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ABSTRACT

MULTIMODAL LEARNING AND ITS APPLICATION TO MODELING ALZHEIMER’S
DISEASE

By

Qi Wang

Multimodal learning gains increasing attention in recent years as heterogeneous data modalities

are being collected from diverse domains or extracted from various feature extractors and used

for learning. Multimodal learning is to integrate predictive information from different modalities

to enhance the performance of the learned models. For example, when modeling Alzheimer’s

disease, multiple brain imaging modalities are collected from the patients, and effectively fusion

from which is shown to be beneficial to predictive performance.

Multimodal learning is associated with many challenges. One outstanding challenge is the se-

vere overfitting problems due to the high feature dimension when concatenating the modalities.

For example, the feature dimension of diffusion-weighted MRI modalities, which has been used in

Alzheimer’s disease diagnosis, is usually much larger than the sample size available for training.

To solve this problem, in the first work, I propose a sparse learning method that selects the impor-

tant features and modalities to alleviate the overfitting problem. Another challenge in multimodal

learning is the heterogeneity among the modalities and their potential interactions. My second

work explores non-linear interactions among the modalities. The proposed model learns a modal-

ity invariant component, which serves as a compact feature representation of the modalities and has

high predictive power. In addition to utilize the modality invariant information of multiple modal-

ities, modalities may provide supplementary information, and correlating them in the learning can

be more informative. Thus, in the third work, I propose multimodal information bottleneck to fuse

supplementary information from different modalities while eliminating the irrelevant information



from them. One challenge of utilizing the supplementary information of multiple modalities is that

most work can only be applied to the data with complete modalities. Modalities missing problem

widely exists in multimodal learning tasks. For these tasks, only a small portion of data can be

used to train the model. Thus, to fully use all the precious data, in the fourth work, I propose a

knowledge distillation based algorithm to utilize all the data, including those that have missing

modalities while fusing the supplementary information.
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Chapter 1

Introduction

The wide availability of data from multiple data modalities has brought increasing attention to

multimodal learning. In general, modalities are defined as sets of heterogeneous features that are

collected from diverse domains or extracted from various feature extractors [126]. The sets of

features could provide both shared and supplementary information of the subjects. Since different

modalities are extracted from different domains or feature extractors, the representations of the

modalities may be very distinct from each other. Multimodal learning is to integrate predictive in-

formation from different modalities to enhance the performance of the learned models. For exam-

ple, it is common that images are accompanied by text descriptions or categorical tags. Leveraging

information from tags and text descriptions usually provides a more complementary description of

images than images alone because of the inherent relatedness. Moreover, since the data collection

or feature extraction process for the modalities are separately, the noise induced by the collection

or extraction process is specific to each data modalities. Multimodal learning can reduce the effect

of noise by learning the common structure across multiple modalities. Therefore, learning from

multiple modalities can potentially help to improve performance. As another example, in the med-

ical area, multiple data such as different kind of MRI data, gene data, blood biochemical index are

available. When doctors diagnose some complex disease such as Alzheimer’s disease, they usually

ask the patients to do multiple tests such as brain imaging tests, laboratory tests, mental status

tests and neuropsychological tests. Different test result provides different type of evaluation of the
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patients. Combining the all the results provides comprehensive and accurate information of the

patient and can help the doctors rule out other conditions that cause similar symptoms. Therefore,

when using machine learning algorithms to modeling Alzheimer’s disease, multimodal learning

demonstrated better performance than single modal learning [117, 135, 91, 143].

Multimodal learning is associated with many challenges. (1) Since multiple modalities are used

when building the model, the total feature dimension is much larger than the feature dimension for

single modal learning models. If directly concatenat the features from different modalities and

build single modal learning models, the models may suffer from severe overfitting problem, espe-

cially when the feature dimension of each modality is considerably large. Thus, the first challenge

is how to build robust models for modalities that have high feature dimensions to prevent overfit-

ting problem. (2) The second challenge for multimodal learning is the heterogeneity among the

modalities and their potential interactions. Since modalities are collected from diverse domains or

feature extractors, they are not linearly interacted. Using linear models for these modalities limits

the power of multimodal learning. (3) One motivation to use multimodal learning is that differ-

ent modalities provide supplementary information to the subjects. Modalities may have noise or

irrelevant information to the following tasks. When learning the common structure of modalities,

the irrelevant information and noise are automatically eliminated. However, when combining the

supplementary information from modalities and learning a joint representation, the irrelevant infor-

mation and noise are not removed. So, the third challenge is how to eliminate the noise of irrelevant

information from the modalities and only leave useful information when learning the joint repre-

sentation of all the modalities. (4) Most exiting works that address the supplementary information

across the modalities can only be applied to the data with complete modalities, which wastes a lot

of precious data. The last challenge I would like to address is the how to build multimodal models

with the data having missing modalities.
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In this dissertation, I propose four approaches to address the aforementioned challenges re-

spectively. In my first work, I propose a sparse model to select the important features as well as

modalities to alleviate the overfitting problem for multimodal learning when the modalities’ fea-

ture dimension or the modalities number is too large. In my second work, I propose a framework

to fuse multiple data modalities for predictive modeling using deep matrix factorization, which

explores the non-linear interactions among the modalities and exploits such interactions to trans-

fer knowledge and enable high-performance prediction. Specifically, the proposed collective deep

matrix factorization decomposes all modalities simultaneously to capture non-linear structures of

the modalities in a supervised manner, and learns a modality-specific component for each modal-

ity and a modality invariant component across all modalities. The modality invariant component

serves as a compact feature representation of patients that has high predictive power. To solve third

challenge, I propose a supervised multimodal learning framework based on the information bottle-

neck principle to filter out irrelevant and noisy information from multiple modalities and learn an

accurate joint representation. Specifically, the proposed method maximizes the mutual information

between the labels and the learned joint representation while minimizing the mutual information

between the learned latent representation of each modality and the original data representation.

For the fourth challenge, I propose a framework based on knowledge distillation, utilizing the

supplementary information from all modalities, and avoiding discarding data with missing modal-

ities. Specifically, I first train models on each modality independently using all the available data.

Then the trained models are used as teachers to teach the student model, which is trained with the

samples having complete modalities.

The four approaches are all validated on Alzheimer’s disease (AD) modeling problems. AD

is a severe neurodegenerative disease causing 60% to 70% dementia [124]. It starts with van-

ished memory and progresses to an advanced stage followed by cognitive function loss, which
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ultimately leads to death. Currently, AD ranks the sixth leading cause of death in the U.S. and

the number of patients affected is expected to reach 13.4 million by the year 2050, which induces

substantial burden on the healthcare system [8]. The transitional stage between expected cognitive

decline of normal aging and AD, mild cognitive impairment (MCI) has been considered as suitable

for possible early therapeutic intervention for AD [85]. Effective diagnosis of MCI or dementia

can greatly benefit public health and reduce healthcare burden. Alzheimer’s disease can only be

definitively diagnosed after death by exterminating the brain tissue in an autopsy [19]. Occasion-

ally, doctors determine whether a person is a possible patient or normal aging using biomarkers

of the living body. One commonly used biomarker is brain medical imaging as it shows the mi-

croscopic structure of the brain and has the key role as a "window on the brain" [51]. However,

analyzing brain medical imaging results requires considerable time and effort. In the areas that

lack of doctors experienced in Alzheimer’s disease, it is difficult to diagnose the disease even with

brain medical imaging. In the past years, various machine learning models have been developed to

model diseases [110, 88] and some of them even have better diagnostic accuracy than experienced

doctors [79]. Therefore, developing effective machine learning models could greatly reduce the

cost needed to diagnosis Alzheimer’s disease. In this dissertation, I show how to apply the pro-

posed algorithm to Alzheimer’s disease diagnosis. In the following four subsections, I give a brief

introduction to each work.

1.1 Discriminative Fusion of Multiple Brain Networks

Recently, with the development of diffusion-weighted magnetic resonance imaging techniques that

map patterns of connections in the brain. Many researchers have begun to model the brain as a net-

work of interconnected brain regions, or connectome [102]. The properties of these networks
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can then be studied mathematically with network theory. Mathematically, a brain network at the

macro-scale is typically expressed by a connectivity matrix, in which each element represents some

property of the connection between each pair of brain regions [101]. These network-derived fea-

tures provide clues about how characteristic network disruptions occur and how they may progress

in Alzheimer’s disease. Diffusion MRI is a variant of standard anatomical MRI that is sensitive

to microscopic properties of the brain’s white matter that are not detectable with standard anatom-

ical MRI. The general process of reconstructing a structural brain network includes two main

steps [134]. The first step extracts the dominant diffusion direction(s) at each voxel based on a

diffusion MRI signal model. Some popular models include the diffusion tensor, the orientation

distribution function (ODF), or a probabilistic mixture of tensors [70], among others. The next

step is whole brain tractography based on these voxel- level diffusion direction(s). Currently, there

are two main classes of tractography methods: deterministic and probabilistic approach. Based

on whole brain tractography result, brain networks can be computed by combining the pattern of

fiber tracts with some specific anatomical partitioning scheme, and measuring some property of

the connections between each pair of brain regions, such as their density or integrity.

Theoretically, different algorithmic methods to map structural connections should ultimately

provide a consistent anatomical description of the brain. Even so, this may not be true in reality.

Different tractography methods recover different sets of fibers (Fig. 1.1), and the fiber bundles that

best differentiate patients from controls may be extracted by some algorithms but not others [133].

Different tract tracking methods vary in their ability to perform robustly on dataset of different

quality. And there is no general principle to decide which tractography method or network model

is most sensitive to disease effects in clinical research studies [134]. I therefore combine all these

networks and build predictive model with them. The challenge to combine these networks is

that the dimensions for the modalities are too high compared with the sample size. To address
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Figure 1.1: Different tractography methods detect different sets of fibers. Here I show the
fibers generated by two tractography algorithms (T-FACT [78] and PICo [84]), passing through
the same brain slice.

this challenge, I create a sparse learning framework to optimally fuse the networks. The benefit

of sparse learning is it selects important components. Therefore, the feature dimension and the

modality numbers are reduced and the overfitting problem is alleviated.

1.2 Multimodal Disease Modeling via Collective Deep Matrix

Factorization

In addition to the brain networks mentioned in the first work, there are multiple biological mea-

sures such as T1 weighted MRI and genotype available. T1-weighted MRI (T1 MRI) can capture

structural information of gray matter in the brain. Combining T1 MRI and brain networks from

diffusion weighted MRI together provides a comprehensive illustration of the brain than utilizing

them separately. Moreover, prior studies strongly favor a joint analysis on multiple modalities

including imaging and genetics, since it has been shown that genetic variants have played a signif-

icant role in the onset of the disease [93, 15, 130, 129]. Combining the three modalities provide

complementary information on brain structure and function, thus improve capability in differenti-

ating between normal aging subjects and MCI patients [116, 89].

However, few prior studies combined two types of MRI imaging in detecting MCI, let alone
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a joint model that incorporate imaging modalities and genetic information. One reason is the

limited sample size. It is usually very costly to construct large cohort studies that involve imag-

ing and genetic data. For example, more than $60 million has been devoted to the first stage of

Alzheimer’s Disease Neuroimaging Initiative (ADNI) to collect 819 subjects’ brain imaging data,

genetic data and other biological samples. Different biological data modalities have different fea-

ture dimensions. For example, imaging data contains hundreds to thousands features, while the

feature dimension of genetic data is around 1 million. Due to the high dimensionality of brain

images and genetic markers, directly combining multiple modalities will increase the feature di-

mension drastically, which not only makes it difficult to extract valid predictive signals, but also

induces overfitting problems. Also, some subjects do not have genetic data or dMRI data because

they did not participate some parts of the study. Directly combining multiple modalities means

those subjects must be discarded, which significantly reduces the sample size. Moreover, different

modalities describe different aspects of brain: T1 MRI captures areas composed of neurons while

dMRI estimates connection between those areas; the genotype impacts the disease in a way that

is not directly related to brain structure and function. As such, all these data modalities are inter-

acting in a complicated manner, suggesting that directly combining feature spaces may not lead to

effective integration.

Analysis of high dimensional data can greatly benefit from its intrinsic low-rank structures

since exploiting the low-rank structure of the high dimensional data allows us to significantly re-

duce the feature dimensionality while maintain most information in data. When the sample size is

limit, it could reduce the overfitting problem. Recent studies have identified such low-rank prop-

erties in imaging and genetic data [142, 73, 121]. Matrix factorization techniques [68, 61] are

powerful tools to recover the low rank structure of a matrix and have been widely used in many

data mining and machine learning applications. Because of its capability to denoise data, such

7



approach is especially attractive in processing noisy data such as genetics and imaging. Matrix

factorization also provides an integrated approach to fuse multiple data modalities by mapping

different modalities to a shared subspace. This method has been widely applied in network anal-

ysis [25] and clustering [6]. Matrix factorization techniques have a strong linear assumption that

objects interact with each other linearly in a low dimensional subspace. However, brain as well

as genotype-phenotype interactions have inherent complex structure [36, 62, 41]. For example,

it has been identified that human brain functional networks have a hierarchical modular organi-

zation structure [76]. Thus, the linear assumption in traditional matrix factorization may fail to

capture the complexity, nonlinearities and hierarchical interactions among different modalities in

AD research.

In this work, I propose a deep matrix factorization framework to fuse information from multiple

modalities and transfer predictive knowledge in order to differentiate MCI patients from cognitive

normal subjects. Specifically, I build a nonlinear hierarchical deep matrix factorization framework

which decomposes each modality into a modality invariant component and a modality specific

component guided by supervision information. The proposed collective deep matrix factorization

delivers higher predictive performance than its linear counterpart, since its deep nonlinear structure

can discover the hidden complexity and nonlinearity of original data, and map original data which

are not linear separable into a representation that can make subjects easier to be separated. More-

over, the modality specific term can be used to uncover complicated interactions among different

modalities that cannot be discovered by traditional matrix factorization methods. I perform ex-

tensive empirical studies on the Alzheimer’s Disease Neuroimaging Initiative dataset 1 to identify

MCI patients by fusing three modalities including T1 MRI, dMRI, and genotype. I also compare

the proposed method with state-of-the-art deep multimodal algorithms including deep neural net-

1http://adni.loni.usc.edu
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work, DCCA [9] and DCCAE [119]. The results demonstrate the effectiveness of the proposed

approach.

1.3 Multimodal Information Bottleneck

In addition to learn the common structure of the modalities, another motivation to use multimodal

learning is that multiple modalities provide supplementary descriptions of the same subjects and

correlating them in the learning can be more informative. When utilizing all the information from

different modalities, the performance is expected to be improved compared to learning with the

information from only one modality. During the past years, multiple methods have been proposed

to combine the supplementary information. For example, kernel-based algorithms use the multiple

kernel methods to combine the kernels of different modalities from linear combination methods

such as linear convex combination [113] to nonlinear combination methods [114]. With the devel-

opment of deep learning, multiple neural networks [92, 64] are used to extracted abstract feature

representations for each modality. Then, the extracted representations from all modalities are fused

in different ways such as concatenation to combine the supplementary information.

When learning common structure of the modalities, the noise or irrelevant information could

be eliminated automatically. However, when learning the joint representation of the modalities

and fuse all the supplementary information together, the noise or irrelevant information is very

likely to be included into the joint representation, which increase the model complexity and cause

overfitting problem. Therefore, how to effective fuse the useful supplementary information from

all the modalities are very challenging.

More recently, a novel supervised learning method [127] based on the information bottleneck

principle [108] has gained increasing attention due to its ability to find a concise representation
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of the features, taking into account the trade-off between performance and complexity from an

information theory perspective. However, the main drawback of this method is that it employs

a linear projection to bridge the representation of each modality. As the relationship between

different modalities are often complicated, a simple linear projection would constrain the type of

information that can be fused from the different modalities.

Deep learning has been successfully used to learn abstract representation from the raw input

data [67]. DCCA and DCCAE are two examples of successful methods using deep neural net-

works to extract features from each modality and learn their joint representation. These methods

have demonstrated better performance compared to traditional linear CCA. However, adopting

deep neural networks to information bottleneck based multimodal learning formulation remains a

challenging problem. For the information bottleneck approach, the information between different

representations are measured in terms of their mutual information. Computing mutual information

requires estimation of the posterior distribution, which is computationally intractable when the

model is complicated.

In this work, I propose a deep multimodal information bottleneck method to fuse supplemen-

tary knowledge from multiple modalities to improve predictive performance. The proposed frame-

work consists of two parts. The first part is to extract concise and relevant latent representation from

each modality while the second part fuses the latent representations to learn the joint representation

of all modalities. The proposed deep multimodal learning framework adopts the information bot-

tleneck principle to supervise the learning by finding the best representation that balances model

complexity and accuracy. The framework also employs a variational inference approach [59, 7] to

overcome the challenge of computing mutual information efficiently. The variational inference ap-

proach provides an approximate solution to the original optimization problem by maximizing the

variational lower bound of the target objective function. Since the variational bound can be easily
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optimized by standard gradient descent methods, the problem becomes computationally tractable.

I apply this algorithm to the classification of MCI with NC for Alzheimer’s disease and the results

show signification performance improvement compared with the baselines.

1.4 Multimodal Learning with Incomplete Modalities

One common drawback of the methods fusing the supplementary information is that they usually

can only be trained on the samples that have complete modalities, and in practice there are very

few samples of such kind, especially when considering a large number of modalities. For example,

when studying Alzheimer’s disease, only partial subjects have the diffusion-weighted MRI while

only another part of subjects has genetic data available. The existing methods may have to discard

a large portion of data collected through huge efforts. One solution to deal with the data with

incomplete modalities is to impute the missing modalities. After imputation, standard multimodal

learning methods can be used to combine the supplementary information. The incompleteness

of modalities leads to block missing of features. Therefore, classical matrix completion methods

such as matrix factorization [131] and etc. can not be used to impute the missing modalities.

Some advanced imputation methods such as cascaded residual autoencoder [111] and adversarial

training [21, 118, 105, 83], which have similar structure as GAN, have been proposed to deal with

the modality missing problem. These solutions, however, may introduce unwanted imputation

noise when imputing the missing modalities [37]. Especially when the size of samples having

complete modalities is small, the modalities imputed by such methods may have a negative effect

on the performance of the following tasks [37].

In this work, I propose a new multimodal learning framework to integrate the supplementary

information of multiple modalities. This method utilizes all the samples include the ones with
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incomplete modalities. The proposed method is based on knowledge distillation [46]. I first train

models for each modality separately with all the data available. Then, I treat the trained models

as teachers to teach a student model. The student model is a multimodal learning model which

fuses the supplementary information from multiple modalities. It is trained with the soft labels

labeled by the teacher models and the true one-hot label. Since the teacher models are trained with

each modality separately, the sample size is much larger than the samples used to train the student

model. With enough data, the well-trained teachers act as experts on each modality. The student

then learns from these experts and combine the knowledge from all the experts. Compared with

existing methods, our method does not discard the samples with incomplete modalities nor impute

them. Instead, I use these samples to train the teacher models to make sure the teacher models are

experts. To verify the effectiveness of our method, I demonstrate experiments on synthetic data

and real-world data such as Alzheimer’s disease dataset and some benchmark datasets.
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Chapter 2

Related Works

2.1 Co-training Approach

Co-training is a semi-supervised approach. It is first proposed to deal with a classification setting

in which limited labeled samples and a large number of unlabeled samples are available for two

distinct modalities [16]. There are two assumptions on co-training:

• Each data modality provides complementary information of the samples;

• The two data modalities are conditionally independent given the class labels.

Co-training method separates the samples into two sets, labeled set L and unlabeled set U . It first

creates a smaller pool U ′⊆U . Then two weak classifiers are trained for the two modalities, i.e., h1,

h2, using the limited labeled data from L. Next, h1 and h2 are used to label p positive samples and

n negative samples that they feel most confident from U ′. Those newly labeled samples are then

added to L. U ′ is replenished by drawing 2p+2n samples from U randomly. Now, L is enlarged

by the 2n+2p samples. Those steps are repeated for a predefined number of steps, and finally, two

descent classifiers will be obtained. The intuition of this method is to use the samples added by h1

to train h2 and vice versa [65]. After repeating for enough times, h1 and h2 will agree with each

other. Hence, the unlabeled data here is used to prune the hypothesis space for h1 and h2 such that

the final search spaces are compatible.
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We note that one assumption of co-training is that each modality is conditionally independent

given class labels. The intuition behind this assumption is that, when two modalities are condi-

tionally independent, each time the added samples are as informative as random samples and the

learning should thus progress [81]. However, in some cases, this assumption cannot be satisfied.

Then, the added samples may not be informative and the learning process may fail. Co-EM algo-

rithm is an algorithm based on the original co-training algorithm to loosen this assumption [81]. It

can be shown that co-EM works even when the conditional independence assumption is violated.

Denote the two modalities as s1 and s2. This algorithm first trains a classifier using the labeled data

from L on s1. Denote this classifier as h1. Then h1 is used to probabilistically label all the unla-

beled data in U . Next, another classifier h2 is trained using the labeled data and the probabilistic

labeled data on s2, and h2 is used to re-label the data in U . Repeat those steps for some iterations

and the final classifiers are obtained. Compared with co-training, co-EM uses one learner to assign

labels to all the unlabeled samples and the second classifier is learned using all the probabilistic

labeled samples. Hence, it does not require the added samples to be as informative as random sam-

ples. However, since co-EM needs to assign probabilistic labels, the classifiers that can be used are

limited.

