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ABSTRACT
SCATTERING AMPLITUDES IN THEORIES OF COMPACTIFIED GRAVITY
By

Dennis Foren

In this dissertation we discuss the properties of matrix elements describing the scattering
of massive spin-2 particles in theories of compactified gravity. Our primary result is the
calculation of 2-to-2 massive spin-2 Kaluza-Klein (KK) mode scattering matrix elements
in the Randall-Sundrum 1 (RS1) model and the demonstration that those matrix elements
grow no faster than O(s) irrespective of the KK mode numbers and helicities considered.
Because this calculation requires summing infinitely-many spin-2 mediated diagrams which
each diverge like O(s°), overall O(s) growth is only attained through cancellations between
these diagrams. This in turn requires intricate cancellations between infinitely-many KK
mode masses and couplings. We derive these sum rules, including their generalization to
fully inelastic processes. We also consider these matrix elements in the five-dimensional
orbifolded torus (5DOT) and large kr. limits, investigate the impact of including only finitely-
many diagrams in the calculation (as measured via truncation error), and calculate the

—ch7T

five-dimensional strong coupling scale Ay = Mp;e via the four-dimensional scattering

calculation.
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Chapter 1

Introduction

High-energy physics is the study of fundamental particles and their interactions. The success
of modern high-energy physics is owed to the hard work of many experimental and theoretical
physicists, including their development and application of quantum field theories. A quantum
field theory (QFT) models each fundamental particle as an excitation of a field corresponding
to that particle’s species. Relativistic QFTs in particular combine the universal speed of light
from special relativity (which provides well-defined meanings of particle mass and spin) with
the probabilistic nature of reality that is intrinsic to quantum mechanics. With the help of a
few additional features (the cluster decomposition principle, the LSZ reduction formula, etc.),
high-energy physicists can calculate the probability that certain combinations of particles
become other combinations of particles via scattering processes; knowing these probabilities
allows the calculation of experimentally-relevant cross-sections and decay rates. However,
before these probabilities can be calculated, the interested physicist must first calculate the
Lorentz-invariant matrix element corresponding to the relevant scattering process, and to do
that a physicist requires a Lagrangian.!

Modern quantum field theory has streamlined the construction of model Lagrangians. In

essence, a physicist decides on what matter particles and forces they would like included,

1We follow the standard high-energy convention of calling what is actually a “Lagrangian density” (the
integrand of an integral over spacetime) simply a “Lagrangian” (which would otherwise be the integrand of
an integral over time).



chooses some interesting processes to investigate, and then puts together a Lagrangian that
sums all terms consistent with that content which are relevant to those processes. Forces are
typically included by declaring that the Lagrangian should have certain local symmetries,
which then generate gauge bosons and their couplings to the matter particles. This is the
way in which the champion of modern high-energy physics—the Standard Model (SM)—is
constructed. The SM is presently our most accurate description of reality at subatomic
scales, with high-energy experiments repeatedly confirming its predictions to increasingly
high precision.

Prior to electroweak symmetry breaking (more on that in a moment), the Standard Model

is an SU(3)c x SU(2)w x U(1)y gauge theory where

e SU(3)c generates the strong interaction and is gauged by eight gluons G%,

e SU(2)w generates the weak isospin interaction and is gauged by the triplet of vector

bosons {W}, Wﬁ, Wﬁ}, and

e U(1)y generates the weak hypercharge interaction and is gauged by the vector boson

Bu-

The matter content of the theory (including each particle’s mass, spin, and transforma-
tion behavior under the aforementioned local symmetry groups) is listed in Table 1.1. The
spin—% quarks and leptons exhibit a generational structure (as emphasized by the subscript
m € {1,2,3} on each field), the spin-0 Higgs doublet ® does not, and all particles are mass-
less. Everything changes when the electroweak gauge group SU(2)w x U(1)y becomes
spontaneously broken [3, 4, 5].

The electroweak gauge group breaks because the Higgs doublet spontaneously acquires

a vacuum expectation value (vev), vpw = 0.246 TeV, thereby isolating the Higgs boson

2



The Matter Content of the Pre-EWSB Standard Model

Field Symbol | Mass | Spin | U(1)y | SU((2)w | SU(3)c
1
Left-Handed Um[, +3 :
eQuaTll{se AmlL m 0 % +% ? triplet
dmL -9
1
i v +3
L(fgli%nr?: d Ul mL 0 % -1 ? singlet
€mL ]
Right-Handed UmR 0 % +% 0 triplet
k
Quarks dur | 0 O 0 triplet
Right-Handed YmR 0 5 0 0 singlet
Leptons emr | O 1l -2 0 singlet
+ 1
. + =
Higgs P ¢ 0 0* +1 2 singlet
Doublet ¢0 _ %

Table 1.1: The matter content of the Standard Model prior to electroweak symmetry breaking
(EWSB) including their masses, internal spins, and gauge transformation properties. Rows
are organized as to indicate matter fields that are related by the weak gauge group SU(2)w,
i.e. g, labels a weak gauge doublet with +1/2 component u,,;, and —1/2 component d,, ..
The index m € {1, 2, 3} labels the generation of a given quark (g, u, d) or lepton (¢, e, v) field,
while a subscript “L” or “R” indicates whether it has left or right-handed chirality. The pre-
EWSB Standard Model also contains gauge bosons By, {wl, Wﬁ, WB}’ and {Gll“ ce Gg}
corresponding to the weak hypercharge U(1)y, weak isospin SU(2)wy, and strong SU(3)c
gauge groups respectively. The left- and right-handed neutrinos v,,,; and v,,p are called
active and inert neutrinos respectively based on their SU(2)yy transformation properties (or
lack thereof). Whether or not the inert neutrinos v, exist is an open question.



H from the rest of the doublet at low energies. This causes the electroweak gauge groups
SU(2)w x U(1)y to spontaneously break down to the electromagnetic gauge group U(1)q.
When this happens, a superposition of the Wg’ and B;, bosons become the massless spin-1
photon A, that gauges U(1)q, while (in unitary gauge) an orthogonal mixture absorbs a
fraction of the remaining Higgs doublet and becomes the massive Z-boson Z,. The other
SU(2)w gauge bosons Wﬁ and Wﬁ absorb the rest of the Higgs doublet to become the
massive W-bosons let Simultaneously, interactions between the Higgs doublet and the
(massless) fermionic matter fields are turned into mass and mixing terms, ultimately resulting
in newly massive fermionic matter. Overall, electroweak symmetry breaking causes the low-

energy SM to become an SU(3)c x U(1)q gauge theory, wherein
e SU(3) still generates the strong interaction and is gauged by the gluons G¢%, and
e U(1)q generates the electromagnetic interaction and is gauged by the photon Aj,.

and the matter content is as listed in Table 1.2. In this way, electroweak symmetry breaking
simultaneously explains the masses of the electroweak gauge bosons, expresses the weak force
in terms of a local symmetry group, and generates masses for the Standard Model matter
particles. The possibility that a single mechanism (“the Higgs mechanism”) could explain
all of these features motivated physicists in the 1960’s to hypothesize the existence of the
Higgs boson [6, 7, 8]. Its eventual experimental confirmation in 2012 by the ATLAS and
CMS collaborations at CERN is among the most celebrated achievements of physics in the
21st century thus far [9, 10].

The SM is so successful in its predictions of subatomic phenomena that nearly every
physically-descriptive QFT investigated in the high-energy literature hypothesizes new par-

ticles simply as add-ons to the SM. Of course, despite all that the Standard Model can predict,



The Matter Content of the Post-EWSB Standard Model

Name Symbol | Mass (GeV/c?) | Spin | SU(3)¢ U(1)q
up quark U 2.3x 1073
Ig{;:ﬁﬁ: charm quark c 1.28 $®% | triplet +2
top t 173
down quark d 4.7 %1073
Dgfl“;;rﬁsp ® | strange quark s 9.5 x 1072 @4 | triplet —3%
bottom quark b 4.18
neutrino 1 V1 ?
Ll\éepl};tg;ds neutrino 2 Vo ? ? singlet 0
neutrino 3 V3 ?
electron e 511 % 1074
féﬁi?ﬁds muon I 0.106 J@% | singlet | -1
tauon T 1.78
Higgs boson H 125 0 singlet 0
Z boson A 91.2 1 singlet 0
W boson(s) W 80.3 1* singlet +1

Table 1.2: The matter content of the Standard Model after electroweak symmetry breaking
(EWSB) including their masses, internal spins, and gauge transformation properties [1].
Rows group together matter fields that are related by generational structure. The Standard

Model also contains the photon A, and the gluons {G}L, e

, Gi} which are the gauge bosons

corresponding to the electromagnetic U(1)q and strong SU(3)c gauge groups respectively.
The precise nature of the masses and spin structure of the neutrinos is an open question.
The neutrino mass eigenstates v, vo, v3 are often reorganized via superposition into weak
isospin eigenstates ve, vy, vr called the electron, muon, and tauon neutrinos respectively,
which reconstruct the pre-EWSB active neutrinos at the cost of no longer having definite

mass.




many physical phenomena lie outside its reach. For example, the SM does not predict the
natures of neutrinos or dark matter or dark energy, nor does it incorporate gravity.

A limited version of gravity can be added to the SM by considering four-dimensional
general relativity in the weak field limit. Doing so generates a particle description of gravity,
wherein the gravitational force is mediated by a massless spin-2 particle called the graviton.
However, this modification breaks down at the Planck scale (or mass) Mp; = 2.435 x 101°
TeV, reflecting its inability to describe strong or intrinsically quantum gravitational phe-
nomenon that occur at higher energies. Furthermore, this SM + gravity theory possesses a
vast range of energy scales between the electroweak’s vgyw and gravity’s Mp) across which
there is no new physics. Although nothing prevents such a hierarchy of scales in principle,

016 is technically unnatural.?

the large ratio between the energy scales Mpj/vgpw ~ 5 X 1

For many decades, physicists have attempted to solve this “hierarchy problem” by hypoth-
esizing a physical mechanism that would naturally generate a large ratio of scales Mpj/vEyy.
For example, in 1999, Randall and Sundrum proposed a five-dimensional gravity theory
that could reparameterize the hierarchy problem via the warping of a non-factorizable extra-
dimensional spacetime geometry [11, 12]. This theory is the Randall-Sundrum 1 (RS1)
model, and the focus of this dissertation.

Relative to the usual four-dimensional (4D) spacetime, the RS1 model adds a finite extra

dimension of space with length 7r.which is parameterized by a coordinate y € {0, wr.}, where

re is called the compactification radius. At either end of the dimension is a four-dimensional

2Naturalness has several technical definitions in high-energy physics, but a theory tends to be natural if
all of its parameters are set to values with similar magnitudes. Because the Higgs boson is a scalar particle,

its mass-squared m%{ receives quantum corrections proportional to the square of the largest scales in the

theory. By including gravity, that largest scale is the Planck mass Mp), and 162 = 256 decimal places of
cancellations are required to obtain the experimentally-measured mass m y = 125 GeV ~ vgy instead of a
Planck scale mass m gy ~ Mpj. Thus, the theory parameters must be fine-tuned to ensure this cancellation,
and the ratio Mpj/vg is technically unnatural in the Standard Model.



hypersurface called a brane, with the five-dimensional spacetime between the branes being
called the bulk. Typically, the four-dimensional world as we know it (e.g. the matter content)
is placed on one brane (the “visible brane”) and only gravity is allowed to freely propagate
through the bulk. Extra-dimensional warping is achieved by the presence of a warp factor
e = e Frelél in the RS1 spacetime metric, where k is called the warping parameter and
© =y/re € {0, 7} is a unitless version of the extra-dimensional coordinate. This warp factor
enters into other aspects of RS1 calculations. For example, a fundamental energy scale A in
the bulk can be warped down to A e ke for an observer on the visible brane. In particular,
we can set A &~ Mp) and its warped value A e *7¢™ ~ ypw by choosing kre ~ 12, such that
the hierarchy problem has gone from trying to explain the large ratio Mpj/vpw ~ 5 X 1016
to trying to explain the order-10 number kr. ~ 12. Unfortunately, this warp factor is not
universally beneficial: whereas strong & quantum gravitational effects force 4D gravity to
break down at Mp), the RS1 model breaks down at the scale Ay = Mple_krcﬂ instead.
Thus, if kre ~ 12 as motivated by the hierarchy problem, then A;x ~ vgw, and the theory
becomes strongly coupled at LHC-relevant energy scales. As collider constraints confirm the
Standard Model to increasingly high energies, kr. is driven necessarily lower, and the RS1
models creeps further away from a solution to the hierarchy problem. Nowadays, the RS1
model is utilized in relation to theoretical problems such as the AdS/CFT correspondence
[13, 14] and as a model that generates phenomenologically-interesting massive spin-2 particles
[15].

Regardless of the specific value of kr. used, the size nr. of the extra-dimension is assumed
small so that the five-dimensional (5D) nature of spacetime remains hidden at low energies
(thereby explaining why we do not experience an extra spatial dimension in everyday life). In

a sense, the relationship between the 5D RS1 spacetime and the usual 4D spacetime is similar



to the relationship between a realistic sheet of paper (which has small but finite thickness)
and its approximation as a two-dimensional plane. Because particles with sufficient energy
can propagate throughout the full five-dimensional RS1 spacetime, the symmetry group
relevant to high-energy particles is the 5D RS1 diffeomorphism group, which is gauged by
the 5D RS1 graviton described by a 5D field H (z,y). At low energies, particles can no
longer meaningfully probe the extra dimension, and the 5D RS1 diffeomorphism group is
spontaneously broken down to a subgroup containing the usual 4D diffeomorphism group,
which is gauged by the 4D graviton described by a 4D field Ah(0) (x). In total, spontaneous

symmetry breaking in the RS1 model results in the following 4D particle content:

e the 4D graviton, h(o), a massless spin-2 particle

0)

e the radion, r , & massless spin-0 particle

e KK modes, K1) for n € {1,2,...}, infinitely many massive spin-2 particles

in a process called Kaluza-Klein (KK) decomposition. The value n for a particular KK
mode h(™ is called its KK number. The KK modes gain masses by absorbing degrees
of freedom from the 5D RS1 graviton, which is reflected in the fact that a massive spin-
2 particle in four dimensions and a massless 5D graviton both have five states. Because
of its qualitative similarities to electroweak symmetry breaking and its use of a nontrivial
background geometry to achieve spontaneous symmetry breaking, this has been referred to as
a “geometric Higgs mechanism” [16]. The radion r(0) is a massless spin-0 particle generated
by disturbing the separation distance between the branes.

Due to their common origin in the RS1 model, the scattering of 4D gravitons and the
scattering of massive KK modes are closely related. In particular, (as demonstrated in this

dissertation) the high-energy growth of the matrix elements describing 4D graviton and KK
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mode scatterings are identical. Before describing how this is possible in the RS1 model,
let us first describe an analogous calculation in a model with finitely many particles: the
Standard Model. In this case, the intermediate vector bosons (Wi, Z) are special with
respect to electroweak symmetry breaking (EWSB) because they are massive superpositions
of the original SU(2)w x U(1)y gauge bosons (W1 W2 W3 B); this contrasts with the
situation of the fermions and even the Higgs boson, although they also gain masses as a
result of EWSB. The only superposition of SU(2)w x U(1)y gauge bosons that remains
massless is the photon (), which gauges the electromagnetic U(1)q.

Because the photon has no cubic or quartic self-interactions, its center-of-momentum
frame 2-to-2 tree-level scattering matrix element (hereafter referred to simply as “matrix
element” for brevity) vanishes identically: M = 0. Let E denote the incoming center-of-
momentum energy of this process, so that the Mandelstam variable s equals E2. In terms
of high-energy growth, the photon scattering matrix element (trivially) scales like O(SO).
Another way in which we could have arrived at this same scaling is by combining the following

facts:
e A 4D matrix element must be unitless.
e There is no energy scale available to this process.

The latter point means that there are no quantities with which to cancel any powers of energy
introduced by factors of s, and thus the only way for the matrix element to be consistent

with the first point is to scale like O(so) at high energies (which M = 0 does trivially, as



previously mentioned). Diagrammatically, we write

ny ns
Moy = x ~ 0 (1.1)
no Ny

In contrast, the 2-to-2 scattering of massive spin-1 particles (such as the W-bosons) does
have access to another energy scale: the particle’s mass. For example, an external massive
spin-1 particle with mass m, 4-momentum p, and helicity A will enter a matrix element

calculation with any one of three possible polarization vectors:

0 |71
eTi0 | —cpey Lisg 1 | Ecgsg 1 [ 171
[ty ()] =+ NG leg (p)] = - = (1.2)
—CyS¢ F iCyh Esgsg Ep
59 Ecy

corresponding to helicities A = +1 and A = 0 respectively, where (¢,6) determines the 3-
direction of p in spherical coordinates and (cg, sz) = (cosz,sinx). The components of the
helicity-zero polarization vector eg (p) diverge like O(E/m) = O(y/s/m) at high energies,
which is only made possible by the existence of the mass m. A massless spin-1 particle such
as the photon only has access to the helicity A = 41 states, which are independent of mass
and energy.

Because each massive spin-1 state has three helicity options, the external states in a
2-t0-2 massive spin-1 scattering process can be in any one of 3% = 81 helicity combinations
(although many of these are related to one another through crossing symmetry). Because the
helicity-zero polarization vector diverges most quickly in energy, it is perhaps unsurprising

that the fastest growing matrix element is typically attained by setting all external helicities
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Mww sww = M. + My + My + My
Mediator: - Higgs photon Z-boson
W+}HQW+ W+MW+ WJFMWJF
W W W= w— | W~ w— | W~ W=
Diagrams: >< + + +
w Wol i wtag, we | Wt W | W ey, W
7K X 2.4
W= Wt | W Wt | W W+
Helicity-Zero
High-Energy ~ O(s?) ~ O(s) ~ O(s?) ~ O(s%)
Scaling:

Table 1.3: The various diagrams that contribute to the tree-level matrix element for the 2-
to-2 Standard Model scattering process WTW ™~ — WTIW ™ and their high-energy behaviors
when all external helicities vanish. The tree-level matrix element My _www from Eq.
(1.3) is the sum of these diagrams. Because of cancellations between diagrams, Myyw _ww
scales like (9(30), just like the 2-to-2 photon scattering matrix element My~~~ .

to zero. We will refer to such a process as a “helicity-zero process.” It is not unusual for a
helicity-zero matrix element describing massive spin-1 scattering to grow as fast as O (52) at
high energies.

However, this is not what happens in the SM. Instead, the helicity-zero matrix element
grows like O(sY):

O(sY) (1.3)

- +
M o w w helicity
WW-WW — Zo10
W= W=
Table 1.3 summarizes the various diagrams that sum to form this matrix element, including
their individual high-energy behaviors. Several channels exhibit 0(32) growth, but cancella-
tions occur when all diagrams are summed together which ultimately result in a net (’)(50)

growth, the same growth as the photon scattering matrix element.
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The existence of cancellations which reduce O(s?) growth to O(s") growth is not a coinci-
dence: even though the electroweak gauge group SU(2)w x U(1)y has been spontaneously
broken down to the electromagnetic gauge group U(l)Q, this fundamental symmetry still
protects the scattering behavior of the related gauge bosons. Thus, the overall high-energy
growth of the matrix element describing 2-to-2 scattering of the W-bosons (which are su-
perpositions of the SU(2)w gauge bosons) matches that of the 2-to-2 scattering of photons
(which gauge the remaining U(1)q)-

The main result of this dissertation is the demonstration that similar cancellations occur
in the Randall-Sundrum 1 model. In this case, a nontrivial background geometry at low
energies causes the 5D RS1 diffeomorphism group to be spontaneously broken down to a
subgroup containing the 4D diffeomorphism group. This latter group is gauged by the usual
massless graviton.

Unlike the case of photon scattering that we previously considered, 4D gravity has an
implicit energy scale: the Planck mass Mpj. This scale enters the graviton scattering matrix
element via the 4D gravitational coupling kyp = 2/Mpj, of which two instances are present
in any given tree-level diagram. In order to be unitless overall, the matrix element must

contribute a factor of s = E2 to compensate, and thus it grows like

0 0
Moo—00 = x ~  Os) (1.4)
0 0

at high energies. The label “0” indicates the 4D graviton, h(o), each instance of which can
have helicity A = £2.
If we instead consider tree-level 2-to-2 scattering of massive spin-2 particles (such as the

RS1 KK modes), then each external state will be associated with any one of five possible
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polarization tensors, e/)fy(p):

o(p) = ey () €Ly (p) (1.5)
) = 5 [0 o)+ e ) ) (16)
) = 5 |0 ) + ) ) + 200 0| (17

where (—:f( (p) are the previously-defined spin-1 polarization vectors. As in the massive spin-1
case, the most divergent of these is the helicity-zero option, which grows like O(s/ m2) at
large energies. Massive spin-2 scattering matrix elements have 5% = 625 possible helicity
combinations (many related to one another via crossing symmetry), but the helicity-zero
combination is typically the most divergent, usually growing as fast as (9(35).

Keeping this in mind, consider the matrix element Mn1n2%n3n 4 corresponding to the
helicity-zero KK mode scattering process r(n1)p(n2) 5 p(3)p(14) where the KK numbers
ni, no, ng, and ng are all nonzero. Table 1.4 summarizes the diagrams which sum to form
Mn1n2_m3n 4 and their high-energy behaviors when all external helicities vanish. As an-
ticipated in the previous paragraph, nearly every diagram that contributes to this matrix
element diverges like (9(35). However, this dissertation demonstrates explicitly that non-
trivial cancellations occur between these infinitely-many diagrams such that the full matrix

element diverges like O(s):

m n3 helicity
Mn1n2—>n3n4 = o O(s) (1.8)

no Ty

which is precisely the energy growth found in the 4D graviton scattering channel. The

conceptual similarities between the Standard Model and RS1 model are summarized in Table

13



Mn1n2—m3n4 = MC + M; +M0 + ZM]
7>0
Mediator: - radion graviton massive spin-2
KK mode
1 i . i 3 1 5 0 i 3 1y g 3
+ + +
1 ns n1 ns ny ng ny ns
Diagrams: >< r Oj ZZ
D) ny D) Ny N9 Ny N9 Ny
+ + +
n1 n3 | n ng | mn ns
G S
Helicity-Zero
High-Energy ~ O(s") ~ O(s%) ~ O(s°) ~ O(s)
Scaling:

Table 1.4: The various diagrams that contribute to the tree-level matrix element for the 2-
to-2 RS1 model scattering process r(nDp(2) — p(n3)p(n4) and their high-energy behaviors
when all external helicities vanish. The tree-level matrix element Mnan_mgn 4 from Eq.
(1.8) is the sum of these diagrams. Because of cancellations between diagrams, the overall
matrix element Mp,pny—sngn, scales like O(s), just like the 2-to-2 graviton scattering matrix
element Mqg_0o. The confirmation and detailed demonstration of these cancellations is a
major result of this dissertation.

1.5, with our original results indicated in red. We also demonstrate in this dissertation that
the RS1 strong coupling scale Ay = Mple_k”’c” can be calculated directly from the 4D
effective RS1 model.

Additionally, in practice if we intend to perform a numerical calculation (as might be
relevant to experimental applications of the RS1 model) then we must truncate the number
of KK modes we include as intermediate states (e.g. replacing the sum Zj’ﬁg M in the

matrix element with Z;V:() M for some integer V). Because the entire tower is required in
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Standard Model

Randall-Sundrum 1

The fundamental symmetry group...

SU(2)W X U(l)Y

5D diffeomorphisms

.. w/ unitarity-violation scale...

N/A

Ay = Mpy e—krcﬂ

.. and gauged by the...

electroweak bosons

5D RS1 graviton

.. is spontaneously broken by...

the Higgs vev

background geometry

... to a new symmetry group...

U(1)q

4D diffeomorphisms™*

... gauged by the...

photon, v

4D graviton, h(0)

.. resulting in a spin-0 state...

Higgs boson, H

radion, r(0)

.. as well as massive states

built from fund. gauge bosons...

W-bosons, W+
and Z-boson, Z

spin-2 KK modes, h(n)
forne {1,2,...}

B(0)0) _y 1,(0),(0)

The 2-to-2 gauge boson process... Y =YY
... has M w/ high-energy growth ~ O(sY) O(s)
.. or, if naively given mass, ... O(s?) O(s9)

... yet 2-to-2 massive state process

where mass arises via sym. break...

WIW— - Wtw~—

naively-massive gauge bosons, M ~

... has M w/ high-energy growth ~ O(sY) O(s)
Breaking the fund. symmetry by... elim. 7 KK tower truncation
.. makes massive states scatter like O(s2) 0(s%)

Breaking the fund. symmetry by...

elim. the Higgs

elim. the radion

.. makes massive states scatter ~

O(s)

O(s3)

Table 1.5: The Standard Model (SM) and the Randall-Sundrum 1 (RS1) model share a
chain of conceptual similarities with respect to the scattering of particles made massive
by spontaneous symmetry breaking. The Mandelstam variable s = E2, where F is the
Original results presented in this dissertation are
indicated in bold. (* - Technically, the new symmetry group is the Cartan subgroup of the

incoming center-of-momentum energy.

5D diffeomorphisms that contains the 4D diffeomorphisms.)
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order to cancel the leading (’)(35) growth, truncating the KK tower too low can cause the
matrix element to violate partial wave unitarity well below the strong coupling scale Ar.
Furthermore, because the radion contributes matrix elements with O(s%) growth, proper
inclusion of the radion is also vital to avoiding partial wave unitarity constraints. The effect
of KK tower truncation and inclusion of the radion on the accuracy of KK mode scattering
matrix elements is also investigated in this dissertation.

The remainder of the dissertation details the original results published in [2, 18, 19], as
well as generalizing and elaborating on aspects of those calculations in ways that have not

yet been submitted for publication. It is organized as follows:

e Chapter 2 establishes definitions and conventions from 4D quantum field theory rele-
vant to the dissertation. In the interest of acting as a useful resource, it also provides a
detailed derivation of 2-to-2 partial wave unitarity constraints and helicity eigenstates

from first principles.

e Chapter 3 calculates the 5D weak field expanded RS1 Lagrangian L5 to quartic order
in the 5D fields or (equivalently) second order in the 5D coupling xk5p. We demonstrate

that all terms containing factors of (0p|¢l) or (8%|g0]) are cancelled to all orders in r5p.

e Chapter 4 presents an original parameterization of the 4D effective RS1 Lagrangian
which manifests as a “6D-to-4D formula” and categorizes all RS1 couplings as either
“A-type” or “B-type” depending on the associated derivative content of the interaction.
Many relationships between RS1 couplings and masses are derived; these significantly

generalize our existing published work and will be submitted for publication in a future

paper.

3Truncation of the KK tower corresponds to explicit breaking of the underlying gravitational symmetry
group. [17] details this type of symmetry breaking in the case of the five-dimensional torus.
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e Chapter 5 demonstrates that the matrix element describing massive spin-2 KK mode
scattering in the 5D orbifolded torus and RS1 models exhibits O(s) growth after can-
cellations of more divergent behavior. From cancellations in the helicity-zero elastic
case (AWM — (M p()) we derive sum rules relating KK mode masses and cou-
plings, all but one of which we prove analytically. The final sum rule is demonstrated

—krem ig calculated numerically

numerically. The RS1 strong coupling scale Ay = Mpje
in the 4D effective RS1 model and the effect of KK tower truncation on matrix element

accuracy is investigated. These important original results have been published across

several papers [2, 18, 19].

e Chapter 6 concludes by summarizing the original results presented in the dissertation

as well as future projects we will be pursuing based on this work.
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Chapter 2

2-to0-2 Scattering and Helicity

Eigenstates

2.1 Chapter Summary

This chapter establishes various definitions and conventions from four-dimensional (4D)
quantum field theory which are relevant to this dissertation, e.g. that we use the ‘mostly-
minus’ Minkowski metric and all indices are raised /lowered with the Minkowski metric. It is
written with the aim of providing a self-consistent collection of standard derivations which all
use the same conventions. This is done under the belief that such a collection could be useful
to other physicists. As such, many details and observations are intentionally included which
are often skipped in standard resources. For physicists who are already familiar with 2-to-2
scattering calculations involving helicity eigenstates, much of this chapter can be skimmed
without missing details vital to the remainder of this dissertation.

This chapter is organized as follows:

e Section 2.2 derives the Lorentz and Poincaré groups from the assumption that the speed
of light is globally invariant between reference frames. Active forms for the Poincaré
transformations (rotations, boosts, spacetime translations) and their generators (f, K,

PH) are provided in the 4-vector representation, and the commutation structure of the
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generators is derived. The section closes by deriving the Lorentz-invariant phase space.

Section 2.3 considers the infinite-dimensional unitary representations of the Poincaré
group, then finite-dimensional non-unitary representations of the Lorentz group. Uni-
tary Poincaré representations are attained by promoting the Poincaré generators to
Hermitian operators and the corresponding Poincaré transformations to unitary oper-

ators. The helicity operator A is introduced.

Section 2.4 defines single-particle 4-momentum external states, which are then com-
bined to form multi-particle 4-momentum external states. Special care is taken to
consider multi-particle states involving identical particles. The S-matrix element is

introduced and its relation to the matrix element M is mentioned.

Section 2.5 describes 2-to-2 particle processes in detail, with emphasis on scattering
in the center-of-momentum (COM) frame and parameterization via the Mandelstam
variables. An equation for simplifying integrals over the 4-momenta of two particles
is derived and then applied to unitarity of the S-matrix in order to derive the optical

theorem.

Section 2.6 summarizes the usual treatment of angular momentum in quantum me-
chanics including how angular momentum representations are combined, and defines

the Wigner D-matrix.

Section 2.7 considers single-particle helicity eigenstates, which are then combined to
form multi-particle helicity eigenstates. Using the relationship between helicity eigen-
states and angular momentum eigenstates, the matrix element is decomposed in an

angular momentum basis as to define partial wave amplitudes. The elastic and inelas-
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tic partial wave unitarity constraints are derived.

e Section 2.8 derives the spin-1 and spin-2 polarization structures. Various canonical

quadratic Lagrangians are considered, and their corresponding propagators are listed.

2.2 Poincaré Group: 4-Vector Representation

2.2.1 Preserving the Speed of Light

At the heart of modern relativity theory lies an axiom with far-reaching consequences: no
matter how different the reference frames of two observers, they will agree that a wavepacket
of light travels at a speed c. This defines the aptly-named speed of light.

Every reference frame is characterized by a choice of coordinates, which presently means

a unique continuous association of every point of reality with a time coordinate ¢t = 2

and some spatial coordinates # = (z!,22,23). In such a reference frame, a wavepacket of
light will travel along some curve Z(t) through three-dimensional space and, according to
the aforementioned axiom of relativity, do so at the speed of light, such that ¢ = |d¥/dt|;
however, it is worthwhile to recast this universal property as an equation relating differentials
along the motion of the wavepacket:

dzr

o — c|dt| = |dz] — Aldt)? — dz)> =0 (2.1)

CcC =

This latter form is useful because it treats the space and time coordinates equivalently,
with the speed of light amounting to a conversion from time duration units to length units.
According to relativity theory, although an observer in a different inertial reference frame

with different coordinates (ct’,#’) will measure that same wavepacket as traveling along a
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different trajectory Z’(t'), they will still find that its speed |dZ’/dt| equals c at every point

along its path, or equivalently
Al ]2 — |dz')? =0 (2.2)

This invariance greatly restricts the structure of reality. Imagine flooding reality with
wavepackets of light that propagate in all directions and at every point of time and space. By
the axiom of relativity, an observer in any other reference frame must also agree that every
wavepacket in this vast network travels at the speed of light, even if their own perception
of spacetime is wildly different. This puts a tight constraint on the local structure of reality
itself, and requires that space and time must be woven together into a unified manifold of
spacetime.

Consider the possible 4-velocities v* = (v0,7) = (9,01, 02,03) of a trajectory passing

through a certain spacetime point. If the trajectory describes the motion of a wavepacket of

light as in Eq. (2.2), then the 4-velocity is light-like: v? = v - v = 0, where
3
(v-v) = nuorv” = Z Nt o” (2.3)
pv=0

and 7, is the Minkowski metric

[mw] = Diag(_l_lv -1,-1, _1) = (24)
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when expressed as a matrix with those components; this square bracket notation will be
used throughout this dissertation. The metric is symmetric by construction (1, = 7,,) and
we define it in the “mostly-minus” convention, i.e. it has one +1 eigenvalue and three —1
eigenvalues corresponding to temporal and spatial information respectively. Note that the
first equality in Eq. (2.3) makes use of the Einstein summation convention, wherein repeated
indices indicate sums over the corresponding index ranges; the Einstein summation conven-
tion will be used throughout the remainder of this dissertation as well. Using the Minkowski
metric, we can rewrite and generalize Eq. (2.2) as to define the invariant spacetime interval
ds® associated with a generic (not necessarily light-like) infinitesimal spacetime displacement

dX:

ds® = n dX* dXY 2.5
1

This is termed “invariant” for reasons that will be detailed shortly.

For the sake of performing calculations, it is vital to generalize the above language to
include generic 4-vectors, e.g. objects of the form a = (a°,al,a?, a?) for which (a - a) does
not necessarily vanish. Through the Minkowski metric 7, a generic 4-vector a* implies a

related 4-covector a n

ay = (ag,a1,a2,a3) = nupa” = (ao, —al, —a?, —a3) (2.6)

and for generic 4-vectors a and b the previous inner product generalizes to

(a-b) = nua”t’ = ay,bt = a%b? — al'b! — a?p% — o33 (2.7)
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where (a - a) is called the magnitude of a. Sometimes we will break a 4-vector a into
its temporal a¥ and spatial a' components, the latter of which comprise a 3-vector @ =

(al,a® a®). 3-vectors are defined with the usual 3-vector inner product, i.e.

i b=ab =a'd! + a2 + a3 (2.8)

such that the 4-vector inner product equals

a-b=ad"W —a-b (2.9)

To avoid confusion, four-dimensional (4D) spacetime indices are labeled via lowercase Greek
letters (p, v, p, ...) with p € {0,1, 2,3}, whereas three-dimensional (3D) spatial indices are
labeled via lowercase Latin letters (i, j, k, ...) with i € {1,2,3}. In the next chapter, we con-
sider five-dimensional (5D) spacetime indices, which are labeled via uppercase Latin letters
(M, N, R, ...) with M € {0,1,2,3,5}. The 3-vector components will sometimes be rela-
beled to make contact with the usual (z,y, z)-rectilinear 3-space coordinates, in which case
ay = al, ay = a?, and a, = a®. As above, we will use the 4D Minkowski metric for raising
and lowering four-dimensional indices, whereas in the next chapter we will raise and lower
five-dimensional indices with the 5D Minkowski metric [n;;y] = Diag(+1, —1,—1, -1, —1).

Returning to the invariance of the speed of light, consider the classification of all invertible

linear transformations A that preserve light-like magnitudes:

v-v=nuotv” =0 = (M) - (M) = nu(Av)*(Av)” =0 (2.10)

As previously mentioned, demanding invariance of this inner product for all light-like 4-
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vectors is a significant constraint. By expressing a generic 4-vector as a sum of light-like
4-vectors, it can be demonstrated that preserving light-like inner products necessarily implies

the preservation of all inner products between 4-vectors up to an overall rescaling. That is,

(Aa) - (Ab) = Q (a - b) (2.11)

for a positive real number {2 (negative values of € are excluded because they would map the
temporal dimension into a spatial dimension and vice-versa). Therefore, the linear transfor-
mation A decomposes into the composition of a dilation by an amount v/Q and a Lorentz

transformation A like so:

A= VOA (2.12)

where |det A| = 1 characterizes the Lorentz transformation. The dilation simply scales
our time duration and length units by an equal amount v/Q. Because we are interested in
comparing reference frames that differ beyond a choice of units, we set {2 = 1 so that A = A,
and we from here on restrict our attention to Lorentz transformations.

Lorentz transformations preserve 4-vector magnitude, and therefore magnitudes can be
classified in a frame-independent way: given a 4-vector a, it is said to be space-like, light-like,
or time-like if its magnitude is less than, equal to, or greater than 0 respectively. These names
are inspired by considering a spacetime displacement ¢# from the origin. If its magnitude
vanishes (¢ - ¢) = 0, then it is a displacement that could be traversed by a wavepacket

of light. Meanwhile, a pure spatial displacement ¢ = (0,¢) yields a negative magnitude

(¢-0)= —0-0 < 0, and a pure temporal displacement ¢ = (0, 0 ) yields a positive magnitude
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(0-¢0) = ({92 > 0, and thus they are space-like and time-like respectively. A time-like
(space-like) particle velocity corresponds to motion slower (faster) than the speed-of-light,
and a trajectory is labeled space-, light-, or time-like if every 4-velocity along that trajectory
is also space-, light-, or time-like respectively.

A Lorentz 4-vector is any 4-vector (4-velocity or otherwise) that transforms under a
Lorentz transformation in the way previously described: that is, the Lorentz 4-vector v

goes to another Lorentz 4-vector v# after a Lorentz transformation A, where
ot = AP Y (2.13)

An index such as v in v which is transformed by contraction with A#, under a Lorentz
transformation A is called a contravariant index. Because (Aa)-(Ab) = (a-b) for all 4-vectors

a and b, Lorentz transformations preserve the metric in the following sense,

Furthermore, the Lorentz transformations define a group under composition (i.e. (A1)*,,(Ag)Y o=
(A3)",), with a transformation A related to its inverse A~ according to
(A™HH =AM (2.15)

v

because

AV’uAVp = [UMTUJI/AUT] Ayp =nh" [AUTAV/JUUV] = 77/”777p = 775 (2.16)
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and [ng] = Diag(+1,+1,+1,+1) = 1. Thus, we refer to the collection of all Lorentz trans-

formations as the Lorentz group.

The Lorentz group can be further divided into four distinct connected components based

on the determinant and temporal-temporal component of each transformation A:

e If det A = +1 then A is proper. Otherwise, det A = —1 and A is improper.

o If Agg > 1, then A is orthochronous. Otherwise, Agg < —1, and A is antichronous.

These different connected components can be mapped onto one-another via the discrete

Lorentz transformations P and T,

(2.17)

and their combined action PT = T P, where P and T are called the parity-inversion and time-

reversal transformations respectively. We are most concerned with proper orthochronous

Lorentz transformations, which are continuously connected to the identity transformation

and form a subgroup of the wider Lorentz group. In fact, we will use this group so often

that we drop the “proper orthochronous” descriptor from hereon: unless otherwise indicated,

these are the transformations to which we refer when discussing the Lorentz group.

The transformation behavior of a Lorentz 4-vector can be used to derive the transfor-

mation behaviors of other Lorentz tensors. For example, a Lorentz 4-covector v, becomes
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another Lorentz 4-covector v, under the Lorentz transformation A according to

where we have used Lorentz invariance of the metric (7, = nuv). As illustrated by the above
result, symbols that require both the inversion label “-1” and Lorentz indices are cumbersome.
This is not the only time the inversion label clutters notations that are otherwise useful to
this dissertation, so we will instead write inverses with a tilde, e.g. AH, = (Afl)'“y. In this
notation, the transformed Lorentz 4-covector is more succinctly written as v, = AP wlp- A
Lorentz index v that transforms via contraction with AV p is called a covariant index.

More generally, a Lorentz tensor X “1®a g LBy is an object with a contravariant indices
at, ..., &g and b covariant indices f31, ..., [ that transforms under a Lorentz transformation

A according to

<5 <5
X1 aaﬂl"ﬂ N Aa171 . AaarmA 131 A bBbX'Vl 7a51"'5b (2.19)

b

A tensor that transforms according to this rule is said to transform covariantly under Lorentz
transformations or, in fewer words, to be Lorentz covariant. By contracting Lorentz indices
between Lorentz tensors, a new Lorentz tensor can be formed. In particular, if all Lorentz
indices are contracted within a product of Lorentz tensors (and the collection possesses no
other transformation properties with regards to Lorentz transformations) then a Lorentz
scalar is formed. For example, the inner product (v -v) = vfv, is a Lorentz scalar, and is
thereby invariant under Lorentz transformations. Each field theory Lagrangian (density) is

also a Lorentz scalar. In the context of this dissertation, we consider Lagrangians constructed
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(n)

from multiple rank-2 tensors EW that correspond to spin-2 fields. These nicely contract
together like links in a chain, and their contractions are so common that it is worthwhile to

grant them a special notation. We define the ‘twice-squared bracket’ notation as follows:

()], = }}S}}) (2.20)
[ RE],, = A e jin2) (2.21)
(R RS)],, = 50D o 12 o j(12) (2.22)

and so on. When the field indices are entirely contracted to form a trace (such that the chain

is closed into a loop), the external indices are omitted:
[h0) e = TR il(nH)]]aﬁ Rl (2.23)

The operation of connecting two such chains via contraction is called concatenation, and the

identity chain with respect to concatenation is

[0 = npw (2.24)

from which [1] = 4. (If we were instead working in X-dimensions, then [1];/n = nyyn and
[1] = X).

Regarding its group structure, the Lorentz group possesses two Casimir invariants, which
are used to define particle content in quantum field theory. The first is the mass, which is
defined from the (assumedly not space-like) 4-momentum p* = (E/c, p’) where the quantities

E > 0 and p are the energy and 3-momentum of a particle excitation respectively. The mass
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m > 0 is defined from the Einstein equation,

E? =m?ct + g% (2.25)

which we typically express instead as the on-shell condition p? = plpy = m2c? (“on-shell”
being shorthand for “on mass shell”). The collection of light-like 4-momenta related by
Lorentz transformations form the light cone, a right cone in pH-space oriented along the
energy axis. In contrast, if a 4-momentum is time-like, then the mass is nonzero, and
the collection of 4-momenta with equal mass form a hyperboloid in p#-space called a mass
hyperboloid. Every mass hyperboloid contains a rest frame 4-momentum (m,6 ) wherein
|P| = 0. Any two 4-momenta on the light-cone or on the same mass hyperboloid can be
related via a Lorentz transformation. The mass additionally dictates the kind of trajectories
along which a given particle can travel: massless particles travel along light-like trajectories
at the speed of light, whereas massive particles travel along time-like trajectories at speeds
slower than the speed of light.

Regarding the second Casimir invariant—the Pauli-Lubanski pseudovector—we will not
dwell on it beyond asserting that it allows a massive (massless) particle to be assigned a
Lorentz-invariant total spin (helicity). For instance, the second Casimir invariant is why an
electron can be assigned a definite internal spin of % We adopt the standard convention
of referring to a massless particle with total helicity s as being a spin-s particle. When a
massive particle is in its rest frame, its total angular momentum equals its total internal spin.
Whereas a massive spin-s particle has (2s 4+ 1) available helicities A € {—s,—s+1,...,s}, a
massless spin-s particle has at most two, A\ € {—s, +s}.

The above considerations for 4-momentum apply more generally to other Lorentz 4-
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vectors as well: any two (nonzero) light-like or time-like 4-vectors v and w having equal
magnitude (v - v) = (w - w) > 0 and same temporal component sign sign(w?) = sign(v°)
can be related by a Lorentz transformation. Meanwhile, any two space-like 4-vectors v and
w with equal magnitude (v -v) = (w-w) < 0 can be related by a Lorentz transformation,
regardless if they disagree on the signs of their temporal components. The collection of all
4-vectors related to a particular 4-vector v by (proper orthochronous) Lorentz transforma-
tions is called the Lorentz-invariant hypersurface generated by v. In this language, a mass
hyperboloid (light cone) is the Lorentz-invariant hypersurface generated by a time-like (light-
like) 4-momentum p. Note that the Lorentz-invariant hypersurface generated by a nonzero
4-vector is a three-dimensional manifold because the four components of the 4-vectors on
that hypersurface have only one continuous constraint (i.e. maintaining the same overall 4-
vector magnitude). The “nonzero” descriptor in the previous statement is important because
the 4-vector origin 0 is individually invariant under Lorentz transformations, such that the
hypersurface it generates is the zero-dimensional set {0#}.1

In addition to its group structure, the Lorentz group forms a six-dimensional manifold:

consider the magnitude

a-a=(a")? —(a')? = (a®)* - (a*)? (2.26)

of a 4-vector a* for which all components are nonzero. A generic Lorentz transformation can

alter any of these components but must ultimately preserve this magnitude. In particular,

L This is one way to understand the lack of a rest frame 4-momentum on the light cone: if we could
somehow map the light-like 4-momentum of a massless particle to 0/, then we could (using the inverse
transformation) map 0 back to a different light-like 4-momentum, but this would contradict the invariance
of {0}, Therefore, massless particles cannot be at rest in any reference frame (this is, of course, a restatement
of the invariance of the speed of light).
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suppose a transformation alters one component slightly. Because all components of a* are
assumedly nonzero, we can preserve the overall magnitude of a by slightly increasing or
decreasing a different component of a by however much is necessary to accommodate the
change of the first component. There are as many independent ways of performing this
balancing trick as there are distinct pairs of components. Because a has four components as
a 4-vector, there are six independent choices of component pairs. Furthermore, by chaining
together the shifts of magnitude described by these six independent component pairs, we
can form any (proper orthochronous) Lorentz transformation. Therefore, the Lorentz group
is six-dimensional.

It is conventional to distinguish certain convenient Lorentz transformations:

e Rotations are Lorentz transformations that leave the temporal 4-vector coordinate un-
changed, and correspond to the usual collection of rotations in 3-space. Their operation
solely affects the 3-vector part @ of a 4-vector a, and they form a closed subgroup of
the Lorentz group. In the context of the aforementioned balancing trick, these trans-

formations correspond to the “space-space” mixing.

e Boosts are Lorentz transformations that leave a spatial 2-plane unchanged, e.g. a boost
along the z-axis will mix the aY and a? components of a 4-vector, but leave the a! and
a2 components unchanged. Boosts do not form a closed subgroup of the Lorentz group.

In the context of the aforementioned balancing trick, these transformations correspond

to the “time-space” mixing.

Any two 4-vectors on the same Lorentz-invariant hypersurface can be related by a Lorentz
transformation that combines rotations and boosts.

We arrived at the Minkowski metric 7 by demanding that the speed of light be locally
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preserved between frames. If we now suppose the Minkowski metric describes spacetime
globally as well (thereby ensuring we work in the realm of special relativity as opposed
to general relativity), the trajectories Z(t) of light-like wavepackets must be straight lines
through 3-space. That is, the wavepacket propagates such that at any time ¢ it is centered
at Z(t) = ot + Z(0) for some initial position Z(0) and velocity |7 = ¢. If the 4-velocity (9, 7)

transforms according to a Lorentz transformation

vt — AP Y (2.27)

then the corresponding trajectory in 4-space ¥ = (ct, Z(t)) must transform according to the

same Lorentz transformation plus a potential spacetime translation

ot — A Y+ e (2.28)

where e# is a generic 4-vector. By once again considering a network of light-like wavepackets
throughout spacetime, we can generalize this transformation behavior beyond a single tra-
jectory and conclude that the coordinates of spacetime must generally transform according
to Eq. (2.28). The wider collection of transformations available to spacetime coordinates
comprise the Poincaré group. Because e# has four real components and the Lorentz group
is a six-dimensional manifold, the Poincaré group forms a ten-dimensional manifold.

