear model to the asymptotic multivariate
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distribution of the vectors MT = (m̂2, m̂3) and MT = (m̂4, m̂2) .

We start by a conjecture for the asymptotic multivariate distribution of the vector MT =

(m̂2, m̂3).

Theorem 0.0.29. If Xt is a stationary linear process and under the assumptions of Theorem

0.0.23, then: For MT = (m̂2, m̂3), we have

√
T (MT − µ)

d
=⇒ N(0,Σ) (18)

where

µ = [m2,m3]>

Σ11 =
∞∑

r=−∞
γ2(r)

Σ12 =
∞∑

r=−∞
γ23(r) +

∞∑
r=−∞

γ32(r)

Σ22 =
∞∑

r=−∞
γ3(r)

Now applying the delta method we get the asymptotic distribution for the empirical

skewness of the linear process Xt in the following theorem.
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Theorem 0.0.30. For ST = m̂3/m̂
3/2
2 ,

√
T
(
ST −

m3

m
3/2
2

)
d

=⇒ N(0, σ2)

where σ2 is given by

σ2 =
[
− 3m3

2m
5/2
2

,
1

m
3/2
2

]
Σ
[
− 3m3

2m
5/2
2

,
1

m
3/2
2

]>
=

9m2
3Σ11

4m5
2

− 6m3Σ12

2m4
2

+
Σ22

m3
2

Proof. Applying theorem 0.0.29 and the multivariate delta method, where the function g is

of the form g(s1, s2) =
s2

s
3/2
1

, we get the required.

The same theory of the empirical skewness is applied to the empirical kurtosis. We start

by the following conjecture for the asymptotic normality of the vector (m̂2, m̂4).

Theorem 0.0.31. If Xt is a stationary linear process and under the assumptions of Theorem

0.0.25, then: For MT = (m̂2, m̂4), we have

√
T (MT − µ)

d
=⇒ N(0,Σ) (19)
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where

µ = [m2,m4]>

Σ11 =
∞∑

r=−∞
γ2(r)

Σ12 =
∞∑

r=−∞
γ24(r) +

∞∑
r=−∞

γ42(r)

Σ22 =
∞∑

r=−∞
γ4(r)

And lastly the distribution of KT

Theorem 0.0.32. For KT = m̂4/m̂
2
2,

√
T
(
KT −

m4

m2
2

)
d

=⇒ N(0, σ2)

where σ2 is given by

σ2 =
[
− 2m4

m3
2

,
1

m2
2

]
Σ
[
− 2m4

m3
2

,
1

m2
2

]>
=

4m2
4Σ11

m6
2

− 4m4Σ12

m5
2

+
Σ22

m4
2

Proof. Applying theorem 0.0.31 and the multivariate delta method, where the function g is

of the form g(s1, s2) =
s2
s21
, we get the required.
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The non-central chi-square tests

In this section, the empirical skewness and kurtosis are used to define a non-central chi-

square distributions S and K, to reject the null hypotheses of Gaussian innovations in

favor of Gumbel, Gumbel innovations and Gussian in favor of mixture of both and Gumbel

innovations in favor of the Gaussian.

Theorem 0.0.33. Let Xt be an AR(1) process of the form:

Xt+1 = φXt + ξt+1

where ξt ∼ WN(0, σ2), with E(ξt)
8 < ∞ and let S = m̂3/m̂

3/2
2 and K = m̂4/m̂

2
2, then for

large T ,

� the hypothesis test:

H0 : {ξt} follow Gaussian distribution

Ha : {ξt} follow Gumbel distribution

has a rejection region

{xt : (S + bS)2 ≤ c} if (1/σ2
Sa
− 1/σ2

S0
) > 0 (20)

and

{xt : (S + bS)2 > c} if (1/σ2
Sa
− 1/σ2

S0
) < 0 (21)

where σ2
S0

and σ2
Sa

are the variances of S under the null and alternative hypotheses,
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respectively, bS =
(µS0

σ2
Sa
−µSaσ

2
S0

σ2
S0
−σ2

Sa

)
and c is a constant. Moreover, under the null

hypothesis assumption, the test statistic

(S + bS)2/σ2
S0
∼ χ2

1(
µS0

+ bS

σS0

)2. (22)

� the hypothesis test:

H0 : {ξt} follow Gumbel distribution

Ha : {ξt} follow Gaussian distribution

has a rejection region

{xt : (K + bK)2 ≤ c} if (1/σ2
Ka
− 1/σ2

K0
) > 0 (23)

and

{xt : (K + bK)2 > c} if (1/σ2
Ka
− 1/σ2

K0
) < 0 (24)

where σ2
K0

and σ2
Ka

are the variances of K under the null and alternative hypotheses,

respectively, bK =
(µK0

σ2
Ka
−µKaσ

2
K0

σ2
K0
−σ2

Ka

)
and c is a constant. Moreover, under the null

hypothesis assumption, the test statistic (K + bK)2/σ2
K0
∼ χ2

1(
µK0

+bK
σK0

)2.

Proof. � Let f0(s) and fa(s) be the density functions of the statistic S under the null

and alternative hypotheses, respectively. Applying the Neyman-Pearson Lemma to S,
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we reject H0 if

f0(s)

fa(s)
≤ c′,

where c′ is a constant determined by α (the probability of type I error).

Recall that, S ∼ AN(µS , σ
2
S), which under the null hypothesis assumption (the innova-

tions follow Gaussian distribution) implies S ∼ AN(µS0
, σ2
S0

), and S ∼ AN(µSa , σ
2
Sa

)

under the alternative (the innovations follow Gumbel distribution).