Co-regularization approach [95] is developed based on co-training. This method uses regular-

ization to reach an agreement across different modalities. Denote H1 and H2 as two Reproducing

Kernel Hilbert Spaces of functions defined on the input space. Denote the labeled set as L and

unlabeled set as U . Co-regularization learns the following prediction function[96]:

f ∗ =
1
2
( f ∗1 (x)+ f ∗2 (x)), (2.1)
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where f ∗1 ∈H1, f ∗2 ∈H2, f ∗1 and f ∗2 are learned by a convex optimization problem:

( f ∗1 , f ∗2 ) = argmin
f1∈H1, f2∈H2

γ1‖ f1‖2
H1

+ γ2‖ f2‖2
H2

+µ ∑
i∈U

[ f1(xi)− f2(xi)]
2 +∑

i∈L
V (yi, f (xi)), (2.2)

where the first two terms are used to control the model complexity, and γ1, γ2 are regulariza-

tion parameters, the third term is used to enforce that the learned hypotheses agree with each

other on different modalities for the unlabeled data. The last term is the empirical loss on the la-

beled data using f = 1
2( f1 + f2), and V denotes the loss function. Compared with co-training, this

method is non-greedy, convex and easy to implement [95, 96]. There are also multiple variants

of co-regularization dealing with different problems, such as Co-regularized Least Squares which

minimizes the agreement in a least-square sense [95, 18], Co-regularized Laplacian SVM [95],

co-regularized clustering [65] which uses co-regularization to regularize the clustering hypothesis

to obtain consistent clusters across different modalities.

2.2 Linear approaches

2.2.1 Canonical correlation analysis

Given two sets of variables, when the number of variables is large, it is not easy to use the covari-

ance matrix of those two sets of variables to find the dependence between them. Sometimes even

if the variable number is small, in the current coordinate system, it is still hard to see the relation

between them directly. Canonical correlation analysis (CCA) is a widely used method to solve this

challenging problem [49]. CCA identifies the relation between two sets of variables by maximiz-

ing the correlation between the weighted linear combination of one set of variables and that of the

other set of variables. It can be viewed as projecting the original two sets of variables to a low-
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dimensional subspace, such that the correlation between the two set of variables is maximized in

the new subspace. Hence, it is much easier to analyze variable dependence in the learned subspace

than in the original spaces. We will review the classical CCA and its applications to multimodal

learning in this section.

Given two random vectors x ∈Rd with the mean mx and y ∈Rp with the mean my. We assume

that d > p. A random vector is defined to be a vector of random variables. The correlation between

x and y measures the linear relation between the two random vectors. Consider the following linear

combination:

a = wT
x x, (2.3)

b = wT
y y, (2.4)

where a and b are two random variables and w1 ∈ Rd , w2 ∈ Rp. The correlation between a and b

is given by:

Corr(a,b) =
wT

x Σ(x,y)wT
y

(wT
x Σ(x,x)wx)1/2(wT

y Σ(y,y)wy)1/2 . (2.5)

CCA seeks vectors w1 and w2 such that Corr(a,b) is maximized, i.e.,

w∗x ,w
∗
y = argmax

wx,wy

Corr(a,b). (2.6)
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Finding top k canonical variate pairs is equivalent to solve the following maximization problem:

W ∗x ,W
∗
y = max

Wx,W,y
tr(W ′xΣ(x,y)Wy),

s.t. W ′xΣ(x,x)Wx =W ′yΣ(y,y)Wy = I (2.7)

wxiΣ(x,y)wy j = 0 for i 6= j

Project original random variables to a new subspace: W ∗x = (w∗x1,w
∗
x2, . . . ,w

∗
xk), and W ∗y =

(w∗y1,w
∗
y2, . . . ,w

∗
yk) serve as two mapping matrices which project x and y to a k dimensional sub-

space and form two k dimensional vectors, i.e, (a∗1,a
∗
2, ...,a

∗
k) and (b∗1,b

∗
2, ...,b

∗
k). CCA identifies the

projection leading to a possible joint structure for the two set of random variables [52]. Since k is

usually set to be much smaller than p, (a∗1,a
∗
2, ...,a

∗
k) and (b∗1,b

∗
2, ...,b

∗
k) are the new representation

of the original random vectors which have much lower dimensionality than the original vectors but

yet keep most of the joint information of x ad y. Hence, CCA can be used to reduce dimensionality

for the data. Figure 2.1 illustrates how CCA projects variables into a low-dimensional subspace.

Solid lines represent the first canonical correlation vectors w∗x1,w
∗
y1, and dashed lines represent the

second canonical correlation vectors w∗x2,w
∗
y2. In this example, the original dimensionality for x

and y are 4 and 3 respectively. The dimensionality of the new subspace is set to be 2. The pro-

jection matrix W ∗x = {w∗x1,w
∗
x2} projects x to {a∗1,a∗2} and the matrix W ∗y = {w∗y1,w

∗
y2} projects y

to {b∗1,b∗2}, where (a∗1,b
∗
1) is the first canonical variate pair and (a∗2,b

∗
2) is the second canonical

variate pair.

Applying canonical correlation analysis to multimodal learning: In multimodal learning, data

are collected from multiple modalities for a set of samples. Consider a two-modal problem, i.e.,

X ∈Rn×d and Y ∈Rn×p, where n is the sample size, d and p are feature dimensions corresponding

to the two modalities. We suppose that d ≥ p. In real world applications, we usually do not know
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Figure 2.1: Example of canonical correlation analysis (CCA) involving two data modalities.
The data points in the first data modality are R4 and those in the second data modality are R3.
Solid lines represent the first canonical correlation vectors w∗x,1,w

∗
y,1, and dashed lines represent

the second canonical correlation vectors w∗x,2,w
∗
y,2. Data points from the original data modalities

are projected to a new common subspace. In this subspace, the dimensionality of the data is
reduced from R4 or R3 to R2.

the distribution of data, i.e., the mean and covariance are unknown. In order to use CCA, we need

to use sample mean and sample covariance to estimate the mean and covariance of the distribution.

CCA has been widely used in multimodal learning. For example, when large unlabeled data are

available for two modalities and only limited labeled data are available, if the feature dimensional-

ity is very large, learning a good model only by the labeled data is not easy. A possible way to solve

this challenging problem is to utilize the unlabeled data to construct a projection by CCA to reduce

the feature dimensionality. [39] provides a theoretical guarantee that such dimensionality reduc-

tion can reduce the number of labeled sample needed. In clustering area, high-dimensional data

clustering is a difficulty problem. By using CCA, the dimensionality of the data can be reduced

which makes the clustering problem easier. Moreover, CCA allows information to be transferred

between the two modalities. Such transfer can lead to potential improvements on the cluster qual-

ity. For example, video and audio data clustering quality can be significantly improved if CCA

is applied [27]. When dealing with action data, vector CCA can also be extended to tensor CCA
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which can be used to pair-wisely analyze aligned and holistic action volumes [58].

2.2.2 Collective matrix factorization

Matrix factorization has been extensively studied in many domains such as compressive sensing,

recommender systems and computer vision [24, 23, 20, 55, 69, 68]. When a matrix is used to

describe the relationship between two entities, matrix factorization can be used to learn latent vari-

ables/profiles associated with the entities through their interactions (i.e., values in the matrix). For

example, in the Netflix problem [61], user profiles and item profiles are learned through identifying

the subspace by the user-item interaction matrix.

Classical matrix factorization seeks to approximate a matrix with a low-rank matrix, by explic-

itly learning the matrix factors. Given a data matrix X ∈ Rm×n, matrix factorization learns two

reduced matrix factors U ∈ Rm×r and V ∈ Rn×r, such that X ≈ UV T , and r < min(m,n) is the

upper bound of the rank of the approximated matrix UV T (the rank of UV T can be less than r

if columns of U or V are linearly dependent). The factors U and V are typically learned via an

objective function:

minU,V d(X ,UV T ), s.t. U ∈S1,V ∈S2, (2.8)

where d(X ,Y ) is a distance metric function measuring the difference between matrices X and Y ,

and S1 and S2 are two constrains imposed on the factor matrices X and Y .

Typically the distance metric d(X ,Y ) is chosen to be the Frobenius norm of the difference

between X and Y . However, when missing values present in X , d(X ,Y ) can be defined as the

squared `2 distance between all the observed elements in X and their corresponding elements in

Y . As such, we are able to learn matrix factors even with missing values, and the learned matrix
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factors can then be used to estimate the missing values under the low-rank assumption. This is

the setup for matrix completion [22] and is commonly used in recommender systems [61]. The

constraints S1 and S2 specify the feasible regions of the matrix factors to induce many desired

properties, such as non-negativity S = {U |Ui, j ≥ 0,∀i, j} in non-negative matrix factorization [69]

and sparsity S = {U |‖U‖1≤ z} for interpretable factors [140]. In addition, the complexity control

can be implemented using Frobenius constraints S = {U |‖U‖2
F ≤ z}, which are equivalent to the

Frobenius norm regularizations [60].

The approximation in (4.1) addresses important semantics in data analysis. When the data

matrix X describes the relationship between two types of entities, the factors U and V can be

thought of as latent features or latent representations of the entities. For example, in recommender

systems we use Xi, j to describe the relationship (e.g., rating) between a user i and an item j. The

row vector ui ∈ Rr gives a r-dimensional latent feature representation for the user i and similarly,

the row vector v j ∈ Rr is a latent representation of the item j. The two types of latent profile

interact with each other linearly in the latent subspace Rr, i.e., the observed relationship in Xi, j can

be explained as ui(v j)T .

In collective matrix factorization, the latent representation/subspace perspective of matrix fac-

torization allows us to link multiple data modalities, when the entities involved in the modalities are

overlapped. In multimodal modeling, assume there are t data modalities X1 ∈Rn×d1, . . . ,Xt ∈Rn×dt

describing different sets of features of the same set of n samples, where d1,d2, ...dt are the feature

dimension for each modality. For example, X1 is the matrix the images data, X2 is the matrix

of the text descriptions associated with those images and X3 is the tags matrix for the images.

Then, we can apply the matrix factorization procedure to factorize all the datasets and connect the
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factorizations by enforcing a shared subject latent representation:

min
U,{Vi}ti=1

t

∑
i=1

d(Xi,UV T
i ) s.t. U ∈S0,Vi ∈Si, i = 1,2, ...t,

where the latent representation U is thus jointly learned from multiple modalities. The U matrix

is called modality invariant, as the representation now captures intrinsic properties of the objects.

When performing regression and classification on the objects, we can use the latent representation

instead of using features from raw data matrices Xi, since the latent representation U contains the

common structure and the shared information across all modalities.

Collective matrix factorization has been applied in various multimodal learning problems. For

example, it can be used to transfer knowledge from text to image to build more robust text-to-image

transfer learning models [128]. It is also used to fuse information between user-tag and user-item

[56] to develop more reliable recommender system, when the users’ information is limited. In net-

work similarity learning, it is used to combine topological structure, content, and user supervision

to build models better than those built on a single modality [25].

2.3 Nonlinear approaches

2.3.1 Kernel canonical correlation analysis

Kernel methods enable nonlinear learning by implicitly mapping the original feature space to a

high-dimensional feature space. When applying linear learning methods in the high-dimensional

feature space, we are implicitly performing non-linear learning [48]. It is widely used in machine

learning and pattern analysis algorithms such as kernel support vector machine [31] and kernel

principal components analysis [77]. Similarly, the concept of kernel can be used to enable non-
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Figure 2.2: Illustration of kernel canonical correlation analysis (kernel CCA). The kernel CCA
projects data from two modalities to a Hilbert space and identifies a subspace that maximizes
canonical correlation of the projected data.

linearity in CCA, called kernel CCA [4]. Assume that we have two data modalities, kernel CCA

first projects data from the two modalities to a Hilbert space, i.e., X → φx(X) ∈ Hx and Y →

φy(Y ) ∈Hy. It then maximizes the correlation between the projected data points a := wT
x φx(X) and

b := wT
y φy(Y ). The concept of kernel CCA is illustrated in Figure 2.2.

Due to the capability to deal with nonlinear correlated data, kernel CCA is widely used in

multimodal learning. For example, it can be used for phonetic recognition when articulatory mea-

surements and acoustic features are available [10]. When applying kernel CCA on those two

modalities, the non-discriminative information is largely uncorrelated and therefore filtered out.

Hence, the learned projections only incorporate the correlated information and can deliver better

phonetic classification performance than the original features. Kernel CCA is also used in facial

expression recognition problems [136]. Facial images can provide geometric information about the

facial expression. Meanwhile, in the learning phase, there are some semantic ratings describing

the basic expressions such as happiness, sadness, surprise, anger, disgust and fear. Kernel CCA

is used to learn the correlation between the geometric information and the semantic information

and project those two feature vectors to a subspace where they have linear dependence. In the new
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subspace, it is easier to build linear regression or classification models between the two modalities,

than in the original subspace. Hence, given a test image, associated semantic rating can be esti-

mated by it. In social media area, people share the events they attended on social media websites.

Identifying unique events from these websites and grouping information for the same events is a

cumbersome task due to the high dimensionality of the data collected from social media and the

nonlinear dependence between different modalities. Kernel CCA can effectively learn a semantic

representation of potentially correlated feature sets. It can be used to learn a joint representation

from images and texts/tags/user names. The new features can be concatenated as a new feature

vector for clustering social events [3]. This method delivers better performance than those only

use data from one modality.

2.3.2 Deep canonical correlation analysis

Even though kernel CCA can be used to learn nonlinear representations, this method is not easy to

scale when the size of training data is large. Moreover, the representations learned by kernel CCA

is dependent on the kernels used. If the kernels are not suitable for the data, this method may fail.

Recently, deep neural network has shown its strong ability to learning nonlinear representations

[104, 28, 14, 90]. Therefore, deep CCA is proposed [9, 120] to learn flexible and data-driven non-

linear representations from two modalities. Given two data modalities, deep CCA learns two deep

nonlinear mappings which map the two modalities to new representations such that the canonical
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correlation of the new representations is maximized [119] 1:

min
θ f ,θg,Wx,Wy

− 1
N

tr(W T
x f (X)g(Y )TWy), (2.9)

s.t. W T
x (

1
N

f (X) f (X)T + rxI)Wx = I,

W T
y (

1
N

g(Y )g(Y )T + ryI)Wy = I,

wT
xi f (X)g(Y )T wy j = 0 for i 6= j,

where X and Y are input data of two modalities. f and g denote two full-connected deep neural

networks which produce nonlinear mappings. θ f ,θg are parameters of the two networks. N is the

sample size. Wx and Wy are canonical correlation vectors defined in Section 2.2.1. We use regu-

larized covariance instead of original covariance to prevent overfitting and rx, ry are regularization

parameters (we assume the data are centered). wxi is the i-th column of Wx and wy j is the j-th

column of Wy. Figure 2.3 is the overview of deep CCA. In CCA, the mappings are W T
x and W T

y

for two modalities, which produce linear projections. It may be difficulty to accurately reconstruct

one modality from the other due to the possible non-linear interaction between the two modalities

[119]. In deep CCA, the final mapping functions for the two modalities are W T
x f (·) and W T

y g(·).

They learn the possible nonlinear interaction and project the two modalities to a subspace in which

they are easily to reconstruct the other one.

One alternative view of deep CCA is that it learns two kernels from data for kernel CCA.

Sometimes we do not know what kind of kernels are best suitable for the data. Hence, the kernel

we choose may not provide an appropriate nonlinear mapping for the data. In this case, deep neural

network is a better choice than a prescribed kernel, as the ‘non-linear transformation’ is learned

1We use biased covariance to make it consistent with the original formulation proposed in [119]. Since N is a con-
stant, it doesn’t affect the optimal soulutions of model paramters if we use biased covariance or unbiased covariance.

24



from the data. This is empirically demonstrated by the experiments on articulatory speech data and

MINST data.

We note that deep CCA can also be combined with other deep learning techniques. For exam-

ple, it can be combined with autoencoder [119]. In addition to deep CCA, this model also contains

two autoencoders to reconstruct the learned views. It optimizes an objective that maximizes the

canonical correlation between the projected representations and minimizes the reconstruction error

of the autoencoders simultaneously 2:

min
θx,θy,Wx,Wy

− 1
N

tr
(
W T

x f (X)g(Y )TWy
)

(2.10)

+
λ

N

N

∑
i=1

(
‖xi− p( f (xi)))‖2 +‖yi−q(g(yi))

2‖
)
,

s.t. W T
x (

1
N

f (X) f (X)T + rxI)Wx = I,

W T
y (

1
N

g(Y )g(Y )T + ryI)Wy = I,

wT
xi f (X)g(Y )T wy j = 0 for i 6= j,

where xi is the i-th sample from the first modality. yi is the i-th sample from the second modality.

λ > 0 is a trade-off parameter to control the reconstruction error. Other notations are the same with

deep CCA in Eq. (2.9). Compared with deep CCA’s formulation in Eq. (2.9), this formulation con-

siders the reconstruction error of two autoencoders in the form of regularizations, in which each

autoencoder maximizes the lower bound of the mutual information between the inputs and learned

features [115]. Meanwhile, CCA can be viewed as maximizing the mutual information between

the canonical variate pairs, i.e., the projected features of the two modalities [17]. Hence, this

method offers a trade-off between the information captured in the input-feature mapping within

2note1
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Figure 2.3: Illustration of deep canonical correlation analysis structure [9]. It learns two deep
non-linear mappings which map two modalities to new representations such that the canonical
correlation of new feature vectors is maximized.
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Figure 2.4: Illustration of deep canonical correlated autoencoders [119]. It simultaneously
maximizes the canonical correlation between the projected representations and minimizes recon-
struction error of the autoencoders.

each modality on one hand, and the information in the feature-feature relationship across modali-

ties on the other hand [119]. The framework is illustrated in Figure 2.4.

2.3.3 Multimodal deep Boltzmann machine

In addition to the discriminative models introduced above, generative approaches are also widely

used in multimodal learning. Generative approaches model the joint probability of multiple modal-

ities.
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One example is multimodal deep Boltzmann machine (DBM) [103]. This method is based on

restricted Boltzmann machine (RBM). We first briefly review some basic concepts of RBM. RBM

is a network of symmetrically coupled binary random variables or units. RBM contains two layers

of units. The first layer contains visible units (input) x ∈ {0,1}m, and the second layer contains

hidden units h ∈ {0,1}n, where n is the number of the hidden units, and m is the number of the

visible units. The hidden units and the visible units are connected. No visible-to-visible or hidden-

to-hidden interaction is allowed. Figure 2.5 (a) is an illustration of RBM. W is the interaction

between the hidden units and the visible units. For all Boltzmann machines, the joint probability

distribution between units is calculated by energy function E as known from statical physics:

p =
1
Z

exp(−E),

where Z is a normalization factor to make sure the integral over p is 1. For the RBM illustrated

in Figure 2.5 (a), the energy function is E(x,h|W ) =−xTWh, if we ignore self-energy for the two

layers and only consider the interaction energy between the two layers. Hence, the joint distribution

of the visible units and the hidden units is:

p(x,h|W ) =
1

Z(W )
exp(xTWh),

where Z(W ) is the normalization factor parameterized by the network parameter W .

When dealing with challenging applications, we may need abstract internal representation. In

these cases, the two-layer structure of RBMs may not be able to produce a satisfactory perfor-

mance. This limitation can be overcome by DBM. Similar to RBM, DBM is a network of symmet-

rically coupled stochastic binary units [103]. It contains visible units (input), and several layers of
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Figure 2.5: Example of restricted Boltzmann machine and deep Boltzmann machine. (a) An
example of restricted Boltzmann machine (RBM), where h is the hidden layer. x is the visible
layer. (b) An example of deep Boltzmann machine (DBM). It contains two hidden layers and one
visible layer.

hidden units h(i) ∈ {0,1}Fi , where i represents the i-th hidden layer and Fi is the units number of the

i-th hidden layer. Figure 2.5 (b) illustrates an example of DBM with two hidden layers, where W (1)

and W (2) are the weight matrix to connect consecutive layers which measure the interactions be-

tween layers. The energy function is E(x,h(1),h(2)|W (1),W (2)) =−xTW (1)h(1)− (h(1))TW (2)h(2),

and hence, the joint distribution of the input units and the two hidden units is given by:

p(x,h(1),h(2)|W (1),W (2)) =
1

Z(W (1),W (2))
exp(xTW (1)h(1)+(h(1))TW (2)h(2)).

