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ABSTRACT 

COMPARISON OF THREE MEDIATION ANALYSIS METHODS WITH 
 TWO SEQUENTIAL MEDIATORS 

By 

Xinchun Zhang 

Mediation analysis is an important tool for understanding causal mechanisms in 

epidemiology and social sciences. The estimation of direct and indirect effects with 

multiple mediators is a challenging problem. This thesis focused on the comparison of 

three mediation analysis methods with two sequential mediators. Our goal was to access 

the robustness of the methods in estimating natural indirect effect and partial indirect 

effect. In this thesis we simulated multiple scenarios based on a counterfactual 

framework and employed three weighted-marginal structural models to estimate direct 

and indirect effects (1-3). The bias, root mean squared error and 95% confidence interval 

coverage probability from the Monte-Carlo simulations were the criteria to compare the 

three methods. By comparing their performance in the estimation of direct and indirect 

effects, we concluded that the Lange method was more robust in mediation analysis with 

two sequential mediators compared with the methods by Steen and Hong. 

 

Key words: Causal inference, mediation analysis, sequential mediators, marginal 

structural models, data simulation, causal directed acyclic graph, direct effect, indirect 

effect 
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 CHAPTER 1. INTRODUCTION 
  

Mediation analysis is used in epidemiology and social sciences to estimate how an 

exposure is related to an outcome through a mediator in complex observational settings. 

There may be a single mediator, or a set of mediators that are causally related between 

the exposure and the outcome. In many epidemiological studies, multiple mediators may 

be of interest. We are interested in assessing the extent to which the effect of an exposure 

on an outcome is mediated by two sequential mediators. 

There have been two different statistical techniques—methods based on regression 

and methods based on weighting—to estimate direct and indirect effects in mediation 

analyses with multiple mediators. Regression-based approaches involve combination of 

results from two models, a model for the outcome and a model for the mediator, to 

estimate direct and indirect effects (4-6). The approaches described here work when all 

mediators are continuous, but cannot accommodate binary or categorical mediators, 

especially when these mediators interact. An alternative class of strategies for these cases 

is weighting-based methods.  Weighting-based methods can be used more generally to 

setting with continuous, binary, count or time-to-event outcomes (7, 8). These 

approaches involve specifying exposure and mediator weights. Using a weighting 

approach, it is easy to overcome the difficulties in estimating direct and indirect effects 

with more than one mediator (5, 6, 8). 

Following Liu et al. (9), we considered a mediation analysis with two sequential 

mediators.  We employed weighting approaches, because the mediators are sequential. 
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Moreover, there were exposure-mediator and mediator–mediator interactions, which 

makes it difficult to obtain easily generalizable analytic expressions for the direct and 

indirect effects using regression-based approaches (2, 3, 10, 11).  

Identification and estimation of unbiased direct and indirect effects rely on many 

assumptions, such as, no measurement error in the exposure, mediators, or outcome; no 

unaccounted-for confounding between exposure and mediator, exposure and outcome, 

or mediator and outcome; correct specification of the regression models for exposure-

mediator-outcome relations (2, 3, 12). In the case of multiple mediators, mediation 

analysis methods using a potential outcomes framework have been proposed (12-14). 

Natural direct and indirect effects (NDE and NIE) were estimated using linear structural 

equation modeling, outcome and mediator regression-based methods, inverse-

probability-of-treatment weighting (IPTW) fitting of marginal structural models (MSMs) 

(2, 3).  

Several propensity score-based weighting methods for mediation analysis with 

multiple mediators have been developed. These methods apply the estimated weights 

rather than the true weights that are usually unknown, such as IPTW, and ratio-of-

mediator-probability weighting (RMPW) (1, 7). Causal mediation analysis through IPTW 

or RMPW is a weighting-based approach to estimating NDE, and NIE through mediators. 

In this study, we compare Lange method (2), Steen method (3) and Hong method (1) in 

the causal mediation analysis with two sequential mediators. 

The thesis is organized as follows: chapter 1-introduction; chapter 2-counterfactual 
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approach to mediation analysis with two sequential mediators; chapter 3-the proposed 

simulation procedure; chapter 4-data simulation; chapter 5-simulation results; finally, 

chapter 6-conclusion.  
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CHAPTER 2. COUNTERFACTUAL APPROACH TO MEDIATION ANALYSIS WITH TWO 

SEQUENTIAL MEDIATORS 

2.1 Motivating epidemiology example 

For illustrative purposes, we revisit previous analyses on a cohort study about the 

connection between poor olfaction and mortality among older adults (9). As shown in Liu 

et al. (9), the effect of olfaction impairment on the risk of higher mortality among older 

adults were mediated by neurodegenerative diseases and weight loss. Previous 

mediation analysis suggested that neurodegenerative disease and weight loss may partly 

explain the relationship between poor olfaction and higher mortality (9, 15). In the thesis, 

all variables including the exposure, the outcome, two mediators, and six confounders, 

are binary variables. Corresponding natural direct and indirect effects are estimated 

under the assumption that baseline covariates are sufficient to control for confounding 

so that the identification assumptions are met (1, 2, 10, 16). The causal diagram of Figure 

1 depicts a generalization of the causal relations between the aforementioned variables. 

2.2 The counterfactual framework 

The potential outcomes framework has been used to address mediation analysis (12, 17). 

This framework not only gives clear relationships among variables, but also defines 

mediation effects in causal terms. From the framework, researchers can not only reveal 

explicitly assumptions required for causal inference, but also formulate the confounding 

control needed for the direct and indirect causal effects of interest (3, 12, 16). 
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Figure 1. Causal directed acyclic graph (DAG) with exposure A, outcome Y, two 

sequential mediators M1 and M2, and a set of baseline confounders 𝐶1 − 𝐶6 sufficient 

for confounding control.  

Note: The DAG was created using http://www.dagitty.net/dags.html. 

We consider a cohort study in which Y denotes mortality among older adults (the 

outcome of interest), A denotes olfaction impairment (the exposure), M1 and M2 denote 

neurodegenerative diseases and weight loss (two sequential mediators) respectively.  M1 

and M2 are two causally ordered mediators, which means M1 can affects M2, but not vice 

versa. We allow for potential AM1/M2 interactions as well as M1M2 interaction. C 

denotes a set of pre-exposure confounding covariates sufficient for confounding control. 

Under no-omitted-confounder assumption, {C1, C2, C6}  is the minimum sufficient 

adjustment set (MSAS) of AY  relationship, C1  is the MSC of AM1  relationship, 

{A, C3, C4, C6, M1} and {A, C2, C3, C5, M1}  are MSAS’s of M2 − Y relationship, {A, C1, C4} 

http://www.dagitty.net/dags.html
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and  {A, C4, C6} are MSAS’s of M1M2  relationship, {A, C1, C4, C5} is the MSAS of M1Y 

relationship, {C1, C6} is the MSAS of the AM2 relationship (Table 1). 

             Table 1. Minimal sufficient adjustment sets (MSAS) 

Exposure Outcome 
MSAS for estimating 
the total effect of 
exposure on outcome 

MSAS for estimating 
the direct effect of 
exposure on outcome 

A Y C1, C2, C6 C2, C3, C5, M1 

A M1 C1 C1 

A M2 C1C6 C4, C6, M1 

M1 M2 A, C1, C4 
A, C1, C4 
A, C4, C6 

M2 Y 

A, C1, C2, C3, C4, M1  
A, C1, C3, C5, C6, M1 
A, C2, C3, C5, M1 
A, C3, C4, C6, M1 

A, C1, C2, C3, C4, M1  
A, C1, C3, C5, C6, M1 
A, C2, C3, C5, M1 
A, C3, C4, C6, M1 

M1 Y 
A, C1, C4, C5 
A, C2, C4, C5, C6 

A, C1, C3, C5, C6, M2 
A, C2, C3, C5, M2 

      Note: This table was created using http://www.dagitty.net/dags.html. 

2.3 Decomposition of causal effects 

2.3a Counterfactual notation for natural direct and indirect effects 

Let A = 1 if a subject is assigned to the exposed condition, and let A =0 if the same subject 

is assigned to the control condition instead (11, 12). Ya  is counterfactual or potential 

outcome when A is set to a. In this thesis, A is binary, then each subject has two potential 

outcomes: Y0 and  Y1.  When there is only one mediator M, the natural direct effect (NDE) 

measures how much Y would change if A were set at  a =  1 versus  a∗  =  0, but for each 

subject M was kept at the a∗  =  0. The natural indirect effect (NIE) estimates how much 

http://www.dagitty.net/dags.html
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Y would change if A were controlled at a =  1, but the counterfactual M were changed 

from Ma∗ = 0 to Ma = 1, in which A were changed from level a∗  =  0 to level a =  1.  

We now consider the situation illustrated in Figure 1 which includes two causally 

sequential mediators M1 and M2. We use 3-way decompostion approach to identify the 

causal effects (3, 5). There are four finest possible distinct deposition from A to Y: AY, 

AM1Y, AM2Y and AM1M2Y.  

M1
1 denotes the potential value of the mediator M1 under a =  1, M1

0 represents the 

potential outcome of M1  when a∗  =  0 . Then, Y1, M1
1, M2

1,  M1
1

 indicates the 

counterfactual value of Y that would be observed if A was assigned a=1, M1 was set to 

value of M1
1 that would be observed if A was set to a=1, M2 was set to value of M2

1,M1
1

  that 

would be observed if A was set to a=1 and M1 = M1
1.  For the same subject, when assigned 

to a = 0 instead, counterfactual outcome would be Y0, M1
0, M2

0,  M1
0

.  

2.3b Decomposition in a mediation model with two sequential mediators 

The causal mediation effects for a binary outcome can be presented in either the risk 

difference scale (RD) or the risk ratio scale (RR) (18). The total effect (TE) is defined as how 

much Y would change overall for a change in A from level a∗  =  0 to level a =  1. In this 

counterfactual-based approach, the total effect decomposes into the natural direct and 

indirect effects (3). 