This implies

(
1√

2πσ2
S0

e
−(s−µS0

)2/2σ2
S0

/
1√

2πσ2
Sa

e
−(s−µSa)2/2σ2

Sa

)
≤ c′,

hence,

s2
( 1

σ2
Sa

− 1

σ2
S0

)
+ 2s

(µS0

σ2
S0

−
µSa
σ2
Sa

)
≤ c′′ (25)

where c′′ is a constant. If
(

1
σ2
Sa

− 1
σ2
S0

)
> 0 then

(
s+

(µS0
σ2
Sa
− µSaσ

2
S0

σ2
S0
− σ2

Sa

))2
≤ c,

and c is a constant.

Let bS =
(µS0

σ2
Sa
−µSaσ

2
S0

σ2
S0
−σ2

Sa

)
, then

P
((
s+ bS

)2 ≤ c|H0

)
≤ α
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where under the null hypothesis

(
S + bS

)2|H0 ∼ χ2
1

(µS0
+ bS

σS0

)
.

And If
(

1
σ2
Sa

− 1
σ2
S0

)
< 0, in (25), then the rejection region will be

(
s+

(µS0
σ2
Sa
− µSaσ

2
S0

σ2
S0
− σ2

Sa

))2
> c,

which implies

P
((
s+ bS

)2
> c|H0

)
≤ α.

� Repeating the same logic in the previous part applied on the statistic K. Let f0(k)

and fa(k) be the density functions of the statistic K under the null and alternative

hypotheses, respectively. Applying the Neyman-Pearson Lemma to K, we reject H0 if

f0(k)

fa(k)
≤ c′,

where c′ is a constant determined by α (the probability of type I error).

Recall that, K ∼ AN(µK , σ
2
K), which under the null hypothesis assumption (the inno-

vations follow Gumbel distribution) impliesK ∼ AN(µK0
, σ2
K0

), andK ∼ AN(µKa , σ
2
Ka

)

under the alternative (the innovations follow Gaussian distribution).
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This implies

(
1√

2πσ2
K0

e
−(k−µK0

)2/2σ2
K0

/
1√

2πσ2
Ka

e
−(k−µKa)2/2σ2

Ka

)
≤ c′,

hence,

k2
( 1

σ2
Ka

− 1

σ2
K0

)
+ 2k

(µK0

σ2
K0

−
µKa
σ2
Ka

)
≤ c′′ (26)

where c′′ is a constant. If
(

1
σ2
Ka

− 1
σ2
K0

)
> 0 then

(
k +

(µS0
σ2
Ka
− µKaσ

2
K0

σ2
K0
− σ2

Ka

))2
≤ c,

and c is a constant.

Let bK =
(µK0

σ2
Ka
−µKaσ

2
K0

σ2
K0
−σ2

Ka

)
, then

P
((
k + bK

)2 ≤ c|H0

)
≤ α

where under the null hypothesis

(
K + bK

)2|H0 ∼ χ2
1

(µK0
+ bK

σK0

)
.
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And If
(

1
σ2
Ka

− 1
σ2
K0

)
< 0, in (26), then the rejection region will be

(
k +

(µK0
σ2
Ka
− µKaσ

2
K0

σ2
K0
− σ2

Ka

))2
> c,

which implies

P
((
k + bK

)2
> c|H0

)
≤ α.

Here are some remarks regarding the non-central chisquare S and the non-central chisquare

K tests:

Remark 0.0.34. The non-central chi-square S test can be used to reject the Gumbel innova-

tions in favor of the Gaussian innovations, and it requires less data.

Remark 0.0.35. The non-central chi-square K test can be used to reject the Gaussian innova-

tions, in favor of the Gumbel innovations, but it needs larger sample size than the non-central

chisquare S test.

Remark 0.0.36. For the mixture of the Gaussian and Gumbel innovations, the non-central

chisqure test S can be used to reject the Gumbel or the Gaussian innovations in favor of the

mixture of both. Note that the S test can not be used to reject the mixture of both in favor

of the Gaussian or in favor of the Gumbel, since any Gaussian AR(1) model or AR(1) model

with Gumbel innovations can be written as a mixture with appropriate wights. While the

non-central chisquare K test can not be used with the mixture.

Remark 0.0.37. In practice, starting with non-central chisquare S would be advised, that is
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checking the normality first, and then checking the mixture assumption. That is because if

there is a moderate portion of the observations are Gumbel (like the mixture), then applying

the non-central chi-square S or K tests may not reject the Gumbel assumption in favor for

the Gaussian since it is heavier tail than both of them.

Remark 0.0.38. The empirical power for these tests are computed, for more details see the

simulation studies in chapter 4.

Remark 0.0.39. A very useful well known test is, the usual z-test, for example, by finding

the confidence interval and use it to conclude the rejection of any of the null hypotheses the

innovations are Gaussian, Gumbel or a mixture of both.
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The Simulation

This chapter contains simulations for the main results in chapter 3. We start by simulations

for the asymptotic distribution of the ST and KT . And then the non-central chi-square S

and K tests were illustrated by simulations for all the different null hypothesis scenarios. In

addition, their empirical power was computed using simulations.

The distributions of ST and KT

In this section, we compare the asymptotic distributions of ST and Kt using our calculations

and using ”the empirical moments”.