In multimodal learning, multiple modalities may have distinct statistic properties. For exam-

ple, text features are discrete and image features are continuous. Since DBM can extract abstract

representations, in most cases, it is more suitable for multimodal learning than RBM. Figure 2.6 is

an example of using three-hidden-layer DBM to learn the joint representations from two modali-

ties [103]. The two modalities can either be texts, images, tags, videos, etc. As an example, we use

texts and images as the two modalities. In Figure 2.6, vm ∈ RD and vt ∈ NK denote image input

and text input, respectively. h(im), h(it) with i = 1,2, and h(3) are the hidden layers. Each modality
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has two specific hidden layers. h(3) is the learned joint representation. Since image features are

real-valued, the visible-hidden interaction energy should use the form of Gaussian RBM. The en-

ergy between the image visible layer and the two specific hidden layers of the image part is given

by ([103]):

E(vm,h(1m),h(2m)|θ) =−
D

∑
i=1

F1

∑
j=1

vm
i

σi
W (1m)

i j h(1m)
j +

D

∑
i=1

(vm
i −bi)

2

2σ2
i

−
F1

∑
j=1

F2

∑
l=1

h(1m)
j W (2m)

jl h(2m)
l ,

where θ = {W (1m),W (2m),b,σ} are model parameters. W (1m) is the weight between the input layer

and the first hidden layer. W (2m) is the weight between the first hidden layer and the second hidden

layer. b is the bias of the input layer. σ is the standard deviation of the Gaussian distribution.

It can be the same for all the visible units or independent for each visible unit if the data is not

whitened [63]. In this energy function, the first two terms are the interaction between the input

(visible) units and the first hidden layer. The third term is the energy between the first hidden

layer and the second hidden layer. The joint distribution of those layers can be calculated by this

energy function. The joint distribution of text is similar to that of the image component, except that

the energy between the input units and the first hidden layer needs to be changed to a Replicated

Softmax model [47] to deal with the text input. This model can be easily extended to other data

modalities by modifying the energy of the input layer according to the data property of the input.

The energy between the second hidden layer of each modalities with the third hidden layer (the

joint representation layer) is:

E(h(3),h(2t),h(2m)|θ) =−(h(2m))TW (3m)h(3)− (h(2t))TW (3t)h(3). (2.11)
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Figure 2.6: The illustration of a multimodal Deep Boltzmann machine [103]. It models the
joint distribution of data from two modalities, and thus provides a joint representation.

The joint distribution of those units is p(h(3),h(2t),h(2m)|θ) = 1
Z(θ) exp(−E(h(3),h(2t),h(2m)|θ)).

Given these distributions, we can compute the joint distribution of the inputs from multiple modal-

ities: [103]:

p(vm,vt |θ) = ∑
h

p(h(2m),h(2t),h(3)|θ)(∑
h(1t)

p(vt ,h(1t),h(2t)|θ))

( ∑
h(1m)

p(vm,h(1m),h(2m)|θ)),

where h = {h(1m),h(2m),h(1t),h(2t),h(3)}. For generative models, the model parameters can be

learnt by maximizing the likelihood. In this model, exact maximum the likelihood is intractable,

but they can still be learnt by variational approach approximately [103].

Figure 2.7 (a) shows a multimodal RBM, and Figure 2.7 (b) presents a different view of this

model. The difference between those two models is that the deep model has many layers to trans-
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Figure 2.7: Different multimodal Boltzmann machines[103]. (a) contains only one hidden layer.
(b) contains multiple hidden layers. The task to remove modal-specific component is distributed in
different layers in the deep model. It can be easier to extract joint representations for (b) than (a).

form features. In some cases, the statistic properties of different modalities are rather different.

For example, in the previous example, text features are discrete and image features are continuous.

Directly learning a joint representation from different modalities through a restricted Boltzmann

machine may not be feasible then. It needs extra bridges between the joint representation and the

inputs of each modality. In DBM, each layer successively transforms the representation into a

slightly more abstract level and removes part of modal-specific correlations [103]. Hence, the mid-

dle layer can be viewed as a modal-free representation, while the inputs are modal-full representa-

tions. Compared with a simple multimodal RBM, the task to remove modal-specific components

is distributed in different layers in the deep model. Therefore, it is much easier to extract joint

representations for the deep model than the shallow model.
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Chapter 3

Discriminative Fusion of Multiple Brain

Networks

In neuroimaging research, brain networks derived from different tractography methods may lead

to different results and perform differently when used in classification tasks. As there is no ground

truth to determine which brain network models are most accurate or most sensitive to group dif-

ferences, we developed a new sparse learning method that combines information from multiple

network models. We used it to learn a convex combination of brain connectivity matrices from

9 different tractography methods, to optimally distinguish people with early mild cognitive im-

pairment from healthy control subjects, based on the structural connectivity patterns. Our fused

networks outperformed the best single network model, Probtrackx (0.89 versus 0.77 cross- vali-

dated AUC), suggesting its potential for numerous connectivity analysis.

3.1 Methodology

3.1.1 Preliminary

Since this work is based on sparse logistic regression, we give a brief introduction to sparse logistic

regression here.

In linear models, the sparsity means a feature variable is determined to be irrelevant if the cor-
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responding weight is zero. Therefore, some irrelevant feature variables are discarded in the model

and have no contribution to the final classification model. Sparse learning algorithms such as sparse

logistic regression for classification are powerful tools to build models from high dimensional data

with low computational cost. The sparsity is achieved by adding sparsity-inducing regularization

terms on the weight vector w such as λ‖w‖1 to the objective function, and the final weight, or the

model, is sparse with high probability. Let xi ∈ Rd denotes one subject where d is the number of

feature variables we used, which will be elaborated later. The binary class label of this subject is

denoted by yi ∈ {−1,1}, where a MCI subject is denoted as -1 and a NC subject is denoted as +1.

Given n samples {{x1,y1},{x2,y2}, ...,{xn,yn}}, the loss function for the sparse logistic regression

is:

l =
1
n

n

∑
i=1

log(1+ exp(−yi(wT xi + c)))+λ‖w‖1 (3.1)

where c is the intercept, and is a tunable regularization parameter that is greater than or equal to

0. Here we use l1 norm to regularize the weight vector - this will yield sparsity in the weight

vector. When λ equals 0, there is no sparsity in weight vector. As λ increases, more entries in

weight vector turn to 0. When λ is large enough, all the entries in weight vector become 0. By

minimizing the loss function, we obtain the optimal weight vector ŵ and intercept ĉ. For a new

subject x̃, the probability that this subject belongs to class ŷ is:

P(ỹ|x̃) = 1
1+ exp(−ỹ(ŵT x̃+ ĉ))

(3.2)

If the probability of this subject belonging to the NC group is greater than 0.5, this subject will be

labeled as NC. Otherwise this subject will be labeled as MCI.
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3.1.2 Overview

Fig. 3.1 summarizes the overview of our fusion approach to build “consensus networks” based

on fusing networks from multiple tract tracing methods. From diffusion MRI scans of multiple

subjects, we extract different brain networks with whole brain tractography. Though our proposed

fusion approach is not limited to structural networks computed from dMRI tractography, here we

use the nine tractography methods studied in our previous work [134], which include methods

that are classified as tensor-based deterministic, orientation distribution function (ODF)-based de-

terministic, and probabilistic approaches. Each network reconstruction method describes brain

connectivity from a different perspective, and none is universally better than all others for diagnos-

tic classifications tasks. Therefore when it comes to building models from diffusion MRI images,

it is intuitive to fuse different brain networks and leverage the predictive information from all the

networks. However, the key question is how to fuse the different networks and build effective pre-

dictive models from the fused models. As far as we know, there is no principled approach proposed

to combine networks for use in predictive models. As shown in the experimental section, simple

numerical averaging of nodal edge weights may not be able to boost the predictive performance.

Instead, we propose to learn how to fuse the networks from data, such that the combination gives

the optimal predictive performance. First, we study fused networks computed as a convex combi-

nation of different brain networks. We describe a new machine learning model to simultaneously

learn the coefficients of the convex combination as well as the classifier parameters. As a result,

the combination coefficients are learned to maximize the predictive performance of the classifier

and meanwhile the classifier is learned specifically to use the combined network.

34



Diffusion MRI Brain Networks

Discriminative Fusion ModelDiscriminative Fusion 
Algorithm

Labeled Training Data

Fused Brain Network

Unlabeled 
Data

Tractography
Algorithms

Early MCI

Normal

Prediction

OR

Structural MRI

Figure 3.1: Overview of our network fusion framework. Multiple types of brain networks are
computed by applying different tractography methods to the participants’ diffusion MRI data [134].
Different brain networks are combined using a sparse learning method and the optimal convex
combination is used for classification. The combination coefficients and the classifiers are simul-
taneously learned from the training data and cross-validated.

3.1.3 Discriminative Fusion:

Our proposed discriminative fusion (DFUSE) is a data-driven model that includes a training stage

and a prediction stage. In the training stage the DFUSE algorithm learns the optimal combination

coefficients and a logistic regression classifier from a set of patients with known medical clas-

sification. In the prediction stage, the brain networks from a patient are combined according to

the coefficients. The combined network is then used by the classifier to give a prediction for the

medical classification problem.

Formulation. Given a set of diffusion MRI scans from N patients, we apply different tractog-

raphy methods to obtain M brain networks for each participant. Let x(m)
i denotes a vector repre-

sentation of the m-th brain network for patient i (i ∈ [1,N],m ∈ [1,M]), in which each element is

a numerical representation of a connection property (e.g., density or integrity) between two brain

regions. We would like to combine all networks for each participant into a single network using a

convex combination, i.e., the combined network xi(τ) = ∑
M
m=1 τmx(m)

i , where τ = [τ1 . . .τM] is the

vector of combination coefficients, and the convex combination gives ∑
M
m=1 τm = 1;τm ≥ 0,∀τm.
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Convex combination is one type of linear combination that gives a clear interpretation on how

much each original network contributes to the fused network. For the N subjects used for training,

we also have diagnostic label information stored in y = [y1, . . . ,yN ], where yi = 1 if the patient is

case and −1 if control.

To learn the combination of the networks, we propose a machine learning formulation that

jointly learns the classifier parameters and the combination coefficient, which solves the following

optimization problem:

minw,c,τΣ
N
i=1`(w,c,τ;xi,yi)+λ‖w‖1, (3.3)

s.t. Σ
M
m=1τm = 1;τm ≥ 0,∀τm

where w and c are classifier parameters, the constraints on τ ensures a convex combination, the

logistic loss is:

`(w,c,τ;xi,yi) = log
(
1+ exp

(
−yi(xi(τ)

T w+ c)
))

.

The `1-norm induces sparsity in the parameters w [72, 141, 139, 138], such that the classifier

learns a subset of predictive connections and only uses these connections in the classifier. The

sparsity parameter λ controls the sparsity of the model. A smaller λ allows more connections

to be involved in the model. The optimization problem in (3.3) can be solved by proximal block

coordinate descent [12, 112, 125]. Once the optimization process has converged, we obtain the

optimal combination coefficients τ∗ and classifier parameters w∗ and c∗.
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3.1.4 Optimization

The objective function in Eq. (3.3) is a convex function. So, it has global solution. Since there are

non-differentiable terms, we use proximal gradient descent to optimize it. We first compute the

gradient with respect to all parameters. We denote

L = Σ
N
i=1`(w,c,τ;xi,yi)+λ‖w‖1 (3.4)

Denote X to be the tensor that is formed by stack all x( j) with j = 1, ...m. Then, the shape of X is

n×d×m. The gradient of L with respect to w is

∂L
∂w

=
1
N

x(τ)T (y · (σ(−y · (x(τ)w+ c))) (3.5)

where · denote dot product. σ is the sigmoid function.

σ(x) =
1

1+ exp(−x)
(3.6)

The gradient with respect to τ is

∂L
∂τ

=
y
N
· (σ(y · (x(τ)w+ c)Xw (3.7)

The gradient with respect to c is

∂L
∂c

=
y
N

σ(y · (x(τ)w+ c) · y (3.8)
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Proximal Gradient Descent: Proximal gradient descent [107] is widely used to optimize the

objective function with both differentiable and non-differentiable terms. We first start from the

general form of proximal gradient descent and then apply it to our problem.

Given objective function

f (x) = g(x)+h(x) (3.9)

where g(x) is a convex differentiable function and h(x) is a convex non-differentiable function. If

we only consider the differentiable part for f (x), i.e. f (x) = g(x), we can use gradient descent to

optimize it, i.e.

xk+1 = xk− t∇ f (x) (3.10)

It is equivalent to optimize solve the following optimization problem.

xk+1 = argmin
z

f (xk)+∇ f (xk)T (z− xk)+
1
2t
‖z− xk‖2 (3.11)

However, h(x) is not differentiable. The strategy is to leave h(x) unchanged. So the update for

xk+1 is

xk+1 = argmin
z

f (xk)+∇ f (xk)T (z− xk)+
1
2t
‖z− xk‖2 +h(z) (3.12)

Eq. (3.12) means that when we update z/x, we minimize the non-differentiable term h(z). So, in

each step, we update the smooth term using the gradient descent to make sure it is moving to the

direction that makes the function value smaller and meanwhile the h(z) is also minimized and is
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to-warding to our goal, i.e., minimize the objective function.

Eq. (3.12) can be written as

xk+1 = argmin
z

1
2t
‖z− (xk− t∇g(xk))‖2 +h(z) (3.13)

We define the proximal mapping as follows.

Prox(xk+1) = argmin
z

1
2t
‖x− z‖2 +h(z) (3.14)

Then, Eq. (3.13) can be written as

xk+1 = Prox(xk− tk∇g(xk)) (3.15)

In our proposed form, we have two non-differentiable terms.

h1(w) = ‖w‖1 (3.16)

h2(w) = simplex(τ) (3.17)

where we use simplex(x) denote the constraint ∑xi = 1,xi ≥ 0.

Projections: Next, we will show how to optimize Eq. (3.14) with these two non-differentiable

terms. We first start with a general simplex projection.

min
x

1
2
‖x− y‖ (3.18)

s.t.xT 1 = 1 (3.19)

x≥ 0 (3.20)
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The Lagrangian of the problem in Eq. (3.18) is

L(x,λ ,β ) =
1
2
‖x− y‖2−λ (xT 1−1)−β

T x (3.21)

where λ and β are Lagrangian multipliers. At the optimal point, we have the KKT condition

xi− yi−λ −βi = 0 (3.22)

xi ≥ 0 (3.23)

βi ≥ 0 (3.24)

xiβi = 0 (3.25)

∑
i

xi = 1 (3.26)

From Eq. (3.25) and Eq. (3.23) we have (1) if x ≥ 0, βi = 0 and yi + λi ≥ 0, AND (2) if x = 0,

βi ≥ 0 and yi +λ = βi. Thus, we can sort the x and y in the descent order.

y1 ≥ y2 ≥, ...,≥ yρ ≥ yρ+1 ≥, ...,≥ yd (3.27)

x1 ≥ x2 ≥, ...,≥ xρ = xρ+1 =, ...,= xd (3.28)

where we have when i > ρ , all x1 = 0. From Eq. (3.26) we have

λ =
1
ρ
(1−

ρ

∑
i

yi) (3.29)
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WIth Shealev-Shwartz and Singer Theorem, we have the solution for ρ is

ρ = { j,max{1≤ j ≤ d : y j +
1
j
(1−

j

∑
i

y j)> 0} (3.30)

Next, we show how to project to l1 ball. Suppose we have the projection

min
1
2
‖x− y‖2 +λ‖x‖1 (3.31)

Since ‖x‖2 = ∑i x2
i and ‖x‖1 = ∑i |xi|, we optimize each dimension separately for Eq. (3.31), i.e.,

1
2
(x1− y1)

2 +λ |x1| withi = 1, ...d (3.32)

To solve Eq. (3.32), we use the subgradient method. The subdifferential of |x| is sign(x) and

d(x−y2

dx = 2(x− y). Thus, we have 0 ∈ ∂ f (x∗) where x∗ denote the optimal solution. Therefore, we

have

x∗ = sign(x)max(|x|−λ ,0) (3.33)

3.2 Experiments

3.2.1 Dataset

The imaging datasets analyzed for in this study were collected from 16 sites across the United

States and Canada in the second stage of the Northern American Alzheimer’s Disease Neuroimag-

ing Initiative (ADNI2). In total, 124 subjects’ diffusion MRI and structural MRI data were ana-

lyzed. Detailed subject inclusion, exclusion criteria and scanning protocols can be found in the
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ADNI2 website. These 124 subjects include 51 normal elderly controls (NCs), 73 individuals

diagnosed with early mild cognitive impairment (eMCI).

3.2.2 Brain Networks

For each subject, we computed 9 brain networks using nine methods, including 4 tensor-based

deterministic algorithms: FACT (T-FACT) [78], the second-order Runge–Kutta (T-RK2) [11], the

tensorline (T-TL) [66], and interpolated streamline (T-SL) methods [29], two deterministic trac-

tography algorithms based on fourth order spherical harmonic derived ODFs – FACT (O-FACT)

and RK2 (O-RK2), and three probabilistic approaches: “ball-and-stick model based probabilistic

tracking” Probtrackx (Probt) [13], the Hough voting method [2] and the probabilistic index of con-

nectivity (PICo) method [84]. Each brain network describes detected connections between 113

cortical and subcortical regions-of-interest (ROIs), which are defined by using the Harvard Oxford

Cortical and Subcortical Probabilistic Atlas [33]. Therefore we can use a vector of dimension 6328

(113×112/2) to represent all connections of distinct ROIs pairs in each network. Please see [134]

for details of computing these nine brain networks.

3.2.3 Experiment Settings

In the first experiment we compared the predictive performance of individual networks, in terms of

area under the ROC curve (AUC), sensitivity and specificity. These are standard metrics measuring

algorithm performance in classification problems. We also provide two intuitive fusion methods

for baseline comparisons. The first method concatenates vectors from all networks (B-CON),

resulting in a feature vector of dimension 56952. The second method combines the networks by

averaging of all of the individual networks; this can be considered as a special case of the general
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linear combination (τi = 1/9,∀i). For all the patients, we used 10-fold cross validation, i.e., each

time we use the brain networks from 90% patients to train a classifier, and the 10% to test the

classifier and compute performance metrics. For all individual brain networks as well as the two

baseline methods, we use sparse logistic regression to train classifiers. For the proposed DFUSE,

the classifier is trained using algorithms in Section 3.1. As the sample size is too small to generate

extra validation data for model selection (the selection of hyper parameter λ in the sparse logistic

regression), we report the best performance for all methods.

3.2.4 Results

Averaged classification results over 10 iterations are given in Table 3.1. Our proposed DFUSE

algorithm significantly outperformed all other competing methods (p-value < 0.001). DFUSE has

an average AUC of 0.89, compared to 0.77 achieved by the best individual method, which used

only the Probtrackx (Probt) networks. DFUSE also had the highest average sensitivity of 0.84 and

specificity of 0.77, compared to the second highest sensitivity of 0.72 achieved by tensor-based

FACT (T-FACT) and 0.69 by the Probtrackx networks. No individual brain network generation

method had a predictive power that was even close to the one from the fused brain network. This

significant improvement in predictive performance supports our hypothesis about the benefits of

fusion for brain networks.

Two other baseline network combination methods also did not perform well: the predictive

performance of the feature concatenation (B-CON) does not even perform as well as the best

individual brain network. This may be because, for the B-CON method, there are too many features

presented to the classifier (over 56k), relative to the number of subjects (samples) available to train

it. Only ∼110 samples are available here to train the classifier at every iteration (90% of the

total of 124 subjects). On the other hand, the AUC of the simple average brain network (B-AVG)

43



AUC Sensitivity Specificity
DFUSE 0.89±0.09 0.84±0.16 0.77±0.07
B-CON 0.58±0.10 0.56±0.21 0.50±0.07
B-AVG 0.55±0.15 0.58±0.20 0.49±0.08
B-ENS 0.79±0.11 0.71±0.25 0.72±0.09
T-FACT 0.59±0.11 0.72±0.25 0.44±0.14
T-RK2 0.58±0.11 0.56±0.25 0.49±0.10
T-SL 0.62±0.14 0.48±0.27 0.64±0.26
T-TL 0.58±0.14 0.60±0.21 0.48±0.07
O-FACT 0.62±0.09 0.60±0.19 0.51±0.09
O-RK2 0.60±0.13 0.60±0.21 0.53±0.07
PICo 0.58±0.10 0.56±0.21 0.50±0.07
Hough 0.66±0.11 0.64±0.23 0.54±0.11
Probt 0.77±0.08 0.70±0.22 0.69±0.08

Table 3.1: Quantitative comparison of classifiers using different brain networks to predict the
early MCI. We compare the performance of each individual brain networks from tractography,
simple network combination, and our network fusion method (DFUSE). The average and variance
of area under the ROC curve (AUC), sensitivity and specificity over 10 splittings are reported. The
proposed DFUSE significantly outperforms all other methods on this problem (p-value < 0.001).

network τ network τ network τ

T-FACT 0.025 T-Rk2 0.014 T-SL 0.023
PICo 0.058 Hough 0.010 Probt 0.871
T-TL 0 O-FACT 0 O-RK2 0

Table 3.2: Combination coefficients τ of 9 networks.

is 0.55, which is even poorer than the worst performing brain network T-TL, at 0.58. Arbitrary

combinations of brain networks may not help for the task of distinguishing early MCI from NCs.

Task specific fusion as proposed in this paper may be more beneficial.

3.3 Discussion

One attractive property of the proposed DFUSE approach is that we can obtain an interpretable

combination coefficient τ , indicating how much each of the individual brain networks contributes

to the final combined network. The average combination coefficients for all networks are given
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in Table 3.2. We see that in the combination, Probtrackx has the heaviest weight of 0.871 (all

elements of τ range from 0 to 1), averaged over 10 iterations. This is consistent with the finding

that Probtrackx is also the best predictive individual network as shown in Table 3.1. On the other

hand, the weights of T-TL, O-FACT, O-RK2 are consistently zeros, i.e., they do not contribute to

the combined network. As such, the combination offers a guide to which tractography methods

to run (clearly not all methods need to be run for problems where they are given zero weight).