If there are k sequential mediators in a DAG, the possible decompositions would be 
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(k + 1)! Without imposing parametric restrictions. We employed Steen’s natural effect 

models in a 3-way decomposition (3). The saturated model for a 3-way decomposition of 

causal effects with two sequential mediators M1 and M2 is:  

E(Ya, M1
a′

, M2
a′′,  M1

a′

) = 

β0  + β1 ∗ a + β2 ∗ a′  + β3 ∗ a′′  + β4 ∗ a ∗ a′ + β5 ∗ a ∗ a′′ + β6 ∗ a′ ∗ a′′ + β7 ∗ 𝑎 ∗ a′ ∗ a′′, 

where a, a′, a′′  are binary (coded 0 or 1). 

Then, the direct effect of A on Y:  (a′ = 0, a′′ = 0) 

EA→Y ( a′, a′′ ) = EA→Y (0 ,0 ) = g(E(Y1, M1
0, M2

0,0
)) −  g(E(Y0, M1

0, M2
0,0

))

=  β1  + β4 ∗ a′  + β5 ∗ a′′  + β7 ∗ a′ ∗ a′′ =  β1 

The indirect effect mediated by M1 on Y: (𝑎 = 1, a′′ = 1) 

EA→M1Y (a, a′′ ) = EA→M1Y (1 ,1 ) =  g(E(Y1, M1
1, M2

1, M1
1

)) −  g(E(Y1, M1
0 , M2

1, M1
0

))  

=  β2  + β4 ∗ a +  β6 ∗ a′′  +  β7 ∗ a ∗ a′′ = β2  +  β4  + β6  +  β7 

The partial indirect effect mediated solely by M2 (bypassing M1) on Y: (a = 1, a′ = 0) 

EA→M2→Y (a, a′ ) = EA→M2→Y (1 ,0 ) =  g(E(Y1, M1
0, M2

1,  M1
0

)) −  g(E(Y1, M1
0, M2

0,  M1
0

))

=  β3  + β5 ∗ a +  β6 ∗ a′  +  β7 ∗ a ∗ a′ = β3  + β5 

In this study, we have six (3!) possible decompositions as shown below:  

EA→Y (0,0 ) + EA→M1Y (1,1 ) + EA→M2→Y (1,0 ) =  (β1) + (β2 + β4 + β6 + β7) + (β3 + β5) 

 
EA→Y (1,1 ) + EA→M1Y (0,0 ) + EA→M2→Y (0,1 ) =  (β1 + β4 + β5 + β7)  + (β2) + (β3 + β6) 

 
EA→Y (0,0 ) + EA→M1Y (1,0 ) + EA→M2→Y (1,1 ) =  (β1) + (β2 + β4) + (β3 +  β5 + β6 + β7) 

 
EA→Y (1 ,1 ) + EA→M1Y (0,1 ) + EA→M2→Y (0,1 ) =  (β1 + β4 + β5 + β7)  + (β2 + β6 ) + (β3) 

 
EA→Y (0,1 ) + EA→M1Y (1,1 ) + EA→M2→Y (0,0 ) =  (β1 + β5)  + (β2 + β4 +  β6 + β7) + (β3) 

 
EA→Y (1,0 ) + EA→M1Y (0,0 ) + EA→M2→Y (1,1 ) =  (β1 + β4)  + (β2) + (β3 +  β5 + β6 + β7) 
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2.3c Computing true effects 

The estimation of true effects is presented as follows based on Steen and Lange methods 

(2, 3). 

The difference between the following two counterfactual outcomes is the total risk 

difference (RD) of treatment effect on the outcome (TERD):  

TERD = E(Y1, M1
1, M2

1,  M1
1

) − E(Y0, M1
0, M2

0,  M1
0

) 

Natural direct effect (NDE) A on Y is a causal effect medicated not throught M1 or 

M2, but by pathway A → Y. NDE is defined as follows: 

NDERD(0,0) = E(Y1, M1
0, M2

0,  M1
0

) − E(Y0, M1
0, M2

0,  M1
0

) 

Natural indirect effect  (NIE) captures all pathways mediated by M1: 

NIERD(1,1) = E(Y1, M1
1, M2

1,  M1
1

) − E(Y1, M1
0, M2

1,  M1
0

) 

A partial indirect effect (PIE) with respect to M2  as the mediator. PIE captures 

pathway: A → M2 → Y . PIE is the indirect treatment effect on Y mediated by M2 

bypassing M1: 

PIERD(1,0) = E(Y1, M1
0, M2

1,  M1
0

) − E(Y1, M1
0, M2

0,  M1
0

) 

For Hong method, decomposition of TERD  and NDERD  remain the same as 

aforementioned. However, NIERD
H  and PIERD

H  are different as discussed in Hong’s book (1):  

TERD = E(Y1, M1
1, M2

1,  M1
1

) − E(Y0, M1
0, M2

0,  M1
0

) 

NDERD(0,0) = E(Y1, M1
0, M2

0,  M1
0

) − E(Y0, M1
0, M2

0,  M1
0

) 

NIERD(1,1)
H = E(Y1, M1

1, M2
1,  M1

1

) − E(Y1, M1
0, M2

1,  M1
1

) 



10 
 

PIERD(1,0)
H = E(Y1, M1

0, M2
1,  M1

1

) − E(Y1, M1
0, M2

0,  M1
0

) 

2.4 Assumptions that permit identification 

Sufficient assumptions (1-3) for the identification of unbiased causal direct and indirect 

effects include:  

(a) Consistency of A on Y: Ya = Y if A = a 

(b) The effect of the exposure A on outcome Y is unconfounded given C. There is no other 

unmeasured confounding of the AY relationship. The measured covariates {C1, C2, C6} 

are in the data generating process for the outcome A  and suffice to control for 

confounding for A-Y relationship. (Figure 1).  

Ya,m1,m2 ⊥ A│{C1, C2, C6} 

(c) The effect of M1 and M2 on outcome Y is unconfounded conditional on A and C, where 

C = {C1, C2, C3, C4, C5, C6}  are covariates observed for the data generating process for 

{M1, M2}  and Y. {A, C1, C4, C5}  are sufficient covariates for identifying the association 

between M1  and Y. {A, C3, C4, C6, M1}  are sufficient covariates for identifying the 

association between M2 and Y. 

                                          Ya,m1,m2 ⊥  M1
a′

 | {A, C1, C4, C5} 

                                          Ya,m1,m2 ⊥  M2
a′

 | {A, C3, C4, C6, M1} 

                                          Ya,m1,m2 ⊥ (M1
a′

, M2
a′

) | {A, C1, C3, C4, C5, C6} 

(d) The effect of A on both mediators is unconfounded conditional on C. There are no 

unobserved confounders between A and any of {M1, M2}, and {C1, C4, C6} are sufficient 



11 
 

to adjust for confounding of the effects of A on {M1, M2}.  

                                                {M1
a, M2

a)} ⊥  A │{C1, C4, C6} 

                                                M1
a ⊥  A │ C1 

                                                M2
a ⊥ A │ {C1, C4, C6} 
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CHAPTER 3. THE PROPOSED SIMULATION PROCEDURE 

3.1 Super population 

A study (9) reported that among 2289 adults aged 71 to 82 years at baseline, 31.76% had 

poor olfaction ( A = 1 ), 37.3% had neurodegenerative disease ( M1 = 1 ), 19.1% had 

weight loss ( M2 = 1 ), Mortality 52.91% ( Y = 1 ) by year 13. We created a super 

population (Table 1) with the prevalence of the exposure (A), mediators (M1 and M2), and 

outcome (Y) similar in the paper (9) as shown in table 1 based on the data generating 

process in Figure 1.  

Table 2. Prevalence of Exposure, Mediators, and Outcome in Super-population 

  N=10,000,000 
Frequency (Percentage) 

A 
0 6,962,575 (69.6%) 

1 3,037,425 (30.4%) 

M1 
0 6,525,293 (65.3%) 

1 3,474,707 (34.7%) 

M2 
0 7,635,725 (76.4%) 

1 2,364,275 (23.6%) 

Y 
0 4,962,836 (49.6%) 

1 5,037,164 (50.4%) 

 

3. 2 Equation for data generating procedure (DGP) 

In this chapter, we provide details about our simulation study. We assumed all covariates 

are independent and identically distributed in our study. We generated six independent 

baseline covariates  C1−C6 with identical distribution: Bernoulli(1, 0.5).  
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C1, C2, C3, C4,C5, C6  ~  Bernoulli(1, 0.5)   

Next, we generated A, M1, M2 and Y with Bernoulli distribution as described below. 

iid: A sequence of independent, identically distributed (IID) random variables 

P(A) =
exp [− log(14) + log(3) C1 + log(3) C2 + log(3) C6]

1 + exp [− log(14) + log(3) C1 + log(3) C2 + log (3)C6]
 

 
𝐴~Bernoulli(1, P(A)) 
 

P(M1) =
exp [− log(16) + log(3) C1 + log(3) C4 + log(3) C5 + log (3)A]

1 + exp [− log(16) + log(3) C1 + log(3) C4 + log(3) C5 + log (3)A]
 

 
𝑀1~Bernoulli(1, P(M1)) 
 

P(M2) =
exp [− log(50) + log(3) C3 + log(3) C4 + log(3) C6 + log (3)A + log(2)M1 + log(2)AM1]

1 + exp [− log(50) + log(3) C3 + log(3) C4 + log(3) C6 + log (3)A + log(2)M1 + log(2)AM1]
 

 
M2~Bernoulli(1, P(M2)) 

 

P(Y) =
(exp [−log(3)C2 + log(3)C3 + log(3)C5 + log(3)M1 + log(3)M2 + log(4)A + log(4)M1M2 + log(4)AM1 + log(4)AM2]

1 + (exp [−log(3)C2 + log(3)C3 + log(3)C5 + log(3)M1 + log(3)M2 + log(4)A + log(4)M1M2 + log(4)AM1 + log(4)AM2]
 

 

Y~Bernoulli(1, P(Y)) 
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3.3 True effects 

After generating the exposure, outcome, and mediator variables as mentioned in section 

3.2 DGP, we further generated counterfactual outcomes and estimated true effects using 

the superpopulation (N=10,000,000) discussed in section 2.4c.  The calculated true effects 

are listed in table 2. 