In table 2 we calculate the asymptotic distribution of ST where we simulate from a

Gaussian AR(1) model. T is the length of the realization, ”the sample size”, and φ is the

AR(1) parameter. In the third column, we simulate an AR(1) model with the same length

as T and φ number of iterations (say 1000 times for example). each time we calculate the

empirical moments, and then take their average over the number of iterations, and then we

get the variances and covariances of the empirical second and third moments, and finally

apply the delta method to the result which appear in column 3. In the last column, we first

simulate one realization of the Gaussian AR(1), with the same T and φ and then obtain

the asymptotic distributions of m̂2 and m̂3 using the results as in theorem0.0.29 and then

applying the delta method.
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T φ
Distribution of ST

using empirical moments
Distribution of ST

using the moments of Xt

100 0.35 N(0, 0.502) N(0, 0.512)

200 0.59 N(0, 0.472) N(0, 0.472)

500 0.599 N(0, 0.302) N(0, 0.302)

800 0.864 N(0, 0.442) N(0, 0.432)

1600 0.850 N(0, 0.292) N(0, 0.292)

Table 2: The distribution of ST using empirical moments and the moments of Xt when
simulating from Gaussian AR(1) model

As we can see from the table the distributions are almost the same. When the innovations

are Gumbel, applying the same techniques above yield to the results in table 3. The results

are satisfying in both cases.

n φ
Distribution of ST

using empirical moments
Distribution of ST

using the moments of Xt

100 0.31 N(0.966, 0.692) N(1.00, 0.692)

200 0.662 N(0.667, 0.592) N(0.674, 0.602)

800 0.856 N(0.419, 0.432) N(0.4216, 0.442)

1000 0.863 N(0.408, 0.402) N(0.410, 0.402)

1600 0.857 N(0.420, 0.312) N(0.420, 0.312)

Table 3: The distribution of ST using empirical moments and using the moments of Xt when
simulating from AR(1) model with Gumbel innovations

The same method in comparing the asymptotic distribution of ST using the results in

chapter 3 with the empirical moments, are also applied to KT . In this case the empirical

second and fourth moments are used, and theorem 0.0.31. Table 4 shows the distribution
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of KT where the innovations are Gaussian, while for the Gumbel innovations the results are

illustrated in table 5. All of these distributions are in agreement with each other.

T φ
Distribution of KT

using empirical moments
Distribution of KT

using the moments of Xt

100 0.149 N(3.00, 0.482) N(2.99, 0.492)

200 0.47 N(3.00, 0.3632) N(2.99, 0.3652)

500 0.599 N(2.99, 0.252) N(2.99, 0.252)

800 0.864 N(2.99, 0.2722) N(2.99, 0.2722)

300 0.786 N(3.00, 0.4122) N(2.99, 0.4222)

100 0.54 N(3.00, 0.5322) N(2.99, 0.5362)

Table 4: The distribution of KT using empirical moments and the moments of Xt when
simulating from Gaussian AR(1) model

T φ
Distribution of KT

using empirical moments
Distribution of KT

using the moments of Xt

100 0.263 N(5.06, 3.682) N(5.10, 3.742)

200 0.47 N(4.53, 2.122) N(4.47, 2.102)

500 0.597 N(4.13, 1.122) N(4.14, 1.172)

800 0.864 N(3.367, 0.6792) N(3.36, 0.7352)

300 0.811 N(3.494, 1.1492) N(3.496, 1.222)

100 0.522 N(4.33, 2.612) N(4.37, 2.82)

Table 5: The distribution of KT using empirical moments and the moments of Xt when
simulating from AR(1) model with Gumbel innovations
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The non-central Chi-square test S and its empirical power

In this section we show the results of applying the non-central chi-square test S to reject the

Gaussian innovations in favor of the Gumbel and the mixture of both innovations of AR(1)

model, and to reject the Gumbel in favor of the Gaussian and the mixture of both mixture

innovations of the Ar(1) model. Also we calculate the empirical power in all hypotheses.

We start with the hypothesis H0 : ξt ∼ Gaussian vs Ha : ξt ∼ Gumbel. We simulate

AR(1) with Gumbel innovations where T and φ as in the first and second column, and then

we fit an AR(1) model with Gaussian innovations and obtain the estimators which are used

to get the distribution of ST as in theorem0.0.30. And then on the same realization, we fit

a Gaussian AR(1) model and get the estimators and get the distribution of ST under the

Gaussian assumption. Now the non-central chi square test S is applied as in theorem 0.0.33.

As we can see the test works perfectly, we reject the null hypothesis in all of the simulations.

Then when we simulate from Gaussian AR(1) with the same T and φ, and apply the same

procedure above we fail to reject the null hypothesis, that is the innovations are Gaussian.
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simulation of AR(1)

with Gumbel innova-

tions

simulation of AR(1)

with Gaussian innova-

tions

H0 : ξt ∼ Gaussian

Ha : ξt ∼ Gumbel

H0 : ξt ∼ Gaussian

Ha : ξt ∼ Gumbel

T φ The result The result

250 0.168 Reject H0 Fail to reject H0

250 0.256 Reject H0 Fail to reject H0

300 0.351 Reject H0 Fail to reject H0

300 0.455 Reject H0 Fail to reject H0

400 0.519 Reject H0 Fail to reject H0

500 0.58 Reject H0 Fail to reject H0

700 0.659 Reject H0 Fail to reject H0

900 0.720 Reject H0 Fail to reject H0

900 0.783 Reject H0 Fail to reject H0

1000 0.801 Reject H0 Fail to reject H0

Table 6: Applying the non-central chi-square S test to reject the Gaussian innovations in
favor of the Gumbel.