The following subsections delve into more detail about specific transformations within the

Poincaré group. To facilitate succinct expressions, we introduce unit 4-vector basis elements,

v =% +0ld 4+ 0%+ 032 (2.29)

32



where

1 0 0 0

) 0 ) 1 ) 0 ) 0

"] = [ = 9] = 2] = (2.30)
0 0 1 0
0 0 0 1

For the same purpose, we also define abbreviations for the trigonometric and hyperbolic

functions

Co = COS Sq = sin « chg = cosh 3 shg = sinh 8 (2.31)

and utilize natural units for the remainder of this dissertation: ¢ = h = 1.

2.2.2 Active vs. Passive Transformations

In order to quantify Lorentz and Poincaré transformations, we must decide whether to con-
sider them as active or passive transformations. As to clarify the nuances of these perspec-
tives, let us briefly restrict our attention to spacetime translations.

Consider a continuous function ¢(x) of real numbers over spacetime that is sharply peaked
at some spacetime point = X relative to an observer at the spacetime origin. Further
suppose we want to describe this same distribution as instead having a peak at X + a for
some 4-vector a relative to that observer. We might use an active or passive transformation to
achieve this: the active transformation shifts the entire distribution by an amount a relative
to the coordinate system, whereas the passive transformation instead keeps the distribution

as-is and moves the observer (and the spacetime origin with them) by an amount —a. Because
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they ultimately describe the same physical reality—mamely, that the peak is now at X + a
relative to the observer—these different transformations must be physically equivalent. More
generally, an active Poincaré transformation P(A,a) on the distribution corresponds to a
passive Poincaré transformation (A, a) ™! on the observer and their coordinates.

When a transformation is used to switch between reference frames, it is typically written
in the passive interpretation: in this interpretation, reality is fixed, and we are merely swap-
ping between observers who have their own coordinate systems for observing that reality.
However, the preceding discussion points out that we could equally well use active trans-
formations as long as we are careful to invert the intended operation. Because we intend
to eventually apply active transformations to quantum mechanical states, our discussion of
the Lorentz group in the upcoming subsections is written in the active interpretation, even
when those transformations are used to switch between reference frames. For example, our
rotation operator R, («a) corresponds to rotating the physical system by an angle +« about
the z-axis, which is equivalent to rotating the observer (and their coordinate system) by an
angle —a about the z-axis. These are an active and passive transformation respectively.

That being said, there is an important transformation that we should always be cautious
to interpret correctly: the time evolution transformation. An active time translation by an
amount At shifts our distribution ¢(x) = ¢(t,Z) to ¢(t — At,Z) and thereby ensures that
a peak formerly at X = (T,)? ) will subsequently occur at X' = (T + At, X ). However, if
we want to evolve the system in time by an amount At, we actually desire that ¢(¢,Z) be
mapped to ¢(t+ At, ). This can be achieved by either performing an active time translation
by an amount —At or (as it is usually expressed) performing a passive time translation by
an amount At.

From here onward, the “rotation”, “boost”, “translation”, “Lorentz”, “Poincaré”, etc. trans-
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formations will be written as active transformations unless otherwise indicated, in contrast
to the time evolution transformation, which (in the way just described) is always understood

as a passive transformation.

2.2.3 Rotations

For spatial coordinates, we utilize a standard right-handed 3-space coordinate system (labeled
such that Z x g = 2) and define our rotations using the right-hand rule. This means that, for
example, an active rotation about the z-axis by an angle o on a generic 4-vector z# yields a

new 4-vector R, (a),x¥, where

14

= (2.32)

within which ¢4, = cosa and s, = sina. Note that R.(a) becomes the identity trans-
formation when o« = 0. We can directly check that R,(«) is a Lorentz transformation by

considering how it (does not) affect the magnitude of a generic 4-vector dX = (dt, dx, dy, dz):

M [Rz(a) dX] [Ry(a)dX)Y = dt* — (co dx — 50 dy)? — (sa dz + co dy)? — dz% (2.33)

= dt? — (2 + $2)da? — (2 + s2)dy? — d? (2.34)
= dt? — dz? (2.35)
= AXH dX (2.36)

35



In principle, R;(a) is an instantaneous mapping from one coordinate system to another.
However, by taking a — 0, R;(«) continuously goes to the identity ([R.(a),] — [n)] =
[6,1,0]), and thus (by reversing the direction of the limit) we can interpret a rotation R, (c) as
a continuous transformation that smoothly rotates z# to R.(«)*, x”. In addition to being
a nice conceptual feature, this continuity near the identity allows us to rewrite the rotation

operator R,(a) as the exponential of an angle-independent generator J:

400 n
1 OR.(«
Ref)) = B ol = 2 (al(n]) where g, = L)
n! Oa
n=0 a=0
(2.37)
from which we calculate
0 O 0 O
O 0 -1 0
[(J2)F,] = (2.38)
0O +1 0 0
0 O 0 O

By having one index raised and another index lowered, we ensure that powers of [(J,)" ]
correctly reproduce a series of index contractions, e.g. [(J2)!,][(J2)" ] = [(J2)!,]. For the
rest of this chapter we will drop the index references on [(J;)*,] and refer to it simply as J..
Note that J, only leaves 4-vectors proportional to (¢, Z) unchanged, which is consistent with

Z being the axis of the rotation generated by J,. This same procedure can also be applied
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to rotations about the x- and y-axes, which have the rotation matrices,

1 0 0 0 1 0 0 0
0 1 O 0 0 ca 0 s4

[Ra(a)",] = [Ry(e)",] = (2.39)
0 0 ca —sa 0 0 1 0

which can be expressed as exponentials R;(a) = Exp[aJ;] and Ry (o) = ExplaJy], where

00 0 0 0 0 0 0
00 0 O 0 0 0 +1
Jr = Jy = (2.40)
00 0 -1 0 0 0 0
00 +1 0 0 -1 0 0

are the corresponding generators. (These antisymmetric generators will be replaced by Her-
mitian operators when promoted to the analogous quantum mechanical description.) The
generators J; have several convenient properties. For instance, they possess a closed com-

mutator structure:

[, Jj] = €k Ik - IxJ=1J (2.41)
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where i, j, k € {x,y, 2}, J= (Jz, Jy, J>), and [A, B] = AB — BA. They can also be put into

the combination

Ji=J.J= = —2(6up — 0,.00.0) (2.42)

which commutes with every generator

. J?% =0 (2.43)

If a collection of three tensors { Xz, Xy, X, } happen to satisfy

[Jis Xj] = €1 X}, (2.44)

where i, j, k € {z,y, 2z}, then the collection transforms like a 3-vector X = (Xo, Xy, X)) =
(X1, X2, X3) under rotations. In particular, via Eq. (2.41), J transforms as a proper 3-
vector under rotations, and so we can give the components of J legitimate 3-vector indices:
{Jo, Iy, J2} ={J L g2 g 3}. Because we use the mostly-minus metric convention, this means
that, for example, J, = J! = —J;. Exponentiating the generators together allows us to

write a generic rotation matrix: a rotation [R(@)}] around an axis & by an angle |@| equals

=

R(&) = Expla - J] (2.45)
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This is, of course, equivalent to a rotation by an angle —|@| about —& instead, if one so
prefers.

As mentioned above, the rotation generator set {Jy, Jy, J,} is closed under the commu-
tation bracket, Eq. (2.41). In fact, this specific commutation structure combined with the
reality of the generators means they form the Lie algebra so(3) and that the rotation group
in three dimensions is the Lie group SO(3). SO(3)—and its covering group, SU(2)—is com-
pact and thus admits finite-dimensional unitary representations (which we review in Section
2.6). The operator J2 (which we recall commutes with every generator) is the single Casimir
operator belonging to s0(3). Like other Casimir operators, J2is a geometric invariant that
describes the dimensionalities of any invariant subgroups within a given representation of the
rotation group. For example, although the 4-vector representation above transforms under
the rotation group in a well-defined way, it actually contains two distinct rotational behav-
iors which never mix under any rotation. This was hinted by the two distinct eigenvalues
along the diagonal of J2 in Eq. (2.42). It can also be identified directly from the transfor-
mation behavior of 4-vectors if one knows what to search for: while the 3-vector part & of
a 4-vector z# is changed under any rotation in the usual way, its temporal component 2V is
left invariant, and so x# cleanly separates into 20 and 7 as far as rotations are concerned.
Regardless of how these invariant subspaces are derived, they correspond to spin-0 and spin-1
representations of the rotation group. In Subsection 2.8.1, we will use the spin-1 portion of
the 4-vector representation to derive the canonical spin-1 and spin-2 polarizations.

The rotation R(&) defined in Eq. (2.45) is only one of many ways of writing a generic
rotation. Another (which is particularly useful for the purposes of this chapter) is the Euler
angle parameterization. The Euler angles detail a sequence of rotations with which one

can produce any orientation of a rigid body in 3-space. They also happen to be a natural

39



coordinate system for a symmetric top. Explicitly, we may write a generic rotation in terms

of the Euler angles {¢, 0,1} as

where ¢ € [0,27), 6 € [0,7], and ¢ € (—2m,0]. When applied to a symmetric top which
has been set to balance with its tip at the origin and with gravity pulling in the negative

z-direction, these angles correspond to the following motions:
e 1) describes the intrinsic rotation of the top about its own axis.

e ( describes nutation of the top, i.e. rotation of the top axis towards and away from

the z-axis.
e ¢ describes precision of the top, i.e. rotation of the top axis about the z-axis.

In quantum mechanical problems where the relevant states are eigenkets of z-axis rotations
but (necessarily) not of z- and y-axis rotations, the fact that Eq. (2.46) begins and ends
with z-axis rotations enables certain simplifications.

If the object we intend to rotate has no spatial extent beyond its axis of rotation (e.g.
a symmetric top in the limit that it becomes a needle), then the intrinsic rotation angle
has no physical effect and can be set to some conventional value. This will be relevant when
we consider rotations of 3-momenta, which can be rotated about their 3-direction without
affecting their value. Popular conventions include setting v» = —¢ and ¥ = 0, of which we
choose the former when such a choice is relevant. Setting the value of 1) ensures that only

two degrees of freedom remain, where the remaining angles correspond to the usual spherical
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coordinates (6, ¢). For these cases, we define

R(p) = R(9,0) = R(¢,0, —0) (2.47)

where p is the 3-direction corresponding to (6, ¢).

To phrase the previous point in a different way: any two 3-vectors ¥ and @ which share the
same magnitude |0] = || are on the same rotation invariant hypersurface, and can be related
via some choice of rotation. Because these hypersurfaces are 2-spheres in 3-space, we require
only two degrees of freedom to parameterize the different 3-vectors and, thus, the rotations
relating them too. This is the language we use when discussing Lorentz transformations in

the next subsection, after we derive the boost generators.

2.2.4 Boosts

An active boost along the z-axis with rapidity 8 on a generic 4-vector x# yields a new

4-vector B (B)H ,x¥, where

chﬁ 0 0 shﬁ
0O 1 0 0
[B(B)*,] = (2.48)
0O 0 1 0
Shﬂ 0 0 chﬂ

within which chg = cosh 8 and shg = sinh 3. When the rapidity vanishes (8 = 0), B:(3)
becomes the identity transformation. Like the rotations in the last subsection, we can directly

check that B;(f) is a Lorentz transformation by considering its (lack of an) effect on the
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magnitude of a generic 4-vector dX = (dt,dz, dy,dz):

N [B=(B) dX " [B.(B8) dX]" = (chpdt + shpdz)? — du* — dy* — (shg dt + chg dz)?
(2.49)
= (ch3 — sh3)dt® — da® — dy® — (ch3 — sh3)d=*  (2.50)
= dt? — di? (2.51)

= dXH dXY (2.52)

Furthermore, because B(/3) is continuously connected to the identity, it can be interpreted
as a smooth transformation (by evolving the rapidity from zero to ) and be expressed as

an exponential of a rapidity-independent generator:

=1 n 0B,
B:(60)",] = B a5, = > (aucrg) e =R
(2.53)
from which we calculate
0O 0 0 +1
0 0 0 O
(K", = (2.54)
0 0 0 O
+1 0 0 O
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Again, we drop the index indicators and simply write [(K )

and y-axes are defined similarly

as K,

. Boosts along the z-

chﬁ Shlg 0 0 chﬁ 0 shﬁ 0

po Shﬂ Chﬂ 0 O i B 0 0 0
[Bz(B)F,] = [By(B),] = (2.55)

0 0O 1 0 shﬂ 0 chg 0

0 0 0 1 0O 0 0 1

0O +1 0 0 0 0 +1 0
+1 0 0 0 0 0 0 O
0 0 0 O +1 0 0 O
0 0 0 O 0 0 0 O

are the corresponding generators. Unlike the rotation generators, the boost generators are not

closed with respect to the commutator bracket, and instead mix with the rotation generators:

(K, K] = —€i1 T (2.57)

[Ji, K] = +eij K (2.58)

where 4,5,k € {x,y,2}. By comparing Eq. (2.58) to Eq. (2.44), we note {Ky, Ky, K.}
rotates like a proper 3-vector under rotations, and label its components as such: K =
(Ky, Ky, K.} = {K', K2, K3}.

A generic boost B (5’ ) along an axis B by an amount [ can be constructed from expo-

43



nentiation of the generators:
B(B) = Exp|f - K] (2.59)

which leaves the 2-plane perpendicular to E in 3-space unchanged. In contrast to the rotation
group, applying a sequence of boosts in the same direction to a 4-vector never results in a
return to the original 4-vector. This reflects the fact that, unlike the rotation group, the
Lorentz group is non-compact. Consequently, whereas the rotation group SO(3) admits
finite-dimensional unitary representations, the Lorentz group SO(1,3) does not: its only
unitary representations are infinite-dimensional, and any finite-dimensional representations
are necessarily non-unitary. This will prove important in the following section, as well as
when deriving polarization vectors and tensors in Subsection 2.8.1.

The rotation and boost generators together form the Lorentz generators {f, K }, whose
commutation structure defines the Lie algebra so(1,3). They enumerate six independent
degrees of freedom and can generate any (proper orthochronous) Lorentz transformation
via exponentiation. Like in the case of a generic rotation, there are many ways to param-
eterize a generic Lorentz transformation. As one example, we may write a generic Lorentz

transformation as a boost followed by a rotation:

= R(@)",B(B)", (2.60)

—

which has six degrees of freedom (&, ) as required. This is the parameterization we use for
the remainder of this dissertation. Fewer parameters are required if we only seek to describe

the Lorentz transformations that relate any two 4-vectors on the same Lorentz-invariant
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hypersurface. In particular, if the 3-vector part ¢ of a light-like or time-like 4-vector v
points in a direction ¥, then we can obtain any other 4-vector on the same Lorentz-invariant

hypersurface by applying

A(@, B, = R(6,0,—6)", B(BD)”, (2.61)

for some choice of ¢, 6, and 5. Explicitly, suppose the desired final 4-vector is w. In this case,
the boost takes the 3-magnitude |7 |? to [@|?, then the rotation redirects the 3-vector |u | o

into the desired 3-direction ), and the final temporal component value w”

is guaranteed to
work out because the 4-vector magnitude (w-w) = (v-v) is invariant. Note that this specific
collection of Lorentz transformations only has three degrees of freedom, consistent with the
dimensionality of the light cone and mass hyperboloids.

In the next subsection, the translation generators are derived. Together, the translation

and Lorentz generators form the Poincaré generators.

2.2.5 Translations

Although it is unnecessary to do so in more general contexts, it is advantageous for our current

purposes to cast the translation operation as a matrix. To do so, we extend 4-vectors for the
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duration of this subsection to include a new auxiliary slot, e.g.

33'0
.171
i
h ~ 2] = = | 22 (2.62)
1
.T}3
1

and define a translation operator T'(¢)” , as a 5 X 5 matrix,

0
]lz e’
[T'(e)” ] = (2.63)
0 1
where € is a 4-vector, such that,
Vo v I z” +¢€” v v
[T'(e)" =] = [T'(e)” ) [+"] = = [z" + €] (2.64)
1

Like the previous transformations, the translation operator can be generated through ex-
ponentiation of certain translation generators P¥. However, let us be more careful about
the signs in this exponentiation than we were in the rotation or boost cases. Specifically,
to encourage Lorentz invariance, we would like to write the generators P* as a 4-vector

contracted with a generating parameter ¢/, so that the exponentiation is of the form

x| & (LIPO] = AP - 2P - S (2.65)
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where the overall sign of the exponent remains to be determined. The sign we ultimately
choose is based on precedent: as written in Eqgs. (2.45) and (2.59), the exponents of the
equivalent expressions for general rotations and boosts equal +a - J and +5 K respectively.
It would be nice if the 3-vector part of the translation exponent equaled +€- P as well. Thus,
we choose the lower sign.

Using this convention, the time-translation operator H = PV is defined according to

. T (V%
[T(")" ] = Exp| — '[H*,] where =po o 1D (2.66)
K 0€l 0—0
from which we calculate
000 0 —1
0000 0
o, —t
[H!,)] = =lo 0o 0 0 o0 (2.67)
0 0
0000 0
000 0 0

As before, we drop the index indicators on the generators as we proceed. Like the above

temporal translation, a pure spatial translation

[T(€)",] = Exple- P] where pl=" (2.68)
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is accomplished via the space-translation generators { P, Py, P, }, which explicitly equal

Ol/ j‘;.l/ OV ~V Ol/ /é‘,l/
1 1 1
0 0 0 O 0 O
(2.69)

We will demonstrate that the 3-vector indices P! are meaningful momentarily. By using the
time and space-generators together, we may construct a spacetime translation by a generic

4-vector et:

[T'(e")] = Exp[—(e - P)] (2.70)

where #H, gt and Z¥ were defined in Eq. (2.30). Every Poincaré transformation can be
expressed as a combination of Lorentz transformations and spacetime translations, and thus
we can now express all (proper orthochronous) Poincaré transformations as products of
exponentiations of generators.

Combining the spacetime translation generators with the Lorentz generators yields the
ten canonical Poincaré generators { P¥, j, K }, where the Lorentz generators have implicitly
been extended to accommodate the 5 x 5 forms of the translations, e.g. given a Lorentz

generator G4« 4, a Poincaré generator G5x5 will have the same effect if defined as follows

Gixa O
Gixs = (2.71)

0 1

We only distinguish the Poincaré generator Ggx5 from the Lorentz generator G4y 4 in the

above definition. From here on, we just write G.
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The commutators of the Poincaré generators equal, via explicit evaluation,

(T8, ] = +eip " [T, K] = e, K* (K, K] = —e;j3, " (2.72)
[H,J] =0 [H,K'] = +P" [J', PI] =+, PF [PY KT = +Hé; j (2.73)
[P*, PY] =0 (2.74)

where i, j, k € {1,2,3}. The commutators of the form [J?, e] indicate that P, J, and K be-
have like 3-vectors under rotations, such that their 3-vector indices are meaningful. Although
the Poincaré group does not preserve 4-vector magnitudes?, Poincaré transformations of co-
ordinates z# will preserve the magnitude of 4-velocities (as well as 4-momenta), as remarked

in Subsection 2.2.1.

2.2.6 Lorentz-Invariant Phase Space

The preceding discussion detailed the Poincaré generators, quantities which can be exponenti-
ated to yield Poincaré transformations. In the next section, we will promote these generators
to quantum operators; however, before moving into the realm of quantum mechanics, it is
useful to derive a Lorentz-invariant integral measure with which we will eventually normalize
our quantum states.

Recall that a mass hyperboloid corresponding to a mass m > 0 is a Lorentz-invariant

2For example, under a translation by a time-like 4-vector e#, the origin 0# (for which (0 -0) = 0) is
mapped to e# (for which (e-€) > 0).
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hypersurface defined as the collection of 4-momentum p for which E = p¥ > 0 and p? =
(p-p) = m?2. An integral over a given mass hyperboloid is easily expressed as a 4-momentum

integral using these constraints

4
/ (371)94 (2m)5(52 — m?) 0(E) f(p) (2.75)

where f is some function of the 4-momentum, the Dirac delta function §(p> — m?) enforces
p? = m?, and the Heaviside step function 6(E) enforces E > 0. Note that this 4-momentum
integral is manifestly invariant under a Lorentz transformation A so long as f(p) is a Lorentz

scalar, because

d*p —  d*(Ap) = |det Ald*p = d*p (2.76)

5(p? —m?) — 5<(Ap)2 - m2> = §(p® —m?) (2.77)

Because the mass hyperboloid is a three-dimensional hypersurface, the goal of this subsection
is to rewrite the 4-momentum integral Eq. (2.75) as a 3-momentum integral instead. We will
first use the Dirac delta in order to eliminate the energy integral (dF in the decomposition
d4p = dE d3p ). However, the Dirac delta as written is not quite right for eliminating that

integral, because it is of the form
5(p? —m?) = 6(E? — p? —m?) (2.78)

instead of §(F — Fy) for some value Ey. To get it into this form, we reparameterize the Dirac

50



delta using the following property:

Oz —wx)
(f@) = > T (2.79)
e st Tlra)= o /(@)

where f/(x) denotes the derivative of f with respect to its argument. Because

o5 [EQ — 7P - mQ] —92FE (2.80)

and B2 — 52 —m? =0 when E = +Ez= +v/m?2 + p2,

1

2y/m?2 + |p|2

5(p? —m?) = {6(]5 — Ej) +0(E + Ej) (2.81)

When we substitute this result into Eq. (2.75), the Heaviside step function (E) causes the
negative energy term—the term proportional to 6(E + Eﬁ)—to vanish, such that

d3
[ L e o

which is a 3-momentum integral as desired. Because the original integral is Lorentz invariant,
this expression must be as well. The integration weight factor d3p/ [(27?)32Eﬁ] will occur
frequently in definitions and calculations due to its Lorentz invariance.

When calculating quantities involving n particles (labeled 1, 2, ..., n) with individual 4-
momenta p; = (E;, p;) that are constrained to have some total 4-momentum P (but otherwise

unconstrained), integrals of the form

/[lf[ 3 2Eq] {27?454( sz)l P By ) (2.83)
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often occur, where the bracketed factors together form the n-particle Lorentz-invariant phase

space element,

n

dIL, = Z:Hl { (CSTI;Z? 5 ;ﬁj [(2@454 (P - Zé pi)] (2.84)

Although it was derived by considering massive particles, this expression is equally valid if
any of the particles are massless. In the following section, we return to discussing the Poincaré
generators, which will be promoted to quantum equivalents in preparation of defining external

particle states with well-defined 4-momentum and helicity.

2.3 Poincaré Group: Quantum Promotion

2.3.1 Quantum Mechanics

Demanding a universal speed of light motivated our investigation of the group of linear
transformations that preserved 4-vector inner products p - ¢ = nuptq”. This led us to
the Lorentz group, which combines rotations and boosts, and its generalization the Poincaré
group, which additionally incorporates spacetime translations. The different transformations
in the Poincaré group map between reference frames while globally preserving the speed of
light.

In the present section, we extend these ideas to quantum mechanics. However, whereas
our investigation of 4-vector transformations was motivated by the frame independence of the
speed of light, the promotion to quantum mechanics is motivated by the frame independence
of experimental outcomes. To be concrete: while observers in inertial reference frames will

disagree about their spacetime coordinates, once those differences are accounted for (by a
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Poincaré transformation) they should agree on—for example—how many heads or tails are
measured in a sequence of coin flips. Consequently, so long as our experimental questions
are phrased in frame-independent ways, the related experimental probabilities should be
frame-independent as well.

A quantum mechanical state 1 is described by a ket labeled |¢)). Two kets describe iden-
tical states if they differ at most by a phase, e.g. [¢) and e'®|¢)) correspond to physically-
indistinguishable systems for any real choice of . A complete set of kets spans a Hilbert
space and is defined for a system by choosing a maximally-commuting set of observables,
where those observables are described by self-adjoint operators (A such that AT = A) whose
eigenspectra encode the possible measured values of those observables. Despite there being
technical differences between the two, we will use the descriptors “self-adjoint” and “Hermi-
tian” interchangeably from here. Defining an orthonormality condition on a complete set of
kets implies a complete set of bras (1| as well as a resolution of identity on the space. This
defines an inner product between bras and kets which satisfies (¢1[2)* = (12]1h1) for any
two kets |¢1) and |¢9). The probability (or probability density) associated with measuring

a state v as another state 1)’ is

Prob(y — ') = |(y[¢/)]? (2.85)

where it is assumed the kets are appropriately normalized.
A symmetry transformation A on a Hilbert space is any transformation which preserves
probabilities, i.e. if |[¢)1) and [¢)9) are arbitrary kets in the Hilbert space and are trans-

formed such that [1) — |Ay1) = A|Y) and [ipg) — |Ae) = Alyhg), then A is a symmetry
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transformation if

[(Wrlwa)|® = (A |Awo)* = [(y1 | ATAlo) > = |1 |w2)]? (2.86)

Wigner’s theorem states a symmetry transformation A must either be unitary and linear,

(A1|Avg) = (Y1tpe)  and A [01|¢1> + C2|¢2>] = c1|A1) + co| Apo) (2.87)

or antiunitary and antilinear,

(Ap1|Atpo) = (119)*  and A {Cl|¢1> + C2|@/J2>} = c|AY1) + 5| Abg)  (2.88)

where ¢1 and ¢9 are complex numbers. If A is unitary, then its inverse equals its Hermitian
conjugate: A = AT, where we recall A is an alternate notation for A1,

Suppose there exists a group of real transformations { A} (like the 4-vector representation
of the Poincaré group) where each transformation is continuously connected to the identity

such that each transformation A can be expressed as exponentiations of real generators G,

A(g) = Exp{;ﬁaGa] (2.89)

via real parameters £, and the generators satisfy some commutation relations

(Ga Gyl = Tape Ge (2.90)
C

for some real numbers 7. In the quantum theory, we can recreate the action of the set
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{A} on our kets by mapping each transformation A to a unitarity operator U[A] of the

exponentiated form

U[A(E)] = Exp{— iZ&LH[Ga}} (2.91)

where the Hermitian operators H[G] satisfy the commutation relations

MG MG | = X i T MG (2.92)

for those same real numbers T,;.. Heuristically, Eq. (2.90) goes to (2.92) by replacing the
generators G, with —iH[G4]. The operators H[G,] are also called generators, although
in this case they are generators of the unitary operators U[A]. When context is sufficient
(and to minimize clutter), we will simply write H[G,]| as G,. If the original transformation
is active (passive), then the resulting quantum operator will encode an active (passive)
transformation as well. Recall that our generators from the previous section were derived in

the active interpretation.

2.3.2 Promoting the Poincaré Generators

The spacetime coordinate transformations which globally preserve the speed of light comprise
the Poincaré group, the generators of which were previously found to satisfy various commu-
tation relations, Eqs. (2.72)-(2.74). We now promote each of those generators to Hermitian
operators as to create unitary representations of the corresponding Poincaré transformations,
i.e. the matrices {P*, J K} will be mapped to operators {H[PH], H[J!], H[K']}. Note that

this mapping is not unique: different particles within the same state often require different
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choices of Hermitian generators. However, whatever Hermitian generators we choose for a
particular representation, they must satisfy the promoted version of the previously-derived

commutation structure:

[T, J] = +iejjp.J" [T, K] = +ie;j K" (K, KI) = —ie; 5" (2.93)
[H,J] =0 [H, K" = +iP" [J', P7) = +ie; ;. P* [P, K] = +iH5; ; (2.94)
[P*, PY] =0 (2.95)

where we have dropped the H label and have been cautious of the minus sign present in the
exponentiation of the time-translation generator H (as in Eq. (2.66)). The operator H is the
Hamiltonian, and an eigenket of H with eigenvalue F is said to have energy E. The operators
J and P are the angular momentum and (linear) momentum operators respectively, and the
rotation Casimir operator J?2 is the total angular momentum operator.

Utilizing these generators, we obtain unitary operators that apply the effect of a generic

rotation, boost, or translation to a ket:

UR(@)] = Exp{—ic_ﬁ- f] U[B(F)] = Exp[—iﬁ- K} UT ()] = Exp{m(e-P)]

(2.96)

Because the Lorentz group is non-compact, its (nontrivial) unitary representations are nec-

essarily infinite dimensional. This is reflected in the kets that these operators act on, which

56



(for example) might be labeled by a continuous parameter such as energy.

A vital feature of the quantum promotion is that it inadvertently expands the relevant
spacetime symmetry group. For example, the rotation group SO(3) is not simply con-
nected and thus possesses a distinct (simply connected) universal covering group, the Lie
group SU(2). SU(2) is a double cover of SO(3), meaning each transformation in SO(3)
is associated with two transformations in SU(2). However, the difference in connectedness
amounts to differences in global structure, whereas locally—that is, near each group’s iden-
tity element—SU(2) and SO(3) are identical. In other words, the Lie algebra so0(3) of the
rotation group and the Lie algebra su(2) of its covering group both have three generators
{J1,J2,J3} that share identical commutation structures: [J¢, .JJ] = +ie¢jk<]k. Because the
quantum operators are only restricted by the commutation relations in Eq. (2.92), we are
able to represent 4-vector rotations (elements of a representation of SO(3)) as elements of
unitary representations of SU(2) instead. Irreducible unitary representations of SU(2) are
reviewed in Section 2.6. A similar phenomenon occurs in the wider Lorentz group, SO(1, 3):
the quantum theory uses irreducible representations of its covering group, SL(2,C), which
is a double cover of SO(1, 3).

As mentioned above, the time translation operator H = P is identified as the Hamilto-

nian, and yields a time evolution operator U(At),
U(At) = Exp { — i (At) H} (2.97)

Note the minus sign in the exponent relative to the time translation operator in Eq. (2.96).

This is consistent with the discussion in Subsection 2.2.2.
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2.3.3 The Square of the 4-Momentum Operator

There are several important combinations of the generators relevant to our calculations. The
first is square of the 4-momentum operator P2 = H? — P 2 which is important because of its
connection to particle mass. In particular, a state |¢)) has mass M > 0 if P2[y)) = M2[y)).
Because P2 is a Casimir operator of the Poincaré group, all of the generators automatically
commute with it. If a single-particle state is simultaneously an eigenstate of P2 and H,
then it is automatically also an eigenstate of the total 3-momentum operator 132, and we
can choose to label (and normalize) those states with either their energy or 3-momentum

magnitude.

2.3.4 The Helicity Operator

Another important operator formed by combining Poincaré generators is the helicity operator
A. However, before we define the helicity operator, let us instead consider a related operator:
the inner product J - P = J'Pl 4+ j2p2 4 j3p3,

The operator J-P commutes with many of the Poincaré generators. For example, because

[AB,C] = [A,C]B + A[B, C] and [P?, P/] = 0 (and recalling P, = P3),

[P,,.J- P = i[P?’, JIP 4 JI[P3, P (2.98)
1=1

= [P, JY P!+ [P?, %) P? (2.99)

=p?2pl —;plp? (2.100)

= (2.101)

such that [P?,.J - P] = 0 for all i via cyclic symmetry, and thereby [P2,.J - P] = 0 as well.
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Similarly,

3
[Jo. J - Py = _[J*, J|P" + J'[J?, P'] (2.102)
=1
= [J3, J P+ I3, PY + [J3, JA P2 + J?[J3, P (2.103)
—iJ?Pl +igtp? —ijtp? —ij2p! (2.104)
=0 (2.105)

such that [J?, J - ]3] = 0 via cyclic symmetry, and [f 2 J. ﬁ] = 0 as well. Finally, note that

3
(H,J-P]=> [HJ|P'+J[HP]|=0 (2.106)
1=1
vanishes too, because [H, P'] = [H, J] = 0. Hence, in all, J - P commutes with H, P!, P2,
Jt, and J2.
Suppose we restrict our attention to eigenkets |E, M) of the Hamiltonian H and total

4-momentum operator P2, e.g. they satisfy
H|E,m) = E|E, M) P2|E,m) = m?|E,m) (2.107)

where £ > 0 and M > 0 are the associated state energy and mass respectively. All of the
single-particle states that we consider have well-defined energy and mass in this way. For
these states, we define the helicity operator A as

J-P

A E2_M2

(2.108)
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which is pivotal to defining the external states relevant to this dissertation. Like the operator
J - P to which it is proportional, A commutes with P?, ]32, Jt, and J2.

When describing external single-particle states, we will consider the relation of two
maximally-commuting sets of observable operators, both of which involve the helicity op-

erator:
e Option 1: PH A
e Option 2: H, j2, g, A

The single-particle states will also have definite masses and spins, and thus be eigenkets of
the corresponding operators; however, because they are associated with Casimir operators
of the Poincaré group, we can (and will) always include them in our maximally-commuting
set. As such, we will not explicitly label our single-particle states with mass or spin after

this point. Helicity eigenstates will be considered in more detail in Section 2.7.

2.3.5 Finite-Dimensional Lorentz Group Representations

The preceding discussion concerned the construction of unitary representations of the Poincaré
group. Because the Poincaré group is non-compact, its nontrivial unitary representations are
necessarily infinite-dimensional, which is why most Poincaré kets end up labeled by continu-
ous variables or indices with countably-infinite values. The same is true of the Lorentz group;
however, the Lorentz group also admits finite-dimensional representations, albeit they are
necessarily non-unitary. This subsection concerns the standard construction of irreducible
finite-dimensional Lorentz representations, which include the usual Lorentz tensor fields (e.g.

the spin-1 field Aﬂ(x), the spin-2 field fL,W(:E), and so-on).

60



We have actually already encountered such a representation: the 4-vector representation
defined in Section 2.2. Consider rewriting the previously-established 4-vector generators
{(J9) sevectors (K" dovector } SO that they superficially resemble the generators we would ob-
tain from the (unitary) quantum promotion procedure. That is, define generators Jt =

i(J Z.)4_‘,6(%01« and K* = i(K Z')4_\,@&010 so that

00 0 0 0 0 0 0 0 0 0 0
e 00 0 0 . 0 0 0 +i 5 0 0 —i 0
00 0 —i 0 0 0 0 0 +i 0 0
00 +i 0 0 —i 0 0 0 0 0 0
(2.109)
and
0 445 0 0 0 0 +i 0 0 0 0 +i
4 0 0 0 0 0 0 0 0 0 0 0
Kl = K? = K3 =
0 0 0 0 4 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 4 0 0 0
(2.110)

with commutators

= -

Using these, we may write a generic rotation and boost as R(&) = Exp[—id - J] and B(f) =

—

Exp|—if - K| respectively. Note that although the rotation generators {.J!} are Hermitian
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((JHT = (J)*), the boost generators {K"} are anti-Hermitian ((K%)T = —(K")*), thereby
reinforcing that this representation is not unitary.

Thus far, we have done little of substance: we moved some factors of ¢ around in what
otherwise remains the standard 4-vector Lorentz transformations. However, working with
complex numbers does have its advantages. Consider the following complex linear combina-

tions of rotation and boost generators:

— —

A=(J+iK) B=>(J—iK) (2.112)

N —

These combinations do not exist in the Lorentz algebra so(1, 3) (which only admits real linear
combinations) but exist instead in the complerified Lorentz algebra so(1,3)c. Nonetheless,
using the known commutators of {Ji, K i}, we may calculate the commutators of {.Ai, Bi}.

Doing so, we find they equal
[.Ai, ./4]] = —f-GZ'jkAk [AZ, Bj] =0 [Bi, Bj] = +€Z'jk8k (2.113)

That is, not only do A and B decouple, but each individually satisfies the SU(2) commutation

relations. Furthermore, they are Hermitian:

1 1
0 -1 0 o 0 +1 0 0
1 1
L9 0 o +1 0 0 o
Al=| 2 Bl=| ~° (2.114)
o 0 0 -i 0 0 0 -4
0 0 +i 0 0 0 +& 0
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0 0 -3 0
1
o 0 0 0 43 2
-0 o0 o
0o -& 0 o0
1
o 0 0 -3
iq
o0 0 o 5

which means the 4-vector transformations

UIRA(04)] = Exp[—if - A]

and

0 +1 0
0 0 +3
0 0 0
—L 0 0
0 0 +3
0 —%& 0
+5 0 0
0 0 0
Exp|—ifp - B]

(2.115)

(2.116)

(2.117)

generated by A and B form unitary representations of SU(2) when the parameters 0 4 and

g, p are real. The Casimir operators A2 and B2 of these SU(2) representations equal

+5
A2_F2— 0
0
0

(2.118)

Note that the transformations U[R4(64)] and U[Rp(05)] will typically map real 4-vectors

to complex 4-vectors.
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The commutators of { A%, B} in Eq. (2.113) suggest that the complexified Lorentz algebra
s50(1,3)c is isomorphic to two complexified copies of su(2), i.e. s0(3,1)c = su(2)c ®@su(2)c.?
This isomorphism is correct, and enables a trick for finding all irreducible finite-dimensional
representations of the Lorentz group. As will be reviewed in Subsection 2.6.1, for each non-
negative half-integer j there exists an irreducible (2 + 1)-dimensional unitary representation
of SU(2), wherein each state corresponds to a different J, eigenvalue m € {—j,--- ,j} and
all states are eigenstates of J? with eigenvalue j(j 4+ 1). Using this knowledge, the standard

strategy for deriving irreducible finite-dimensional Lorentz representations is as follows:

1. Choose two irreducible finite-dimensional unitary representations of SU(2), where one
has j = a and the other j = b for some nonnegative half-integers (a,b). Label the
corresponding Lie algebras as su(2) 4 and su(2) g, and their (Hermitian) generators as

Aand B respectively.

2. Construct the complexifications of these algebras, su(2)4 c and su(2)pc, and form
their direct product su(2) 4 c ®su(2) g c. In this new algebra, the collective generators

{ Al B'} automatically satisfy the Eq. (2.113) commutators.

3. Construct new operators J = A+ B and K = —z(.,éf — g), which are necessarily
Hermitian and anti-Hermitian respectively. These automatically satisfy the Eq. (2.111)

commutators, and thus correspond to the complexified Lorentz algebra so(1,3)c.

4. Consider only the real linear combinations of {J K i}, and thereby restrict their span

to the real subalgebra of so(1,3)c, the usual Lorentz algebra so(1,3) = sl(2,C).

3Note that the degrees of freedom (DOF) work out: so(1,3) has 6 real DOF, so so(1,3)c has 6 complex
DOF = 12 real DOF, whereas su(2) has 3 real DOF, so su(2)c has 3 complex DOF = 6 real DOF. Because
12 =2-6, all is well.
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5. Exponentiate the operators {J%, K’} and thereby obtain an irreducible (2a+1)(2b+1)-
dimensional representation of the covering group of the Lorentz group, SL(2,C). This is

called the (a, b) representation of the Lorentz group, or the (a, b) Lorentz representation.

Using this procedure, we can construct an irreducible finite-dimensional representation of
the (covering group of the) Lorentz group for every half-integer pair (a,b), and in doing so
have accomplished the goal of this subsection.

Before moving on to the next section, let us reconsider the 4-vector representation from
this more general perspective. In Eq. (2.118), we found that A2 = B2 = —I—%]l, which
indicates (because % = %(% + 1)) that these representations of A and B correspond to
a=>b= +%. In other words, the 4-vector representation is the (%, %) Lorentz representa-
tion. Although the 4-vector representation is irreducible as an SL(2, C) representation, it is
reducible in terms of the rotation subgroup SU(2). As will be discussed briefly in Subsec-
tion 2.6.2, SU(2) representations can be combined to yield new SU(2) representations. In
particular, if jl and jg are the respective spin-j; and spin-jo generators for unitary SU(2)
representations, then the direct product of their algebras yields a sum of spin-j represen-
tations, where j € {|j1 — jal,...,j1 + jo}. Because J=A+Bis precisely of this form,
the spin-a and spin-b representations implicit in the (a,b) Lorentz representation combine
to yield spin-|a — b| through spin-(a + b) representations. This means, for example, that the
4-vector representation (%, %) encodes both spin-0 and spin-1 content. The spin-1 portion of

the 4-vector representation yields precisely the canonical spin-1 polarization tensors, which

we derive in Subsection 2.8.1.
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2.4 External States and Matrix Elements

2.4.1 Single-Particle States: Definite 4-Momentum

In quantum mechanics, the kets describing physical states are chosen to span the eigenvalues

of certain Hermitian operators corresponding to observable quantities. Specifically, given a

commuting set of observables {Ay1,---, Ay} (so that [A;, A;] = 0 for any pair A;, A;), we
can form a complete set of kets {|aq,- - ,an)} where

Ajlat, - an) = ajlar, -+ an) (2.119)
for each i € {1,--- ,n}. Because each operator A; is Hermitian, each eigenvalue a; is real.

The resulting collection of kets form a complete basis and are equipped with a convention-
dependent orthonormalization condition.

For the duration of this chapter, we use (interaction picture) kets to describe the initial
and final multi-particle states of scattering processes, each of which is built from direct
products of single-particle states. Thus, we first focus on the construction of single-particle
states. Following Wigner’s classification [20], our single-particle states are ultimately chosen
to be (infinite-dimensional) unitary irreducible representations of the Poincaré group which
have definitive mass and total spin (or total helicity, if massless). For now, we will choose
these states so that they only have well-defined 4-momentum (helicity will be added in
Section 2.7). We can choose the components of 4-momentum as quantum numbers because
the 4-momentum operators of Subsection 2.3.2 form a commuting set ([P*, PY] = 0 for all
w,v € 40,1,2,3}) and the 4-momentum operators encode an observable. Because the energy

eigenvalue £ associated with the Hamiltonian H is constrained by the particle’s mass m
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to satisfy E2 = m?2 + p2, we only label the kets with the 3-momentum eigenvalues, i.e. as

|0') = |pz Py, pz). By definition, these satisfy

H|p) = /m? + 7|2 [p) Plj) = p|p) (2.120)

where we recall that H = PY. Because 3-momentum is a continuous degree of freedom, these

kets are normalized by a Dirac delta, such that

(B1p") o< 6% (5 — ") (2.121)

up to some proportionality factor. The exact choice of this proportionality factor varies
throughout the literature. We motivate our particular choice via the Lorentz-invariant phase
space element derived in Subsection 2.2.6. Namely, we would like to normalize our kets
such that we can resolve the identity on this space via an integral weighted by the Lorentz-

invariant factor d3p/ [(2%)32Eﬁ]:

Bpo1
1= [ S (2.122)
(27T)32Eﬁ
This implies
- By 1 -
By = | ———— g5k 2.123
F)= [ s P EIF) (2,123

which is achieved so long as we choose our normalization such that

(Fp’) = (27)* (2B 6° (5 — ') (2.124)
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and so we do. A simultaneous eigenstate of P? and H is also an eigenstate of 152, SO we
could use |p'| instead of E as a quantum number.

This section will focus on single-particle states of the form [p’). However, other single-
particles kets exist which are useful in different contexts. For example, we might define an
alternate collection of 3-momentum kets ||p], 6, ¢), which are normalized like Eq. (2.124)

but expressed in spherical coordinates. Note that, because d3F = |p|? d|F| dQ (where dQ) =

d(cos 0) o),
5~ ) = g o(17] ~ 1) (2 - ) (2.125)
where
52— ) =6(¢p— ¢)d(cosf — cos ) (2.126)

and 0,0" € [0,7] and ¢, ¢’ € [0,27). Thus, the kets ||p],0,¢) are normalized analogous to

Eq. (2.124) if we define,

(11,0, 815”1, 6", ¢') = (27)* (2Ep) Wllg 5(|7| — 17" 82(Q — Q) (2.127)
872E5 )
= (2m) == 071 = 771 07(2 — ) (2.128)

such that

nz/mﬁﬂMﬂl 151,0, 6){151.6. 6]

@r72E;

d|p| 7% }
B ds2 0 0 2.12
/271- 87r2Eﬁ||p|’ 0|71, 0, 9] (2.129)
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on this space. We can go a step further and define kets |E, 0, ¢), where the 3-momentum
quantum number |p| has been replaced with energy Eg= \/WW . Angular momentum
kets defined in analogy to these kets will be useful for deriving the partial wave unitarity
constraints later in this chapter. Note that, dropping the p'subscript on Ej,

op
oF

dE— L a5 and  S(F| - 7)) = H S(E — E') (2.130)

WPl = ‘ 7]

such that we can define a collection of kets | F, #, ¢) which maintain the normalization defined

in Eqgs. (2.124) and (2.128) as long as

(E,0,0|E".0,¢') = (2n)3 % §(E—E)5*(Q—) (2.131)

with
1 —/‘éf dQ |p| 5 |E,0.6)(E.6, 9| (2.132)
where || = vV E? —m?2. For succinctness, we sometimes write Eqs. (2.131) and (2.132)

using wg = |pl/87? = VE2 — m?/8x%. Having derived these, let us return to considering
the kets |p).

Eq. (2.124) expresses a lot of information about the space of 3-momentum kets, but we
can add further structure to this space by using our knowledge of Lorentz transformations: we
know from our considerations of the Lorentz group in Section 2.2.1 that any two 4-momenta
on the same mass hyperboloid can be related via a Lorentz transformation. Consequently,

given a Lorentz transformation A that maps a 4-momentum p to a 4-momentum p’, there
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exists a unitary operator U[A] that maps |p) to [p”) up to a phase:

5"y o< UIA] |P) (2.133)

While it may be tempting to set this to an equality, such an equality would not be well-
defined because there are many distinct Lorentz transformations that take p to p’. There-
fore, to uniquely identify individual kets we follow Wigner’s lead [20] and choose a standard
4-momentum k on each Lorentz invariant 4-momentum hypersurface. Then, for every non-
standard 4-momentum p on a given hypersurface, we choose a standard Lorentz transforma-
tion that maps the corresponding standard 4-momentum k& to p. By choosing these standard
4-momenta and transformations, we eliminate the ambiguity of the above proportionality
and can establish a well-defined equality.

Our specific choice of standard 4-momentum depends on the mass of the single-particle

state in question:

e Massive: For a single-particle state with mass m > 0, we choose the rest frame 4-
momentum k* = (m, 0 ). To obtain any other 4-momentum p having equal mass, we
first boost along z until it has 3-momentum [p'|Z and then rotate via R(6, ¢) to attain

a 3-momentum p. This allows us to define, unambiguously,

—,

7) = U[R(¢, 0)]U[B:(Br—p)] 0) (2.134)

where (j,_,,, = arccosh(Ejz/m).

e Massless: There is no rest frame for a single-particle state with vanishing mass m = 0,

so we instead choose a standard light-like 4-momentum (EE’ Egi) for some choice of
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energy El%" From here the procedure mimics the massive case: to obtain any other
4-momentum p on the light cone, we first boost along z until it has 3-momentum
|P'|2 and then rotate via R(f, ¢) to attain a 3-momentum p. This allows us to define,

unambiguously,

5) = U[R(6,0)]U[B=(Byp)] k) (2.135)

where now Sy, = In(Ej5/Er).