Moreover, the networks with zero weights are not the same as the least white individual networks

(T-RK2, PICo, T-FACT). The inconsistency shows that networks with weak predictive power may

still have valuable connection information to complement other better performed networks. It

is possible to leverage clustering analysis [137] and explore different sub-modalities within the

networks, and we will leave this interesting analysis in our future work.

Because of the sparsity introduced on the model w, we are also able to inspect what are the

important connections contributing to the final classifiers. By averaging the non-zero weights for

each connection from different experiments, we can generate a ranked list of connections, many

of which are previously known to be relevant to the progression of Alzheimer’s. Here are a few

connections that appear in the top of the list: Right Temporal Pole⇔ Right Precentral Gyrus, Left

Pallidum⇔ Left Caudate, Left Lingual Gyrus⇔ Left Thalamus, Left Cingulate Gyrus Anterior

Division⇔ Left Frontal Medial Cortex, Right Planum Polare⇔ Right Hippocampus.

3.4 Summary

In this work, we developed a new method for discriminative fusion of multiple brain networks to

detect early mild cognitive impairment (MCI). We simultaneously learned a convex combination

of different brain networks to best detect early MCI, and a classifier that works with the combined
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brain network. As the networks are fused in a way that maximizes the discriminative power be-

tween normal controls and early MCI subjects, the results from the fused network significantly

improve on single brain networks as well as simple fusion methods.
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Chapter 4

Multimodal Disease Modeling via Collective

Deep Matrix Factorization

Alzheimer’s disease (AD), one of the most common causes of dementia, is a severe irreversible

neurodegenerative disease that results in loss of mental functions. The transitional stage between

the expected cognitive decline of normal aging and AD, mild cognitive impairment (MCI), has

been widely regarded as a suitable time for possible therapeutic intervention. The challenging task

of MCI detection is therefore of great clinical importance, where the key is to effectively fuse pre-

dictive information from multiple heterogeneous data sources collected from the patients. In this

work, we propose a framework to fuse multiple data modalities for predictive modeling using deep

matrix factorization, which explores the non-linear interactions among the modalities and exploits

such interactions to transfer knowledge and enable high performance prediction. Specifically, the

proposed collective deep matrix factorization decomposes all modalities simultaneously to capture

non-linear structures of the modalities in a supervised manner, and learns a modality specific com-

ponent for each modality and a modality invariant component across all modalities. The modality

invariant component serves as a compact feature representation of patients that has high predictive

power. The modality specific components provide an effective means to explore imaging genet-

ics, yielding insights into how imaging and genotype interact with each other non-linearly in the

AD pathology. Extensive empirical studies using various data modalities provided by Alzheimer’s
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Disease Neuroimaging Initiative (ADNI) demonstrate the effectiveness of the proposed method for

fusing heterogeneous modalities.

4.1 Methodology

4.1.1 Matrix factorization

Classical matrix factorization seeks to approximate a matrix with a low-rank matrix, by explicitly

learning the matrix factors. Given a data matrix X ∈Rm×n, matrix factorization learns two reduced

matrix factors U ∈Rm×r and V ∈Rn×r, such that X ≈UV T , and r < min(m,n) is the upper bound

of the rank of the approximated matrix UV T (the rank of UV T can be less than r if columns of U

or V are linearly dependent). The factors U and V are typically learned via an objective function:

minU,V d(X ,UV T ), s.t. U ∈S1,V ∈S2, (4.1)

where d(X ,Y ) is a distance metric function measuring the difference between matrices X and Y ,

and S1 and S2 are two constrains imposed on the factor matrices X and Y .

Typically the distance metric d(X ,Y ) is chosen to be the Frobenius norm of the difference

between X and Y . However, when missing values present in X , d(X ,Y ) can be defined as the

squared `2 distance between all the observed elements in X and their corresponding elements in

Y . As such, we are able to learn matrix factors even with missing values, and the learned matrix

factors can then be used to estimate the missing values under the low-rank assumption. This is

the setup for matrix completion [22] and is commonly used in recommender systems [61]. The

constraints S1 and S2 specify the feasible regions of the matrix factors to induce many desired

properties, such as non-negativity S = {U |Ui, j ≥ 0,∀i, j} in non-negative matrix factorization [69]
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and sparsity S = {U |‖U‖1≤ z} for interpretable factors [140]. In addition, the complexity control

can be implemented using Frobenius constraints S = {U |‖U‖2
F ≤ z}, which are equivalent to the

Frobenius norm regularizations [60].

4.1.2 Collective matrix factorization for multimodal analysis

The approximation in (4.1) addresses important semantics in data analysis. When the data matrix

X describes the relationship between two types of entities, the factors U and V can be thought of

as latent features or latent representations of the entities. For example, in recommender systems

we use Xi, j to describe the relationship (e.g., rating) between a user i and an item j. The row vector

ui ∈ Rr gives a r-dimensional latent feature representation for the user i and similarly the row

vector v j ∈ Rr is a latent representation of the item j. The two types of latent profile interact with

each other linearly in the latent subspace Rr, i.e., the observed relationship in Xi, j can be explained

as ui(v j)T .

The latent representation/subspace perspective of matrix factorization allows us to link mul-

tiple data modalities, when the entities involved in the modalities are overlapped. In multimodal

modeling, assume we have two datasets X1 ∈ Rn×d1 and X2 ∈ Rn×d2 describing the same set of

objects from two sets of features. For example, we study a set of n patients. X1 includes d1 fea-

tures from T1 MRI modality and X2 includes d2 features from dMRI modality. Then we can apply

the matrix factorization procedure to factorize both datasets and connect the two factorizations by

enforcing a shared patient latent representation:

min
U,V1,V2

d(X1,UV T
1 )+d(X2,UV T

2 ), s.t. U ∈S0,Vi ∈Si, i = 1,2,

where the latent representation U is thus jointly learned from two modalities. We call this U
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Figure 4.1: Illustration of proposed collective deep matrix factorization (CDMF) framework.
In this example, CDMF fuses information from three modalities: T1 weighted MRI, diffusion MRI,
and genotypes (SNPs) to learn a modality invariant latent representation, to perform predictive
modeling.

matrix modality invariant, as the representation now captures intrinsic properties of the patients.

When performing regression and classification on patients, instead of using features from raw data

matrices X1 and X2, we can use the latent representation. We can easily generalize this approach

to handle more data modalities.

4.1.3 Capturing complex interactions via collective deep matrix factoriza-

tion

One essential assumption associated to the classical matrix factorization is the linear dependence

in the matrix. Therefore, it implicitly specifies that the latent representations learned from collec-

tive matrix factorization have to interact with each other linearly in the learned latent subspace.

However, this assumption is too restrictive in many applications, especially in the modeling of
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Alzheimer’s disease, where imaging modalities and genetic modality are likely to link through

a highly non-linearly manner. To capture the complex interactions among modalities, we thus

propose a novel framework to fuse multiple data modalities through deep matrix factorization. As-

sume we have t data modalities X1 ∈ Rn×d1, . . . ,Xt ∈ Rn×dt describing different views of the same

set of n samples. We use a deep neural network gθ (.) parameterized θ to factorize each modality,

i.e., Xi ≈Ugθi(Vi), where in this work we use a structured deep neural network with k layers:

gθi(Vi) = f (W(k,i) f (W(k−1,i) f (. . . , f (W(1,i)Vi)),

where W( j,i) is the network weight at the j-th layer, θi = {W(k,i),W(k−1,i), . . . ,W(1,i)} collectively

denotes network weights, and f is a non-linear activation function. The deep network serves as a

highly non-linear mapping between input matrix Xi and U , and projects the latent representations

non-linearly to the same latent space. We call this gθi(Vi) modality specific component for i-th

modality. We can thus perform collective deep matrix factorization (CDMF) to associate multiple

data modalities:

min
U,{Vi,θi}ti=1

∑
t
i=1 d(Xi,Ugθi(Vi)) s.t. U ∈S0,Vi ∈Si,∀i.

We would like to highlight one property of collective deep matrix factorization that modality in-

variant component/representation can have different dimensions from modality components, i.e.,

U and V can be different, and V in different modalities can also be different. This flexibility is

desired especially when different modalities contain different amount of information, and thus the

optimal latent representations may have different dimensions. We also note that one way to control

the complexity of networks under multiple modalities is to enforce shared network structures, i.e.,
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{gθi} have the same architecture and share the same parameter values, except for the last layer.

In many applications, our ultimate goal is to build predictive models from multi-modal analysis.

To achieve this, we can integrate predictive modeling and collective deep matrix factorization

during learning, such that predictive modeling uses latent representations learned from collective

deep matrix factorization as input features. Assume that we are given supervision information

{y1, . . . ,yn} for the n subjects, and a linear model for the prediction task h(U ;w) = Uw (with a

dummy variable to include bias). Given a latent representation U j (i.e. the j-th row of U matrix)

for the j-th subject and its corresponding label y j, we use a proper loss function `(h(U j;w),y j)

(e.g., logistic loss for classification and least squares for regression). The proposed supervised

CDMF formulation is thus given by:

min
w,U,{Vi,θi}ti=1

∑
n
j=1 `(h(U j;w),y j)+∑

t
i=1 αid(Xi,Ugθi(Vi))

s.t. U ∈S0,Vi ∈Si,∀i, (4.2)

where αi is a tunable parameter to control knowledge fusion proportion of the i-th modality, spec-

ifying how much that the modality influences the learning of the modality invariant component.

When αi is large, a less reconstruction error for this modality will be achieved when minimizing

overall loss, and therefore the learned representation U contains more information of this modality,

and vice versa. Figure 4.1 illustrates the proposed framework fusing three modalities: dMRI, T1

MRI and genotypes (SNPs).

Optimization and initialization. The formulation can be solved efficiently by TensorFlow [1].

However, since the objective in (4.2) is highly non-convex and gradient algorithms may easily

trapped in local optima, a good initialization is important for training the network. In this work,

we propose to iteratively apply linear matrix factorizations in the original data matrix, and use lin-
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ear and hierarchical matrix factors to initialize the deep neural networks. As such, the initialization

is similar to a valid linear matrix factorization, and the algorithm iteratively explore non-linear

effects within linear latent spaces and capture non-linearity in the network during learning pro-

cess. Technically we can choose arbitrary linear factorization methods in (4.1) for initialization,

however, we find in our experiments that singular vectors given by iterative singular value decom-

position (SVD) usually provide decent models that outperform other factorization methods. This

may due to fact that orthogonal basis obtained by SVD characterize the optimal linear subspace of

the data matrix.

Handling modalities with missing subjects. In many applications especially medical cases, some

data modalities may not be available to all samples. For example, some subjects did not partic-

ipate the genetic study and thus lack genotype information. Besides, in the first stage of ADNI

study there are no diffusion MRI imaging available, leading to structured missing patterns in the

dataset [132]. Since {Xi} involve different sets of subjects, such missing modalities will cause

dimension problems in U , and thus the modalities cannot be projected to the same U . One way

to overcome this issue is to discard all the subjects with missing modalities and make the dimen-

sions consistent across modalities. However, this approach will significantly reduce the number

of samples and thus compromise the predictive performance. We therefore extend the proposed

formulation to deal with it. We define an indicator matrix for each modality, where for the i-th

modality it is denoted by Ii ∈ Rn×n, whose j-th row is given by:

(Ii) j =


0 if the this modality is missing for j-th subject

e j otherwise

,

where e j ∈ Rn is n-dimensional standard basis with only j-th entry as 1. The revised formulation
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is given by:

min
w,U,{Vi,θi}ti=1

∑
n
j=1 `(h(U j;w),y j)+∑

t
i=1 αid(X̂i, IiUgθi(Vi))

s.t. U ∈S0,Vi ∈Si,∀i, (4.3)

where X̂i is an augmented data matrix, whose j-th row is given by:

X̂ j
i =


0 if this subject lacks of i-th modality

X j
i (original features) otherwise

.

By multiplying indicators and replacing Xi by X̂i, the corresponding rows of subjects with missing

modality will be 0 for this modality, which has no effect on loss. This approach would ensure that

we use all the information available during the learning.

Application in Disease Modeling. Even though the proposed CDMF framework can be used

in various data mining applications, here we emphasize on its advantages in our specific disease

modeling problem. The goal of MCI diagnosis is to differentiate between MCI subjects and normal

cognitive (NC) subjects, which is a classification problem. We thus use CDMF in Eq. (4.3) with a

logistic loss, in which knowledge from different modalities is fused in a supervised manner such

that only the part that is more relevant to group difference of MCI and NC will be fused to the

latent representation U , which in turn can improve prediction. This property is important for our

multimodal disease modeling since the modalities may contain knowledge that is not relevant to the

desired learning task. Without proper guidance, the irrelevant knowledge may negatively impact

the representation leading to suboptimal predictive performance. For example, brain imaging may

contain information of other inherited brain diseases or aging properties, likewise for genetic data.
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If the fusion process is carried out in an unsupervised manner, we may not obtain a U that is most

informative regarding the progression of MCI.

Association study of multiple modalities. The interactions between latent representations are of

great interests in the community (e.g., generate predictions in the recommender system), and can

reveal important insights into how different modalities are connected to each other. Although it is

straight forward in linear case that we can use inner products ui(v j)T , we cannot directly compute

this way in CDMF since the modalities are connected through non-linear networks. Instead, we

can use the following transformed latent factors:

Ṽi = f (W(k,i) f (W(k−1,i) f (. . . , f (W(1,i)Vi)), (4.4)

which is a mapping matrix that contains the modality specific information of the corresponding

modality. All the columns of this matrix form the specific feature space of this modality. Hence,

we can calculate the association of any features between any two modalities using the transformed

latent factors Ṽi. Let Ci, j(m,n) denote the cosine similarity between the m-th column from Ṽi and

the n-th column from Ṽj. When Ci, j(m,n) is large, the m-th feature of i-th modality is highly related

with the n-th feature of j-th modality and a small Ci, j(m,n) indicates the association between

those features is weak. This provides a novel tool to study the imaging genetics, identifying how

genotypes influence brain structures under specific tasks (e.g., MCI prediction in our case).
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4.2 Experiments

4.2.1 Dataset and features

Data from two stages of ADNI are used in this study: ADNI1 and ADNI2. Detail demographic

characteristics and missing data information are listed in Table 4.1. Whole genome sequencing

(WGS) SNPs are provided by ADNI and used as genetic modality in our study. For MRI, ADNI1

participants are scanned by 1.5T or 3T MRI scanner while all ADNI2 participants are scanned by

3T MRI scanner 1. FreeSurfer V5.3 is adopted to extract 333 measures include the area, thick-

ness, cortical volume, subcortical volume and white matter volume from T1 MRI to form T1

MRI modality. For dMRI, we first parcellate the brain into 113 cortical and subcortical region-of-

interests (ROIs) according to the Harvard Oxford Cortical and subcortical Probabilistic Atlas [33].

Then we reconstruct the whole-brain tractography using an ODF-based probabilistic approach:

PICo[32]. Finally, a brain network is generated in which the nodes indicate ROIs and the edges

are determined by the proportion of fibers intersecting with each pair of ROIs. As such, each brain

network is a 113×113 symmetric matrix with 6328 distinct edges. These 6328 edges are used as

the feature variables for dMRI modality.

4.2.2 Data preprocessing

Imaging modalities preprocessing. ADNI1 and ADNI2 use different scanner protocol which

may introduce biases for the datasets. Hence, we decide to harmonize the cohorts by removing

this cohort effect. We create an indicator variable to differentiate ADNI1 and ADNI2 with 1 for all

subjects from ADNI1 and -1 for all subjects from ADNI2. In addition, age and sex are common

confounders biasing the analysis. In this study, generalized linear regression approach [80] is used

1http://adni.loni.usc.edu/data-samples/mri/
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ADNI1 Cohort NC MCI Total
Age 75.84±4.95 74.48±7.48 75.17±6.68
Sex 115M/108F 247M/138F 362M/246F
total subjects 223 385 608
Subjects with dMRI 0 0 0
Subjects with T1 MRI 223 385 608
Subjects with genotype 202 348 550
ADNI2 Cohort NC MCI Total
Age 69.36 ± 15.40 71.68 ± 9.93 70.96 ± 11.89
Sex 22M/28F 71M/41F 93M/69F
total subjects 50 112 162
Subjects with dMRI 50 112 162
Subjects with T1 MRI 50 112 162
Subjects with genotype 27 82 109

Table 4.1: Demographic information of subjects.

to remove all confounders including age, sex and cohort index. It assumes each observed variable

is linearly dependent on the confounder variables and fitting a generalized linear model can remove

confounders’ effect. Denote the observed variable of variable X as Xobs and the original variable

as Xori. The linear dependence of Xobs and Xori is:

Xobs = w1 ·age+w2 · sex+w3 · cohort +Xori,

where w1,w2,w3 are coefficients of confounders. Let (w1,w2,w3) be w and (agei,sexi,cohorti) be

ti, where i denotes the i-th subject. Coefficients can be obtained by solving a linear regression:

w∗ = min
w

∑
n
i=1(w

T ti−Xobs
i )2. (4.5)

After solving Eq. (4.5), the original feature variable is given by:

Xori = Xobs− (w1 ·age+w2 · sex+w3 · cohort).
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Figure 4.2: Manhattan plot for SNPs with adjusted p value greater than 2. Colors indicate
different chromosomes.

We apply this on both T1 MRI data and dMRI data and will only use Xori in the downstream

experiments.

Genetic modality preprocessing. Genetic data is preprocessed by standard quality control using

PLINK2 and then impute using MaCH3. SNPs with minor allele frequency (MAF) less than 5% or

missing values greater than 5% are discarded. Subjects with missing values greater than 10% at all

SNPs are removed. Finally, 659 subjects with reading values on 6,566,154 SNPs are attained.

In order to extract more relevant features, we apply genome-wide association study (GWAS) on

our data. In detail, we regress patient state NL/MCI on each SNP using logistic regression, with p-

value generated and adjusted to − log10 scale. Larger adjusted p-value indicates strong association

between response and the marker. Figure 4.2 shows SNPs with adjust p value greater than 2 on

each chromosome. SNPs on chromosome 19 have stronger association with MCI than others,

suggesting crucial effects of this chromosome on the Alzheimer’s deterioration. Finally, the top

200 significant SNPs for each iteration are retained as features for our downstream analysis. Since

SNPs are categorical, i.e. {0,1,2}, we use the one-hot coding to be the feature representation.

Hence, the final feature dimension for genetic modality is 600.

2http://pngu.mgh.harvard.edu/ purcell/plink/
3http://csg.sph.umich.edu/abecasis/MaCH/
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4.2.3 Predict performance

Comp. #
Shallow collective matrix factorization

linear sigmoid square
30 0.529±0.080 0.616±0.102 0.564±0.011
50 0.587±0.069 0.593±0.120 0.718±0.076
70 0.610±0.079 0.644±0.075 0.659±0.161
90 0.526±0.065 0.597±0.086 0.634±0.097

110 0.656±0.089 0.681±0.116 0.658±0.106
130 0.561±0.024 0.613±0.105 0.668±0.127

Comp. #
Deep collective matrix factorization

linear sigmoid square
30 0.519±0.099 0.653±0.139 0.719±0.142
50 0.594±0.151 0.646±0.078 0.693±0.100
70 0.573±0.135 0.593±0.165 0.758±0.115
90 0.519±0.093 0.610±0.146 0.805±0.073

110 0.558±0.083 0.542±0.048 0.726±0.027
130 0.553±0.124 0.544±0.110 0.679±0.152

Comp. #
Other deep multimodal methods

DCCA DCCAE DNN
30 0.770±0.065 0.723±0.031 0.617±0.143
50 0.722±0.088 0.743±0.094 0.604±0.026
70 0.689±0.134 0.780±0.054 0.560±0.111
90 0.684±0.089 0.703±0.042 0.579±0.068

110 ∗ 0.735±0.135 0.627±0.165
130 ∗ 0.699±0.089 0.689±0.131

Table 4.2: Prediction performance of different models using ADNI2’s T1 MRI and dMRI
in terms of AUC. With an appropriate activation function and components’ number, our method
outperforms than all other methods. ∗] means not applicable due to the algorithm design.

In this section, we evaluate the performance of our method and compare with other methods

using ADNI dataset. The distance metric d(X ,Y ) we used in the following experiments is ‖X −

Y‖2
F . We perform experiments on three different settings.

In the first setting, only ADNI2 dataset and its two modalities: T1 MRI and dMRI are covered.