Table 7 shows the empirical power of the non-central chi-square S test of the previous

hypothesis, that is the hypothesis H0 : ξt ∼ Gaussian vs Ha : ξt ∼ Gumbel. As we can see

the power change T and φ. The bigger the |φ| the larger T is needed to get a good power.
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T φ The empirical power

200 0.17 899/1000

200 0.30 790/1000

500 0,30 982/1000

200 0.50 557/1000

500 0.50 894/1000

300 0.60 550/1000

500 0.60 743/1000

800 0.60 887/1000

1000 0.60 925/1000

1200 0.70 846/1000

Table 7: The empirical power of the non-central chi-square test S where H0 : ξt ∼ Gaussian
vs Ha : ξt ∼ Gumbel

The second scenario the hypothesis H0 : ξt ∼ Gumbel vs Ha : ξt ∼ Gaussian. We

simulated from AR(1) with Gumbel innovations and fit first Gumbel innovations and get

the parameters using EM algorithm and get the distribution of ST . WE repeated the same

techniques after fitting a Gaussian AR(1) model to the sample path. We applied the non-

central chi-square S test to the data.
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And we get the results in table8, with the empirical power in table 9.

simulation of AR(1)
with Gumbel innova-
tions

simulation of AR(1)
with Gumbel innova-
tions

H0 : ξt ∼ Gaussian
Ha : ξt ∼ Gumbel

H0 : ξt ∼ Gumbel
Ha : ξt ∼ Gaussian

T φ The result The result

500 0.17 Reject H0 Fail to reject H0

500 0.0.291 Reject H0 Fail to reject H0

700 0.529 Reject H0 Fail to reject H0

1200 0.728 Reject H0 Fail to reject H0

1800 0.798 Reject H0 Fail to reject H0

Table 8: Applying the non-central chi-square S test to the hypothesis H0 : ξt ∼ Gumbel vs
Ha : ξt ∼ Gaussian
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And this is the empirical power. The last case where we apply the non-central chi square

T φ The empirical power

500 0.17 999/1000

500 0.30 992/1000

700 0.50 952/1000

700 0.60 840/1000

1200 0.70 789/1000

2500 0.8 752/1000

3000 0.8 842/1000

Table 9: The empirical power of the non-central chi-square test S where H0 : ξt ∼ Gumbel
vs Ha : ξt ∼ Gaussian

test S is to reject the Gumbel or Gaussian innovations in favor of the mixture. That is

H0 : ξt ∼ Gaussian or H0 : ξt ∼ Gumbel vs Ha : ξt ∼ mixture. The same procedure

above was applied here. We first simulate from AR(1) with mixture innovations, and then

fit an AR(1) model with mixture, then find the estimators which enable us to calculate

the distribution of ST as in theorem 0.0.30. On the same realization we got from the

simulation with mixture innovations, we fit an AR(1) with Gumbel innovations and then find

the estimators which we use to find the distribution of ST as in theorem 0.0.30 under the

Gumbel assumption. Doing the same procedure on the same realization but with Gaussian

innovations.
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H0 : ξt ∼ Gaussian
Ha : ξt ∼Mixture

H0 : ξt ∼ Gumbel
Ha : ξt ∼Mixture

T φ̂g φ̂n φm p The result The result
700 0.109 0.075 0.096 0.711 Reject H0 Reject H0

700 0.150 0.137 0.133 0.657 Fail to reject H0 Reject H0

700 0.138 0.142 0.134 0.501 Reject H0 Reject H0

700 0.186 0.207 0.192 0.685 Fail to reject H0 Reject H0

700 0.209 0.193 0.197 0.685 Reject H0 Reject H0

700 0.138 0.159 0.174 0.557 Reject H0 Reject H0

700 0.235 0.229 0.229 0.260 Reject H0 Reject H0

2000 0.114 0.137 0.131 0.324 Reject H0 Reject H0

2000 0.185 0.175 0.176 0.255 Reject H0 Reject H0

2000 0.158 0.173 0.173 0.843 Fail to reject H0 Reject H0

2000 0.186 0.145 0.161 0.815 Reject H0 Fail to reject H0

2000 0.271 0.268 0.267 0.364 Reject H0 Reject H0

2000
0.209 0.197 0.205 0.546 Reject H0 Reject H0

2000 0.276 0.266 0.273 0.754 Fail to reject H0 Reject H0

Table 10: Applying the non-central Chisquare test S when simulating from an AR(1) with
mixture innovation to reject the Gumbel and the Gaussian innovations in favor of the mix-
ture.

After obtaining the distribution of ST under the three assumptions where we simulate

from a mixture we applied the non-central chi square test S as in theorem 0.0.33 and the

results are in the following tables 10 and 11.
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The table is continued here:

H0 : ξt ∼ Gaussian
Ha : ξt ∼Mixture

H0 : ξt ∼ Gumbel
Ha : ξt ∼Mixture

T φ̂g φ̂n φm p The result The result
3000 0.380 0.393 0.383 0.299 Reject H0 Fail to reject H0

3000 0.347 0.340 0.342 0.424 Reject H0 Fail to reject H0

3000 0.383 0.379 0.382 0.411 Reject H0 Reject H0

3000 0.308 0.321 0.327 0.592 Reject H0 Reject H0

3000 0.333 0.338 0.338 0.703 Reject H0 Reject H0

4000 0.445 0.439 0.442 0.254 Reject H0 Reject H0

4000 0.442 0.444 0.448 0.544 Reject H0 Reject H0

4000 0.540 0.542 0.539 0.508 Reject H0 Reject H0

4000 0.531 0.533 0.538 0.745 Fail to reject H0 Reject H0

9000 0.652 0.652 0.651 0.353 Reject H0 Fail to reject H0

9000 0.656 0.654 0.655 0.512 Reject H0 Reject H0

9000 0.740 0.737 0.739 0.690 Fail to reject H0 Reject H0

9000 0.663 0.662 0.665 0.769 Reject H0 Reject H0

Table 11: Applying the non-central Chisquare test S when simulating from an AR(1) with
mixture innovation to reject the Gumbel and the Gaussian innovations in favor of the mixture
innovations continuing.
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As we see from table 10, the performance of the test depends on many factors, for example

the φ, T and the p. Most of the cases where the test fails are when p is large or small and

also related to the φ. But in general the test preforms better when we increase the sample

size. As we see from the empirical power in table 12.