We will revisit these procedures when constructing helicity eigenstates in Section 2.7.

The above discussion glosses over an important (but ultimately inconsequential) tech-
nicality. The only physical states are those which have finite normalizations. Because the
3-momentum kets are normalized to a Dirac delta, they are unphysical, and thus in prin-
cipll cannot serve as external states in physical scattering processes. This reflects the fact
that we cannot in practice construct a system with definite 3-momentum. Even in the most
ideal of experimental conditions, the existence of such a state is forbidden by the Heisenberg
uncertainty principle. Therefore, we should actually perform calculations in quantum field
theory using wavepacket superpositions of states. For example, rather than using a ket |p),
we might instead use the wavepacket

3—.\
) = / é%i BAT)17) (2.136)

where wﬁ((f ) is a three-dimensional Gaussian sharply peaked as ¢ = p. The smoothing this
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wavepacket provides is sufficient to yield a finite normalization:

Bk Bgo11 - L
Wrlin) = | Gy oy am o ¥ 40 1) (2.137)
B7 1
Z/#Q—B (@) (2.138)
q

This is important when deriving results like the LSZ reduction formula (which relates external
states to quantum fields), but as far as matrix elements are concerned we can always take
the limit as the wavepacket becomes a Dirac delta and thereby use the 3-momentum kets as
external states (even if technically we should not). Because this dissertation does not derive

results sensitive to this technicality, it will be ignored.

2.4.2 Multi-Particle States: Definite 4-Momentum

A basis of multi-particle states can be formed by combining single-particle states that each
have a well-defined mass and total spin. For our single-particle kets |p’) with well-defined
4-momenta, such an n-particle basis state would be labeled |p7, pa, -+ ,pn) where each 3-
momentum p; labels a particle with definite mass m;. Mathematically, such a basis state is

related to the single-particle kets up to a phase like so:

These single-particle states are assumedly distinguishable (more on identical particles soon)
and arranged in some canonical ordering based on their distinguishability, e.g. electrons are
listed left of muons and so-on, and electron kets vanish when contracted with muon bras.

We choose the free phase in Eq. (2.139) to be +1 so that equality replaces the proportion-
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ality. However, regardless of the particular phase selected, the multi-particle normalization
is implied by the single-particle normalization Eq. (2.124). By complex squaring both sides

of Eq. 2.139, the multi-particle normalization is found to equal

n
=1

from which the n-particle resolution of identity (without identical particles) equals

=/ [[1 Hirpﬁ

Note that—aside from a Dirac delta to conserve total 4-momentum-—the n-particle Lorentz-

1
- %t Do e .. T D Do - e D 2141
2Ep :| |p17p27 ;pn><plap27 7Pn‘ ( )

T

invariant phase space measure dIl,, is present in the square brackets. The above construction
is sufficient if all particles are distinguishable. In that case, we can imagine an additional
indicator being added to each 3-momentum label in the ket that gives a unique name to
each particle beyond its 3-momentum content. Then, when we perform the inner product
described in Eq. (2.140), we could pair up particles in the bra and ket based on matching
their names to obtain the correct Dirac deltas (and if we cannot find such a collection of
pairs then we know the inner product vanishes). However, if any number of the particles
involved are instead identical, then we must be more careful in our construction of the ket
space.

Two particles are identical if they share all of the same intrinsic quantum numbers—
such as mass, total spin, and gauge transformation properties—and a particular set of such
properties defines a particle species. For example, as listed in Figure 1.2, the particle species

known as “top quark” is characterized by a mass of 173 GeV, total spin %, electric charge
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+%, and triplet transformation behavior under the color gauge group SU(3)¢. Because they

are spin—% particles, each top quark can be measured as either spin up (m = —1—%) or spin
down (m = —%) with respect to a given projection axis; however, the need for a projection

axis indicates that although projected spin is an internal quantum number, it is not an
intrinsic quantum number. Thus, spin up and spin down top quarks are still regarded as
identical in the technical sense. Frame-dependence similarly indicates that 4-momentum (a
possible choice for an extrinsic quantum number) cannot be an intrinsic quantum number,
and particles with different 4-momenta can still be identical. These considerations apply to
color charge as well: the status of a top quark as red, green, or blue (or a specific superposition
of those colors) is a gauge-dependent quality, and so color charge is not an intrinsic quantum
number. (This contrasts with electric charge, which does possess a gauge-independent value.)
Meanwhile, despite the charm quark sharing many of the same intrinsic quantum numbers
as the top quark, the two quarks differ in mass and thus every charm quark is distinguishable
from every top quark regardless of further details.

To demonstrate that the existing machinery is insufficient for the construction of multi-
particle states involving identical particles, suppose we try to use the previous construction
to describe a 2-particle state consisting of identical particles with distinct 3-momenta pj and
pa. If the previous construction truly is sufficient, then (because the particles are identical)
the kets |p7,pa) or |p1,p2) describe indistinguishable physical realities and thus must be

equal up to a phase x:

o oo ! O
91, P2) = X|P2, p1) (2.142)

If we swap the order of the labels in the RHS ket once more (and assume x is agnostic to
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the details of the 3-momenta encoded by the ket4), then we return to the original ordering

and gain another factor of y

S oy ! 5 o
51, 52) = X°[P1, ) (2.143)

where equality only holds true if X2 = 1. Note that X2 is a regular square (i.e. not a complex
square), so this restricts y to equaling +1 or —1. The exact choice of one sign over the other
is an intrinsic property of the particle being considered and is ultimately tied to the spin of
the given particle. Unfortunately, Eq. (2.142) is inconsistent with the normalization defined
in Eq. (2.140): specifically,

2

N AU
0 = (p1, PPz, /1) = X(B1, Balp , i) = x [ [(27m)® (2E;,) 6%(0) (2.144)
i1

which is zero on the LHS, but infinite on the RHS. The origin of this obstruction lies in Eq.
(2.139), where we expressed an n-particle ket as a direct product of single-particle kets. The
ordering in the direct product |p7) ® |pa) is absolute and lacks the exchange symmetry we

desire, e.g.

P1) @ [P2) # x|p2) ® |p1) (2.145)

4This is a nontrivial assumption. Thankfully, even when this assumption is dropped one can still recover
the same end result, although doing so requires a good amount of homotopy theory to demonstrate that the
3-momentum-dependent phase is always removable via ket redefinitions.

1)



To remedy this, we define the following symmetric and antisymmetric kets:

N
1 1
B Py D) = ” E T(BL, Doy 2146
|p1 p2 pn) m[ll \/n_z'] | (pl b2 pn)> ( )

TETN
— — — 1 . — — —
|p1 y P2y 7pn] Ee— Z Slgn(ﬂ-) |7T(p17p27 e ,pn)> (2147)
mﬂE?Tn

where 7, denotes the set of all n-element permutations and sign(w) refers to the parity of a
permutation 7 (+1 for even permutations, —1 for odd permutations). The exact prefactors
in front of each permutation sum are chosen to guarantee upcoming normalization formulas
(Egs. (2.157) and (2.158)). Within the symmetrized case in particular, care must be taken
to account for potential repeats of particle information, e.g. (because we continue to neglect
other quantum numbers) when two identical particles have identical 3-momentum p| = ps.
To be explicit, suppose among the n particle labels there is only N unique labels present.

The n; present in Eq. (2.146) takes into account possible label repeats and equals how many

times a given unique label occurs in the list (7, po, -+, pp). Thus, n =ny+---+np. For
future use, it is useful to define a symbol S(p1, pa, - - - , pr) for this repeated label information:
N
S(p1, 72+ n) = [ [ ! (2.148)
=1
where n; and N are defined for the list (g1, P, - ,pn) in the same way as they are defined

in the preceding paragraph. The identical particle kets defined in Eqs. (2.146) and (2.147)

are fully symmetric and antisymmetric in their particle labeling respectively: that is, given
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a permutation m, they satisfy

|7T<ﬁl 7ﬁ27"' 7]77’7/)) = |ﬁ1 aﬁ27"' aﬁn) (2149)

|7T(ﬁ1 752 y T 75’&)] = Sigl’l(ﬂ') |ﬁ1 7]72 sy T 7]77?,] (2150)

Particles described by the multi-particle symmetrized kets (xy = +1) are bosons and par-
ticles described by the multi-particle antisymmetrized kets (xy = —1) are fermions [21, 22].
The antisymmetry of the latter kets is why we need not worry about repeated labels when
normalizing that case; if any labels are repeated (e.g. two particles have identical quan-
tum numbers, which at present means identical 3-momenta), then the ket will automatically

vanish:

—

p?ﬁap37"'7ﬁﬂ] :_|ﬁ7ﬁap3vuﬁn] - |ﬁ7ﬁ7ﬁ377ﬁn] =0 (2151)

This is an expression of the Pauli exclusion principle [22], which states that identical fermions
are forbidden from having fully identical quantum numbers.

We now address the normalizations of these identical particle states. For multi-particle
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states composed of a bosonic species,

/

=1 i 7=1 n;'!
X Z <7T(ﬁluﬁ27'” 7ﬁn)lﬂl(ﬁ]{7ﬁé7"' 7ﬁ7lz>>
TETN 7! ey
(2.152)
I N
= H H o H / n! Z <7T(ﬁ17ﬁ27"' aﬁn)|ﬁ{ 7p2/7"' 75/1) (2153)
b - i
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(2.154)

N/
1 — — — —, —, —,
H ] Z <7T(p1ap27"' apn>|p{7p2/, 7p7/l> (2155)

0!
7=1 nj! unique wETy

where “unique 7 € m,” means only summing over a subset of permutations 7 that yield unique

lists w(p1, P2, -+, Pn). Consequently, if there is no permutation 7 such that = (5, pa, - -+ ,Pn) =

=) >/

(P1, Py -+ ,71,), then the RHS vanishes. However, if such a permutation 7 does exist, then

N = N/a {nl} = {n;}, and

n
=1
Therefore, returning to the general case,
(BLo B DalDl B, Bp) = > (w1, P2, - Ba)lB1 . B+ 5 B)  (2.157)

unique TEMY,
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which is the normalization we would have obtained from distinguishable particles. For multi-
particle states composed of a fermionic species, the procedure is similar, except that no labels
in the bra nor ket may be repeated (otherwise they will vanish by antisymmetry, as remarked
previously) such that all permutations automatically yield a unique ordering of labels. We
must also be cautious of the parity of the permutations involved. After taking these facets

into account, we ultimately find

[ﬁlvﬁQu"' 7ﬁn|ﬁ]/_7ﬁ£7 717’//1] = Z Sign(ﬂ—) <7T(ﬁlaﬁ27"' Jﬁﬂ)’ﬁ]/_7ﬁ2/7 7]77/1> (2158)

TETN

which is again consistent with the normalization we would have obtained from an analo-
gous assortment of distinguishable particles, aside from an overall phase factor (a potential
multiplicative —1).

These normalizations imply corresponding resolutions of identity. Let us first consider
the bosonic case. To avoid overcounting states, we use the symmetrization of the bosonic
kets to arrange the 3-momentum labels in some canonical ordering. The specific canonical
ordering is unimportant at present, but one such choice is to rewrite all kets |p],- -+ ,Dn)
so that the 3-momentum are organized from smallest-to-largest in magnitude (with some
additional criteria for breaking ties). Whatever the specific choice of canonical ordering, the

resulting resolution of identity equals

n 3
d’p; 1
IL:/ |: Z :| |ﬁ1’ﬁ27“"ﬁn)(ﬁlaﬁ27"'aﬁn| (2159)
unique ;l:[ (27‘()3 2Epi
where the “unique” label on the integral indicates that, for instance, if (p,p2, -« ,pn) =
(p1,P9,- -+ ,py) is included in the integral, then no distinct permutation of (py, 75, ,D},)
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is also included in the integral. Although in principle this uniquely identifies the bosonic
resolution of identity, we would like to rewrite it in a way that does not depend on a spe-
cific canonical ordering. To do so, suppose we lift the “unique” label from the RHS of the
previous equation so that we integrate over all 3-momentum combinations (regardless if
any are related via permutation) and act the resulting operator on a ket |/;1 , EQ o ,l;n)
where all 3-momentum EZ are unique. Because |E1 kg, ,En) is symmetric in its labels,
it will yield a nonzero result when projected onto any of the bras (p1,ps, - ,pn| wherein
(P02, ,Pn) = (/51 kg, ,En) for some permutation 7. Because there are n! such

permutations,

n 3

Bpi 1 o 1. ) . )

[/H |:(27Tp)l32Ep:| |p17 ,pn)(pL ,pn|] |k17 ,kn):n||k1, ,kn) (2160)
1=1 {

Therefore, when acting on a ket wherein no set of quantum numbers is repeated,

1 [ [ &Bp 1
1== []] — | P, Doy Pn) (BL. Ty o 2.161
n'/z]- |:(27T)32Ep2:| |p1ap27 7pn)(p17p27 apn| ( )

The above resolution of identity will not work on a state where there are repeated sets of
quantum numbers, because the coincidence of those sets is not overcounted as much by the
integral. For instance, if p7 # pa then the integral over all momentum would catch both
(p1,P2) and (pa,p) despite their equivalence as far as the corresponding symmetrized ket
is concerned, whereas if i = pp = p then only the single phase space point (p',) will
contribute. Thus, repeated labels yield fewer than n! contributing instances in the integral.

When these considerations are generally applied, we obtain a resolution of identity on the
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whole space of symmetrized kets that does not rely on a specific canonical ordering:

n 3
dpz' 1 1 5 . . . . .
1= ] 2.162

where S is defined as in Eq. (2.148). Furthermore, because we will always be acting the

bosonic n-particle identity on bosonic n-particle states and
(ﬁl 7ﬁ2 T 7ﬁn‘k1 7k2 )T 7kn) = <ﬁ1 7ﬁ2 y T >ﬁn‘k1 7k2 T 7kn) (2163)

(note the bra on the RHS is not symmetrized) we can replace the symmetrized states in Eq.

2.162 with distinguishable states. In doing so, we obtain our final result:

IL/H | [ | 1 A5 (2.164)
E i=1 <27T>32Ep2' n! P15 »Pn)| IP1 »Pn)\P1 »Pn .

When expressed in this form, the bosonic resolution of identity only differs from the distin-
guishable resolution of identity Eq. (2.141) in its multiplicative S/n! factor. As a result,
it is common practice to perform derivations in quantum field theory as if all the particles
involved are distinguishable (e.g. without the factor of S/n!) and then reintroduce the S/n!
factor as necessary in closing. This occurs frequently when considering 2-to-2 scattering
in the center-of-momentum frame. Because the particles in such a process have equal-and-
opposite 3-momentum (which must be nonzero in order to describe nontrivial scattering:
P1 # Do), each identical incoming or outgoing pair contributes a factor of S(p1,ps)/2! = 1/2
relative to the equivalent integral involving distinguishable particles. Formulas throughout
textbooks and the literature will often come with a caveat that an additional 1/2 must be

tacked on for each initial or final pair of identical bosons. This will be the case when we
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derive the elastic/inelastic unitarity constraints in Subsection 2.7.3.

Although we will not need it in this dissertation, for completeness let us next consider
the fermionic resolution of identity. Because a coincidence of particle labels causes antisym-
metrized kets to vanish, the concerns regarding the repetition factor S do not carry over to
the fermionic case. Thus, the fermionic resolution of identity expressed in terms of canonical

momentum ordering is

Bp; 1
12/ [ Z—] P15 Pn] [P1,+ , Dnl (2.165)
unique Zzl_Il (27)3 2Epi " "

and generalizes to

Sl 1 . - .
1= 1| mmssm| o lP BB B (2.166)
(2m)3 2E), | n!
1=1 () '

As mentioned following the derivation of the bosonic resolution of identity, derivations in
quantum field theory are often performed while assuming all particles are distinguishable
and any necessary factors due to identical particles are appended after the fact. In the
fermionic case, that factor is 1/n!, which again simplifies to 1/2 for each identical fermion

pair in 2-to-2 scattering processes.

2.4.3 External States: (General Quantum Numbers

While the previous results were derived and motivated by considering 4-momentum eigen-
states, they readily generalize to kets labeled by other sets of quantum numbers. Suppose

we have a complete set of single-particle kets |a) that resolve the single-particle identity

82



according to

1= /dﬂ(a) la){a (2.167)

where [ dII(«) is in principle some combination of sums (for discrete quantum numbers),
integrals (for continuous quantum numbers), and multiplicative weights, and with normal-
ization

(aldy =w(a)d (2.168)

a,o

where 6, s is a product of Kronecker deltas (for discrete quantum numbers) and Dirac deltas

(for continuous quantum numbers). Together, these imply
o) = /dH(a) w(«) 504’0/ o) — dll(a) = ——da (2.169)

where da is the differential integration element of the continuous quantum numbers specified
by |a). For example, in the previous subsection, « = p, such that w(p) = (2#)3(2Eﬁ)
and da = d®p. Because kets labeled by continuous quantum numbers have Dirac delta
normalizations, wavepackets corresponding to those continuous quantum numbers must be
utilized in practice (refer to the discussion at the end of Subsection 2.4.1 for more details
on this use of wavepackets). The construction of multi-particle states goes through without
significant modification (e.g. two labels a and o/ are now considered repeated if all of the

quantum numbers between them are equal), such that we define the distinguishable n-particle
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state as

A, o) =|a)) @ @ |ap) (2.170)

and the identical n-particle states as

Iala"'7an):

1 Z [m(ar, a9, - an)) (2.171)

ValS(ag, - an) nemn

laq, -+, an] = % Z sign(m) |m(aq , 0, an)) (2.172)

T mETn

for bosons and fermions respectively. In that same order, the resolutions of identity for each

of these spaces equal

n

1=/Hdn(a,-) lag, - an){ag, -, ag] (2.173)
=1
- 1

IL:/HdH(aZ-) — 8o, an) lag -+ an){ar, s an (2.174)
=1

n
1
= /Hldﬂ(%‘) lar s san)lar - an (2.175)
1=

and the kets have normalizations

n

<O[17'" ’anlaﬁj... 7a;L> = Hw(al) (50%,0/. (2176)
i=1 !

(O&l,"' 7an‘a,17"' 70/n): Z <7T(Oél,"~ >an)|0/17"' ,Oé;1> (2177)
unique TETY

[041 y T aan|0/1 y Tt 70551] = Z Sign(ﬂ-) <7T(Oél y T 704n)|0/1 y T ’a’/rl> (2178)
TETN
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where S is defined as in Eq. (2.148). These general results will become relevant as we
consider maximally-commuting sets of observables and thereby introduce more quantum
numbers to our state labels. Note the fermionic states still obey the Pauli exclusion principle
([,a,--+] = 0). Also note the rule of thumb that an extra factor of 1/2 should be in-
cluded per identical particle pair in a 2-to-2 COM scattering calculation that was otherwise
performed with distinguishable particles carries over to these more general descriptions as

well.

2.4.4 S-Matrix, Matrix Element

We can use the multi-particle states defined in the previous subsection as our initial and
final states in scattering processes. The collection of all states regardless of differing particle
numbers and particle species content yields a Fock space, which equals the direct sum of
the zero-particle, single-particle, two-particle, etc. Hilbert spaces. Scattering processes are
modeled as beginning in the infinite past (at time ¢ = —c0) and ending in the infinite future
(at time ¢ = +o00) with the interesting dynamics occurring near ¢ = 0. A Fock space state
set up in the infinite past is called an “in state”, whereas a Fock space state set up in the
infinite future is called an “out state.” We can evolve an in state to an analogous out state

via a generalization of the time-evolution operator S called the S-matrix:

§|i>111 = [#)out (2.179)
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from which the probability that an initial particle scattering state |i);, becomes a final

particle scattering state |f)out can be calculated via

out(fmout = 0ut<f"§|i>in (2'180)

The S-matrix S by construction commutes with P# and J because of its relation to the
time-evolution operator. Because our in and out states will always have definite total 4-
momentum, this means we will always generate a total 4-momentum conserving Dirac delta

function when calculating out (f]7)out, which we can preemptively factor out:

out (f1i)out = out (f|S18)in = out (F1)in +i(27)*6%(0y — pi) out (T (pi = pp)lidin  (2.181)

where the argument “p; = p¢” reminds us that the newly-defined 7-matrix T has already had
a total momentum conserving Dirac delta removed. Relative to the T-matrix, the (Lorentz-

invariant) matrix element equals

~

Mt = out{ [T (pi = pp)li)in (2.182)

The square of a matrix element M;_, r is related to the probability that a given scattering
process i — f will occur, and is a central topic of this dissertation. A matrix element is also
sometimes called a scattering amplitude.

Before moving on to a general discussion of 2-to-2 scattering in the next section, let us
consider the energy units of a matrix element (keeping in mind that we use natural units, i.e.
¢ =h=1). Its units will depend on the units of our out states, which are in turn determined

through the out state normalization. For example, we previously described single-particle
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kets |F) normalized via (F|p’) = (27)3 (2Ep) 83(p — p"), such that the inner product (F|p")
has units of (Energy)~2 and the single-particle ket |7") has units of (Energy)~!. This means

™ and

the units of an n-particle ket |p, pa, -+ ,pn) = |P1) ® |P2) ® - -+ & |pp) are (Energy) ™
depend on the number of particles considered. Thus, by using such kets to describe our out
states, the inner product out(f|i)out corresponding to an n;-to-n f scattering process will have
(nj+ng)

units (Energy) . Therefore, in order to be consistent with Eq. (2.181), the matrix

)4_(ni+nf ), Although our external state kets will

element M;_, ; must have units (Energy
ultimately have a helicity quantum number in addition to well-defined 4-momentum, this will

not change the units of our out states, and so this unit argument also carries through there.

Note that, in particular, a 2-to-2 scattering matrix element (n; = n = 2) is dimensionless.

2.5 2-to-2 Scattering

This dissertation is largely concerned with 2-to-2 scattering processes, so it is important that
we establish a consistent choice of conventions relating to those processes. Subsection 2.5.1
describes our parameterization of 2-to-2 scattering processes in terms of the Mandelstam
variables s, ¢, and w. Subsection 2.5.2 defines the center-of-momentum (COM) frame and
(in this frame) rewrites the aforementioned ¢ and « in terms of s and the outgoing scattering
angles 0, ¢. Subsection 2.5.3 describes how to reduce a generic Lorentz-invariant integral

over the final state particle pair degrees of freedom into a standard angular integral in the

COM frame.

87



2.5.1 Mandelstam Variables

A 2-to-2 scattering process refers to the evolution of a two-particle state in the infinite
past into a two-particle state in the infinite future. For the time being, we will label the
particles in the incoming pair as 1 and 2, and the particles in the outgoing pair as 3 and 4.
The initial and final two-particle states can be defined by various quantum numbers. For
the duration of this dissertation, we will choose each external single-particle state to have
definite 4-momentum p; and helicity \;. The discussion of helicity is delayed until Section
2.7. By definition, an external particle with 4-momentum p; has mass m; = \/]972 .

Diagrammatically, we express the aforementioned generic 2-to-2 scattering process by:

1

which is intended to be read from left to right, where 4-momentum conservation guarantees

p1+p2=p3+ D4 (2.183)

and arrows indicate the flow of 4-momentum through the diagram. A 2-to-2 scattering
process can often occur in a variety of ways via a variety of interactions. For example,
depending on the details of the field theory describing this scattering process, the (1,2) pair
might be able to directly become a (3,4) pair through a local quartic interaction. We call a

diagram corresponding to this specific subprocess a contact diagram:
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contact

Furthermore, if the appropriate cubic interactions are present, then this 2-to-2 scattering

process is also facilitated by various channels of virtual particle exchange, i.e.

1 3 1 3 1 3
- Ptl 5 Pu l 5
D2 P4 P4
b2 b4 b2
2 4 2 4 2 4
s-channel t-channel u-channel

where 5 denotes the virtual particle being exchanged in each diagram. 4-momentum is
conserved at each vertex, such that ps = p1 + p2, and p1 = pr + p3, and so-on. These

diagrams are the motivation for the Mandelstam variables [23], which are defined as follows:

s=p; = (p1+p2)° = (p3+pa)° (2.184)
t=pi = (p1 —p3)* = (s — p2)° (2.185)
u=py = (p1—p1)® = (p3— p2)° (2.186)

Note that s (¢; u) is the invariant momentum-squared that flows through the virtual par-
ticle in an s-channel (¢-channel; u-channel) exchange diagram. Although the Mandelstam

variables are motivated by these exchange diagrams, we may express any 2-to-2 scattering
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process in terms of s, t, and u. Indeed, we will be using s as a convenient variable to track
energy growth for all kinds of diagrams.
Mandelstam s, ¢, and u are not independent variables. For example, their sum is con-

strained: through direct evaluation, we find

s+t+u=(p+p2)?+(p1—p3)® + (p1 — pa)? (2.187)

= Pt +p5 +p3 + i + 2p1 - (p1+p2 —p3 —p4) (2.188)

=0 by 4-momentum conservation

such that
4
stt+u=Y m; (2.189)
i=1

Furthermore, the Mandelstam variables are real-valued with restricted range when describing

experimentally-allowed processes. Mandelstam s, for example, is never smaller than
Smin = max |(m1 +mg)?, (m3 + m4)2] (2.190)

which corresponds to both particles of either the initial or final particle pair being at rest, de-
pending on which pair is more massive overall (because of 4-momentum conservation, heavier
particles at rest can become lighter particles in motion, but not vice-versa). Consequently,
Mandelstam s only vanishes when all external particles are massless and the 3-momenta
between the particles in each pair are collinear. Because collinear massless wavepackets will
never collide, s will never vanish for nontrivial scattering processes.

Until now, our discussion has been frame independent. Let us now consider a spe-
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cial frame that is particularly useful for simplifying scattering calculations: the center-of-

momentum frame.

2.5.2 Center-Of-Momentum Frame

As remarked in the previous subsection, s = (p1 + p2)2 is nonzero for any nontrivial 2-to-2
scattering process. Like a massive single-particle state with positive squared 4-momentum,
such a process possesses a rest frame, wherein the particle pair’s total 3-momentum vanishes:
1+ po = 0. This property (in addition to some coordinate choices we detail shortly)
defines the center-of-momentum (COM) frame. So long as s > 0, we may always use some
combinations of boosts and rotations to enter the COM frame. For example, we only need
an appropriately-chosen boost to ensure the total 3-momentum of the system vanishes, or in

other words that the incoming particles have equal-and-opposite 3-momenta:

U
_l’_
S
Il
[e=l}

(2.191)

which (via 4-momentum conservation) implies the outgoing particles have equal-and-opposite

3-momenta as well:

S
+

=
I
=1

(2.192)

Geometrically, this means that in the COM frame the 3-momentum of the incoming particle
pair lie on a common line through the origin and the 3-momentum of the final particle pair

lie on another. Furthermore, this boost uniquely determines the 3-momentum magnitudes
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of the external particles: namely,

P1] = |p2| = P(1,2) P3| = |pa| = IP(3,4) (2.193)

where

P(i,j) = \/ b5 = mp2) [ = ] (2.194)

Next, we can use a rotation to orient the 3-momentum of particle 1 in the Z direction (or,
equivalently, we can define the Z direction of our coordinate system such that it follows pj

so long as |p1| is nonzero), such that

p1 =Bt 4+ |ph] 2 (2.195)

po = Eot —|py| 2 (2.196)
and

p3 = Est+ |ps| p3 (2.197)

py = Eyt — |P3] p3 (2.198)

where the basis 4-vectors were defined at the end of Section (2.2.1). This completes our
definition of the COM frame. We choose to express p3 in spherical coordinates with respect
to 2 in the usual way, such that [ﬁ?ft] = (0,984, 8954, Cp). We remind the reader that all
of the external energies are restricted by the on-shell condition ml2 = p% = Ef — \ﬁi|2, such

that (via Eq. (2.193)) all external 4-momenta can be expressed in terms of the s, 6, ¢, and
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the particle masses.
Because the 3-momenta of the incoming particles 1 and 2 are equal-and-opposite in the
COM frame, Mandelstam s reduces to the square of the total incoming energy, which we

denote Ecowm:

s = (p1 +p2)® = (BE1 + B2)? = Bl (2.199)

When context makes ambiguity unlikely (i.e. it is apparent that we are not referring to a
single-particle energy), we will drop the label from Ecoyp and simply write s = E2.
Like the external 4-momenta, we can express the Mandelstam variables ¢t and u in terms

of 5, 6, and ¢. To do so with succinctness, it is useful to define

1
P(i.j. k1) = \/ L[5 = 2 s+ = ), )| (2200

where the previously-defined P(7, j) equals P(, j, 4, j). Then the Mandelstam variables equal

t(s,0) =2 { —P(1,2,3,4)% + cos(d) P(1,2) - P(3, 4)} (2.201)

u(s,0) =2 { —P(1,2,4,3)% — cos() P(1,2) - 113(3,4)} (2.202)

Note these are all independent of ¢, which cancels out despite its presence in p3 and py.

For future use in elastic processes, it is useful to define one last simplification of P(i, j, k, [):

1
P(i) = P(i,i,i,i) = 7y [s — 4m? (2.203)

For example, in elastic scattering (where all external particles are of identical particle species,
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say, 1),

t(5,0)|opastic = 2P(1)? { —1+ cos(e)} = —%(s — 4m?2)[1 — cos(6)] (2.204)
(8, 0)|aastic = 2P(1)2 { —1- cos(e)} = —%(s — 4m3)[1 4 cos(6)] (2.205)

Before discussing the quantum theory of 2-to-2 scattering, there is one more result we require.
This subsection demonstrated that once an incoming energy Econ = /S is set, the only
remaining degrees of freedom (ignoring internal degrees of freedom like helicity) correspond
to the outgoing angles 6 and ¢. To derive the optical theorem (in Subsection 2.5.4) in a
form that then allows us to derive the partial wave elastic/inelastic unitarity constraints (in
Subsection 2.7.3), we would like to rewrite a 2-particle Lorentz invariant integral in terms of

the remaining variables # and ¢. This is the subject of the next subsection.

2.5.3 2-Particle Lorentz Invariant Integrals in the COM Frame

There are several occasions when an integral over a final state particle pair is necessary. For
example, such an integral is required when we calculate the total cross-section for a given
2-t0-2 scattering process and are uninterested in the specific outgoing angle of the final pair.
This kind of integral also occurs when deriving the partial wave elastic/inelastic unitarity
constraints, which are important for this dissertation.

For the 2-to-2 scattering process (1,2) — (3,4), an outgoing particle pair integral is

typically written as

_ d3p3 1 d3p4 1
§= / {(%)3 ZEJ [(2@3 QEJ {@”)454(?1 +p2 = p3 — pa) J F(p3,ps)  (2.2006)

.

2-Particle Lorentz-Invariant Phase Space
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independent of frame, where F' is a generic function of the final particle 4-momenta. We aim
to use the four Dirac deltas present to eliminate four of the six integration parameters and
thereby rewrite § as a two-dimensional integral. In particular, we perform this integral in
the COM frame, and so the goal is to have those final two integration parameters be 6 and
¢, which describe the direction of p3 relative to p1 = 2.

In the COM frame, p; = (E1,p1) and po = (F2, —p1), and the Dirac delta becomes

54 (p1 + pa — p3 — pa) = (Econt — B3 — Ey) 8 (73 + pa) (2.207)

where Fcov = E1 + E2. The 3-vector Dirac delta 63 (p3 + py) allows us to immediately

eliminate the d®p, integral by constraining jiy = —pj3, such that we may write
1 d3ps
S=162 d(Ecom — E3 — Eq) F(p3, pa) (2.208)
167 E3E4 13'4:—53

Meanwhile, the integration measure d3p3 is expressible in spherical coordinates like so
By = |72 dli3] dQ = * |53 | 2 d 2.209
p3 = |p3|” d|p3] 5 P3] d|ps| (2.209)

where df2 = dcosf d¢ contains the integration variables we wish to retain. Therefore, we
want to use the final Dirac delta 6( Econ — E3 — E4) remaining in § to eliminate the d|p3|?

integral. To do so, we must reparameterize the Dirac delta using the following property:

5($ - 37*)
W@ = 2 Tar (2.210)
ok 5. f(2x)=0 ()|

which sums over zeroes of f(x). As mentioned in the previous section, 4-momentum conser-
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vation is satisfied (and thus Ecom = E3 + Ey) precisely when |p3| = P(3,4). Furthermore,

using the existing py = —p3 constraint,
% Ecom — B3 — E4} = % {ECOM - \/77”% + p3f? - \/mi + \ﬁ3l2} (2.211)
9|p3| 0|p3|
1 1 1
=3 + (2.212)
V32 /md+ |53
1E3+ Ey
— - T 72 2.213
2 E3Ey ( )
Hence, utilizing the fact that the Dirac delta vanishes whenever Econ # E3 + Ey,
2F3E, .
S(Econ — By~ B0) = 551 - (3,47 (2214
COM
and, thus,
P(3,4
5= o [ a2 Flp (2.215)
™ LCOM ﬁgZP(3,4)ﬁ3=—ﬁ4

where P(3,4) is defined in Eq. 2.194. This is the desired result.

2.5.4 The Optical Theorem

The S-matrix (defined in Subsection 2.4.4) is a unitary operator on Fock space that encodes

how initial particle configurations evolve into final state particle configurations. Because the
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S-matrix is unitary, S-matrix elements must satisfy

nTl8)in = 1n (7151810 Z / ) w15 Pous out(FIS1)im (2.216)

- Z/dﬂ out f|5’ >1n out<f|S| Din (2.217)

where we have inserted the Fock space resolution of identity and embedded the necessary
state normalization weights into dII(f). We would like to recast this constraint in terms of

the corresponding matrix elements M;_, r and M;_, £ To do so, suppose p; = p;, and note

0ut<f|g|g>;kn out<f|g|i>in = [out<f|g>;kn - i<277)464(1ﬁ' _pf) M;k%f}
Joun i+ 620150 = ) M (2218)
= in<€|f>0ut out<f|i>in + i(27r)454<pf - pi) {Mi—>f out<f|g>' M;kﬁf 1n< |f>0ut

2
+ [(27r)454(p¢—pf)} ME L Mg (2.219)

i—f

The squared Dirac delta in the final term can be understood by considering a finite volume
universe wherein the Dirac delta is replaced with a Kronecker delta; however, we simply use
this expression as written in the RHS of Eq. (2.217), and eliminate one Dirac delta from the
pair via ) ¢ JdII(f). (If we had not assumed p; = p; before now, the Dirac delta pair would

have enforced their equality for this term.) In entirety, this substitution yields

—i {MHZ. HZ} Z / dii(f) (2m)'s (p; — pp) M Misy (2.220)
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In particular, if 7 = 4 (and not just p; = p; as previously assumed), then

2Mi) = 3 [ () a5 i = )Mo P (2221)
!

where J denotes the imaginary part of its argument (R similarly denotes a real part). Eq.
(2.221) is the optical theorem, which says twice the imaginary part of the forward scattering
amplitude M;_,; strictly equals M;_, r squared and summed over all possible final states.
In other words, the contribution of any individual channel |M,_, f\z is bounded above by
j[Mi—>i]~

We are interested in applying the optical theorem to 2-to-2 scattering processes in the
COM frame. To facilitate this application, first divide the sum over processes on the RHS of
Eq. (2.221) into two groups: n-to-2 scattering (f = fa) processes, and the rest. This yields

two sums

> [ani a6y, - piMipl+ Y [ @018 - )Ml
72 75

J/

=Cr#1,70

(2.222)

If we assume our external states have well-defined 4-momentum quantum numbers, then (in
addition to any sums and integrals over other quantum numbers) the first term contains an
integral precisely of the form we simplified in the previous subsection. Therefore, we can
rewrite it as

P(3,4)

[0 @05 e = p0)£0.0) = 1 )

/dH(fé") /dQ f(0,9) (2.223)
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where dII(f5) includes any sums or integrals quantum numbers besides 4-momenta. Substi-
tuting this into Eq. (2.221), the optical theorem now equals
~ P(3,4
M) = Y T [ a0 Mg+ Cpap, (2224)

1672 E;
2

We will further reduce this in Section 2.7 with the help of the partial wave amplitude de-
composition. However, before we define the partial wave decomposition of a matrix element,
we first recount the rotational machinery, notation, and conventions of quantum mechanics

which the decomposition relies on.

2.6 Angular Momentum

As remarked in Subsection 2.3.2, angular momentum operators J generate representations
of the Lie group SU(2) despite being associated with representations of SO(3) before their
quantum promotion. This section reviews the derivation of all irreducible finite-dimensional
unitary representations of SU(2), how SU(2) representations are combined using Clebsh-
Gordan coefficients, and the Wigner D-matrix. Because these topics are standard in quantum
mechanics texts, we outline results for the sake of reference (and establishing convention)
rather than pedagogy. For those readers interested in further details, [24] is a particularly
complete resource on these topics (especially for proving certain Wigner D-matrix properties

which we recount without proof).
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2.6.1 Finite-Dimensional Angular Momentum Representations

The angular momentum operators satisfy the SU(2) commutation relations

(T3, Jj] = i€iji T — Jx J=iJ (2.225)

for i,j € {x,y,z}, which we obtain from the 4-vector equivalent Eq. (2.41) by replacing
J; — —iJ; according to the quantum promotion procedure described in Subsection 2.3.1.
Because we desire unitary representations of SU(2), we assume each angular momentum
operator J; is Hermitian.

As before, each angular momentum operator commutes with the total angular momentum

operator .J 2, which is the only Casimir operator of SU(2): for example,

., J 23: [z, J5) 05+ 4Tz, T (2.226)
j=1

= [z, ol S + [z, Jy]Jy + oz, Ju] + Jy[Jza J@/] (2.227)

— idyy — idpdy +idydy — iJyJy (2.228)

=0 (2.229)

which, by cyclic symmetry, means

[J,J?% =0 (2.230)

As is standard, we choose our maximally-commuting set of observables in SU(2) to be
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{J2,J.}, such that our kets satisfy
T?|j,m) = ¢jlj,m) Jz|j,m) = m|j,m) (2.231)

for a soon-to-be-determined real number Cj- We also choose to normalize these states such
that

(Gomlj'sm') =65 18, (2.232)

m,m

At this stage, j is simply a label associated with the eigenvalue c¢;, and has not been defined
as any particular number (yet). It is in this basis that we begin the process of deriving all
irreducible finite-dimensional representations.

Just as we were able to relate kets with different 4-momentum on the same mass hyper-
boloid using Lorentz transformations, we can relate different eigenstates of J, having the

same eigenvalue of J?2 via the ladder operators

The ladder operators cannot change the eigenvalue of J? because J? commutes with every

T _

angular momentum operator and thus J4+ as well. Note that J. = J&, where { denotes the

Hermitian conjugate. Also note that

[J., Je] = £ [Ty, J ] =2J. (2.234)
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and

Jedz = (Jo £idy)(Jo Fidy) = Tz + I} FilJo, Jy) = J* — J2 £ J. (2.235)

such that

J2=Jrde+J2F . (2.236)

The [J,, J+] commutator allows us to confirm that the ladder operators do in fact change

the eigenvalue of J, in a well-defined way:

JoJxlim) = |Jxde + [Tz, Je]| |5, m) (2.237)
= |J+J: £ Ji} |J,m) (2.238)
= (m£1)J+[j,m) (2.239)
or, in other words,
Jxlj,m) o |j,m £ 1) (2.240)

up to some overall phase and normalization. Therefore, by repeatedly applying instances of
J+ and J_ to a ket |j,m), we can seemingly construct a ket |j, m + n) with J, eigenvalue
m + n for any integer n. However, we desire a finite-dimensional representation, for which

there must exist some real number myax = m + n such that its eigenvalue cannot be raised
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any further, e.g. Jy|j, mmax) = 0. For this state,

j2|ja mmax> = J—J—i— + J,g + Jz} |], mmax> = mmax(mmax + 1)|ja mmax> (2~241)

Thus, for this maximal J, state with J, eigenvalue mpax, it has definite J? eigenvalue
Mmax(Mmax + 1). Because [J,, J 2} = 0, all J, eigenkets that are related to each other by
ladder operators have the same J?2 eigenvalue. With this information, we now imbue j with

a definite meaning by defining j = mmax. Hence, |j,m) = |mmax,m) and the earlier c;

equals j(j + 1), such that
Jelj,m) = mlj,m) T2(g,m) = 50 + 1), m) (2.242)

By combining J,J1|j,m) = (m £ 1)J+|j,m) from Eq. (2.239) and

Gy ml T Jxlgm) = (G, ml x|, m) (2.243)
= (j,m| [ﬁ ~ 27 Jz} 7, m) (2.244)
= [j (G+1)—m”7F m] 0 i1 Oy (2.245)

we find (noting j(j+1) —m? Fm = (j Tm)(j £ m+1) as to rewrite the denominator factor

into a standard form),

J+

) = e T Em T D)

15, m) (2.246)

where an undetermined phase has been set to 1; this is called the Condon-Shortley phase

convention.
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Note that the demand for a finite-dimensional representation works on both extremes
of the J, eigenvalue spectrum: instead of demanding Jy|j,m) vanish for some value of
m = j = mmax (i.e. the J, eigenvalue can be raised no further), we can seek the value
m = My, such that J_|j, m) vanishes (i.e. the J, eigenvalue can be lowered no further).

For this value, we find

3+ Djy muin) = J 217, Mimin) =

J-I-J— + Jg - Jz} |]a mmin> = mmin<mmin - 1)‘.7? mmin>

(2.247)

which implies my,;;, must equal either —j or j + 1. Because m,;, cannot exceed mmax by
definition, it must be the case that my,;,, = —j. Finally, because the ladder operators only
change J, eigenvalues by integer amounts, the range of the spectrum j — (—7) = 2j must be
an integer as well, and thus 7 must be either a nonnegative integer or a positive half-integer.
With this, our construction of the representation is complete.

To summarize: there exists a (2j + 1)-dimensional unitary representation of SU(2) for
every j € {0, %, 1, %, ...}, each of which is composed of kets |[jm) that satisfy f2]jm> =
Jj(G+1)|jm) and J.|jm) = m|jm) for m € {—j,—j+1,...,7}. We choose our normalizations

and phases for these states as follows:

(Gmlg'm’) =6, 16, (2.248)
such that
+oo  +Jj
1= Y lmm (2219
J=0m=—j
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and

J+
VUFm)(GEm+1)

jym£1) = |, m) (2.250)

where Ji+ = J; £14Jy. For each rotation R(d') (an element of SO(3)) describing a rotation
by an angle |@| about a rotation axis &, we can write a unitary rotation operator U[R(d )]
(an element of a representation of SU(2)) via exponentiation of the generators in the usual

way:
U[R(A)] = Exp { —id - f} (2.251)

A (27 + 1)-dimensional unitary representation is useful when, for example, describing the
physics of a spin-j massive particle.

These representations are also useful for describing the helicity eigenstates of a spin-j
massless particle, for which two helicity values are possible: A = +j (unless j = 0, in which
case only A = 0 is available). However, because massless particles lack longitudinal helicity
modes, we generally cannot relate the A = +j and A\ = —7 helicity states via the ladder

operators. Instead, we relate them via the reflection operator
Y = U[Ry(m)|U[P] (2.252)

where U[P] is a unitary quantum equivalent of the 4-vector parity operator P [25]. Because

the angular momentum generators commute with the parity operator ([J*,P] = 0), the
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angular momentum eigenstates are at most changed by a phase

U[P][j,m) o< [, m) (2.253)

whereas, as remarked (for instance) in [25],

U[Ry(m))lj,m) = e™V]j,m) = (=1)/ 7|, —m) (2.254)

In all, we choose these phases such that

where the phase n = £1 is called the parity factor and its precise value depends on the
species of particle considered. Note that when acted on a 4-momentum p, the equivalent
4-vector representation of Y yields Y#,p¥ = Ry(m)"' , (E,—p)" = (E, pz, —py, p=), such that

Y leaves (for example) p, invariant.

2.6.2 Adding Angular Momentum Representations

Angular momentum eigenstates can be combined via a direct product in the usual way to

form a state |j1,mq, jo, mo) defined as

1J1,m1, jo, ma) = [j1,m1) @ |2, m2) (2.256)
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with eigenvalue content

T 1. mu, ja.ma) = j1(j1 + 1) 1. m1, jo. ma) (2.257)
(J1)z 1, m1, J2, mo) = mq |51, m1, jo, m2) (2.258)
j22 1j1,m1, j2, m2) = ja(j2 + 1) [J1,m1, j2, m2) (2.259)
(J2)= 41, m1, j2, ma) = ma |j1,m1, j2, m2) (2.260)

However, there is another basis for these two-particle states which is sometimes more useful.

Define the two-particle total angular momentum operator as

J=J1®1ly+11®J (2.261)

wherein 11 and 19 are the identity operators on the first and second particle Hilbert spaces
respectively. Usually the identity operators are understood from context, and we simply

write J = Jq + Jo. Because [(jl)l, (jg)]] =0 for all i,5 € {z,y, 2},

[Jis T3] = [(J1)i> (J1)] + [(J2)i (J2)5] = € [(J1)k + (J2)i] = €iji (2.262)

such that J acts like the usual total angular momentum operator. Furthermore, [j 2 J?] =

[f2,f22] = 0, and so we can choose {jf,(]?,jz,(]z} as a maximally-commuting set of
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observables for a basis of states |ji, jo, J, M), with eigenvalue content

T2 g1, g, J, My = j1(j1 + 1) g1, o, J, M) (2.263)
T3 1. g2, J, M) = jo(ja + 1) |j1, jo. J. M) (2.264)
T? i1, 2, J, M) = J(J + 1) |1, ja, J, M) (2.265)
T2 |j1, g2, J, MY = M |1, ja, J, M) (2.266)
Given eigenvalues j1 and jo, the E eigenvalue only exists for J € {|j; — j2|,...,J1 + j2}-

We can convert between the |j1,m1, jo, m9) and |j1, jo, J, M) representations using com-

pleteness, e.g.
+1 +72
g MYy =" > > |j1,ma, g2, ma) (1, ma, ja, mali, da, J, M) (2.267)
m1=—Jj1 ma=-72

where each (j1,mq, jo, malj1, j2, J, M) is called a Clebsch-Gordan (CG) coefficient. Physi-

cists typically use existing resources (such as [1]) rather than calculating CG coefficients

themselves. The particular CG coefficients we require in this chapter are those used to com-

bine two j1 = jo = 1 representations into a J = 2 representation. Explicitly, this J = 2

representation equals

12, 42) = |1,41) @ |1, £1)

1
12,+1) = —{|1,i1>® 11,00 + [1,0) |1, £1) (2.268)
V2
1
2.0)= - [u,in ©[LF1) + [1LF1) ® |1, £1) +2[1,0) © [1,0)

where we suppress the j; = jo = 1 labels of the |j1, j2, J, M) kets on the LHS.
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2.6.3 Wigner D-Matrix

In quantum mechanics, each rotation is replaced with a corresponding unitary operator.