In this setting, no modality has missing subjects. We randomly select 90% subjects as the training

set and 10% subjects as the testing set. Our main assumption is deep matrix factorization can ex-
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Comp. #
Shallow collective matrix factorization

linear sigmoid square
30 0.702±0.019 0.672±0.137 0.708±0.024
50 0.749±0.052 0.793±0.034 0.742±0.063
70 0.743±0.063 0.696±0.037 0.747±0.061
90 0.754±0.046 0.756±0.059 0.749±0.049

110 0.791±0.027 0.798±0.058 0.786±0.032
130 0.671±0.049 0.652±0.058 0.679±0.048

Comp. #
Deep collective matrix factorization

linear sigmoid square
30 0.634±0.065 0.665±0.044 0.627±0.768
50 0.701±0.064 0.735±0.061 0.681±0.039
70 0.778±0.059 0.749±0.011 0.784±0.055
90 0.775±0.063 0.801±0.023 0.821±0.015

110 0.806±0.049 0.792±0.031 0.800±0.032
130 0.717±0.037 0.705±0.049 0.759±0.044

Comp. #
Other deep multimodal methods

DCCA DCCAE DNN
30 0.801±0.101 0.737±0.063 0.758±0.098
50 0.732±0.041 0.753±0.014 0.767±0.069
70 0.788±0.084 0.813±0.047 0.756±0.087
90 0.746±0.159 0.750±0.124 0.757±0.078

110 0.759±0.151 0.780±0.058 0.754±0.070
130 0.739±0.183 0.774±0.074 0.754±0.056

Table 4.3: Prediction performance of different models using ADNI2 and ADNI1’s T1 MRI
and dMRI in terms of AUC. Although dMRI modality lacks of a large number of subjects, per-
formance is still improved a lot compared with that only uses ADNI2 data.
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Components #
Shallow collective matrix factorization

linear sigmoid square
30 0.684±0.051 0.658±0.039 0.766±0.115
50 0.767±0.019 0.772±0.032 0.818±0.076
70 0.763±0.059 0.759±0.020 0.797±0.049
90 0.772±0.070 0.775±0.030 0.767±0.081

110 0.822±0.018 0.795±0.005 0.803±0.014
130 0.702±0.067 0.669±0.055 0.689±0.071

Components #
Deep collective matrix factorization

linear sigmoid square
30 0.632±0.019 0.665±0.042 0.670±0.052
50 0.707±0.054 0.737±0.064 0.719±0.073
70 0.781±0.065 0.750±0.010 0.799±0.040
90 0.784±0.071 0.797±0.019 0.852±0.018

110 0.811±0.047 0.782±0.030 0.779±0.008
130 0.728±0.048 0.705±0.055 0.725±0.105

Table 4.4: Prediction performance of fusing genetic knowledge and imaging knowledge us-
ing ADNI1 and ADNI2 in terms of AUC. Genetic modality can be successfully integrated with
imaging modalities.

Components # 30 50 70
DNN 0.674±0.114 0.666±0.108 0.669±0.119

Components 90 110 130
DNN 0.667±0.090 0.656±0.080 0.671±0.098

Table 4.5: Prediction performance of DNN using ADNI1 and ADNI2 in terms of AUC. Genetic
modality can be successfully integrated with imaging modalities.

tract high-level nonlinear features to improve diagnosis performance. In order to prove it, we com-

pare deep models with shallow models, i.e. one layer matrix factorization, and compare nonlinear

models with linear models. Two main nonlinear functions are used in our experiments: sigmoid(x)

and x2. In deep models, we focus on those with two hidden layers. After some preliminary exper-

iments, we fix the first layer’s components to be 162, i.e. Vj ∈ R162×d j for j = 1,2, ..., t and vary

second layer’s components from 30 to 130, i.e. W1, j ∈ Rr×162 where r ∈ {30,50,70,90,110,130}.

Hence, U ∈ Rn j×r. How the new features’ dimension affects performance can be traced by varying

r. We report average area under ROC curve (AUC) over three iterations in Table 4.2. We imple-
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mented the proposed model using TensorFlow [1]. All the experiments were run on GT1080 or

Titan X. It takes approximately 3 minutes to train one model.

When using x2 as activation function and setting components number to be 90, our model

outperforms all other models. We observe when the activation function is inappropriate, i.e,

sigmoid(x) for our case, the AUC is very low. Hence, choosing a suitable activation function

is very important. Only certain nonlinear functions can correctly fit this dataset and extract the

desired features. Also, we find the number of components is crucial for all different models. An

inappropriate number of components will reduce the performance drastically. When the number

of components is too small, new feature representation is not rich enough to capture the complex

hidden information. But when this number becomes too large, they contain too many redundant

features. Since sample size is not large enough, it causes overfitting and reduces testing perfor-

mance. We also compare our method with three state-of-the-art multimodal learning algorithms:

DCCA, DCCAE and deep neural network. Since training sample size is 90, when the components

number of new feature representation is larger than 90, DCCA’s code4 reports error. Hence, we set

it to be {30,50,70,90} for DCCA. The deep neural network has two parts. The first part is used

to remove modality specific information. It has two two-layer sub-networks corresponding to two

modalities. The first layer is the input layer. To make the network consistent. The second layer

contains 162 neurons for each sub-network. The outputs of two sub-networks are concatenate to

a vector and used as the input of the second part of the whole network to fuse knowledge and

implement classification tasks. The second part has three layers. The first layer is the input layer

where the output of the first part is fed. The second layer contains {30,50,70,90,110,130} units.

The third layer is a logistic regression layer. To compare with our model, the two parts are jointly

trained. The results are reported in the last three columns in Table 4.2. Our method outperforms

4http://ttic.uchicago.edu/ wwang5/dccae.html
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all baselines.

In the second setting, we include all ADNI1 subjects’ imaging data into the training set. Com-

pared with the first setting, dMRI modality has a lot of missing subjects in this setting. Also, this

setting’s training sample size is much larger than the previous one. In order to compare the per-

formance of these two settings, the testing data set and all the other model settings are the same

as in the first setting. Since DNN, DCCA and DCCAE cannot deal with modality with missing

subjects, we fill all the missing values with the mean over all available samples for each modality.

Average AUC is reported in Table 4.3 for all models and similar trends are observed in these results

with those in the first setting. Moreover, we find under the same experiment settings, almost all

models’ performance is higher than that of the previous one. It shows our extended formulation

can successfully deal with modality with missing subjects and leverage partial knowledge in this

modality to greatly improve overall performance.

In the last setting, we include genetic modality as the third modality and fuse genetic knowledge

and imaging knowledge to improve diagnosis performance. We preform GWAS on each iteration’s

training set to select SNPs involved in our experiment. To compare with the second setting, all the

model settings are the same as in previous settings. Average AUC is reported in Table 4.4 and

TabRefDNN. Since DCCA and DCCAE cannot deal with three modalities, we only use DNN as

baseline. With the same training sample size, DNN’s performance is much worse than that of

previous setting, which implies concatenating all the output of each sub-network as fusion method

does not work for this case. That is because features from the genetic modality are discrete and

the matrix is very sparse, while features for two imaging modalities are continues and the matrices

are extremely dense. They have different statistical properties. However, for our method, the

performance for this setting is much better than that of the second setting, which implies genetic

modality can be successfully integrated with imaging modalities by our method even though the
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modalities are radically different.
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Figure 4.3: Brain maps of the significance level at each ROI for the most associated SNP
within that ROI.
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Figure 4.4: Testing performance with varying α parameters.

At last, we report sparse logistic regression results on each single modality as single modality

baselines. The results are shown in Table 4.6. Experiments on ADNI2 dataset have the same

training testing splitting method as the first setting and experiments on ADNI1 + ADNI2 dataset

have the same splitting way as the second setting. We see single modality’s average AUC is

lower than the highest AUC in all three settings. Hence, only by fusing knowledge from different

modalities can we achieve descent performance.
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4.2.4 Effects of knowledge fusion parameters

Knowledge fusion parameters control how much knowledge a modality is fused into modality

invariant term. In this section, we show how these parameters affect performance. Let α1, α2,

α3 be the parameters to control knowledge fusion of dMRI, T1 MRI and SNPs respectively. The

training set and testing set are split in the same way as the third setting in the last section. We focus

on deep model with 2 hidden layers, with x2 as activation function. The components of the first

layer and the second layer is 162 and 90 respectively.

We first fix α1 and α2 to be 1 and vary α3 to see how α3 affects performance. The results is

shown in Figure 4.4 in blue line. We see when we increase α3, the performance first increases

slightly. But when α3 is larger than 0.1, the performance decreases very fast if we continue in-

creasing it. That is because genetic modality is noisier than imaging modalities. With a small

α3, i.e. 0.1, this model can tolerant a larger reconstruction error for genetic modality. Hence,

the model is robust to the noise in genetic modality. When α3 becomes larger, the reconstruction

error of genetic modality must be small in order to achieve a low total loss. More noise distorts U ,

which reduces the performance. But when α3 is too small, some useful knowledge of this modality

cannot all be fused to U , which also reduces the performance. Hence, only with a suitable fusion

parameter can the model correctly fuses all the useful knowledge of genetic modality. Next, we

fix α3, α1 to be 0.1 and 1 receptively and vary α2 to see how α2 affects performance. We also

fix α3, α2 to be 0.1 and 1 respectively and vary α1 to see the effects of changing α1. The results

are shown in Figure 4.4 in green line and red line. These two are very similar to each other since

they both control knowledge fusion of imaging modalities. We see when α1 and α2 reach 1, the

performance reaches the highest. Hence, imaging modalities need to contribute more knowledge

to U than genetic modality to make a better performance.
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ADNI2
T1 MRI dMRI SNPs

AUC 0.71±0.04 0.63±0.07 0.63±0.14
ADNI1+ADNI2

T1 MRI dMRI SNPs
AUC 0.72±0.06 - 0.67±0.27

Table 4.6: Results of applying sparse logistic regression on each single modality in terms of
AUC. ADNI1 study did not collect dMRI.

4.2.5 Imaging-genetics association

In this section, we present imaging-genetics association uncovered by modality specific compo-

nents. We compute the association between SNPs with cortical thickness and area on 68 ROIs.

This association indicates how significant a brain imaging feature is associated with a SNP un-

der the task of predicting MCI. In Figure 4.3, we show the map of the significance level at each

ROI for the most associated SNP within that ROI. The first two figures are based on cortical

area features for left and right brain respectively and the last two figures are for cortical thick-

ness features. Warmer colors represent stronger association and cooler colors indicate the oppo-

site. Our results show that there are some cluster patterns which indicate those ROIs are highly

related to each other in respect of MCI. Top 6 significant T1 MRI features are: right cuneus thick-

ness, right parahippocampal area, right posterior cingulate thickness, left pars opercularis area,

left cuneus thickness and right frontal pole thickness. Among those features, cuneus thickness,

posterior cingulate thickness, frontal pole thickness and parahippocampal region are identified sig-

nificantly associated with MCI [82, 26, 45, 34]. The SNPs most related to these 6 features are:

rs10414043, rs429358, rs429358, rs8141950, rs11178933, rs10414043 respectively. All the SNPs

except rs8141950 are located at Chromosome19 which has been identified to be highly associated

with MCI and AD [30, 71]. Especially, rs429358 locates in the fourth exon of the APOE gene [57]

in Chromosome19, which has been extensively reported as the genetic risk factor for the late-onset
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of AD. rs8141950, located on Chromosome22, has also been found to be closely related to AD [5].

This shows that our method can correctly uncover imaging-genetic association in respect of MCI.

This association can be used to analyze how the genotype influences brain structures and provide

a potential way to explore the mechanism behind MCI and AD.

4.3 Summary

In this work, we proposed collective deep matrix factorization to fuse knowledge from differ-

ent modalities. Specifically, we build uniform nonlinear hierarchical deep matrix factorization

framework across different modalities which decomposes each modality into a modality specific

component and a modality invariant component that serves as a learned feature representation.

We also add supervision on the modality invariant component to guide the learning process. The

proposed method can exploit complicated non-linear interactions among different modalities and

learn a feature representation which is compact and more relevant to our predictive problem. Also,

the modality specific term can be used to uncover complicated imaging-genetic associations. We

perform extensive experiments on ADNI dataset and show the proposed method significantly im-

proves predictive performance.
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Chapter 5

Multimodal Information Bottleneck

In many classification problems, the predictions can be enhanced by fusing information from dif-

ferent data modalities. In particular, when the information from different modalities complement

each other, it is expected that multimodal learning will lead to improved predictive performance.

In this paper, we proposed a supervised multimodal learning framework based on the information

bottleneck principle to filter out irrelevant and noisy information from multiple modalities and

learn an accurate joint representation. Specifically, our proposed method maximizes the mutual

information between the labels and the learned joint representation while minimizing the mutual

information between the learned latent representation of each modality and the original data rep-

resentation. As the relationships between different modality are often complicated and nonlinear,

we employed deep neural networks to learn the latent representation and to disentangle their com-

plex dependencies. However, since the computation of mutual information can be intractable,

we employed the variational inference method to efficiently solve the optimization problem. We

performed extensive experiments on various synthetic and real-world datasets to demonstrate the

effectiveness of the framework.
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5.1 Methodology

5.1.1 Information Bottleneck Method

Information bottleneck [108] is an approach based on information theory. It formalizes the intuitive

ideas about information to provide a quantitative measure of “meaningful" and “relevant" [108].

It provides a tradeoff between accuracy and complexity. This method has been widely used in

clustering [98, 109, 42], ranking [50] and classification [97]. Exact solution does not exist if the

latent representation is learned by deep neural networks. In [7], the authors applied information

bottleneck to single-modal learning and proposed to use the variational method to optimize it.

Instead of directly solving the optimization problem of information bottleneck, the authors first

calculated a lower bound of the original target. Then the lower bound was maximized to push the

results closer to the optimal solution to the original optimization problem. The distributions of the

posteriors were learned by the neural networks. The method also utilized the reparameterization

trick for efficient training. Information bottleneck is also used in multimodal learning. In [127],

the authors proposed to use information bottleneck to learn a joint latent representation. The joint

latent representation was a combination of the linear projection of all the modalities. The projection

matrices were learned by the information bottleneck approach. Although the approach achieves

decent results, it is limited to linear projection. Therefore, we propose a nonlinear deep version of

multimodal information bottleneck to overcome this limitation.

Information bottleneck is an information-based approach to find the best tradeoff between the

accuracy and complexity. Given data X with labels Y , information bottleneck aims to find a con-

cise and accurate latent representation of X . Denote the latent representation as Z. Information
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bottleneck solves the following optimization problem:

max
Z

I(Y,Z) s.t.I(X ,Z)≤ γ, (5.1)

where I(Y,Z) is the mutual information between Y and Z whereas I(X ,Z) is the mutual information

between X and Z. The mutual information between any two random variables X and Y is defined

as:

I(X ,Y ) =
∫

Y

∫
X

p(x,y) log(
p(x,y)

p(x)p(y)
)dxdy,

where p(x,y) is the joint probability density function of X and Y while p(x) and p(y) are the

marginal probability density functions of X and Y .

Eq. (5.1) maximizes the mutual information between Y and Z to make sure the learned Z

contains information about Y as much as possible. If there is no constraint on Z, the solution would

be Z = X . But in most cases, X contains noise or other irrelevant information to Y . Therefore, a

constraint must be applied to Z to ensure that the learned Z provides a concise representation that

contains less noise and irrelevant information compared with X . This constraint reduces the model

complexity and improves the model’s generalization ability. Eq. (5.1) can also be relaxed to the

following formulation:

max
Z

I(Y,Z)−αI(X ,Z),

where α is a regularization parameter to control the tradeoff between I(Y,Z) and I(X ,Z).

70



5.1.2 Deep multimodal information bottleneck.

In multimodal learning, information bottleneck can be used to learn the joint discriminative rep-

resentation as it can remove the irrelevant information and noise of each modality. Since for

real-world data, the relation between multiple modality are likely to be nonlinear and complex,

in this paper, we propose a deep multimodal information bottleneck method to map the original

representation to a nonlinear representation that can make subjects easier to be separated.

Given two modalities X1,X2 and the class labels Y , the proposed method aims to learn a joint

representation Z to fuse the information from all modalities. The model contains two parts. The

first part is to learn the hidden representations from all the modalities. Each modality has one

hidden representation. This part is to remove the noise and irrelevant information from X1 and X2

as much as possible to make sure the learned representations are very concise. We use Z1 and Z2 to

denote the hidden representations for X1 and X2, respectively. The second part is to fuse the hidden

representations using a neural network as

Z = fθ (Z1,Z2), (5.2)

where f denote the network and θ the network parameter. This part is to transfer knowledge

from all modalities and learn a joint representation Z. These two parts are learned jointly by the

information bottleneck as

max
Z,Z1,Z2

I(Y,Z)−αI(X1,Z1)−β I(X2,Z2), (5.3)

s.t. Z = fθ (Z1,Z2),

where α and β are regularization parameters. The first term is to maximize the mutual information
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between the joint representation and the label Y to make sure the learned joint representation

are discriminative according to the class labels. The last two terms are to minimize the mutual

information between the latent representation of each modality and its original data representation.

These two terms reduce the model complexity to make the model more generalizable, since they

can filter out the irrelevant and noisy information.

5.1.3 Optimization

The major challenge of solving Eq. (5.3) is that the mutual information terms are computationally

intractable. Recently, variational methods [59, 7, 38] are widely used to deal with such problems.

Variation methods maximize the variational lower bounds of the objective functions instead of

directly maximizing them. These methods use some known distributions to approximate the in-

tractable distributions, and provide lower bounds of the original objective functions. By increasing

the lower bounds, we can obtain approximate solutions to the original objective functions. To

obtain the variational lower bound of Eq. (5.3), we first need to find the joint probability density

function of all the variables including the latent variables. Using Bayes’ rule, the joint probability

density function of X1,X2,Z1,Z2,Y,Z can be expressed as

p(x1,x2,z1,z2,y,z) =p(z|z1,z2,x1,x2,y)

p(z1|z2,x1,x2,y)

p(z2|x1,x2,y)p(x1,x2,y). (5.4)

Since Z1 is learnt from X1, we thus assume given X1, Z1 is independent of Z2,X2,Y . Similarly,

we assume given X2, Z2 is independent of X1,Y , and given Z1,Z2, Z is independent of X1,X2,Y .
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Therefore, we have the following equalities:

p(z1|z2,x1,x2,y) = p(z1|x1),

p(z2|x1,x2,y) = p(z2|x2),

p(z|z1,z2,x1,x2,y) = p(z|z1,z2).

Using these assumptions, the joint probability density function can be simplified as

p(x1,x2,z1,z2,y,z) =p(z|z1,z2)p(z1|x1)

p(z2|x2)p(x1,x2,y). (5.5)

First, let us start with I(Y,Z). Since p(y|z) is intractable, we use a distribution q(y|z), which will be

learned from the network, to approximate p(y|z). The KL-divergence between p(y|z) and q(y|z) is

always non-negative. Therefore, we have

KL[p(y|z),q(y|z)]≥ 0

⇒
∫

dydz p(y,z) log(p(y|z))≥
∫

dydz p(y,z) log(q(y|z)). (5.6)

The mutual information between Y and Z is

I(Z,Y ) =
∫

dydzp(y,z) log
p(y,z)

p(y)p(z)

=
∫

dydzp(y,z) log
p(y|z)
p(y)

.
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Using Eq. (5.6), we have

I(Y,Z)≥
∫

dydz p(y,z) log
q(y|z)
p(y)

=
∫

dydz p(y,z) logq(y|z)−
∫

dy p(y) log p(y).

Since−
∫

dy p(y) log p(y) is the entropy of the labels, and this term have no effect on the optimiza-

tion, we can directly drop it. Therefore, the variation lower bound of I(Y,Z) is

I(Y,Z)≥
∫

dydz p(y,z) logq(y|z)

=
∫

dydzdx1dx2dz1dz2 p(x1,x2,z1,z2,y,z) logq(y|z).

By using the joint probability density function in Eq. (5.5), the variational lower bound of the

mutual information between Z and Y can be written as

I(Y,Z)≥
∫

dx1dx2dy p(x1,x2,y)∫
dzdz1dz2 p(z|z1,z2)p(z1|x1)p(z2|x2) logq(y|z). (5.7)

Next, we need to find the upper bound of I(X1,Z1). Since p(z1) is intractable, we use r1(z1) to

approximate p(z1). Similarly, we use the property of the KL-divergence between p(z1) and r1(z1).

KL[p(z1),r1(z1)]≥ 0

⇒
∫

dzp(z1) log p(z1)≥
∫

dzp(z1) logr(z1).
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Therefore, the mutual information between Z1 and X1 is

I(Z1,X1) =
∫

dz1dx1 p(x1,z1) log
p(z1|x1)

p(z1)

≤
∫

dz1dx1 p(x1,z1) log
p(z1|x1)

r1(z1)

=
∫

dx1dx2dydz1 p(x1,x2,z1,y) log
p(z1|x1)

r1(z1)
.