T φ p The empirical power

700 0.17 0.53 61/100

1400 0.17 0.53 76/100

1800 0.17 0.53 80/100

2200 0.17 0.53 86/100

3000 0.17 0.53 91/100

1200 0.30 0.53 65/100

2500 0.30 0.53 80/100

3500 0.30 0.53 88/100

3500 0.50 0.53 71/100

4500 0.50 0.53 85/100

6000 0.70 0.53 63/100

Table 12: The empirical power of the non-central chi-square test S where H0 : ξt ∼ Gumbel
or Gaussian vs Ha : ξt ∼ mixture

The non-central chi-square test K and its empirical power

In this section we show the results of applying the non-central chi-square K test. There

are two cases where this test can be applied, to reject the Gumbel innovations in favor of

Gaussian and the other way, to reject the Gaussian innovations in favor of the Gumbel.
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We start by the hypothesis H0; ξt ∼ Gumbel vs H0; ξt ∼ Gaussian, where we simulate

from a Gaussian AR(1), and then after obtaining the sample we fit a Gaussian AR(1) and

use the estimators to get the distribution of Kt by applying theorem 0.0.32 . Then next, we

fit an AR(1) with Gumbel innovations on the same sample and use the estimators to get the

distribution of KT as in theorem 0.0.32. After having these distributions we apply theorem

0.0.33 to obtain the results of K test.
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simulation of AR(1)
with Gaussian innova-
tions

simulation of AR(1)
with Gumbel innova-
tions

H0 : ξt ∼ Gumbel
Ha : ξt ∼ Gaussian

H0 : ξt ∼ Gumbel
Ha : ξt ∼ Gaussian

T φ The result The result

700 0.171 Reject H0 Fail to reject H0

850 0.266 Reject H0 Fail to reject H0

900 0.33 Reject H0 Fail to reject H0

1000 0.483 Reject H0 Fail to reject H0

1500 0.56 Reject H0 Fail to reject H0

2000 0.508 Reject H0 Fail to reject H0

2500 0.60 Reject H0 Fail to reject H0

2500 0.762 Reject H0 Fail to reject H0

3000 0.77 Reject H0 Fail to reject H0

3000 0.84 Reject H0 Fail to reject H0

Table 13: Applying the non-central chi-square K test to reject the Gumbel innovations in
favor of the Gaussian.

Lastly, we simulate from AR(1) with Gumbel innovations and do the same procedure

above, and apply the same test under the same assumptions.
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As we can see in table 13 the test preforms well, where we reject the null hypothesis when

we generate from Gaussian and we fail to reject the null hypothesis when the innovation is

generated from the Gumbel. The following table 14 shows the empirical power of the test.

T φ The empirical power

500 0.17 770/1000

700 0.17 908/1000

700 0,30 853/1000

1000 0.30 973/1000

1000 0.50 812/1000

1300 0.50 926/1000

1300 0.60 769/1000

1800 0.60 911/1000

1800 0.70 627/1000

2500 0.70 817/1000

3000 0.70 897/1000

Table 14: The empirical power of the non-central chi-square test K where H0 : ξt ∼ Gumbel
vs Ha : ξt ∼ Gaussian
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simulation of AR(1)
with Gumbel innova-
tions

simulation of AR(1)
with Gaussian innova-
tions

H0 : ξt ∼ Gaussian
Ha : ξt ∼ Gumbel

H0 : ξt ∼ Gaussian
Ha : ξt ∼ Gumbel

T φ The result The result

700 0.171 Reject H0 Fail to reject H0

850 0.266 Reject H0 Reject H0

900 0.33 Reject H0 Fail to reject H0

1000 0.483 Reject H0 Fail to reject H0

1500 0.56 Reject H0 Fail to reject H0

2000 0.508 Reject H0 Fail to reject H0

2500 0.60 Reject H0 Fail to reject H0

2500 0.762 Reject H0 Fail to reject H0

3000 0.77 Reject H0 Fail to reject H0

3000 0.84 Reject H0 Fail to reject H0

Table 15: Applying the non-central chi-square K test to reject the Gaussian innovations in
favor of the Gumbel.

Lastly, we applied the non-central chi-square test K under the hypothesis H0 : ξ ∼

Gaussian vs Ha : ξt ∼ Gumbel to the same simulations above and we obtained the results

in table15.
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And as we see the results of applying this test are satisfactory. And the empirical power

of the of test K under the previous null hypothesis is shown in table 16.

T φ The empirical power

300 0.17 870/1000

350 0.17 917/1000

300 0,30 836/1000

400 0.30 904/1000

400 0.50 757/1000

600 0.50 898/1000

700 0.5 920/1000

700 0.60 800/1000

900 0.60 885/1000

1000 0.60 908/1000

1000 0.70 725/1000

1400 0.70 851/1000

1900 0.70 930/1000

Table 16: The empirical power of the non-central chi-square test K where H0 : ξt ∼ Gaussian
vs Ha : ξt ∼ Gumbel
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The analysis of the sea level rise data

It has been predicted that the global sea-level rise (SLR) will reach 0.5 to 2.00m by the end

of this century (by 2100). The relative SLR (RSLR) can be greater than the global change

because of local effects [57]. As mentioned in chapter one, several papers provide evidence of

SLR using tide gauge data ”historical observations”, along the coastal mid-Atlantic region

(a so-called ”hotspot”) [31, 10, 74].

This chapter analyzes sea level measurements obtained from the Actuarial climate index

(ACI). These measurements are made available via tide gauge, which ”measure sea level rel-

ative to the land below, but because the land may be moving, the ACI sea level component

measures the combined effect on coastal shorelines of the generally rising seas and the rising

or falling land,” According to ACI.