Thus, the generic rotation R(¢,6,1) expressed in terms of Euler angles (¢, 0,1) becomes

U[R(9,0,4)] = U[R.(¢)]U[Ry(0)]U[R=(¢)] (2.269)

where
U[R; ()] = Exp[—iaJ;] (2.270)

for i € {x,y,2}, and J = (Jz, Jy, J>) are the angular momentum operators. We previ-
ously defined a restricted version of the Euler angle decomposition U[R(p)] = U[R(¢,0)] =
U[R(¢,0, —p)] which is sufficient for mapping a 3-momentum |p|Z to a 3-momentum p. The
inverse of U[R(¢,0,v)] is Z;I[R(gb, 0,0)] = U[R(—1, —0, —¢)].

Keeping in mind that the rotation operator (being a function of the angular momentum
operators alone) cannot influence the eigenvalue of J 2 the Wigner D-matrix D% Fmi is

defined as follows:

Dl mi (6,0, 85 i = g mgIULR (9,0, 0], my) (2:271)

Note the Kronecker delta d; fo3i OB the LHS. The Wigner D-matrix is sometimes referred to as
the wavefunction of a symmetric top due to the Euler angles providing a natural coordinate

system for a symmetric top. Because J;|j, m) = m|j, m), we can simplify the z-axis rotations

from Eq. (2.269) when evaluating the Wigner D-matrix. Doing so defines the Wigner (small)
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d-matrix d‘fﬁ £mi relative to the Wigner D-matrix:

Doy (0,0,0) 055, = e T G U LRy (0] ) (2.272)

—q +m; ] -
= ¢ O L (6) 65 (2.273)
In particular, when using the restricted Euler angle decomposition, we find

having set j = j; = jf.
The Wigner D-matrix satisfies several convenient properties. For example, if § = 0, then

U[R(¢,0)] = U[R(¢,0)] = 1, such that

Other convenient properties include a relation describing orthogonality among instances of

the restricted Wigner D-matrix:

i i 47
J1* A\ )2 A .
/dQ Dml/\(p) Dm2)\(p) = 11 6]102 5m1’m2 (2.276)

and the ability to construct a 6-dependent Dirac delta function from the Wigner small d-

matrices:

5(cosh — cosf) = 3 (2j a 1) CANGIING (2.277)
j
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These are proved in, for example, [24].
The Wigner D-matrix is an important element of relativistic scattering calculations in-

volving helicity eigenstates, which we are now prepared to address.

2.7 Helicity

2.7.1 Single-Particle States

In Subsection 2.3.4, we refined our focus to eigenstates of the Hamiltonian H with definite
mass M and spin s, and thereby defined the helicity operator A as

J-P

A E2_M2

(2.278)

on those states. As demonstrated then, A commutes with P?, ]32, Jt, fz, and P2. This
yields (among others) two maximally-commuting sets of observable operators, both of which

involve the helicity operator:
e Option 1: PH A
e Option 2: H, J2, J., A

in addition to the Poincaré Casimir operators, the mass operator P2 and the Pauli-Lubanski
pseudovector (which determines internal spin/helicity). The first option will describe our
external one-particle states. However, the second option allows us utilize symmetries of the
S-matrix and thereby derive the partial wave unitarity constraints. This section investigates

the relationship between these two options.
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Suppose we utilize Option 1, so that our one-particle states |p, \) satisfy
Hlp.2)=Elp,A) Pl =Fp2)  Alp,A)=Alp.A) (2:279)
and are normalized according to
(p, Alp', Xy = (2m)% (2E5) 8 (7 — ") 6y v (2.280)

The collection of helicity eigenstates having 3-momentum p’ in the +2 direction, i.e. 4-

momentum pt = (E,0,0,VE2 — M?), are automatically also .J, eigenstates:
P A = Alp' A = AP, A (2.281)

This feature allows us to derive helicity eigenstates from .J, eigenstates (and is a large part
of why Section 2.6 is included in this dissertation). In doing so, we also require several other

features of the helicity operator:

—

e Rotations Preserve Helicity: Because [A,J| = 0, the helicity eigenvalue of a 4-

momentum eigenstate is unchanged by rotations.

Explicitly, given a generic rotation R(«), the 4-momentum eigenvalue will transform

in the usual way, but we might expect mixing of helicity eigenvalues:

ULR(Q)]Ip, ) = e p, ) = 3 e R(a)p, X) (2.282)
A
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where ¢y are complex coefficients. However,

AUIR()|p, A) = A= |p 2y = e @A |p, ) = U[R(a)]Alp, A) = AU[R(e)]|p, A)

(2.283)
Therefore,
UR(e)] [p, A) o< [R(a)p, A) (2.284)
up to a phase, as desired.
Certain Boosts Preserve Helicity: Because [Ji,K ’] = 0, the helicity eigenvalue

of a 4-momentum eigenstate is unchanged by any boost along the direction of motion

that preserves the 3-momentum direction.

Consider a ket |p, A) for which p = (E, 0,0,V E% — M?). Under a generic boost B,(3)
along the z-axis, the 4-momentum eigenvalue will be changed in the usual way, but the

helicity eigenvalue might be changed:

UB:(B)]Ip, ) = e PR=|p, X) =3 " ex|B=(B)p, N) (2.285)
X

where ¢y are complex coefficients. Additionally suppose the boost B, () preserves the

3-momentum direction of p (so if p’ = B. (), then p’ = p = 2), such that

J:|p, ) = Alp,A) = Alp,A)  and  LJp',X) = Alp', N) = A, N) (2.286)
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Consequently, for this restricted set of kets and boosts,

AUIB:(B)]Ip, A) = U[B(B)] Alp, ) = U[B-(B)] Jz p, ) = JU[B(B)] |p, A) (2.287)

and
T U[B(B)] |p, \) ZHZ |B2(8)p,A) = Y ex A|B2(8)p, X) = AUB(B)] [, A)
A
(2.288)
such that
AU[B:(B)] |p, A) = AU[B=(B)] [p, A) (2.289)
Therefore, so long as B, () preserves the 3-direction of p,
U[B=(B)] |p, ) o< | Bz(B)p, A) (2.290)

up to a phase, as desired. Note that if |p, \) describes a massless state, then all boosts

along the direction of motion preserve helicity.

The process of using phase conventions to eliminate proportionalities like the ones in Eqgs.

(2.284) and (2.290) has been handled on several occasions throughout this chapter. Specif-

ically, Subsection 2.4.1 described the process of relating single-particle 4-momentum eigen-

states on the same Lorentz-invariant hypersurface (i.e. the same mass hyperboloid or light

There we chose a standard 4-momentum k* per hypersurface with 3-momentum

k pointing along the +Z direction (or k= 0, in the massive case). To obtain any an-
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other 4-momentum p# on the same Lorentz-invariant hypersurface, we boosted k* along
the z-direction to obtain the desired 3-momentum magnitude |p’| (without flipping the 3-
momentum direction) and then rotated the resultant 4-momentum until its 3-momentum
aimed in the desired direction as well. We now modify the massive and massless versions of
this procedure to include the helicity eigenvalue.

For the massive case, the standard 4-momentum is k* = (M, 0,0,0) = M t*. To obtain
a 4-momentum pt = E* + VE2 — M2 pt where pH = (0,459, 8959, cg), We can apply a

boost and then a rotation like so:

p = R($,0)B;(Br—p)k  where  By_,, = arccosh(Ez/m) (2.291)

There are other Lorentz transformations that map k* to p# (the Lorentz group is six-
dimensional whereas the mass hyperboloid is only three-dimensional), but Eq. (2.291) will
be our canonical Lorentz transformation for taking k* to p”. In the quantum equivalent,
we will use |k, \) as our standard eigenket. However, we encounter an obstacle. Because
k= 0, the application of the helicity operator A to |k, \) is not automatically well-defined:
Ak, A) = (J - k)|k,A) VM2 = M2 = (0/0)|k, A). To patch this, we modify our definition of
|k, A) and assert that k* should be interpreted as having an infinitesimal 3-momentum in the
+2 direction, such that Ak, \) = J,|k, \), thereby avoiding any reference to 3-momentum

at k = 0. With this solved, the quantum equivalent of the RHS of Eq. (2.291) is

U[R(),0)]U[B:(Bi—p)] [k, A) (2.292)

We would like to use this to define single-particle states having definite 4-momentum and
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helicity, and thankfully we can: as previously established, the choices of U[B;(8),)] and
U[R(¢,0)] above preserve the helicity eigenvalue, and thus we can choose our phases such

that

p, A) = U[R(¢, O)]U[B(Br—p)] K, A) (2.293)

for any massive single-particle state |p, A). For later convenience, we define the symbol
P2, A) = UB2(Bg—p)] [, A) such that p, A) = U[R(9,0)]|pz, &) (2.294)

There remains one ambiguity in this definition, which occurs when applying Eq. (2.293) to
a state with 4-momentum —p, = (Ejz, —[p'|2). In this case, ¢ is not uniquely defined and
typically does not cancel from the final result, leading to an ambiguous phase C that we

will parameterize like so:
|—p2, A) = Cr U[R(0, )] |p2, A) (2.295)

As per usual, setting this phase is a matter of convention. We will use the Jacob-Wick (2nd
particle) convention [26, 25|, which is motivated as follows: in the limit that the particle’s
3-momentum vanishes, —p, and +p, both go to the rest frame 4-momentum (m, 0 ). In this
same limit, the helicity operator acting on a state with 4-momentum =+p, will go to £.J..
Therefore, up to a phase, lim) 0 |£p2, \) ](m,@),:l:A). Eq. (2.293) already establishes
an equality in the +p, case; the Jacob-Wick convention chooses C; so that equality will also

hold in the —p, case. Because the total angular momentum and helicity operators equal the
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total spin and J, operators respectively in the rest frame, we can use Eq. (2.254) to find

lim |—pz, A\) = Cr lim U[R(0,7)]|pz, A) (2.296)
[P —0 [P—0
= Cr U[R(0,7)] |(m,0), \) (2.297)
= Cr (=15 (m,0), =)\ (2.298)

and therefore Cr = (—1)5~*, such that

|=pz, A) = (—=1)* A UR(0, )] [p=, ) (2.299)

and this completes the construction of massive single-particle helicity eigenstates. Before
moving to the massless case, we note that it is useful to define a conversion factor &, (¢) from

the convention established in Eq. (2.293) to the Jacob-Wick convention in Eq. (2.299):

Q) UR(D, )] |pz; A) = | =Dz, A) (2.300)

or, equivalently,

(1) A UR(S, —m)UR(0, )] [pz, A) = Ex(9) [p=, A) (2.301)

which will depend on the specific representation of the helicity eigenstates.

For the massless case, the same procedure applies in essence, but we no longer have access
to a rest frame, so k cannot be made to vanish. Instead, we choose kt = Ej.(##+2M) for some
value of energy Ej}. (the specific choice will not matter). Any other light-like 4-momentum

pt = E(t* + p™) on the same lightcone can then be attained via a boost and rotation just
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like in Eq. (2.291), although now Sy, = In(Ej/Er). Finally, by going over to the quantum
equivalent, we can choose our phases such that Eq. (2.293) also holds for any massless
eigenstate |p, A). Recall that for non-scalar massless particles the two available helicity
states are related via the reflection operator (Eq. 2.252), and thus massless expressions may
include an additional parity factor 7 relative to the massive case.

Next consider Option 2, wherein our single-particle states |E, j, m, \) satisfy

H|E,j,m,\) = E|E,j,m,\) J2E, j,m,\) = 5(j + 1) |E, 5,m, \)

J | E,j,m, ) =m|E| j,m,\) AN|E,j,m, Ay = X|E,j,m,\) (2.302)

and are normalized such that

=T = Y . 2 _
(B,5,m,E,g,m, A) = (2m)* 1 8(E = B) &, Omm 5 (2.303)
with
dE |p , :
=2 /g ;TL 1B, 3, m, A(E, j,m, Al (2.304)
j?m7)\

where || = V E? — m2, as motivated by Egs. (2.131) and (2.132). As remarked previously,
because P2 = H? — f’2, each state |E, j,m,\) is also an eigenstate of P2 with eigenvalue
E? — M?. As a result, these states are sometimes labeled by 7| = VE2 — M? in place of E
in the literature. Normalizations vary between resources as well.

Using properties of the Wigner D-matrix and the above definitions, we now derive the
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following expression:

p, A) Z \/ 0)|E, j,m, \) (2.305)

This defines the single-particle state |p, A) in terms of the angular momentum eigenstates

|E, j,m, \) [26, 25]. For completeness, we note that inverting Eq. (2.305) (via orthonormality

of the Wigner D-matrix, Eq. (2.276)) yields,

5+ 1
B, j,m, \) = 1/ 34; /dQ DI (6,0) . ) (2.306)

To derive Eq. (2.305), we first insert the |F, j,m, \) identity twice on the RHS of |p, A)

U[R (¢, 0)]Ipz, A):

dE dE ==_=
X jm N jm
(E,7,m, \NU[R(¢,0)|E. 7,7, N (E, 7,5, Npz, \) (2.307)

where wp = |p|/87% = VEZ — m2 /872, The quantity containing U[R(¢, )] is proportional

to the Wigner D-matrix (originally defined in Eq. (2.274)):

= — - - ; 2r = =
JAUIR(P,0)|E,L 7, M, N) = e o (E—FE)é=-d=~ (2.308)

Sl
3||

(.7,

The energy-dependent multiplicative coefficient is determined by setting ¢ = 6 = 0 (and

thus U[R(¢,0)] = U[R(0,0)] = 1) and recalling that rotations do not change helicity nor

3-momentum magnitude. Meanwhile, because J, = A on states with z-directional momenta
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we may write

2T —

(B,j,m,Alpz, A) = c 3(E — Ep) S\ 05 (2.309)

EjA —
IA w £
where cp j ) is a soon-to-be-determined quantity. Therefore, returning to Eq. (2.307), we

find (after relabeling indices)
‘pa )‘> = ZCE,j,)\ qul’)\(¢ae) |Eaja m, )‘> (2310)
J:m

where E = \/m? + [p|?2. To determine Cg jxs consider squaring both sides of the above

expression:

(P, N|p, \) = {Z c*mX DJ*X@ 0) (E,7, m,X@ {Z CEA D‘;%)\(gb, 0)|E,j,m,\)| (2.311)
j,m J,m
The LHS is the usual normalization equation, which we cast in energy-spherical coordinates
(Eq. (2.131)) for upcoming convenience:

2_7T5

(P, Ap, \) = (E - E)6*(Q—Q) oy (2.312)
wE

P
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Meanwhile, the RHS equals

DY axepia Dl (6.0) D), (6.0) (B NE, j,m, ) (2.313)
j,m Jm
— = ; 2  —
= Z Z E )\ EJ X(Qb, 9) Dfn’)\(gb, (9) @ (S(E - E) 53’] 5m,m 5X,>\ (2314)
j,m Jsm
27T' P . . .
= 22 5B - B) | X el Dl rG.0) D) 10,0 05, (2:315)
J:m

Egs. (2.312) and (2.315) are equal if and only if

Z e jAl” Doy \(6,8) D), (6,6) (2.316)
= Z |CE,j,)\|2 ez’(m—A)(¢—5) di;;)\(g) din,)\(e) (2'317)
7,m

where we have used the definition of the Wigner small d-matrix relative to the Wigner D-
matrix, Eq. (2.274). Consider integrating both sides of this equation with respect to ¢.

Because m — X\ must be an integer, the RHS will vanish unless m = A:
2 ) _
/ dg ' M=N©O=9) — 975, | (2.318)
0

Meanwhile, the LHS can be integrated by recalling that 62(Q — Q) = §(¢ — ¢) 6(cos f — cos 0).

Thus, after integration over ¢, Eq. (2.317) becomes

5(cosd — cost) =Y (2) [ep A&\ (@) d) | (0) (2.319)
j

Compare this to Eq. (2.277), one of the relations we introduced (without proof) when we
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first defined the Wigner D-matrix:

5(cosB — cos0) = 3 (Qj a 1) CMNOLANG (2.320)
j

These become equal when |cg ;. A2 = (2§ 4 1)/4n, or (by choosing an otherwise arbitrary
phase) cp j \ = /(2j + 1) /4. Substituting this solution into Eq. (2.310) yields Eq. (2.305),
as desired.

As in Subsections 2.4.2 and 2.4.3, we can combine single-particle states to form multi-
particle states. If we follow that procedure, we would define a (distinguishable) two-particle

state as

p1, A1) © [p2, A2) (2.321)

where each single-particle state is defined according to Eqgs. (2.293) and (when p'= —|p'|2)
(2.299). However when considering two-particle states in the center-of-momentum frame,
this is not the convention typically adopted.

Instead, it conventional to define the two-particle COM states as

5 A ) = (u[Rw,e)] |<E1,+\ﬁ|z>,xl>) ® (uu%«zs, 0)|(Es. —Iﬁlé),A2>) (2.322)

This is why the phase convention for |—p,, A) chosen in Eq. (2.299) for single-particle states

is typically called the Jacob-Wick 2nd particle convention. We also define the two-particle

122



total and relative helicity operators as Aiyia) = A1+ A2 and A = A — Ag respectively, where

Jy- P Jy - P COM 7 _ =, .
12 L 2 2 2 - (J1F J2) - p (2.323)
rai
VE = m3 \/EQ

and the last equality in each line assumes it acts on a state with definite 3-momentum p.

A+ Ay =

Note that the relative helicity A is related to the two-particle angular momentum operator
J=J1+ Jo.

The single-particle argument that allowed |[p, A) to be rewritten as a superposition of
|E, j,m, \) carries through essentially unchanged for |p) A1, A2) in terms of the relative helicity
A = A1 — Mg, such that we may write the state |p) A1, A2) in terms of two-particle angular

momentum eigenstates as

. 2J 2/ +1 1
!p, A1, )\2 Z M AL— )\2( ) ’\/_ J, M, M\, )\2> (2324)

Because they occur regularly in 2-to-2 scattering calculations, the relative helicities of the

initial and final particle pairs are given special symbols: A; = A1 — Ay and Ay = A3 — Ay.

2.7.2 Partial Wave Amplitudes

Because the S-matrix commutes with J_; it can be put into a block-diagonal form wherein
each block has a definite total angular momentum J?2 eigenvalue. This implies a similar

decomposition of the T-matrix, so that we may write

(V5 J, M, A3, M| T (ps = pp) Vs, T, MY A, ) = 60 560 0y (A3 Ml T () [ A, Ag)

(2.325)
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when considering 2-to-2 scattering. Using the definition of the matrix element Eq. (2.182),

the decomposition of helicity eigenstates in terms of angular momentum eigenstates Eq.

(2.324), and the fact that Dﬁﬁ17m2(¢, 0) = dmy,my;

Mg = (g, A3, Ml T(pi = py) |, A A2) (2.326)

_ \/2J+1\/2J +1DMAf(¢’ 0D (0 )

JMJ’M’

X (Vs J, M, A3, M| T(pi = pp) Vs, J', M Mg, dg) - (2.327)

J .
- Z <2 4;:-_ 1) D{;)\f <¢7 9) <)‘37 /\4| TJ(S) |)\1, /\2> (2328)
J

where A; = A1 — A9 and Ay = A3 — A\y. We define the partial wave amplitude (PWA) a’ (s)

as5

1 X
a’(s) = m@\& M| T (s) A1, A2) (2.329)

such that the matrix element may be written as, via Eq. (2.328),

(s,0,¢) = Zl&r (2J + 1) a”(s) )‘27)‘f(¢’ 0) (2.330)

In the next subsection, we use the partial wave decomposition of 2-to-2 scattering matrix
elements in order to derive the elastic and inelastic partial wave unitarity constraints from

the optical theorem.

SDefinitions of the partial wave amplitude vary throughout the literature, with (for example) some authors

choosing a 1/ 3272 factor in place of 1/ 6472. The particular choice of convention impacts other expressions,
including the form of the partial wave unitarity constraints.

124



2.7.3 Elastic, Inelastic Unitarity Constraints

Recall Eq. (2.224), wherein we reduced the optical theorem to

~ P(3,4
M) = Y T a0 (Mg + Cpap, (2,331
1

2

Using Eq. (2.330), decompose the matrix element on the RHS of Eq. (2.331), such that

/ A0 (Mg, = M My, (2.332)

:/dQ [Z 167(2J" + 1) a ;L*fQ( )Dﬂ,Af(M)]
J/

{Z]: 16m(27 + 1) af, p (s )DAW\f(ng 0)] (2.333)
_;gzmw 2J+1) (2 +1)a HfQ( s)a Hfz( s)

[aa B, 6.0D8 0.0) (2334)

_210247r (27 + Dla, 1, (5) (2.335)

where we used orthonormality of the Wigner D-matrices to evaluate the angular integral,

Eq.(2.276). Thus, overall the RHS of Eq. (2.331) becomes

P(3,4
647 ) <Ez )Z (2J + Dla z—>f2( )|2+Cf7éf2 (2.336)
J

In this same reference frame, the matrix element on the LHS of Eq. (2.331) equals

M =167 (2] +1)al (s )D{ZM(O,O) =16 Y (2] +1)a] ,(s) (2.337)
J J
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such that the LHS equals, overall,

23[ M) =321 Y (27 + 1) Iaf,;(s)] (2.338)
J

and all together Eq. (2.331) implies

327{:2” lal (s >]_64Z 5 ZQJH 0l ()2 + Crapy  (2:339)
fa J

or, focusing on the 2-to-2 scattering and dropping the nonnegative constant C'r, for

> (2] + 1) 3a;l 22 P(3,4) Z 2J+1)|a Hf2( s)|? (2.340)

J J

We can isolate individual angular momentum components by employing superpositions of
helicity eigenstates that reconstruct the angular momentum eigenstates, and thereby demon-

strate this inequality holds component-by-component:

al il 22 POY 07, o) (2.341)

The RHS of this inequality can be further reduced by dividing the expression into elastic
(i = f2, aside from the values of (6, ¢) describing the pair, which each PWA does not depend

on) and inelastic (i # fo) pieces,

- P(1,2 3 4)
Ifaf(s)] > 2 (E, ) af ()P + > 20— | alyp,(5) (2.342)
! fo#i
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or, equivalently,

j[aij_n'(s)] > P12 |a%']—>i(3)|2 + Z 534 |a%]—>f2(5)|2 (2.343)
foFi
where
Bi, = Z]POE"'k) = é\/{s — (mj — mk)Q} [s — (m; + mk)2] (2.344)

because E; = E1 + E9 = /s. By definition, |a‘2-]_>z-(s)|2 = m[a;-]_m-(s)]Q + J[OL;-]_H-(S)]Q, so the

previous inequality can also be expressed as, after multiplying both sides by f12, adding

(1/2)? to both sides, and rearranging,

2 2
oial )| + |3l 5| s

2
1 J 2
H = BuoBalal, (9 >
foi
Thus, the values of (19 a;-] _,;(s) are bounded by a circle in the complex plane centered at
i/2 and with radius at most equal to 1/2, where the radius shrinks as inelastic contributions
grow in magnitude. Therefore, the real and imaginary parts of the elastic amplitudes must

satisfy

Bra R} ;] 0< B0l ;] <1 (2.346)

N | —
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Meanwhile, the RHS of Eq. (2.345) must be nonnegative (the radius of the circle cannot be

imaginary), so the net sum of squares of inelastic amplitudes are bounded from above

1
> B2 B \a;]_>f2(8)!2 <2 (2.347)
foFi

These are the inequalities we sought to derive: the elastic and inelastic partial wave unitarity
constraints [27]. For most of the processes in which we are interested, M grows like O(s¥)
at large s for k > 1, such that (via Eq. (2.330)) a”/(s) ~ O(s*) as well. If these inequalities
happen to be satisfied for such a partial wave amplitude at some energy scale, then there
necessarily exists a higher energy scale Agtrong for which a’ (s) contradicts these inequalities
for all s > Agtrong, and thus contradicts the optical theorem, and thus contradicts unitarity
of the S-matrix.

Lastly, we note that an additional factor of 1/2 should be included in B, it the particles

associated with it are identical, per the discussion at the end of Subsection 2.4.3. Thus,

when a process describes elastic scattering of identical particles (i = f = (1, 1)), we set
Pu=g\[1-— (2.348)

such that the relevant partial wave unitarity constraints equal

1 Smin
S

S

Rlay ]

Rlay ]

<2 (2.349)

where Sy, = 4m%.6

6For the remainder of this thesis, we will refer to elastic scattering of identical particles simply as “elastic
scattering” even when elastic scattering of distinguishable particles is also allowed. Where ambiguity is likely,
we indicate the relevant process.
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2.8 Polarization Tensors and Lagrangians

2.8.1 Derivation of the Spin-1 and Spin-2 Polarizations

In Subsection 2.3.5, we demonstrated that the 4-vector representation is the (%, %) Lorentz
representation (an irreducible finite-dimensional non-unitary representation of SL(2, C)) and
remarked that it contains both spin-0 and spin-1 representations with respect to the SU(2)
rotation subgroup. This subsection now isolates that spin-1 representation, and then uses
Clebsch-Gordan coefficients (defined in Subsection 2.6.2) to build a spin-2 representation
from two copies of the spin-1 representation. The end product of this procedure are the
spin-1 and spin-2 polarization structures, which accompany external states when calculating
certain matrix elements.

To derive these structures, we revisit the Lorentz generators J L= i(J i)4—vector and K% =

i(K i)4_vect0r of the 4-vector representation defined in Subsection 2.3.5, which equal

00 0 0 0 0 0 0 0 0 0 0
00 0 0 0 0 0 +i 0 0 —i 0
Jl = J? = J3 =
00 0 —i 0 0 0 0 0 +4i 0 0
0 0 +i 0 0 —i 0 0 0 0 0 0
(2.350)
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and

0 +¢ 0 O 0 0 +2 O 0 0 0 +2

1 +: 0 0 0 9 0 0 0 O 3 0 0 0 O

0 0 0 O +: 0 0 0 0O 0 0 O

0 0 0 O 0 0 0 O + 0 0 0
(2.351)

- =,

such that a generic rotation and boost equal R(&) = Exp[—id - J| and B(f) = Exp[—ig- [?]
respectively. Note that the boost generators {K Z} are anti-Hermitian, cementing the fact
that this representation is non-unitary. Using these generators, we can define a generic 4-
vector Lorentz transformation A, which we will act on complex 4-vectors e/ in the usual
way (e — AH,€e”); we utilize complex 4-vectors to ensure we can eventually solve for all
eigenvectors of the helicity operator (and note that {Ji, K Z} still only span the real Lie
algebra so(1,3) = sl(2,C)).

In particular, suppose the complex 4-vectors e encode single-particle states with def-
inite 4-momentum p, helicity A, internal spin s, and mass m, i.e. there exists a 4-vector
single-particle basis 6/: 7 \(p) (where p is restricted by the on-shell condition p> = m?). We
can construct these states explicitly by using the techniques explained in Subsection 2.7.1,
wherein a standard 4-momentum Ak per Lorentz-invariant hypersurface is used to define any
other state having 4-momentum p# on that same hypersurface.

For a single-particle state with nonzero mass m, consider eg ’ )\(p) in the rest frame, when
its 4-momentum p" equals the standard 4-momentum k# = (m,6 ). In this frame, the

helicity operator A = (J - 7')/vVE2 — m?2 reduces to J, = J3, so finding helicity cigenstates
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e/;f(k:) amounts to finding J, eigenstates. To do this, note that the total angular momentum

operator in this representation equals

0 0 0 0
.. o2 0 0
Jl=J.J= (2.352)
0 0 +2 0

The total angular momentum operator in general has eigenvalues of the form j(j + 1) and
thus we immediately recognize that the time-time and space-space blocks of the 4-vector
representation of J?2 encode the anticipated 7 = 0 and j = 1 representations respectively.
Because J 2 is block-diagonal in this way, we can directly construct projection operators
Po(k) and Pq(k) that (when acted on a generic complex 4-vector in the rest frame) will

isolate the j = 0 and j = 1 representations therein:

1 0 0 O 0O 0 0 O
0O 0 0 O 01 0 O
[Bo (k)] = [Br(k)H,)] = (2.353)
0O 0 0 O 0O 0 1 0
0O 0 0 O 0O 0 0 1

It is useful to cast these into a Lorentz covariant form via the standard 4-momentum k* and

the Minkowski metric 7,,,. Doing so yields

Po(ky) = B ) =,

m

kP,
o 2

- (2.354)

In the rest frame of a massive particle, the total angular momentum and total internal spin
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operators are identical, and the j = 0 and j = 1 4-vector representations are equivalent to
the spin-0 and spin-1 4-vector representations respectively. After applying a boost, we leave
the rest frame, and the 7 = 0 and j = 1 representations mix; however, because internal
spin is a Casimir operator of the Poincaré group, the above projection operators will (once
transformed according to their Lorentz index structures) still project onto the spin-0 and
spin-1 representations. We will consider the helicity eigenstates in a generic frame after we
solve for them in the rest frame.

To find a spin-j helicity eigenstate in the rest frame, we act the spin-j projection oper-
ator B;(k) on a generic complex 4-vector ¢(k) and then solve for eigenstates of A = .J,.
Specifically, we solve J; [B; (k) e(k)] = A [B;(k) (k)] for the helicities available to the specific

choice of 7. For example: when j = 0, the only helicity available is A = 0, so we aim to solve

J» [Bo(k) e(k)] = 0 for [Py (k) e(k)]. Because

1 00 0) (k) (k)
00 0 0]]|€k 0
[Bo(k) (k)] = = (2.355)
00 0 0]]|ék 0
000 0] \k) 0
and
000 0 o} 1 0 0 0)[e®%) 0
0 0 —i 0l]0 0 0 0]] €k 0
Iz [Bo(k) e(k)] = = (2.356)
0+ 0 0[]0 0 0 0f]é k) 0
0 0 0 0/\o 0 0 0/ \e(k 0
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we find J, Bo(k) eg o(k)] = A [Bo(k) €o,0(k)] = 0 for any 4-vector eg’o(k) = (E&O(k}),G) x
K /m, which determines the spin-0 4-vector representation up to its normalization and choice
of phase. However, this representation has little use in actual quantum field theory calcu-
lations because there exists a more succinct Lorentz covariant spin-0 representation: the
Lorentz scalar €y o(k) = 1. Thus, we consider the spin-0 part of this representation no
further, and simply write el/< (p) instead of e/f’ ,(p) for the spin-1 representation, as is conven-
tional.

The process of finding the spin-1 helicity eigenstates in the rest frame proceeds similarly:

we aim to solve J, [B1(k) e(k)] = A [B1(k) e(k)] for helicities A € {—1,0,+1}. Note that

00 0 0 (%) 0
01 0 0f]ek) et (k)
[B1(k) (k)] = = (2.357)
00 1 0f]ék (k)
000 1) \k) e3(k)
and
000 0 0y[0 0 0 0) ek 0
000 —i 0|]0 1 0 0]]céek —i€e?(k)
S [B1(k) e(k)] = = (2.358)
0 + 0 0]]0 0 1 0]]|ék +iel (k)
000 0 0o/\o oo 1) \k 0

Thus, when A = 0, we require (0, —ie?, +ie,0) = (0,0,0,0), such that eg(k) x (0,0,0,€3(k)).
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It is conventional to set the magnitude of €y(k), which equals
eo(k) - eg(k) = —e3(k)? (2.359)

to —1, and to set the remaining phase such that eg(k‘) =(0,0,0,1).
Although we could find the A = 41 solutions by solving a similar eigenvalue problem, it

is quicker to use the ladder operators

Ji = Jptidy = (2.360)

0 x1 +¢ 0

This has the added benefit of automatically setting phases and normalizations in a way

consistent with our existing assumptions. Using the raising/lowering formula Eq. (2.246)

(and noting v/(j Fm)(j £m + 1) — /j(j + 1) = V2 in this case), we calculate

0 0 0 0 0 0
[eﬂ(kz)“]:i U R -1 i (2.361)
2Ly 0 0 =i o V2|
0 +1 +i 0 1 0

and in doing so have found the final rest frame helicity eigenstates.
All together, the polarization vectors {€" | (k), i (k), e’il(kz)} form the desired spin-1 rep-

resentation in the rest frame. Explicit calculation reveals they are orthonormal and trans-
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verse,

ex(B)" - ey (k) = =6, k-ex(k) =0 (2.362)

and as a basis for the spin-1 representation they naturally resolve the projection operator

PB1(k), which is the identity on the spin-1 subspace:

+1

Brk)] =~ Y Ak (k) (2.363)

A=—1

This completes the derivation of the massive spin-1 representation in the rest frame.
To obtain this representation in all other frames, we apply the standard Lorentz transfor-
mation Ay_,, = R(¢,0) B:(By—,) (defined in Eq. (2.291) of Section 2.7) to each polarization

vector eéf(k), and define

) = (M), hR) (2:364)

As mentioned previously, the internal spin of a particle corresponds to a Casimir operator
of the Lorentz group and thus is invariant under the Lorentz transformation Aj_,,. In the

4-vector representation, the standard (massive) Lorentz transformation equals

1 0 0 0 E 0 0 p
0 Beg+52  cpselcg—1) cysp 0 1 0 0
(= | = (2.365)
k—=p) o m
0 cpsglcg — 1) cé + c(gs?b S¢S0 0 01 0
0 —CySg —545¢ cp p 0 0 E
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such that the spin-1 polarization tensors equal, in a generic frame,

0 7|
+igp | —cpcy L is E-cys
e 0Ce ) 1 p o0
) =+ (o) = -
—CySg F iCyh Egsese
50 Ejco

(2.366)

where p = 2 when § = 0 per the helicity eigenstate convention established in Subsection

2.7.1. Note that the helicity-zero polarization tensor grows like O(FE) whereas the others do

not depend on energy at all. Because of Lorentz covariance, the spin-1 polarization vectors

€

/j\t(p) retain their rest frame properties (orthogonal, transverse),

ex(p)" ey (p) = =0, v p-ex(p) =0

and the spin-1 projection operator becomes

+1

P10 = = Y e = -k

A=—1

This completes the derivation of the massive spin-1 polarization vectors.

(2.367)

(2.368)

From these expressions, we can directly calculate the Jacob-Wick 2nd particle conversion
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factor £ (¢) from Eq. (2.300). Because

1 0 0 0
0 +Cap  —S2¢ 0
[R(), —m)H, R(0, m)” )] = (2.369)
0 +82¢ +02¢ 0
0 0 0 1
we find
(=DM R(g, —m)", R(0,m)" | (p2) = (1)1 e 20 L (p,) (2.370)

such that &) (¢) = (—1)17 20,

The derivation of the massless spin-1 polarization vectors follows the same trajectory
as the massive case, but now there is no rest frame and their helicities are restricted to
A = +1. However, we already have helicity eigenstates corresponding to A = +1 which
work in any frame, and sure enough the existing polarization vectors eil(p) are admissible
helicity eigenstates for massless spin-1 particles. It is possible a relative parity factor n may
occur between the two massless helicity states because they are not directly related via ladder
operators, depending on the particle species in question. In this representation, the reflection

operator equals Y = Diag(1,1,—1,1), such that

YH, eK(p, =€l z
0(p2) = € (pz) — Y& = (D) () (237D)

YH, fil(pz) = _Egzl(pz)

Having completed our derivation of the spin-1 polarization vectors, let us now derive the
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spin-2 polarization tensors.

As described in Subsection 2.6.2, any two angular momentum representations can be
combined to form a new angular momentum representation via the Clebsch-Gordan coeffi-
cients. Thus, we can combine two copies of our (massive or massless) spin-1 polarization
vectors e’)f (p) and thereby obtain a Lorentz-covariant representation of spin-2 particles in the

form of polarization tensors (—:’/(V(p). Explicitly, these spin-2 polarization tensors equal, using

Eq. (2.268),

elio(p) = ety (p) €1 (p) | (2.372)
) = 5 [0 o)+ ) ) (2373
€ %[6’11@) 2 1(p) + € (p) €11 (p) + 2¢6 () 65(19)] , (2.374)

where the massive case has access to all five helicity states (A = £2,+1,0) and the massless
case only has access to two (A = £2). Via the properties of the polarization vectors that

compose them, each polarization tensor is traceless, symmetric, and transverse:

nuye/;\w(p) =0 el)fy(p) = eiu(p) pﬂeljy(p) =0 (2.375)

By applying the appropriate generalization of the helicity reflection operator Y#”,, =
YH,YY 5, we find
Y oo e (pz) = (=1)* 7A€ (p2) (2.376)

Finally, the spin-2 Jacob-Wick 2nd particle conversion factor can be determined by applying
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the spin-1 conversion factor to each spin-1 polarization vector in the definitions of the spin-2

polarization tensor, thereby yielding &, (¢) = (—1)2_/\6_2/\i¢.

2.8.2 Quadratic Lagrangians and Propagators

This chapter has largely focused on the construction of external particle states as eigenstates
of 4-momentum and helicity. In order to calculate matrix elements describing scattering
processes between these external states, we must encode those external states into quan-
tum fields which then compose carefully-chosen Lagrangians. The quadratic terms of a
Lagrangian will determine the masses and spins of the particles encoded within the fields,
whereas higher-order terms determine interactions between various particles.

Perhaps the simplest field (and Lagrangian) corresponds to a spin-0 massless particle. A
scalar field 7(z) will encode (real) massless spin-0 particles if our overall Lagrangian possesses
the following quadratic terms:

(s=0)
massless

(97)* (2.377)

1
2
To derive the propagator associated with this Lagrangian, we

e Fourier transform to 4-momentum space, effectively replacing 0y, with —iP),, where P,

is the 4-momentum carried through the propagator,
e take the functional derivative with respect to the field twice,

e invert the resulting expression, and multiply by —:
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Applying this procedure to Eq. (2.379) yields

(s=0) L 2.2 2
massless —§Pr - P = i) (2.378)

and, thus, we find the (momentum space) massless spin-0 propagator equals

If we instead desire a (real) massive spin-0 field #(x), we can add a mass term —(1/2) M 272

to the massless spin-0 Lagrangian:

(s=0) w2 1y90
massless ((9;”“) _§M r (2.379)

1
2

in which case the same procedure instead yields

P
- i

T

As derived by Fierz and Pauli [21, 28], massless and massive spin-2 particles can be
embedded in a symmetric rank-2 Lorentz tensor field iLW (x) which is transverse and traceless
for on-shell excitations. Using a tensor field is convenient because it possesses manifest
Lorentz covariance with which we can directly construct Lorentz scalar Lagrangians. Because
index symmetry, transversality, and tracelessness reduce its otherwise 42 = 16 available
degrees of freedom by 6, 4, and 1 respectively, the spin-2 field EW only propagates five degrees
of freedom, precisely the correct number to describe a massive spin-2 particle. Unfortunately,
these constraints are still insufficient for the description of a massless spin-2 particle, which
requires only two propagating degrees of freedom. As a result, izW possesses gauge freedoms

when utilized for a massless spin-2 particle. Thus, although we may write the canonical
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massless spin-2 quadratic Lagrangian as

s=2 _ 7 f 2N2 1 ~ 2 1 ~ .9

s = (), (0°1) = ()}, + 5 (Dphp)? = 5 (0uh) (2.380)
we cannot directly apply the previous procedure to obtain the massless spin-2 propagator: the
(the momentum-space version of) differential operator defined in Eq. (2.380) is not invertible
due to gauge redundancies. Specifically, this manifests as invariance of the massless spin-2

Lagrangian under the following gauge transformation:

for a generic 4-vector field €,(x). In fact, Eq. (2.380) is the only (properly normalized)
combination of quadratic-level kinetic terms for iz,ﬂ/ that is invariant under this gauge trans-

formation, such that we could have started by demanding invariance under transformations

(s=2)
massless’

of the form Eq. (2.381) and thereby derived £

In order to invert Eq. (2.380) and obtain a massless spin-2 propagator, we must somehow
break this aforementioned gauge invariance. This can be done in a multitude of ways, whether
it be by employing a specific gauge condition or adding a gauge-fixing term to the Lagrangian.

A popular gauge choice is the harmonic gauge, which is defined by setting
o"hQ) = 1o, [hO)] (2.382)

This isolates a specific gauge orbit, thereby breaking the gauge invariance of the quadratic
Lagrangian Eq. (2.380) and allowing it to be inverted into a propagator. However, this

dissertation does not use harmonic gauge (or any other gauge condition), instead opting to
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add a gauge-fixing term Lyr to the massless spin-2 Lagrangian. Specifically, we employ the

de Donder gauge, which has a gauge-fixing term
. 1 .\2
Lop=— (8/%#,, — §8Vh) (2.383)

Rather than isolate any single gauge orbit, de Donder gauge averages over a continuum of
gauge orbits. This averaging is weighted in favor of the harmonic gauge condition, the bias
of which successfully breaks the troublesome gauge invariance of Eq. (2.380). The resulting

de Donder gauge massless spin-2 propagator equals

P
v —— po iBy""”
where
1
Bgmpa = 5 NPT 4 ghopvP — gV pPo (2.384)

In the same way that we went from massless to massive spin-0 Lagrangian, the massive
spin-2 Lagrangian is obtained from the massless spin-2 Lagrangian (without the gauge-fixing
term) by adding a mass term. As it turns out, there is only one non-kinetic quadratic
combination of the field fL/W which simultaneously yields a propagator pole at P2 = M? and

does not introduce ghosts [21]. This combination defines the Fierz-Pauli mass terms,

Lop(m, h) = m? Biﬁ - %Wlﬂ] (2.385)

which when added to the massless spin-2 Lagrangian yields the canonical massive spin-2
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quadratic Lagrangian:

massive massless 2

=D = p=d 2 [132 - %[[BB]]} (2.386)

Because the Fierz-Pauli mass term breaks the gauge invariance of the massless Lagrangian,
all five degrees of freedom in the symmetric traceless field fz,w can propagate, which is in

agreement with the five helicity states we expect from a massive spin-2 particle. This also

(s=2)

allows us to invert £ and obtain the massive spin-2 propagator:

massive
P
i - po 1 BHY-PO
- P2 _ pf2
where
Bl _ % BB + BB - §§W§P” (2.387)

This is the last piece of four-dimensional quantum field theory information that we require
for calculating the desired scattering amplitudes. In the next chapter, we introduce the nec-
essary information about five-dimensional field theories, including the machinery of general

relativity machinery and the definition of the Randall Sundrum 1 model.
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Chapter 3

The 5D RS1 Model

3.1 Chapter Summary

The previous chapter introduced important definitions and conventions regarding 4D quan-
tum field theory, including discussions of 2-to-2 scattering, helicity eigenstates, and par-
tial wave unitarity constraints. It also defined the twice-squared bracket notation which is
used often throughout the remainder of this dissertation: given a collection of spin-2 fields

(A A2 R} we define the [- - ‘Ja and [ - -] symbols according to

TG 5&1/21 nl1r2 il/(fl)ug nl2h3 ... ilg;)ﬁ (3.1)
WA 0] = o8 [RWRR) LR (3.2)

such that, for example, [1],5 = 7, and [1] = 4. The previous chapter also established the
use of tildes to denote inverse quantities, e.g. A = A~! for an invertible matrix A.

This chapter introduces important definitions and conventions regarding general rela-
tivity, as well as introducing the Randall-Sundrum 1 (RS1) model which is the primary
theory considered in this dissertation. It also introduces several original results, including an
updated 5D weak field expanded (WFE) RS1 Lagrangian, which we originally published in

Appendix A of [19] using a different form of the Einstein-Hilbert Lagrangian. We also demon-
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strate for the first time that all terms in the 5D WFE RS1 Lagrangian which are proportional

to (037\@\) and (Jy|p|) can be repackaged into a physically-irrelevant total derivative.

e Section 3.2 establishes our tensor conventions, including the covariant derivative, Rie-
mann curvature, Ricci scalar, and Einstein-Hilbert Lagrangian; rewrites the Einstein-
Hilbert Lagrangian into a more convenient form; and derives the extra-dimensional

graviton resulting from the Einstein-Hilbert Lagrangian.

e Section 3.3 motivates the Randall-Sundrum 1 background metric and Lagrangian by
considering what modifications are required in order to accommodate a nonzero extrin-
sic curvature at its branes. The background metric is then perturbed to generate the
full 5D RS1 model, with a metric that depends on 5D fields fLW(a:,y) and 7(z). The
final subsection demonstrates that terms proportional to (8%]@\) and (0y|p|) combine
to form physically-irrelevant total derivatives, and then introduces a new term AL to

the 5D RS1 model Lagrangian to automate the removal of such terms.

e Section 3.4 weak field expands the 5D RS1 model Lagrangian as a series in the 5D
fields fluy(:c, y) and 7(z) to second order in the 5D coupling, (’)(/%D). Each term in the
expansion can be classified as an A-type or B-type term, depending on if it contains two
four-dimensional or two extra-dimensional derivatives respectively. This 5D weak field
expanded (WFE) RS1 Lagrangian is the principal result of this chapter, and updates

the expressions we originally published in Appendix A of [19].

e Section 3.5 is an appendix which details certain formulas used in the weak field expan-

sion procedure.
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3.2 Motivations, Definitions, and Conventions

3.2.1 Revisiting the Metric

The previous chapter explored the consequences of demanding that the speed of light be
globally conserved between inertial reference frames in flat 4D spacetime, i.e. that every
finite spacetime interval that is light-like according to one observer is also light-like to all
other observers. This led us to the Poincaré group and eventually the characterization of
external particles on that spacetime. This chapter generalizes those assumptions.

Instead of a 4D spacetime with coordinates [z#] = (29, 21,22, 23), we consider an X-

M] = (:Eo,xl,a:Q,x?’,x5,...,xX)

dimensional spacetime with coordinates [z . In the previous
chapter, the 4D Minkowski metric [7,,,] = Diag(4+1, —1, —1, —1) defined 4-vector inner prod-
ucts, including the invariant spacetime interval ds? = Ny dXH dXY. Given a specific choice

of coordinates, the X-dimensional metric G also defines an invariant spacetime interval, this

time defined as

ds® = Gy dXMaxN (3.3)

for any infinitesimal displacement dX. By assumption, the tensor G is symmetric and
nondegenerate. Consequently, the matrix [G; ] is invertible, with its inverse [GM V] defined
such that the components satisfy GMN@ Np = Oprp. We still use the “mostly-minus”
convention, which in this framework means that GGy has a single positive eigenvalue among
otherwise negative eigenvalues regardless of the specific coordinates we use.

