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          ABSTRACT 

LEARNING PARADIGMS FOR THE IDENTIFICATION OF ELASTIC 

PROPERTIES OF COMPOSITES USING ULTRASONIC GUIDED WAVES  

 

By 

Karthik Gopalakrishnan 

Identification of elastic properties of composites is relevant for both nondestructive materials 

characterization as well as for in-situ condition monitoring to assess and predict any possible 

material degradation. Learning paradigms have been well explored when it comes to detection 

and characterization of defects in safety-critical structures, but are relatively unexplored when 

it comes to structural materials characterization. In this thesis we propose a learning paradigm 

that includes the potential use of Machine Learning (ML) and Deep Learning (DL) algorithms 

to solve the inverse problem of material properties identification using ultrasonic guided 

waves. The propagation of guided waves in a composite laminate is modelled using two 

different modelling techniques as part of the forward problem. Here, we use the two 

fundamental modes of guided waves, i.e. the anti-symmetric (A0) and the symmetric modes 

(S0) as features for the proposed learning models. As part of the inverse problem, different 

learning models are used to map feature space to target space that consists of the material 

properties of composites. The performance of the algorithms is evaluated based on different 

metrics and it is seen that the networks are able to learn the mapping and generalize well to 

unseen examples even in the presence of noise at various levels. Overall, we are able to 

develop a complete framework consisting of many interlinking data processing algorithms 

that can effectively estimate and predict the material properties of any given composite.
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CHAPTER 1 

INTRODUCTION 

 

The idea of structural design has undergone a radical change. Due to the continuous 

technological advances achieved by the human mankind, lighter and sleeker structures have 

replaced the conventional bulky and heavy structures. But newer solutions always bring with 

it a newer set of problems that requires solving. The new age structures have introduced 

severe constraints on design methodologies that are currently in practice [1], which requires 

newer techniques to monitor and assess the integrity of structures. Structural Health 

Monitoring (SHM) is one such technology, which can provide vital information on the state 

of the structure at any given time. Combined with the powerful computational and signal 

processing tools available, one can not only precisely determine the health of any structure, 

and classify and characterize defects that affect the structural integrity, but also predict the 

future performance of the structure over time. 

 

1.1. Overview on Structural Health Monitoring 

 Structural Health Monitoring is the process of evaluating the health state of a structure and 

predicting its remaining life. This process often involves the constant observation of a system 

over time using periodically sampled response measurements from a sensor actuator system, 

extraction of healthy and damage sensitive features from these measurements and the 

statistical analysis of the these features to establish the state of the system health, and then 

further predict the remaining life of the structure. 

       All structures like bridges, aircrafts, and pipelines have a finite lifetime, and begin to 

deteriorate when put into service. Due to a combination of environmental, material and other 

effects, processes such as corrosion, fatigue, erosion, overloads and general wear and tear 
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degrade them until they are no longer useful. In worse cases, they can lead to fatal damage 

that can endanger people’s lives, their livelihoods and the environment in general. It is 

therefore essential to examine structures of importance periodically, and determine whether 

or not remedial action is needed. SHM serves as an early warning system and helps in 

resolving the health of the structure before they can progress to cause potential damage. 

       Structural design has undergone many changes across years, where stringent restrictions 

are placed on design parameters to produce the most efficient structures having superior 

structural integrity. Such structures are generally geometrically optimized to guarantee their 

resistance to sustain the high design loads. However, they are more susceptible to small 

damages such as horizontal, vertical or inclined cracks, corrosion in metallic structures, and 

delamination, fibre breakages in the case of composites. These defects severely affect the 

structural health, and therefore need consistent monitoring. 

       SHM can be viewed as a generalized tool box that has the objective of providing 

necessary techniques for the constant/periodic monitoring of structures. These techniques are 

specifically designed for the various materials used in critical structures like buildings 

(concrete), bridges (metal) and aircrafts (composites/metals) etc. SHM therefore has 

innumerable applications in varied disciplines including aerospace, mechanical and civil 

engineering [2] [3]. SHM potentially offers increased safety, since faults cannot grow to a 

dangerous level, and avoids the vagaries of human behaviour. The benefits of SHM can be 

mainly categorized as: 

 To use structures to their optimal best, a minimized downtime, and avoiding fatal 

failures. 

 To give designers an improvement on their products. 

 Minimization of human involvements, and therefore possible human errors. This 

directly improves safety and reliability. 
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1.1.1. Basic Elements of SHM Systems 

A typical system contains both hardware and software elements. The hardware elements 

basically are the sensor actuator setup and its associated instrumentation, while the software 

components can vary but generally compromises of damage modelling and damage 

characterization algorithms. Sensors may be active or passive. Passive sensor like strain 

gauges only sense (receive) while active sensors transmit and receive. Commonly used 

sensors include Poly Vinyl Di-Fluoride (PVDF) sensors, Piezoceramic sensors made from 

Lead Zirconate Titanate, commonly known as PZT sensors or fibre optic sensors. The 

responses obtained from the sensors vary sensor to sensor, but typically, they are all time 

histories of a certain variable. It is important to note that SHM is a time dependent process, 

and any sensor should be able to monitor a parameter/variable over time. The most common 

response often received from a PZT or a PVDF sensor, is the voltage history. These 

responses are post processed and manipulated to extract healthy and damage features to 

effectively characterize the health state of the structure. 

      SHM compromises of two main components, the Diagnosis and the Prognosis. Diagnosis 

aims to, at every instant of time give a procedure to determine the health of the structure 

while Prognosis involves computation of the severity of the defects detected during diagnosis 

in terms of fracture mechanics parameters, and derive the structures residual life. Diagnosis 

normally gives information about the onset of damages like cracks, its location and geometric 

parameters. Considering only the diagnosis component, SHM can be described as a new and 

improved way of performing Nondestructive Evaluation (NDE). By combining integration of 

sensors, smart materials, computational modelling, data transmission and processing ability, 

it extends the traditional NDE approach to reconsider the structure design and its lifetime 

management. An alternate view of SHM is that of a discipline combining the following four 
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subjects [3] (see Figure 1.1). In general, an SHM system encompasses the following 

components: 

 Test structure/ simulation Model 

 Sensors 

 Data acquisition systems 

 Signal processing algorithms 

 Damage modelling and classification algorithms 

 Data transfer, handling, management and storage mechanism 

 

 

 

Figure 1.1 Elements of Structural Health Monitoring 

       Modelling is a critical part of any SHM framework. The measured response isn’t useful 

if not for powerful and robust post processing algorithms that converts raw data to 

meaningful information. Common modelling techniques employ the Finite Element Method 

(FEM), which is very adept at modelling complex geometries. FEM requires the use of very 

fine meshes to detect and characterize very small defects, which results in very high 

computation time and cost. An example of using FEM for SHM can be found in [4]. 
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Therefore, for characterizing smaller defects more efficiently, a suitable mathematical model 

should be based on the physics of wave propagation, and one of the most well exploited 

models is the Spectral Finite Element Method (SFEM) [5]. 

       Modelling has mainly two components, namely the flaw modelling, and damage 

detection algorithms.  In metallic structures, some of the most common types of defects are 

caused by pitting corrosion. Modelling pitting corrosion is relatively easy, and has been 

extensively studied in [6][7][8]. Another common type of defect in metallic structures is the 

horizontal/vertical cracks which are sometimes through thickness. Damage modelling in 

composites is whereas a challenging task due to many different types of failure modes. Some 

of the commonly occurring modes are delamination, fibre breakage, matrix cracks and 

debonds. In addition, composites are prone to moisture absorption due to its highly porous 

nature because of unavoidable errors during manufacturing. Hence, one needs to be able to 

come up with simplified mathematical models to describe the various types of flaws that 

commonly occur in critical structures. The second aspect of modelling is in devising robust 

damage characterization algorithms. These algorithms should be able to easily detect defects, 

distinguish healthy to faulty samples, and be able to clearly extract the damage features from 

a SHM response. The features should directly or indirectly give information about the state of 

the health of the structure. There is always a lot of noise present when conducting field 

experiments and these algorithms should be able to work well even in the presence of noise.  

 

1.1.2. Levels of Structural Health Monitoring 

SHM can be thought as a system identification problem. Through diagnosis, one can get 

information about any defect or anomaly present and their characteristics, and the prognosis 

uses the information obtained from diagnosis and determines the residual life of the structure. 

We can broadly divide SHM to five levels [2]. 
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 Level 1: Detecting the damage i.e. being able to distinguish healthy and faulty responses. 

 Level 2: Defect location and geometry 

 Level 3: Severity of the damage 

 Level 4: Damage control i.e. possibility of controlling or delaying the growth of damage. 

 Level 5: Determining the residual life. 

       The first four levels effectively constitute the diagnosis component of SHM, while Level 

5 is effectively prognosis. Level 1 SHM is relatively easy to achieve, and it can be achieved 

by using passive sensors to monitor parameters such as strain energy, fundamental natural 

frequency, phase information, stiffness reduction over time. The most common method 

though is using natural frequencies. As damage reduces stiffness, it induces changes in the 

natural frequencies. Comparing to the baseline fundamental frequency should confirm the 

presence of damage, and act as a reliable feature to isolate faulty samples. 

       Level 2 SHM is relatively harder the level 1, as from the known input and the measured 

SHM response, it is necessary to determine the location and orientation of the flaw. A simple 

way is capturing the response at some known location. This response will contain the 

reflected energy packet coming from the flaw, knowing the speed of the wave in the medium, 

and the time of arrival of the reflected pulse, we can effectively locate the flaw. This is easier 

said than done, as the reflection from the flaw will mostly be very small in amplitude, and 

can easily be buried as noise or as part of the reflected wave packets. This makes the 

designing of the detection algorithms challenging. An ideal algorithm would be one which 

works accurately without a baseline response. 

       Once the damage characteristics are evaluated in Level 2, it is important to determine the 

severity of the damage. For example, if the damage is a crack, then we need to estimate the 

Stress Intensity Factor (SIF) or Strain Energy Release rate (SERR).  If these parameters 

reach a pre-defined threshold value, these cracks will grow. Now, if the defect is found to be 
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severe, Level 4 SHM deals with the immediate measures to be taken to arrest the growth of 

cracks. Level 5 SHM is closely related with level 4 SHM, wherein the estimation of fracture 

parameters is used to perform fatigue life analysis to determine the residual life. The analysis 

is mainly statistical in nature and generally encompasses novel data processing techniques. 

       It is to be noted, the knowledge of material properties of the structure under test is critical 

to perform or achieve any level of SHM. For example, in the most basic and probably easiest 

level i.e Level 1 involves detecting possible defects. This is normally done by monitoring the 

material properties of the structure periodically over time. This requires an user to know the 

material properties of the structure before it’s in service, and also periodically over time. The 

following levels of SHM are all based on the results of the detection process in Level 1. 

Therefore, the material characterization of the structure is the fundamental and most 

important task that needs to be carried out in any SHM framework or technique. 

 

1.2. Forward and Inverse Problems in NDE/SHM 

Forward problems typically use known models of the system of interest along with a known 

input to establish the characteristics of the output response. Inverse problems  in most cases 

meanwhile, use an observed output, along with a known input to estimate the properties of 

the model. Figure 1.2 below shows the block diagrams of a basic forward and inverse solver. 

 

 

Figure 1.2 (a) Forward Process (b) Inverse Process 
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       In NDE, and more generally in SHM, physics based mathematical models are utilized to 

describe systems of interest. Some of the common methods used are the FEM and SFEM. 