The ACI sea level measurements are obtained from tide gague stations, which are located

along 10 of the 12 regions as shown in Figure 3. These are for all regions except the CAR

”Central Arctic” and this MID ”Midwest.” This study is concerned with sea level measure-

ments of the CEA ”Central East Atlantic” region, which includes the following states and

districts: CT, DC, DE, MA, MD, ME, NH, NJ, NY, PA, RI, VT and WV. The population,

infrastructure and economic activities in this region are dense. All this has led many au-

thors to study this area as mentioned before, and our analysis shows new evidence of a rise
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in ”hotspots” at tide stations in the CEA. There is more about the data in section one, and

section two includes the methods, followed by the results and discussion in section three and

four respectively.

Figure 3: Map shows the 12 different regions according to ACI

Data

Monthly sea level standardized anomaly records from tide gauge stations in the Central East

Atlantic ”CEA” were obtained from the ACI, recorded over a length of 56 years (1961-2017).
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The ACI acquired the raw data from the Permanent Service for Mean Sea Level. Let yi be the

monthly sea level measurements from 1961-2017, and let 1961-1990 be the reference period,

with average µref (yi) and standard deviation σref (yi) these measurements then convert to

standardized anomaly according to the following equation:

yistd = ∆yi/σref (yi)

where ∆yi = yi − µref (yi).

Method

The data (standardized anomaly records) were decomposed after converting them to time

series. The path of the series {Xt} (the random part after decomposition) suggests that an

autoregressive model would be a good choice. Three centered AR(1) models with different

innovations distributions were fitted to the data, Gaussian, Gumbel and a mixture of both.

Recall AR(1) model is written in the form:

Xt = φXt−1 + ξt where ξt ∼ WN(0, σ).

For the centered Gaussian AR(1), ξ ∼ N(0.σ), σ > 0, the parameters φ and σ are estimated

using the Expectation Maximization, where ξt is considered to be latent variable, and the
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log-likelihood of the Gaussian random variable ξt is:

logL(0, σ2|ξt) =
−T
2

log(2πσ2)− 1

2σ2

T∑
t=1

ξ2
t .

And for the centered AR(1) model with Gumbel innovations the ξ ∼ G(α, β) where α = −γβ,

β > 0 and γ is the Euler constant. As in the Gaussian case, φ and β are estimated using the

Expectation Maximization where ξt is considered a latent variable, and the log-likelihood of

the Gumbel random variable ξt is:

logL(α, β|ξt) = −T log(α)−
T∑
t=1

ξt − β
α
−

T∑
t=1

e−(
ξt−β
α ).

And for the centered AR(1) model with mixture innovations, the innovations are the sum of

the previous weighted innovations, (ξt ∼ p ·N(0, σ2)+(1−p) ·G(−γβ, β)), where 0 ≤ p ≤ 1.

The Expectation Maximization algorithm is used to estimate the parameters φ, σ2, p, and

β , and the log likelihood function for the mixture innovations is:

logL(σ, β, p, ξt) =
∑
t

log[(1− p) · f(ξt) + p · g(ξt)],

such that f(ξt) and g(ξt) are the densities for the above-centered Gaussian and Gumbel r.vs.

respectively.

After obtaining all estimators, the theoretical AR(1) moments, E[Xr
t ] where r = 2, 3, 4, 5, 6, 8

were calculated according to formulas Lemma 0.0.5, Lemma 0.0.6, Lemma 0.0.7, Lemma
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0.0.8, Lemma 0.0.9 and Lemma 0.0.10, where under the Gaussian assumption, the estimated

φ from fitting AR(1) with Gaussian innovations used in addition to moments of Gaussian

random variable. The same applied under the Gumbel assumption, and for the mixture

assumption, in addition to the estimated φ, p̂, is used to calculate the weighted moments,

and the sum of these weighted moments is the mixture moments.

Using these moments with φ̂, the means, variances and covariances of the empirical

moments m̂r =
∑T
t=1X

r
t /T , where r = 2, 3, 4 were obtained according to Theorem 0.0.18,

Theorem 0.0.11, Theorem0.0.12, Theorem0.0.14, Theorem0.0.13 and Theorem0.0.15. Using

theoremTheorem 0.0.29 and Theorem 0.0.31 imply the asymptotic multivariate normality of

the vectors (m̂2, m̂3) and (m̂2, m̂4) of these statistics, and then the delta method in Theorem

0.0.30 and Theorem0.0.32 are applied to calculate the means and variances of the empirical

skewness, ST = m̂3/m̂
3/2
2 and empirical kurtosis KT = m̂4/m̂

2
2, under the three different

assumptions on the innovations.

Having these distributions enables us to apply the different tests (as in chapter three) to

determine the best model. The confidence intervals were obtained, and then the z-test was

applied to the means of the two statistics ST and KT under the three assumptions on ξt. To

apply the non-central chi square S test as in Theorem 0.0.33, the value of the test statistic

as in (22) was calculated as well as the coefficients (20) and (21) to determine the rejection

regions. In addition, the p value of the non-central chisquare test S was calculated under

different hypotheses (e.g. P(value of test statistic)).
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Results

In this section, the results of applying the above method to the sea level rise are summarized.

Table 18 shows the estimators of φ, σ, β and p when fitting AR(1) model with Gaussian,

Gumbel and mixture innovations.

ξ’s distribution φ̂ σ̂ β̂ p̂

Gaussian 0.172 0.863 - -

Gumbel 0.190 - 0.7638 -

Mixture 0.170 0.8321 0.7063 0.534

Table 17: The estimators of φ̂, σ̂ and p̂ when fitting AR(1) model with different innovations,
to the SLR data,

The proceeding estimators are used to calculate the AR(1) theoretical moments, which

are summarized in Table 18. These moments are essential in calculating the asymptotic

distribution of the empirical skewness ST and kurtosis KT .