Different choices of coordinates correspond to different observers, and a key feature of

general relativity is that observer-independent quantities should be invariant under coordi-
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nate transformations, which are also known as diffeomorphisms. In this sense, the group of
X-dimensional diffeomorphisms comprise a symmetry group on X-dimensional spacetime.
In particular, the speed of light remains an invariant between all inertial reference frames in
this framework, although only locally: if an invariant interval ds? vanishes for one observer,
then it must vanish for all other observers as well, such that ds? = 0 is diffeomorphism invari-
ant and we may meaningfully declare the corresponding infinitesimal displacement d.X to be
light-like. Finite light-like displacements typically do not exhibit the same frame invariance.

Just as we did in the last chapter, we can generalize beyond infinitesimal spacetime dis-
placements, and declare a generic spacetime vector v with components [UM | =
as light-like, time-like, or space-like based on the value of its magnitude with respect to the

N

metric G, i.e. whether the inner product Gy NUM v*' vanishes, is positive, or is negative

respectively. Given a pair of spacetime vectors v and w, we also define the inner product
GynvMuwl.

In the last chapter, the metric Gy n was assumed to equal 7, and we only considered
linear transformations that mapped 7, to itself. We now relax those requirements: the

M

metric Gj;n can be a nontrivial function of the coordinates ™, and we consider (possibly

nonlinear) coordinate transformations that map M to new coordinates M which thereby

map G sy to a new form EW' This is the topic of the next subsection.

3.2.2 Diffeomorphisms, Tensors

A diffeomorphism is a transformation that maps the coordinates of one reference frame to
the coordinates of another reference frame. In order to locally preserve the speed of light
between any two reference frames, we demand ds? be invariant under diffeomorphisms. This

implies how the metric G must be transformed. Specifically, if Gy describes spacetime
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M and EW describes spacetime in coordinates ™ , then the infinitesimal

in coordinates x

displacements at an equivalent point in either description are related according to

. - s
M =M g M h L (i 3.4
= M where M=\ ooar | (3.4)

We can similarly convert the dz™ on the RHS of this expression to dfﬂ, and thereby we

obtain

N _ AT oM, N Y
dz™ =% N9 dx where D = — (3.5)
N~ N M .y
0T
which implies, recalling that we use tildes to denote inverses,
EMMQMN = 6M,N such that @MM = 57]\/[ (3.6)

The requirement that a coordinate transformation leaves the invariant spacetime interval

unchanged, i.e.
Gy deM N = ds® = Gy deM az (3.7)
implies that the metric transforms according to
Gie =M 0N+ Gyn (3.8)

The transformation properties of other spacetime tensors can be derived via Eq. (3.8), which

we do now.
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By definition, any object that transforms like dz™ under a diffeomorphism is called a

vector, i.e. v is a vector if

M =M, M (3.9)

and is sald to have a contravariant index. The vector transformation rule in combination

with Eq. (3.8) implies that the covector (Gv)y = (Garnv?Y) corresponding to the vector

vM must transform under diffeomorphisms according to

(Go)r = (Cr®™) = DM DN Gy y DMy o = DM (Go) (3.10)

and (Gv))s is said to have a covariant index. More generally, any index that transforms
via D (D) is termed contravariant (covariant), and an object having m contravariant and
n covariant indices is called a rank-(m,n) tensor. A tensor is said to transform covari-
antly under diffeomorphisms. By contracting all contravariant indices with covariant indices
and evaluating all fields at equivalent spacetime points, we guarantee the construction of
a diffeomorphism-invariant quantity. For example, the inner product G, NUM whV of any
tangent space vector fields v and w at a spacetime point z is diffeomorphism invariant.

In the gravity literature, the symbol v, is commonly used to denote the covector (Gv) 3z
This is a specific instance of a more general rule wherein indices are lowered via the metric G
and raised via its inverse G. This rule is quite convenient because allows us to immediately
know how an index transforms based on whether it is written as a superscript or a subscript.

Unfortunately, this convention is not particularly useful for the goals of this dissertation.

As demonstrated in this chapter and the next, the metric (when perturbed relative to a
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background solution) contains particle content, and allowing the metric to be buried in
raising and lowering indices will obscure where instances of various fields occur. Therefore,
we avoid absorbing the metric into tensors by instead raising or lowering indices via a flat
metric [nysn] = Diag(+1,—1,---,—1), which is a popular convention in the weak field
expansion literature. Therefore, given a vector v, we define vy; = (nv)as = narnv”. This
means that, although the index M in (Gv)y is covariant, the index M in vy; = (nv)ps is

still contravariant:

(Gv)37 = ’DMM(GU)M Versus U3 = nmﬁﬁ = EMNUN (3.11)

where we treat 7 as a coordinate-independent quantity: [T7777] = [navn]-

When constructing a Lagrangian theory of gravity, a diffeomorphism-invariant integration
element is vital for defining spacetime integrals. To begin, consider the typical volume
element dXz. This is not invariant under the coordinate transformation z — T = Dz,

yielding instead

d*7 = |detD| d¥z (3.12)

where det® = det[@M M- Our goal is to combine this with other objects as to create
a diffeomorphism-invariant measure. Thankfully, we immediately have access to another
object that transforms proportional to factors of | det D|: by taking the determinant of the

transformation rule of the metric Eq. (3.8), we find that |det G| and |det G| are related
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according to

| det G|

| det G| = |det D | det G| = ——
‘det@‘

(3.13)

where we have used that ® = ®, such that

et = Y14t Gl (3.14)

[det D]

Combining Eqs. (3.12) and (3.14), we find that \/[det G| d¥ z is diffeomorphism invariant:

V| det G| d¥z = ¥ ‘det(f |det D] d¥z = /[det G d¥z (3.15)

This is the invariant (spacetime) volume element we desired. Because we use the mostly-

minus convention, sign(det G) = (—1)X =1 such that \/|det G| = v F det G if X is even or
odd respectively. For succinctness, we define /G = /| det G|. If ¢(z) is a diffeomorphism
invariant scalar field, then [ dXz VG ¢(x) is diffeomorphism invariant as well, such that we
can construct a coordinate-independent action.

On occasion, it is useful to purposefully symmetrize (antisymmetrize) some collection of

indices, which we denote with parentheses (brackets). For example,

al ap) gl ZTa al ag] = EI ngn Ta ar(p) (3.16)

where sign(7) = £1 if the permutation 7 is even (odd). Sometimes symmetrization (antisym-
metrization) will occur for indices across multiple tensors; in any case, the indices contained

between the parentheses (brackets) are included in the procedure.
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3.2.3 Covariant Derivative, Christoffel Symbol, Lie Derivative

Beyond any specific coordinate-dependent effects, the metric encodes curvature inherent to
spacetime. This curvature implies that the usual coordinate derivative dy; = (8/0zM) is
not necessarily a natural derivative on spacetime, e.g. although 0j; dictates translations in

the coordinate ¥

, information about vectors or covectors is not necessarily translated in a
coordinate-covariant way. Furthermore, although the index M of 0j;¢ (where ¢ is a generic

spacetime scalar field) is covariant under diffeomorphisms,

— =M (0y9) (3.17)

the equivalent index on the derivative of a more complicated tensor such as 8MUN (where v

is a generic spacetime vector field) is not diffeomorphism covariant,

> gﬁvﬁ = @MMEM [EWNUN] # @MMENN EMUN (3.18)

This presents an obstacle when constructing a diffeomorphism-invariant action. To address
these problems, we require a derivative that incorporates the structure of spacetime.

Two derivatives of this sort commonly occur in general relativity calculations: the co-
variant derivative and the Lie derivative. Both are derivatives in the traditional sense—i.e.
they are linear maps which obey the Leibniz rule (f(xy) = f(x)y + = f(y))—although they
differ in their details and applications. The covariant derivative is particularly useful when
constructing Lagrangians on curved spacetimes, depends on the metric GG, and transforms a
rank-(m, n) tensor into a rank-(m,n + 1) tensor. In contrast, the Lie derivative generalizes

the directional derivative of flat spacetime, is independent of the metric GG, and transforms
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a rank-(m, n) tensor into another rank-(m, n) tensor.

For the covariant derivative, we utilize what is called the Levi-Civita connection V 4,
which is the unique affine connection that is simultaneously compatible with the metric
(VAG N = 0) and torsion-free. Its action on a given tensor depends on the rank of that

tensor, e.g. for a scalar field ¢(z) the covariant derivative reduces to the usual derivative,

V4o =049 (3.19)

whereas for a vector field v (x), the covariant derivative contains an additional term,

VoM = o,0M + F%N’UN (3.20)

where Fﬂ  is the Christoffel symbol,

N | —

Py = 5GP900 G + OnGarg — 99GarN) (3.21)
Note that the Christoffel symbol is symmetric in its lower indices, i.e. I‘ﬁ, N = Fff A Despite
its suggestive index structure, the Christoffel symbol does not transform like a spacetime
tensor (it cannot because (94v™) is not a spacetime tensor but VoM is). Taking the
covariant derivative of a tensor possessing multiple contravariant indices proceeds similarly,
with as many additional terms as there are indices and where each term contains a Christoffel
symbol contracted with a different index. When covariant indices are present, the Chistoffel

symbol terms are instead subtracted, e.g. the covariant derivative of a covector field vy (z)
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equals

VA’UM = 8A’UM — FgMUN (3.22)

Multiple covariant indices generalize accordingly via the additional subtraction of a Christof-
fel symbol-containing term per covariant index. Combining the contravariant and covariant
behaviours yields the formula for a generic rank-(m,n) tensor. Because of its compatibil-
ity with the metric, any function that depends on the metric alone has vanishing covariant
derivative.

The Lie derivative is a coordinate-invariant measure of the change in a spacetime tensor
with respect to a vector field. It is the generalization of the standard directional derivative
in flat spacetimes. Like the covariant derivative, its exact operation depends on the rank of
the tensor it operates on. For example, given a vector field oM (x), the Lie derivative of a
M

scalar field ¢(x) with respect to v (z) is

Lop=(v-0)p (3.23)

whereas the same Lie derivative of a vector field wM (z) is

£LowM = (v 0)wM — (O’ (3.24)

and of a covector field w); is

Lowyy = (v-Nwyy + (O™ )wn (3.25)
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where v-9 = vMa,,. A rank-(m, n) tensor will have m subtracted terms and n added terms,
each involving the contraction of an index from (93,0 ) with a different contravariant or
covariant index respectively. These equations for the Lie derivative also hold true if the usual
derivatives 04 are replaced with covariant derivatives V 4. We will utilize the Lie derivative

when we calculate extrinsic curvature in the RS1 model.

3.2.4 Curvature

The metric expressed in a given coordinate system enables a quantitative measure of the
curvature of spacetime. For example, the Riemann curvature (tensor) R4 BCD measures
spacetime curvature via the failure of covariant derivatives to commute when acting on a

generic covector field:
Rapcwp = (VaAVp — VY a)uc (3.26)

By replacing the covariant derivatives with their expression in terms of Christoffel symbols,
we attain a formula for the Riemann curvature that will prove more useful for our computa-

tions:

Rapc? = (0pT8) — (0418 + TE 18, —TE 1], (3.27)

= OpTR0) + TElBE (3.28)

Whether or not an additional minus sign is included in the above definition amounts to
a convention; across the literature, both choices are used with nearly equal frequency and

without much consistency across in any given subfield. Consequently, ambiguity in this
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convention can be a source of many headaches. For this dissertation, we use the Riemann
curvature as written above (which contrasts the convention we used in [19]).

The Riemann curvature is frequently self-contracted to form the Ricci tensor,
Ric = Rapc® (3.29)
Ac = Rapc :

from which a subsequent contraction with the inverse metric yields the Ricci scalar (or scalar

curvature),
R=GA%R ¢ (3.30)

The Ricci scalar is an important constituent of the Einstein-Hilbert Lagrangian, the foun-

dation on which all gravitational Lagrangians are built.

3.2.5 Einstein-Hilbert Lagrangian, Cosmological Constant, Ein-
stein Field Equations
The Einstein-Hilbert action Sgpy and the Einstein-Hilbert Lagrangian Ly are defined ac-

cording to

2
SEH = ——5— d*z VGR= /dXx Lry (3.31)

XD

where /G = /[ det G|. The negative prefactor (—2/ /ﬁ%@) is directly tied to the sign of the
Riemann curvature which we chose in the previous section, and ensures properly normalized

(positive energy) graviton modes. To derive the equations of motion for the metric, consider
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varying the Einstein-Hilbert action with respect to the inverse metric GAB . Because

o

| 5
~AE VG| = ~SVGGap  and R] = Ryp (3.32)

scap 1

the first variation of Sgy yields, assuming vanishing surface terms,

2 1 3
5Spy = — Xz VG [RAB - 5G ABR} sGAB (3.33)
XD

such that, without additional modifications, the equations of motion equal
1
QABERAB_iGABRZO (3.34)

where G 4 is the Einstein tensor.
There are two other Lagrangians commonly added to Lry. The first we consider is the

cosmological constant Lagrangian,

Lo =——VGA (3.35)
RXD

where A is a real number. The variation of Loc yields

J

W [Loc] = —2i\/a(_/\ GAB) (3.36)

FXD

The second is the matter Lagrangian, the form of which is left mostly ambiguous unless
applied to a specific choice of matter fields. Its contribution is typically written with a factor

of the invariant volume element already accounted for but (in contrast to the previous two
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Lagrangian contributions considered) without any factors of kxp, as VG Lyr. Its variation

with respect to the inverse metric equals

1)
5@AB

VG Ly = 3VE Tap

where T4p is the stress-energy tensor

oL
TaB = 26@—%9 — GaBLM

which expresses the stress-energy content generated by the matter fields.

Therefore, for the Lagrangian,

Ly + Lo + \/EEM

the equations of motion equal

2
K
Gap —AGap = =PTap

(3.37)

(3.38)

(3.39)

(3.40)

These gravitational equations of motion (and extensions thereof) are the Einstein field equa-

tions, and imply that matter or a cosmological constant can influence the Einstein tensor

Gap and thereby curve spacetime. The curvature of spacetime is closely tied to the pres-

ence of fields on that spacetime, not unlike the close ties between electric fields and electric

charges.

The aforementioned Lagrangians describe bulk gravitational physics; when it becomes

necessary, we will extend these ideas to incorporate spacetime matter and /or energy localized
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to submanifolds, such as branes.
To conclude this section, we note that the Einstein-Hilbert Lagrangian can be rewritten
using integration-by-parts into a form wherein any given instance of the metric is never

differentiated more than once [29]:

2 _
Lpn = ———VGGMY IS0 — THpTSn (3.41)
XD

The symbol = denotes equality as an action integrand via integration by parts. This alternate

form is derived in next subsection.

3.2.6 Rewriting the Einstein-Hilbert Lagrangian

The Einstein-Hilbert Lagrangian is defined, traditionally, in terms of the scalar curvature as

Lo = ——— [ X0 VG R (3.42)
FXD
2 X ~MN P P P g

(3.43)

However, we find it more useful to work with an alternate form of Lgg which is attained
through integration by parts. Integration by parts will move the derivatives acting on
Christoffel symbols in the first two terms of Eq. (3.43) onto VG GMN | such that all Christof-
fel symbols are no longer differentiated. This will eliminate all twice-differentiated quantities
from the Einstein-Hilbert Lagrangian.

In order to eventually simplify the expressions we obtain from this procedure, recall that
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any function which only depends on the metric has vanishing covariant derivative. Therefore,

0=VeGMN = (9oGMN) 4 DAL GAN 4 P ,GMA

such that
(0cGMN) = =GANTN — YA,
and!
0=VeVG = (0cVG) — VG
such that

(0cVG) = VG T4,
Together these results imply that

o (JEGMN) = (OcVG) GMN 1 /G (9GMN)

SMN A SAN M SMA+N

and we are now ready to begin rewriting the Einstein-Hilbert Lagrangian.

(3.44)

(3.45)

(3.46)

(3.47)

(3.48)

(3.49)

1That VG = Vdet G possesses a nontrivial covariant derivative arises from the fact that det G transforms
nontrivially under diffeomorphisms, as originally mentioned in Eq. (3.14). In particular, VG is a scalar

density with unit weight, where weight refers to the constant multiplying —vG Fﬁc in Eq. (3.46). For

example, det G has weight +2, and thus its covariant derivative contains instead the term —2v/G Fﬁc.
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Consider the first term of Eq. (3.43). It is proportional to

VG GMN (9pT i) = —0p [VGGMN| Ty (3.50)
=G [— GMN AL v+ GANTAL D+ GMARY L rh
(3.51)

~MN p P
=VGG [—F%NFPQJFQF%PFNQ (3.52)

where integration by parts was used in the first line, and the last line utilizes both index
relabeling and the index symmetries of GMY and F]\PI N+ Similarly, the second term of Eq.

(3.43) is proportional to

VG GMN (o Thy) =+ [VGGMN| Ty (3.53)
=G [JF GMN T4 Thy — GANTN T E Ny — GMATY, TE
(3.54)

= VG GMN {— F%NF{E,Q] (3.55)

Substituting these results into Eq. (3.43) yields the desired alternate form of the Einstein-

Hilbert Lagrangian:
Lo — ——— [ ¢Xa VGGMN |1Q pP Q@ pP 3.56
BH = 5 v arpIng — TR Tpg (3.56)

Because each Christoffel symbol contains exactly one derivative per term by definition, Lgg
contains exactly two derivatives per term. One advantage of this alternate form (which lacks

the OI' D 900G terms of the traditional form) is that it ensures those two derivatives are
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never applied to the same object in any given term.

3.2.7 Deriving the Graviton

Consider the aforementioned X-dimensional gravitational Lagrangian in the absence of a
cosmological constant and matter, so that the relevant Lagrangian is exclusively the Einstein-
Hilbert Lagrangian, Eq. (3.56). The corresponding Einstein field equations are then G4p =
0, which can be trivially satisfied by the flat metric n;,ny = Diag(+1,—1,--- ,—1) (for which
the Riemann curvature vanishes). Choose this solution as a background metric, and consider
the metric G present in the Einstein-Hilbert Lagrangian as only slightly perturbed away
from nysn, g Gyn = nunN + /-ﬂXleI N for some spacetime-dependent perturbation
H MmN (x). This enables us to calculate Ly as a perturbative series in H. In general,
the process of expanding a metric about a background metric that solves the Einstein field
equations is called weak field expansion (WFE). At present, we will weak field expand the
Einstein-Hilbert Lagrangian through O(H?).

First, note that weak field expansion of the Christoffel symbol corresponding to the G s

described above yields

1-
Mix = 567 0uGg + 0nGrg — 9gGuN) (357)
400
R T\ 2 I A
= % Z(_l)”ﬂ(ﬁXDH) ]]PQ} {(8MHNQ) + (E)NHMQ) — (aQHMN) (3.58)
n=0
K 2 ket ~ ~
= % (O HN) + (OnHyp) — (8PHMN)} +O(H?) (3.59)

where we utilize the twice-squared bracket notation introduced in Chapter 2.2.1. We need

only expand the Christoffel symbols to first order in the field H to obtain an overall O(f] 2)
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result because they begin at that order and Lgyy is composed of products of pairs of Christof-
fel symbols.

When these expansions are substituted into the Einstein-Hilbert Lagrangian, we find

~ 2 MN P P 3
Len e IS¢ —THplS y | + 0H?) (3.60)

A A A A 1 A 1 A A
= (0" Hap) (0" H) — (04Hpc)(0“HAP) + S(04Hpc)® — 5(0pH) + O(H?)

(3.61)

where the vG GMN prefactor has already been expanded in the first line (more information
about the weak field expansion of v/G and GMN can be found in Section 3.5). When X =4,
Eq. (3.61) is precisely the massless spin-2 Lagrangian from Section 2.8. When X # 4, the
equations of motion still go through as-is and constrain the propagation of H M N such that
the field must be transverse and traceless when on shell: (aM Hyy N) = H ]]\\44 = 0. In general,
after applying the equations of motion, an X-dimensional graviton has (X +1)X/2 — 2X =
(X —3)X/2 degrees of freedom. Therefore, a 4D graviton has 2 degrees of freedom, whereas
a 5D graviton has 5 degrees of freedom.

Consider the effect of a coordinate transformation z — T = Dz on the field Hyyy(x),
as transmitted through the known transformation properties of Gpsny(z). In particular,
suppose the diffeomorphism is of the form of a coordinate-dependent spacetime translation

=M

M = M 1 M (2 for some vector field €™ (z), and that the vector components e

are at
most comparable in magnitude to the field components H M N so that we may simultaneously
expand in ¢, e.g. O(¢€) ~ O(ﬁ ). We now demonstrate that this spacetime translation exactly

reproduces the gauge freedom of the massless spin-2 Lagrangian when X = 4.

The aforementioned diffeomorphism implies EMM = (Eﬁﬁ/ dxMy = n% + (6M6M), S0
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that diffeomorphism invariance demands

Gy =DMy DNy Gy (3.62)
= [+ @ue™)| [ + 0y M) G (3.63)
— G + Oy Gy + (OneN) Gy + (00 OneN ) Gy (3.64)

which is an exact result. To proceed further, series expand the quantity G(Z) = G(x + ¢€) in

¢ through O(e):

=
S
A

Gun(@) =Gun(z) +e M (@) +O(e) (3.65)

such that,

Gun = CGun + (€- )G yn + (O Gpy + (OneD)Garp + O(2) (3.66)

where all fields are expressed as functions of the coordinates x. This completes the expansion

in €. Note that this can be succinctly expressed in terms of the Lie derivative

£Gyn = (CGrn — Gurn) + O(€%) (3.67)

which—given that we performed an infinitesimal coordinate translation—confirms the Lie
derivative’s role as a direction derivative. Next, expand each term in powers of H , and

remember that H and e are componentwise comparable in magnitude: per term of Eq.
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(3.66), we find

Gyun =nunN + sxpHp N

GuN =nuN + sxpHuN

(e-0)Gyn = (e-O)Hyn = O(e?,eH, H?)
One?)Gpn = (Ol (npy + Hpy) = (Opren) + O(é%, el H?)
OneD)Grrp = (OneD)(narp + Harp) = (Onen) + O(é%, e, H?)

such that

kxpHyn = kxpHuN + (Oaren) + Onenr) + LHyry + O(€2)

= kxpHyn + (Onren) + (Onenr) + O(e%, eH, ﬁQ)

(3.68)
(3.69)
(3.70)
(3.71)

(3.72)

(3.73)

(3.74)

This mean that (dropping the distinction between the new and old field labels from here),

as far as the field H M N is concerned, an infinitesimal coordinate translation corresponds to

the field transformation

kxpHyrn — rxpHarn + (Oaren) + (Onenr) + O(e?)

(3.75)

which is precisely the gauge invariance exhibited by the massless spin-2 Lagrangian when

X =4
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3.3 The Randall-Sundrum 1 Model

3.3.1 Deriving the Background Metric

In this subsection, the Randall-Sundrum 1 (RS1) model background metric is motivated and
derived. In the next subsection, we perturb this background metric and thereby obtain the
full RS1 theory.

As mentioned in this dissertation’s introduction, the RS1 model is a five-dimensional
model of gravity with nonfactorizable geometry that was introduced in 1999 in order to
solve the hierarchy problem. Relative to the usual four-dimensional spacetime, the RS1
model adds a finite extra dimension of space parameterized by a coordinate y ranging from
y = 0 to y = 7re, where 7. is called the compactification radius. The size 7. of the extra-
dimension is assumed small so that the five-dimensional nature of spacetime remains hidden
at low energies. The four-dimensional hypersurfaces defined by y = 0 and y = nr. are called
branes, and the five-dimensional region between those branes is called the bulk.

The RS1 construction possesses two additional features not mentioned in the previous
paragraph: warping of the 4D spacetime relative to the extra dimension and orbifold invari-
ance. Because we will discuss the former property at length later in this section, let us first
focus on orbifold invariance. In order that spacetime truly be truncated at the branes, any
physically-relevant 5D fields cannot be allowed to oscillate beyond the branes, and thereby
their derivatives with respect to y must vanish at the branes. This can be ensured by extend-
ing the extra dimension so that y covers [—mr., +7r¢| and then demanding that the so-called
orbifold reflection y — —y is a symmetry of the invariant spacetime interval ds2. Having
done this, we can extend y to the entire real line by also declaring the discrete translation

y — y + 27re as another symmetry of ds?. This discrete translational symmetry suggests
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we can just as well think of the extra dimension as a circle of radius r. parameterized by
an angle ¢ = y/r¢, with the discrete translation corresponding to rotating the entire circle
about its center by 27 radians. (Despite this extension, we will limit any integrals over the
extra dimension to the finite domain y € [—7re, +7r], or equivalently ¢ € [—m, +7].) If
we imagine this circle to be drawn on a piece of paper, then the identification of points via
the orbifold reflection corresponds to folding the paper in half along the line between the
points at ¢ = 0 and ¢ = &7 and declaring any points which overlap afterwards to be equiv-
alent. From this perspective, if we once again unfold the paper, then the orbifold reflection
transformation swaps points across the folding line, such that the only points unchanged by
the transformation are the branes at ¢ = 0 and ¢ = 7. In other words, the two branes are
uniquely determined as the orbifold fixed points of the RS1 spacetime.

With descriptions of the RS1 coordinates and spacetime symmetries out of the way, we
now aim to find a Lagrangian description of the RS1 background metric, although to do
so we must include types of terms we have not yet discussed in this chapter. We begin by

searching for a background metric of the form

[Gunl = (3.76)

that is consistent with the Einstein field equations, where a(y) is a nontrivial positive real
function of the extra-dimensional coordinate y. The function a(y) provides the aforemen-
tioned warping of 4D spacetime relative to the extra dimension. Eq. (3.76) is intentionally
written so that the xz# coordinates are all treated on equal footing, as would be expected
from a 4D Poincaré-invariant geometry. If a(y) = 1, we recover the flat 5D metric 7, n; oth-

erwise, this metric (combined with the orbifold condition) necessarily implies a discontinuity
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in the curvature at the interval endpoints. As will be detailed in a moment, this introduces

Dirac delta terms to the Einstein tensor which provide an obstacle to solving the Einstein

field equations. Overcoming this obstacle requires extending the techniques utilized thus far

to include brane-localized stress-energy content.

First, note that G s as written above only depends on y, so 0o,Gpyny = 0, whereas

OyG N = (Oya) 5%5]”\, nuv- Consequently, the only independent non-zero Christoffel sym-

bols equal

1

1.
FZV = _§G55(ayGuu) D) (Oya) nuv

1~ 1 4
which once again only depend on y. Thus, we may calculate

(0a) h 0K maw

N | —

ONTHrp = [2071(050) — 20 %(9,0)%) 83,0

1 .
PRQUTrp = 5 @ (9y0)” 0% s + a”>(9ya)” 63,07

which collectively yield the Ricci tensor

% [(85@) + a_l(aya)ﬂ Nuv 0

0 —a~! [2(82(1) - a_l(é?ya)Q]
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(3.78)

(3.79)
(3.80)
(3.81)

(3.82)

(3.83)



and the scalar curvature
R = 4a71(8%a) + a=%(9ya)? (3.84)

This allows us to calculate the Einstein tensor, which equals

3792
[GaBl = [RAB — 3G apR| = 20y )ap ’ (3.85)
0 3a72(9ya)?

Without an additional cosmological constant or matter content, the Einstein field equations
demand that the Einstein tensor vanish (G4pg = 0). This implies ((95@) = (0ya) = 0, which
is only achievable by setting a to a constant; however, a constant a just describes the flat

5D metric up to a coordinate rescaling. We desire a more interesting geometry.
By adding a cosmological constant throughout 5D spacetime (a “bulk” cosmological con-

stant), we instead obtain G4 — AG 4 = 0 as our Einstein field equations, wherein the

precise value of A can be tuned as necessary. Now our constraints read

—g(@Za) —Aa=0 (3.86)
;(ayaﬁ +Ad2 =0 (3.87)

We focus on this second equation first. Immediately, we note a solution cannot exist if A > 0
because (8ya)2 /a? is necessarily nonnegative. This plus the fact that we already ruled out
the A = 0 case as being uninteresting leaves us to consider A < 0, which allows us to solve for
(Oya) up a sign: (Oya) = +(y/—2A/3)a, corresponding to a(y) o et(V=2A/3)y Define the

so-called warping parameter k = /—A/6 for ease of writing, and remove the proportionality
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so that a(y) = e*25Y via coordinate rescaling.2 Because this solution also satisfies the first
constraint, all may seem well. However, this solution does not respect the orbifold reflection
symmetry: neither solution is individually invariant under the replacement y — —y. To fix
this, we can patch together separate solutions in the regions y < 0 and y > 0 to form the

continuous & orbifold-even solution a(y) Differentiating this new solution yields,

keeping in mind the orbifold symmetry and periodic nature of the extra dimension,

(0ya)? = [£2ksign(y) a)? = 4k% o (3.88)
(02a) = |4k? £ 4k (8) — Orre) | @ (3.89)

where we used
(Oyly[) = sign(y) (O1y]) = 2 (0 — drre) (3.90)

and define 07 = d(y — 7). Although this orbifold-even solution solves Eq. (3.87), it does
not solve Eq. (3.86). In fact, any attempt to modify the action (and therein the Einstein
field equations) that treats all of 5D spacetime on equal footing is doomed to fail. We will
need to further extend the types of terms we include in the action in order to overcome this
difficulty

To better understand why we are running into trouble, let us divide the 5D RS1 space-
time (which has coordinates (x,y)) into a collection of constant y slices, e.g. hypersurfaces

consisting of points (z,7) for some y € [0, 7r.]. This defines what is called a “foliation” of

2The metric corresponding to a(y) = e~ 2kY describes 5D anti-de Sitter space (AdSg). More specifically,
because the RS1 model has branes at y = 0 and y = 7r¢, the RS1 model is a finite interval of AdSg, wherein
the brane at y = mre explicitly breaks the conformal invariance of the infinite AdSy.
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5D RS1 spacetime into time-like 4D hypersurfaces®, where the hypersurfaces at 7 = 0 and
y = mre are the RS1 branes. Choose one such hypersurface in this foliation. Because this hy-
persurface is itself a submanifold of spacetime, we can calculate its curvature. Furthermore,
because it exists within a larger spacetime, it has two kinds of curvature: intrinsic (curva-
ture tangent to the hypersurface) and extrinsic (curvature normal to the hypersurface). The

extrinsic curvature of such a hypersurface is given by

1— _ ~ ~ _
Kyn = —5GupGng GPRGRS £,Grg (3.91)

M

where n'"" is a vector field of unit 5-vectors normal to our hypersurface, £, denotes the Lie

derivative along n | and G is the projection of the metric G onto the hypersurface at y = 7.

By choosing nM = (0,0,0,0,1) as our hypersurface normals, the projected metric equals

. aly » 0
Caiw(@) = [Carn @) + nagrg] = | “O ™ (3.92)
0 0

Thus G nGVE = (6%‘,55)55 and the extrinsic curvature simplifies to
1 —
Eyn = —5£nGuN (3.93)

When acting on a rank-2 covariant tensor such as G 57, the Lie derivative £, equals

A( NG an + (OnnM Gy (3.94)

LnGyn =1 (04GN) + (Oyn

3A time-like 4D hypersurface is a hypersurface where the normal vector at every point is space-like, such
that the hypersurface itself resembles a 4D spacetime.

171



Because G/ is only nonzero in its upper 4 x 4 block and n4 is only nonzero in its fifth

component, only the first term of the Lie derivative contributes, and

_ o . Oya)nyuy O
[£2Garn] = [P04Garn)] = [(0,Garw)] = G (3.95)
0 0

such that the extrinsic curvature of a constant y hypersurface in a spacetime with metric

Eq. (3.76) equals

1
Eyn (@) = —50ya) SN OR My (3.96)

This extrinsic curvature poses a problem when trying to solve the Einstein field equations in

= ¢+2kyl In this case, K is nonzero,

the presence of an orbifold-even function like a(y)
and thus necessarily implies additional warping in the spacetime geometry not accounted
for solely by the standard Einstein-Hilbert Lagrangian nor an additional bulk cosmological
constant. In particular, the orbifold symmetry demands that Ky n(07) = —Kn(07)
across the orbifold fixed point at y = 0 and Ky (r. ) = —Kprn((=7¢)h) across the orbifold

fixed point at y = r., which subsequently imply jumps in the extrinsic curvature at the

branes, i.e.

(Kunlly—y = KM G5 - EMN(G7) (3.97)
= 2K MN () (3.98)
= — (aya)\wﬁ S ORaw (3.99)

To accomplish a jump in the extrinsic curvature like this, we need a surface source of stress-
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energy (not unlike using a surface charge density to cause a jump in the electric field in
classical E&M). In analogy with our previous (bulk-based) situation, we have two immediate
options for trying to achieve this: either embedding matter into the branes, or introducing
a surface cosmological constant on each brane. We opt for the latter to keep things purely
gravitational, and call each of these new surface cosmological constants a brane tension.

As far as the Einstein field equations are concerned, this means introducing new terms
into the action. For terms evaluated on the brane, we use the appropriate brane-projected
metric G, but otherwise the new brane tension terms closely resemble our bulk cosmological

constant term: we include them in our existing cosmological constant Lagrangian like so,

Scc = —% P [A\/a + Ao/ G(0)d(y) + Arre G(mre) oy — 7”“0)] (3.100)
5D

The constants A, g, and Az will be determined soon using the Einstein field equations. The

variation of the new terms with respect to GMN proceeds similarly to the bulk cosmological
constant term so long as we are careful to continue projecting onto each respective brane:

using the Lagrangian implied by Eq. (3.100), we find

5@% [Loc] = —% ~AVGGap— Y M/G@)Gap®) 5y] (3.101)
5D

ye{oﬂ'("f'c}

where 0y = 0(y — 7). Therefore, the Einstein fields equations derived from combining Eq.

(3.100) and the usual Einstein-Hilbert Lagrangian (in the absence of matter) are

VGGap—AGagl— D My\/G@) Gap®) 5 =0 (3.102)

ye{0,mrc}

173



After substituting explicit values into the Einstein field equations Eq. (3.102), including

VG = aly)’ G(y) = ay)’ (3.103)
we obtain
—3a*(O50) — Aa® — > Aga(d)’oy=0 (3.104)
@6{0,777’3}
g(aya)Q +Aa® =0 (3.105)

The second equation was solved previously and led us (after a coordinate rescaling) to the
orbifold-even function a(y) = e+2klyl and bulk cosmological constant A = —6k2. When this
solution is substituted into the first equation, all terms lacking Dirac deltas are automatically

cancelled, and the residual Dirac deltas only cancel if

Hence, each brane requires a different-signed tension, where the sign of the exponential in
a(y) determines which brane gets which sign. It is conventional to choose the sign such that
the y = 0 brane (sometimes called the hidden or Planck brane) has positive tension and the
y = 7re brane (sometimes called the visible or TeV brane) has negative tension. Thus, we

choose the lower sign option and find the Einstein field equations are solved by taking

a(y) = el A= —kXy = kApre = —6k (3.107)
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This completes the construction of the RS1 background metric.
We now summarize the results of the above derivation, but add the label “(bkgd)” while
doing so as to emphasize that these results are specific to the RS1 background metric. The

background metric 5D RS1 Lagrangian equals

E%gd)zﬁ(bkgdhrc(bkgd _ VGbked) g — 122y G(bked) 1 gx+/G(bked) 82|y|

"35D
(3.108)
wherein the Einstein-Hilbert and cosmological constant Lagrangians equal
2
ched) _ 2 /G ked) g(bkad) (3.109)
K2D
12k
E(bkgd) _ 6k\/ G (Pked) 1 +/G(bked) (@2]y]) (3.110)
KED
with corresponding background metric and 4D projection
—2k]y| 0 —2k|y| 0
e U] — € n
Ghrnl = " and  [Gh )= " (3.111)
0 -1 0 0

In order to obtain a particle theory of RS1 gravity, we must perturb the background solution
summarized in Egs. (3.108)-(3.111) by field-dependent amounts. This is the topic of the

next subsection.

3.3.2 Perturbing the Background Metric

The last subsection constructed the RS1 background metric, which is ultimately described

by Egs. (3.108)-(3.111). The particle theory is subsequently obtained by perturbing this

175



background metric, but we must take care to correctly distinguish physical and unphysical
degrees of freedom when doing so. For example, one way to parameterize a generic perturbed

metric G relative to the background metric G(Pked) g

o2k [lyl+i(ey)] (n;w + rsphyw (2, y)) r5DAL (T, Y)

Gun] = (3.112)

~ ~ 2
K5Dpl/<x7y) _[1 + QU(J;’y)]

M — (gh y), where z# are the usual 4D coordinates and y € [0, 77¢] is the

in coordinates x
extra-dimensional spatial coordinate (which is extended to y € [—7nre, +7re] by imposing

orbifold invariance). Note that Bq. (3.112) recovers G(P%8d) when h = p = @ = 0. Via

coordinate transformations, Eq. (3.112) can always be brought into the form

—2k |yl +i(e.y)] L+ Krn b 0
Gyl = € (W k5D (JC,Z/)> (3.113)
0 —[1+ 2z, y))?

where p;, is made to vanish via orbifold symmetry, and @(x,y) equals

i) = _f%;;gu%@w'—w (3.114)
in terms of a y-independent field #(z) [30]. The 5D fields h(z,y) and #(z) contain all dy-
namical degrees of freedom of the RS1 model [30], and will be the source of our 4D particle
content in the next chapter. By demanding that ds? be invariant under the orbifold sym-
metry, iLw/<£L‘,y) and 7(x) are necessarily even functions of y; in other words, these fields
are “orbifold even.” Furthermore, because Gy is symmetric in its indices, ﬁu,,(x,y) is
symmetric as well.

For convenience, we will often parameterize the perturbed metric G (and its projection
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onto a constant y hypersurface, G) as

w(z,y) Guv 0 — w(z,y) guv 0
[Gun] = [Gun] = (3.115)
0 —v(z,y)? 0 0
where
v (T, ) = M + Ksphpw (7, y) (3.116)
w(z,y) = g2~ 20(2) (3.117)
v(z,y) =1+ 2a(x) (3.118)

and ¢ = etH¥. Replacing GP%2d) with G (and GP*8Y with G) in Egs. (3.108)-(3.111)

yields the 5D RS1 theory:

Lsp = Lgn + Lcc (3.119)
where
_ 2 ~ 2 SMN |[+Q P Q P

EEH:—KT\/@R:—HT\/@G [FMPPNQ—FMNFPQ (3.120)
5D 5D
2 —

Loo == | = 12k2VG + 6k\/5(a§|y|)] (3.121)
5D

The alternate form of Lgp included on the RHS of Eq. (3.120) was derived in Subsection

3.2.6.
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In this parameterization, the invariant spacetime interval equals

ds® = (Gyn) daM dzN = (w gp) dat* dz”’ — (112) dy? (3.122)

Furthermore, the inverse metric GMN equals
- w(z,y) ™t g 0
[GMN] = (3.123)
0 —U(ZL’, y)_2

where gM" is the inverse of g, = 1w + m5Dﬁuy such that g"g,, = nfj , and the invariant

volume element nicely decomposes into four-dimensional and extra-dimensional weights:

\/detGd4xdy:[ V/—detg d4] (vdy) = (Vdet G d*z) - (vdy) (3.124)

For use in the next subsection, note that (Oyu) = 4+2k(9y|y|)u, such that

(Oyw) = —2w [k(9ylyl) + (Oyu)] (3.125)
= —2k(0yly|) (1 4+ 2u) w (3.126)
= —2k(0yly|)vw (3.127)

The extrinsic curvature K,y is now

1, 1 ~ 1
Kyn = —5£nGun = =50 (04G0N) = — 5 040K Oy (wgpw) (3.128)
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where the normal vector field equals [n] = (0,0,0,0,1/v), such that

_ AMN MmN g 1
1
- __Qw_vgw Oy (W) (3.130)
1T (Oyw) .

and

VaK= " {4@ + [[gg’]]} (3.132)
2v w

In order to eventually obtain the 4D effective RS1 model, its particle content, and its

interactions (which are necessary to analyze the processes in which we are interested), we

must weak field expand (WFE) the 5D RS1 Lagrangian. That is, we must series expand the

5D RS1 Lagrangian in powers of the 5D fields BW and 7. In principle, we could begin the

weak field expansion now, but it is worthwhile to first modify L5 by the addition of a total

derivative AL which will eliminate any terms proportional to (0y|y|) and (8§]y|) from the

Lagrangian. This is achieved in the next subsection.

3.3.3 Eliminating “Cosmological Constant”-Like Terms

The cosmological constant Lagrangian Eq. (3.121) contains terms that potentially complicate
our analysis. For example, the terms proportional to (85]1/\) introduce Dirac deltas. When
going from the 5D theory to the 4D effective theory, we must integrate the Lagrangian over
the extra dimension, and the presence of Dirac deltas would replace what would otherwise

become coupling integrals with evaluations of extra-dimensional wavefunctions at the branes.
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Thankfully, such terms in the cosmological constant Lagrangian combine with similar terms
in the Einstein-Hilbert Lagrangian Eq. (3.120) to form physically-irrelevant total derivatives,
and in this way all terms proportional to (9yly|) or (8§|yl) are eliminated. The present
subsection will explicitly demonstrate the elimination of these terms to all orders in the 5D
fields as well as introducing a new term AL to the RS1 Lagrangian which automates this
elimination.

The terms in Ly which cancel Lo arise when an extra-dimensional derivative 0y acts
on a y-dependent multiplicative factor such as € or (9y|y|) instead of the 5D field izuy (recall
that 7 is y-independent by construction). Hence, for the purposes of this subsection, we seek
to isolate all such terms in Lgg. To begin, we recalculate the Christoffel symbols (originally
calculated in Eqs. (3.77)-(3.78) for the RS1 background solution) for the perturbed theory:

recall

éPQ(aMGNQ +ING M — 8QGMN) (3.133)

N | —

P _

such that, using the fact that G,y and its inverse GMN are block-diagonal,

o, = —3655(65(;””) (3.134)
%, = +507 (95Ge) — g, = +5106] (3.135)
r2, = +%é55(ayG55) (3.136)
It = —%GPU(%G%) (3.137)
I35 = +%é55(55G55) (3.138)

where 05 = 0y. Because GMN g block-diagonal, the index summations on the RHS of Eq.
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(3.120) only yield nonzero contributions when (M, N) = (u,v) and (M, N) = (5,5). Consider
when (M, N) = (u,v). The first product of Christoffel symbols in the (M, N) = (i, v) case

equals

POpT ) = T,y + T5,T0: + D715, + T (3.139)

of which the second and third terms contain y-derivatives. Their contributions are identical

and yield, when combined,

Oy not on
P Y 1~ ~
ro.rh, o —5 GGG (3.140)

The second product of Christoffel symbols in the (M, N) = (u,v) case equals

I3 T5g = D0, The + Do, T0s + 19,08, +T5, T3 (3.141)

of which the second and fourth terms contain y-derivatives, such that

dy not on 1 _ - 1 ~rr ~
IRTh, o —2GP[CE (095G um) — GG (95Gs55)(05G ) (3.142)
a field 4 4

Hence, when contracted with G, the net contributions coming from the (M, N) = (u,v)

case equal
5 Oy noton 71 _ o~ 1~ ~
w | 7@ pP QP | 7Y L x55 1AAI L AB5 2
G FMPFVQ FWFPQ X ﬁDeld 2G [GG'GG'] + 4G [GGT]

1 arr ~ -
+ ZG55G55<a5(;55>[[GG’]] (3.143)
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Meanwhile, the equivalent expression in the (5,5) case equals, thanks to cancellations,
455 | @ pP QprP | _ A55 P 5 1P P 5 P

of which the first and third terms contain y-derivatives, contributing overall

. Oy noton 71 _ . 1 ~rr ~ ~
GoP [r?Prg’Q - r%rﬁQ} ST LLGPGGGA - S GG (95G55)[GGY] (3.145)
afield 4 4

Combining Egs. (3.143) and (3.145) yields, at the level of the Einstein-Hilbert Lagrangian,

Oy not on 9 - 1 - 1 ~ =~
Lpn > ——5VGEP|Z[GA - [GC'GA (3.146)
a field KED 4 4

However, this expression contains more than just the terms we desire: some of the y-
derivatives in this expression will end up acting on fields and, thus, not help eliminate
Lcoc. To refine this expression further, we utilize the explicit form of G in terms of w and v
from Eq. (3.115). For example, with this parameterization the prefactor VG G® becomes
(vw? /=g)(—=1/v%) = —(w?/v) \/—g. This decomposition also allows [GG'] to be rewritten

as

[GG'] = [(9/w) Dy(wg)] (3.147)
= O a1 1 ) (3.145)
= 4(9yInw) + [34'] (3.149)
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where we utilized the fact that [gg] = [#] = 4. Squaring this, we then obtain

[GG'? = 16(9y Inw)? + 8(3y mw)[34'] + [34']? (3.150)

The final term in Eq. (3.150) only contains y-derivatives acting on fields and thus can be

ignored from here on. Similarly, the second term in Eq. (3.146) is proportional to

[GC'GE] = 4(Dy nw)? + 20y nw)[3g'] + [39'34'] (3.151)

wherein the first two terms involve (dyw) o< (0y|y|) via Eq. (3.127) and the final term can be
ignored. By keeping these distinctions in mind, the only terms in Lrp where y-derivatives

do not act on fields are

8y not on 9 w2 ) 3
8 o 2 \ T V) |3y Inw)T+ 5G] ”’} 3.152
B e K2p ( v g) { (Oy Inw)” + 2 (9y Inw)[gg] ( )

But (0yInw) = (Oyw)/w = —2k(0y|y|) v via Eq. (3.127), such that

dy not on ) ~
Lry D —Twz V=9 [ — 12k%0 + 3k(8y|y|)[[gg/]]] (3.153)
a field KsD

This completes our manipulations of the Einstein-Hilbert Lagrangian. We can apply a similar

decomposition to Lo in Eq. (3.121):
2 9 2 2
Loc=——5w V=g | —12k%0 + 6k(,y|) (3.154)

R5D

where VG = w? / —g because G only includes the 4-by-4 part of the metric G. Combining
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Eq. (3.154) in its entirety with the terms we isolated from Lgy in Eq. (3.153) yields, in

total,

dy not on 6k

Lsp=Lgn+Lec D ——w?y=g | —8kv+ (9,ly)ag] + 205 y))|  (3.155)
a field KED

Thankfully, this collection of terms actually forms the total derivative dy[w? /=g (9y|y|)] up

to multiplicative constants:

0y [ V=3 0] = V=3 200,0)0, ) + 507010, + o @3] (3150
= 37V |10, )@l + @l + 2e3lyD)]  (@.157)

= 30 V=G |~ Sko-+ @, Ia9'] + 2050 (3.158)

Therefore, all terms in Lsp that resemble contributions from the cosmological constant

Lagrangian combine to form a total derivative,

Oy not on 19k

Lsp=Lpu+Loc D ——50y w? /=g (Dylyl)| =0 (3.159)
a field H5D

and only terms where derivatives are applied to fields contribute to the physics.*

To avoid performing the integration by parts implied by Eq. (3.159) in the future, we

can manually subtract the total derivative we eliminated from the 5D Lagrangian and use,

4That the total derivative does not contribute a nonzero surface term to the action is guaranteed by the
discrete translation invariance of the integral, such that whatever contribution we obtain from a boundary
term at y = +7r¢ is exactly cancelled by an identical term at y = —nre.
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in practice,

(RS)

Len’ =Lgu + Loc + AL (3.160)
where?
12k
AL= 50y w? /=g (9yly]) (3.161)
5D

Because of the structure of Lry in Eq. (3.120), there are two derivatives in every term

RDS) and those derivatives never act on the same field instance. This fact is useful in

(
of Ly
the next chapter, when we analyze the coupling structures present in the 4D effective RS1

theory. Having obtained Eq. (3.161), we now weak field expand the 5D RS1 Lagrangian.