    Table 3. True causal effects 

 Risk Difference (RD) Risk Ratio (RR) 

True effects for: TERD NDERD NIERD PIERD TERR NDERR  NIERR PIERR 

Lange and Steen 
methods 

0.404 0.297 
0.065 0.043 

2.052 1.773 
1.089 1.063 

Hong method 0.044 0.063 1.059 1.093 

 

These true effects are one decomposition of the natural effects as discussed in 

section 2.3a. The total effect in risk difference scale (TERD) is the sum of the component 

effects (NDERD + NIERD + PIERD) and the total effect in risk ratio scale is the product of 

the component effects. The DGP as described in equations (section 3.2) was used for each 

simulation to generate 2000 observations. The direct, indirect, and total effects of interest 

were estimated within each scenario using the three statistical approaches discussed 

below. To assess performance, method- and scale-specific effects from each simulation 

were then compared to the true effects obtained from the super population (2, 3). 

3.4 The proposed estimation procedure 

The rationale for how the newly modified procedure featuring two causally ordered 
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mediators provides validity is shown in Appendices A and B. We performed Monte-Carlo 

simulations similar to the Lange and Steen simulations, and extended them to Hong’s 

method. 

We carried out Monte Carlo simulation based on generalizations of Steen’s 

mediation formula as shown in Figure 2 (3, 11). The Lange, Steen and Hong approaches 

share several similarities in their respective procedures (Figure 2). All methods require 

expansions of the original dataset, need to generate weights for at least one mediator 

and use those weights to fit a suitable model to the outcome variable. In addition, each 

approach used counterfactual-framework based on a marginal structural model (MSM) 

to estimate causal mediation effects (2, 3).   

As shown in Figure 2, the three methods are different in the process of data 

simulation. Prior to data expansion and weight generation, the Lange and Hong methods 

require that both M1 and M2 to be modeled, while disregarding any model for Y. On the 

other hand, the Steen method needs one mediator (M1 or M2) and Y to be modeled. 

Additional differences were discussed as follows and in Figure 2. 

Model specifications were different for three methods. We fitted a logistic 

regression model for binary mediators M1, M2 conditional on A and covariate set C. 

logit[Pr(M1 = 1)|A, 𝐂] = α0  + α1 ∗ A + α2
T ∗ C                                                                   (1) 

logit[Pr(M2 = 1)|A, M1, 𝐂 ] = θ0  + θ1 ∗ A + θ2 ∗ M1 + θ3 ∗ A ∗ M1 + θ4
T ∗ 𝐂             (2)  

Lange and Hong methods: both (1) and (2), but Steen method: either (1) or (2). 

With regard to Steen method, fit a logistic regression model for the binary outcome 
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Y conditional on A, both M1 and M2, covariate set C as shows in equation (3). 

logit[Pr(𝑌 = 1)|A, M1, M2, 𝐂] = γ0  + γ1 ∗ A + γ2 ∗ M1 + γ3 ∗ M2 + γ4 ∗ A ∗ M1 + γ5 ∗ A ∗ M2

+ γ6 ∗ M1 ∗ M2 + γ7 ∗ A ∗ M1 ∗ M2 +  γ8
T ∗ C                                           (3)  

Three methods employ various weighting in MSM (1-3). The section below 

describes how the weights are generated. 

Lange weight was given by (i = 0,1, k = 1,2) 

Wi =
1

Pr (A = Ai|C = c)
∏

Pr(Mk = Mk
i |A = Ak

i , C = 𝑐)

Pr(Mk = m1|A = Ai, C = c)

K

k=1

 

= Pr(M1 = m1|A = a , C = c) ∗
Pr(M1 = m1|A = a1, C = c)

Pr(M1 = m1|A = a, C = c)
 

 

∗ Pr(M2 = m2|A = a , C = c) ∗
Pr(M2 = m2|A = a2 , C = c)

Pr(M2 = m2|A = a, C = c)
∗

1

Pr (A = a|C = c)
 

Steen weight was computed by (i = 0,1, k = 1,2) 

W1i,a′ =
Pr(M1 = M1

i |A = a′, C = Ci)

Pr(M1 = M1
i |A = a′′, C = Ci)

=
Pr(M1 = M1

i |A = a′, C = Ci)

Pr(M1 = M1
i |A = Ai, C = Ci)

 

W2i,a′′ =
Pr(M2 = M2

i
|A = a′′, C = Ci

)

Pr(M2 = M2
i

|A = a′, C = Ci
)

=
Pr(M2 = M2

i
|A = a′′, C = Ci

)

Pr(M2 = M2
i

|A = a′′, C = Ci
)
 , where C is a set of 

confounders. 

Hong weights were computed as shown in Table 3. 
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Table 4. Hong weights for marginal structural models. 

 A 𝑎′ 𝑎′′ D Weight 

E(Y0, M1
0, M2

0,  M1
0

) 0 0 0 0 1.0 

E(Y1, M1
0, M2

0,  M1
0

) 1 0 0 0 

θM1
0=m1

θM1
1=m1

∗
θ

M2
0,m1=m2

θ
M2

1,m1=m2

 

=
Pr(M1

0 = m1|A = 0, C = c)

Pr(M1
1 = m1|A = 1, C = c)

∗ 

Pr (M2
0,M1 = m2|A = 0, M1

0 = m1 , C = c)

Pr (M2
1,M1 = m2|A = 1, M1

1 = m1 , C = c)
 

E(Y1, M1
1, M2

0,  M1
0

) 1 1 0 0 

θ
M2

0,m1=m2

θ
M2

1,m1=m2

= 

Pr (M2
0,M1 = m2|A = 0, M1

0 = m1 , C = c)

Pr (M2
1,M1 = m2|A = 1, M1

1 = m1 , C = c)
 

E(Y1, M1
0, M2

1,  M1
1

) 1 0 1 0 
θM1

0=m1

θM1
1=m1

=
Pr (M1

0 = m1|A = 0, C = c)

Pr (M1
1 = m1|A = 1, C = c)

 

E(Y1, M1
1, M2

1,  M1
1

) 1 1 0 1 1.0 
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Figure 2. Chart of the procedures executed for each mediation analysis method 
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CHAPTER 4. DATA SIMULATION 

We compared three estimation approaches for sequential mediation analysis including 

their software implementations in STATA version 16 (StataCorp LP, College Station, Texas). 

In this section we present the simulation scenarios designed to compare the 

robustness of three approaches in estimating causal effects, as well as the criteria used 

to compare the performance of the three methods. 

4.1 Simulation Scenarios 

In addressing causal effects, we control for variables that are confounders (C1 − C6) of 

the AY  relationship ( C1, C2, C6 ), of the  AM1  relationship ( C1 ), of the AM2 

relationship (C1, C6), M1M2 relationship (A, C4, C6) of M1Y relationship (A, C1, C4, C5) 

and of M2 − Y  relationship ( A, C2, C3, C5, M1 ) (Section 2.2). We selected N = 2000 

representing a relatively large sample size. We designed a range of scenarios that mis-

specify the aforementioned relationships based on the causal pathway (Figure 1) so that 

we can understand the robustness of the three methods under even unusual conditions. 

In total we evaluated the correctly-specified model (CSM) and 12 scenarios for 

Lange and Hong methods, two CSM (CSM1 and CSM2) and 22 scenarios for Steen method 

(Table 5). The CSM represents the case in which all models were correctly specified. 

Scenarios 1-9 are shared by all three methods. The first four scenarios represent cases in 

which M1 is mis-specified when C1 (scenario 1, omitting confounding variable for AM1 

relationship), or C4  (scenario 2, omitting unnecessary covariate) or C5  (scenario 3, 
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omitting unnecessary covariate), or (C1 + C4 + C5) (scenario 4) were omitted from the 

variable generation equation.  Scenarios 5-8 represent cases in which M2  was mis-

specified when C3  (scenario 5, omitting unnecessary covariate), or C4  (scenario 6, 

omitting confounding variable for M1M2  relationship) or C6  (scenario 7, omitting 

confounding variable for AM2  relationship), or (C3 + C4 + C6)  (scenario 8) were 

omitted from the variable generation equation. Scenario 9 portrays the case in which M2 

is mis-specified due to A ∗ M1 interaction being omitted. For Lange and Hong methods, 

scenarios 10-12 represent cases in which both M1  and M2  were mis-specified due to 

unmeasured confounding as shown in Table 5. 

With regard to Steen method, CSM1 and CSM2 are both the correctly-specified 

models, CSM1 is the model when M1 and Y are included to generated IPTW, and CSM2 is 

the model when M2  and Y are included to generated IPTW (Table 5). Scenarios 10-13 

were cases in which Y was mis-specified due to unmeasured confounding (Table 5). 

Scenarios 14-16 represented mis-specified cases in which A ∗ M1  interaction (scenario 

14), A ∗ M2 interaction (scenario 15), or M1 ∗ M2 interaction (scenario 16) were omitted. 

Scenarios 17-19 were cases in which both M1  and Y  were mis-specified due to 

unmeasured confounding; and scenarios 20-22 represented cases in which both M2 and 

Y are mis-specified due to unmeasured confounding. 