Using the assumption that given x1, z1 is independent of all other variables, we have

I(Z1,X1)≤
∫

dx1dx2dyp(x1,x2,y)∫
dz1 p(z1|x1) log

p(z1|x1)

r1(z1)
. (5.8)

Similarly, for I(Z2,X2), we have

I(Z2,X2)≤
∫

dx1dx2dyp(x1,x2,y)∫
dz2 p(z2|x2) log

p(z2|x2)

r2(z2)
. (5.9)

With Eq. (5.7), Eq. (5.8) and Eq. (5.9), the final variational lower bound is:

I(Y,Z)−αI(X1,Z1)−β I(X2,Z2)

≥
∫

dx1dx2dy p(x1,x2,y)

(
∫

dzdz1dz2 p(z|z1,z2)p(z1|x1)p(z2|x2) logq(y|z)

−α

∫
dz1 p(z1|x1) log

p(z1|x1)

r1(z1)

−β

∫
dz2 p(z2|x2) log

p(z2|x2)

r2(z2)
).
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The integral over x1,x2 and y can be approximated by Monte Carlo sampling [94]. Therefore,

I(Y,Z)−αI(X1,Z1)−β I(X2,Z2)

≥ 1
N

N

∑
i
{
∫

dzdz1dz2 p(z|z1,z2)p(z1|x1)p(z2|x2)

logq(y|z)−α

∫
dz1 p(z1|x1) log

p(z1|x1)

r1(z1)

−β

∫
dz2 p(z2|x2) log

p(z2|x2)

r2(z2)
},

where N is the sample size of the total sampled data. Next, we assume p(z1|x1), p(z2|x2) and

p(z|z1,z2) are Gaussian. The means and variances of the Gaussian distributions are all learned

from deep neural networks, i.e.,

p(z1|x1) = N (µ1(x1;φ1),Σ1(x1;φ1)),

p(z2|x2) = N (µ2(x2;φ2),Σ2(x2;φ2)),

p(z|z1,z2) = N (µ(z1,z2;θ),Σ(z1,z2, ;θ)),

where µ1,µ2,µ and Σ1,Σ2,Σ are the networks to learn the means and variances for p(z1|x1),

p(z2|x2) and p(z|z1,z2). φ1,φ2 and θ are network parameters for the networks to learn p(z1|x1),

p(z2|x2) and p(z|z1,z2), respectively. Since z1, z2 and z are all random variables, backpropagation

through those random variables may cause problems. Therefore, we use the reparameterization
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trick here, i.e.,

z1 = µ(x1;φ1)+Σ(x1;φ1)ε1,

z2 = µ(x1;φ1)+Σ(x1;φ1)ε2,

z = µ(z1,z2;θ)+Σ(z1,z2, ;θ)ε,

where ε,ε1,ε2 ∼ N (0, I). By using this reparameterization trick, randomness is transfered to

ε,ε1,ε2, which do not affect the backpropagation. Therefore, the final loss is

max
1
N

N

∑{EεEε1Eε2 logq(y|z)−αEε1 log
p(z1|x1)

r1(z1)

−βEε2 log
p(z2|x2)

r2(z2)
}. (5.10)

Three Monte Carlo sampling procedures are used are used here to approximate the integrals.

p(z1|x1), p(z2|x2) are all learned from neural networks. Note that the first term in Eq. (5.10) is

the cross-entropy between y and z. Thus, we can use a deep neural network with a softmax layer

as output to calculate the class probabilities and the cross-entropy loss.

5.1.4 Generalize to multiple modalities

The proposed deep multimodal information bottleneck framework can be easily generalized to

settings with more than 2 modalities by adding corresponding information constraint terms. Given

v modalities {X1,X2, ...,Xv}, the formulation of the proposed method is

max
Z,Z1,Z2,...Zv

I(Y,Z)−
v

∑
i

αiI(Xi,Zi), (5.11)
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where Zi is the latent representation of X1. αi is the regularization parameter to regularize the

mutual information between Xi and Zi. Following the procedures in Section 5.1.3, the final loss for

Eq. (5.11) is

max
1
N

N

∑{EεEε1Eε2...Eεv logq(y|z)−αiEεi log
p(zi|xi)

ri(zi)
}, (5.12)

where ε,ε1,ε2, ...εv ∼N (0, I). ri(zi) are assumed as ri(zi)∼N (0, I). Each p(zi|xi) are Gaussian

with µ and Σ leaned from a deep neural network.

5.2 Experiments

In this section, we present the experimental results on synthetic and real-world datasets. The

baseline algorithms used for comparison include linear CCA [27], DCCA [9], DCCAE [119], and

the fully-connected deep neural network (DNN), which uses two fully-connected neural networks

to directly extract latent representations Z1,Z2 and then uses a deep neural network to fuse Z1 and

Z2 to make prediction. One intuitive baseline for multimodal learning is to concatenate the features

from all the modalities and treat the concatenated features as one modality. In our experiments,

we use single-modal information bottleneck [7] as the model for this baseline and denote this

baseline as singlemodal12. We also provide the results of single-modal learning using information

bottleneck [7] for each modality, and use singlemodal1, singlemodal2 to denote the baselines using

the first modality and the second modality. We denote the proposed method as deep IB.
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5.2.1 Synthetic datasets

. The data are synthesized in the following way. First, we sample 2n points from two Gaus-

sian distributions, i.e., N (0.5e, I) and N (−0.5e, I) to form Z. Samples from each distribution

form one class. Each class has n data points. Then, we directly use Z to generate X1 and X2

by setting Xi = f (D)+ noise, where D = [Z,extra-features] with i ∈ {1,2} and f is a nonlinear

function. Extra-features here are used to distort the classification and are sampled from another

two Gaussian distributions, i.e., N (e, I) and N (−e, I). We sample m data from the first Gaus-

sian distribution and 2n−m samples from the second Gaussian distribution. We concatenate the

extra-features to the useful features to distort the classification. Extra-features are illustrated in

Figure 5.1. In Figure 5.1, the row represents the samples and the column represents the features.

Extra-features have different class property compared with the useful features. In all the synthetic

data experiments, we set m = 2n/3 for the first modality and m = 2n/6 for the second modality.

Extra-features widely exist in multimodal learning scenario. For example, when we collect all the

genetic data from people with a gene-related disease and healthy people, the genetic data contain

not only information to classify the disease, but also gender information. The features that describe

the gender information are extra-features. The effect of those features needs to be eliminated in

the classification process. The noise is sampled from N (0, t ∗ I), where t denotes the noise level

and is changed in the experiments to test the algorithms’ ability to eliminate the effect from noise.

f is tanh(tanh(D))+0.1 for the first modality and sigmoid(D)−0.5 for the second modality.

5.2.1.1 Setting 1

. In the first setting, we change the noise level t and compare our model with other baselines. t

is the relative noise level which is calculated as t = a×max(abs(Xi)) for each modality, where
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Figure 5.1: Illustration of extra-features in the synthetic data experiments. Extra-features have
different class property with the useful features.

Noise level (a) 0.2 0.4 0.6
singlemodal1 0.070±0.016 0.111±0.020 0.135±0.025
singlemodal2 0.132±0.025 0.205±0.040 0.253±0.025
singlemodal12 0.064±0.012 0.083±0.012 0.125±0.011
linear CCA 0.064±0.027 0.109±0.023 0.143±0.035
DCCA 0.065±0.024 0.096±0.023 0.132±0.029
DCCAE 0.075±0.017 0.098±0.008 0.139±0.044
DNN 0.061±0.004 0.094±0.012 0.128±0.025
deep IB 0.059±0.016 0.073±0.011 0.122±0.019
Noise level (a) 0.8 1.0 1.2
singlemodal1 0.166±0.025 0.192±0.030 0.206±0.040
singlemodal2 0.283±0.031 0.313±0.032 0.338±0.035
singlemodal12 0.154±0.031 0.164±0.023 0.181±0.037
linear CCA 0.165±0.038 0.194±0.041 0.209±0.043
DCCA 0.154±0.033 0.173±0.034 0.198±0.043
DCCAE 0.165±0.026 0.182±0.028 0.203±0.041
DNN 0.156±0.024 0.164±0.037 0.191±0.031
deep IB 0.139±0.017 0.158±0.017 0.171±0.026

Table 5.1: Average errors of all methods under different noise levels.

abs means the absolute value. We set a to be {0.2 : 0.2 : 1.2}. The sample size per class is set

to be 500. The useful feature dimension is 20, and the extra-feature dimension is 5. α and β

are tuned in [1e−5,5e−5,1e−4,5e−4,1e−3,5e−3,1e−2]. For the subnetworks that extract

features from X1 and X2 for all the deep models including DCCA, DCCAE, we tune the number

of layers in [3,4,5] and the node number for each layer is tuned in [256,512,1024]. The activation

function is ReLU. For the subnetworks that fuse the extracted features from all modalities, we tune
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the number of layers in [1,2,3] and the node number is tuned in [128,256,512]. The activation

function is ReLU. For all the experiments, we use 80% data as training and the rest as testing

and repeat the experiments for 5 times. We report the average errors for all methods in Table 5.1.

From Table 5.1, we see when noise increases, the performance becomes worse for all the methods.

Single-modal methods are all worse than supervised multimodal methods. Simple concatenation of

two modalities is not as good as deep IB. Compared with CCA-based method, we see supervision

information improves the performance a lot. DNN is a challenging baseline as shown in the results.

DNN has a similar network structure with deep IB. The difference between DNN and deep IB is

that DNN tries to extract latent features by directly maximizing the cross-entropy between the

outputs of the network and labels, while deep IB not only maximizes the cross-entropy between

the outputs of the network and labels, but also constrains the model complexity by reducing the

information between Z1 and X1, and between Z2 and X2. Therefore, the generalization performance

of deep IB is better than DNN.

5.2.1.2 Setting 2

. In the second setting, we vary the sample size per class to see how the performance changes. The

noise level a is set to be 1.0. The useful features dimension is 20, and the extra-feature dimension

is set to be 5. The models are tuned in the same way as the first setting. We report the errors for all

methods in Table 5.2. From the table, we see increasing the sample size improves the performance

for all methods. We observe some similar patterns with that of Setting 1. For example, deep IB

results are better than all other single-modal methods results. CCA-based methods are not as good

as supervised methods. One specific observation is that when the sample size is large enough,

i.e., greater than 1100, DNN’s performance is better than deep IB. That is because deep IB has

the assumption to reduce the model complexity. When the sample size is large enough, deep IB
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Sample per class 300 500 700
singlemodal1 0.178±0.035 0.192±0.030 0.175±0.022
singlemodal2 0.333±0.043 0.313±0.032 0.319±0.032
singlemodal12 0.230±0.080 0.173±0.023 0.164±0.023
linear CCA 0.163±0.030 0.194±0.041 0.166±0.038
DCCA 0.165±0.013 0.173±0.033 0.158±0.026
DCCAE 0.169±0.008 0.182±0.028 0.154±0.033
DNN 0.173±0.024 0.164±0.032 0.161±0.032
deep IB 0.162±0.015 0.158±0.017 0.143±0.021
Sample per class 900 1100 1300
singlemodal1 0.179±0.015 0.192±0.014 0.183±0.005
singlemodal2 0.326±0.021 0.317±0.010 0.316±0.024
singlemodal12 0.174±0.021 0.180±0.008 0.185±0.011
linear CCA 0.159±0.011 0.173±0.011 0.170±0.023
DCCA 0.151±0.018 0.165±0.013 0.155±0.013
DCCAE 0.154±0.003 0.178±0.017 0.160±0.008
DNN 0.146±0.016 0.143±0.004 0.139±0.008
deep IB 0.139±0.009 0.143±0.007 0.143±0.006

Table 5.2: Average errors of all methods under different sample sizes.

underfits the data, while DNN has no assumption. Therefore, when the sample size is large enough,

direct using DNN delivers the highest accuracy.

5.2.1.3 Setting 3

. In the third setting, we change the extra-feature dimension to see how the extra-feature dimension

affects the results. In this setting, the sample size per class is set to be 500. The noise level a is 1.0.

The useful feature dimension is fixed as 20. The errors are shown in Table 5.3. From Table 5.3,

we see deep IB outperforms all the other methods with any extra-feature dimension. When the

extra-feature dimension increases, the data contain more irrelevant information, which makes the

classification to be distorted. We see when the extra-feature dimension increases, the error of

DNN, CCA-based methods increase a lot. However, for IB based methods including the single-

modal baselines, the errors are stable when the extra-feature dimension is larger or equal to 25.
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Extra-feature dim 5 15 25
singlemodal1 0.192±0.030 0.194±0.036 0.199±0.020
singlemodal2 0.313±0.032 0.333±0.024 0.342±0.019
singlemodal12 0.164±0.023 0.181±0.027 0.194±0.024
linear CCA 0.194±0.041 0.192±0.038 0.225±0.030
DCCA 0.173±0.033 0.179±0.040 0.187±0.016
DCCAE 0.182±0.028 0.185±0.037 0.195±0.020
DNN 0.164±0.037 0.197±0.020 0.201±0.022
deep IB 0.158±0.017 0.174±0.053 0.175±0.013
Extra-feature dim 35 45 55
singlemodal1 0.198±0.042 0.194±0.019 0.193±0.016
singlemodal2 0.327±0.020 0.334±0.026 0.332±0.021
singlemodal12 0.189±0.041 0.191±0.026 0.189±0.017
linear CCA 0.205±0.047 0.255±0.027 0.286±0.012
DCCA 0.181±0.018 0.183±0.026 0.201±0.040
DCCAE 0.193±0.023 0.215±0.026 0.221±0.032
DNN 0.216±0.025 0.219±0.015 0.225±0.032
deep IB 0.174±0.035 0.173±0.019 0.176±0.023

Table 5.3: Average errors of all methods under different extra-feature dimensions.
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Figure 5.2: Average error for reservoir detection task.

From the results, we conclude that IB-based methods are more robust to extra-features.
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Figure 5.3: T-Distributed Stochastic Neighbor Embedding for the final joint representations
for reservoirs detection models. Blue dots are natural lakes and red dots are reservoirs.

5.2.2 Case study: reservoir detection

. In this case study, we compare all the models on a reservoir detection dataset. Reservoirs for

this dataset are sampled with ArcMap 10.3.1 by joining dam features from the US Army Corps’

National Inventory of Dams with lake polygons over 4 hectares from the LAGOS database [100].
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For comparison, we also select a proportional number of natural lakes from the major river wa-

tershed that each reservoir is located in. The sample size for this dataset is 1327 with 660 natural

lakes and 667 reservoirs. There are two modalities available in this dataset. The first one is the

boundary of the lakes. Boundary features of each lake and reservoir are exported using ArcMap.

Each boundary file is a 224×224 image. To deal with the boundary data, we first use VGG16 to

extract features. We use the last fully-connected layer’s output as the features. The dimension is

4096. Since the sample size is not large, we use PCA to reduce the feature dimension by keeping

the top 1% singular values. The reduced feature dimension is 75. The second modality is the fea-

tures extracted from Google Earth. The features include the area of the lakes, shape length, classes

of the general types of parent material of soil on the surface, classes of landforms, NED-derived

mTPI ranging from negative (valleys) values to positive (ridges) values, NED-derived CHILI index

ranging from 0 (very cool) to 225 (very warm). In total, there are 21 features. We split the data into

training and testing as the synthetic data experiments and report the average error in Figure 5.2.

From the figure, we see deep IB outperforms all other methods. In Figure 5.3, we also qualitatively

show the final joint representations learned by all methods with t-Distributed Stochastic Neighbor

Embedding [74]. The final joint representation is the output of the layer that is connected with

the final linear classifier. For example, for deep IB, DNN and the single-modal methods, the final

joint representations are the outputs of the layer before the last layer. For the CCA-based methods,

the final learned representations are the projected representations from the first modality. In Fig-

ure 5.3, blue dots are natural lakes and red dots are reservoirs. We see that the separation qualities

are consistent with the performance in Figure 5.2.2.
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ADNI2 NC MCI Total p-value
Number 50 112 163 -
Age 69.36±15.40 71.68±9.93 70.96±11.89 0.0016
Sex 22M/28F 71M/41F 93M/69F 0.0040
NACC HC MCI Total p-value
Number 329 57 386 -
Age 60.96±8.96 73.60±7.93 63.82±9.73 0.0100
Sex 107M/222F 38M/19F 145M/241F 0.0046

Table 5.4: Demographic information for the two cohorts (ADNI2 and NACC). The p-values
for 695 the difference between ADNI2 and NACC are 0.023 for sex and 3.88e-23 for age. The last
column 696 is the p-value for the difference between MCI and NC.

ADNI2 NACC
b value 1000 s/mm2 1300 s/mm2

Number of b0 images 5 8
Number of diffusion weighted images 42 40
T1 MRI voxel size 1.0156×1.0156×1.2 mm3 1.0×1.9×1.2mm3

T1 MRI TR 6.98 ms 8.16 ms
T1 MRI TE 2.85 ms 3.18 ms
T1 MRI Image dimension 256×256×196 256×256×156
dMRI voxel size 2.7×2.7×2.7mm3 0.94×0.94×2.9mm3

dMRI TR 9050ms 8000ms
dMRI TE Minimum 81.8 ms
dMRI Image dimension 128×128×59 256×256×52

Table 5.5: Parameters for dMRI and T1 MRI data for ADNI2 and NACC.

5.2.3 Case study: Alzheimer’s disease classification

5.2.3.1 Data Preprocessing

The data we used is the union of ADNI2 and NACC dataset. There are two classes, i.e., normal

control (NC), mild cognitive impairment (MCI). NACC has 329 NC and 57 MCI. ADNI2 has 50

NC and 112 MCI. Demographic characteristics of the two datasets is summarized in Table 5.4.

dMRI and T1w MRI data for each subject was analyzed. Table 5.5 summarizes the key data

collection parameters for the two cohorts.

Two types of feature variables were extracted in this study. The first type is from the gray matter
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Figure 5.4: The pipeline of computing the stability score. The warmer color indicates a higher
probability of selection. (a) Calculating the selection probability using different regularization
parameters. (b) Illustration of using selection probability to calculate stability score.

using T1w MRI. FreeSurfer was used to extract 136 measurements including cortical volume and

thickness for 68 brain ROIs based on Desikan-Killiany atlas [33]. The second type is from dMRI-

derived structural connectome or network. The brain structural connectome was constructed using

PICo [84], a whole-brain probabilistic tractography algorithm and 113 ROIs defined on the Harvard

Oxford Cortical and subcortical Probabilistic Atlas [33, 40]. The details of computing the brain

network can be referred to [134]. Each subject’s network has a dimension of 113x113, with 6,328

distinct edges connecting 113 brain ROIs (the edges are not directional and thus the network is

symmetric).

For both the ADNI2 and NACC cohorts, the number of subjects is limited, especially when

we need subjects to have both valid T1 MRI and dMRI available. When performing classification

modeling, the dimension of feature variables will be much larger than the sample size for both
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Figure 5.5: The distribution of the stability scores for the dMRI features.

ROI1 ROI2

1
Right Parahippocampal Gyrus, Right Heschl”S Gyrus

Posterior Division
2 Right Amygdala Left Cerebellum

3
Right Inferior Temporal Gyrus, Right Supramarginal Gyrus,

Temporooccipital Part Anterior Division
4 Brainstem Left Insular Cortex
5 Left Insular Cortex Left Frontal Opercular Cortex

6
Right Superior Temporal Gyrus, Left Supramarginal Gyrus,

Posterior Division Posterior Division
7 Left Caudate Left Pallidum
8 Left Frontal Pole Left Frontal Opercular Cortex

9
Left Inferior Temporal Gyrus, Right Supramarginal Gyrus,

Temporooccipital Part Posterior Division
10 Right Superior Parietal Lobule Left Planum Temporale

Table 5.6: Top 10 dMRI feature variables identified.

dMRI. This would lead to the “curse of dimensionality” problem where our classification models

overfit training data and deliver poor generalization power. Since not all feature variables are re-

lated to the AD progression, we perform a feature variable selection procedure that ranks all the

variables according to their relevance to the classification problem, and include only those feature

variables in our models. We use the powerful stability selection method and use stability score as

our criterion for relevance. We select sparse logistic regression in Chapter 3 as the sparse model to

select the features. Given a set of regularization parameters {λ1,λ2, ...λn}, for each regularization
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Figure 5.6: Average error for classifying MCI with AD.

parameter λ we obtain a set of feature variables Sλ that contribute to the final classification model

in the corresponding sparse model. Stability selection is a variable selection method based on sub-

sampling in combination with high-dimensional sparse learning algorithms. Instead of selecting

one model, stability selection perturbs the data (e.g., by subsampling) many times, and we identify

consistent feature variables that are included in the model, under different values of the parameter

λ , across bootstrap datasets [75]. Intuitively, feature variables selected in this way are more con-

sistently relevant to the target problem than feature variables selected only by sparse algorithms.

Stability selection works as follows: we first randomly select 50% of training samples and apply

sparse logistic regression to the selected training samples with regularization parameter λi to build

a sparse model. Let F denote the whole feature variables set and f ∈ F denote the index of a

particular feature variable in the set. The set of feature variables selected by this model is denoted

by:

Uλi = { f : wλi, f 6= 0} (5.13)

We repeat this procedure for t = 1000 times. Selection probability for each feature variable is
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Figure 5.7: T-Distributed Stochastic Neighbor Embedding for the final joint representations
for classifying MCI with NC. Blue dots are NCs and red dots are MCIs.

calculated as follows:

Pr f ,λi = ∑ I( f ∈Uλi)/t (5.14)
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Dataset XRMB MNIST Wiki
singlemodal1 0.185±0.003 0.075±0.006 0.449±0.024
singlemodal2 0.271±0.003 0.160±0.012 0.337±0.018
singlemodal12 0.179±0.006 0.057±0.009 0.336±0.006
linear CCA 0.358±0.004 0.235±0.006 0.741±0.017
DCCA 0.231±0.006 0.187±0.012 0.478±0.049
DCCAE 0.226±0.005 0.170±0.020 0.499±0.037
DNN 0.168±0.006 0.060±0.056 0.311±0.017
deep IB 0.161±0.005 0.056±0.002 0.298±0.005

Table 5.7: Average errors for three benchmark datasets.

where I(·) is the indication function: I(c) = 1 when c is true and I(c) = 0 when cis false. The

procedure of calculating selection probability is illustrated in the upper portion of Figure 5.4.