3.4 5D Weak Field Expanded RS1 Lagrangian®

This section details the weak field expansion of the RS1 model Lagrangian, Eq. (3.160),
including explicit expressions for all terms in the Lagrangian having four or fewer instances

of the 5D fields izuy(x,y) and 7(x).

SThis AL is different than the AL used in [19] because the present dissertation uses the alternate form
for Lpyy derived in Subsection 3.2.6 instead of its more traditional form. Specifically, the AL in [19] equals

ALl = (2/2p)0yl (w? /v) v=g ([39'] + (Byw)/w)], such that AL — AL = —(4/k2[) Oy[ VG K] where
VG K was calculated in Eq. (3.132).

6T his section was originally published as Appendix A of [19]. The content has been updated to reflect
the new form of the Einstein-Hilbert Lagrangian, and material has been added to connect this section to the
rest of this dissertation.
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3.4.1 General Considerations

The matter-free RS1 model Lagrangian EéRDS) is defined by Eq. (3.160) and is perturbed

relative to a background metric according to Egs. (3.114)-(3.118). By expanding in field

content, we obtain a dual power series in the 5D fields fLW and 7:

(RS) 7 oy (RS) (RS) H+R-27j ; R
Lepy (h,7) = Z EhHrR where ﬁhHrR X K hqvy = by
H,R=0
(3.162)

and kK = k5p. A power series of this sort is called a weak field expansion, and the Lagrangian
that results is the 5D weak field expanded (WFE) RS1 Lagrangian.

As remarked at the end of the last section, each term in L5y contains exactly two deriva-
tives, which by construction must act on (different) 5D fields. In order to contract all Lorentz
indices, that pair of derivatives is necessarily either a pair of 4D derivatives or a pair of extra-
dimensional derivatives (i.e. there are no terms containing a mixture of both). We call a
term wherein both derivatives are four-dimensional an A-type term whereas we call a term
wherein both derivatives are extra-dimensional a B-type term. By partitioning all terms
containing A HW fields and R 7 fields into A-type and B-type terms, we obtain the following

decomposition:
RS H+R-2 [ —mkre_+2]7 | —27 4
ﬁéHZR =K + [6 T TCg+ } {5 'CA:hHrR+€ ['B:hHrR , (3'163)

where ¢ = e krelel, By definition, the quantities £ AhH R and £ p.pH R contain exclusively
A-type and B-type terms respectively, and all warp factors € have been organized in Eq.

(3.163) such that ZA:hHrR and ZB:hHrR only depend on the extra-dimensional coordinate
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y through the y-dependence of the 5D field Buy(x, Y).

Having established these notations and organization, we must next answer a practical
question: to what order in each field should we expand the 5D RS1 Lagrangian? For the
processes relevant to this dissertation (tree-level 2-to-2 KK mode scattering), we require the
cubic hhh and hh# interactions and the quartic hhhh interaction. This latter interaction
occurs at (’)(/12) in the Lagrangian. Because we have already calculated them anyway, we
actually provide all terms of the 5D WFE RS1 Lagrangian at (9(/-@2) and lower, which we

organize based on field content:

£l B9 4 p(RS) | () (RS (3.164)

RS RS
+ L e L) Ok
In principle, these interaction Lagrangians enable the calculation of every 2-to-2 tree-level
scattering matrix element in the matter-free RS1 model.
The next subsection reviews several notations and formula that are useful for the weak
field expansion of EgRDS). The remaining subsections then summarize the 5D WFE RS1

Lagrangian through O(x2), which is the principal result of this chapter. Afterwards, an

appendix derives various weak field expansion formulas there were used to obtain that result.

3.4.2 Notations and Useful Formulas

The 5D RS1 Lagrangian, Eq. (3.160), is composed of various functions of the metric
Gyn(z,y) and, thus, the 4 x 4 quantity guw(z,y) = M + fﬁfzﬂy(:c,y). This includes the
inverse quantity g"” and the determinant \/— det[g,.], both of which must be expanded in

powers of fzu,,. It is in these expansions that the twice-squared bracket and tilde-as-inverse
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notations prove particularly useful.
Recall that the twice-squared bracket notation is used to indicate sequential Lorentz

index contractions of rank-2 tensors, e.g.

[1] = (9,h%) [hh]ag = harh} [hhh] = B3RS R, (3.165)

where a prime indicates differentiation with respect to y. When writing the 5D WFE RS1

Lagrangian, we also utilize the following abbreviations
h=ho (Dah) = (9ah?) (Oh)a = (0% ha) (3.166)
As mentioned above, the 4 x 4 quantity g, exactly satisfies

9o = Mg + Khag - (3.167)

From this, the inverse quantity g*" may be solved for order-by-order by imposing its defining

condition, g,3 G597 = n. This process yields

+00
g7 =0 13" ()[R (3.168)
n=1

Meanwhile, weak field expansion of the determinant /—det g = \/— det[g,,| yields

iy (_1)n—1 nmrLn
V—detg = H exp {Tm Th ]]] : (3.169)

n=1
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which equals, to fourth order in the fields,

2 3
g =1 T (i o)) 1 (S Gh[A + S[AR
—detg =1+ Sh+ (h 2[[hh]]>+48 (h 6h[[hh]]+8[[hhh]]>

1 /. JOSER . o o
T3 (it — 1202 [hA] + 12[hA] + 320 [hhA] — 48[RARA]) + O(+7)

Derivations of these weak field expansion formulas are included in the appendix of this

chapter.

The remainder of this section summarizes the 5D WFE RS1 Lagrangian at quadratic,

cubic, and quartic order.

3.4.3 Quadratic-Level Results

— - - ~ 1, - 1 .

LA:pn = (0h)u(9"h) — (ah)i + 5(8‘uh1/p)2 — 5(3,“}1)2 (3.170)
L = 5[0 — 510 (3.17)
_ 1,

L gy = 5((‘%7“) (3.172)
ZBZT’T‘ =0 (3.173)
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3.4.4 Cubic-Level Results

~ A~

_ 1~ ~ ~ 14 N ~ N ~
L achit = 5 (OR) (0 ) = by (OR (@ R) — £h(Dh)? = oy (OB (0" 177)
. . . 1. . . . .
+ hp (D) (O ) + $h(Dyaburp)? = W (Oyah) (09 177)
1. - ~ ~ ~ - 1. ~ ~
+ Sy D)D" B) = by (0K ) OR) = (D) (07 1)

. . . . . . 1. . .
+ 3 (Ouhe) (" h0) + 20 (Ouhuig)(ORI™) = ShE (Dhyu)(OPRY)  (3.174)

L = (VT — [VIR] — SHIVAY + ) (3.175)
LAy =0 (3.176)
- L /31550 22| 2

Lpnnr = 5\ 5 (IWH] =[] 7 (3.177)
~ VORI DRSSPI PO PRI

Lpprr = —g(ah)ur(ﬁ )+ g(auh)r((() ) + Zh(@,ﬂ”) - Ehw(a 7)(0"T) (3.178)
Lp:prr =0 (3.179)
_ 1 .

L pcrrr __GT(auT) (3.180)
ZB:rrr =0 (3.181)
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3.4.5 Quartic-Level Results

- log, & S PO A PO S ; ;
L Achhhh = §h2(3h)u(5” h) = 71hh](0R) (0" h) = S hhyuw (OR)* (07 R) + [1h]w (OR)" (")

_ %BZ@W + éﬂiﬂ}]] (@uh)? — %ﬁﬁw(ah)p(aphu”) - TR (O) (877
b (DR B7) 4 Sy (Bph) OPR) — [l (D) (0P R)

1. A 1 .4 ~ 1.- A R
+ 1—6h2(5phW)2 - g[[hh]](aphw)2 = 53 (Ouhuo) (9*17F)
1

. . . S . . 1~ . . .
+ [ORL @) (@57) = Sy (O YO HO7) - i (D) (07 )

1.- A - 1 - - “ 1. ~ -
-y (O 1) (07 ) — 5 7B (9" 1) (07 ) — S by (9ph) (017)
+ [AR]u (Dph) (OFBP) + hysphu (9" ) (D" 1P7) = hyuwhpe (91) (9 hP)

1. “ A 1 - “ “ 1. A -
- ghz(ﬁuhup)(a“h“”> + 1 [hA](Ouhwp) (07 1P) + Shh(Ouhue) (07 W)
— [RA]5 (Duhuo ) (0¥ BFP) + hhS (Duhuo ) (OPB) — 2[1A]G (Ophuo ) (0P B
e (BrhYPY (7Y + (82 hVP) (97T ihﬁg<agﬁﬂy)(aphﬂy)

1 ~x A A A N N A A A
+ AR (Do hyu ) (O 1) = W hpo (DuhT) (0 hur) + hipheg (9h7T) (0 hor)

(3.182)
- 1o P PP e 1o o)
LB:hhhh = 1—6h2 [W']* - gLl [W']* - §h[[h’]] [nR'] + (W] [RAA] — Efﬂ [7'H]
O [P VST J P

- é[[hh]] [R'h] + §h[[hh’h’]] — [RhH R'] + 5[[hh’]]2 — 5[[hh’hh’]] (3.183)
L p:nhir =0 (3.184)
_ 1 /3 A PO N an .
Lphhir = Z\/; [ — h[R')? + A[W)[AR] + B[ W] — A[RR'R] | 7 (3.185)
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= 1. o 199 1, 9o 1, . .
L Achher = —E(ah)u(auh)TQ + ﬂ(%h)%’z - ﬂ(auhw)%"z + E(auth)(ayhup)T2

1., 1. - 1. ~ 1. ~ .

L Sovay 4 L7 PUNAA Ay 4 L5208 a2 Lpiaooo o

- }l%w(am(a%) + %[[m}]] (017 (07) (3.186)

_ 57 & .
Camir = 15 |02 - [71) (3.187)
_ 1 . . . .
L Ashrrr = NG [2(ah)ﬂf2(aﬂf) — 2(9,h)PH(OM7) — 3hit(uF)? + 6l (9F7)(9V7) | (3.188)
Lp:pyrr =0 (3.189)
- Loog o2
L pepppr = g?“ (a,ur) (3.190)
ZBZTTT’I" =0 (3.191)

3.5 Appendix: WFE Expressions

This appendix derives formulas for weak field expanding the inverse metric GMYN and the

covariant spacetime volume factor /| det G/.
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3.5.1 Inverse Metric

Consider a metric G on X-dimensional spacetime of the form

Guyn =conunN +Hun (3.192)

where the real number ¢ is positive. If Hy;p is small relative to conpsy, we may weak field
expand GMN with respect to the field Hj . Note that the form of this expansion must be,

using the twice-squared bracket notation defined in Section 2.2.1,

+00
GMN =3 "¢, [a" MY (3.193)

n=0

We can solve for the unknown coefficients ¢ in Eq. (3.193) by imposing the inversion condition

GunGNT = 77]1\.2, like so:
+00
Ny = {COUMN +Hyn| | Y e [HTVF (3.194)
n=0
400 400
_ ~ nn P ~ n+171P
=co Y _ e H Ty + ) enl H" ]y (3.195)
n=0 n=0
+oo
= cocomhy + Y (coln + En-1)[H"]}; (3.196)
n=1
which forces the recursive relations
Go=cgl  n=—cgteny = (=1)"; "V (3.197)
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such that, when Gprn = conyr + Hyr s

GMN Z oD g MN (3.198)

3.5.2 Covariant Volume Factor

Next, let us weak field expand the covariant spacetime volume factor /| det G| for various
choices of the metric Gyp. As usual, det G here refers to the determinant of the matrix of

components G . We will increase the complexity of G in stages until it is of the form of

the RS1 metric.

3.5.2.1 Minkowski Spacetime

The X-dimensional Minkowski metric is defined such that [/ 5] = Diag(+1,—1,...,—1) =

[nMN] from which we may immediately calculate

V| detn| = \/| +1) - (=D& =1 (3.199)

To prepare for more complicated cases, let us also calculate this another way. Namely, we

may use the formula,

det A = exp {tr [Log (A)]} (3.200)
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to write

‘exp [%tr[Log (A)]} ‘
VEdet A = (3.201)

‘z’ exp {%tr[Log (A)] } ‘

In order to ensure the LHS equals /| det A| when applied to A =7 (and, later, A = G), we

will take the + case when X is odd and — case when X is even. This allows us to write,

V| det Al =

X exp {%tr[Log (A)]} ’ (3.202)

The matrix logarithm present on the RHS of Eq. (3.202) is defined via power series,

o (=)t 1o 1,3
Log(]1+A)EZTA”:A—§A +34% - (3.203)
n=1

For a diagonal matrix (and using principal values),

Log [Diag (A1, ..., Ayx)] = Diag[log(A1),...,log(An)] (3.204)

such that
Logn = Diag [log(+1),log(—1),...,log(—1)] (3.205)
= Diag (0, im,im,- -+ ,im) (3.206)
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and so
exp [%tr (Logn)} = oxp [%(X - 1)@'%} = iX=1) (3.207)
Thus,

Vdetn] = ‘ZQX( — ‘(—1)X) ~1 (3.208)

which is consistent with our first calculation. This second method is excessive for the
Minkowski metric. However, it is useful for more complicated metrics whose determinants

cannot be calculated directly.

3.5.2.2 Perturbing Minkowski Spacetime

Next, we consider the perturbed metric Gy = conyun + Hyrn (note this is the metric we
used in the previous subsection). Our goal is to weak field expand /| det G|, i.e. calculate
/| det G| as perturbative expansion in H near the background metric n. Because n = 7 and

772 = 11 = 1 when considered as matrices, we can write GG as the following product:

G=con+H =n(cl+nH) (3.209)

If [A,B] = 0 for matrices A and B, then we can apply Log(AB) = Log(A) + Log(B).
However, this is not the case for the product in the above expression: nnH = H = [HsN]|
whereas nHn = [HMN] such that [, col + nH] = [,nH] is nonzero. Thankfully, there is

a simplification afforded to us by the Baker-Campbell-Hausdorff (BCH) formula. The BCH
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formula is of the form,

Exp(A) Exp(B) = Exp (Z + B+ %[

B]+.. ) (3.210)

This is useful to us after making the replacements (A, B) — (Log A, Log B) and taking the

matrix logarithm of both sides. Then the BCH becomes

Log(AB) = Log(A) + Log(B) + 3 [Log(A), Log(B)] + ... (3.211)

To apply the determinant formula Eq. (3.200), we take the trace of both sides of this

equation. Because the trace distributes over addition, we find

tr Log(AB) = tr Log(A) + tr Log(B) + %tr [Log(A),Log(B)] + ... (3.212)

where higher-order terms contain traces of increasingly-many commutators. But the trace

of any commutator vanishes because tr(XY') = tr(Y X), such that
tr[ X, Y] =tr(XY) —tr(YX) = tr(XY) —tr(XY) =0 (3.213)
Therefore, the traces of all commutators in our modified BCH formula vanish, yielding

tr Log(AB) = tr Log(A) + tr Log(B) (3.214)
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which implies

\/|det AB| =

X+ exp { tr[Log (Z)]} exp {%tr[LOg (E)]} ‘

and, setting A = n and B = ¢yl + nH,

V|det G| =

P xp { infos con)] } exp {BilLog (2 4020}

The first exponential can be evaluated exactly: because

tr{Log(con)] = log[det(con)]
= log [cé((—l)X_l]

= log(cg) + (X — 1)im
it is the case that
X/2 .
exp { §tr [Log (con)] | = g% exp [S(X — im] =¥ 1l

Substituting this into Eq. (3.216), we obtain the exact expression

VI3t 6] = " exp { Lo (1 -+ )}

(3.215)

(3.216)

(3.217)
(3.218)

(3.219)

(3.220)

(3.221)

Finally, using the perturbative expression for the matrix logarithm Eq. (3.203), we obtain

n—l

V] det(con + H)| = /2 H exp < [[H”]]>
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where [H] = n™MN Hyap, [H2] = pMN HypnP@ ngm, and so-on. To obtain the O(H")
terms in (/| det G|, we should expand each exponential in the product to O(H™). For

example, to obtain O(H 4) results, the relevant exponentials and their expansions are

exp (+31H1) = 1+ S[H] + §[H]? + F[H] + g [H]* + O(H°) (3.223)
exp (~41H%]) =1 JIH?] + HIH? + O(HO) (3.224)
exp (+%[[H3]]) — 14 L[H] + O(HS) (3.225)

exp (—1%[[1{4]]) =1 - &[HY] +O(H®) (3.226)

which yields

Vider@l = 7|1+ g+ g (17 - 217
55 (LT° — ol 1]+ o112

- ﬁ (HHH4 — 12[H]? [H?] + 12[H?]? + 24[H] [H°] — 24HH4]]> + (’)(H5)} (3.227)

3.5.2.3 Block Diagonal Extension

Suppose we expand the metric G even further into an (X + 1)-dimensional object G (X+1)D>

so that

G(x+1)D = = (3.228)
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where wq and v are real and positive. To find \/ | det G(x Jr1)D|, we employ a fact about
block diagonal matrices. Let M be a block diagonal matrix M = Diag(A, B) where A
and B are square matrices. We may define additional matrices A’ = Diag(4, 1g) and
B’ = Diag(1 4, B), where 14 and 1pg are identity matrices of the same dimensionality as A
and B respectively. A and B commute ([A’, B'] = 0) their product recovers M (M = A'B’).

Thus, the BCH formula implies Log(M) = Log(A’) + Log(B’), and

det(M) = exp [tr(Log M)] (3.229)
= exp [tr (Log A’ + Log B')] (3.230)
= exp [tr(Log A") + tr(Log B')] (3.231)
= exp [tr(Log A")] exp [tr(Log B')] (3.232)
= det(A") det(B') (3.233)

Because det(14) = det(1g) = 1, this result implies det(A’) = det(A) det(1 4) = det(A) and
det(B’) = det(B) det(1g) = det(B), such that

A 0
det = det(A) det(B) (3.234)

0 B
This generalizes to multiple blocks via recursion, i.e. the determinant of a block diagonal
matrix det[Diag(My, Mo, ..., My)] is the product of the determinant of the individual blocks

det(My) det(Ms) ... det(My). Using this on our extended metric, we find

\/| det G(x 11)pl = \/|det[w0G] det(—v8)| = vowg(/zx/ | det G| (3.235)
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or

\/| det G x 1 1)pl = vowg(/Z\/| det(con + H)| (3.236)

from which we can use the previous perturbative result, Eq. (3.222). This is the form

relevant to the 5D RS1 model.
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Chapter 4

The 4D Effective RS1 Model and its

Sum Rules

4.1 Chapter Summary

The principal result of the last chapter was the weak field expansion (WFE) of the 5D RS1
Lagrangian, as summarized in Eqs. (3.163)-(3.191). Up to quartic order in the fields, we
(RS)

derived each term Lh H,R containing H instances of the field Buy(x, y) and R instances of

the field 7(x), and partitioned them into A-type and B-type terms according to Eq. (3.163):
RS H+R—2 [ — 21| o= 4
ﬁéH:R = K +R [6 77ch5+ } |:8 [,A:hHTR—I—é £B:hHTR (41)

where k = k5. This chapter demonstrates how the 5D fields ﬁuy(x, y) and 7(x) in the 5D
WFE RS1 Lagrangian encode information about 4D spin-2 and spin-0 fields respectively.

For example, consider the quadratic terms obtained via this process, as recorded in Eqgs.
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(3.170)-(3.173),

j j AP [ 1 1 ..

551128) =e? {@h)u(@”h) — (0h)7 + é(auh,,p)2 - 5(6,/1)2} e {iﬂh/HQ B 5[[}/ ]
(4.2)
o = [e_mcgﬁ]z’ [%(%fﬂ (4.3)

These are structurally similar to the 4D Lagrangians from Eqgs. (2.379), (2.380), and (2.386):

=2 A - A 1 N 1 -
(éass%ess = <ah)ﬂ(auh) - (3}1)/% + §<auhl/p)2 - §(auh)2 (4.4)
(522) _ (822) 2 1. 2 1 ~4
massive — £massless +m {éh - 5[[hh]]} (4'5)
(s=0) _ 1. .9
massless — é(aﬂr) (4.6)

which are the canonical massless spin-2, massive spin-2, and massless spin-0 Lagrangians
respectively. Specifically, if fALW(x, y) is momentarily assumed y-independent, then the terms
proportional to % in E;L%S) from Eq. (4.2) vanish. The remaining terms are proportional to
£~2 and exactly mimic the Lorentz structures of the massless spin-2 Lagrangian (Eq. (4.4)).
Furthermore, if we restore the y-dependence of ﬁw, (x,y), the Lorentz structures of the newly-
revived £~4 terms mimic the Fierz-Pauli mass terms of the massive spin-2 Lagrangian (Eq.
(4.5)). This hints (correctly) that the 5D field izuy(a;,y) contains information about 4D
spin-2 particle excitations, with its y-dependence specifically encoding information about 4D
particle masses. Meanwhile, the Lorentz structure of E&ES) in Eq. (4.3) directly mimics
the massless spin-0 Lagrangian (Eq. (4.6)). The absence of a massive spin-0 structure

for the y-independent 7(z) field synergizes well with our existing observation that massive

spin-2 structures arose from the y-dependence of hyy (z,y): in all, the y-independent field 7
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seemingly only contains information about a massless spin-0 particle excitation.
This chapter formalizes how the 5D fields iz,ﬂ/(x, y) and 7(x) generate 4D fields and thus
4D particle content. The key technique is Kaluza-Klein (KK) decomposition, which allows

the 5D fields to be written as sums of 4D fields weighted by extra-dimensional wavefunctions,

e.g.

) = < 3 W ne) i) = O (4.7)

where {1, ()} are the aforementioned wavefunctions and ¢ = y/r. € [—m, +7] parameterizes
the extra dimension. The zero mode wavefunction vy present in both decompositions is
independent of ¢ and thus constant across the extra dimension. The wavefunctions 1y,
solve a Sturm-Liouville (SL) equation, and thereby form a complete basis for orbifolded-even

continuous functions f():

flp) =

1 T
e N A I R
where ¢ = exp(kre|p|). Although this decomposition appears more symmetric when ex-

pressed in terms of y = pre,

+7Trc

fly) = \/ﬂ—rc o

In ¢n<%> = In 5_2f<y> %(%) (4.9)

1
N
working in terms of ¢ makes manifest the fact that the wavefunctions and mass spectrum
{pn} = {mnprc} depend only on the parameter combination kr. (as opposed to k and r.

independently). Thus, we favor the use of ¢ during KK decomposition and the subsequent

investigation of important integrals. Such integrals over ¢ are generated when the KK
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decomposition ansatz is utilized while determining the 4D effective Lagrangian,

+7re
Lyp'(2) = / dy Lsp(z,y) (4.10)

—TTre

In this way, the 4D effective theory bundles all extra-dimensional dependence into various
integrals of products of wavefunctions.
The rest of this chapter proceeds as follows. Footnotes detail how results in this chapter

relate to our published works.

e Section 4.2 introduces KK decomposition and derives the wavefunctions necessary for
KK decomposition to yield canonical 4D particle content. Because of its importance
for future work, the derivation is performed under slightly more general circumstances

than is required for this dissertation.

e Section 4.3 then applies KK decomposition to the quadratic 5D Lagrangians, thereby

demonstrating that IAzW(x, y) embeds a massless spin-2 field izg)y) (x) (the graviton) and

a tower of massive spin-2 fields l}/%) (x) (massive KK modes) whereas 7(z) only embeds
a massless spin-0 field #(0)(z) (the radion). KK decomposition is then applied to the
more general weak field expanded 5D Lagrangian. This requires integrating over the
extra dimension, which results in interactions weighted by integrals of products of KK
wavefunctions. These integrals define A-type and B-type couplings, which originate

from A-type and B-type terms respectively. The kr. dependence of these coupling

integrals in the large kre limit is briefly considered.!

e Section 4.4 derives relations (sum rules) between those coupling integrals and the spin-2

1A—type and B-type couplings were originally defined in [18]. The decomposition and derivation of the

4D effective RS1 Lagrangian was originally published in [19]. The generalized coupling structure 2(P) is new
to this dissertation, as are the generalizations of the A-type and B-type couplings that it implies.
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KK mode masses.?

The results of Sections 4.3 and 4.4 are essential building blocks for the main outcomes of this
dissertation. In the next and final chapter of this dissertation, the 4D effective Lagrangian
derived in Section 4.3 will be used to calculate scattering amplitudes. The sum rules derived
in Section 4.4 will prove vital for ensuring cancellations in the most divergent high-energy

growth of those amplitudes.

4.2 Wavefunction Derivation?

Let us now elaborate on the connection between 5D and 4D fields that was established in
the chapter summary, and in doing so derive explicit expressions for the wavefunctions that
will be utilized in the Kaluza-Klein (KK) decomposition procedure. To demonstrate that the
KK decomposition is generically possible, we assume a quadratic 5D Lagrangian L5 can be
decomposed into a sum of quadratic 4D Lagrangians, derive constraints that are necessary
for that assumption to hold true, demonstrate all constraints can be satisfied by solving a
certain Sturm-Liouville problem, and then reveal we could have used that problem’s solution
set to begin with. However, rather than work with Eq. (4.2) directly, let us generalize
somewhat. This generalization is excessive for our present goals, but is important when
considering (for example) natural extensions of this work, including the addition of 5D bulk
scalar matter or when constructing models of radion stabilization.

Thus, instead of the massless 5D field iLW(:L’, y), we consider a massive 5D field ®z(z,y)

2Most of the elastic sum rules derived in this chapter were originally published in [18] and later proved
n [19]; this section significantly generalizes the proofs in [19], and the inelastic results are entirely new to
this dissertation.

3This section was originally published as Appendix B of [19]. In addition to some changes in wording,
new content connects the section to the rest of the dissertation and certain points have been elaborated on.
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defined over the 5D bulk by a Lagrangian

Lop — Qﬁo‘yﬁe_%ly'(aﬂ’&)@v@g) +Q%ﬂ{ —4k\y|(ay ®5)(0,P ﬂ) +m;{)€—4k|y\¢@@g}

(4.11)

where the index @ is a list of Lorentz indices and mg is the 5D mass of the field. The Lorentz
tensors Q“ vB and Q p will eventually be chosen to ensure this procedure yields KK modes

with canonical kinetic terms. Note that this Lagrangian can be written equivalently as

Lap = Q4™ (9,02)(0,07) + QF {5+ 9y [ HW(©,@ )] + mie Moz )

(4.12)

via integration by parts. By performing a mode expansion (KK decomposition) on Eq. (4.12)

according to the ansatz

C5(z,y) (4.13)

w—rc Z |

we obtain

1 = av — m),(n
Lsp & — ZQM ﬁ(au ( ))(a (I)(ﬁ)>e 2k\y|¢( )w()

mr
Cmn 0

+ Qa8 o] = 0, |0y + e b a1y

Integrating over the extra dimension as in Eq. (4.10) then yields the following effective 4D
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Lagrangian:

=S o000 N+ QP el N )

m,n=0
(m,n) (m,n)
where Ny and Np equal

1 +7re

Aéf“”>=:-——t/‘ dy =2kl (4.16)

TTc —TTre

+7re
nomm — L / dy ¥m {—ay [6_4k|y|(ay1/)n)] + m?pe““f'y'wn} . (4.17)

TTre —TTre

We desire that this process yields a particle spectrum described by canonical 4D Lagrangians
for particles of definite spins and masses. Specifically, we desire that a (bosonic) mode field

¢z(z) in the KK spectrum is described by a Lagrangian

O (D65) D g) + Py b (4.18)

where m is the mass of the KK mode, and the quantities ¢4 and ¢p are Lorentz tensor
structures that reproduce the canonical quadratic Lagrangian appropriate for the internal
spin of ¢5. For example, a massive spin-2 field ﬁuy has the canonical quadratic Lagrangian

Eq. (4.5), such that ¢z(z) = izal% () and we may choose

qiamzumﬂz = 12V 182 _ v peragpBifs 4 %nuvn%lﬁnaﬂz _ %nwnalaznﬁ@
(4.19)

ajagBify _ 1 1
go1o201P2 — 5770‘10‘2776162 _ §na1ﬁ1na2ﬁ2 (4.20)
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For a full KK tower, the corresponding canonical quadratic Lagrangian equals (indexing KK

number by n),4

+00 oo
£ =3 008 0,0%) + miai o167 (4.21)
n=0

Comparing to Eq. (4.15), one recovers this form for the choices @ = ¢ (i.e. if the 5D
quadratic tensor structures mimic the 4D canonical quadratic tensor structures), () = qﬁ(”),

Nﬁlm’m = 0m,n, and Ném’n) = m%&m’n. Consider this condition on Ngn’n) in more detail.

Using Eq. (4.17), N(m n) M2 6pm, n implies

1 +7T’f’c

e J—mre

which then becomes, using the condition nglm’n) = dm,n and Eq. (4.16),

+7re
/ dy wm{ay{e—4kly<aywn>]+(me 2kly| _ @‘4]‘7'9')%}—0. (4.23)

If the collection of wavefunctions {,} form a complete set, then Eq. (4.23) implies that

they are solutions of the following differential equation

5, [e—%ly@yqﬁn)} i (m 2l _ 2 —4klyl)¢n 0. (4.24)

4Restricting the KK decomposition sum to positive KK indices n is inspired by the RS1 model’s orbifold
symmetry. For example, if we instead considered a (non-orbifolded) torus, we would sum over all integer n,
with the sign of n describing the rotational direction of the particle’s extra-dimensional momentum around
the circular extra dimension. From this perspective, imposing an orbifold symmetry causes the +n and —n
non-orbifolded states to be combined into an even superposition which we then call the nth KK mode of the
orbifolded theory.
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or, when expressed in unitless combinations,

0= 0y {6_4]{%'@(8@1/%)] + ((771717’0)26_216700('0| - (mq)rc)Qe_llkTC(p')@Dn ‘ (4.25)

In addition to this differential equation, orbifold symmetry requires that the derivatives
of the wavefunctions vanish at the orbifold fixed points, i.e. (Jpvn) = 0 for ¢ € {0,7},
which provides the problem with boundary conditions. Finding the solution set {¢,} (and
corresponding values of {m,r.}) of Eq. (4.25) under these boundary conditions is precisely
a Sturm-Liouville (SL) problem, for which there is guaranteed a discrete (complete) basis of

real wavefunctions satisfying

LT kel (m.n)

—T

as required. Hence, by finding wavefunctions 1, that solve Eqs. (4.25) and (4.26), we can
KK decompose the fields in Eq. (4.11) according to the ansatz and (so long as () = ¢) obtain
a tower of canonical quadratic Lagrangians (4.18) as desired.

Eq. (4.2) is of the form Eq. (4.11) with mg = 0. In general, when the bulk mass mg
vanishes, Eq. (4.25) admits a massless solution (¢ with mg = 0) which is flat in the extra
dimension (9y1)g = 0). Therefore, the 5D field fALW gives rise to a massless 4D field flg)y),
which we identify with the usual (4D) graviton. The 5D field 7 yields a massless 4D field #(0)
which we identify as the radion; however, note that Eq. (4.3) is not of the form Eq. (4.11)

because of the additional warp factors introduced alongside 7. Thus, its KK decomposition
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is derived solely from the y-independence of 7.5 Normalization fixes ¢ to equal

/ krem

When mg # 0, this solution does not exist.
By construction, the SL equation combined with Eq. (4.26) implies an additional quadratic

integral condition:

% / T 4y e~ threlel {(awm)(awn) + (mare) bmton | = (mnre)26mn - (4.28)

—T

When mg = 0, this becomes an orthonormality condition on the set {0yt }.
The existence of a discrete solution set of wavefunctions is guaranteed by the SL problem.
Following the notation and arguments from [31], we now summarize how to find explicit

equations for the non-flat wavefunctions in that solution set. Note that

Dpl| = sign(p) and Olel = 2[6(p) — 5(p — )], (4.29)

such that 8%|g0] = 0 when ¢ # 0,7 and (9y|p|)? = 1. Thus, Eq. (4.25) may be rewritten in

terms of quantities z, = (my/k)et#cl?l and f, = (m2 [k /22 as

d*f df
207 Jn n
O R

2
2 <4+%>] fu=0. (4.30)

away from the orbifold fixed points. When mg = 0, this differential equation is solved

5To prevent the radion from contributing to long-range gravitational forces and to ensure the extra-
dimensional is stable against quantum fluctuations, we must include interactions which make the physical
4D spin-0 field become massive, as occurs during radion stabilization [31]. Radion stabilization will be
investigated in future works and is not relevant to the present dissertation.
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by fn equal to Bessel functions Jo(zy) or Ya(z,). When mg # 0, it is instead solved by
Bessel functions Jy,(zy,) and Y, (zy,) where V=44 m% / k2. Taking a superposition of the
appropriate Bessel functions yields a generic solution f;,, which may then be converted back
to vp,. By imposing the SL boundary conditions at the orbifold fixed points (O, = 0 for

¢ € {0,7}), the wavefunctions are found to equal

2
€ Un& HUn&
- + by Y, 4.31
¥n N, [J”<lm~c) by ”(mﬂ ’ (4.31)

where ¢ = ethrelel and ji,, = myre, the normalization N, is determined by Eq. (4.26) (up

to a sign that we fix by setting N, > 0 and which yields ,,(0) < 0 for nonzero n), and the

relative weight by, equals

Hn
—(0J,
/J/n/k’l“c + k?“c< V>

Hn
+ —(9Y;
/,Ln/k"f‘c k?“c< V)

2Jy

in/kre (4.32)

bnuz_

2Y,

pn/kre

where 0J, = 0J,(2)/0z and 9Y, = Y, (z)/0z. These wavefunctions satisfy Eq. (4.28)

where each py, solves

Kn€
{QJV + r (&],/)]

Hn€
{2&;~+ krc(ayL)l

o= ©=0

=0. (4.33)

k”rc SO:O

19
_ {QYV ail (ayy)} o
C

{2@ +£ ”5(3Jy)]

p=m

Although these wavefunctions were derived by solving Eq. (4.25) away from the orbifold
fixed points, they solve the equation across the full extra dimension. In particular, they
ensure O%wn = [(mgre)? — e2p2)n at ¢ = 0, 7.

Finally, note that given a 5D Lagrangian consistent with Eq. (4.11), the wavefunctions
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by, and spectrum {uy,} are entirely determined by the unitless quantities kr. and mgre. In
the RS1 model, the 5D field be lacks a bulk mass (mg = 0) such that v = 2 and its KK

decomposition is dictated by kr. alone.

4.3 4D Effective RS1 Model°

In this section, we carry out the KK mode expansions of izuy(x, y) and 7(z), thereby obtaining

the 4D particle content of the RS1 model, and discuss the form of the interactions among

the 4D fields.

4.3.1 4D Particle Content

The 4D particle content is determined by employing the KK decomposition ansatz [32, 33,

31]:

1

TTe

400
nZ::o i) (@)Y () @ = =)o (4.34)

B,uy(x: y) =

where we recall that ¢ = y/r.. The coefficients ﬁl(iny) and 7(0) are 4D spin-2 and spin-0 fields
respectively, while each 1, is a wavefunction which solves the following Sturm-Liouville

equation

0p [e™HOptn)| = —p2e"2 (4.35)

GSubsection 4.3.1 was originally published as Subsection III.A of [19]. Subsection 4.3.2 combines content
that was originally published as Subsections ITL.B and C.2 of [19]. Subsection 4.3.3 was originally published as
Appendix C of [19]. Notations and terminology have been updated, and paragraphs that describe convenient

wavefunction properties and the generalized coupling structure 2(P) have been added.
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subject to the boundary condition (9,vr) = 0 at ¢ = 0 and 7, where € = eklyl = ehrelel [31].
As described in the previous section, there exists a unique solution v, (up to normalization)
per eigenvalue fiy,, each of which we index with a discrete KK number n € {0,1,2,-- -} such
that pgp = 0 < pp < pg < ---. Given a KK number n, the quantity u, and wavefunction
n(p) are entirely determined by the value of the unitless nonnegative combination kr.. We
note that with proper normalization the 1, satisfy two convenient orthonormality conditions:

1 [t 9

7T—7T

+7r
l/ <a¢¢m)<a¢¢n> Mn m,n - (4.37)

7T—7T

Furthermore, the {¢,} form a complete set, such that the following completeness relation

holds:

+00

52— 1) = %6_2%(901) Vi(p2) - (4.38)

J=0

Because of the assumptions behind its derivation, the completeness relation can only be used
to combine or separate orbifold-even integrands. For example, if f(y) # 0 is an orbifold-odd

function (such as (O,vp)), then splitting f((p)2 into a product f(gp)2 -1 is fine,
+m
o<t [ Mo 0 =S| [ sorene)| |1 [do vt @)
J

whereas trying to apply completeness to separate f(¢)? into f(¢)- f() yields a contradiction

0<§/Hdso #Z[ o # )W)r:o (4.40)

—T
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The completeness relation will be vital to relating different coupling structures present in
the 4D effective WFE RS1 Lagrangian.

The KK number n = 0 corresponds to u, = 0, for which Eq. (4.35) admits a flat
wavefunction solution v corresponding to the massless 4D graviton. Upon normalization

via Eq. (4.36), this wavefunction equals

1 2 7 ) 1 —ork 7T]€7”C
1L _ [1 L2 rc] — = —C 4.41
7Tw0 /_77 © wkre ‘ v 1 — e—2mkre (4.41)

up to a phase that we set to +1 by convention. This is the wavefunction that Eq. (4.34)
associates with the fields 2(?) and #(0). The lack of higher modes in the KK decomposition of
7 reflects its y-independence. In this sense, choosing to associate 1y with #0) in Eq. (4.34)
is merely done for convenience.

Before we compute the interactions between 4D states, let us first apply the ansatz to the
simpler quadratic terms. This will illustrate how the KK decomposition procedure typically
works, and why the interaction terms are more complicated. The 5D quadratic Bw(aﬁ, Y)

Lagrangian equals (from Section 3.4)

RS 92— 4=
ﬁéh = T+ Lo (4.42)
where
_ ) . ) 1. ) 1. .
Lacnn = = huv (970" h) + hyu (9" ph”™) = Sy (BRY) + Sh(DhA) (4.43)
_ 1 4,4 1 -
LB.ph =— 5[[71/’1’]] + §ﬂh/]]2 ; (4.44)

A prime indicates differentiation with respect to y and a twice-squared bracket indicates a
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cyclic contraction of Lorentz indices. Similarly, the quadratic 5D 7(x) Lagrangian equals,

£\BS) _ ~2mhre 427 (4.45)

rroo

where
_ Lo
L gy = 5(8/”)((9 F) . (4.46)

To obtain the 4D effective equivalents of the above 5D expressions, we must integrate over
the extra dimension and employ the KK decomposition ansatz.

First, the quadratic ﬁW Lagrangian: the first term in Eq. (4.42) becomes

+7T7"C
ﬁ‘ 9 —=
E(::h)h = / dy 2L

—TTre

+7re R R . . 1. . 1. R
— / dy =2 [—hw(aﬂayh) + R (D Oph) = S (O + §h(Dh)]

+00
= 3 |-l @ R ) + b o,k - %BLT)(DB(“W) + %W)(Dz}(n))]
m,n=0
1 [T7 9
X ;/ dp € “Ymibn (4.47)

whereas its second term becomes

+7T7’c
T =
’Cg}:h)h = / dy € 4£B:hh

+7re 1 ~,- 1 -
. —4 | Lrprgr Lram2
_/_m we [ 2Hhh“+2ﬂh”
[ L) Lrionrien] L [T
= > [~ AR] S IA) ]]} — / dp e (0pthm)(Optn) . (4.48)

m,n=0
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These are simplified via the orthonormality relations Eqs. (4.36) and (4.37), such that the

4D effective Lagrangian resulting from E;L%S) equals, using Eqgs. (4.4) and (4.5),

(RS,eff) L (eff) (eff)
Lon ™ = Lann + Lo
_ p(s=2)
o Emasblebs + Z Emasswe mn, h ( )) ) (4‘49)

wherein my,, = pyn/re. Therefore, KK decomposition of the 5D field IAzW results in the
following 4D particle content: a single massless spin-2 mode iL(O), and countably many
massive spin-2 modes A1) with n € {1,2,---}. The zero mode h(0) is consistent with the
usual 4D graviton, and will be identified as such. As will be argued in the next subsection,
the 4D graviton has dimensionful coupling constant r4p = 2/Mp) = ok /\/Trc where Mpy
is the reduced 4D Planck mass. In terms of the reduced 4D Planck mass, the full 4D Planck
mass equals /87 Mpy.

Meanwhile, the 4D effective equivalent of E&BS) from Eq. (4.45) equals, using Eq. (4.6),

+7re
RS, eff RS
50— [ ay £

—TTre
+7re

= / dy e 2mhre T2 %(a,ﬁ)@ﬂf)

—TTre

2+

- l(auf(o))(auf(o)) : wi/ e dy e+2k(lyl=mre)

2 e J—mr,
= Lopastess (M) - (4.50)

Therefore, KK decomposing the 5D 7 field yields only a single massless spin-0 mode 7:(0)’
which is called the radion. Note the exponential factor in Eq. (4.45) is inconsistent with the

orthonormality equation (4.36), so we had to calculate the integral explicitly. Thankfully,
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the y-independent radion field must possess a flat extra-dimensional wavefunction and so the
exponential factor can at most affect its normalization. This would not be the case if the
radion field’s y-dependence was unable to be gauged away in Subsection 3.3.2.

The RS1 model has three independent parameters according to the above construction:
the extra-dimensional radius r., the warping parameter k, and the 5D coupling strength x.
However, we use a more convenient set of independent parameters in practice: the unitless
extra-dimensional combination krc, the mass mj of the first massive KK mode iL(l), and the

reduced 4D Planck mass Mp). These sets are related according to the following relations:

1
my| = T—ul(krc) via Eq. (4.35) (4.51)
&

2
Mp = ——\/1 — e—2krem 4.52
PL= (4.52)

In our numerical analyses, we will choose kr. € [0,10], m; = 1 TeV, and Mp; = 2.435 X
1015 TeV.,

When converting the quadratic terms of the 5D RS1 Lagrangian into their 4D effective
equivalents, we were able to perform all integrals exactly. This is because all wavefunctions
with a nonzero KK number were present in pairs and thus subject to orthonormality relations.
Such simplifications are seldom possible when dealing with a product of three or more 5D
iLMV fields, and instead the integrals lack closed form solutions. As a result, the RS1 model
possesses many nonzero couplings between KK modes and calculating a matrix element for 2-
to-2 scattering of massive KK modes typically requires a sum over infinitely many diagrams,
each of which is mediated by a different massive KK mode and contains various products of
these overlap integrals. The next section details the 4D effective Lagrangian and the origin

of those integrals. The final section details relations involving these integrals and the KK
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mode masses.

4.3.2 General Procedure

The 5D WFE RS1 Lagrangian derived in Section 3.4 equals a sum of terms, wherein each
term contains some number of 5D fields and exactly two derivatives. Each derivative is either
a 4D spatial derivative d, or an extra-dimension derivative 0y, and each field is either an 7
or an fLW field. Because the Lagrangian requires an even number of Lorentz indices in order
to form a Lorentz scalar, each derivative pair must consist of two copies of the same kind of

derivative, i.e. each term in LéRDS) can be classified into one of two categories:

e A-Type: The term has two spatial derivatives Jy, - 0y, or

e B-Type: The term has two extra-dimensional derivatives 0y - 0y, .

In addition to fields and derivatives, every term in ﬁéRDS) has an exponential prefactor. That

exponential’s specific form is entirely determined by its type (whether A- or B-type) and
the number of instances of 7 in the term. Each A-type term is associated with a factor

—2

e2 = ¢~ 2krel¢l whereas each B-type term is associated with a factor e =% = e’4kTC|‘P|,

and
every instance of a radion field provides an additional e~ Threet2 factor. These assignments
correctly reproduce the prefactors found in Section 3.4 via explicit weak field expansion of
the 5D RS1 Lagrangian.

Consider a generic A-type term with H instances of h and R instances of 7. Schematically,

it will be of the form,

X, = (H+R=2) [5—2} [e—wkzrcg—i—Q]R (aﬁthij)

gHFR=2) —Rrkre 2R-1)% (4.53)
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where the combination X 4 = (82, W fR) refers to a fully contracted product of two 4D
derivatives, H gravitons, and R radions. The u label on (9/% above is only schematic and not

literal. Similarly, an equivalent B-type term would be of the form,

Xp = pHE=2) [5*4} [e—ﬂ'kr‘c 8+2}R (02, )
_ (H+R-2) ~Rrkre 2R-2)% (4.54)
where the combination X p = (85, hH #1) refers to a fully contracted product of two extra-
dimensional derivatives, H instances of iLW, and R instances of 7. Because we included AL
in EgRDS) , each B-type term we consider has each of its Jy derivatives acting on a different
field, and so we assume X p also satisfies this property.
We form a 4D effective Lagrangian by first KK decomposing our 5D fields into states of

definite mass (Eq. (4.34)) and then integrating over the extra dimension (Eq. (4.10)). For

the schematic A-type term, this procedure yields,

400
(cff) re (H+R—-2) 2 i) ing)  [20]F
XA = (ﬂrc)(H+R)/2R . ”;H_O <6M’ h\"1 h\"H [T } )

+m
X G_Rﬂ-krc /_ d(p 52(R_1)¢n1 U 770711{ [¢O]R :

Define a unitless combination a that contains the extra-dimensional overlap integral:

L —Rrk i 2(R-1 R
a(R|,ﬁ:) = ar...rnl...nH = %6 4 Tc/ d(p g ( )/éZ)nl N /l/}nH [wo] s (4.55)
—T
where 77 = (ny,--- ,npg), there are R instances of the label r are present in Qperny-n gy

(e.g. A(2nyng) = arman), and @p...ppy gy 18 fully symmetric in the subscript (e.g. appr =
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Aprn = Grnn)- Using this, we may now write

(eff) _ | _F
Xa = |:\/7T7“C

H+R-2 +00 , A , R
} URlny ) <8A~ pn1) () [f( )} ) . (4.56)
ni, - ,ng=0

To simplify this expression further, we define a KK decomposition operator X(ﬁ) [e]. The
KK decomposition operator maps a product of fAz/W and 7 fields to an analogous product of
4D spin-2 fields ﬁfﬁf) labeled by KK numbers 77 = (nq,--- ,ng) and 4D radion fields #0),
More specifically, X maps all 7 in its argument to #(9) and applies the specified KK labels
to the iLMV fields (iluu — iL/(ﬁ])) per term according to the following prescription: the labels
are applied left to right in the order that they occur in 77, and are applied to fLW fields of
the form (%ﬁ) before being applied to all other BW fields. (This prescription ensures we
correctly keep track of KK number relative to the soon-to-be-defined quantity b.) After KK
number assignment, any 4D derivatives d, in the argument of A" are kept as is, while each
extra-dimensional derivative 9y is replaced by 1/7c.