We discussed the confounder for each relation in section 2.2. Under the assumption 

that no-omitted confounders in our DAG (Figure 1), omitting C1 in scenarios 1, 4, 10 or 17 

would increase bias for NIE due to the fact C1 is the confounder of A ∗ M1 relation (Table 
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5).  On the other hand, omitting C4 in scenarios 6, 8, 11, or 21 would increase bias for PIE 

due to the fact C4  is the confounder of M1M2  relation (Table 5). When A ∗ M1 

interaction is omitted in scenario 9, bias for PIE would rise compared to CSM. Omitting C3 

in scenarios 11 or 21 would increase bias for PIE due to the fact C3 is the confounder of 

M2Y relation. In addition, when A ∗ M1 interaction is omitted in scenario 14, bias for 

NIE would increase; when A ∗ M2 interaction is omitted in scenario 15, bias for PIE would 

increase. Lastly, when C2 is omitted in scenarios 13, 17 or 20, bias for NDE would increase. 

We would provide performance criteria that would be used to compare three mediation 

analysis methods from different simulation scenarios for illustration (section 4.2).  

Each scenario varies one feature of the data-generating process at a time. The 

changes of the parameter values in the inverse-probability-of-treatment weighting 

(IPTW) or ratio-of-mediator-probability weighting (RMPW) models lead to changes in 

IPTW or RMPW weights and correspondingly the performance of the estimators in the 

section 4.2. In this way, we can evaluate the influence of each data generation feature on 

the estimation results and assess the stability of performance for each estimation 

procedure. Equations used to generate M1, M1 and Y are as follows: 

logit[Pr(M1 = 1)|A, C1, C4, C5] = α0  + α1 ∗ A + α2 ∗ C1 + α3 ∗ C4 + α4 ∗ C5                  (4.1)  

logit[Pr(M2 = 1)|A, M1, C3, C4, C6] = β0  + β1 ∗ A + β2 ∗ C3 + β3 ∗ C4 + β4 ∗ C6 + β5 ∗ M1

+ β6 ∗ A ∗ M1                                                                                                          (4.2)      

logit[Pr(Y = 1)|A, M1, M2, C2, C3, C5] = r0  + r1 ∗ A + β2 ∗ C2 + r3 ∗ C3 + r4 ∗ C5 + r5 ∗ M1

+ r6 ∗ M2 + r7 ∗ A ∗ M1 + r8 ∗ A ∗ M2 + r9 ∗ A ∗ M1 ∗ M2                         (4.3)  
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                Table 5. Methods and simulation scenarios 

Method Scenario Description Explanation 
Expectation of 
bias in theory 

Lange 
 

Hong 
 

Steen 

CSM 
Model for M1: Equation (4.1)  
Model for M2: Equation (4.2)  

CSM=Correctly-specified 
model 

No 

1 C1 is omitted from model (4.1)  
M1 is misspecified due 
to unmeasured 
confounding 

 

Yes in NIE 

2 C4 is omitted from model (4.1)  No 

3 C5 is omitted from model (4.1)  No 

4 C1, C4, C5 are omitted from model (4.1) Yes in NIE 

5 C3 is omitted from model (4.2) M2 is misspecified due 
to unmeasured 
confounding 

 

No 

6 C4 is omitted from model (4.2) Yes in PIE 

7 C6 is omitted from model (4.2) No 

8 C3, C4, C6 are omitted from model (4.2) Yes in PIE 

9 A ∗ M1 is omitted from model (4.2)  
 M2 is misspecified due 
to lack of interaction 

Yes in PIE 

Lange 
 

Hong 

10a 
C1 is omitted from model (4.1) and 
C3 is omitted from model (4.2) Both M1 and M2 are 

misspecified due to 
unmeasured 
confounding 
 

Yes in NIE 

11a 
C4 is omitted from model (4.1) and 
C4 is omitted from model (4.2) 

Yes in NIE, PIE 

12a 
C5 is omitted from model (4.1) and 
C6 is omitted from model (4.2) 

No 

 
 

CSM1 
Model for M1: Equation (4.1)  
Model for Y: Equation (4.3)  

CSM1=Correctly-
specified model 1 

No 
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Steen 

CSM2 
Model for M2: Equation (4.2)  
Model for Y: Equation (4.3)  

CSM2=Correctly-
specified model 2 

No 

10b C2 is omitted from model (4.3)  Y is misspecified due to 
unmeasured 
confounding 
 

Yes in NDE 

11b C3 is omitted from model (4.3) Yes in PIE 

12b C5 is omitted from model (4.3) Yes in NIE 

13 C2,  C3,  C5 are omitted from model (4.3) Yes in all 

14 A ∗ M1 is omitted from model (4.3) Y is misspecified due to 
lack of interaction 

 

Yes in NIE 

15 A ∗ M2  is omitted from model (4.3) Yes in PIE 

16 M1 ∗ M2  is omitted from model (4.3) Yes in NIE 

17 
C1 is omitted from model (4.1) and 
C2 is omitted from model (4.3) M1 and Y are 

misspecified due to 
unmeasured 
confounding 

 

Yes in NDE, NIE 

18 
C4 is omitted from model (4.1) and 
C3 is omitted from model (4.3) 

Yes in PIE 

19 
C5 is omitted from model (4.1) and  
C5 is omitted from model (4.3) 

No 

20 
C3 is omitted from model (4.2) and  
C2 is omitted from model (4.3) M2 and Y are 

misspecified due to 
unmeasured 
confounding 

 

Yes in NDE 

21 
C4 is omitted from model (4.2) and 
C3 is omitted from model (4.3) 

Yes in PIE 

22 
C6 is omitted from model (4.2) and 
C5 is omitted from model (4.3) 

No 

Table 5 (cont’d) 
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4.2 Performance criteria 

The causal mediation estimation was replicated 2000 times for each scenario. We used 

three criteria to examine the performance of three estimation methods (3, 19):  

(1) Bias was computed by subtracting the true value of the parameter from the parameter 

estimate: 

 Bias =
1

2000
∗ ∑ (θ̂i

2000

i=1

− θtr) 

θ̂i is the causal mediation effect estimate for the i th simulation. 

 (2) Root mean square error (RMSE): RMSE was computed by subtracting the true value 

of the parameter from the parameter estimate, squaring this value, and then adding the 

empirical variance of the parameter estimate. Low values of RMSE reflect either low 

bias, high precision, or some combination of the two. 

RMSE = √
1

2000
∗ ∑ (θ̂i − θtr)

2
2000

i=1

 

(3) Confidence interval coverage: We calculated the probability of true estimates falling 

into actual 95% confidence interval (CI) across the 2,000 replications.  

Coverage =
1

2000
∗ ∑ [θtr ∈ (LBi, UBi)]

2000

i=1

 

where LBi is lower bound, UBi  is upper bound of the corresponding effect for the i th 

simulation. 
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CHAPTER 5. SIMULATION RESULTS 

To investigate the robustness of the considered estimation approaches, we performed 

simulation studies with 2000 runs of data sets with 2000 observations. Each method 

estimates total effect (TE), natural direct effect (NIE), natural indirect effect (NIE) and 

partial indirect effect (PIE) as they differ in how the weights are generated and how they 

handle confounders and interactions. To make the simulation results more comparable, 

we reported the bias, root mean squared error (RMSE), and coverage probability of the 

95% confidence interval (CI) across 2,000 simulations relative to the true causal effects 

estimated from a large simulated data set (Table 6), as discussed in section 3.3. 

Low values (or absolute values) of bias indicate low bias. Low values (or absolute 

values) of RMSE reflect low bias, high precision, or the combination of the two. High 

values of coverage probability (The closer to 95%, the better.) indicate better 

performance.  
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Table 6. Performance in risk difference and risk ratio scales when the all parameters were correctly specified in the three methods.  
True effect Metric Lange CSM Steen CSM1 Steen CSM2 Hong CSM 

TERD = 0.404 

Bias 0.004 (0.017) 0.004 (0.024) 0.004 (0.024) 0.000 (0.024) 

RMSE 0.611 (0.455) 0.847 (0.705)  0.850 (0.705) 0.832 (0.700)  

Coverage 94.3% 80.6% 81.3% 82.3% 

NDERD = 0.297 

Bias 0.005 (0.020) 0.005 (0.024) 0.005 (0.024) 0.001 (0.028) 

RMSE 0.740 (0.555)  0.876 (0.656)  0.878 (0.656) 0.984 (0.744)  

Coverage 95.7% 25.3% 26.8% 77.3% 

NIERD = 0.065 

NIERD
Hong

= 0.044 

Bias 0.003 (0.007) 0.003 (0.011) 0.003 (0.016) 0.022 (0.010) 

RMSE 0.266 (0.210)  0.388 (0.301)  0.575 (0.435) 0.969 (0.446) 

Coverage 88.0% 62.3% 95.2% 7.3% 

PIERD = 0.043 

PIERD
Hong

= 0.063 

Bias -0.003 (0.006) -0.004 (0.017) -0.004 (0.010) -0.022 (0.010) 

RMSE 0.253 (0.188) 0.610 (0.501)  0.360 (0.337) 1.005 (0.447)  

Coverage 83.7% 96.0% 66.5% 11.2% 

TERR =  2.052 

Bias 0.021 (0.060) 0.020 (0.090) 0.020 (0.090) 0.004 (0.088) 

RMSE 2.273 (1.722) 3.167 (2.616) 3.171 (2.622) 3.040 (2.498)  

Coverage 94.3% 76.8% 77.8% 78.0% 

NDERR = 1.773 

Bias 0.020 (0.062) 0.020 (0.079) 0.020 (0.079) 0.005 (0.086) 

RMSE 2.329 (1.778) 2.899 (2.223)  2.907 (2.222) 3.065 (2.354)  

Coverage 95.5% 40.1% 41.5% 77.3% 

NIERR = 1.089 

NIERR
Hong

= 1.059 

Bias 0.004 (0.011) 0.005 (0.017) 0.005 (0.023) 0.032 (0.016) 

RMSE 0.423 (0.339) 0.614 (0.493)  0.848 (0.656) 1.440 (0.712)  

Coverage 90.5% 65.0% 95.0% 9.5% 

PIERR = 1.063 

PIERR
Hong

= 1.093 

Bias -0.005 (0.010) -0.006 (0.026) -0.006 (0.016) -0.033 (0.016) 

RMSE 0.395 (0.291) 0.918 (0.754)  0.562 (0.516) 1.474 (0.696)  

Coverage 85.0% 95.7% 64.3% 15.1% 

Note: Values in parentheses are the standard deviations (sd) of the measure of interest from 2000 simulations.  
Abbreviations: NDE=Natural direct effect, NIE=Natural indirect effect, PIE=Partial indirect effect, TE=Total effect, RD=Risk difference, 
GLM=Generalized linear model, RMSE=Root mean square error. 
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5.1 Comparison across scenarios within each method 

5.1a Simulation results generated from Lange method 

In Table 6, each row represents a specific causal effect in RD or RR scale. The robustness 

of each method in accessing causal effects was evaluated using bias, RMSE and coverage. 