Then we vary the regularization parameter many times and calculate selection probability under

these regularization parameters. By these selection probabilities, stability score for feature variable

f is calculated as follows:

Sc( f ) = max
λi

(Pr f ,λi) (5.15)

With stability score, we can rank the variables and choose only top k stable variables, or a stability

score that is larger than a pre-set threshold. The computation of the stability score is shown in

the lower portion of Figure 5.4. After selecting feature variables by stability score, the feature

dimension is reduced drastically. We will use the new feature variables set to build our model.

Figure 5.5 shows the distribution of the stability scores for T1 MRI features features. select the top

172 features which have the top 30% stability scores as the final features for this dMRI.

We split the data into training and testing datasets with the ratio 9:1 and repeat the experi-

ments for 5 times. The classification error is shown in Figure 5.6 and the TSNE of the hidden

representations are in Figure 5.7. We see our method outperforms all other methods.
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5.2.4 Other benchmark datasets

In this section, we report the performance on three benchmark datasets. The datasets we used are

• Wisconsin X-Ray Mircro-Beam (XRMB) [119, 122]: the first modality is 273D acoustic

inputs, the second modality is 112D articulatory inputs 1.

• MNIST [119]: two modalities are generated from MNIST datasets. The first modality is a

random rotation of the original images. The second modality is generated by adding noise

to the original images. Both modalities have 784 features 2.

• Wiki [35]: the dataset contains 2866 images-text pairs. Each image is represented by 128D

inputs and text is represented by 10D inputs. There are 10 classes in total.

The average errors are shown in Table 5.7. From the table, we see for all the benchmark

datasets, the proposed method performs the best among all the methods, which verifies the effec-

tiveness of the proposed method.

5.3 Summary

In this work, we proposed a novel multimodal learning model based on information bottleneck.

The model encouraged the latent representation keeping target information as much as possible

while containing the information of original features as little as possible to reduce the model com-

plexity. To learn the complicated relationship between modalities and within modalities, we used a

deep neural network to learn the latent representation. Since the mutual information terms were in-

tractable, we maximized the lower bound of the formulation instead of directly maximizing it. We
1We did not use the whole dataset since some baselines are quite slow. We randomly sampled 50000 data points

for training and sampled 6000 points for testing from the first 10 classes.
2We did not use the whole dataset since some baselines are very time-consuming. We sampled 5000 data for

training and 1000 for testing.
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demonstrated experiments on various synthetic and real-world datasets to show the effectiveness

of the proposed method.
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Chapter 6

Multimodal Learning with Incomplete

Modalities

6.1 Methodology

In this section, we first give a brief introduction to knowledge distillation [46]. Then, we introduce

our method which leverages knowledge distillation to conduct multimodal learning with supple-

mentary information.

6.1.1 Knowledge Distillation

Knowledge distillation is used to transfer “dark knowledge” from a teacher to a student. To transfer

knowledge, the teacher is first trained on a dataset. Denote the trained teacher model as Te(φ) with

φ denotes the parameters of the teacher model. Then, the student is trained to mimic the output

of the teacher on the training dataset. Given a dataset D = {{X1,y1},{X2,y2} . . .{XN ,yN}} used

to train the student, the teacher is first applied on the data and label the data with the logits. We

assume there are in total C classes, and the labels are thus given by:

zi = Te(Xi;φ), (6.1)
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where zi ∈RC×1 is the logits labeled by the teacher model for sample Xi. The student model is then

trained with both the true one-hot label {yi,y2, . . . ,yN} and the logits {z1,z2, . . . ,zN}. Suppose the

student model is a deep neural network f (θ) parameterized by θ . It takes Xi as input and outputs

a C× 1 vector which is the logit vector. Then, a SoftMax function is added to the logit vector to

output the probability of Xi to be classified as C classes. The loss function of training the student

network is:

min
θ

l =
N

∑
i

lc(Xi,yi;θ)+ ld(Xi,zi;θ). (6.2)

where lc is a classification loss with the true one-hot label with the form:

lc(Xi,yi;θ) = H(σ( f (Xi;θ)),yi), (6.3)

where H is the negative cross-entropy loss, and σ(x) : RC→ RC is the SoftMax function:

σ(x) j =
ex j

∑
C
k=1 exk

for i = 1,2, . . . ,C. (6.4)

ld(Xi,zi;θ) is the distillation loss. Examples of the distillation loss include negative cross-entropy

loss or KL-divergence. Without loss of generality, we adopt KL-divergence as the distillation loss:

ld(Xi,zi;θ) = DKL(σT ( f (Xi;θ);T ),σT (zi;T )). (6.5)

where σT (x;T ) denotes the SoftMax with temperature T :

σT (x;T ) j =
e

x j
T

∑
C
k=1 e

xk
T
. (6.6)
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With temperature T , the output probability is rescaled and smoothed. If temperature T is large, the

probability will be more smooth compared with a small temperate T . The output of σT (zi;T ) is

called the “soft label”, which is labeled by the teacher model on the sample Xi. It is believe that

the “soft labels” contain more information than the one-hot label [46].
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Figure 6.1: Pattern of the data. (a) shows the structure of a dataset with two modalities. Samples
in the blue dashed-line box have complete modalities and samples in the yellow dashed-line box
only have one modality available. (b) Illustration of samples used to train teacher models for two-
modal learning. Samples in the green dashed-line box are used to train the first teacher and samples
in the orange dashed-line box are used to train the second teacher.

6.1.2 Multimodal learning with missing modalities

For multimodal learning, it is rather common that some samples do not have complete modalities.

Below we first start our discussions on two modalities and then generalize our method to multiple

modalities.

Given two modalities {X1 ∈ Rn1×d1,X2 ∈ Rn2×d2} with labels, we denote the samples have

complete modalities as {X1c ∈Rnc×d1,X2c ∈Rnc×d2,yc ∈Rnc}. Samples only have the first modal-

ity are denoted as {X1u ∈ Rn1u×d1,y1u ∈ Rn1u} and samples only have the second modality are de-
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noted as {X2u ∈Rn2u×d2,y2u ∈Rn2u} with n1 = nc+n1u and n2 = nc+n2u. In Figure 6.1, (a) shows

the structure of the data. Samples in the blue dashed-line box are these with complete modalities

and samples in yellow dashed-line box only have one modality available. To utilize all the sam-

ples, we first train two single modal models with all the available data including the samples with

missing modalities. These two models are then acting as teacher models in our framework. We

assume that the two teachers are two neural networks g1(φ1) and g2(φ2) with parameters φ1 and

φ2. g1(φ1) takes the samples from [X1c,X1u] as input and outputs the logits and g1(φ1) takes the

samples from [X2c,X2u] as input and output the logits. The two teachers are trained by minimizing

the following loss functions:

Te1(φ1) = min
φ1

∑
n1
i H(σ(g1(X1

i ;φ1)),yi),

Te2(φ2) = min
φ2

∑
n2
i H(σ(g2(X2

i ;φ2)),yi) (6.7)

Then, we use the two teachers to label the samples in {X1c,X2c}. The logits for the i-th sample

are:

z1
i = Te1(X1c

i ;φ1), z2
i = Te2(X2c

i ;φ2), (6.8)

where z j
i denotes the logit labeled by teacher j for the i-th sample.

In order to fuse the supplementary information from different modalities, we train a student

model with multimodal DNN (M-DNN) [87]. The M-DNN for two modalities contains two

branches. Each branch takes one modality as input and is followed with several nonlinear fully-

connected layers. The outputs of all the branches are concatenated to form a joint representation.

Then, the joint representation is connected to a linear layer to output the logits z. The reason we
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use such a model as the student model is that the joint representation learned with this model con-

tains the supplementary information of the two modalities. If we train the M-DNN as the methods

in [123], i.e., only use the samples with complete modalities {X1c,X2c,yc} to train the model, the

sample size is limited to be nc. If nc is very small compared with n1 and n2, a large amount of

useful information is discarded and the samples for training the model is not enough. Thus, we

propose to train the M-DNN with the information from the two teachers Te1(φ1) and Te2(φ2) to

improve the performance as the two teachers are trained on much larger datasets. The final classi-

fication performance for each teacher might be not good enough since each teacher only has access

to one modality. But the teachers can do the best to learn classifier with these modalities, provide

the expertise for these modalities and teach the student with this knowledge. Denote the student

network as f (θ) with θ representing the parameters. The loss function for the proposed method

is:

min
θ

l = min
θ

nc

∑
i

lc(X1
i ,X

2
i ,yi;θ)+αld1(X1

i ,X
2
i ,yi;θ ,Te1(φ1))

+β ld2(X1
i ,X

2
i ,yi;θ ,Te2(φ2)), (6.9)

where lc(X1
i ,X

2
i ,yi;θ) is the classification loss as

lc(X1
i ,X

2
i ,yi;θ) = H(σ( f (X1

i ,X
2
i ;θ)),yi).

ld1, ld2 are distillation loss, α and β are two tunable parameters to control how much knowledge the

student model needs from the teacher models. If the parameter is large, it means the student model

needs more knowledge from this teacher than a small regularization parameter. The formulations

98



Teacher 
Model

Te1

Student 
Model

(M-DNN)

Teacher 
Model

Te2

𝑋"#	 𝑋"%	 𝑋&%	 𝑋&#

Soft Label Soft Label

Distillation 
Loss

One-hot 
Label

Distillation 
Loss

Classification 
Loss

Figure 6.2: Overview of the proposed teacher-student model. We first train teacher models with
all the available data including the samples have missing modalities. Then, we use the soft labels
labeled by the teacher models along with the one-hot label to train the student model.

of ld1 and ld2 are:

ld1(X1
i ,X

2
i ,yi;θ ,Te1(φ1)) = DKL(σT ( f (X1

i ,X
2
i ;θ)),σT (z1

i )), (6.10)

ld2(X1
i ,X

2
i ,yi;θ ,Te2(φ2)) = DKL(σT ( f (X1

i ,X
2
i ;θ)),σT (z2

i )). (6.11)

Figure 6.2 overviews of the proposed framework.

We would like to highlight the difference between the proposed method with two similar and

intuitive methods. The first one is late fusion, i.e., fusion at the decision level, which directly

combines the labels/logits labeled by the teacher models as the final prediction. Since the teachers
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only have partial knowledge of the data, the data labeled by the teachers may not be perfect.

Researches have shown for most cases late fusion performs worse than early fusion, i.e., feature

level fusion [99, 43]. In our proposed method, we not only utilize the labels from the teachers, but

also perform early fusion with the M-DNN. So, the performance is expected better than late fusion.

Another method is to use the teachers as feature extractors to extract abstract features and then use

these abstract features as new sets of features to replace the original inputs to train a multimodal

model. The performance of this method may perform well when different modalities only have

common or shared information and modality-specific noises. However, when different modalities

contain supplementary information, the abstract features extracted by each teacher models may

have already lost some useful information as the teacher models are trained on only one modality

and are biased. Therefore, its performance is likely to be worse than the proposed method. We will

show the performance of these methods in the experiment session.

Mechanism of the proposed method: The underlying mechanism of the proposed approach can

be illustrated using gradient analysis. The gradient of the classification loss with respect to the

output probability of the k-th class is:

∂ lc
∂ pk

= ∑
N
i (pik− yik),

where yik denote the one-hot label of sample i for class k, pik denote the output probability of

sample i for class k. Let Ld denote all the distillation losses, the gradient of the distillation losses

with respect to the output probability pk is:

∂Ld

∂ pk
=

∂

∂ pk
(α ∑

N
i DKL(σT (zi),σT (z1

i ))

+β ∑
N
i DKL(σT (zi),σT (z2

i )))
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= α ∑
N
i (log pik− logq1

ik)+β ∑
N
i (log pik− logq2

ik) (6.12)

≈ α ∑
N
i (pik−q1

ik)+β ∑
N
i (pik−q2

ik), (6.13)

where qm
ik is the soft label produced by teacher m for sample i at class k with m = 1,2. We use

log(1+ x)≈ x to get (6.13) from (6.12). The gradient of the total loss with respect to pk is:

∂ l
∂ pk

= ∑
N
i ((pik− yik)+α(pik−q1

ik)+β (pik−q2
ik))

= ∑
N
i (1+α

pik−q1
ik

pik− yik
+β

pik−q1
ik

pik− yik
)(pik− yik) (6.14)

= ∑
N
i wik(pik− yik), (6.15)

where wik =(1+α(pik−q1
ik)/(pik−yik)+β (pik−q1

ik)(pik−yik)). Eq. (6.15) indicates the samples

are reweighted by wik. wik is determined by the soft labels and the confidence of the soft labels. If

both teachers labeled the sample correctly and the confidence pik for the correct label is high, the

weight wik is around (1+α +β ) for this sample. If only one teacher labeled the sample correctly

and the confidence is high, the weight is (1+α) or (1+β ), which is smaller than the samples that

are correctly labeled by both teachers with high confidence. If the teachers both make mistakes or

if they labeled correctly but with very low confidence, the weight is lower than the aforementioned

two cases. So, the proposed method reweights the samples with the teachers’ labels and the con-

fidence of the teachers and assign higher weights for the samples that are correctly labeled by the

teachers with high confidence.

Generalize to multiple modalities: Given m modalities X1 ∈ Rn1×d1 , X2 ∈ Rn2×d2 , ... Xm ∈

Rnm×dm , the dataset could be divided into n parts: (1) samples with complete modalities X ic ∈

Rnc×di with i = {1,2, ...m}; (2) samples with one modality available X iu ∈ Rnui×di with i ={1,
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2, ..., m}; (3) samples with two modalities available Xku{i j} ∈ Rnu{i j}×dk with i, j = {1,2, ...n}

and k = {i, j}. Xku{i j} is the k-th modality for the subset that samples contains i-th and j-th

modality; ... (n) samples with n−1 modalities available Xku{M\i} ∈Rn{M\i}×dk with i = {1,2, ...,m}.

We use {M} denote the set of the index for all m modalities, i.e., {M} = {1,2, ...,m}. {M\i}

denotes the set without index i. k is an index taken from the set {M\i}. Xku{M\i} is the k-th

modality for the subset in which samples contain {M\i} modalities. We train the teacher models

in a hierarchical manner. First, we train teacher models on each modality separately and obtain

Tei with i = {1,2, . . . ,m}. Then, we use these models to teach the teacher models trained with

two modalities and obtained teacher model Tei j with i, j = {1,2, . . . ,m}. Next, we use all the

Tei j to teach the teacher models trained with three modality and so forth. Finally, we obtain all

the teachers hierarchically. Denote the teachers trained with h modalities as the h-level teachers.

{Ch} is the set that composed by all the combination of h indexes sampled from set M. The size

of {Ch} is
(m

h

)
. For example, if {M}={1,2,3,4},{C2} = {{1,2}, {1,3}, {1,4}, {2,3}, {2,4},

{3,4}} and {C3}= {{1,2,3},{1,2,4}, {1,3,4},{2,3,4}}. H-level teacher models are trained on

the modalities indexed by the elements in {Ch}. For the above example, there are four 3-level

teachers, i.e., a teacher trained with the modalities 1,2,3, a teacher trained with the modality 1,2,4,

a teacher trained with modalities 1,3,4 and a teacher trained with modalities 2,3,4. Denote the

model of the t-th teacher from the h-level teachers by TeCht (φht) with φht denoting the network

parameters and Cht denoting the t-th element of set {Ch}. For the above example, C23 = {1,4}.

TeCht (φht) is trained by minimizing the following loss function:
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min
φht

lCht =minφht

NCht

∑
i

lc({X
kuCht
i }k=Cht ,y

uCht
i ;φht)

+∑
NCht
i ∑

|Ch−1|
j α jld({X

kuCht
i }k=Cht ;TeC(h−1) j), (6.16)

where |Ch−1| is the size of set Ch−1 and NCht is the size of sample having modalities indexed by

Cht . After obtaining all teachers, we train the final student model with all the teachers.

One potential issue is that if we have a lot of modalities, the number of teacher models can

be very lager. For m modalities, the complete number of teacher models is 2m− 2. As such, we

cannot build all the teachers to train the student model due to the computational cost. As a solution,

we propose to prune the teachers to improve the scalability of the proposed framework. A simple

pruning strategy is to select a subset of teachers to train the student model. Basically, after first-

level teachers are trained, i.e., single-modal teachers. We only select the teachers that have high

performance to train the second level teachers. The modalities that have bad performance are also

discarded when building the second level teachers. We build teachers at all other levels in the same

way. Finally, all the remaining teachers are used to teach a student model build with m modalities.

This pruning method drastically reduces the number of teachers and make the proposed method

scalable. For example, for a dataset with five modalities, if in the first level we eliminate two

teachers and in the second level we eliminate one teacher, the total teacher number is reduced to

five. We demonstrate experiment on synthetic data to show the process of pruning and verify its

effectiveness. Here, we use figures to illustrate the pruning procedure. Suppose we have three

modalities. If we use all the teachers to train the student. The total number of teachers need to

be trained are 6 (see Figure 6.3). Denote the teachers as Te1, Te2, Te3, Te12, Te13, Te23. If the

performance of Te3 is relative low compared with Te1 and Te2, we remove Te3. In the meanwhile,
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Figure 6.3: Total teachers need to be trained with three modalities.

we remove Te13 and Te23 since both Te13 and Te23 need the teaching of Te3. The pruning procedure

is shown in Figure 6.4. If all the first-level teachers performances are good but Te13’s performance

is relative low compared with Te12 and Te23, we remove Te13. We do not need to remove other

teachers since there is no high-level teachers.

6.2 Experiment

In this section, we validate the proposed method and baselines on both synthetic and real datasets.

The baselines included are (1) Tei: the i-th teacher model (we use DNN as the teacher model in

all the experiments1), (2) M-DNN: multimodal DNN trained only with the complete samples, (3)

T-DNN: first using teacher models to extract abstract features and then training a DNN with the

concatenation of these abstract features as input, (4) CAS-AE [111]: first using cascade residue

autoencoder to impute the missing modalities and then training multimodal DNN with the origi-

1Other models could also be used as teacher models. The reason we use DNN as the teacher model in our work is
that DNN model’s performance is relatively high compared with other commonly used classifiers. Ensemble models
also have high performance. But DNN model could generate soft labels more easily than ensemble models.
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Figure 6.4: Total teachers need to be trained with pruning (low-level teacher). If a low level
teacher’s performance is not good. We could remove this teacher and the upper lever teachers
which need the teaching from the low level teacher.

Modality 1 Modality 3Modality 2

Te1

Te12
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Te12 Te23 Te13
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Figure 6.5: Total teachers need to be trained with pruning (high-level teacher). If a high level
teacher’s performance is not good. We could remove this teacher. We do not need to pruning other
teachers since there is not upper level teacher.
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nal data and imputed data (5) ADV [21]: first using adversarial learning to generate the missing

modalities and then training multimodal DNN with the original data and imputed data, (6) Sub-

space: multimodal subspace learning [106], (7) CCA [54]: canonical correlation analysis, (8)

DCCA [9]: deep canonical correlation analysis, (9) T-LATE: weighted adding the teachers’ logits,

(10) MCTN 2 [86]: multimodal cyclic translation network. Our method is denoted as TS.

6.2.1 Synthetic data experiments

Setting 1: We synthesize data with two modalities in the following steps: (1) We draw n sam-

ples from N (1, I) and N (−1, I) separately. Samples from each normal distribution form one

modality. Denote these samples as X1 and X2. The feature dimension is fixed to 32. (2) We then

generate random weight matrices W 1
1 ∈ R32×64,W 2

1 ∈ R64×64,W 1
2 ∈ R32×64,W 2

2 ∈ R64×64 and use

these weight matrices with ReLU function to transform the X1 and X2 to abstract features, i.e.,

ReLU(ReLU(X1W 1
1 )W

2
1 ) and ReLU(ReLU(X2W 1

2 )W
2
2 ). (3) After obtaining the transformed fea-

tures for the two modalities, we concatenate those features to form the joint features and use a

linear layer to transform the joint features to logits z. The final class label is σ(z). When synthe-

sizing the data, we make sure the number of samples for each class to be the same by generating

more than n samples and downsampling. (4) We random select a% samples to be X1c and X2c.

The remaining samples are divided into two equal parts. We remove one modality for each part to

form X1u and X2u. So, X1u and X2u all have n(1− a%)/2 samples. For each class, we randomly

choose 80% of data as the training set, 10% as the validation set, and 10% as the testing set. We

repeat the experiments for 5 times.

In this setting, we fix the number of samples per class to be 400 and change the class number

2We use fully connected neural networks instead of RNNs for the encoder, decoder and the prediction subnetwork
since our data are not time series data.
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in {2,5,7,10,12}. The samples with complete modalities are fixed to be 40%. The missing rate

for each modality is 30%. The teacher model is a DNN model with 3 hidden layers and the hidden

nodes are tuned in {32,64,128,256}. For TS and M-DNN, we fix the network structure to be

identical to the one used to generate the data but with unknown weight matrices. Since the two

modalities have equal contribution to the output when we synthesize the data, we set α to be

equal to β and is tuned in {0.1,0.2, . . . ,0.9}. Temperature T is tuned in {1,5,10,15,20}. For T-

DNN, we use the layer before the output layer of the teacher models as the abstract features. These

abstract features are concatenated to form new features. Then, we train a DNN model with the new

features. The DNN model has 3 hidden layers with node number being tuned in {64,128,256}.