Waves excited by different actuating mechanism act as the inputs, and as described before, 

different type of responses like voltage histories, displacement histories, strain rates are the 

outputs of a typical NDE system. Forward problems aren’t easily solvable in this field, 

because it is very hard to know the exact physical properties of the system or model; hence 

one has to reverse engineer using the output response or measurement to gain information 

about the system in general. In SHM particularly, known inputs and observed outputs needs 

to be used to establish the physical and material state of the critical structure in question. This 

essentially is the inverse process, and is a fundamental part of any SHM/NDE framework. 

       A problem should be well posed in order to be solved. In general, one can describe three 

conditions for an inverse problem to be well posed [9]. The systems used in SHM typically 

have distinctive physical and material properties that can be mathematically well defined, and 

this is necessary to ensure that the problem in hand has a realistic solution. As is the case in 

solving any engineering related challenges, the solution needs to be unique. For example in 

Figure 1.3, when Ultrasonic Guided Waves (UGW) is used to study pitting corrosion in long 

pipelines, it is clearly visible that the responses for a healthy and faulty pipe with a very small 

defect aren’t very different. The differences are minimal, and a defect response can easily be 

misclassified as a healthy one. This means that in order to obtain a unique accurate 

representation of the system, one needs to collect more data where more informative features 

can be extracted. Also, the solution must be stable for small deviations in the measured data, 

or in the presence of noise. In other words, the solution must be robust and should incorporate 

factors that affect systems in practical situations. But by incorporating more information or 

measurements, one risks the stability of the system as more data brings in more stochastic 

variations. 
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Figure 1.3 Ultrasonic Guided Wave responses for healthy pipeline vs a faulty pipeline with a 

single 1mm deep corrosion pit 

 

       Damage detection and characterization is a complex procedure, and it is impossible to 

solve these kinds of inverse problems independent of the forward process.  Typically, 

materials characterization forms the crux of almost all damage characterization techniques. 

Knowledge of the material properties of the structure before being put into service and during 

its service period is very critical for condition monitoring. Therefore, such problems 

generally involve both forward predictors and inverse detectors. SHM techniques normally 

combines the forward solver and the inverse solver to establish robust models, where both 

forward predictor and inverse detector models maximize their sensitivity to different features 

of the signals, and at the same time minimize their sensitivity to cofounding factors caused 

due to the variations in the mechanical, physical and material properties of the system. It can 

be effectively described as a symbiotic relationship, where information from the forward 

process is used to improve the models established in the inverse process, and these improved 

models are then used in the forward process to obtain better measurements. Figure 1.4 shows 

the inter relationship between the forward and inverse process, and how it can be used to 

establish efficient models. 
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Figure 1.4 Interdependence of the forward and inverse process 

 

 

1.3. SHM for Composites 

Composites are materials made by combining two or more natural or artificial elements with 

different physical and chemical properties that results in a mechanically superior material 

compared to its constituent material. Generally, fibre reinforced polymer composites consist 

of a polymer matrix reinforced with a man-made or natural fibre. Compared with traditional 

metallic materials, the main advantages of composites are: a) low density and high specific 

strength and stiffness b) good vibration damping ability, long fatigue life and high wear, 

creep, corrosion and temperature resistances; b) strong tailoring ability in both 

microstructures and properties that make them design efficient to satisfy different application 

needs; c) since detail accessories can be combined into a single cured assembly, the number 

of required fasteners and the amount of assembly labour can be significantly reduced 

[12][13]. The most common types of damages in composites are fibre breakage, matrix 

cracking, fibre-matrix debonding and delamination between plies, most of them which occur 

through the thickness, and are barely visible. They can severely degrade the performance of a 

structure and can cause fatal damages at the worst. Due to the above advantages, composites 

are used in many critical structures across different industries like aviation, automobile etc. 

and therefore require constant periodic monitoring to guarantee optimum performance. 

Figure 1.5 below shows a typical setup to perform active SHM of composites. 
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Figure 1.5 Active SHM Setup of a CFRP Composite Plate 

 

1.4. Machine Learning in SHM 

Machine Learning (ML) is considered to be the natural evolution of statistical learning. It is 

one of the major dominant subset of Artificial Intelligence (AI). To summarize in a single 

sentence, ML is the science of developing statistical models that learn with time, and can 

perform a function/task of interest without necessary human intervention. Most of the current 

SHM frameworks aim to perform fast in-situ testing. NDE progressively has required a 

higher level of automatization to handle the huge amount of data generated. This in term 

means quick processing of the signals obtained after an experiment. Conventional data 

analysis techniques require expertise and involve manual labour, but with the advent of better 

computational facilities like GPUs, powerful machine learning based classification and 

characterization algorithms can be developed. The complexity involved in defect and 

materials characterization algorithms have been described before. This is mainly due to the 

fact that, there doesn’t exist a simple functional mapping of the input feature space to the 

measured output response space. Neural Networks are in other words known as universal 

function approximators [10[[11][26][27]. Quite simply, they help in mapping the input 

feature space to the output response space. In general, SHM is an inverse problem that is data 

intensive and which does not have a unique solution. Hence, ML plays a very important role 
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in mapping output signals to input features to discover important details of the structure. 

Overall, the benefits of Machine Learning in SHM can be described as: 

 Automatization of the SHM framework i.e. performs various levels of SHM without 

any human intervention. 

 Improves the robustness of the algorithms. These algorithms are powerful and work 

very well even in presence of noise.  

 Reliability. Once trained well, the networks can sustain and perform the described 

process multiple times with the same accuracy. 

 Mapping input to output space, thereby gaining vital information about the system 

parameters 

 Efficient and fast post processing of the observed outputs. 

 

1.5. Material Property Identification of Composites  

In any Structural Health Monitoring framework, the knowledge of the material properties of 

the structure under inspection is fundamental. The knowledge of material properties is 

required before the structure is put into service. Because of the inherent heterogeneity of 

composites in general, coupled with the large uncertainties expected in the manufacturing 

process, it becomes extremely difficult to predict the material properties of the final part from 

those of the individual constituents. Once in service, it is also essential to continuously 

compute the material properties of the structure periodically to capture possible material 

degradation. Not only that,  by monitoring the material properties over time, potential defects 

can be identified in the structure by detecting the changes in the material properties over time. 

Material degradation can cause a structure to fail if the strength falls below a certain 

threshold. Having efficient material property identifications schemes can potentially help fine 

tune the manufacturing process to reduce the amount of error that occurs normally. Therefore 
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identification of material properties is not only required for materials characterization but also 

for in-situ monitoring. The ideal requirements for any material property identification scheme 

are that the method is non-destructive in nature, and is able to be deployed for real time 

online in-situ monitoring. The algorithm or framework should also be able to generalize well 

on any composite. 

      Any framework involving guided waves requires a frequency selection procedure. Guided 

waves are multi-modal waves, and multiple modes often occur at higher frequencies 

relatively. Therefore, dispersion curves are normally used to study the dispersion 

phenomenon of guided waves in any material. Based on these curves, an optimal frequency is 

selected for the problem in hand. The dispersion curves which normally is phase/group 

velocity plotted as a function of frequency is dependent on the material properties of a 

composite.  Hence uncertainties or differences in the material properties of the composite can 

lead to dispersion curves that are not accurate, and therefore can result is selecting a 

frequency that is probably not best suited for the problem in hand. Hence due to the above 

mentioned reason, it is important to have an automated material property identification 

scheme that is real time and can be potentially used for in-situ monitoring. 

 

1.6. Literature Review 

Researchers have used both vibration-based and ultrasonic guided wave (UGW)-based 

techniques to estimate material properties of a composite [14]. The vibration-based technique 

is global in nature and is sensitive to boundary conditions which are not suitable for in-situ 

condition monitoring [15].  The ultrasonic range of the mechanical guided waves is highly 

sensitive to composite laminate properties which makes them useful for Non-Destructive 

Evaluations and Structural Health Monitoring applications [16][17][18]. Traditionally, 

considerable research has been done on using Deep Learning for damage detection, and 
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damage characterization. Rautela et.al.  proposed different deep learning frameworks for 

damage detection in 1D composite waveguides [48]. Here, they have modelled cracks of 

various sizes using the Spectral Finite Element formulation, and have used the responses 

obtained from this model to train on different architectures. But the field of materials 

characterization using Deep Learning is relatively less explored. Rather, the inverse problem 

of property identification is investigated using different inversion schemes that in some way 

or other uses global optimization algorithms. Krishnan Balasubramaniam [7] has explored the 

feasibility of estimating the stiffness constants in a single layer unidirectional composite 

laminate, and the ply-up sequence of layered laminates. It is solved as a multi-parameter 

optimisation function, and genetic algorithm was used to find the optimal solution. Bernard 

Hosten et.al. [8] have used the phase velocities of lamb wave modes along with a Newton-

Raphson scheme to estimate the elastic properties of composites by minimizing the 

Thomson/Haskell matrix.. In this work, they have used air coupled transducers to generate 

lamb waves that are sensitive to material properties. J Vishnuvardhan et. al. [9] have utilized 

a genetic algorithm to measure the elastic properties of an orthotropic plate using ultrasonic 

velocity data. They have used slowness curves to verify the quality of the reconstruction. 

Ranting Cui et. al. [2] have investigated a property inversion scheme based on matching 

phase velocity dispersion curves of relevant guided modes (A0, S0, SH0) using Simulated 

Annealing optimization algorithm along with a metropolis criteria. In this process, a Semi 

Analytical Finite Element method is formulated to solve the forward problem. This inversion 

scheme is used to identify the elastic properties of a unidirectional, quasi-isotropic and 

anisotropic composite laminates.  

       All the above mentioned inversion schemes are limited in terms of large scale 

automation, generalization ability, computational time, in-situ predictions and robustness 

towards the noise. Also there is a research gap when it comes to using Deep Learning 
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Algorithms for material property identification. In this thesis, we aim to address this research 

gap by developing learning models within an overall framework that can identify and 

estimate material properties of composites. 

 

1.7. Thesis Objectives 

The scope of this thesis is to establish a comprehensive framework with different learning 

models and interlinking data analysis algorithms that can be utilized to characterize 

composite laminates. The propagation behaviour of the UGW in the structure is utilized to 

reverse engineering and estimate the material properties. Powerful Deep Learning algorithms 

like Convolutional Neural Networks (CNN) and Long Short Term Memory Networks 

(LSTM), along with multi-layer Dense Neural Networks (DNN) are utilized for this purpose. 

The performance of these models is to be evaluated on data both in presence and absence of 

noise of various levels to verify its robustness. We use slightly different methodologies to 

collect data and train the deep networks (1DCNN and LSTMs) compared to that of the 

DNNs. The approach involving the deep networks will be classified as “DL based” 

approach, while the approach involving DNNs will be classified as “ML based” approach 

hereon in this thesis. Indeed, Deep Learning or DL is a subset of Machine Learning (ML), 

and the demarcation is made to easily differentiate the two different approaches. Once the 

framework is well established for complex structures like composites, it can be potentially 

extended to other materials used in critical structures like metals, concrete etc. To summarize, 

the main objectives of this thesis can be defined based on the two approaches used i.e. DL 

based approach and ML based approach. The main objectives in the DL based approach are 

as follows: 
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 Develop (Forward Process): Develop Numerical Models (FEM and SFEM) to simulate 

the two fundamental modes of a UGW (A0 and S0) in a unidirectional multi-layered 

composite laminate.  

 Compare: Compare and comment on the two different numerical methods used. 

 Creating the dataset: Use the numerical models in the forward process to obtain the A0 

and S0 responses for different sets of material properties representing different 

composites. 