For Lange and approach (Figure 3 and Table 6), when all parameters were correctly 

specified, the bias and RMSE in RD and RR scales for TE, NDE, NIE and PIE were small. The 

coverage in RD and RR scales were close to 95%, which indicates high precision in 

simulation (Table 6). However, the coverage in RD and RR scales for the NIE and PIE in RD 

and RR scales were lower than expected (≤90%) when all parameters were correctly 

specified.  

Figure 3 shows the performance in bias, RMSE and coverage of Lange method in RD 

and RR scales across all scenarios. Table 7 displays the summary of consistency of Lange 

method in terms of with our expectation as mentioned in section 4.1. Across all scenarios, 

the coverage for TE and NDE in RD and RR scales were around 95% resilient to 

parametermis-specification, but the coverage for NIE and NDE in RD and RR scales were 

below 90% (Figure 3). 

When M1 was mis-specified due to omission of C1, bias and RMSE for NIE in RD and 

RR scales increased, and coverage in RD and RR scales decreased in scenarios 1, 4 and 10 

compared to those in CSM (Figure 3 and Table 7). C1 is the confounder between AM1 

(Figure 1), C4  and C5  were included in the equation to generate M1 , but are not 
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confounders between AM1, therefore the larger bias for NIE occurred when C1  was 

deleted in scenarios 1, 4 and 10. This result is consistent with our expectation of bias in 

theory (Table 5). 

C4 is the confounder between M1M2 (Figure 1). When M2 was mis-specified due 

to the omission  of C4, bias and RMSE for PIE in RD and RR scales increased in scenarios 6, 

8 and 11 compared to those in CSM (Figure 3 and Table 7). The bias for NIE and PIE 

increased in scenario 11 when C4  was omitted from both M1  and M2  models, which is 

consistent with our expectation of bias in theory (Table 5 and Table 7). 

C5 is the confounder between M1𝑌. When C5 was deleted from the equation to 

generate M1 , bias and RMSE for NIE in RD and RR scales increased and coverage 

decreased in scenarios 3 and 12. This result was against our expectation of bias in theory.  

In summary, Lange approach performed well as expected with a few exceptions across 

all scenarios.  
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Figure 3. Performance of Lange method in risk difference (RD) scale and risk ratio (RR) 

scale 

Solid red line represents TE; black long-dashed line represents NDE; blue dot-dashed line 

represents NIE; green short-dashed line represents PIE. 

Bias in RD scale (A) and in RR scale (B); RMSE in RD scale (C) and RR scale (D); coverage 

probability in RD scale (E) and RR scale (F). 

A                                                                            B  

C                                                                          D   

E                                                                          F    
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  Table 7 Summary of Lange method in RD scale 

Lange 
Scenario 

Description 
Expectation of 
bias in theory 

Bias RMSE Coverage 

CSM CSM No No No No 

1 M1 − C1 Yes in NIE Yes in NIE Yes in NIE Yes in NIE 

2 M1 − C4 No No No No 

3 M1 − C5 No Yes in NIE Yes in NIE Yes in NIE 

4 M1−{C1, C4, C5} Yes in NIE Yes in NIE Yes in NIE Yes in NIE 

5 M2 − C3 No No No No 

6 M2 − C4 Yes in PIE No Yes in PIE Yes in PIE 

7 M2 − C6 No No No No 

8 
M2

− {C3, C4, C6} 
Yes in PIE Yes in PIE Yes in PIE No 

9 M2 − {A ∗ M1} Yes in PIE Yes in PIE Yes in PIE Yes in PIE 

10a 
{M1 − C1} & 
{M2 − C3} 

Yes in NIE Yes in NIE Yes in NIE Yes in NIE 

11a 
{M1 − C4} & 
{M2 − C4} 

Yes in NIE, PIE 
Yes in NIE, 
PIE 

Yes in NIE, 
PIE 

Yes in NIE, 
PIE 

12a 
{M1 − C5} & 
{M2 − C6} 

No Yes in NIE Yes in NIE Yes in NIE 

 

Note: Description column represents CSM or mis-specified models, for example, M1 −

C1 indicates C1 was omitted from M1 equation.  
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5.2b Simulation results for Steen method 

 

For Steen approach (Figure 4 and Table 6), when all parameters were correctly specified, 

the bias and RMSE in RD scales for TE, NDE, NIE and PIE were small as expected (Table 6), 

however the coverage in RD and RR scales for TE and NDE were much smaller than 95% 

(Table 6).  The coverage in RD and RR scales for NIE were 95.2% and 95.0% in CSM2, in 

contrast, the coverage in RD and RR scales for PIE in CSM1 were poor. The coverage in RD 

and RR scales for PIE were 96.0% and 95.7% in CSM1, in contrast, the coverage in RD and 

RR scales for PIE in CSM2 are much smaller than 95%. Steen method showed different 

performance in coverage depending on whether M1 or M2 was used for weighting.  

Figure 4 shows the performance in bias, RMSE and coverage of Steen method in RD 

and RR scales across all scenarios. Table 8 displays the summary of consistency of Steen 

method in terms of bias with our expectation as mentioned in section 4.1. Notably, across 

all scenarios, the coverage for TE and NDE in RD and RR scales was poor (<80%), furthermore, 

the coverage for NIE and PIE was below 90% in most scenarios (Figure 4). 

C1 is the confounder between AM1 (Figure 1). When M1 was mis-specified due to 

omission of C1, the bias and RMSE for NIE in RD and RR scales increased in scenarios 1, 4 

and 17 compared to those in CSM1 (Figure 4 and Table 8). Interestingly, the bias and RMSE 

for PIE in RD and RR scales were also increased in scenario 1 and 4. 

C4 is the confounder between M1M2 (Figure 1). When M2 was mis-specified due 

to the omission  of C4, bias and RMSE for PIE in RD and RR scales increased in scenarios 6 

and 8 compared to those in CSM2 (Figure 4 and Table 8). The bias and RMSE for PIE did 
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not increase as expected. Notably, the bias and RMSE for NIE increased in scenarios 6 and 

8. 

C2  is the confounder between 𝐴𝑌. When C2  was deleted from the equation to 

generate Y, the bias and RMSE for NDE in RD and RR scales increased in scenarios 10, 13,  

17 and 20 as expected (Figure 4 and Table 8).  

Deletion of  A ∗ M1  interaction from Y  model (scenario 14) led to bias and RMSE 

increase for NIE as expected (Figure 4 and Table 8). In addition, when A ∗ M2 interaction 

was omitted from Y model (scenario 15), the bias and RMSE for PIE increased as expected. 

When M1 ∗ M2 interaction was omitted from Y model (scenario 16), the bias and RMSE 

for NIE did not change as expected (Figure 4 and Table 8). 

There are two notable points to mention for Steen methods. First, in most scenarios 

when M1 or M2 was mis-specified, the bias and RMSE for NIE and NDE did not change as 

expected (Figure 4 and Table 6). Second, in scenarios 3, 7, 19 and 22, there were 

unexpected change in bias and RMSE (Table 6). 

In summary, Steen approach seems less resilient to parameter mis-specification 

compared to Lange method in many scenarios. We would have a further comparison across 

the methods in the following sections. 
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Figure 4. Performance of Steen method in risk difference (RD) scale or risk ratio (RR) 

scale 

Solid red line represents TE; black long-dashed line represents NDE; blue dot-dashed line 

represents NIE; green short-dashed line represents PIE. 

Bias in RD scale (A) and in RR scale (B); RMSE in RD scale (C) and RR scale (D); coverage 

probability in RD scale (E) and RR scale (F). 