Using X, we rewrite the A-type expression:

H+R-2 400

Oa(R|n1---nH) Xy o) [ X4 - (4.57)
S

This completes the schematic A-type procedure. B-type terms admit a similar reorganization.

First, we KK decompose and integrate Xpg to obtain

+00
(eff) Te H+R-2 7(n 7 (n A(0 R
X _WTWF“( Y (1, ) ), [70)] )
s n =0
% e_RWkTC/dQD 52(R_2)(6¢¢n1)(8¢wn2)wn3"'wnH [wO]R ) (4.58)
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Then we summarize the extra-dimensional overlap integral as a unitless quantity b:

b(R‘ﬁ) = bT-~~7‘n/1n,2n3~--nH )

1 _ t _
= e~ fimhre / dip 2D (D0 ) (Optbng ) -+ n gy [0] (4.59)
—T
where primes on a KK index in the subscript of b /1 indicates differentiation
TN NN N
of the corresponding wavefunction and br-~-rn’1 nlyngeng is symmetric in its subscript (e.g.
bpptity = bptyy and so-on). The first two indices listed in the KK number list 7 when
expressed in b( R|7) form will be primed when expressed in br-~-rn’1 nlyng-n gy form. With this
definition,
H{R—2  +00
ﬁ) K 1 A A ~(0 R
leff) _ [ b Ly w50
B (R|nynong--ngr) 2 ) ) )
A/ TTe n17,nH:0 re

(4.60)

and, via the KK decomposition operator X,

H+R-2 +00
(eft) _ | K , ¥

XB - [\/W_Tc b(R|n1n2n3---nH) X(nlnH) [XB} ’ (4.61)

nl,... ,nH:()

where we recall that X maps 9y to 1/r. after KK number assignment. This completes the

schematic B-type procedure.

We now connect these procedures to the 4D effective RS1 Lagrangian Efl%s’eﬁ), following

the arrangement of the 5D Lagrangian described in Sec. 3.4. Suppose we collect all terms

from the WFE RS1 Lagrangian £\ that contain H fy, fields and R # fields. Label this

(RS)

collection ,Chl;t[ p- In general, we can subdivide those terms into two sets based on their
T
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derivative content, i.e. whether they are A-type or B-type.

(RS)

_ p(RS) (RS)
pHplt

We may go a step further by using our existing knowledge to preemptively extract powers
of the expansion parameter £ and any exponential coefficients:

RS _ (H+R-2)|,—Rrkrc 2(R-1) 7

hHrR — —R’l’(’k?"CSQ(R—2) d ) (463)

A:hH R te ﬁB:hHrR

Finally, we can apply the schematic procedures described above to obtain a succinct ex-
pression (a “5D-to-4D formula”) for the effective Lagrangian with H EW fields and R 7

fields:

Consider all terms in this 5D-to-4D formula which only contain the 4D graviton field ilf?,} (x).

Because the zero mode wavefunction 1y does not depend on y, these terms must all be A-

type, such that we can write

gravitons

(RS eff) only 4D o0 K (H-2) ) . o
LR’ HZ_2 e )" Y| Eaont] (4.65)

where 0 g is the H-dimensional zero vector. Furthermore, the coupling integral a(GH) is
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exactly calculable via orthonormality of the wavefunctions,

1 +7re B _ 1 +7re B B
ogy = 5] dee = w2 [ TapetE = uf P e

™ —TTre ™ —TTre

for all integer H > 2, such that Eq. (4.65) becomes

+00 (H-2)
ly 4D Kb _
£(RS,eff) on Yo 7 LT
nH B gra\?tons = LV/Te (Of) [ A:hH] (4.67)
N-2

Because an N-point 4D graviton interaction will generally carry a coupling factor ryp
comparison with the above expression reveals k4p = Kt)g/\/TTc.

Computationally, a key feature of the 4D effective Lagrangian Eq. (4.64) is how the
dependence on the physical variables arrange themselves. Consider the set {Mpy, kre,mq}.
The parameter kr. determines the wavefunctions {¢,} and spectrum {u,} = {mnr.}, and
thus {a( R\ﬁ)ab( R|ﬁ)} as well. Additionally fixing the value of my determines r. = py/mq
and k = (kr¢)mg/p1. Finally, fixing Mp) determines the prefactor x/\/7re = k4p /10
= 2/(Mp1tpg). Therefore, referring back to the specific form of Eq. (4.64), once kr. is fixed,
changing mq only affects the relative importance of A-type vs. B-type terms via factors of
re introduced by X(ﬁ) [e] and changing Mp; only affects the interaction’s overall strength via
[k/\/TTc] (H+R-2), Alternatively, by fixing x and r. instead, the couplings {a( R|ii): b( R|ﬁ)}
encapsulate the effect of varying k.

While the (g7 and b(p)z) forms are useful when deriving Eq. (4.64), the alternate

notations introduced in Egs. (4.55) and (4.59) are more useful in practice. They are special
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instances of a more general structure x, which we define as:

+7
2 == / do e’ (0ptm) -+ tn e‘”’”%”wo]R (4.68)

e T _r

to which we add an additional factor of (Jy|¢p|) if there is an odd number of primed labels
(without this factor, the quantity would automatically vanish because of orbifold symmetry).
In terms of x, the A-type and B-type couplings equal

—4
GRSy = /. bTR m!n = x(R ), (469)

ritm’...n

where this generalization now allows A-type and B-type couplings to contain any number of
differentiated wavefunctions in principle. This dissertation concerns tree-level massive KK
mode scattering, which is calculated from diagrams of the forms described in Section 2.5.

Consequently, the relevant couplings are cubic and quartic couplings of the forms

Amn bl’m’n bm/n/r Aklmn bk/l/mn (4‘70)

A cubic A-type radion coupling is not listed because it does not occur in the RS1 model: the
existence of an @y, coupling would violate the gauge symmetries of the 4D graviton (or, in
other words, 4D diffeomorphism invariance of the Lagrangian) by necessarily implying the
existence of non-diagonal graviton couplings, e.g. agy-

Pictorially, we indicate the vertices associated with these couplings as small filled cir-

cles attached to the appropriate number of particle lines, e.g. the relevant spin-2 exclusive
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interactions are drawn as

ni
ng DO a b 4.71
o >L ninang n%[l]“%[?]nﬁ[?)] ( )
ni ns
>< D nynonsny N N, (4.72)
N9 Ny w[1] " w[2) w[3] " w[4]

where overlapping straight and wavy lines indicate a spin-2 particle, and 7 is a generic
permutation of the indices.” If we set ng = 0 in the triple spin-2 coupling, the corresponding
wavefunction g is flat; either vy is differentiated (in which case the integral vanishes)
or it can be factored out of the y-integral thereby allowing us to invoke the wavefunction
orthogonality relations on the remaining wavefunction pair. In this way, the triple spin-2
couplings imply that the massless 4D graviton couples diagonally to the other spin-2 states,

as required by 4D general covariance:

ananO = ¢O 5711,712 ) (473)
by ogo=pu2 byd
nhnb0 Hny¥09ny,n9 >

b =0.

o nlan o
The Sturm-Liouville problem Eq. (4.35) that defines the wavefunctions {,} also relates
various spin-2 exclusive A-type and B-type couplings to each other, which we be explored
further in the next section.

When calculating matrix elements of massive KK mode scattering, we must also consider

radion-mediated diagrams. As mentioned previously, the RS1 model lacks a cubic A-type

7Our use of the symbols ‘a’ and ‘b’ as labels for the coupling integrals a(R|7) and b( R|7) Was inspired

by the integrals o and S(m,n) defined in [34] which are specifically associated with spin-2 exclusive cubic
interactions in the large kre limit.
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(KK mode)-(KK mode)-radion coupling. Furthermore, note that the additional e*2 expo-

nential factor in the integrand of b, s /= due to the radion field (as in Eq. (4.68)) prevents
172

the use of the orthonormality relations Eqs. (4.36) and (4.37); therefore, the radion typically

couples non-diagonally to massive spin-2 modes. Pictorially,

m
m}?‘ 2 bty (4.74)

where unadorned straight lines indicate a radion.

4.3.3 Summary of Results

Section 3.4 summarized all terms in the 5D WFE RS1 Lagrangian EéRDS) that contain four

or fewer fields. In particular, it listed explicit expressions for all relevant £4 and Lg.
Application of the 5D-to-4D formula Eq. (4.64) to these terms yields a 4D effective WFE

RS1 Lagrangian of the following form:

LSl _plefl) o pelf) gl gl ) 2 oty (ws)

Explicitly, we find, at quadratic order,

“+00
£50 =3 [ =R @107 H) + 1) (@0, 00) — SR @R 4 ZH )
n=0
+m2 {—%[[ﬁ(”) A %[[W]][UW]] 7 (4.76)
ﬁ&iﬁ) :%(auf(o))(auf(o)) 7 (4.77)
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and, at cubic order,

Eé?f? = \/:—% >, {a(0|lmn) Xtmm) L 4] + 0(0)tmn) * X(imn) [ £ B:hnn) } o (4.78)
I,m,n=0

) K _

Ly :\/ﬂ—_rcmin:() {b(1|mn) ’ X(mn)[EB:hhr} } ) (4.79)
(eff) K RS —

Ehrr :\/W—TCT;) {a(2n) 'X(n)[‘CA:hrr] } ) (4.80)
(eff) K —

Lyrr _\/71'_7“0{&(3) ‘X[EA:rrr] } , (4.81)

and, at quartic order,

2 +00
eff K — _
Egmth = L/?TJ kl%:o {a(klmn) * Xgmn) [ L a:hhhn] + Oetmn) * Xetmn) [ £ B:hhhn] } :
(4.82)
@m [ & 17 X ~
Lhnin = N ZEO {b(llmn) ’ X(lmn)[‘cB:hhhr} } ) (4.83)
(eff) [ k] 2 I — —
ﬁhhrr - i ’/T’["c_ mzn;() {a@lmn) . X(mn)[‘CA:hhTT] + b(2|mn) . X(mn)[‘CBZhhTT'} } 5 (484)
@ [ & PR -
ﬁhrrr - _\/7T_7"c_ HZ_O {a(3|n) ) X(TL)[LAZhTTT] } ) (485>
- 12
eff K —
£7(“T7“2“ = N {a(4) ) X[‘CAZT‘TTT} } . (4.86)

The quantity a(R|i) is defined in Eq. (4.55), b(R|ﬁ) is defined in Eq. (4.59), and the KK

n

decomposition operator & is introduced below Eq. (4.56).
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4.3.4 Interaction Vertices

The 4D effective interaction Lagrangians ﬁéeg) r of the previous subsection imply interac-
T

tion vertices V) H,R- When deriving those vertices, we apply functional derivatives to the

interaction Lagrangians, which should in principle be performed according to the definitions

o0 - S [m] Z Lo, o1 6
67(0) {T ] =1 5ﬁ(n1) {haﬂ 9 (na g +775 N >5n7n1 (4.87)
o151

However, in practice each pair of spin-2 Lorentz indices in these vertices will end up projected
onto either a polarization tensor or a propagator, all of which have already had their Lorentz
indices symmetrized. Therefore, we need not additionally symmetrize the indices in Eq.
(4.87) and in doing so can avoid introducing terms that will otherwise complicate algebraic

manipulations. That is, effectively,

) ~(n)| in practice ay fq

~(n7) {haﬁ} = Mo Mg On,ny (4.88)
oh

aify

Furthermore, each 4D derivative 0y, acting on the field being differentiated is replaced by
—iapy, where a = %1 if the corresponding 4-momentum is entering (leaving) the vertex.
In order to keep track of which 4-momenta are associated with which fields, we introduce
labels on the functional derivative fields. For the spin-2 fields Bgﬁ), this can be accomplished
via the subscripts we already utilized in Eq. (4.87). For the radion fields f’(O), we add an
additional subscript, e.g. f"§0). As long as the subscripts are chosen so that they uniquely

label fields connected to a given vertex, all is well.

The conversion of a typical term of the 4D effective Lagrangian into the corresponding
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interaction vertex proceeds like so:

.0 5 5 (n) v (0
Uprp D lafg‘” P [ = 2 Zaw Ty (0170 (977 >)} (4.89)
. 5 0 | ag B3 ous(0)y(gva(0)
=1 — angrr ( ) ~(0) N~ Ty (OHF) (07 7) (4.90)
¢ 071" 07y
) . a R .y
=1 :rc Gngrr 520 [Uu (- iaoph) (977 ) "‘77#37753(0#7“(0))(—20421’2)] (4.91)
1
. R as f3 . I . v as fs . " . v
:Z\/?Tc angrr {77# Uiz <_2a2p2>(_la1p1) + NNy (_2041]91)(_2042192)} (4.92)
= _i\/% ngrr 041042(11(113175 f3p23) (4.93)

where 1 and 2 label attached radion lines and 3 labels an attached ngth spin-2 KK mode.

4.3.5 The Large kr, Limit®

Consider how the aforementioned wavefunctions and couplings behave in the limit that kr.
is large. In this limit, the behavior of the irregular Bessel functions Y}, causes the coefficients
bpy in Eq. (4.32) to be small, such that the wavefunctions of Eq. (4.31) (having nonzero KK

mode number n) can be approximated as

1 —T
Un () ~ N_€+2krc|¢>lj2 [mnekm(m )] : (4.94)

n

where x), is the nth root of J; and

e’]TkT'C
N, ~ J ) 4.95
n ke 0(zn) ( )

8This subsection was originally published as Appendices F.1-2 of [19].
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This approximation of the wavefunction v, corresponds to a state with mass
My, ~ xpke RC (4.96)

This limit—called the “large kr. limit"—is a good approximation when kr. 2 3 and is

~Y

popular in the literature.
The above expressions can be further simplified by replacing ¢ with the quantity u, =
xnekTC(‘P*W). In terms of uy, the n # 0 wavefunction factorizes into separate u, and kr.-

dependent pieces,

Ynlun) ~ YT (a2 Taun)| - Vreemre (4.97)

a2 |Jo(an)]

More generally, for any nonzero KK mode j # n,

Yj(un) = # [U% Jo (;—iun)} - kree™hre (4.98)

w4 | Jo(z5)]

and,
(Opthj)(up) =~ ﬂ [u?’ Jq <%u”)} (krc)3/2 emhre (4.99)

w3, | Jo(x))|

Meanwhile, the large krc approximation of the zero mode wavefunction is

wo ~ \/Thre . (4.100)

We can also rewrite coupling integrals as integrals over u, instead of ¢ and (in doing so)
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factor any kr.-dependence from the integral. Specifically, we can convert ¢ integrals of the

form

[ o ekl gl =2 [ ol gy (4.101)
0

-7

t0 wy = 2,k P~ integrals (using dyp = duy [ (kreuy))

+7 Qer—Akrcw un () du
—Akrelgl _2tn® " tn
/_ﬂ dp e flel) e [/Un(o) pEs] fo(un))| (4.102)

where we note that the integration limits become independent of kr. in the large kr. limit:
un(0) = e FeT g, 0 up(m) = xp, . (4.103)

and thus the integral over u, does not depend on kr.. By combining all of the preceding
elements, we can factor all kr.-dependence out of the coupling integrals in the large kr, limit,

and we find

annnn & Crnpn (kre) ™€ (4.104)
ann0 = Cpno V kre (4.105)
ity & Crny (k)% e~ e (4.106)
tnnj = Crpj V/kree™"e (4.107)
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where the coefficients C' are given by the following kr.-independent integrals:

_ 2w mn 5 4
Conen = | 2t /0 i 05 Ty (4.108)
Como = % / " J2<un>2: , (4.109)
Comr = ﬁTﬁy [ dun 2] (4.110)
o = -x%|JO<jijo(xn)2 /Oxn dup w3 Jo(un)? Jo (%un)] (4.111)

Although we utilize exact expressions when investigating the high-energy behavior of matrix
elements, the approximate expressions derived in this subsection will be useful when we

consider the strong coupling scale of the RS1 model in the next chapter.

4.4 Sum Rules Between Couplings and Masses’

This section derives relationships between the spin-2 exclusive couplings and spin-2 KK
spectrum {uy, } that are relevant to tree-level 2-to-2 massive KK mode scattering. We briefly
consider the implications of completeness before deriving a means of expressing all cubic
and quartic (spin-2 exclusive) B-type couplings in terms of A-type couplings. These B-to-
A formulas reduce the problem of finding amplitude-relevant formulas to the problem of
simplifying sums of the form »_ j M?iakljamnj- The relevant (elastic and inelastic) sum rules

are derived and then summarized in the final two subsections.

9The material of this section is entirely new to this dissertation. It generalizes results first published in
[18] and later generalized (but not to the same extent) in [19].
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4.4.1 Applications of Completeness

The completeness relation Eq. (4.38) allows us to collapse certain sums of cubic coupling
products into a single quartic coupling. For example, a pair of cubic A-type couplings can

be combined into a quartic A-type coupling:

> e = E/dwl e(p1) 2 %(@1)%(@1)%(@01)}
J J

X [%/dsﬁz e(ip2) 2 @ij(‘PQ)@Z}m(QDQ)@Dn(‘PQ)} (4.112)

= = [ derdes clo0) 2 e(ea) 2 inlon) 1) bmlen) V) [Zwm wjm)}
J
(4.113)

= % /d901 dpa e(p1) 2 e(p2) "2 r(e1) ¥ile1) Ym(92) Ynlpa) {7“:‘(902)+2 (2 — 901)}

(4.114)
1 _
= ;/dwl e(p1) 2 Pr(e01) V(1) Y (1) (1) (4.115)
= Qklmn (4.116)
By applying this same procedure to other A-type and B-type couplings, we find
Aklmn = Zajklajmn = Z Aikm@iln = Zajknajlm (4.117)
J J J
bk’l/mn = Zbk’l’jajmn (4118)

J
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Furthermore, by combining cubic B-type couplings in this same way, we define an important
new integral that will be present in many of our derivations:

_ (=6
Cklmn = L1yt =

[ do OO O Op) (4119

™

= Z bk’l’jbjm’n’ = Z bk’m’jbjl’n’ = Zbk’n’jbjl’m’
J J J

where the generic coupling integral x is defined in Eq. (4.68). Another object that will be
useful throughout the rest of the chapter is the symbol D = 5_40@, which is a combination

of quantities that is often present as a result of the Sturm-Liouville equation.

4.4.2 B-to-A Formulas

This subsection details how to eliminate all B-type couplings in favor of A-type couplings.
To begin, we note we can absorb a factor of ,uQ into A-type couplings with help from the

Sturm-Liouville equation. A standard application of this technique proceeds as follows:

U = % / dp € 2yt [Miwn} (4.120)
= %/dso e Yy { - 6*2%(29%)} (4.121)

1
= / dp 9 [1pm] (Dion) (4.122)

= e = 0vm@pm + L [ o @p) a13)

™

= bl/mn/ + blm/n/ (4.124)
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where integration by parts was utilized between Eqs. (4.121) and (4.122). This and the

equivalent calculation with the quartic A-type coupling yield

u%almn = bl’mn/ + blm/n/ (4.125)

2
Hnkimn = pimn! + Okttmn! + Okim!n! (4.126)

By considering different permutations of KK indices, each of these equations corresponds to
three and four unique constraints respectively. Because there are only three unique cubic
B-type couplings with KK indices [, m, and n (specifically, by bt !> @and blm/n’)’ Eq.

m’n’

(4.125) can be inverted to yield

1

2 2 2

with which we can eliminate all cubic B-type couplings in favor of the cubic A-type coupling.

Because there are six unique B-type couplings with KK indices k, [, m, and n, we require
additional constraints before we can rewrite all quartic B-type couplings in terms of the
quartic A-type coupling. Using the cubic coupling equation Eq. (4.125) with completeness

yields,

bk/l/mn = Zbk/l/jajmn (4.128)
J
= % > [u% +pf — uﬂ @1 (4.129)
J
Lro 9 1 2
= b [ [ian Ml] Aklmn — ) Zlu]‘ajklajmn (4'130)
J

Similar expressions hold for bys;,. .1, by, and by, oy 7, which when summed as in the RHS
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of the quartic coupling equation Eq. (4.126) then imply

1 3

2 2 2 2 2 2

Hn@klmn = 9 [ [ R 7 Sﬂn} Aklmn — B Z M55k jmn (4.131)
J

such that, by solving for the undetermined sum,

1 1

2 2 2 2 2 — - =2

E M55k A5mn = 3 [ BT M gyt :un] Aklmn = glu Aklmn (4.132)
J

where i2 = /L% + ”12 + u?n + ,u%. Note that the RHS is symmetric in all indices despite the
LHS not obviously exibiting such a symmetry. Utilizing Eq. (4.132) in Eq. (4.130) then
allows us to finally rewrite all quartic B-type couplings in terms of A-type couplings:

L1, o 2 9 2
bk"l’mn = 6 QNk + 2#[ — Hm — Hn | Qklmn (4'133)

This and Eq. (4.127) comprise the desired B-to-A formulas.
The B-to-A formulas greatly reduce the number of relations we must consider. For
example, when calculating a tree-level 2-to-2 KK mode scattering amplitude, we encounter

quantities such as

5
> by jajmn > b bt D 13ty bt (4.134)
J J J

where the indices {k, [, m,n} are associated with external KK modes and the index j labels
an intermediate KK mode that must be summed over in the course of summing over all

diagrams. However, by converting all B-type couplings to A-type couplings, the quantities
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can be evaluated so long as we know instead how to evaluate

2 4 6
E :ajklajmn § H @1 Qimn E K@ikl Q5mn E 50510 mn (4.135)
J J J J

Indeed, these are precisely the sums that are relevant to cancelling the high-energy growth of
the KK mode scattering amplitudes, which is the goal of this dissertation. The remainder of
this chapter is dedicated to rewriting these quantities in terms of the quartic A-type coupling
and the integral cij,,, of Eq. (4.119). The first two of these rewrites were achieved in Egs.

4.117) and (4.132) respectively. Therefore, we turn our focus to ‘/ﬁa- Gimn and then

6
Zj H5 a5k mn -

4.4.3 The M? Sum Rule

The >, M?ajklajmn relation is relatively straightforward. As defined in Eq. (4.119), we can

rewrite cgj,,, in terms of B-type cubic couplings, to which we can then apply the B-to-A

formulas:
Chimn = D 0y Oyutt; (4.136)
J
1 2, 2 2][ 2 2 9
7 Z [“k Ty = Mj} [:Um + iy — M]} @ikl qimn (4.137)
j
L o 90, 9 2 1 9 2 1 4
= e + 1) (i + 1) @ktimn — 7 (6 ) 1505 + 1 > pajajm,  (4.138)
J J
_}(2+2)(2+2_1422 124, , 4139
~ 1 K T Ky )\Hm Nn) 3(,u ) aklmn+4 M55k jmn ( . )
J
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such that

1
4 —2\2 2 2 2 2

§ M5k @ imn = Aegimn + g(ﬂ ) - (:uk + )(Um + Hn) Aklmn (4'140)
J

as desired. Deriving the > j M?ajklajmn relation requires significantly more work.

4.4.4 The ;$ Sum Rule

As in the previous subsection, we begin our derivation by applying the B-to-A formulas to a

sum of cubic B-type couplings:

1
D 1Yt = 1 > [Mi +uf - #ﬂ [Mzn + i, — /{?] 54511 jmn (4.141)
J J
2.2 9 2
L 2 L[ 93 W2 2 i,
=1 > bl a0 mn — i Chimn — 2 [(M PP—16 Y %
j r=k,l,mn x

_ 4(@2 2202, 4+ 12) + (2 — 22 + ﬁ))] i (4.142)

However, unlike the previous subsection, we do not yet have a simplification of the LHS of

2

this expression. To obtain such a simplification, we would like to absorb the u j factor into
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b /!> and thus we next consider:

bt == [ do 72 [13726] (Ot @) (4.143)
- / dp & 007) O [ 2(0ptm) (D) (4.144)
== [ o @) 0, [+5(Dv) D) (4.145)

_ % / dp =+2(0,10) [+6(kre) (D] ]) (Diom ) (Dion)

1™ (D) — e (Db (4.146)
_ 6kr.

[ e @l DU DU D) ~ byt = b (147)
from which

2b ;7 + Mmb g+ ,unb gy = 6(1{57‘0)1’(,_62 / (4148)

]jmn 7'mn 7'm'n j'm/n

(—6)

After applying the B-to-A formulas, we can solve for the integral T b which we have not

encountered previously:

—6 1
G(krc)xilmzn/ ~ 95 (M? + M%n + M%)2 —2 Z Ni} Ajmn (4.149)

r=3,m,n

where the generalized coupling x is defined in Eq. 4.68. This equation still does not allow
us to evaluate the LHS of Eq. (4.142) because it was derived only using the B-to-A relations
and, thus, if applied to the LHS will merely reproduce the RHS of Eq. (4.142). We must
find another route. Ideally, we will find a way of using completeness to perform the sum
over the index j on the LHS of Eq. (4.142), which cannot be accomplished so long as all

(—6)

wavefunctions are differentiated as in e Therefore, we can continue making progress
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by using integration by parts to remove the derivative from 1; in the integral xﬁfrszn,

Sy =5 [ 0 O @) (D) (D) (1.150)

J’'m'n

1
N _E/‘ko ¥j% {6”(%\@)(@%)(@%) (4.151)
The distribution of d, on the quantity in square brackets will yield, among other terms,
1
;/‘dSO 5+2(3g2p!90|)¢j(17¢m)(1?wn) (4.152)

which vanishes because (83]@\) = 2(0p — drre) and (9ptPp) = 0 at the branes. Keeping this

in mind, the remaining terms are

—6 4 4
9 = (ka4 2l 2l (4.153)
such that
—6 4
(4.154)

All terms on the RHS of this equation either lack derivatives on v; or have fewer than four

powers of p; after applying the B-to-A formulas and hence will be able to be handled via
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existing sum rules. Therefore, we proceed:

Zﬂjbk/l/j i Zbk/l/ {_ 12 k:?“c) ( /)’ + 6(kre ){ xé )/ "‘,un Emﬁlzj

— Mmbj’mn bj’m’n} (4.155)
—6 —6
= _12(/{77”(:)2dklmn + 6(kre) [“%Iz(g'z/gm/ + M%Il(c’l’r)n’n]
2
— Mmzbk/l/jbj/mn 'unzbk:/l/jb]/m/n (4.156)
J
where
8 1
imn = 2y =+ [ o (D)D) (D) D)™ (4.157)

(=6)

and Tyt

Next, we must determine how to rewrite dgjp,p, © o in terms of ayj,,, and

(—6)
U'm!n’
Crkimn- The necessary equation for the latter two quantities can be derived by absorbing a

factor of 42 into the quartic B-type coupling:

HiDR i = % / dp & 2 (0ptp) (Dt ¥m [u%é‘_?wn] (4.158)
=2 [ < 000) 05 [ 2Ot @) (4159
=2 [dp @m0, [0 D)0 (4160

-2 / dp =2 (Dpthn) [+6(kre) (3l ]) (Do) (D)o

— e (DY) — e 2 (D) pm + T HDE) (D) (Do) | (4.161)

okr
_ Okre / (D)D) (D)) (D) — 12y 1 — by

/ H10(Dyy) (DY) (D) (D) (4.162)
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which implies

2 2 2 -6
Mkzbkl/mn/ + 1 bk’lmn’ + lunbk’l’mn - 6(krc)x](€/l/,)nn/ + Cklmn (4.163)

Note the special role of the label m on both sides of this equation. The B-to-A formulas

then yield, after some relabeling (i.e. m <> n),
—6 1
6(kre)rl ), = o | =20 +uf + i)+ 13 (3 + u%)] Qhlmn + Cimn (4.164)

(—6)

which expresses ©
p Ei'm/n

in terms of ayyy,, and ¢y, as desired. Now to do the same for

. o (<6)
dg1mn- Consider absorbing 7 into Tyttt

g, = [ o @D D) (Do) e 20 (4.165)

'm!

—~ [ 4o @vu)0,

<a¢\so|>a+8<mk><ml><wm>] (4.166)

Because ((‘3(2?|g0|) = 2(0p — Orre) and (Opthp) = 0 at the branes,

1
~ [ do @)=t o) DU Do) D) =0 (4.167)
such that Eq. (4.166) implies, after multiplying both sides by kr¢,

_6 _
(kre) {uiw,il/ )+ u?w,i/l

m/n/

6)

m/n/

-6 —6
+ M%”‘xl(f’l’r)nn’ + M%xl(c’l’r)n/n = 8(kre)diggimn (4.168)
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We multiply by kr. to enable the use of Eq. (4.164) on every term of the LHS, with which

we obtain

1

2,22 2
ooy B 59
(Mg + 24%)} Aklmn — 18 Cklmn

T

I
(krc>2dklmn = BVED) {(MQ)?) -

r=k,l,m,n

(4.169)

which expresses dj,,, in terms of ag,,, and cgy, as desired. Now every term on the RHS
of Eq. (4.156) can be expressed in terms of ¢iymn O Qrlimn-

Despite the symmetry of the LHS of Eq. (4.156), the expression that results from this
process is not symmetric under (k,l) <> (m,n): we can get a different expression by instead
absorbing ,u? into by i Because the end product of these different procedures must be
equivalent, their difference must vanish. This yields a means of writing cgy,,,,, entirely in

terms of ay;y,, whenever ,u% + ”12 — u?n — /,L% 1S nonzero:

2 2 2 2
(Nk U= oy, — Nn)cklmn

2

=3 |:/~L’%n/~b721 (/~L72n + i — 2, + u?)) — pini (MZ + 41 = 2, + u%))} Upmn (4.170)

In the elastic (n,n) — (n,n) process'¥, all external masses are equal (,u% = '“12 = u2 = p2)

and both sides vanish, such that this equation provides no information on czj,,,,. This does

10Technicadly a scattering process like (m,n) — (m,n) is elastic, but we will typically use the term “elastic”
to mean the (n,n) — (n,n) scattering process.
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not affect the present derivation, for which we instead create a balanced version of the sum,

1 2
Zujbklllj jmn! = 5 {Z ('ujbk’l’j> b]m o Zbk’l’ (,U]bjm I ) ]

J J
2 2 (=6 2 (-6
= _12(1570) dflmn + 3(/?7’0) lﬂkxél/ﬂi/n/ +oeeet /ﬁnx](@/l/,)n/n} (4'171)
2
[Iuk Z bkl/]/bjm n T H Z bk’lj/bjm/n/
J

2 2
T Hm Z bk’l’jbj/mn’ + fn E bk/l/jbj/m’nl (4.172)
j .

Finally, we apply the B-to-A formulas and Eqs. (4.164) and (4.169) to Eq. (4.172), set the

result equal to Eq. (4.142), and solve for the unknown sum to derive the last desired sum

rule:

1
6 -2 4 4 2 2 2 2 4 4
E M5k @ mn = O Clilmn, — 9 6(pey, + 1y ) (b + 1) + 6 + 117) (e, + )

2 2 2 2
— Apj, + 1) = Ay + 1) + (g + 11§ + o, + 115) | G, (4.173)
In the next subsection, we summarize the principal results of this section.

4.4.5 Summary of Sum Rules (Inelastic)

All B-type couplings can be eliminated in favor of A-type couplings via B-to-A formulas

1

1
2 2 2 2 2 2 2
byt = 3 [Nl + iy — | Qi bit il = G [2;% + 207 — fy — M| Ol (4.174)
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Applying the B-to-A formulas reduces the number of sums relevant to the cancellations we

examine in the next chapter. These sums are

> a1 jmn = Qkimn (4.175)
J
P 1.9
> 1, = A Akimn (4.176)
j
Z M?ajklajmn = dckimn + [%(/12)2 - (N% + N%)(M%n + U%)} Aklmn (4.177)

J

1

6 -2 4 4\, 2 2 2 2y\(, 4 4

§ My @5k Aimn = S Cholmn — 9 {60% + 1y ) (i + 11,) + 6(:“k + 1 ) (b, + 11,
J

— g, + i) — A, + 2)? + () + pf + ph, + u?})l Qpimn  (4.178)
where i = u% + ulz + ,u72n + ,u%, and
1 B
chtn = 7 [ o @0 O00) O D) (4.179)

The last two sum rules can be combined as to cancel all factors of cgj,,y,, and thereby yield

9 9.9 4 1 4 A\, 2 2 2, 2y 4 4
> |:Nj — }Mjajk:lajmn =% {24(/% + 1) (i + 1) + 2405, + 17) (i =+ H)
J

2 2 2 2
— (3 4 )P — (2, + 12)3 + 48+ 1l + 8+ 18 | arimn

(4.180)

These equations extend and generalize the sum rules derived in [19)].
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4.4.6 Summary of Sum Rules (Elastic)

We are particularly interested in the elastic massive KK mode scattering process, wherein

k' =1=m = n # 0 and relations of the the previous subsection simplify. The relevant

B-to-A formulas are

_ 2 2 . — 2,2 . — =2
bn’n’j D) [Nn - :uj] Anny bj’n’n = 2N]annj bn/n/nn = 3,Unannnn

whereas the sum rules become

2
E Ajpn = Annnn
2
§ PJ] jnn_ Hnammn
4 4
§ M] er = 4dcepnnn + gﬂnannnn

4
Z Hya jnn = QOM%Cnmm + gﬂgannnn

with the last two expressions combining to yield

16
Z [U? - 5/%1} ,u;l ?nn = 3 Hgannnn
J

(4.181)

(4.182)

(4.183)

(4.184)

(4.185)

(4.186)

We now have all the elements necessary to begin calculating and analyzing amplitudes, which

is the focus on the next chapter.
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Chapter 5

Massive Spin-2 KK Mode Scattering

in the RS1 Model

5.1 Chapter Summary

We will now apply the original material from chapters 3 and 4 to achieve the main theoretical
results of this dissertation. In the last chapter, we used weak field expansion (WFE) and
Kaluza-Klein (KK) decomposition to rewrite the 5D fields of the 5D RS1 model in terms of
the following 4D field content: a massless spin-2 graviton EL()J, a tower of massive spin-2 states
le(g/) with KK numbers n € {1,2,...}, and a massless spin-0 radion #0) We also derived
the interactions between these 4D states by integrating the 5D WFE RS1 Lagrangian (which
we derived in Chapter 3 and summarized in Eqs. (3.163)-(3.191)) over the extra dimension,
thereby obtaining the 4D effective RS1 Lagrangian Ei%f) up to quartic order in the fields.

The 5D and 4D effective theories were found to be related via the 5D-to-4D formula, Eq.

(4.64):
(H+R—-2) +0
RSeff)y | K =
Lot p = [ N {G(RW)'X(”)[ﬁA:hHrR] + b X L R}}
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where a(R|7) and b( R|) are integrals of products of KK wavefunctions which depend on the
number of radions R and the KK numbers 7 = (ny1,--- ,npg) of the H spin-2 modes in each
given term. Specifically, these integrals were defined in Eqgs. (4.55) and (4.59) (and later

generalized in Eq. (4.68)):

1 e +m 3
a(R|ﬁ) = ar...rnl...nH = %6 Rrk c/7r d(p 52(R l)q/)nl .. dj”H [¢O]R ’ (52)
DRIA) = Opeoonl lyng gy
1 . +m B
= e fimhre / d 2 BD (Db, ) (Optng Jong - tongy o)™ . (5.3)

where ¢ = e+k’"c|@|, which define the A-type and B-type couplings respectively. Using the

fact that the wavefunctions v, satisfy a Sturm-Liouville problem, Eq. (4.35),
0p [e7HOpn) | = 320 (5.4)

with (Optn,) = 0 at the branes (¢ € {0,7}), various relations between the couplings and mass
spectrum {pn} = {mpr.} were derived (Eqgs. (4.174)-(4.186)). This included formulas for

rewriting all (spin-2 exclusive) B-type couplings in terms of A-type couplings, Eq. (4.174),

L1 o, 9 2 L7, 9 9 9 2
byt ntn = ) Hp P — Mn] Amn bt mm = 6 [2/% +204) — fin — B | Gimn - (5.5)
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and certain elastic sum rules

Z a?nn = Annnn (5.6)
2
Z/“L] Jnn - Mnanmm (57)
44
Z Hiya jnn = dennnn + gﬂnannnn (5.8)
Z = 2014 s 5.9
Hja@ jnn HnCnnnn + 3HnAnnnn (5.9)

where ¢iimn = %fdgp e75(0p1,) (011) (Dt ) (Db ), With the last two expressions com-

bining to yield

Z { - 5/Ln:| M;l ?nn = _§N?L@nnnn (5.10)
J
This chapter uses all of these results to calculate and then analyze matrix elements.
Recall our analogy between the Standard Model and the RS1 model from Chapter 1,
which we originally laid out in Table 1.5 and have repeated in Table 5.1 for convenience. In
this chapter, we finally confirm several elements of this table and draw the major conclusions

of this dissertation:!

e Scattering of massive spin-2 KK modes in the RS1 model has a matrix element that

grows like O(s) at large energies, regardless of helicity combination. Thus, scattering

L These conclusions have been published across several papers: the high-energy scaling behaviors of the
helicity-zero spin-2 KK mode scattering matrix element and each of its channels were published in [2]; the four
sum rules which make those scaling behaviors possible for the elastic process were published in [18], which
also included proofs for two of the sum rules; all of these results were then elaborated on and generalized in
[19]. This most recent paper also provides explicit versions of the 5D and 4D effective WFE RS1 Lagrangians
(which we recounted and updated in Chapters 3 and 4), proves another sum rule (which we generalized to
inelastic processes in Chapter 4 alongside the other sum rules), analyzes how truncation of the KK tower
affects the total matrix element, and calculates the strong coupling scale from the 4D effective theory.

250



of the massive spin-2 KK modes behaves just like the scattering of 4D gravitons at

high energies.

e Truncating the tower of massive spin-2 states (i.e. ignoring KK modes with KK num-
bers greater than some value N) generates a matrix element that grows like O(s%),
which replicates the bad high-energy behavior of, for example, massive spin-2 scatter-

ing in Fierz-Pauli gravity.

e Eliminating the radion from the matrix element calculation causes the matrix element
to grow like O(s3), which still reflects the explicit breaking of the underlying symmetry
group but is more mild energy growth than the growth we attained by eliminating

massive KK modes.
The rest of the chapter proceeds as follows:

e Section 5.2 establishes the definitions and conventions necessary to calculate the tree-
level 2-to-2 scattering matrix element for massive spin-2 KK modes in the center-of-
momentum frame. The section ends with some considerations regarding numerical

analysis of the RS1 model.

e Section 5.3 considers the scattering of helicity-zero massive spin-2 states in the 5D
orbifolded torus (bDOT) model, the limit of the RS1 model in which kr. vanishes. The
5DOT model exhibits discrete KK momentum conservation: this allows all coupling
integrals to be evaluated analytically and ensures only a finite number of diagrams
contribute to the matrix element. The helicity-zero matrix element is found to grow
like O(s) for any combination of external KK numbers that conserves discrete KK

momentum (and otherwise vanishes). The helicity-zero process (1,4) — (2,3) lacks
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any massless intermediate states because of KK momentum conservation and thus the
partial wave amplitudes of its matrix element can be calculated without running into

massless poles. We calculate its leading partial wave amplitude a¥ and find via the

(5DOT) _

partial wave amplitude constraints that the 5DOT strong coupling scale is Astrong

vV 8 MPI'

Section 5.4 considers the elastic scattering of massive spin-2 states in the RS1 model
in which all external KK modes have equal KK number n, beginning with helicity-zero
elastic scattering. The O(s?) contributions to the helicity-zero matrix element are
demonstrated to cancel via certain sum rules for ¢ = 5, 4, 3, and finally 2. Of the sum
rules obtained, only one linear combination was not proved in the previous chapter:
this combination involves the radion coupling, and its validity is instead demonstrated
numerically. An analytic expression for the residual O(s) amplitude is provided. Lastly,
it is noted that the aforementioned helicity-zero sum rules are sufficient to ensure all
elastic massive spin-2 KK mode scattering matrix elements grow at most like O(s),

regardless of helicity combination.

Section 5.5 is devoted to several numerical investigations. Subsection 5.5.1 demon-
strates cancellations down to O(s) in helicity-zero elastic and inelastic scattering ma-
trix elements. Subsection 5.5.2 investigates how truncation affects the accuracy of the
matrix element and its leading O(s?) contributions (¢ € {1,2,3,4,5}) relative to the

full matrix element without truncation. Subsection 5.5.3 calculates the RS1 strong

(RS1)

strong

coupling scale A using the 4D effective RS1 theory. Massless poles in RS1 ma-
trix elements are avoided by comparing the leading O(s) matrix element growth in

the RS1 model to the exactly calculable equivalent in the 5DOT model. This yields
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(RS1)

strong ~

A Ar as expected based on the 5D RS1 theory.

This completes the major results this dissertation intended to present. The next chapter
provides a brief conclusion that summarizes our original results as well as directions for

future work.

5.2 Motivation and Definitions

5.2.1 Restating the Problem

From the perspective of the 5D Lagrangian, the only excitation in the RS1 model is a
massless 5D graviton H, which (when using the appropriate five-dimensional generalization
of the helicity operator) has five helicity eigenstates. Because each term of Lspy contains two
derivatives, each interaction vertex contains at most two powers of 4D momentum per term.

Consequently, the cubic and quartic couplings grow like O(s) at high energies

H H H
}T H ~ ksps >< ~ KEps (5.11)
H H H

whereas the propagator falls like O(s™1)

AL 1
MN RS (5.12)

~ —

S
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Standard Model

Randall-Sundrum 1

The fundamental symmetry group...

SU(2)W X U(l)Y

5D diffeomorphisms

.. w/ unitarity-violation scale...

N/A

Ay = Mpy e—krcﬂ

.. and gauged by the...

electroweak bosons

5D RS1 graviton

.. is spontaneously broken by...

the Higgs vev

background geometry

... to a new symmetry group...

U(1)q

4D diffeomorphisms™*

... gauged by the...

photon, v

4D graviton, h(0)

.. resulting in a spin-0 state...

Higgs boson, H

radion, r(0)

.. as well as massive states

built from fund. gauge bosons...

W-bosons, W+
and Z-boson, Z

spin-2 KK modes, h(n)
forne {1,2,...}

B(0)0) _y 1,(0),(0)

The 2-to-2 gauge boson process... Y =YY
... has M w/ high-energy growth ~ O(sY) O(s)
.. or, if naively given mass, ... O(s?) O(s9)

... yet 2-to-2 massive state process

where mass arises via sym. break...

WIW— - Wtw~—

naively-massive gauge bosons, M ~

... has M w/ high-energy growth ~ O(sY) O(s)
Breaking the fund. symmetry by... elim. 7 KK tower truncation
.. makes massive states scatter like O(s2) 0(s%)

Breaking the fund. symmetry by...

elim. the Higgs

elim. the radion

.. makes massive states scatter ~

O(s)

O(s3)

Table 5.1: The Standard Model (SM) and the Randall-Sundrum 1 (RS1) model share a
chain of conceptual similarities with respect to the scattering of particles made massive
by spontaneous symmetry breaking. The Mandelstam variable s = E2, where F is the
Original results presented in this dissertation are
indicated in bold. (* - Technically, the new symmetry group is the Cartan subgroup of the

incoming center-of-momentum energy.

5D diffeomorphisms that contains the 4D diffeomorphisms.)
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and the external polarizations are independent of s. The total tree-level matrix element for

2-t0-2 scattering of 5D gravitons is the sum of four diagrams:

H H H o H H H H H
>< + M + Hi + E% (5.13)

H H H H H H H H
By combining the existing scaling arguments for each piece of each diagram, we find the
overall matrix element must grow at most like O(s). We can arrive at this same conclusion
by considering each graviton at energies so large that it can be localized with a width
significantly less than the compactification radius . and inverse warping parameter 1/k.
At these energies, the only dimensionful parameter remaining is the coupling strength xsp.

Therefore, because a 5D 2-to-2 scattering matrix element has units of inverse-energy and

[k5D] = [Energy]’?’/ 2 the 5D matrix element must scale at high energies like

Myg—gH ~ K%DS (5.14)

up to dimensionless multiplicative constants. This scaling provides a strict constraint on the
high-energy behavior of the 4D matrix elements, which we now consider.

Consider the same argument from the 4D perspective. Instead of perturbing the metric
G to yield a 5D graviton field f[MN(x,y), it is perturbed by 5D fields fzw(aﬁ,y) and 7(z)
which transform covariantly under the 4D Lorentz group. As detailed in Section 4.3, fzw
embeds a Kaluza-Klein (KK) tower of 4D spin-2 fields fAL/(ﬁ,) (), where n = 0 corresponds
to the massless 4D graviton, and #(z) embeds a massless 4D spin-0 state #(9) (z) called the
radion. This dissertation focuses on tree-level 2-to-2 scattering of massive KK modes with

(nonzero) KK indices ny, no, ng, and ng. The matrix element M ng—sngn, for this process

255



is calculated from infinitely-many diagrams, which we categorize into subsets for ease of
writing and discussion. All together, for any combination of external helicities the matrix

element equals

+00
j=0
within which
(5] ng
Me= K
D) ny
nyy e N3 n1 ns n1 n3
M, = H i% (5.16)
n2 ez ”fl2 Ty 712 Ty
_ Niyyg ng ny ns nl n3
M= B o,y 1K
n2 T4 nz Ty nz Ty
where subscript “c” denotes the contact diagram, “r” denotes the sum of diagrams mediated

by the radion f(o), and “j” denotes sum of diagrams mediated by the jth spin-2 KK mode

h(7). The relevant vertices scale like

ny . ny . ni ns3 . 9
i;g ;o f5D ? ng ~ fD >< N 5D] .
\/TT \/TT T
no ¢ (%) ¢ N9 Ny VitTe

(5.17)

where the hhr interaction does not grow in energy because the corresponding interaction

Lagrangian (Eq. (4.80)) contains no 4D derivatives, and the relevant propagators scale like

1 1
~ = 0 - n#0
T S v po "~ iy 7

po ~ 5

according to Eqs. (2.378)-(2.387). The external massive spin-2 states can take on any one
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of five possible helicities A € {—2,—1,0, 1,2}, and are described by polarization tensors eﬁ\w

which have leading O(s2~ 1) high-energy behavior (Eqs. (2.366) and (2.374)). In order to
maximize energy growth, we focus on the helicity-zero process wherein Ay = Ag = A3 = \y =
0. Under this assumption, if we combine these diagrammatic elements we find the diagrams

seemingly scale like

M= ~ O(s") (5.18)
Mo and M, ~ O(s°) (5.19)
M, ~ O(s3) (5.20)

such that naively we expect the matrix element Mn1n2—>n3n 4 to grow like (9(57) when all
external massive spin-2 states have vanishing helicity. Explicit evaluation reveals that the

scaling is slightly more mild in practice: per diagram,

M and M, ~ O(s) (5.21)

M, ~ O(s%) (5.22)

where cancellations occur such that each diagram in M~ only grows like (’)(55). This sug-
gests that My ng—ngn, might grow as fast as (9(55). However, such rapid energy growth
would starkly contrast the high-energy growth of the 4D graviton, whose own 2-to-2 scatter-
ing matrix element only grows as fast as O(s). Inspired by the analogy with the Standard
Model in Table 5.1, wherein the massive W-bosons scatter with the same high-energy behav-
ior as photons due to the underlying electroweak symmetry SU(2)w x U(1)y, we expect

that the matrix elements for scattering massive KK modes (which are generated by the 5D
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RS1 graviton just like the 4D graviton) should exhibit the same high-energy growth as gravi-
ton scattering, and indeed: this chapter demonstrates that cancellations occur between the
diagrams in Eq. (5.15) which reduce the naive O(s°) growth down to O(s) growth. These
cancellations require precise relationships between the KK mode mass spectra and coupling
integrals.