 Dataset Check: Sensitivity Analysis, Uniqueness check 

 Training (Inverse Process): Use the generated dataset, with A0 and S0 time histories as 

inputs and the material properties as the output labels to perform supervised regression 

using different deep learning architectures (1DCNN and LSTM) 

 Prediction: Once trained, for any unseen A0 and S0 waveforms, the networks should be 

able to identify and estimate the material properties. 

 Robustness: Use a model trained on noiseless data and predict on datasets without and 

with noise of various levels. 

The main objectives of the ML based approach are as follows: 

 Dataset (Forward Process): Use Dispersion Calculator
® 

software to generate group 

velocity dispersion curves for different sets of material properties representing different 

composites. 

 Training (Inverse Process): Use the generated dataset, with group velocity curves for 

A0, S0 and the Shear Horizontal mode SH0 and the material properties as the output 

labels to perform supervised regression using a simple multi-layer Dense Neural 

Network. 
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Figure 1.6 Overall Workflow of the Composite Property Estimation Framework 

       Figure 1.6 shows a flowchart describing the overall workflow of the composite material 

property identification framework.  The organization of the thesis is as follows, Chapter 2 

gives a basic introduction to composites and the Composite Laminate Theory (CLT). Chapter 

3 then discusses guided waves in general before looking at specific cases of guided wave 

propagation in composite laminates. Chapter 4 covers the basics of Machine Learning, and 

describes in detail the Convolutional Neural Network, Long Short Term Memory Networks 

and the Dense Neural Networks. Chapter 5 describes in detail the two modelling techniques 

used in this thesis i.e. the Finite Element Method and the Spectral Finite Element Method. 

Chapter 6 outlines the data analysis algorithms used in this thesis, while Chapter 7 mentions 

the study parameters for the two different methods used. The results are presented and 

discussed in Chapter 8, and the thesis is concluded in Chapter 9. 
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CHAPTER 2 

CLASSICAL LAMINATE THEORY 

 

Composites can be broadly classified into three different types: Fibrous Composites, 

Particulate Composites and Laminated Composites. For structural applications, only the 

laminated composites are extensively used, and therefore the whole material property 

identification framework is built considering composite laminates. A composite laminate 

consists of many layers which are commonly referred to as laminae or plies. They are stacked 

together in particular order to form structures. Based on the strength and stiffness 

requirements, the number of plies is decided. Typically, each lamina consists of fibres 

oriented in a direction where maximum strength is required. The fibres are bonded by a 

matrix material which is mechanically inferior compared to the fibres. The laminate derives 

all its strength from the fibres. Some of the commonly used fibres are: Carbon Fibre, Kevlar, 

and Glass Fibre. The most commonly used matrix material is the Epoxy Resin. Laminated 

composites are assumed to have orthotropic properties at the lamina level, but when at the 

laminate level, they exhibit anisotropy. The anisotropic behaviour results in stiffness 

coupling, such as bending-axial-shear coupling in beams and plates, bending-axial-torsion 

coupling in aircraft’s thin walled structures [19]. Therefore, the material property 

identification of these types of composites is complex compared to isotropic materials. The 

material properties of these composites typically can be determined at the lamina level 

(Micro Mechanics) or at the laminate level (Macro Mechanics). Section 2.1 below outlines 

the micro mechanical analysis while Section 2.2 describes the macro mechanical analysis.  
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2.1. Micro Mechanical Analysis 

A 2D transversely isotropic lamina requires determination of 6 properties namely, Elastic 

modulus in two coordinate directions (E1, E2), Poisson's ratio’s (ν12 and ν23), shear modulus 

(G12) and density (ρ). These properties are determined using the properties of the fibre and 

the binding matrix. The lamina and the derived laminate strength are strongly influenced by 

the type of fibres and their orientation. Another important parameter that has a direct 

influence on the laminate strength is the Volume Fraction. Volume fraction is the volume of 

fibre present with respect to the overall volume of the lamina. According to Jones [20], 

micro-mechanics is the study of composite material behaviour, wherein the interaction of the 

constituent materials is examined in detail as a part of the definition of the behaviour of the 

heterogeneous composite material. The overall elastic moduli of a composite material are 

expressed in relation to that of the fibres and the matrix. The properties of a lamina can be 

mathematically expressed as shown in Equation (2.1). 

𝑄𝑖𝑗 = 𝑄𝑖𝑗(𝐸𝑓 , 𝐸𝑚, 𝑣𝑓 , 𝑣𝑚, 𝑉𝑓 , 𝑉𝑚)                                  (2.1) 

       Where E, 𝑣 and V are the elastic (Young’s) moduli, Poisson’s ratio and the volume 

fraction respectively, while f and m in the subscript denotes the fibre and matrix respectively. 

The volume fraction of fibre and the matrix is given below in Equations (2.2) and (2.3). 

𝑉𝑓 =
𝑉𝑜𝑙𝑓

𝑉𝑜𝑙𝑐𝑜𝑚
                                                                   (2.2) 

𝑉𝑚 = 1 − 𝑉𝑓                                                                  (2.3) 

       Where volf and volcom are the volume of fibre and the volume of the whole composite 

laminate respectively. In order to determine material properties of a lamina, some 

fundamental assumptions are required. The main fundamental one is that the fibre is 

mechanically superior compared to the matrix, and therefore is the main load bearing member 

in the constituent matrix. Also, the strains in the fibre and the matrix are assumed to be the 

same. In this work, a transversely isotropic laminate is considered for material property 
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identification. In doing so, the analysis can be limited to a small representative volume. Such 

a volume is called Representative Volume (RV). A simple RV would be a fibre surrounded by 

a matrix as shown in Figure 2.1. 

 

Figure 2.1 (a) RV for longitudinal material property determination (b) RV for transverse 

material property determination 
 

       By applying a stress σ1 along direction 1, the elastic moduli (Young’s modulus) in 

direction 1 are determined in [19] to be: 

𝐸1 = 𝐸𝑓𝑉𝑓 + 𝐸𝑚𝑉𝑚                                                       (2.4) 

       Where Ef and Em are the elastic moduli’s of the fibre and matrix respectively. Equation 

(2.4) is more commonly well known as the Rule of Mixtures. Similarly, a stress σ2 is applied 

along direction 2, and the elastic modulus in direction 2 is computed to be: 

𝐸2 =
𝐸𝑓𝐸𝑚

𝐸𝑚𝑉𝑓+𝐸𝑓𝑉𝑚
                                                            (2.5) 

       The Poisson’s ratio is then computed to be: 

𝜈12 = 𝜈𝑓𝑉𝑓 + 𝜈𝑚𝑉𝑚                                                      (2.6) 

       The shear modulus is expressed in Equation (2.7), while the lamina density is expressed 

in Equation (2.8). 
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𝐺12 =
𝐺𝑓𝐺𝑚

𝐺𝑚𝑉𝑓+𝐺𝑓𝑉𝑚
                                                          (2.7) 

𝜌 =
𝜌𝑓𝑉𝑓+𝜌𝑚𝑉𝑚

𝑉𝑜𝑙𝑐𝑜𝑚
                                                             (2.8) 

       Once the material properties have been determined at the lamina level, one can proceed 

then to perform a macro mechanical analysis of the lamina to effectively characterize the 

overall constitutive model of the laminate. 

 

2.2. Macro Mechanical Analysis 

Macro mechanical analysis involves the determination of the overall constitutive model i.e. 

the overall stress strain relations of the composite laminate consisting of individual laminas 

stacked together. This is done using Classical Laminate Plate Theory (CLPT). As mentioned 

earlier, only necessary equations have been provided here. The theoretical detail of these 

equations can be found in [19]. Main assumptions made in CLPT are the following: 

1. The composite material exhibits linear behaviour and the Hooke’s Law along with the 

superposition principle are valid. 

2. At the lamina level, the composite is homogeneous and orthotropic and has exactly two 

planes of symmetry, one along the direction of the fibre and other perpendicular to it. 

3. The state of stress at the lamina level is predominantly plane stress. 

 
Figure 2.2 Co-ordinate system for a laminate 
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       Looking at Figure 2.2, the principal axes are denoted as 1-2-3, where direction 1 is along 

the fibres, and direction 2 is transverse to it. . The lamina is assumed to be in 3-D state of 

stress with six stress components. For a transversely isotropic laminate, strain and stress is 

related by a compliance matrix as shown in Equation (2.9). All bold face variables denoted 

here are matrices. 

𝜺𝟔×𝟏 = 𝑺𝝈𝟔×𝟏                                                              (2.9) 

       Where ε is the strain developed in the composite due to the applied stress σ. The 

compliance matrix S is given by [21]: 

𝑺 =

(
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𝐸1

−𝜈12

𝐸1

−𝜈12
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−𝜈12
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−𝜈21
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0 0

0 0 0 0 𝐺12 0
0 0 0 0 0 𝐺12)

 
 
 
 
 
 

                              (2.10) 

       The stiffness matrix Q is expressed in equation in Equation (2.11): 

𝑸 = [𝑺]−𝟏                                                                  (2.11) 

       On solving, the entries of matrix Q is derived in terms of the individual lamina properties 

determined in the micro mechanical analysis explained in section 2.1 [19] to be: 

𝑄11 =
𝐸1

1−𝜈12𝜈21
                                                           (2.12) 

𝑄12 = 𝜈21𝑄11                                                            (2.13) 

𝑄22 =
𝐸2

1−𝜈12𝜈21
                                                           (2.14) 

𝑄66 = 𝐺12                                                                  (2.15) 

       Through symmetry, the stiffness matrix Q can be reduced to a 3*3 matrix, and is 

expressed below in Equation (2.16). 

𝑸 = [
𝑄11 𝑄12 0
𝑄12 𝑄22 0
0 0 𝑄66

]                                              (2.16) 
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       The above relations are for a unidirectional composite with fibres along direction 1 at 0°. 

Typically fibres of arbitrary orientations are used in structural applications. In most cases, the 

orientations of the global axes do not coincide with the principal axes of the composite. 

Hence a combination of translation (T) and rotation (R) operations is required to obtain the 

stiffness matrix of such composites. The reduced stiffness matrix is expressed in Equation 

(2.17) while Figure 2.3 shows the difference in the orientations of the principal axes and the 

global co-ordinate system. 

Ǭ = [𝑻]−𝟏[𝑸][𝑹][𝑻][𝑹]−𝟏                                         (2.17) 

 
Figure 2.3 Principal axes of the laminate and global x-y axes 

       The matrix Ǭ is fully populated. Hence, although the lamina in its own principal 

direction is orthotropic, in the transformed coordinate, it represents complete anisotropic 

behaviour. The elements of Ǭ is given by 

Ǭ11 = 𝑄11𝐶
4+2(𝑄12 + 2𝑄66)𝑆

2𝐶2 + 𝑄22𝑆
4                          (2.18) 

Ǭ12 = (𝑄11 +𝑄22 − 4𝑄66)𝑆
2𝐶2 + 𝑄12(𝑆

4 + 𝐶4)                 (2.19) 

Ǭ16 = (𝑄11 −𝑄12 − 2𝑄66)𝑆𝐶
3 + (𝑄12 − 𝑄22 + 2𝑄66)𝑆

3𝐶  (2.20) 

Ǭ22 = 𝑄11𝑆
4 + 2(𝑄12 + 2𝑄66)𝑆

2𝐶2+𝑄22𝐶
4                         (2.21) 

Ǭ26 = (𝑄11 − 𝑄12 − 2𝑄66)𝑆
3𝐶 + (𝑄12 − 𝑄22 + 2𝑄66)𝑆𝐶

3  (2.22) 

Ǭ66 = (𝑄11 + 𝑄22 − 2𝑄12 − 2𝑄66)𝑆
2𝐶2 + 𝑄66(𝑆

4 + 𝐶4)    (2.23) 
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*𝑆 = sin 𝜃 𝑎𝑛𝑑 𝐶 = cos 𝜃 

The reduced stiffness matrix Ǭ  can be full expressed as shown in Equation (2.24). 