 

A                                                                        B         

C                                                                        D    

E                                                                         F   
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   Table 8 Summary of Steen method in RD scale 

Steen 
Scenario 

Description 
Expectation of 
bias in theory Bias RMSE 

CSM1 CSM1 No No No 

CSM2 CSM2 No No No 

1 M1 − C1 Yes in NIE Yes in NIE, PIE Yes in NIE, PIE 

2 M1 − C4 No Yes in NIE, PIE No 

3 M1 − C5 No Yes in NIE, PIE Yes in NIE, PIE 

4 M1−{C1, C4, C5} Yes in NIE Yes in NIE, PIE Yes in NIE, PIE 

5 M2 − C3 No No No 

6 M2 − C4 Yes in PIE Yes in NIE, PIE Yes in NIE, PIE 

7 M2 − C6 No Yes in NIE, PIE Yes in NIE 

8 M2 − {C3, C4, C6} Yes in PIE Yes in NIE, PIE Yes in NIE 

9 M2 − {A ∗ M1} Yes in PIE Yes in NIE Yes in NIE 

10b Y − C2 Yes in NDE Yes in NDE Yes in NDE 

11b Y − C3 Yes in PIE No No 

12b Y − C5 Yes in NIE Yes in NIE Yes in NIE 

13 Y − {C2, C3,  C5} Yes in all Yes in NDE Yes in NDE 

14 Y − {A ∗ M1} Yes in NIE Yes in NIE Yes in NIE 

15 Y − {A ∗ M2} Yes in PIE Yes in PIE Yes in PIE 

16 Y − {M1 ∗ M2} Yes in NIE No No 

17 
{M1 − C1} & 
{Y − C2} 

Yes in NDE, NIE 
Yes in NDE, NIE, 
PIE 

Yes in NDE, NIE, 
PIE 

18 
{M1 − C4} & 
{Y − C3} 

Yes in PIE Yes in NIE Yes in NIE 

19 
{M1 − C5} & 
{Y − C5} 

No Yes in NIE  Yes in NIE  

20 
{M2 − C3} & 
{Y − C2} 

Yes in NDE Yes in NDE, NIE Yes in NDE, NIE 

21 
{M2 − C4} & 
{Y − C3} 

Yes in PIE Yes in NIE  Yes in NIE  

22 
{M2 − C6} & 
{Y − C5} 

No Yes in PIE  Yes in NIE 

 
Note: Description column represents CSM1, CSM2 or mis-specified models, for example, 

M1 − C1 indicates C1 was omitted from M1 equation.  
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5.1c Simulation results for Hong method 

As shown in Table 6, for Hong method when all parameters were correctly-specified, bias 

and RMSE in TE and NDE in both RD and RR scales were smaller than those from Lange 

method and Steen method. On the other hand, Hong method had larger bias and RMSE 

for NIE and PIE in RD and RR scales (Table 6). The coverage from Hong method was poor, 

especially the coverage for NIE and PIE were extremely low (<20%).  

Figure 5 shows the performance in bias, RMSE and coverage of Hong method in RD 

and RR scales across all scenarios. Table 9 displays the summary of consistency of Hong 

method in terms of with our expectation as mentioned in section 4.1. Across all scenarios, 

TE was resilient to parameter mis-specification (Figure 5). The coverage for TE, NDE, NIE 

and PIE in RD and RR scales were poor (<85%) in all scenarios (Figure 5). 

When M1 was mis-specified due to omission of C1, bias and RMSE for NIE in RD and 

RR scales increased in scenarios 1, 4 and 10 compared to those in CSM (Figure 5 and Table 

9). When M2 was mis-specified due to the omission  of C4, bias and RMSE for PIE in RD 

and RR scales increased in scenarios 6, 8 and 11 compared to those in CSM (Figure 5 and 

Table 9).  Surprisingly, when C5 was deleted from the equation to generate M1, bias and 

RMSE for NIE in RD and RR scales increased and coverage decreased in scenarios 3 and 

12.  

In summary, Hong method had higher bias and RMSE for NIE and PIE in RD and RR scales 

across all scenarios relative to the other two methods (Figure 5). In many scenarios, Hong 

approach showed bias and RMSE change as expected.   
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Figure 5. Performance of Hong method in risk difference (RD) scale or risk ratio (RR) 

scale 

Solid red line represents TE; black long-dashed line represents NDE; blue dot-dashed line 

represents NIE; green short-dashed line represents PIE. 

Bias in RD scale (A) and in RR scale (B); RMSE in RD scale (C) and RR scale (D); coverage 

probability in RD scale (E) and RR scale (F). 

A                                                                         B         

C                                                                         D        

E                                                                         F       
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     Table 9 Summary of Hong method in RD scale 

Hong 
Scenario 

Description 
Expectation of 
bias in theory 

Bias RMSE 

CSM CSM No No No 

1 M1 − C1 Yes in NIE Yes in NIE Yes in NIE 

2 M1 − C4 No No No 

3 M1 − C5 No Yes in NIE Yes in NIE 

4 M1−{C1, C4, C5} Yes in NIE Yes in NIE Yes in NIE 

5 M2 − C3 No No No 

6 M2 − C4 Yes in PIE No Yes in PIE 

7 M2 − C6 No No No 

8 M2 − {C3, C4, C6} Yes in PIE Yes in PIE, NIE Yes in PIE, NIE 

9 M2 − {A ∗ M1} Yes in PIE No No 

10a 
{M1 − C1} & 
{M2 − C3} 

Yes in NIE Yes in NIE Yes in NIE 

11a 
{M1 − C4} & 
{M2 − C4} 

Yes in NIE, PIE Yes in NIE Yes in NIE, PIE 

12a 
{M1 − C5} & 
{M2 − C6} 

No Yes in NIE Yes in NIE 

 

Note: Description column represents CSM or mis-specified models, for example, M1 −

C1 indicates, C1 was omitted from M1 equation.  
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5.2 Cross method comparison 

Table 6 displays the results of performance in risk difference scale and risk ratio scales 

when confounders, mediators, and interactions were correctly specified. With respect to 

coverage probability, Lange method had best 95% confidence interval (CI) coverage 

compared to the other two approaches. 

5.2a Comparison of Lange, Steen and Hong methods in estimating total effects 

Because three methods had the same mis-specification in scenarios 1-9, we did 

method comparison using CSM (CSM1 and CSM2 for Steen method) and scenarios 1-9. 

The robustness of the three methods in RD and RR scales for TE estimation were shown 

in Figure 6 and Table 10. 

Low values (close to 0) of bias and RMSE indicate low bias. High values of coverage 

probability (The closer to 95%, the better.) indicate better performance. As shown in 

Table 10, if the color was red, the method performed the best among three methods 

based on the criteria we discussed previously; green, the middle; and blue, the worst. The 

higher the total numbers of red are, the better overall performance for that method. 

Lange method had better coverage in RD and RR scales for TE than the other two 

methods, and Steen had the poorest coverage in RD and RR scales for TE in most scenarios 

(Figured 6E and 6F, and Table 16). Hong method had the smallest bias and RMSE in RD 

and RR scales for TE. Given that the bias and RMSE for TE were small for all three methods, 

we compared the performance of the three methods in TE estimation using coverage. 
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Lange method had a score of 10 in coverage (Table 10), which indicates that Lange 

method was more robust in TE estimation comparing to Steen and Hong methods. 
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Figure 6. Comparison of Lange method, Steen method and Hong method in TE estimation   

Black solid line represents Lange method; red dot-dashed line represents Steen method; 

green long-dashed line represents Hong method. 

Bias in RD scale (A) and in RR scale (B); RMSE in RD scale (C) and RR scale (D); coverage 

probability in RD scale (E) and RR scale (F). 

  

A                                                                         B         

C                                                                          D        

E                                                                           F       
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Table 10  Summarizing comparison of Lange, Steen and Hong methods in TE 
estimation in RD scale 

TE in RD 
scale 

Bias Coverage RMSE 

Scenario Lange Steen Hong Lange Steen Hong Lange Steen Hong 

CSM  NA   NA   NA  

CSM1 NA  NA NA  NA NA  NA 

CSM2 NA  NA NA  NA NA  NA 

1          

2          

3          

4          

5          

6          

7          

8          

9          

Total 0 2 8 10 0 0 1 0 9 

 

Note: 

Smallest bias           Middle bias           Largest bias        (The smaller, the better) 

Largest coverage       Middle coverage        Smallest coverage        (The larger, the better) 

Smallest RMSE       Middle RMSE          Largest bias        (The smaller, the better) 

Low values (or absolute values) of bias indicate low bias. 

High values of coverage probability (The closer to 95%, the better.) indicate better 

performance. 

Low values (or absolute values) of RMSE reflect low bias, high precision, or some 

combination of the two. 

 

 

  



41 
 

5.2b Comparison of Lange, Steen and Hong methods in estimating natural direct effect 

Because the bias and RMSE for NDE were relatively small for all three methods, we 

compared the performance of the three methods in NDE estimation using coverage 

(Figure 7). Lange method had a score of 10 in coverage (Table 11), suggesting that Lange 

method performed better in NDE estimation comparing to Steen and Hong methods.  
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Figure 7. Comparison of Lange method, Steen method and Hong method in NDE estimation   

Black solid line represents Lange method; red dot-dashed line represents Steen method; 

green long-dashed line represents Hong method. 

Bias in RD scale (A) and in RR scale (B); RMSE in RD scale (C) and RR scale (D); coverage 

probability in RD scale (E) and RR scale (F). 

  

A                                                                        B        

000 

C                                                                        D        

E                                                                         F       
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Table 11  Summarizing comparison of Lange, Steen and Hong methods in NDE 
estimation in RD scale 

NDE in 
RD scale 

Bias Coverage RMSE 

Scenario Lange Steen Hong Lange Steen Hong Lange Steen Hong 

CSM  NA   NA   NA  

CSM1 NA  NA NA  NA NA  NA 

CSM2 NA  NA NA  NA NA  NA 

1          

2          

3          

4          

5          

6          

7          

8          

9          

Total 3 4 3 10 0 0 1 9 0 

 

Note: 

Smallest bias           Middle bias           Largest bias        (The smaller, the better) 

Largest coverage       Middle coverage        Smallest coverage        (The larger, the better) 

Smallest RMSE       Middle RMSE          Largest bias        (The smaller, the better) 

Low values (or absolute values) of bias indicate low bias. 

High values of coverage probability (The closer to 95%, the better.) indicate better 

performance. 

Low values (or absolute values) of RMSE reflect low bias, high precision, or some 

combination of the two. 
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5.2c Comparison of Lange, Steen and Hong methods in estimating natural indirect effect 

As shown in Figure 8 and Table 12, Lange method had smaller bias and RMSE for NIE 

relative to Steen and Hong methods. Moreover, Lange had higher coverage for NIE 

estimation in 9 out of 10 scenarios (Table 12). Hong method had different rationale in 

estimating NIE from Lange and Steen methods, and had poorest performance in bias, 

RMSE and coverage in NIE estimation in almost all scenarios (Table 12). 
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Figure 8. Comparison of Lange method, Steen method and Hong method in NIE estimation   

Black solid line represents Lange method; red dot-dashed line represents Steen method; 

green long-dashed line represents Hong method. 