ξ’s distribution m2 m3 m4 m5 m6 m8

Gaussian 1.032 0.00 3.198 0.0025 16.484 119.321

Gumbel 1.034 1.139 5.617 19.146 95.670 3218.199

Mixture 1.0300 0.5293 4.2999 8.8560 52.9747 1548.285

Table 18: The theoretical moments of AR(1) model when fitted with different innovations
to the SLR data.

Using these moments with φ̂ and the moments of the Gaussian, Gumbel and of the
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mixture of both, we calculate the variances under the three different assumptions. Table 19

contains the asymptotic distribution of the empirical skewness (ST ) and kurtosis (KT ).

ξ’s distribution The distribution of
ST

The distribution of
KT

Gaussian N(0.00, 0.1672) N(2.99, 0.192)

Gumbel N(1.08, 0.262) N(5.24, 1.522)

Mixture N(0.50, 0.252) N(4.05, 1.122)

Table 19: The asymptotic distribution of ST and KT when fitting the AR(1) model with
different innovations to the SLR data

Since the distributions of KT and ST under the three assumptions are found, the confi-

dence intervals for the means are calculated as shown in Table 20.

ξ’s distribution 95% C.I. of E(ST ) 64% C.I. of E(KT )

Gaussian (0.173, 0.831) (3.55, 3.90)

Gumbel (−0.019, 1.024) (2.30, 5.15)

Mixture (0.004, 1.00) (2.67, 4.78)

Table 20: The confidence intervals of m3/m
3/2
2 and m4/m

2
2 applied to the SLR data

To apply the hypothesis tests as in Theorem 0.0.33, the values of test statistics are

obtained under different assumptions. These values are summarized in Table 21 along with

(1/σ2
Sa
− 1/σ2

S0
) values and the C’s values, where α is at a level 5%.

In table 22 we calculate the p value of the non-central chisquare test S under different

null hypothesis scenarios.
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The hypothesis test
The Test Statistic

Value

Value of

(1/σ2
Sa
− 1/σ2

S0
) The C Value

H0 : ξt ∼ Gumbel
Ha : ξt ∼ mixture

445.5 1.438 468.1

H0 : ξt ∼ Gaussian
Ha : ξt ∼ mixture

28.49 −19.94 15.932

H0 : ξt ∼ mixture
Ha : ξt ∼ Gumbel

491.059 −1.438 567.47

H0 : ξt ∼ mixture
Ha : ξt ∼ Gaussian

12.46 19.94 3.620

Table 21: The results of applying the non-central chisquare test T to the SLR data under
different null hypothesis scenarios.

Discussion

In this section we discuss the results of fitting an AR(1) model with three different inno-

vations (Gaussian, Gumbel and mixture of both) to the SLR data, and we show the best

model based on the non-central chi-square S test and compare the results to other diagnostic

checks based on the residuals.

Table 19 contains the distributions of the empirical skewness ST and the empirical kur-

tosis KT , and their confidence intervals are given in table 20. When applying the z-test

to E(ST ) under the three different assumptions (ξ follow Gaussian, Gumbel and a mixture

of both), using 95% confidence intervals, we reject the null hypothesis that ξt follow the

Gumbel distribution, and the null hypothesis that ξt follow the Gaussian. This is because

the means in both cases are not included in the confidence intervals. And since the mean of
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The hypothesis test The P value The result

H0 : ξt ∼ Gumbel
Ha : ξt ∼ mixture

0.01489 Reject H0

H0 : ξt ∼ Gaussian
Ha : ξt ∼ mixture

0.0013 Reject H0

H0 : ξt ∼ mixture
Ha : ξt ∼ Gumbel

0.5067 Fail to reject H0

H0 : ξt ∼ mixture
Ha : ξt ∼ Gaussian

0.493 Fail to reject H0

Table 22: The p values of the S test applied to the SLR data with different scenarios.

ST under the assumption that ξt follows a mixture of both the Gaussian and the Gumbel is

included in the 95% confidence interval, we fail to reject the null hypothesis that the inno-

vation follows a mixture of the Gaussian and Gumbel. We get the same conclusions when

applying the z-test to the mean of KT under the previous three assumptions. Note that the

confidence level for the E(KT ) is 65% because the sample size is small. In order to narrow

the confidence interval, either increase the sample size, which leads to a decrease in the bias,

or reduce the confidence level.

Table 21 includes the results of applying the S test to the SLR data under different

hypotheses. The purpose of this test is to reject the innovations’ hypotheses, whether Gaus-

sian or Gumbel, in favor of the mixture. And it fails to reject the null hypothesis that ξt

follows mixture in favor of the Gaussian or Gumbel innovations. As we see the value of

(1/σ2
Sa
− 1/σ2

S0
) under the assumption H0 : ξt follows Gumbel vs Ha : ξt following the
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mixture, which is positive. This implies that we reject the null hypothesis since the value of

the test statistic falls in the rejection region, (the value of the test statistic = 445.5 < the

value of C= 468.1). For the hypothesis H0 : ξt follow Gaussian vs Ha : ξt follow mixture,

the value of (1/σ2
Sa
− 1/σ2

S0
) is negative, this implies we reject the null hypothesis since the

value of the test statistic is greater than the value of C (28.49 > of C= 15.932), that is, the

value of the test statistic falls in the rejection region.

Repeating the same logic above, we fail to reject the null hypothesis under the following

assumption H0 : ξt follows mixture vs Ha : ξt follows Gumbel or Gaussian. That is because

for the Gumbel alternative the value of the test statistic is 491.05 which is less than the value

of C, (the negative value of (1/σ2
Sa
− 1/σ2

S0
) implies the rejection region has to be greater

than C). And for the Gaussian alternative, the value of the test statistic is greater than the

value of C, hence it falls outside the rejection region.