Ǭ = [

Ǭ11 Ǭ12 Ǭ16
Ǭ12 Ǭ22 Ǭ26
Ǭ16 Ǭ26 Ǭ66

]                                              (2.24) 

       The axial stiffness for the whole constituent model is given in Equation (2.25), while the 

flexural (bending) stiffness is mathematically expressed in Equation (2.26). Equation (2.27) 

expresses the axial bending coupling i.e. it relates the in-plane forces with mid-plane 

curvatures. 

𝑨 = ∑ (Ǭ 𝑘)(𝑧𝑘 − 𝑧𝑘−1)
𝑁
𝑘=1                                        (2.25) 

𝑩 =
1

2
∑ (Ǭ 𝑘)(𝑧𝑘

2 − 𝑧𝑘−1
2 )𝑁

𝑘=1                                      (2.26) 

𝑫 =
1

3
∑ (Ǭ 𝑘)(𝑧𝑘

3 − 𝑧𝑘−1
3 )𝑁

𝑘=1                                      (2.27) 

       Where z is the vertical position of the particular ply from the mid-plane of the laminate 

as shown in Figure 2.4 which shows a typical 8 layered composite laminate. The constituent 

equation of a composite laminate is concluded in Equation (2.28). The constituent equation 

relates the forces N and the moments M with the strains ε and curvatures k. 

[
[𝑵]𝑥𝑦
[𝑴]𝑥𝑦

] = [
𝑨 𝑩
𝑩 𝑫

] [
[𝜀0]𝑥𝑦
[𝑘]𝑥𝑦

]                                       (2.28) 

 
Figure 2.4 An 8 layered unidirectional composite laminate 
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CHAPTER 3 

FUNDAMENTALS OF GUIDED WAVES 

 

3.1. Introduction to Guided Waves 

Guided waves are typically elastic waves carrying energy which is confined between the 

boundaries separating two mediums. Guided waves travel along the length of the sample. 

They are created by the interactions of bulk waves and the boundaries which results in 

several mode changes. These interactions also create standing wave modes normal to the 

boundaries which propagate parallel to the boundaries. In essence, guided wave modes are a 

constructive interference pattern created by the interaction of many bulk waves with the 

boundaries. They can be broadly classified into three types: Rayleigh waves (Surface 

Acoustic Waves), Shear Horizontal Waves (SH) and Lamb waves. Rayleigh waves are surface 

waves that can propagate in a half space i.e. it can propagate when there is only a single 

boundary present, while SH waves and Lamb waves need two boundaries to propagate. 

Hence, a lot of studies involve analysing the propagation of Guided Waves in plate like 

structures or pipelines.  

       Guided Waves can travel along surfaces, interfaces or even throughout the volume 

structures. This can be achieved by appropriately applying an incident pulse, and making sure 

the proper boundary conditions exist on the structures in question. Though the direction of 

propagation is always parallel to the boundaries, the particle motion can be longitudinal, 

transverse or elliptical depending on the mode that is generated. Because of the boundary 

effects, which induces the dispersiveness of the wave, analysis of guided waves are much 

more complex compared to Bulk waves. However, this complexity can be utilized with great 

effect in SHM. Compared to Bulk waves, Guided waves can travel long distances, and 

therefore it can be used to propagate along long structures (pipelines), and large areas can be 
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monitored from a single location. Inspecting using bulk waves are cumbersome and time 

consuming and sometimes cannot inspect structures that are about few centimetre’s thick due 

to impedance issues. Guided waves can also be used to detect very small defects depending 

on the frequency and the mode selection [22]. Figure 3.1 below roughly approximates the 

inspection areas of Bulk Wave Testing and Guided Wave Testing. 

 

 

Figure 3.1 Bulk Wave Testing vs Guided Wave Testing 

       This section gives a general introduction to Guided waves, and describes the analysis of 

propagation of guided waves in isotropic plate (metal) like structures. It then talks about 

dispersion curves, before concluding with the analysis of guided waves in a 1D Laminated 

Composite. Since this is very well researched area and also well documented in literature,  

only the important equations relevant to this thesis is given. The in depth derivations can be 

found in the references cited. 

 

3.2. Lamb Waves 

Lamb waves are elastic stress waves that propagate between two traction free plates. They are 

also commonly known as plate guided waves. The governing equation of Lamb waves can be 

approximated to elastic wave propagation in doubly bounded media. The Navier’s equation 
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[23] can be used to study Lamb waves in general in a three dimensional solid. Equation (3.1) 

describes it in a condensed form. 

𝜌
𝜕2𝒖

𝜕𝑡2
= 𝜇∇2𝒖 + (𝜆 + 𝜇)∇(∇. 𝒖)                                  (3.1) 

Where ρ is the density of the material, λ and 𝜇 are known as Lame’s constants, ∇ is the del 

operator and ∇2 is the Laplacian. u is the particle displacement vector and is defined as 

u=iux+juy+kuz.  

      The Navier’s fundamental differential equations governing wave propagation are 

based upon three fundamental relationships from Linear Elasticity Theory.  These 

include strain-displacement relation shown in Equation (3.2), generalized equation of 

motion by Newton in Equation (3.3) and constitutive stress-strain relations described 

previously in Chapter 2 and in Equation (3.4). 

𝜀𝑖𝑗 =
1

2
(𝒖𝑗,𝑖 + 𝒖𝑖.𝑗)                                                             (3.2) 

𝑑𝜎𝑖𝑗

𝑑𝑥𝑖
= 𝜌

𝑑𝒖𝑖
2

𝑑𝑡2
                                                                           (3.3) 

𝜎𝑖𝑗 = 𝑐𝑖𝑗𝑘𝑙𝜀𝑘𝑙                                                                        (3.4) 

       εkl is the second order strain tensor, while cijkl is the fourth order stiffness tensor and 

σij the second order stress tensor. The indices indicate summation and commas indicate 

partial derivatives where i,j and k=1,2,3. Basically, the Navier’s equation combines 

three equilibrium equations, six stress displacement equations and six constituent 

stress strain relations. For an isotopic medium, the Navier’s equation can be solved 

using Helmholtz vector by splitting the equation into two partial differential equations 

based on scalar potentials H and ϕ. For an isotropic medium, the governing equation 

can be effectively solved to give separate relations for the longitudinal (P waves) and 

the transverse waves (S waves). In essence, a single propagating guided wave can be 

decoupled to two of its fundamental components, the P wave and the S wave. Equations 
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(3.5) and (3.6) describe the Helmholtz decomposition, where Equation (3.6) is known 

as Gauge invariance. 

𝒖 = ∇Φ+ ∇ × 𝐇                                                                 (3.5) 

∇. 𝐇 = 0                                                                                 (3.6) 

Substituting Equation (3.5) and (3.6) in Equation (3.1), we obtain two separate 

governing partial differential equation, which are given by: 

(𝜆 + 2𝜇)∇2Φ− 𝜌∇Φ̈=0                                                   (3.7) 

𝜇∇2𝑯− 𝜌𝑯̈ = 0                                                                 (3.8) 

       Rearranging Equation (3.7) and (3.8), and then expressing it in the rectangular co-

ordinate system, we obtain the classic equations of wave propagation in a 3D 

homogeneous solid in terms of scalar and vector potentials. 

∇2Φ =
1

𝑐𝐿

𝜕2Φ

𝜕𝑡2
                                                                        (3.9) 

∇2𝐇 =
1

𝑐𝑆

𝜕2𝐇

𝜕𝑡2
                                                                      (3.10) 

       Where cL is the longitudinal wave speed (or P wave speed) and is equal to (2 𝜇 

+λ)/ρ, and cS is the shear or transverse wave speed and is equal to 𝜇/ρ.  A complete 

guide to this derivation can be found in [17]. To find the longitudinal mode solutions, 

classic separation of variables is performed using the expressions of potentials 

presented in [24] where the continuity condition in circumferential direction is applied. 

For torsional or transverse mode solutions, alternative solutions are presented by [25]. 

The last step is the application of boundary conditions, and eigenvalues can be used to 

trace dispersion curves in general. 

       For any non 1D solid, the total displacement vector can be expressed as shown in 

Equation (3.11). 

𝒖 = 𝒖𝑳 + 𝒖𝑺𝑯 + 𝒖𝑺                                                          (3.11) 
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       Where uL is the displacement due to the longitudinal or Pressure wave (P wave). 

The particle motion is parallel with respect to the direction of wave propagation in this 

case. uS and uSH are the displacements due to the transverse (S wave) and the Shear 

Horizontal modes, where the particle motion is normal to that of the direction of wave 

propagation. The interaction of shear and pressure waves in thin plates and shells give rise to 

guided waves. 

      In principle, there exist infinite guided wave modes. The first two fundamental of these 

wave modes are the Symmetric (S0) mode, and the Anti-Symmetric (A0) mode. These modes 

have “nascent frequencies” of zero i.e they simply exist even at zero frequency. In the lower 

frequency range where the wavelength is greater than the plate thickness, these modes are 

called the extensional mode and the flexural mode respectively. The names are derived based 

on the particle motion and the elastic stiffness’s that govern the propagation of these waves. 

These characteristics change as frequency increases. For simplicity, we refer to these modes 

as A0 and S0 in this work. These modes are particularly important as (a) they exist at all 

frequencies and (b) they in most cases carry more energy than the higher order modes. Point 

(a) is particularly important as they are the only modes to exist at lower frequencies until a 

certain cut off frequency. Therefore, these modes can be exploited for various applications in 

SHM, for if we use higher modes, multiple reflections from different wave modes will bury 

the defect signature thereby making the analysis of data more cumbersome and error prone. 

In the following section, we briefly show the symmetric and anti-symmetric solution for lamb 

wave propagation in two dimensional plates of infinite length. 

 

3.3. Lamb Wave Propagation in 2D Plates 

Let us consider an infinite 2D plate as shown in Figure 3.2. For simplicity of analysis it is 

possible to assume that the wave potentials are invariant to the z-direction along the wave 
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front [23]. The direction of propagation of the wave is considered to be in the x direction. The 

plate here is considered to be isotropic in nature, as only then the Helmholtz’s decomposition 

principle can be effectively applied to decouple the governing equation to its constituent 

longitudinal and transverse wave components.  

 
Figure 3.2 2D infinite plate of thickness 2d. 