Bias in RD scale (A) and in RR scale (B); RMSE in RD scale (C) and RR scale (D); coverage 

probability in RD scale (E) and RR scale (F). 

 

A                                                                        B         

C                                                                        D        

E                                                                        F       
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Table 12. Summarizing comparison of Lange, Steen and Hong methods in NIE estimation 
in RD scale 

NIE in 
RD scale 

Bias Coverage RMSE 

Scenario Lange Steen Hong Lange Steen Hong Lange Steen Hong 

CSM  NA   NA   NA  

CSM1 NA  NA NA  NA NA  NA 

CSM2 NA  NA NA  NA NA  NA 

1          

2          

3          

4          

5          

6          

7          

8          

9          

Total 9 1 0 6 4 0 7 3 0 

 

Note: 

Smallest bias           Middle bias           Largest bias        (The smaller, the better) 

Largest coverage       Middle coverage        Smallest coverage        (The larger, the better) 

Smallest RMSE       Middle RMSE          Largest bias        (The smaller, the better) 

Low values (or absolute values) of bias indicate low bias. 

High values of coverage probability (The closer to 95%, the better.) indicate better 

performance. 

Low values (or absolute values) of RMSE reflect low bias, high precision, or some 

combination of the two. 
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5.2d Comparison of Lange, Steen and Hong methods in estimating partial indirect effect 

As shown in Figure 9 and Table 13, Lange method had smallest bias and RMSE in most 

scenario among the three methods (Figure 9 and Table 13). Lange method had highest 

coverage for PIE in all scenarios (Table 13). The performance of Steen method ranked the 

second. Hong method it performed poorly in PIE estimation in almost all scenarios. 
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Figure 9. Comparison of Lange method, Steen method and Hong method in PIE estimation   

Black solid line represents Lange method; red dot-dashed line represents Steen method; 

green long-dashed line represents Hong method. 

Bias in RD scale (A) and in RR scale (B); RMSE in RD scale (C) and RR scale (D); coverage 

probability in RD scale (E) and RR scale (F). 

  

A                                                                          B         

C                                                                          D        

E                                                                           F       
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Table 13. Summarizing comparison of Lange, Steen and Hong methods in PIE estimation 

PIE in 
RD scale 

Bias Coverage RMSE 

Scenario Lange Steen Hong Lange Steen Hong Lange Steen Hong 

CSM  NA   NA   NA  

CSM1 NA  NA NA  NA NA  NA 

CSM2 NA  NA NA  NA NA  NA 

1          

2          

3          

4          

5          

6          

7          

8          

9          

Total 10 0 0 10 0 0 8 2 0 

 

Note: 

Smallest bias           Middle bias           Largest bias        (The smaller, the better) 

Largest coverage       Middle coverage        Smallest coverage        (The larger, the better) 

Smallest RMSE       Middle RMSE          Largest bias        (The smaller, the better) 

Low values (or absolute values) of bias indicate low bias. 

Low values (or absolute values) of bias indicate low bias. 

High values of coverage probability (The closer to 95%, the better.) indicate better 

performance. 

Low values (or absolute values) of RMSE reflect low bias, high precision, or some 

combination of the two. 
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CHAPTER 6. CONCLUSION  

To understand the mechanisms with two sequential mediators, it is necessary to 

investigate the counterfactual framework (3, 10, 16). In this thesis, motivated by previous 

research (9), we considered two-sequential-mediator models with binary mediators, a 

binary outcome and a set of binary confounders. Before this study, Lange et al (8) had 

performed the only simulation that we knew of that allowed different sets of confounders 

for different A − M − Y relationships; but they considered only one mediator and three 

confounders.  We extended the scenarios with mis-specifications by omitting one or 

multiple confounders, or deleting an interaction. 

By comparing their robustness in bias, RMSE and coverage in various scenarios, we 

concluded that Lange method was more resilient to mis-specifications and performed 

better in NIE and PIE estimation in most scenarios compared to Steen and Hong methods 

(Figures 8 and 9, Tables 12 and 13). Hong method had largest bias and RMSE, and lowest 

coverage for NIE and PIE among the three methods. In addition, Lange method showed 

the same changes in bias, RMSE, and coverage as we expected in most scenarios when 

mis-specification occurred.  

Coverage for all causal effects estimated using Steen and Hong methods were much 

smaller than the expected 95% in most scenarios (Figures 4 and 5). Low coverage was 

likely due to the fact that we did not use bootstrapping to obtain coverage, but employed 

default standard errors for parameter estimates (section 4.2). Bootstrapping will likely 
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provide better coverage as the calculation of the standard errors and confidence interval 

is more accurate (3). 
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APPENDIX A: Validity of the Modified Lange Method 

Consistency:  Ya,m1,m2 = Y when A = a; M1
1 = M1; M2

1 = M2 

Positivity:  0 < Pr (A = a| C = c) < 1;  0 < Pr(Mk = mk| A = a, C = c) < 1 

No unmeasured confounders:  Ya,m1,m2 ⊥ A | C;  Mi
a ⊥ A | C;  Ya,m1,m2 ⊥ Mi│A = c, C   

 i = 1,2 

Identification assumptions (Extended sequential ignorability):  

Ya′,m1,m2 ⊥ Mi
a│C  and Mi

a ⊥ Mj
a′

│C  for all a, a′, i, j where i ≠ j, i = 1,2, j = 1,2 

Under above-mentioned assumptions, we can estimate E (Ya,M1
a1 ,M2

a2  ) in the mediation 

analysis with two consecutive mediators (M1 and M2).  

 

E (Ya,M1
a1 ,M2

a2 ) = ∑ ∑ E(Ya,m1,m2|M1
a1 = m1, M2

a2 = m2 , C = c)

cm1,m2

 

                                  

                                 ∗ Pr (M1
a1 = m1, M2

a2 = m2 , | C = c) ∗ Pr (C = c) 

 

= ∑ ∑ E(Ya,m1,m2|C = c) ∗ Pr (M1
a1 = m1| C = c) ∗ Pr (M2

a2 = m1| C = c) ∗ Pr (C = c)

cm1,m2

 

 

= ∑ ∑ E(Ya,m1,m2|M1 = m1 , M2 = m2, A = a, C = c) ∗ Pr(M1
a1 = m1|A = a1, C = c)

cm1,m2

 

 

      ∗ Pr(M2
a2 = m1| A = a2 , C = c) ∗ Pr (C = c) 

 

= ∑ ∑ E(Y|M1 = m1, M2 = m2 , A = a, C = c) ∗ Pr(M1 = m1|A = a1, C = c)

cm1,m2

 

 
     ∗ Pr(M2 = m1| A = a2, C = c) ∗ Pr (C = c) 
 

= ∑ ∑ ∑ y

cm1,m2y

∗ Pr (Y = y|M1 = m1, M2 = m2, A = a, C = c) 

 
∗ Pr(M1 = m1|A = a1, C = c) ∗ Pr(M2 = m1| A = a2 , C = c) ∗ Pr (C = c) 
 

= ∑ ∑ ∑ ∑ y ∗ I(A = a) ∗ Pr(Y = y|M1 = m1, M2 = m2 , A = a, C = c) 

cm1,m2𝑦𝑎
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∗ Pr(M1 = m1|A = a , C = c) ∗
Pr(M1 = m1|A = a1, C = c)

Pr(M1 = m1|A = a, C = c)
 

 

∗ Pr(M2 = m2|A = a , C = c) ∗
Pr(M2 = m2|A = a2 , C = c)

Pr(M2 = m2|A = a, C = c)
 

∗
Pr (C = c)

Pr (A = a|C = c)
 

 

= ∑ ∑ ∑ ∑ y ∗ I(A = a) ∗ Pr(Y = y|M1 = m1, M2 = m2 , A = a, C = c) 

cm1,m2𝑦𝑎

 

 

∗ Pr(M1 = m1|A = a , C = c) ∗
Pr(M1 = m1|A = a1, C = c)

Pr(M1 = m1|A = a, C = c)
 

 

∗ Pr(M2 = m2|A = a , C = c) ∗
Pr(M2 = m2|A = a2 , C = c)

Pr(M2 = m2|A = a, C = c)
 

 ∗
1

Pr (𝐴 = 𝑎)
 

 
 

= ∑ ∑ ∑ ∑ y ∗ I(A = a) ∗ Pr(Y = y, M1 = m1, M2 = m2, A = a, C = c) ∗

c

W

m1,m2ya

 

 
= E(Y ∗ I(A = a) ∗ W)        (Where W is the weight.) 
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APPENDIX B: Proof of RMPW for estimating counterfactual outcomes of consecutive 

mediators 

 
To obtain unbiased estimates of the causal effects applying RMPW method, stronger 
assumptions about the sequential ignorability are required as follows:  
(i)  

A ⊥ Ya,m1,m2│C1, C2, C3, C4, C5, C6 

A ⊥ M1, M2│C1, C2, C3, C4, C5, C6 

 Exposure A is independent of all the potential outcomes and the potential mediators 
given the observed pretreatment covariates C. 
(ii)  

M1 ⊥ Ya,m1,m2│A, C1, C2, C3, C4, C5, C6 

Given A and C, the assignment of M1 is independent of all the potential outcomes and 
the 
potential mediators. 
 
(iii*)  

M2 ⊥ Ya,m1,m2│A, M1, C1, C2, C3, C4, C5, C6 

 
Given A, M1, and C, the assignment of M2 is independent of all the potential outcomes. 

Individuals are assigned at random to  A =  1   or A =  0  at the first stage of the 

experiment; those in the same treatment group a are assigned at random to different 

values of the first mediator M1
a  at the second stage for a =  0, 1; those in the same 

treatment group a and with the same mediator value m1  are assigned at random to 

different values of the second mediator M2
a,m1  at the third stage for a = 0,1 and for all 

possible values of m1. 