The p value for the non-central chi square S test under the previous null hypothesis sce-

narios is included in table 22. From the table we see the values of p under the null hypotheses

H0 : ξt follows Gumbel or H0 : ξt follows Gaussian are less than 5% (the p values are sig-

nificant), this implies we reject these null hypotheses. Whereas we fail to reject the null

hypothesis that H0 : ξt follows a mixture of both, in favor of the Gaussian or the Gumbel.

That is because the p values are greater than 5%.

All these results are in agreement with each others, that is the AR(1) model with mixture

of both Gaussian and Gumbel fits the data more appropriately than the AR(1) with the
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Gumbel or with the Gaussian innovations.
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Q−Q plot for Sea Level Rise data as AR(1) with Gaussian Innovations
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Figure 4: The QQ-plot of the residuals of fitting a Gaussian AR(1) model to the STR data
vs the Gaussian distribution

These results are also in agreement with other common diagnostic check based on the

residuals ξ̂t. For example, the QQ plot of the residuals of fitting a Gaussian AR(1) model

to the SLR data is shown in figure 4. The plot suggests a heaver tail than the Gaussian.

And the QQ plot of the residuals of AR(1) with Gumbel innovations is shown in figure 5,

which suggests a lighter tail than the Gumbel. Whereas the QQ plot of the residuals of the

mixture A(1) as shown in 6 shows a good fit.
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The QQ-plots of the Gumbel and mixture residuals.
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Figure 5: The QQ-plot of the residuals of fitting an AR(1) model with Gumbel innovations
to the STR data vs the Gumbel distribution
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Figure 6: The QQ-plot of the residuals of fitting an AR(1) model with mixture innovations
to the STR data vs the mixture distribution
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Another diagnostic check based on the residuals is the Kolmogorov–Smirnov test (KS test).

Table 23 shows the p value of the KS test applied to the residuals of the SLR data under

different null hypothesis scenarios. For the Gaussian and Gumbel residuals’, H0 : ξ̂t follows

the Gaussian or Gumbel vs H0 : ξ̂t does not follow the Gaussian or the Gumbel. As we

see from the table, we reject the null hypotheses that the residuals follow Gaussian or the

Gumbel.

For the mixture residuals, we simulate a random sample yt from a mixture with the same

parameters we obtained from fitting a mixture AR(1), and apply the KS test to the hy-

pothesis H0 : ξ̂t and yt come from the same distribution vs Ha the two samples are from

different distributions. The p-value of the KS statistic indicates that we fail to reject the

null hypothesis.

The hypothesis test The p value

H0 : ξ̂t ∼ Gaussian 0.010

H0 : ξ̂t ∼ Gumbel 2.2e− 16

H0 : ξ̂t and yt fol-

low the same distri-
bution

0.760

Table 23: The p value of KS test under the null hypothesis applied to the residuals of the
SLR data with different scenarios.

All the results based on our methodology and based on the residuals diagnostic checks

are in agreement. The advantage of our methodology is that the non-central chisqure S test
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enables us to reject the Gaussian and to reject the Gumbel in favor of the mixture. The

limitation of this test is that it needs large sample.
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Conclusion

A summary of this work as follows: we defined non-central chi-square S and K tests to reject

the hypothesis that the innovations of AR(1) model follow Gumbel in favor of the Gaussian

innovations, to reject the Gaussian innovations in favor of the Gumbel and to reject the

Gumbel or Gaussian innovations in favor of the mixture of both of them.

we modeled the SLR data as an AR(1) process where the innovations are Gumbel, Gaus-

sian, or a mixture of both. Based on our non-central chi square test, we reject the Gumbel

and Gaussian innovations.

This work opens further problems in both theory and applications. In the theory part,

proving the asymptotic multivariate normality of the vector (m̂2, m̂3) by the m-dependency

or any other tools. Also in the theory, looking at the general formula of the higher moments

of the Gumbel distribution, it is a function of the ”Euler Mascheroni integral” which is the

derivative (and the higher derivative) of the Gamma function evaluated at 1. And note

that the general formula for the moments in the Gaussian case is a function of the Hermite

polynomials. The question now does the ”Euler Mascheroni integral” play other role for the

Gumbel distribution? For the applied part, estimating the parameters of the centered AR(1)

model with mixture innovations, without assuming the means of the mixture distributions

equal to zero, this might be studied by using Bayesian analysis, in particular employing

107



RUNJAGS.

108



BIBLIOGRAPHY

109



BIBLIOGRAPHY

[1] J Andel. On ar (1) processes with exponential white noise. Communications in
Statistics-Theory and Methods, 17(5):1481–1495, 1988.

[2] OD Anderson. The box-jenkins approach to time series analysis. RAIRO-Operations
Research, 11(1):3–29, 1977.

[3] Ronald L Anderson. Distribution of the serial correlation coefficient. The Annals of
Mathematical Statistics, 13(1):1–13, 1942.

[4] TW Anderson and AM Walker. On the asymptotic distribution of the autocorrelations
of a sample from a linear stochastic process. The Annals of Mathematical Statistics,
35(3):1296–1303, 1964.

[5] ANNMARIE GEDDES BARIBEAU. The slr factor: As sea levels rise, the flood risk
equation changes. Actuarial Review, 2018.

[6] MS Bartlett. Some aspects of the time-correlation problem in regard to tests of signifi-
cance. Journal of the Royal Statistical Society, 98(3):536–543, 1935.

[7] CB Bell and EP Smith. Infrence for non-negative autoregressive schemes. Communica-
tions in Statistics-Theory and Methods, 15(8):2267–2293, 1986.

[8] Ocean Studies Board, National Research Council, et al. Sea-level rise for the coasts
of California, Oregon, and Washington: past, present, and future. National Academies
Press, 2012.

[9] David Bolin, Peter Guttorp, Alex Januzzi, Daniel Jones, Marie Novak, Harry Pod-
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