       In the above case, since the wave potentials are assumed to be invariant along the z 

direction, it directly follows that ∂/∂z = 0 and uSH has only the shear displacement component 

uz. The displacement vector for the longitudinal mode and torsional mode uL and uS have 

both ux and uy components. These displacements only depend on the scalar potential Φ and z-

component of a vector potential Hz. Therefore the Navier’s equations can be rewritten as: 

∇2Φ =
1

𝑐𝐿

𝜕2Φ

𝜕𝑡2
                                                              (3.12) 

∇2𝑯𝒛 =
1

𝑐𝑆

𝜕2𝑯𝒛

𝜕𝑡2
                                                           (3.13) 

      By substituting simple notations for Φ=ϕ and Hz= φ, and assuming plane wave solution 

of the form 𝚽 = 𝝓𝒆𝒊𝝎𝒕 and 𝝋 = 𝝋𝒆𝒊𝝎𝒕we can get a classic formulation for Lamb wave 

propagation in the potential form: 

𝑑2ϕ

𝑑𝑥2
+
𝑑2ϕ

𝑑𝑦2
+
𝜔2

𝑐𝐿
2 𝜙 = 0                                                 (3.14) 

𝑑2φ

𝑑𝑥2
+
𝑑2φ

𝑑𝑦2
+
𝜔2

𝑐𝑆
2 𝜑 = 0                                                 (3.15) 

       Assuming a harmonic solution e
-ξx

, the above equations reduce to: 
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𝑑2ϕ

𝑑𝑥2
+ (

𝜔2

𝑐𝐿
2 − 𝜉

2)𝜙 = 0                                               (3.16) 

𝑑2φ

𝑑𝑥2
+ (

𝜔2

𝑐𝑆
2 − 𝜉

2)𝜑 = 0                                               (3.17) 

       In equations (3.16) and (3.17), ξ=ω/c is defined as the wavenumber. To simplify the 

analysis further and express the equations in a more compact form for convenience, the 

following substitutions are made:  

𝑝2 =
𝜔2

𝑐𝐿
2 − 𝜉

2                                                              (3.18) 

𝑞2 =
𝜔2

𝑐𝑆
2 − 𝜉

2                                                              (3.19) 

       Therefore, Equations (3.16) and (3.17) can be expressed as: 

𝑑2ϕ

𝑑𝑥2
+ 𝑝2𝜙 = 0                                                           (3.20) 

𝑑2φ

𝑑𝑥2
+ 𝑞2𝜑 = 0                                                           (3.21) 

       A general solution for the above governing equations can be expressed as shown below: 

𝜙 = 𝐴1 sin 𝑝𝑦 + 𝐴2 cos 𝑝𝑦                                        (3.22) 

𝜑 = 𝐵1 sin 𝑞𝑦 + 𝐵2 cos 𝑞𝑦                                        (3.23) 

       Where, A1, A2, B1 and B2 can be established by applying the appropriate boundary 

conditions. This can be done by applying symmetric or antisymmetric boundary conditions 

which gives rise to the symmetric and antisymmetric mode solution respectively. Equations 

(3.24) and (3.25) show the symmetric and antisymmetric mode solutions respectively. An in 

depth derivation of this can be found in Appendix A and B based on [25]. 

tan𝑝𝑑

tan𝑞𝑑
=

(𝜉2−𝑞2)
2

4𝜉2𝑝𝑞
                                                         (3.24) 

tan𝑝𝑑

tan𝑞𝑑
=

4𝜉2𝑝𝑞

(𝜉2−𝑞2)2
                                                         (3.25) 

       Where p and q are described in Equations (3.18) and (3.19) respectively. Therefore, 

using the above relations, one can trace dispersion curves. 
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3.4. Dispersion Principles 

Dispersion in general signifies a changing relationship between velocity and frequency. 

Bulk waves aren’t dispersive as at different frequencies, the velocity of that particular bulk 

wave does not change. The concept of phase and group velocity is critical to explain 

dispersion. In simple terms, group velocity is the velocity of the whole wave packet, or the 

whole wave front. A wave packet typically contains multiple sine waves of different 

frequency content packed within. The velocity of the sine waves that make up the envelope 

or wave mode is the phase velocity, while the velocity of the whole packet itself is the 

group velocity. 

𝑐𝑔 = 𝑐𝑝
2[𝑐𝑝 − 𝑓

𝑑𝑐𝑝

𝑑𝑓
]−1                                                (3.26) 

      Since both p and q both depend on ω, the phase and group velocities should be 

evaluated numerically at each frequency step as a multiple of plate thickness. Figures 3.3 

and 3.4 below show the phase and group velocity plots of a 1mm Steel Plate respectively. It 

follows that the solution is not unique, and at higher frequencies, multiple higher order 

modes of the Symmetric and Anti-Symmetric modes exist. Group velocity dispersion plots 

are more vital, for we can determine how fast the wave front propagates which helps us 

establish the Time of Flight (TOF). This information is extremely useful for damage 

detection and damage characterization in structures. Not only that, the group velocities is 

useful in establishing the material properties of a structure. Group velocity is derived from 

phase velocity, and the mathematical expression for it is expressed in Equation (3.26) [17]. 

       Dispersion curves are critical in guided wave inspection. Depending on the wave mode 

that is suitable for testing, it helps in finalizing an operating frequency based on the 

requirements. It also gives an engineer the cut-off frequency up to which he can operate 

without involving higher order modes, which invariable complicates the structural analysis. 

The first step of any guided wave experiment or simulation is to plot the dispersion curves. 
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Performing any guided wave setup without doing so would result in wasted efforts, lost 

time and energies. 

 
          Figure 3.3 Phase Velocity Dispersion Plot for 1mm thick Steel Plate

1 

 
          Figure 3.4 Group Velocity Dispersion Plot for 1mm thick Steel Plate

1
 

       Metals are mostly isotropic in nature. Though they contain a very small degree of 

anisotropy, it is neglected for most of the analysis in Wave Mechanics. Helmholtz 

decomposition principle can be used to solve the governing wave equations only when the 

                                                      
1
 Dispersion Plots are plotted with the help of DC software  This footnote can go in Reference section 

  Link: https://www.dlr.de/zlp/en/desktopdefault.aspx/tabid-14332/24874_read-61142/#/gallery/33485 

https://www.dlr.de/zlp/en/desktopdefault.aspx/tabid-14332/24874_read-61142/#/gallery/33485
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material is Isotropic. By applying it for any non 1D solid, we can basically decouple the 

equation into its constitutive longitudinal and transverse mode. But when it comes to 

composites, they are highly anisotropic in nature. There is not true P wave or true S Wave. 

Hence, anisotropy cannot be neglected in the analysis, and hence Helmholtz principal can 

no longer be used to solve a system that has more than one dimension. The analysis of 2D 

composites is achieved by using the Partial Wave Theory which is explained in depth in 

[19]. Though this concept is critical to understand in SHM, the scope of this thesis is to 

establish a reliable framework to estimate and identify material properties. Therefore, we 

consider a 1D composite, and the next section outlines briefly the guided wave propagation 

in 1D Laminated Composite. It is well known that using higher order 1-D theories, we can 

get to great extent the dispersion relations obtained from 2-D Lamb wave theory [19][49]. 

For example, if we use First Order Shear deformation theory (Timoshenko theory) and 

higher order Mindlin-Hermann Theory [19}, we can accurately get the dispersion relations 

obtained by the 2-D Lamb wave equations. Hence, we pursue this approach in this thesis. 

A key point to note is that in a simple higher order 1D model, there will be only one wave 

mode present at a time i.e. the axial and flexural mode will not be coupled. The type of 

mode generated will depend on the direction of application of the incident tone burst signal. 

 

3.5. Guided Waves in 1D Laminated Composite 

In this derivation, we have considered a 1D composite waveguide that satisfies both 

elementary rod and beam theories. We begin with defining the displacement vectors fields.  

𝑢(𝑥, 𝑦, 𝑧, 𝑡) = 𝑢𝑜(𝑥, 𝑡) − 𝑧
𝑑𝑤(𝑥,𝑡)

𝑑𝑥
                              (3.27) 

𝑤(𝑥, 𝑦, 𝑧, 𝑡) = 𝑤(𝑥, 𝑡)                                                (3.28) 

       Where u
o
 is the axial displacement along the mid plane, and w is the transverse 

displacement, and z is measured from the middle plane as shown in Figure 3.5. 
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         Figure 3.5 Elementary laminate Composite Waveguide with co-ordinate system   

 

        A constitutive 3D model for laminated composites was explained in Chapter 2 

(Equations 2.18-2.23). The analysis of 1D composites can be achieved if we consider that the 

composite waveguide in in a 1-D state of stress, and therefore the layer-wise constitutive law 

is expressed in Equation (3.29). 

𝜎𝑥𝑥 = 𝑄̃11𝜀𝑥𝑥                                                              (3.29) 

       Where σxx and εxx are the stress and strain applied in the x direction. The expression for 

Ǭ11 as a function of ply angle θ is shown below. 

Ǭ11 = 𝑄11𝐶
4 + 2(𝑄12 + 2𝑄66𝑆

2𝐶2) + 𝑄22𝑆
4          (3.30) 

       Where S=Sinθ and C=Cosθ.  Qij is the orthotropic elastic coefficients of the individual 

lamina, and its constitutive relations can be found in Chapter 2. The strain energy is defined 

in Equation (3.31). 

𝑈 =
1

2
∫𝜎𝑥𝑥𝜀𝑥𝑥𝑑𝑣                                                       (3.31) 

       The kinetic energy is then defined as, 

𝑡 =
1

2
∫𝜌(𝑢𝑜

2
+ 𝑤2)𝑑𝑣                                              (3.32) 

       Where ρ is the layer wise density, Applying Hamilton’s principle, the governing 

differential equations are obtained, and they can be expressed as 

𝜌𝐴
𝑑2𝑢𝑜

𝑑𝑡2
− 𝐴11

𝑑2𝑢𝑜

𝑑𝑥2
+ 𝐵11

𝑑4𝑤

𝑑𝑥4
= 0                             (3.33) 

𝜌𝐴
𝑑2𝑤

𝑑𝑡2
− 𝐵11

𝑑3𝑢𝑜

𝑑𝑥3
+ 𝐷11

𝑑4𝑤

𝑑𝑥4
= 0                              (3.34) 
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       The corresponding boundary conditions are, 

𝐴11
𝑑𝑢𝑜

𝑑𝑥
− 𝐵11

𝑑2𝑤

𝑑𝑥2
= 𝑁𝑥                                              (3.35) 

𝐵11
𝑑2𝑢𝑜

𝑑𝑥2
− 𝐷11

𝑑3𝑤

𝑑𝑥3
= 𝑉𝑥                                             (3.36) 

−𝐵11
𝑑𝑢𝑜

𝑑𝑥
+ 𝐷11

𝑑2𝑤

𝑑𝑥2
= 𝑀𝑥                                          (3.37) 

       Where A11 is the axial stiffness, B11 the axial-bending coupled stiffness and D11 the 

bending stiffness. They are mathematically expressed in Equation (3.38).  

[𝐴11, 𝐵11, 𝐷11] = ∫ 𝑄̌11[1, 𝑧, 𝑧
2]𝑏𝑑𝑧

ℎ

2

−
ℎ

2

                            (3.38) 

       Where h is the depth of the beam, b is the layer width. A is the cross sectional area while 

d
2
u

o
/dt

2
 and d

2
w/dt

2
 are the longitudinal and transverse accelerations. Nx is the force acting in 

the axial direction; Vx is the shear force while Mx is the bending moment. In our studies here, 

we primarily consider only a symmetric laminate. Symmetric Laminates are composite 

laminates where the lay up above the mid plane is the mirror image of that of the layup below 

the mid plane. For a symmetric laminate, the axial-bending stiffness B11 is equal to 0. As a 

consequence, axial and flexural modes become uncoupled. Therefore for a symmetric 

laminate, we can rewrite equations (3.33) to (3.37) as 

𝜌𝐴
𝑑2𝑢𝑜

𝑑𝑡2
− 𝐴11

𝑑2𝑢𝑜

𝑑𝑥2
= 0                                              (3.39) 

𝜌𝐴
𝑑2𝑤

𝑑𝑡2
+ 𝐷11

𝑑4𝑤

𝑑𝑥4
= 0                                                (3.40) 

       The boundary conditions can be rewritten as, 

𝐴11
𝑑𝑢𝑜

𝑑𝑥
= 𝑁𝑥                                                              (3.41) 

−𝐷11
𝑑3𝑤

𝑑𝑥3
= 𝑉𝑥                                                            (3.42) 

𝐷11
𝑑2𝑤

𝑑𝑥2
= 𝑀𝑥                                                             (3.43) 
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       From Equations (3.39) and (3.40), it is visible that the governing equations are 

uncoupled, i.e. solution to Equation (3.39) will give rise to the axial mode, while solution to 

the equation (3.40) will give rise to the flexural mode. An in depth derivation of the solution 

based on computation of wavenumbers is available in [19]. 
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CHAPTER 4 

OVERVIEW OF MACHINE LEARNING 

Deep Neural Networks are an important subgroup of Machine Learning. Machine Learning 

(ML) is considered to be the natural evolution of statistical learning. It is one of the major 

dominant subset of Artificial Intelligence (AI). To summarize in a single sentence, ML is the 

science of developing statistical models that learn with time, and can perform a function/task 

of interest without necessary human intervention. Previously, the field of AI relied heavily on 

hard coded rules and pre fixed algorithms. This required enormous computational resources. 