This chapter isolates those relationships and demonstrates they hold true in the 4D
effective field theory. After this, the strong coupling scale A is calculated directly from the

4D effective theory, and the effects of KK mode truncation are investigated.

5.2.2 Definitions?

The preceding chapters detailed how to determine the vertices relevant to tree-level 2-to-
2 scattering of massive spin-2 helicity eigenstates in the center-of-momentum frame. This
subsection recounts the other diagrammatic pieces which go into calculating the diagrams
relevant to those matrix elements. For scattering of nonzero KK modes (n1,ns) — (ns3,n4)
with helicities (A1, A9) — (A3, \4), we choose coordinates such that the initial particle pair

have 4-momenta satisfying

o= (B +mls) o =my (5.23)
= (Ba,—l5il2)  p3=my, (5.24)

2This subsection was originally published as Subsection IV.A of [19], up to minor changes in wording.
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and the final particle pair have 4-momenta satisfying

(5.25)

(5.26)

where p'y = |pf|(sinf cos ¢,sinfsin ¢, cos#). That is, the initial pair approach along the

z-axis and the final pair separate along the line described by the angles (¢, ). The helicity-A

spin-2 polarization tensor eé\w (p) for a particle with 4-momentum p is defined according to

pwo o pov
€19 = €41€41

1
2 no v Hn v

po _ 1

60 —%

7 B v Bov
€ 1621 te qeqg + 26060] ,

where the €} are the (particle-direction dependent) spin-1 polarization vectors

Eio
eil = 4 (O, _CQCQS + i8¢, —CQS¢ + Z'ng, 30) )

(5.27)

(5.28)

(5.29)

(5.30)

(5.31)

(cz,82) = (cosz,sinx), and p is a unit vector in the direction of the momentum [35]. We

use the Jacob-Wick second particle convention, which adds a phase (—1)2_)‘6_2)‘i¢ to 65\“/

when the polarization tensor describes h("2) or h(14) [26]. Due to rotational invariance, we

may set the azimuthal angle ¢ to 0 without loss of generality. Meanwhile, the propagators
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for virtual spin-0 and spin-2 particles of mass M and 4-momentum P are, respectively,

— T2 (5.32)
i BHVspO
UV agag— PO = T2 (5.33)
where
1 {=up— —yp—= 1 ——
BHV:PT = 5 {B“pBW + B"PBM — g(2 +8.07) BB’
B
—af _ap —af —_ . af Pep
b ‘M:O — b MA0 M? (5:34)

and MY = Diag(+1,—1,—1,—1) is the flat 4D metric [35]. The massless spin-2 propagator

is derived in the de Donder gauge by adding a gauge-fixing term

Lyp=—(@0"h) - 1, [hO)])2 (5.35)

g

to the Lagrangian. The Mandelstam variable s = (p; + p2)2 = (E1 + E2)2 provides a
convenient frame-invariant measure of collision energy. The minimum value of s that is
kinematically allowed equals s,j, = max[(mp, + mnz)z, (Mmng +mn 4)2]. When dealing with
explicit full matrix elements, we will replace s € [spin, +00) with the unitless s € [0, +00)
which is defined according to s = sy, (1 + 6).

As discussed in Subsection 5.2.1, any tree-level massive spin-2 scattering amplitude can

be written as

+00
Majng-sngng = M+ Me+ > M; (5.36)
7=0

260



where Mn1n2_>n3n 4 will be abbreviated to M when the process can be understood from con-
text, and we separate the contributions arising from contact interactions, radion exchange,
and a sum over the exchanged intermediate KK states j (and where “0” labels the mass-
less graviton). In practice, this sum cannot be completed in entirety and must instead be

truncated. Therefore, we also define the truncated matrix element

N
MM = M+ M+ M; (5.37)
j=0

which includes the contact diagram, the radion-mediated diagrams, and all KK mode-
mediated diagrams with intermediate KK number less than or equal to V.

We are concerned with the high-energy behavior of these matrix elements, and will there-
fore examine the high-energy behavior of each of the contributions discussed. Because the
polarization tensors eiyl introduce odd powers of energy, /s is a more appropriate expansion

parameter for generic helicity combinations. Thus, we series expand the diagrams and total

matrix element in /s and label the coefficients like so:

M(s,0)= S M) 5 (5.38)
UE%Z

We also define M) = H(") - s7. In what follows, we demonstrate that M9 vanishes
for 0 > 1 regardless of helicity combination and we present the residual linear term in s for

helicity-zero elastic scattering.
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5.2.3 Comments on Numerical Evaluation

The previous chapter detailed how to manipulate integrals of products of wavefunctions from
a purely analytic perspective, so let us take a moment to consider the numerical perspec-
tive. In those cases where it is desirable to numerically evaluate matrix elements, it can be
difficult to achieve a desired numerical accuracy for a variety of reasons. For example, the

determination of the massive spin-2 KK mode spectrum via

HUn€
{2(]2 + kre (an)}

[2)@ + ‘;”5(83/2)}

C

=T »=0

=0 (5.39)
=0

B Hn€
[2Y2 + r (aYQ)}

Hn€
|:2J2 + kre (&]2)}

p=m

(which is Eq. (4.33) when v = 2) amounts to solving for the roots of the LHS to some desired
accuracy. However, the spacing of those roots can vary dramatically depending on the value
of kre, which means (depending on your root-solving method) there is the possibility to
inadvertently skip roots. To avoid this, we can use our exact knowledge of the eigenvalue
spectrum when kr. = 0 (considered in the next section) and when kr. is large (Subsection
4.3.5) to reparameterize Eq. (5.39) in terms of a variable wherein the roots are more evenly

spaced. For this purpose, we use

i = %n (kre) mp e FTe™ 4 e Rrem (5.40)
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and solve Eq. (5.39) for ¢, instead. Having obtained a sufficiently-accurate eigenvalue

spectrum, it is then useful to rewrite v, into the form

g2 den Hn€ num Hn€
Yn = N_n {bgﬂ )JQ (k_TC) — b7(12 )YQ (/ﬂ"c>} (5.41)

rather than Eq. (4.31), where bg;um) and bggen) indicate the numerator and denominator of

Eq. (4.32) respectively. (The value of N, must change to accommodate this new form but
is still determined by Eq. (4.26).) This new form helps avoid numerical instability during
(den)

the occasions when b, 5" is close to zero. Furthermore, it is worthwhile to directly utilize

the analytic form of derivatives wherever possible. Specifically, this means using

1 1
0Jy = B [Jy—1 = Jus1] oY, = B) Y1 — Y, (5.42)
and
e[ den) (e (num) [ fine
(a¢¢n) = N—nﬂn {bnzen J1 (k:irc) - bngum n (k:c)} (3<p|90|) (5:43)

which uses the same N, derived when normalizing ¢, in Eq. (5.41). These changes all
help in gaining as much numerical accuracy as possible before calculating coupling integrals.
As detailed in Section 4.3, interaction vertices in the effective theory are proportional to
integrals of products of wavefunctions and their derivatives. Each wavefunction v, oscillates
through zero n times over the (half) domain ¢ € [0, 7] and is exponentially distorted towards
¢ = £m by an amount determined by the specific value of kr. selected. Consequently, inter-
action vertices involving even relatively modest mode numbers (n ~ 10) generate integrands

that are highly oscillatory. Those dramatic oscillations in the integrand lead to cancellations
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between large positive and large negative values in the integral, which can eliminate many
significant digits worth of numerical confidence. The number of significant digits retained
following these cancellations depends on just how accurately the different maxima and min-
ima cancel one-another, which varies dramatically from integral to integral. In this sense, the
integrals required for investigations of the 4D effective RS1 model are numerically unstable.
This results in a time-consuming feedback loop: the numerical accuracy of the spectrum and
wavefunctions must be increased until the coupling integrals are sufficiently accurate, which
can not be known until those integrals are attempted. Furthermore, because we are inter-
esting in demonstrating cancellations between diagrams in the matrix element, we are often
evaluating perturbative expressions in an attempt to “measure zero”: because higher-order
terms in those expansions contribute less than lower-order terms, their effects are only evi-
dent if the lower-order terms are evaluated to sufficient accuracy, further increasing the need
for highly-accurate results. We can only be confident we have calculated all elements of the
calculation to sufficient accuracy once all evidence of numerical noise is absent from certain
cross-checks (such as the sum rules analytically proved in Section 4.4). Unfortunately, there

seems to be no means of avoiding this time-consuming complication.

5.3 Elastic Scattering in the 5D Orbifolded Torus’

In this section, we begin our analysis of the scattering amplitudes of the massive spin-2 KK
modes. As described above, the full tree-level scattering amplitudes will require summing
over the exchange of all intermediate states, and we will find that the cancellations needed

to reduce the growth of RS1 scattering amplitudes from O(s°) to O(s) will only completely

3The first paragraph of this section originates from Section IV of [19]. The rest of this section’s content
was original published as Subsection IV.B of [19] up to minor changes.
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occur once all states are included. In the present section, we analyze KK mode scattering in
a limit that only has finitely many nonzero diagrams per matrix element: the 5D Orbifolded
Torus model.

The 5D Orbifolded Torus (5DOT) model is obtained by taking the limit of the RS1
metric Eq. (3.115) as kr. vanishes, while simultaneously maintaining a nonzero finite first
mass mj (or, equivalently, a nonzero finite r.). Consequently, the 5DOT metric lacks explicit

dependence on y,

Gyn = | (5.44)
_ AP
0 (1+45)
and as kr. — 0 the massive wavefunctions go from exponentially-distorted Bessel functions

to simple cosines:

1
¢0—7§

U = (5.45)

Yy =—cos(n|p|) 0<neZ

with masses given by pu, = mure = n and 5D gravitational coupling kK = /27rck4p =
V/87re/Mp). In the absence of warp factors, the radion couples diagonally and spin-2
interactions display discrete KK momentum conservation. Explicitly, an H-point vertex
A1) . h(H) in the 4D effective 5DOT model has vanishing coupling if there exists no
choice of ¢; € {—1,4+1} such that ¢iny + -+ + cgng = 0. For example, the three-point
couplings anynong and b s/ — are nonzero only when n; = |ng + ng|. Therefore, unlike

(5DOT)

when kr. is nonzero, the 5DOT matrix element M for a process (ny,n9) — (n3,nyg)

consists of only finitely many nonzero diagrams.
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85 84 83 82

1M _TZ [7+CQ9}S§ r2[63—196cog+5cg] | 78|—1854+692coq+5¢y]  re[5+47cop]
K277°¢ 3072n87 9216107 4608n4n 72n21

1 M TZ[7+629]55 T?[—13+626]83 T§[97+3629]85 Tc[—179+116029—00]
w27 e 9216037 115207 1152047 1152n27
Sy TZ[7+029]83 r?[—9+140029—309] T§[15—270029—09] rc[175+624 c9p+-cg
K270 4608187 9216107 2304n4r 1152n27

3.2

LM 0 0 _ ey re[T+cog]
K27 64ndn 96n21

Sum 0 0 0 0

Table 5.2: Cancellations in the (n,n) — (n,n) 5DOT amplitude, where (cg,sy) =
(cosf,sinf). Originally published in [2]

For (n,n) — (n,n), the 5DOT matrix element arises from four types of diagrams:

n) = M + My + Mo+ Mo, . (5.46)

Using Eq. (4.69) and the 5DOT wavefunctions, we find:

3
n2annnn — an/n/nn — ZnQ 5
1
n2ann0 = byrytg = bytnty = En2, (5.47)
2 _ _ 1 R )
nolpn2n) = — n'n'(2n) — 5 (2n)'n'n — _§n )

where here again the subscript “0” refers to the massless 4D graviton. We focus first on the
scattering of helicity-zero states, which have the most divergent high-energy behavior (we
return to consider other helicity combinations in Sec. 5.4.6). Figure 5.2 lists Mé"), Mﬁ")

Y

/\/l(()g), and Mé(:b) for ¢ > 1, and demonstrates how cancellations occur among them such
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that ﬂ(a) = 0 for ¢ > 1. The leading contribution in incoming energy is

—(1) 3k’
25677

[7 + cos(260)]? csc? 6 . (5.48)

More generally, for a generic helicity-zero 5DOT process (ny,n9) — (ns,ny), the leading

high-energy contribution to the matrix element equals

o _

_ 2 2
— mxm@ngw [7 + cos(20)]~ csc” 6, (5.49)

where z is fully symmetric in its indices, and satisfies
Taaaa = 3,  Tgabh = 2, otherwise zgpq =1,

when discrete KK momentum is conserved (and, of course, vanishes when the process does
not conserve KK momentum). We next discuss the full calculation, including subleading
terms.

The complete (tree-level) matrix element for the elastic helicity-zero 5DOT process equals

M (BDOT) _ K2n? [Py + Pacog + Pycap + Pocgg) csc® 0 (5.50)
2567135(5 + 1)(s2 + 85 + 8 — 52cog) ‘
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where

Py = 5108 + 3962 + 8256 5% + 7344 5% + 32165 + 704 (5.51)
Py = —4296° + 3935 + 3936 > + 5584 5% + 32725 + 768 (5.52)
Py = —785" — 2345% + 19253 4 155262 + 17765 + 576 , (5.53)
Ps = —35” — 2557 — 965° — 14452 — 725 , (5.54)

and s is defined such that s = spn(1 + 5). In this case, sy, = 4m% = 4n? /rg The
multiplicative csc? @ factor in Eq. (5.50) is indicative of ¢- and u-channel divergences from
the exchange of the massless graviton and radion, which introduces divergences at # = 0, 7.
Such IR divergences prevent us from directly using a partial wave analysis to determine the
strong coupling scale of this theory. In order to characterize the strong coupling scale of this
theory, we must instead investigate a nonelastic scattering channel for which KK momentum
conservation implies that no massless states can contribute, My = M, = 0. (In this case,
the csc? 0 factor present in Eq. (5.49) is an artifact of the high-energy expansion and is
absent from the full matrix element.)

Consider for example the helicity-zero 5DOT process (1,4) — (2,3). The total matrix

element is computed from four diagrams

1 2 1y5,2 1 2 1 3
+ M + 1 + 2 (5.55)
4 :>< 3 4 3 4 I 3 4 }< 2
which together yield, after explicit computation,

4
K2s

M pum
12800773 (s + 1)2Q4+Q—

Qicip (5.56)
0

’L':
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where

Qr=25(s+1)+ [3 + /(255 + 16)(255 + 24) cosb)] |, (5.57)
Qo =15 (257812554 + 9437500 8 + 12990000 62 + 7971000 5 + 1840564) , (5.58)
Q1 = 721/(255 + 16)(25 5 + 24) (50 5 + 43)(50 5 + 47) , (5.59)
Qg =4 (2734375 5% + 1156250065 + 18047500 52 + 123405005 + 3121692) . (5.60)
Q3 = 24+/(255 + 16)(255 + 24)(50 5 + 51)(505 + 59) , (5.61)
Q4 = 390625 5" + 2187500 5% + 4360000 5% + 3729000 5 + 1165956 |, (5.62)

and spin = 25/72. As expected, unlike the elastic 5DOT matrix element (5.50), the (1,4) —
(2,3) 5DOT matrix element is finite at § = 0, 7.
Given a 2-to-2 scattering process with helicities (A1, A2) — (A3, \4), the corresponding

partial wave amplitudes a” are defined as [26]

1

J
@ (8) = 42

s D)\ )\f(gb, 0) M(s,9,0) , (5.63)

where \j = A} — Mg and Ar = A3 — Ay, dQ = d(cos ) do, and the Wigner D-matrix DY
f= AasAp

is normalized according to

4m
J
49 D0, (0,00 DY (06) = Sy, (5.64)

Because (1,4) — (2,3) is an inelastic process, its partial wave amplitude is constrained by
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unitarity to satisfy

(5.65)

1
BrafBaz |a’ (s))? < 1

where

B = 1\/ s = g2 s = (m -+ 2] (5.60

The leading partial wave amplitude of the (1,4) — (2, 3) helicity-zero 5DOT matrix element

corresponds to J = 0, and has leading term

a0 ~ Szln( i ) (5.67)
167 M, Smin

Hence, this matrix element violates unitarity when \a0| ~ 1/2, or equivalently when the

(5DOT
strong

value of F = /s is near or greater than A ) = V8rMpy.4 Because Mpy labels the

(5DOT)

reduced Planck mass, Astrong

equals the conventional Planck mass. We will use this inelastic
calculation as a benchmark for estimating the strong coupling scale associated with other

processes.

We now consider the behavior of scattering amplitudes in the RS1 model.

Am [19], there was a missing relative factor of two between the definition of a’ (s) and the partial wave

(5DOT) = \/EMPI instead of A(5DOT) = \/gMpl- This

amplitude unitarity constraints, thus yielding Astr ong strong

has been corrected in this dissertation.
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5.4 Elastic Scattering in the Randall-Sundrum 1 Model’

This section discusses the computation of the elastic scattering amplitudes of massive spin-2
KK modes in the RS1 model, for arbitrary values of the curvature of the internal space. For
any nonzero curvature, every KK mode in the infinite tower contributes to each scattering
process and the cancellation from O(s°) to O(s) energy growth only occurs when all of these
states are included. In the subsequent subsections, we apply the sum rules to determine the
leading high-energy behavior of the amplitudes for helicity-zero (n,n) — (n,n) scattering
of KK modes. Finally, Sec. 5.4.6 extends this analysis to all other helicity combinations of

(n,n) — (n,n) KK mode scattering.

5.4.1 Cancellations at O(s’) in RS1

We will now go order by order in powers of s through the contributions to the helicity-zero
(n,n) — (n,n) scattering amplitude in the RS1 model, and apply the sum rules derived in
the previous chapter. When reporting contributions, all spin-2 exclusive B-type couplings
b; couplings have already been converted into spin-2 exclusive A-type ajz couplings via Eq.
(4.174).

As described in Subsection 5.2.1, the contact diagram and spin-2-mediated diagrams

individually diverge like O(s%). Their contributions to the elastic helicity-zero RS1 matrix

SThe section description comes from Section V of [19]. The section content comprises Subsections V.B
through V.G of [19] with some modification to update notation and utilize the new expressions of the sum
rules from the previous chapter.

271



element equal

2
) K™ nnnn .9
MY = e [T 20)]sin”0 5.68
¢ 2304 rre m (7 + cos(20)] sin (5.68)
) _ "y )
A nnj .
T 2304mremd 20)]sin” ¢ 5.69
M Tr L (5.69)
such that they sum to
2 : 2 +00
—(5) _ Kk [7+ cos(20)]sin” 0 5
M - 2304 e m181 jz:% annj — Gnnnn (570)

This vanishes via Eq. (4.182), which we will, henceforth, refer to as the O(s°) sum rule.

5.4.2 Cancellations at O(s?) in RS1

The O(s*) contributions to the elastic helicity-zero RS1 matrix element equal

2
MY = _FGnnnn 163 196 ¢0s(26) + 5 cos(49)] | (5.71)
6912 7re mb
4 K2a? . m?
Y| L - [7 + cos(26)]? —% +2[9 — 140 cos(26) + 3cos(40)] . (5.72)
J 9216 7re mS mé
Using the (9(55) sum rule, Mw equals
2 2 2
——(4) K7 [T+cos(20)]" ) 4 UL
M = et | 3% 2 m2 i (- (5.73)

This vanishes via Eq. (4.183), which we shall refer to as the O(s%) sum rule.
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5.4.3 Cancellations at O(s*) in RS1

Once the O(s?) and O(s*) contributions are cancelled, the radion-mediated diagrams, which
diverge like (9(53), become relevant to the leading behavior of the elastic helicity-zero RS1
matrix element. Furthermore, because of differences between the massless and massive spin-
2 propagators, Mg and Mj>0 differ from one another at this order and lower. The full set

of relevant contributions is therefore

2
-—(3) K™ Gnnnn
= —— |—185+ 692 20)+5 46 5.74
M) = S 155 4 692 os(20) + 5 cos(40)] 6.1
m(?’) ’{2 bzl/nlr -2 0 5.75
T 327, ma | (mpre)? S (5.75)
2 2
M) = =m0 (15— 970 cos(26) — cos(46)] (5.76)
O 1152 7remi ’
2 2 4 2
o3 _ " %y M "
My = m{5 [1 — cos(20)] oy + [69 + 60 cos(20) — cos(40)] mZ
+ 2[13 — 268 cos(260) — cos(40)] } (5.77)

After applying the (9(55) and (9(84) sum rules, ﬂ(g) equals

2 sin’ ; 012, ,

—(3) 5 k“ sin® 6 m; o, 16 4 )

M= 1152 wre m Z L nj ~ 150~ g —”’Zr —arol t- (5.78)
J

These contributions cancel if and only if the following O(s3) sum rule holds true:

16
Z Hja nnj M%annnn + 5 {91)2/11’7“ M%a%no} (5.79)

We do not yet have an analytic proof of this sum rule; however we have verified that the

right-hand side numerically approaches the left-hand side as the maximum intermediate
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KK number Npyax is increased to 100 for a wide range of values of kre, including kr. €
{1073,1072,1071,1,2,...,10}.6

The O(s®) may also be written as

3 9bz/ 1. — M%a%mo = 15¢nnnn +M%ammn (5.80)

nnr

by applying Eq. (4.184) to Eq. (5.79).

5.4.4 Cancellations at O(s?) in RS1

The contributions to the elastic helicity-zero matrix element at O(s?) equal

2
MY = S Gmmnn s 7 cos(26))] (5.81)
54 mrem?
MY 5 bt ] 17 2 5.82
- 487T7"cm% (mnrc)4 [ _'_COS( )] ) ( . )
2 2
M = 2 %m0 1175 4 624 cos(20) + cos(49)] (5.83)
576 wre m2
2 2 2 4
i N Ynng i
N Y 20)] |5 —2—2 |
Mi=o 6912 7re m2 [T+ cos(20)] m2 | m}
m;

— [1291 4 1132 cos(26) + 9 cos(46)]

Sto

H’_JS

+ 4 [553 + 1876 cos(26) + 3 cos(40)] ¢ . (5.84)

6The cancellations implied by this sum rule correspond to the vanishing of R[N 13) in Fig. 5.2 as N
increases.
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By applying the O(s°) and O(s) sum rules (but not the O(s3) sum rule), the total O(s?)

contribution equals

m@) _ K [7+COS(29>] Z m_§_§ m_?a2 ._'_§a _9 9b721n7" a2
864 e m% ; m% 9 m% nnj T gtnnnn —(mnrc) 1 nn0 ,
(5.85)

which vanishes if and only if the following O(s%) sum rule holds:

8

Again, we do not yet have a proof for this sum rule, despite strong numerical evidence that
it is correct (refer to Sec. 5.5). However, combining the O(s3) and O(s?) sum rules (Egs.

(5.79) and (5.86)), yields an equivalent set

+oo 16
Z [,u? o 5“”} ﬂ? 72mj - ?Ngannnn ) (5.87)
i=0

{9[)2 Ity Iu%a%mO} = 15¢nnnn + N%annnn . (5.88)

where Eq. (5.87) is precisely Eq. (4.186) (which we proved in Section 4.4) and Eq. (5.88) is
Eq.(5.80) again. Therefore, if the O(s3) sum rule holds true, then the O(s?) sum rule must
also hold true, and vice versa. Of the relations necessary to ensure cancellations, only Eq.
(5.88) remains unproven.

Finally, we note that the sum rules we have derived for the RS1 model in Eqs. (4.182),
(4.183), (5.79), and (5.86), are consistent with those inferred by the authors of [36] when

they assumed helicity-zero massive spin-2 mode scattering amplitudes in KK theories will
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ultimately grow like O(s). A description of the correspondence of our results with theirs is

given in Appendix E of [19].

5.4.5 The Residual O(s) Amplitude in RS1

After applying all the sum rules above’ (including Eq. (5.88), which lacks an analytic proof),
the leading contribution to the elastic helicity-zero matrix element is found to be O(s). The

relevant contributions, sorted by diagram type, equal

-—(1) K2 annnn

¢ = Trasmr. [1505 + 3108 cos(260) — 5 cos(40)] (5.89)
Tl ___* Cututr [9 + 7 cos(26)] (5.90)
" 24 re | (mpre)? ’ .
) 7 G 5 [748 + 427 cos(26) + 1132 cos(46) — 3 cos(60)] (5.91)
0o = 9304 p— COS COS COS s .

2 2 2 8 6
(1) KT apy; csc 0 o M m;
Misy = ETICE 3 [7 + cos(20)] m_% — 4[241 + 148 cos(20) — 5 cos(40)] m_g
m4
+ 4 [T87 + 604 cos(26) — 47 cos(46)] —¢
m
— [3854 + 5267 cos(260) + 98 cos(40) — 3 cos(66)] —5
mn
+ [2156 + 1313 cos(26) + 3452 cos(40) — 9 cos(66)] } : (5.92)

Combining them according to Eq. (5.36) yields

.00

1 K27+ cos(26)]? csc? 6{ Z m

2
_ 28 48 | 967,
2 2
M= 2304 77 g 75 Annnn ~ 7 [ o) _a””‘)] } '

(mnTC)4

2

j
(5.93)

"The elastic 5D Orbifolded Torus couplings (5.47) directly satisfy all of these sum rules.
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Elastic 2-to-2 KK Mode Scattering Matrix Elements in RS1
Fastest Energy Growth per Helicity Combination: (A,,A,) - (A,,A,)

Legend
=[x] = O(E¥) growth

={O(EX) RS1 growth
O(E*?) 5DOT growth

Figure 5.1: This table-of-tables gives the leading order (in energy) growth of elastic (n,n) —
(n,n) scattering for different incoming (A1 2) and outgoing (A3 4) helicity combinations in
RS1. In the cases listed in grey, the leading order behavior is softer in the orbifolded torus
limit (by two powers of center-of-mass energy).

This is generically nonzero, and thus represents the true leading high-energy behavior of the

elastic helicity-zero RS1 matrix element.

5.4.6 Other Helicity Combinations

The sum rules of the previous subsections were derived by considering what cancellations
were necessary to ensure the elastic helicity-zero RS1 matrix element grew no faster than

O(s), a constraint which in turn comes from considering the spontaneous symmetry breaking
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of extra-dimensional physics. This bound on high-energy growth must hold for scattering
of all helicities, and—indeed—upon studying the nonzero-helicity scattering amplitudes, we
find that the sum rules derived in the helicity-zero case are sufficient to ensure all elastic
RS1 matrix elements grow at most like O(s).

Figure 5.1 lists the leading high-energy behavior of the elastic RS1 matrix element for
each helicity combination after the sum rules have been applied. These results are expressed
in terms of the leading exponent of incoming energy E = 4/s. For example, the elastic
helicity-zero matrix element diverges like O(s) = O(E?) and so its growth is recorded as “2”
in the table. As expected, no elastic RS1 matrix element grows faster than O(E?).

Some matrix elements grow more slowly with energy in the 5DOT model than they do
in the more general RS1 model; they are indicated by the gray boxes in Fig. 5.1. For these
instances, the leading M) contribution in the RS1 model is always proportional to the

same combination of couplings

3a2, o + 16annnn | e — 2702, (5.94)

which vanishes exactly when kr. vanishes. Regardless of the specific helicity combination

considered, no full matrix element vanishes.
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108 5-HRIM%) ys N - kr,e{0.1,1,10} , 8=4r/5
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10*1°} 3

108 (5-01|R[N] (Ul|

-

o
Y
o

102

_(1,1) T T i . —(1,4) - (2,3)
0 20 40 60 80 100 0 20 40 60 80 100

Figure 5.2: This figure plots the ratio R[N](U)(krc,e) = M[N](U)/M [0)(o) (defined in Eq.
(5.98)), where MINV1(9) is the O(57) contribution to the matrix element describing helicity-
zero scattering of KK modes (1,1) — (1,1) (left) and (1,4) — (2, 3) (right) as a function of
the number of KK intermediate states included in the calculation (N). The curves are drawn
for kro = 0.1, 1, 10 at fixed @ = 47 /5. In all cases, the remaining matrix element falls rapidly
with the addition of more intermediate states, thereby demonstrating the cancellation of all
high-energy growth faster than O(s). To visually separate the different curves, the value of
the ratio at N = 0 has been artificially normalized to (1, 106, 1012, 1018) for 0 = 5,4,3,2
respectively.

5.5 Numerical Study of Scattering Amplitudes in the

Randall-Sundrum 1 Model ®

This section presents a detailed numerical analysis of the scattering in the RS1 model. In
Sec. 5.5.1 we demonstrate that the cancellations demonstrated for elastic scattering occur for
inelastic scattering channels as well, with the cancellations becoming exact as the number

of included intermediate KK modes increases. In Sec. 5.5.2 we examine the truncation

8The content of this section was originally published as Section VI and Appendix F.3 of [19], up to minor
changes in wording and notation.
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error arising from keeping only a finite number of intermediate KK mode states. We then
return in Sec. 5.5.3 to the question of the validity of the KK mode EFT. In particular, we
demonstrate directly from the scattering amplitudes that the cutoff scale is proportional to

the RS1 emergent scale [13, 14]

Ay = Mpye Fmre (5.95)

which is related to the relative locations of branes [11, 12].

5.5.1 Numerical Analysis of Cancellations in Elastic & Inelastic

Scattering Amplitudes

We have demonstrated that the elastic scattering amplitudes in the Randall-Sundrum model
grow only as O(s) at high energies, and have analytically derived the sum rules which
enforce these cancellations. Physically, we expect similar cancellations and sum rules apply
for arbitrary inelastic scattering amplitudes as well. However, we have not yet found an
analytic derivation of this property.?

Instead, we demonstrate here numerical checks with which we observe behavior consistent
with the expected cancellations. To do so, we must first rewrite our expressions so we may
vary kre while keeping Mp; and m; fixed. We do so by noting that we may rewrite the

common matrix element prefactor as

1 4
K K4D |:1 o 6—2k7“c7'(':| (596)

e 1/;02  wkre MPQ,1 ’

9This is to be contrasted with the situation for KK compactifications on Ricci-flat manifolds, where an
analytic demonstration of the needed cancellations has been found [36].

280



and that r. = p1/mq, such that M) can be factorized for any process (and any helicity
combination) into three unitless pieces, each of which depends on a different independent
parameter:

M) = [IC(U)(IWC,@)] : [%] : [igr(a_l) . (5.97)

Mg | Lm

This defines the dimensionless quantity A(7) (in the first square brackets) characterizing the
residual growth of order (\/5)2‘7 in any scattering amplitude. We can apply this decompo-
sition to the truncated matrix element contribution MV1(@) defined in Eq. (5.37) as well.
By comparing MINI(@) o MIO0I@) and increasing N when o > 1, we can measure how can-

cellations are improved by including more KK states in the calculation and do so in a way

that depends only on kr. and 6. Therefore, we define

M) KclN(©)
[N](0) _M _
R kre, 6) = “C ey = bl (5.98)

which vanishes as N — +oc if and only if M) vanishes as N — +00. Because RIVI(9)
depends continuously on €, we expect that so long as we choose a value of ¢ such that
KIN(o) # 0, its exact value is unimportant to confirming cancellations. Figure 5.2 plots
1066-0)R[Nmax](?) for the helicity-zero processes (1,1) — (1,1) and (1,4) — (2,3) as
functions of Npax — 100 for kre € {1071,1,10} and 6 = 47/5. The factor of 106(5-7)
only serves to vertically separate the curves for the reader’s visual convenience; without this
factor, the curves would all begin at RI0N(0) = 1 and thus overlap substantially.

We find that, both for the case of elastic scattering (1,1) — (1,1) where we have an

analytic demonstration of the cancellations and for the inelastic case (1,4) — (2, 3) where
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we do not, MINI©@) 5 0 as N = . Furthermore, we find that the rate of convergence is
similar in the two cases. In addition, and perhaps more surprisingly, the rate of convergence

is relatively independent of the value of kr. for values between 1/10 and 10.

5.5.2 Truncation Error

In the RS1 model, the exact tree-level matrix element for any scattering amplitude requires
summing over the entire tower of KK states. In practice, of course, any specific calculation
will only include a finite number of intermediate states N. In this subsection we investigate
the size of the “truncation error” of such a calculation. For simplicity, in this section we will
focus on the helicity-zero elastic scattering amplitude (1,1) — (1,1) and investigate the size
of the truncation error for different values of kr. and center-of-mass scattering energy.

For o > 1, consider the ratio

, (5.99)

which measures the size of each truncated matrix element contribution relative to the full
amplitude.!0 For sufficiently large N and ¢ > 1 we have confirmed numerically that the
ratio |[MIN(@) / MIN| reaches a global maximum at 6 = 7/2 for o > 1. Therefore

MINI@) (kr,., s, 0)
M(kre, s, 0)

FINIO) (hr, 5) = ‘ (5.100)

O0=m/2

Unlike M) for ¢ > 1, MWD diverges at 6 € {0,7} because of a csc?f factor, as

10, practice, we approximate the “full” amplitude by M [N=100] (kre, s,0), which we have checked provides
ample sufficient numerical accuracy for the quantities reported here.
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indicated in Eq. (5.93), which arises from the ¢- and u-channel exchange of light states. 11
The total elastic RS1 amplitude M, on the other hand, only has such IR divergences due
to the exchange of the massless graviton and radion. For this reason, and as confirmed by
the numerical evaluation of M[NKl)/M[N], the divergences at 6 € {0,7} of MINIQ) are
actually slightly more severe than the corresponding divergences of MIN ], and so the ratio
MINI() / M(] grows large in the vicinity of § € {0, 7}. However, this unphysical divergence
is confined to nearly forward or backward scattering; otherwise the ratio is approximately

flat. Thus for ¢ = 1 we study the analogous quantity

FIND) (k. s (5.101)

B M[N](U)(krc, s,0)
)= M(kre,s,0)

O0=m/2
We also define the overall accuracy of the partial sum over intermediate states using a
version of this quantity for which no expansion in powers of energy has been made:

](kr& S, %)

5.102
erasv %) ( )

[N
f[N](k;rc,s) = ‘MM(

Because FLV1(0) (F [V ]) measures the discrepancy between any given contribution M [N](o)
(M [NV ]) and the full matrix element M, we study these quantities to understand the trunca-
tion error. In the upper two panes of Fig. 5.3 we plot these quantities as a function of maximal
KK number N for kr. = 1/10 and kre = 10 at the representative energy s = (10mq)2, for
mq1 = 1 TeV. The lower two panes of Fig. 5.3 plot similar information but at the energy
s = (100m1)2. The kr. = 10 panes contain the more phenomenologically relevant informa-

tion. In all cases, we find that including sufficiently many modes in the KK tower yields

11Formally, the sum over intermediate KK modes in Eq. (5.93) extends over all masses, but the couplings
@11y vanish as n grows and suppress the contributions from heavy states.
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an accurate result for angles away from the forward or backward scattering regime. When
including only a small number of modes N, the contribution from MINIG) (the residual
contribution arising from the non-cancellation of the O(s®) contributions) dominates and
the truncation yields an inaccurate result. As one increases the number of included modes,
this unphysical O(s) contribution to the amplitude falls in size until the full amplitude is
dominated by MIN }(1), which is itself a good approximation to the complete tree-level am-
plitude. For kr. = 1/10, the number of states N required to reach this “crossover”, however,
increases from 3 to 15 as /s increases from 10m; to 100m;. Consistent with our analysis in
the previous subsection, however, the truncation error is less dependent on kr.; the number
of states required to reach crossover increases by less than a factor of 2 when moving from
kre =1/10 to kre = 10 at fixed +/s.

Lastly, we note that the vanishing of F [NI(3) as N increases is a numerical test of the

O(s3) sum rule in Eq. (5.79).

5.5.3 The Strong Coupling Scale at Large kr.

In Section 5.3 we analyzed the tree-level scattering amplitude (1,4) — (2, 3) and discovered

that 5D gravity compactified on a (flat) orbifolded torus becomes strongly coupled at the

(5DOT
strong

) = V8mMpy. In the large kre limit of the RS1 model,

non-reduced Planck scale, A
however, we expect that all low-energy mass scales are determined by the emergent scale

13, 14]

Ay = Mp e ™kre (5.103)
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which is related to the relative locations of the branes [11, 12]. In this section we describe
how this emergent scale arises from an analysis of the elastic KK scattering amplitude in the
large-kre limit.

Consider the helicity-zero (n,n) — (n,n) scattering amplitude. As plotted explicitly for
n = 1 in the previous subsection, at energies s > m% the scattering amplitude is dominated
by the leading term MW (kre, s, 0) given in Eq. (5.93). The analogous expression in the
5D orbifold torus is given by Eq. (5.48). We note that the angular dependence of these two
expressions is precisely the same, and therefore we can compare their amplitudes by taking

their ratio. This gives the purely kre-dependent result!?

MWD (kry) |1 —e2mhre]
MO0 | 2y | ko) (5.104)
where
e 1 mJ8 2 9b72mr 2
Knnnn = 105 15 zj: m_%annj + 28appnn — 144 W — Gpno . (5.105)

From this ratio, we can estimate the strong coupling scale at nonzero kr:

(RS1) _ ((RS1) M(l)(O)
Astrong(krc) = Astrong(()) W )
Mtrons || 2rkre

(5.106)

- V Knnnn 1 — e~ 2mkre ©

(5DOT
strong

) - V8w Mp) result.

where we can use our earlier A

12F0rmally, as in the case of toroidal compactification, this amplitude has an infrared (IR) divergence due
to the exchange of the massless graviton and radion modes. By taking the ratio of the amplitudes in the RS1
model to that in the 5D orbifolded torus, the IR divergences cancel and we can relate the strong coupling
scale in the RS1 model to that in the case of toroidal compactification.
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Now let us consider the kr. dependence of this expression in the large-kr. limit. At large

kre, Eq. (5.106) becomes

RS1 o 2mkr
Agtron?g(krc) ~ V8rMp) e <. (5.107)
nnnn
whereas, using Eqs. (4.104)-(4.111),
8 8
m; xe
2 2 27k
n n
annnn ~ Cnnnn (k”"c> GQﬂkrc , (5.109)
b721/n/7“ L o 2rkre
(m r )4 ~ x_40nnr (k”l“c) € ) (5110)
ntc n
a?,mO ~ Cpno (kre) - (5.111)
such that
Ennnn e2mhre — 8 ~2 8 4 ~2
onkre 810728 | Y@ G+ 282 Coun — 129677 Gy o (5.112)

In this expression, the x;,, are the jth and nth zeros of the Bessel function Ji, respectively;
the constants Cnnja Chnnnn, and Cppy (defined explicitly in Subsection 4.3.5) are integrals
depending only on the Bessel functions themselves. Therefore, focusing on the overall kr,

dependence, we find that

ABSD B Mpje™e = \BrA, (5.113)

strong

at large krc, as anticipated. The precise value of the proportionality constant depends weakly
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on the process considered, and in the large-kr. limit for the processes (n,n) — (n,n) we find

n 1 2 3 4 )

(5.114)

ABSU  RrAL | 2701 2793 2.812 2819 2.822

strong

Since these results for the elastic scattering amplitudes follow from the form of the wave-
functions in Eq. (4.94), similar results will follow for the inelastic amplitudes as well—and
they will also be controlled by Aj.

In addition to the previous analytic large-kr. analysis, we have also numerically examined

(RS1)

strong

the dependence for lower values of kr. via Eq. (5.106). We display the dependence of A
as a function of kr. for the processes (1,1) — (1,1) and (1,4) — (2,3) in Fig. 5.4. In all
cases, we find that the strong coupling scale is roughly A;. Therefore, in the RS1 model (as
conjectured under the AdS/CFEFT correspondence) all low-energy mass scales are controlled

by the single emergent scale Aj.
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Figure 5.3: This figure plots an upper bound on the size of the residual truncation error
relative to the size of the full matrix element for the process (1,1) — (1,1) as a function of
the number of included KK modes N, for £ = 10m; (upper pair) and F = 100m (lower
pair), and kre = 0.1 (left pair) and kre = 10 (right pair). FIV(@) (kre., s) from Eq. (5.100) is
drawn in color, for o = 1 - 5, and FIV(kre, s) from Eq. (5.102) is drawn in black. We find
that the size of the truncation error falls rapidly as the number of included intermediate states
N increases. We also find that, for £ > mj and with a sufficient number of intermediate
states included, MV g o good approximation of the full matrix element. Note that if an
insufficient number of intermediate KK modes is included, the truncation error is large and

MINIG) dominates.
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processes (1,1) — (1,1) and (1,4) — (2,3). We find that this scale is comparable to v/8mwAr.

Figure 5.4: The strong coupling scale A (kre), Eq. (5.107), as a function of kr. for the
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Chapter 6

Conclusion

Between what we published in [2, 18, 19] and additional original work discussed in this disser-
tation, we have obtained many substantial original results regarding the Randall-Sundrum
1 model:

e Summary of the 5D weak field expanded RS1 Lagrangian Lsp and its 4D effective

equivalent Eggf) through O(/{%D). (Section 3.4 and Subsection 4.3.3.)

o Confirmation that all terms containing factors of (9,|¢|) or (83,|g0|) in L5p are cancelled

to all orders in the 5D coupling k5p. (Section 3.3.3)

e A new parameterization of the 4D effective RS1 Lagrangian as summarized in the
5D-to-4D formula, Eq. (4.64), which categorizes all couplings in the RS1 model as

“A-type” or “B-type.” (Section 4.3)

e The demonstration that the matrix element describing massive spin-2 KK mode scat-
tering in the 5D orbifolded torus model yields O(s) growth for all helicity combinations.

(Section 5.3)

e The demonstration that the matrix element describing massive spin-2 KK mode scat-
tering in the RS1 model yields O(s) growth for all helicity combinations, including the
derivation of sum rules that are sufficient for maintaining the cancellations from O(s®)

down to O(s). (Sections 5.4 and 5.5)
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e Analytic proofs for many of the sum rules, as well as numerical evidence supporting

the one rule lacking an analytic proof. (Section 4.4 and Figure 5.2)

e Numerical measurements of how KK tower truncation impacts the accuracy of the
full matrix element and its O(s?) contributions (o € {1,2,3,4,5}) relative to the full

matrix element without truncation. (Subsections 5.5.1 and 5.5.2)

e Calculation of the 5D strong coupling scale Ay = Mp e krem directly from the 4D

effective RS1 theory via partial wave unitarity constraints. (Subsection 5.5.3)

These results point toward several interesting open questions as well as providing a foundation
for future work. There are several projects we will be pursuing (including some for which

substantial progress has already been made):

e The Role of the Radion: The single sum rule which lacks an analytical proof is the

combined O(s3)-O(s?) rule, Eq. (5.80),

3 9b31’n’7“ - M%G%no = 15¢pnnn + M%annnn (6.1)

Its lack of proof is due to the curious coupling behavior of the radion. For example,
the radion is introduced to the metric in the combination @ = (ksp 7/2v/6) e 2 e~ Frem
which means every instance of the 5D field 7(z) carries with it a warp factor eT2, which
throws a wrench in the otherwise powerful sum rules machinery developed in Section
(4.4). Is an analytic proof of this sum rule possible? And if so, does it elucidate the

role of the radion in the RS1 model?

e Radion Stabilization: The massless radion poses a problem for the RS1 model: if left

as is, it generates an attractive Casimir force which pulls the branes at either end of the
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extra dimension together, thereby driving the extra dimension to smaller and smaller
distance scales until the separation enters the quantum gravity regime and the RS1
model is no longer predictive [37, 38]. Furthermore, a massless radion would necessarily
generate a scalar-tensor theory of long-distance gravitation at low energies contrary to
the usual pure tensor theory of 4D gravity. Therefore, phenomenological applications
of the RS1 model require that the radion become massive in a process called radion
stabilization. Radion stabilization typically involves adding a massive bulk scalar field
to the RS1 Lagrangian that generates a radion potential which stabilizes the positions
of the branes. However, we have found that adding a mass to the radion by hand
causes the matrix elements describing massive spin-2 KK mode scattering to scale like
O(s2) instead of O(s). In a full model of radion stabilization, are cancellations down
to O(s) maintained? If so, how does the introduction of radion stabilization influence

the sum rules?

e Bulk and Brane Matter: Phenomenological applications of the RS1 model are
not usually restricted to the pure gravity theory that we consider in this dissertation.
Instead, physicists typically add either bulk or brane matter to the RS1 model, and
investigate scattering of that matter in different circumstances. When adding (scalar,
fermionic, vector) matter to the bulk or a brane, how do the new 2-to-2 scattering

matrix elements scale at large energies? What new sum rules (if any) are implied?

We have actually already completed the analyses of bulk and brane scalar matter,
wherein we find that the process ¢¢ — R B for a bulk or brane scalar ¢ exhibits

cancellations down to O(s)—and derive several new sum rules.

e Machinery: Because of the complexity of diagrams involving multiple massive spin-2
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particles, the analytic calculations required for the analyses in this dissertation were
nontrivial. They required the development of a program that uses specialized tech-
niques in order to complete the calculation in a timely fashion. It is our goal to
generalize and clean up this code as to make it available for use to the wider physics

community.

Thus, this dissertation presents original results about massive spin-2 KK mode scattering
in the 4D effective Randall-Sundrum 1 model, and these results are of existing and future

relevance in theoretical and phenomenological contexts.
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