 

Note: M2
0,m1

0

= M2
0 

𝐄 (𝐘𝟏,𝐌𝟏
𝟎,𝐌𝟐

𝟎,𝐌𝟏
𝟎

 ) ≡ E {E (Y1,M1
0 ,M2

0,M1
0

 |C)} = E {E (Y1,M1
0,M2

0,M1
0

 |A = 1, C)}    
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𝑥, 𝑚1 , 𝑚2 , 𝑦 

𝑥, 𝑚1 , 𝑚2 , 𝑦 

𝑥, 𝑚1 , 𝑚2 , 𝑦 

𝑥, 𝑚1 , 𝑚2 , 𝑦 

𝑥, 𝑚1 , 𝑚2 , 𝑦 

       

 = ∫ ∫ ∫ ∫ y ∗ f(Y1,m1,m2 = y|A = 1, M1
0 = m1, M2

0,m1
0

= m2, C = c)  

 

       ∗ (Pr (M2
0,m1

0

= m2| A = 1, M1
0 = m1, C = c) ∗ Pr(M1

0 = m1|A = 1, C = c) 

 
       ∗ h(C = c) dydm2 dm1dx 
 
= ∫ ∫ ∫ ∫ y  
 

  ∗ {
f(Y1,m1,m2 = y, M2

0 = m2|A = 1, M1
0 = m1 , C = c)

Pr (M2
0 = m2|A = 1, M1

0 = m1 , C = c)
⁄ } 

 

   ∗ Pr(M2
0 = m2|A = 1, M1

0 = m1, C = c)) ∗ Pr(M1
0 = m1|A = 1, C = c) 

 
   ∗ H(C = c) dydm2 dm1dx 
 
= ∫ ∫ ∫ ∫ y  
 

  ∗ {
f(Y1,m1,m2 = y, M2

0 = m2|A = 1, M1
1 = m1, C = c)

Pr (M2
0 = m2|A = 1, M1

1 = m1 , C = c)
⁄ } 

 

   ∗ Pr(M2
0 = m2|A = 1, M1

0 = m1, C = c)) ∗ Pr(M1
0 = m1|A = 0, C = c) 

 
    ∗ H(C = c) dydm2 dm1dx 
 
= ∫ ∫ ∫ ∫ y ∗ (Y1,m1,m2 = y|A = 1, M1

1 = m1, M2
0 = m2, C = c)  

 

    ∗ Pr(M2
0 = m2|A = 1, M1

0 = m1, C = c)) ∗ Pr(M1
0 = m1|A = 0, C = c) 

 
    ∗ H(C = c) dydm2 dm1dx 
 
= ∫ ∫ ∫ ∫ y ∗ (Y1,m1,m2 = y|A = 1, M1

1 = m1, M2
1 = m2, C = c)  

 

    ∗ Pr(M2
1 = m2|A = 1, M1

1 = m1, C = c)) ∗ Pr(M1
1 = m1|A = 1, C = c) 

   

∗
Pr(M1

0 = m1|A = 0, C = c) ∗ Pr(M2
0 = m2|A = 0, M1

0 = m1, C = c)

Pr(M1
1 = m1|A = 1, C = c) ∗ Pr(M2

1 = m2|A = 1, M1
1 = m1, C = c)

  

∗ h(C = c) dydm2 dm1dx 

 
= E(Y∗|A = 1)  where Y∗ = WY  
 
RMPW weight 



57 
 

𝑥, 𝑚1 , 𝑚2 , 𝑦 

𝑥, 𝑚1 , 𝑚2 , 𝑦 

𝑥, 𝑚1 , 𝑚2 , 𝑦 

W =
Pr(M1

0 = m1|A = 0, C = c) ∗ Pr(M2
0 = m2|A = 0, M1

0 = m1 , C = c)

Pr(M1
1 = m1|A = 1, C = c) ∗ Pr(M2

1 = m2|A = 1, M1
1 = m1, C = c)

=
θM1

0=m1

θM1
1=m1

∗
θ

M2
0,m1=m2

θ
M2

1,m1=m2

 

 

 

Note: M2
0,m1

0

= M2
0 

𝐄 (𝐘𝟏,𝐌𝟏
𝟏,𝐌𝟐

𝟎,𝐌𝟏
𝟎

 ) ≡ E {E (Y1,M1
1 ,M2

0,M1
0

 |C)} = E {E (Y1,M1
1,M2

0,M1
0

 |A = 1, C)}    

       
 = ∫ ∫ ∫ ∫ y ∗ f(Y1,m1,m2 = y|A = 1, M1

1 = m1, M2
0 = m2, C = c)  

 

       ∗ (Pr(M2
0 = m2| A = 1, M1

1 = m1, C = c) ∗ Pr(M1
1 = m1|A = 1, C = c) 

 
       ∗ h(C = c) dydm2 dm1dx 
 

= ∫ ∫ ∫ ∫ y ∗  f(Y1,m1,m2 = y|A = 1, M1
1 = m1 , M2

1 = m2 , C = c) 

 

  ∗ {
Pr(M2

0 = m2, M1
1 = m1|A = 0, C = c))

Pr(M2
1 = m2, M1

1 = m1|A = 0, C = c))
⁄ } 

 
   ∗ Pr(M1

1 = m1|A = 1, C = c) ∗ h(C = c) dydm2 dm1dx 
 

= ∫ ∫ ∫ ∫ y ∗  f(Y1,m1,m2 = y|A = 1, M1
1 = m1 , M2

1 = m2 , C = c) 

 

  ∗ {
Pr(M2

0 = m2, M1
1 = m1|A = 1, C = c))

Pr(M2
1 = m2, M1

1 = m1|A = 1, C = c))⁄ } 

 
   ∗ Pr(M1

1 = m1|A = 1, C = c) ∗ h(C = c) dydm2 dm1dx 

= ∫ ∫ ∫ ∫ y ∗  f(Y1,m1,m2 = y|A = 1, M1
1 = m1 , M2

1 = m2 , C = c) 

∗ Pr(M2
1 = m2|A = 1, M1

1 = m1 , C = c) ∗ Pr(M1
1 = m1|A = 1, C = c) 

∗
Pr(M2

0 = m2|A = 0, M1
0 = m1 , C = c)

Pr(M2
1 = m2|A = 1, M1

1 = m1 , C = c)
∗ h(C = c) dydm2 dm1dx 

= E(Y∗|A = 1)  where Y∗ = WY  
 
RMPW weight 
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𝑥, 𝑚1 , 𝑚2 , 𝑦 

𝑥, 𝑚1 , 𝑚2 , 𝑦 

𝑥, 𝑚1 , 𝑚2 , 𝑦 

𝑥, 𝑚1 , 𝑚2 , 𝑦 

𝑥, 𝑚1 , 𝑚2 , 𝑦 

W =
Pr(M2

0 = m2|A = 0, M1
0 = m1, C = c)

Pr(M2
1 = m2|A = 1, M1

1 = m1, C = c)
=

θ
M2

0,m1=m2

θ
M2

1,m1=m2

 

 

 

𝐄 (𝐘𝟏,𝐌𝟏
𝟎,𝐌𝟐

𝟏,𝐌𝟏
𝟏

 ) ≡ E {E (Y1,M1
0 ,M2

1,M1
1

 |C)} = E {E (Y1,M1
0,M2

1,M1
1

 |A = 1, C)}    

       
 = ∫ ∫ ∫ ∫ y ∗ f(Y1,m1,m2 = y|A = 1, M1

0 = m1, M2
1 = m2, C = c)  

 

       ∗ (Pr(M2
1 = m2| A = 1, M1

0 = m1, C = c) ∗ Pr(M1
0 = m1|A = 1, C = c) 

 
       ∗ h(C = c) dydm2 dm1dx 
 
= ∫ ∫ ∫ ∫ y  
 

  ∗ {
f(Y1,m1,m2 = y, M2

1 = m2|A = 1, M1
0 = m1, C = c)

Pr (M2
1 = m2|A = 1, M1

0 = m1 , C = c)
⁄ } 

 

   ∗ Pr(M2
1 = m2|A = 1, M1

0 = m1, C = c)) ∗ Pr(M1
0 = m1|A = 1, C = c) 

 
   ∗ h(C = c) dydm2 dm1dx 
 
= ∫ ∫ ∫ ∫ y  
 

  ∗ {
f(Y1,m1,m2 = y, M2

1 = m2|A = 1, M1
1 = m1, C = c)

Pr (M2
1 = m2|A = 1, M1

1 = m1 , C = c)
⁄ } 

 

   ∗ Pr(M2
1 = m2|A = 1, M1

1 = m1, C = c)) ∗ Pr(M1
0 = m1|A = 0, C = c) 

 
    ∗ h(C = c) dydm2 dm1dx 
 
= ∫ ∫ ∫ ∫ y ∗ (Y1,m1,m2 = y|A = 1, M1

1 = m1, M2
1 = m2, C = c)  

 

    ∗ Pr(M2
1 = m2|A = 1, M1

1 = m1, C = c)) ∗ Pr(M1
0 = m1|A = 0, C = c) 

 
    ∗ h(C = c) dydm2 dm1dx 
 
= ∫ ∫ ∫ ∫ y ∗ (Y1,m1,m2 = y|A = 1, M1

1 = m1, M2
1 = m2, C = c)  

 

    ∗ Pr(M2
1 = m2|A = 1, M1

1 = m1, C = c)) ∗ Pr(M1
1 = m1|A = 1, C = c) 

 
   

∗
Pr(M1

0 = m1|A = 0, C = c)

Pr(M1
1 = m1|A = 1, C = c)

 ∗ h(C = c) dydm2 dm1dx 
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= E(Y∗|A = 1)  where Y∗ = WY  
 
RMPW weight 

W =
Pr (M1

0 = m1|A = 0, C = c)

Pr (M1
1 = m1|A = 1, C = c)

=
θM1

0=m1

θM1
1=m1
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