Also, the systems depended on programmed intelligence, and were not capable of learning on 

their own. ML, whereas relies on learning using real time data instead of relying on hard 

coded rules. This is done by building a model that best describes patterns between the input 

and output data. In a nutshell, they can be seen as function approximators that fits the best 

possible function for a set of input and output vectors [26] [27]. ML algorithms have the 

ability to predict the output even on unseen data. It greatly reduces the computational effort, 

while the accuracy keeps improving as more real data is available to train. There are different 

types of algorithms available, some the common one’s being Decision Trees, Support Vector 

Machines, Radial Basis Functions etc. Deep Learning Algorithms meanwhile are a subset of 

ML techniques that basically mimics a human brain. A deep neural network basically 

contains multiple layers that have nodes that resemble a neuron in the brain with associated 

weights. The weights can be learned using many optimization algorithms to predict the 

desired output. They are very flexible, and can learn complex and often nonlinear 

relationships. Though the amount of training data required is large, the type of tasks it can 

achieve is unparalleled, and is pretty much driving the field of AI these days. Figure 4.1 

summarizes how these different techniques fit in. To summarize, Deep Learning techniques 

are one of the many different ML techniques, that is part of the broader AI field. 
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Figure 4.1 Machine Learning and Deep Learning 

       In this chapter, we introduce the fundamentals of an Artificial Neural Network (ANN) 

that include the basic theory, math and the algorithms behind it. Following this, more 

advanced deep learning models like Convolutional Neural Networks (CNN) are discussed in 

detail. 

 

4.1 Artificial Neural Networks 

An artificial neuron was formalized as initially the Threshold Logic Unit (TLU) by 

McCulloch and Pitts in 1943 [28]. For a single neuron shown in Figure 4.2, the output signal 

can be written mathematically as: 

𝑦𝑗 = 𝑓(∑ (𝑊𝑗𝑖𝑥𝑖 + 𝑏)
𝑛
𝑖=1 )                                             (4.1) 

       Where, xi is the input to a neuron, yj is the output from the neuron. Wji is the associated 

weight matrix and b is the bias term, which is generally used to shift the decision boundary 

line or any hyper-plane in multidimensional problems [29]. The function f is the activation 

function which decides in which manner the neuron will be excited or fired for a particular 

input signal. As the name suggests, a heaveside step function is used in the TLU. The 

function is expressed mathematically in Equation (4.2). 
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𝑓(𝑥) = {
1            𝑥 ≥ 0
0   𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

                                                 (4.2) 

 
Figure 4.2 Pipeline of a Neuron 

        This activation is actually not used these days because it has a constant derivative, and 

more importantly the derivative is not defined at x=0. It must be noted that it is similar to 

how a biological neuron works. Another important point of note here is that, the weight 

matrix initially designed in the TLU does not have the capability to learn. 

        A TLU then evolved into the famous perceptron networks. Perceptron networks were 

similar to TLU, but the major difference was that there was now a learning rule to adjust the 

weight matrix. The delta rule, which uses the Vanilla gradient descent approach to minimize 

the error, is used as the learning rule. Multiple neurons stacked together in layers are now 

commonly known as Multi-layer Perceptron Networks (MLP) or as an Artificial Neural 

Network (ANN). Since each neuron is fully connected with neurons from the next layer, they 

are also referred to as Fully Connected Networks (FCN) or Dense Neural Networks (DNN). 

Perceptron Networks were first reported by Rosenblatt in 1958 [30]. 
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4.2 Multi Layered Perceptron (MLP)  

Figure 4.3 shows a typical MLP network with one input layer, one output layer and one 

hidden layers. The MLP is a feed forward network, where the flow of information is forward, 

while the flow of error information is backward. Each node i is connected another node j in 

the previous and following layers with an associated weight wij. In layer k, the weighted sum 

of is performed at each node i of all the signals xj
(k-1)

 from the preceding layer k-1 giving the 

sum zi
(k)

 of the node. The sum is passed through a nonlinear activation function f, which gives 

the output of the MLP network. Mathematically, it can be expressed as, 

𝑦𝑖
(𝑘)
= 𝑓(𝑧𝑖

(𝑘)) = 𝑓(∑ 𝑤𝑗𝑖
(𝑘)
𝑥𝑗
(𝑘−1)

𝑗 )                              (4.3) 

 

Figure 4.3 Three Layered MLP Network 

       There are different types of activation functions used. Each one has its own advantages 

and disadvantages which is not discussed in this thesis. The main nonlinear activation 

functions extensively used are the sigmoid, tanh, softmax and ReLu activation functions.  The 

ReLu function i.e. the Rectified Linear Unit is computationally very efficient due to its 

simplicity. Equations (4.4) and (4.5) describe the ReLu function. The ReLu function 

introduces nonlinearity in the system that greatly improves the performance in most cases. 

One disadvantage of ReLu is that, when the inputs approach zero or negative, the gradient of 

the function becomes zero, therefore the network then cannot perform backpropagation and 
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stops learning. This is known as the “Dying ReLu” Problem. This issue is solved by 

introducing a small positive slope in the negative area, and is known as the Leaky ReLu. 

𝑓(𝑥) = max(0, 𝑥)                                                         (4.4)                                                                                  

𝑓′(𝑥) = {
1            𝑥 ≥ 0
0   𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

                                                (4.5) 

       Machine Learning can be broadly classified into three categories. Supervised Learning is 

where the model is task driven in order to predict/classify a desired output. Unsupervised 

Learning is data driven and includes clustering algorithms. The final type is the 

Reinforcement Learning where the model learns to react to an environment. In this work, we 

predominantly use Supervised Learning Algorithms. The core concept of Supervised 

Learning involves two passes, the first being the forward pass where an input signal is 

propagated through multiple layers to obtain a predicted output. The second being the 

backward pass, where the error obtained from the predicted and true output is propagated 

back up to the first hidden layer. Using the error information, the weights are adjusted based 

on some rules to move the predicted output close to the true output i.e minimize the error.  

       This is often achieved through the backpropagation algorithm. The beauty of the 

algorithm is that the weights are changed accordingly depending on how much they 

contribute to final error. Suppose we consider a Loss function as defined in Equation (4.6), 

where n is the number of samples, y and ỹ are the true and predicted outputs. 

𝐸(𝑦, 𝑦̃) =
1

2
∑ (𝑦 − 𝑦̃)2𝑛
𝑗=1                                              (4.6) 

       A point to note is that this type of evaluating the loss using all samples at the end of 

every epoch is called batch or online training, where an epoch is defined as a measure of the 

number of times all of the training vectors are used once to update the weights. By back 

propagating through the network, we can obtain information on how the previous outputs 

influence the error using the chain rule. Assuming there are k hidden layers, for any particular 

neuron, we compute: 
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∂E

𝜕𝑤𝑖𝑘
=

∂E

𝜕𝑦̌
∗

𝜕𝑦̌

𝜕𝑛𝑒𝑡𝑖𝑘
∗
𝜕𝑛𝑒𝑡𝑖𝑘

𝜕𝑤𝑖𝑘
                                              (4.7) 

where netik is the total value entering the activation function in Equation (4.7). By looking at 

the individual derivatives, it becomes obvious to calculate all of them from the final output 

layer to the first input layer.  By repeating the chain rule process, we have all the partial 

derivatives to update the weights according to Equation (4.8). This is typically the Vanilla 

version of back propagation. There are other versions that have been developed, which are 

more advanced, and computationally more efficient. The overall process of driving the loss to 

a minimum by means of backpropagation is known as gradient descent, which is given by 

𝑤𝑗𝑖
𝑡+1 = 𝑤𝑗𝑖

𝑡 − 𝜂
∂E

𝜕𝑤𝑗𝑖
𝑡                                                       (4.8) 

     Here, 𝜂 is called the learning rate, which basically regulates the rate of the learning 

process. A general methodology to find an optimum learning rate is a very well posed 

problem, that doesn’t yet have a mathematical solution. There is no fixed way of determining 

this; rather mostly by trial and error. a suitable learning rate can be established. However, it is 

to be noted that establishing a suitable learning rate is fundamental to any ML study. 

Choosing too small a value can lead to premature convergence, while a big value can cause 

oscillations near the global minima which, is commonly known as overshooting. 

       The main purpose of a neural network is to classify or predict on unseen data, after being 

trained on seen data. In order to do that, a dataset is broken down in to three main subsets. 

 Training dataset: This is the dataset that is used to train the model which basically 

fits for all the weights to get the desired output. 

 Validation dataset: In order to verify how well the network is training, some part of 

the dataset is fed in at pre fixed time intervals and the validation loss is monitored. If 

the validation loss increases during training, then it is generally advisable to stop 

training. This is normally known as overfitting. 
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 Test dataset: Once training is completed, the weights are all updated and stored as a 

model. This is used on a dataset that consists of previously unseen data to predict or 

classify based on the task. 

       Typically, there is again no pre-set rule to determine the ratio in which these datasets are 

split from the main dataset. Having too many training examples will result in over 

generalization, while having a small training dataset will result in insufficient learning. 

Another important concept to consider is the problem of overfitting and underfitting. If the 

model is complex with multiple layers, and if a line is fit to pass through all the training 

samples, this results in under generalisation of the model, where the model has learnt so well 

on the training network and yet it fails to predict on any unobserved data. This is known as 

overfitting. The exact opposite occurs when the model is too simple, where the model suffers 

from high bias and no matter how many observations is fed into it; the model always 

produces similar results. This is known as underfitting. When the training loss is far lesser 

than the validation loss, this indicates overfitting while the opposite indicates underfitting. 

Therefore, achieving the right trade-off is one of the most challenging tasks in ML.  

 
Figure 4.4 Overfitting and Underfitting [31] 

       By nature, deep neural networks are always complex models. Hence the problem of 

underfitting occurs much lesser than that of overfitting. Therefore, there is a need to avoid 

overfitting when designing deep neural networks. Typically this is achieved by many 

different approaches. The main methods use regularizers, which restrict the sudden changes 
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in weights by adding a penalty term in the loss function. Another way to tackle overfitting is 

by adding dropout layers, which randomly prunes some neurons in the hidden layers thereby 

favouring some features over others. This greatly helps in making sure the model does not 

just generalize on the training dataset. Another commonly exploited technique is data 

augmentation. This simply refers to distorting some features of the data to create more data 

that can be fed in to the model to achieve better performance. Deep Neural Networks are 

always data hungry, and more the data, better is the performance in most cases. Typically the 

MLP/DNNs presented this section involves a time consuming feature selection process. The 

features are then fed to the neural network to perform an associated task. But deeper networks 

like Convolutional Neural Networks and Long Short Term Memory Networks eliminate this 

step by having a feature selection process incorporated within the network itself i.e. one 

would have to just feed in the raw signal, and the network would pick out features that best 

describe the input signals and complete an associated task. 