For each block of the autoencoder in the CAS-AE model, the encoder has 3 layers and decode has

3 layers. The encoded feature dimension is fixed to be 64 since the original data has 32 features

for each modality. The node number for the hidden layer of the encoder and decoder is tuned in

{128,256,512}. We follow the steps in the [111] to tune the number of the autoencoder block,

i.e., the joint optimization of the entire network is performed when adding one autoencoder block.

During the training phase, we randomly choose half samples from the complete samples to remove

one modality and the other half to remove the other modality. Then, we train the CAS-AE to

reconstruct the removed modalities. After the training, the CAS-AE is used to impute the missing

modalities for the incomplete samples. Finally, we train a multimodal DNN using all the imputed

samples and the complete samples together. The structure of the multimodal DNN used here is the

same as the student model of TS and M-DNN model. For ADV, the encoder part is a 3 layer DNN,

the hidden node number is tuned in {128,256,512}. The structure of discriminator is a 3-layer

DNN with hidden number be tuned in {128,256,512}. Since ADV can only impute one modality

in one time, we first use the first modality to impute the second modality with the complete samples

as the training data. Then, we use the imputed samples and the complete samples as training data
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to train a second model to impute the first modality. After we impute all the missing part, we

train a multimodal DNN to perform the classification. The structure of the multimodal DNN is the

same with the student model of TS and M-DNN model. The formulation of Subspace baseline is

identical to Eq. (2) in [106]. We initialize the latent factors by SVD of the concatenation of two

modality to improve the performance of this model. The latent factor rank is tuned in {16,32,64}.

For CCA and DCCA, the projected feature dimension is tuned in {16,32}. The hidden node of

DCCA is tuned in {64,128,256,512} and the hidden layer number is fixed to be 3. For T-LATE,

we first use the training samples to learn the optimal weights for each teacher. Then, we use the

learned weights and teacher models to label the testing samples. For MCTN, the hidden node of

encoder and decoder is tuned in {64,128,256,512} and the hidden layer number is fixed to be 3.

The prediction subnetwork has one hidden layer and the hidden node number is fixed to be 128.

The results are shown in Figure 6.6. We see that TS outperforms all other models. The per-

formance of Te1 and Te2 are much worse than M-DNN since each teacher only has access to the

information of one modality. Although they are well-trained with all the available data, the infor-

mation loss still makes the performance to be worse than M-DNN. The performance of the ADV

and CAS-AE is lower than M-DNN because the imputed samples have low quality with limited

samples having complete modalities. Although these two methods enlarge the sample size, they

still cannot outperform M-DNN. Especially for ADV, the performance is much lower than M-

DNN and CAS-AE since adversarial training is much more difficult than training an autoencoder.

The difference between T-LATE and the TS model increases as the class number increase which

implies that late fusion does not work well when the class number is large. The key difference

between our model and T-DNN is that our model uses teachers to teach the student via labeling

the samples, but T-DNN directly uses the features extracted by the teachers as the input features.

The samples and model structures to train the teachers and the student models are all the same for
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Figure 6.6: Classification accuracy for Setting 1. The proposed method (TS) outperforms all the
other baselines.

the two methods. However, the performance of T-DNN is worse than the proposed method. One

reason is that features extracted by teachers have lost some useful information.

Setting 2: In the second setting, the data are synthesized the same way as Setting 1. We change

the rate of samples with complete modalities (complete rate) to be {60%,50%,40%,30%,20%}.

All the model structure and parameter settings are identical to Setting 1. The results are shown in

Figure 6.7. We see similar patterns as Setting 1. When the complete rate is large, the performance

of TS and M-DNN or CAS-AE is almost the same. But when the complete rate is small enough, TS

is much better than M-DNN and CAS-AE since M-DNN and CAS-AE are trained well with a large

complete rate. When the complete rate is small, there is no enough data to train them. T-DNN and

T-LATE show the opposite pattern with M-DNN and CAS-AE, i.e., the difference between TS and

these two models is smaller with a small complete rate than that with a large complete rate. T-DNN

and T-LATE rely less on the complete samples. When the complete rate is small, the benefit of

109



60 50 40 30 20
Rate of Samples with Complete Modalities

50

55

60

65

70

75

80

85

90

A
cc

ur
ac

y

TS
M-DNN
Te1

Te2

CAS-AE
ADV
Subspace

CCA

DCCA
T-DNN
T-LATE

MCTN

Figure 6.7: Classification accuracy for Setting 2. The proposed method (TS) outperforms all the
other baselines.

using large data to train the teachers makes them perform much better than the models only using

complete samples. For our proposed model, we utilize this benefit to make sure the performance

to be good when complete samples are scarce.

Setting 3: In this setting, we show the results of 5-modality synthetic data experiments. The

challenge of 5-modality learning is from scalability since there are too many teachers available.

We test the proposed pruning strategy in this section. The dataset is synthesized in the follow-

ing way. (1) We draw n samples from N (1, I) and N (−1, I) separately. Samples from each

normal distribution form one modality. Denote these samples as X1 and X2. The feature dimen-

sion is fixed to 32. (2) We use a random matrix T ∈ R32×32 to linearly transform X1 to form

the third modality, i.e., X3 = X1T . (4) We take first half features from X2 and then multiply

a random matrix M ∈ R16×32 to form modality 4. (5) We then draw n samples from N (0, I).

The feature dimension is set to 32. These samples form the fifth modality. But when forming
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the joint representation, we only use the first half features of the fifth modality, denoted by X5
1/2.

(6) We then generate a random weight matrices W 1
1 ,W

2
1 ,W

1
2 ,W

2
2 and W 1

5 ,W
2
5 . The size is 32 for

W 1
1 ,W

1
2 , 64×64 for W 2

1 ,W
2
2 , 16×32 for W 1

5 and 32×32 for W 2
5 . (7) We use ReLU as the nonlin-

ear activation function. The joint representation is the concatenation of ReLU(ReLU(X1W 1
1 )W

2
1 ),

ReLU(ReLU(X2W 1
2 )W

2
2 ) and ReLU(ReLU(X5

1/2W 1
5 )W

2
5 )] We only use X1, X2 and X5 to form joint

representation because X3 and X4 are generated by X1 and X2. (8) A linear layer is added to the

joint representation to generate the logits z. The final class label is σ(z). (9) We randomly select

40% samples to be X1c, X2c, X3c, X4c, X5c. We divide the remaining samples into three equal

parts. We remove one modality for each part to form X1u, X2u and X5u. X3u has the same missing

pattern with X1u and X4u has the same missing pattern with X2u. For each class, we choose 80%

of data as training, 10% as validation, and 10% as testing. Experiments are repeated 5 times.

We set the number of samples per class to be 1000 and the class number to be 5. We first train

the teachers with every single modality. Then, we compare the performance of these teachers.

The results are shown in Table 6.1. From Table 6.1, we see the performance of 4-th teacher and

5-teacher is relatively low compared with other teachers. Thus, we only use the first 3 teachers

and modalities to form the two-modal teachers, which are Te12, Te23 and Te13. Then, we find the

performance of Te13 is much worse than the performance of Te12 and Te23. So, we do not need

to train a 3-modality model with modality 1,2,3 as the teacher since it contains both the modality

1 and the modality 3. The final teacher we used are Te1, Te2, Te3, Te12, and Te23. If we do not

select teachers, the teacher number will be 25− 1 = 31. But now, we only need 5 teachers. As a

comparison, we train models with modality 5 and 4 and then use them as teachers along with all

the 5 teachers to teach the student model. The performance drops to 70.76± 0.01. So, when the

performance of one teacher is too bad, we do not use this teacher to teach the student. We note

that although modality 5 alone has bad performance, it still contributes to the joint representation
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as shown in the steps when we synthesize the data. We thus only use this method to select teachers

but not the modalities used to train the student model.

6.2.2 Experiments on Alzheimer’s diagnosis

In this subsection, we report the experiment performance on the union of two-stage of ADNI

datasets 3, i.e., ADNI1 and ADNI2, and NACC dataset 4. These datasets contain brain imaging

data of subjects with different stages of Alzheimer’s disease. Two modalities are used in this ex-

periments. The first one is T1 MRI. 136 cortical volume and thickness features are extracted for

68 brain region of interests (ROIs) based on Desiken-Killiany atlas [33]. The second modality

is dMRI-derived structural network. We use PICo [84] to construct brain networks for 113 ROIs

based on the Harvard Oxford Cortical and subcortical Probabilistic Atlas [33, 40]. Since the net-

work is undirected, we extract the upper triangle of the weighted adjacency matrix to form 6328

features. Finally, We use stability selection [116, 75] to select the top 172 features which have the

top 30% stability scores as the final features for this modality. Our task is to classify if the subject

is normal control (NC), mild cognitive impairment (MCI) or dementia (AD). ADNI1 data have

223 NC, 385 MCI and 186 AD. ADNI2 data have 50 NC, 112 MCI and 39 AD. NACC data have

329 NC, 57 MCI and 53 AD. ADNI2 and NACC have both dMRI and T1 MRI modalities while

ADNI1 only has T1 MRI.

We train the teacher networks, the student network and M-DNN before the fusion layer with

4 hidden layers and the hidden node number is tuned in {256,512,1024}. After the fusion layer,

a linear layer with SoftMax classifier is added to complete the classification. α and β are tuned

in {0.0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9} separately. For CAS-AE, we use 4 layers for

3http://adni.loni.usc.edu
4https://www.alz.washington.edu
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Model Te1 Te2 Te3 Te4 Te5
ACC 47.80±0.09 47.04±0.17 44.98±0.26 34.48±0.05 22.80±0.04
Model Te12 Te23 Te13 M-DNN TS
ACC 71.32±0.03 68.84±0.10 47.40±0.3 71.44±0.07 72.28±0.03

Table 6.1: Classification accuracy of Setting 3. We use the selected teachers to train the student
model. As compassion, the accuracy drops to 70.76±0.01 when adding non-selected teachers Te4
and Te5.

Model TS M-DNN Te1
Acc 75.48±0.07 73.26±0.08 69.67±0.06
Model Te2 Subspace MCTN
Acc 62.98±0.01 67.66±0.04 69.05±0.11
Model CCA DCCA CAS-AE
Acc 61.03±0.47 72.70±0.46 71.11±0.01
Model ADV T-DNN T-LATE
Acc 72.70±0.05 72.27±0.10 74.21±0.01

Table 6.2: The classification accuracy for all the models trained on the union of ADNI and
NACC datasets.

encoder and 4 layers for decoder. The encoded features dimension is tuned in {128,256}. For

ADV, the hidden layer number for encoder and the discriminator is set to be 4. The node number is

tuned in {256,512,1024}. For Subspace, we tune the rank in {32,64,128}. The projected feature

dimension of CCA and DCCA is tuned in {32,64,128}. For MCTN, the hidden layer number is

fixed to be 4 for encoder and decoder and the hidden node nunmber is tuned in {256,512,1024}.

The prediction subnetwork hidden number is fixed to be 256. We random select 90% samples as

training set and the rest as testing set. We repeat the experiment 5 times.

The average classification accuracy is reported in Table 6.2. We see our proposed method

outperforms all other baselines. Te1 is the teacher model trained on T1 MRI and Te2 is the teacher

model trained on the dMRI modality. For this dataset, all the samples have the first modality and

only part of the samples have the second modality. So, the performance of Te1 is much higher than

the performance of Te2. This is also reflected in the regularization parameters α and β . The best

performance for our proposed model is reached when α is 0.7 and β is 0.0. Since dMRI modality
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Figure 6.8: Accuracy with different α and β . α is fixed to be 0.7 while changing β and β is
fixed to be 0.0 while changing α .

is missing for some samples and T1 MRI modality is complete for all samples, the single teacher

training on dRMI will be useless. Thus, when β is 0.0, the performance is the highest. Figure 6.8

shows how the accuracy changes with the parameter α and β . In this figure, we change α when

fixing β to be 0.0 and change β when fixing α to be 0.7. The performance decreases with the

increasing of β . Meanwhile, the teacher trained with T1 MRI improves the performance a lot with

a large α . We also show the top important T1 MRI features for Te1, M-DNN and TS model in

Figure 6.9, Figure 6.10, Figure 6.11 and the top important dMRI features for Te1, M-DNN and TS

model inFigure 6.12 (the top important dMRI features for M-DNN and TS model are the same sime

the dMRI teacher do not have contribution to the training of the student model). The features are

ranked by the absolute weights value between the input layer and the first hidden layer. We sum all

the absolute values of the weights that are connected with the input node as the relative importance

of the associated input feature. We see there are some overlapping between the top important

features of the three models but still some top features are very different for Te1 and TS/M-DNN.
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For example, right isthmuscingulate thickness is ranked the third most important feature for the

teacher models and the most important features for the student models. Left entorhinal volume is

the second most important feature for M-DNN/TS but does not in the top 10 important features

for the Te1. Both two features have been proved to be related to Alzheimer’s disease [53, 44].

The difference between the importance of the features causes T-DNN to be worst than TS model

as T-DNN uses the features extracted by Te1. Training with two modalities simultaneously leads

to different feature ranks since the two modalities are coupled and influence each other. Some

features in one modality alone do not show to be important. But these features could be very

important with the presence of some features from the other modality.

Figure 6.9: The top 10 important T1 MRI features for Te1 trained on the union of NACC and
ADNI datasets.
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Figure 6.10: The top 10 important T1 MRI features for M-DNN trained on the union of
NACC and ADNI datasets.

6.2.3 Experiments on other real-world datasets

In this section, we report the performance on three additional real-world datasets. The first one

is Alzheimer’s disease data from [132], which has 3 modalities and 3 classes available, i.e., MRI,

PET, Proteomics. The feature dimensions for these 3 modalities are 305, 116 and 147, respectively.

In this dataset, 648 subjects have MRI data. 372 subjects have PET data. 496 subjects have

Proteomics data. Only 215 subjects have all three modalities. We randomly split the data into

the training set and testing set with the ratio 0.9 : 0.1. The parameters are tuned the same way

as Section 6.2.2. We repeat the experiments for 5 iterations. The average accuracy is shown in

Table 6.5. From the table, we see the performance of M-DNN is even worst than Te13 since when

training the M-DNN with all the three modalities, the sample size is much smaller than that used

to train Te13. But with the teaching step, the performance improves a lot and outperforms the
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Figure 6.11: The top 10 important T1 MRI features for TS trained on the union of NACC and
ADNI datasets.

performance of Te13.

Another two real-world datasets we used are MNIST and XRMB [119]. For MNIST data, we

subsample 10,000 as training data, 1,000 samples as validation data and 1,000 samples as testing

data. The class number is 10. MNIST has two modalities with 784 features for each modality. For

XRMB data, we subsample 19,500 samples for training, 1,950 for validation and 1,950 for testing.

The class number for XRMB is 39. Two modalities are available for XRMB data with 273 and

112 features. Since these data do not have missing modalities, we randomly choose a% of samples

to be the samples with complete modalities. And for the rest part of the data, we split them into

two parts and remove one modality for each part. We change the rate of complete modalities in

{40%,30%,20%,10%}. The parameters are tuned the same way as Section 6.2.2 except for the

node number. The hidden layer node number is tuned in {512, 1024, 2048}. The encoded feature
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Rate 40% 30% 20% 10%
TS 66.13±0.03 64.77±0.01 63.19±0.01 58.36±0.01
M-DNN 62.66±0.01 60.59±0.01 57.18±0.01 50.33±0.03
Te1 56.05±0.01 53.13±0.01 51.08±0.01 44.57±0.01
Te2 45.73±0.01 42.59±0.01 41.63±0.01 37.93±0.01
CAS-AE 59.75±0.02 57.96±0.01 56.58±0.01 53.84±0.01
ADV 59.37±0.01 57.83±0.02 56.37±0.01 53.60±0.01
Subspace 45.25±0.02 41.63±0.01 38.08±0.01 34.15±0.01
DCCA 41.94±0.41 41.64±0.46 33.53±0.13 32.86±0.34
T-DNN 65.14±0.02 63.11±0.01 61.61±0.01 56.59±0.01
T-ENS 63.69±0.01 61.91±0.02 59.70±0.02 56.13±0.01
MCTN 53.58±0.01 51.18±0.02 47.78±0.03 40.38±0.02

Table 6.3: The classification accuracy of all the models trained on XRMB dataset.

Rate 40% 30% 20% 10%
TS 96.46±0.01 96.00±0.01 95.42±0.01 92.34±0.01
M-DNN 93.70±0.01 92.04±0.03 89.04±0.02 86.46±0.01
Te1 93.04±0.01 91.78±0.01 90.72±0.02 87.12±0.01
Te2 78.82±0.09 74.52±0.02 69.66±0.06 57.08±0.08
CAS-AE 94.54±0.01 94.26±0.01 93.72±0.01 91.48±0.01
ADV 94.98±0.01 94.42±0.01 94.32±0.01 91.74±0.01
Subspace 86.70±0.01 84.34±0.02 79.76±0.04 72.28±0.06
DCCA 87.38±0.09 84.70±0.15 81.60±0.16 76.72±0.31
T-DNN 95.18±0.01 94.92±0.01 92.25±0.01 92.28±0.04
T-ENS 95.90±0.01 94.74±0.01 94.44±0.01 90.50±0.01
MCTN 92.24±0.01 90.22±0.01 88.86±0.01 85.02±0.02

Table 6.4: The classification accuracy of all the models trained on MNIST dataset.

dimension for CAS-ADV is tuned in {128, 256, 512}. The projected feature numbers for CCA,

DCCA and Subspace are tuned in {128, 256, 512} for MNIST and {32, 64, 100} for XRMB. The

experiments are repeated for 5 times and the results are shown in Table 6.3 and Table 6.4. We see

that our method outperforms all other baselines under different missing rates.
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Model TS M-DNN T-DNN
Accuracy 55.57±0.02 47.43±0.05 45.57±0.02
Model Te12 Te13 Te23
Accuracy 48.57±0.02 54.43±0.06 52.29±0.06
Model Te1 Te2 Te3
Accuracy 48.14±0.01 45.14±0.31 47.43±0.24
Model CAS-AE ADV T-ENS
Accuracy 53.27±0.02 53.04±0.06 53.86±0.02

Table 6.5: The classification accuracy for the models trained on Alzheimer’s disease data
from [132].

6.3 Summary

In this work, we proposed a novel framework to fuse the supplementary information of multiple

modalities for the datasets with missing modalities. We first trained models on each modality with

all the available data to obtain teacher models. Then, we used these teacher models to teach a

multimodal DNN network by knowledge distillation. Since the teacher models were trained on

relatively larger datasets compared with the datasets used to train the student model, the teachers

were experts on each modality and the expertise could help the student to improve the perfor-

mance. The experiment results on both synthetic and real-world data verified the effectiveness of

the proposed method.
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(a) Te2

(b) TS/M-DNN

Figure 6.12: The top 10 important dMRI features for models trained on the union of NACC
and ADNI datasets.
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Chapter 7

Conclusion

In this dissertation, I propose four algorithms for multimodal learning and demonstrate how the

proposed algorithms help modeling the Alzheimer’s disease. The four algorithms have different

assumptions and fit different problems and data types.

The first algorithm adopts a convex combination of the modalities. It requires the feature

dimensions of the modalities to be the same. One assumption of the algorithm is the modalities are

linearly interacted. Therefore, when using this algorithm, the interaction of modalities is expected

to be linear.

The second algorithm can be applied to modalities with different dimensions. It does not

require the modalities to be linearly interacted. The assumption of the second algorithm is that

each modality has enough information on the subject and may contain some useless information.

For example, the brain imaging data contain not only Alzheimer’s disease information but also the

brain functions information. Moreover, when collecting the data, instruments may be inaccurate

which makes the data noisy. Since the second algorithm learns the common part of the modalities,

the noise and the irrelevant information of the modalities are not included in the modality-invariant

component.

The third algorithm is to fuse the supplement information of the modalities. It assumes each

modality only has partial information of the subjects. Combining the information from all the

subjects provides a more comprehensive description of the subjects. Since modalities may have
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irrelevant information and noise, this algorithm filters irrelevant information and noise when learn-

ing the joint representation. Therefore, this algorithm can be applied to the modalities that having

incomplete information on the subject, and the performance is expected to be better than the exist-

ing algorithm when the modalities have irrelevant information and noise.

The fourth algorithm is proposed to deal with the data having missing modalities. The second

algorithm can also be applied to the data having missing modalities. The difference between this al-

gorithm and the second algorithm is that the second algorithm assumes each modality has complete

information of the subjects. The fourth algorithm does not have this assumption. It is worth men-

tioning that the student model could be replaced by a variant of multimodal algorithms although

the student model used in this dissertation is a multimodal DNN which fuses the supplementary in-

formation of the modalities. Therefore, this algorithm can also be applied to the modalities having

complete information on the subject and learn the common structure of the modalities.
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