 
Figure 4.5 Example of Data Augmentation [32] 
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4.3 Convolutional Neural Networks (CNN) 

CNNs take biological inspiration from the visual cortex. The visual cortex has small regions 

of cells that are sensitive to specific regions of the visual field. This idea was expanded upon 

by a fascinating experiment by Hubel and Wiesel in 1962 where they showed that some 

individual neuronal cells in the brain responded (or fired) only in the presence of edges of a 

certain orientation [33]. A CNN is a network that performs the Convolution operation (rather 

Correlation) in at least one of its layers instead of the general matrix multiplication and 

addition that takes place in a normal neural network. CNN’s are used to capture spatial and 

temporal dependencies using relevant filters. CNN’s is extensively used for datasets that 

contain images for training. Some of the most salient features of a CNN are spatial down 

sampling, shared weights and local reception.  

       A typical CNN has convolutional layers, pooling layers and fully connected layers. The 

convolutional layer is the first layer that is used to extract features from the input that best 

describes the input data. This is done by convoluting the input image by convolutional filters 

called as convolutional kernels. The resulting output is typically known as feature maps. 

Figure 4.6 shows how a convolutional layer works. 

 
Figure 4.6 Working of a Convolutional Layer 
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       Assuming an input image that is a 6 x 6 matrix, a convolutional filter of size 2 is applied 

to the input matrix. A simple multiplication of the elements in the filter and the input images 

is done to establish the first entry (@ (1, 1) of the feature matrix. The size of the output 

feature map depends on an entity called stride. The stride gives the spatial distance between 

the central pixels (both vertically and horizontally) on which the convolution operation takes 

place. The feature map in Figure 4.6 is computed with a stride of 1.  Mathematically, the 

convolution operation can be defined as: 

𝐺[𝑚, 𝑛] = (𝑓 ∗ ℎ)[𝑚, 𝑛] = ∑ ∑ ℎ[𝑗, 𝑘]𝑓[𝑚 − 𝑗, 𝑛 − 𝑘]𝑘𝑗              (4.9) 

       The output G is the feature map produced by the convolution operation, while f is the 

input and h is the kernel/filter. m and n are the indices of the row and column of the output 

feature map. A convolutional layer enforces the idea of weight sharing. If every pixel in the 

image is imagined to be a neuron in the first layer, and if the output feature map is treated as 

the second layer where each pixel once again is treated as a neuron, it is clearly evident that 

at any single given computation, only few neurons from the first input layer is connected to 

the second output layer. As the kernel is moved across the image, different neurons are 

connected and this therefore ensures shared weights. Shared weights reduce the number of 

parameters to be learnt, and it becomes computationally more efficient.  

 
Figure 4.7 Example of weight sharing in Convolutional Layers 
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       Another fundamental component of CNN’s is the pooling layers. These layers are used to 

sub sample the feature maps spatially. They reduce the dimensions that we are working with 

and make it computationally more efficient. Similar to convolutional layers, the input image 

is stride over by a kernel, wherein operations like max pooling, average pooling takes place. 

A point to note is that pooling layers have no learnable parameters. Figure 4.8 below shows 

the working of a max pooling layer for a stride length 2. 

 
Figure 4.8 Working of a Max Pooling Layer (stride=2) 

       The final architectural idea involved in a CNN is the fully connected layer (FCN). This is 

very similar to the MLP networks discussed before, and is basically a classifier/predictor 

model that uses the features extracted by the kernels in previous layers. All the parameters of 

this layer are learnable and is generally the last layer of a CNN. Convolutional Neural 

Networks are generally used only on images, but a lot of recent research has gone into using 

one dimensional CNN’s (1D-CNN) for time series data. 1D-CNN’s are known to extract 

inherent features from long time signals. 1D-CNN’s work similar to traditional CNN’s, the 

only difference being the operations is done in single dimension. In 1DCNN’s the selection 

of kernel size is very critical and can be treated as a hyper parameter.  
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4.4 Recurrent Neural Networks (RNN) 

The traditional neural networks and convolutional neural networks all work with fixed input 

and output lengths. But that is never the case in many practical applications (for example, 

finding the number of vowels in a sentence). Problems like speech recognition and time 

series predictions or forecasting require a system to store and use context information. More 

so, if we consider a human brain, one of the most salient features is the persistence present in 

our system i.e. we remember something we learnt/saw days or weeks before. Recurrent 

Neural network (RNN) typically brings about persistence in a traditional neural network. 

Recurrent Neural Networks take the previous output or hidden states in most cases as the 

inputs for the current computation [44]. The composite input at time t has some historical 

information about the happening at time T<t.  RNNs are useful as their intermediate values 

(state) and can store information about past inputs for a time that is not fixed a priori. RNN’s 

in general hold information over a certain time that is not fixed. Figure 4.9 shows how a RNN 

is different from a typical feed forward network. 

 
Figure 4.9 (a) Simple Feed Forward Network (b) A RNN with previous hidden states as input 

       Recurrent Neural Networks though in theory are capable of handling long-term 

dependencies fall short when it comes to practical applications. This problem was very well 

explored in depth by Hochreiter (1991) and Bengio, et al. (1994) [45]. It was seen that 

remembering information over long periods requires calculating the distances between distant 



 

50 

 

nodes that involves multiple multiplications of the Jacobian Matrix. Problems with the more 

commonly occurring vanishing gradients and lesser frequent exploding gradients caused the 

performance of these models to be not satisfactory. It was seen that a trade of between 

gradient descent based learning and the time over which the information is held was required. 

In order to overcome this, Hochreiter and Schmidhuber (1997) [46] introduced the Long 

Short Term Memory networks usually called LSTM’s. The LSTM’s accumulates long-term 

relationships between distant nodes by designing weight coefficients between connections. 

These networks have shown unbelievable applications in speech processing, Natural 

Language Processing and image captioning among other applications. 

 

4.5 Long Short Term Memory Networks (LSTM) 

A LSTM unit utilizes a “memory” cell (denoted by 𝑐𝑡) that decides whether the ‘information’ 

is useful or not and a gating mechanism that contains three non-linear gates: (i) an input 

(denoted by 𝑖𝑡), (ii) an output (denoted by 𝑜𝑡) and (iii) a forget gate (denoted by 𝑓𝑡). The gates 

regulate the flow of signals into and out of the cell to adjust long-term dependencies 

effectively and achieve successful RNN training. The standard equations for LSTM memory 

blocks are given as follows. 

       The three gates: 

 

𝑖𝑡=𝜎 (𝑈𝑖ℎ𝑡-1+𝑊𝑖𝑥𝑡+𝑏𝑖)                                                 (4.10) 

𝑓𝑡=𝜎 (𝑈𝑓ℎ𝑡-1+𝑊𝑓𝑥𝑡+𝑏𝑓)                                               (4.11) 

 𝑜𝑡=𝜎 (𝑈ℎ𝑡-1+𝑊𝑥𝑡+𝑏𝑜)                                                  (4.12) 

 

       Memory Cells and hidden units:  

 

𝑐𝑡=𝑖𝑡∗𝑐𝑡-1 + tanh (𝑈cht-1+Wcxt+𝑏𝑐)                               (4.13)  

 ℎ𝑡=𝑜𝑡∗tanh (𝑐𝑡)                                                             (4.14)  
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       Where 𝑥𝑡 is the external input vector, tanh is the hyperbolic tangent function, and the 

parameters are the matrices W and U, and vector bias b, with appropriate sizes for 

compatibility. 

      The output layer:  

 

𝑦𝑡=𝑉ℎ𝑡+𝑑                                                                    (4.15)  

       The internal dynamic “state” captures the essential information of an input’s time-history 

profile. In any time series signal processing scheme in recurrent systems, repeated 

multiplication of internal states beyond the external input sequence isn’t required or can be 

avoided. Figure 4.10 shows a LSTM network. Due to the higher number of trainable 

parameters in a LSTM network, the training time is typically very high. Therefore, LSTMs 

though very powerful sometimes are very painful to train in many cases. CuDNNLSTM is a 

inbuilt tensorflow API that almost speeds up training by 10 times while using LSTM layers. 

This is achieved by skipping repeated activation function at each cell. A vanilla based LSTM 

cell is shown in Figure 4.11. Alternative methods called Slim LSTMs have been investigated 

where the number of adaptive parameters at each gate is reduced [47]. 

  

Figure 4.10 Architecture of a simple LSTM Network [48] 
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Figure 4.11 Vanilla based LSTM Cell [48] 

       In scope of this thesis, 1DCNN’s and LSTMs are known to extract inherent features in 

long temporal signals. This allows us to directly feed raw waveforms (A0 and S0 time 

histories) to the neural networks, thereby eliminating the time consuming feature engineering 

process. This is exploited in the DL based approach, while in the ML based approach, we 

pick out three features (group velocities of three wave modes as a function of frequency) and 

feed it into a multi-layer DNN. This is done to address one of the limitations of the DL based 

approach that will be discussed in Chapter 6 in detail. 
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CHAPTER 5 

MODELLING TECHNIQUES FOR GUIDED WAVES IN COMPOSITES 

 

5.1 Why do we need modelling? 

The behaviour of any wave in any dynamic system is generally governed by a set of Partial 

Differential Equations (PDE), which is normally called the ‘equilibrium equations’ in 

mechanics. Apart from the simplest cases, most PDE’s do not have an exact analytical 

solution, or at best have solutions that can be reached after an enormous computational effort. 

This makes PDE’s almost impossible to solve without alternate solution strategies. This 

typically involves assuming a solution involving many constants and we then determine these 

constants such that the governing PDE is satisfied in an approximate sense. To put it in 

simpler words, it is like finding one of the solutions for a problem that has infinite solutions. 

However, the assumed solution should satisfy certain conditions called the boundary 

conditions and initial conditions. This can be thought of as conditions that drive the particular 

solution to the closest possible approximation. Typically there are two types of boundary 

conditions: the natural boundary conditions and the kinematic boundary conditions. The 

former is also called sometimes as the force boundary conditions or in general Nuemann 

boundary conditions that give the value of the derivatives of the unknown variable at the 

boundary. Meanwhile, the kinematic boundary conditions are also called the essential 

boundary conditions or in general Dirchelet boundary condition that gives the value of the 

unknown variable at any boundary [34]. The governing PDE is not amenable for this solution 

philosophy due to higher order continuity requirements of the assumed solutions. Therefore, 

one requires an alternate statement of the governing PDE that is generally most suited for the 

numerical solution. This is normally provided by the variational statement of the problem. 

Finite Element Method (FEM) is one such method of numerical solution which is further 
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explained in this chapter. In this chapter we also discuss yet another semi-analytical method 

called Spectral Finite Element Method (SFEM), which can be described as FEM but 

formulated in frequency domain. There are similarities and differences between these 

methods which will be discussed in detail in this chapter.  

 

5.2 Finite Element Method 

 The finite element method is one of the most common numerical methods, which essentially 

assumes a solution that only solves the kinematic boundary conditions. It is a stiffness based 

method, wherein the domain of the problem is broken down to its constituent elements that 

are connected to each other by nodes. 

 

Figure 5.1 (a) Overall domain of the problem (b) Discretized domain set of the problem with 

boundary conditions 
 

       The FEM procedure begins with the assumption of the displacement field in each of the 

elements, and the assumed field is then substituted into the weak form of the differential 

equations, which is basically the integral form of the original differential form of the 

governing PDE. The number of elements is driven directly by the element size, or also known 

as mesh size. Changing the mesh size changes the number of elements. The mesh size is a 

very important parameter when it comes to the accuracy of the solution. For example, if the 
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stress and strain gradients are high at a particular location (this is especially true at the edges 

of a crack or a defect); the mesh discretization should be very fine. Also, when performing 

high frequency studies (wave propagation problems) where the wavelength is very small, 

mesh sizes that are in the scale of the wavelength can act as potential boundaries and can 

reflect waves, which complicates the problem in hand even further. Suppose u(x,y,z,t) is the 

displacement vector (in mechanics), the objective here is to estimate a solution of the 

dependent variable u in the form: 

𝑢(𝑥, 𝑦, 𝑧, 𝑡) = ∑ 𝑎𝑛(𝑡)𝜓𝑛(𝑥, 𝑦, 𝑧)
𝑁
𝑛=1                            (5.1) 

       Where an(t) are the unknown time dependent coefficients that are to be determined, and 

𝜓𝑛 are the spatial dependent functions that normally satisfy the kinematic boundary 

conditions. The displacement vector u(x,y,z,t) is a function of all three co-ordinates and time. 

The formulation of the different approximate methods is the Weighed Residual Technique 

(WRT), where in the error or the residual obtained by substituting the assumed approximate 

solution in the governing PDE is weighted with a weight function and integrated over the 

domain. This process has similarities to the backpropagation algorithm in neural networks 

discussed previously. The error obtained by the difference in the approximate target solution 

to the true solution is propagated back to each neuron (node) and the weights (weighted 

function) are updated accordingly. The final integration is basically the adding up of the 

contribution of each neuron (node). 

       In complex structures, the different approximation techniques are very difficult to use. 

The main difficulty lies in determining functions 𝜓𝑛, which are called the Ritz functions. 

Typically methods like Rayleigh-Ritz method [35] cannot be used in complex structures. 

Hence by dividing the domain into sub domains (which constitutes an element in the finite 

element mesh), one can apply different approximation techniques over all the elements which 

are then pieced together to obtain the total approximate solution. This in essence is the Finite 
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Element Method. To summarize, the flow chart in Figure 5.2 gives an overall perspective of 

the different steps involved in the FEM. 

       The Figure 5.2 can be explained as follows: FEM method fits the approximate solution 

for the dependent variable as given in Equation (5.1) over each element. Using this equation 

under the WRT framework, reduces the governing PDE into a set of coupled Ordinary 

Differential Equations (ODE) of the form as shown below 

[𝑀]{𝑢̈} + [𝐾]{𝑢} = {𝐹}                                               (5.2) 

       Where [M] is the assembled mass matrix, [K] is the assembled stiffness matrix, {𝒖̈} is 

the nodal acceleration vector {u} is the nodal displacement vector and {F} is the nodal force 

vector. After enforcing displacement boundary conditions, the above equation is time 

integrated by replacing the differential operators with finite difference coefficients. The 

details of the assembly of elemental matrices to obtain the assembled [M] and [K] is given in 

[34] and not repeated here. Although there are many time integration scheme is reported in 

the literature, Newmark-β central difference method [34] is the most common method and the 

Figure 5.2 explains this method of obtaining dynamic displacements and velocities.  

 

Figure 5.2 Finite Element Method Procedure [34] 
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       For modelling guided waves using FEM on thin plates as used here in this thesis, we 

need to enforce zero stress (both normal and shear stresses) on the top and bottom surface. 

This can be accomplished by not enforcing any displacement boundary conditions on these 

surface nodes. The details of how this is modelled using commercial software COMSOL
®

 is 

explained in the next section. 

 

5.3 FEM Modelling using COMSOL ® Multiphysics 

COMSOL ® Multiphysics is a software package that among its many functionalities lets us 

model guided waves in structures. The waves are modelled using the FEM described in the 

last section, where the governing equations to be solved are discussed previously in Chapter 

3. In this section, the details of the simulation model are discussed. A 2D FEM model is 

developed to mimic guided wave propagation in thin composite plates. A 16 layered 

unidirectional symmetric laminate has been considered in this case. A zoomed in version of 

the cross section of the geometry is shown in Figure 5.3. The material properties of the 

composite used here is given in table 5.1. The length of the composite is 2.5 m, while it is 2 

mm thick, with each layer 0.125 mm thick. 

 

Figure 5.3 Cross sectional view of the sample geometry 

Direction of wave propagation 
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       As seen in Figure 5.3, an input disturbance is given at the top right of the sample. The 

disturbance is given normal to the direction of wave propagation. The input signal is a 7 cycle 

cosine function passed through a hanning window. The central frequency of the signal is 25 

KHz. Figure 5.4 shows the time domain and frequency domain representation of the input 

disturbance e, while Equation (5.2) describes the disturbance mathematically. 

 

𝑒 = 𝑆𝑖𝑛(𝜔𝑡) ∗ (1 −
𝑐𝑜𝑠(𝜔𝑡)

𝑛
)                                        (5.3) 

Figure 5.4 (a) Time domain representation of the input tone burst (b) Frequency domain 

representation of the input tone burst 

 

       As discussed before, the finite element mesh and its related parameters are important 

parameters to any numerical study. In this particular study, we have used the quadrilateral 

(QUAD) to mesh the whole domain [36]. A fine mesh is used where each mesh element is of 

the size 0.75 mm.  

        Figure 5.5 shows the meshing of the whole domain for solving the governing PDE using 

FEM. A time dependent analysis using the direct linear solver MUMPS available in 

COMSOL ® is used to simulate the ultrasonic guided wave in the composite. The total time 

interval for the simulation is 1200 µs while the time step is 2 µs. The stress free boundary on 

the top and bottom surfaces are enforced as explained in the previous section. 
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Figure 5.5 Finite Element Mesh for the composite laminate 

Table 5.1 Material Properties of a transversely isotropic lamina 
 

ρ (kg/m
3
) E1 (GPa) E2 (GPa) ν12 v23 G12 (Gpa) 

1750 173.1 12.5 0.31 0.38 2 

        The responses are received at a location 500 mm away from the actuator. When the 

composite laminate is excited, the two fundamental modes A0 and S0 are generated and 

propagate through the structure. The edges of the composite are artificially loaded with low 

reflecting conditions to avoid boundary reflections to the best extent possible. Figure 5.6a 

shows the received waveform and Figure 5.6b shows the filtered waveform where the 

fundamental wave modes are isolated. The filtering is done using the knowledge of the group 

velocities of the fundamental wave modes in the composite laminate. 

 
Figure 5.6 (a) Received response at 500 mm from the actuator (b) Filtered received response 

to isolate the fundamental wave modes 
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       Through multiple research advancements and increase in computational capabilities, the 

numerical FEM approach can produce very accurate solutions that are close to the ground 

truth. They indeed find multiple uses in various applications. But due to the way FEM is built 

upon, the computational requirement are way too high. For example, if one is dealing with a 

very fine mesh (for problems involving in high frequency excitations), thereby increasing the 

number of elements which directly increases the computation time and memory. Therefore, it 

was important to work a way around this and Spectral Finite Element Method (SFEM) 

provides very accurate alternative but with very small computational requirements. The next 

section describes the basic working principles of SFEM and some fundamental derivations 

based on it 

 

5.4 Spectral Finite Element Method 

The SPECTRAL FINITE ELEMENT METHOD (SFEM) is a method based on FEM principle. 

This method is typically used to solve dynamic wave propagation problems. In this method, 

the field variable in the governing PDE is transformed into frequency domain using Fast 

Fourier Transforms (FFT), which is a numerical version of the Discrete Fourier Transforms 

(DFT). The DFT is performed by a FFT algorithm popularly known as the Cooley Turkey 

algorithm [37] and is expressed as described in Equation (5.3). When transformed to the 

frequency domain, for a 1D realization, the PDE’s become a set of ODE’s (Ordinary 

Differential Equations) having frequency (sampling frequency in FFT) as the primary 

variable and in most cases the resulting equations are ODEs with constant coefficients. The 

finite element procedure is then applied to the transformed governing equations by solving 

them in the wavenumber space (k space) to find the exact solution for the ODEs. SFEM 

employs this exact solution as an interpolating function for element formulation. The 

constants of integration are driven to satisfy the boundary conditions, and therefore all the 
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requirements are satisfied at every discrete frequency. Using the Inverse Fast Fourier 

Transform (IFFT), the time domain representation of the solution can be obtained. The SFEM 

procedure is shown as flow chart shown in Figure 5.7 

       There is more to SFEM to than just transforming the governing PDE into frequency 

domain and solving the ODE. In essence, it can be categorized as a type of FEM as methods 

like the Ritz method that can be employed in frequency domain to obtain the structural 

stiffness matrix similar to the stiffness matrix obtained in FEM. In essence, it can be 

categorized as a type of FEM [38]. 

𝑢(𝑥, 𝑦, 𝑧, 𝑡) = ∑ 𝑢̂(𝑥, 𝑦, 𝑧, 𝜔𝑛)𝑒
−𝑗𝜔𝑡𝑁−1

𝑛=0                       (5.4) 

       Where N is the number of FFT points, ωn is the discrete circular frequency. The 

formulation of SFEM for 2D structural waveguides is more complex, because the governing 

PDEs can no longer be reduced to a set of simple ODEs when converting to the frequency 

domain. Here we will need the second Fourier Transform in one of the spatial direction to 

reduce the dimensionality of the problem to one dimension. In the next two sections, the 

formulation of spectral elements for a isotropic rod and a higher order Timoshenko beam is 

outlined, as these are the two formulations used in the thesis. 

 

Figure 5.7 SFEM Procedure of solving PDE 
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       In the previous section we described time domain 2-D FEM procedure where in we got 

the low frequency guided waves (A0 and S0 modes) in a single analysis. SFEM procedure is 

normally used to analyse 1-D wave propagation (both A0 and S0 propagation). The question 

is how the equivalence of these two methods can be used to estimate guided wave modes and 

thereby use these results for material property identification. According to [34], the 2-D 

guided wave modes can be accurately obtained using higher order 1-D wave theories. Hence, 

we use here higher order Timoshenko beam theory to obtain accurate estimate of S0 mode, 

while we use elementary theory to obtain A0 mode. Reference [34] also shows that the 

accuracy of the A0 mode does not suffer much by using elementary rod theory. Hence, in the 

next section we will discuss in detail the formulation of Spectral Elementary Rod and 

Timoshenko beam element. 

 

5.5 Non-dispersive Isotropic Rod: FFT Based Spectral Element Formulation 

A rod element of length L model has two degrees of freedom u1 and u2 which define the axial 

the two axial boundary conditions at x=0 and x=L. The corresponding forces at the two nodes 

are F1 and F2. The governing differential (PDE) equation for an isotropic homogeneous rod 

of density ρ and Young’s Modulus E is 

  

Figure 5.8 Spectral Isotropic Rod Element [19] 

 

𝜕2𝑢

𝜕𝑡2
= 𝑐2

𝜕2𝑢

𝜕𝑥2
                                                                 (5.5) 
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       Where u=u(x,t) is the axial displacement and c
2
=E/ρ is the square of the wave speed of 

the material. The force boundary condition is given by 

𝐹(𝑥, 𝑡) = 𝐴𝐸
𝜕𝑢

𝜕𝑥
                                                            (5.6) 

       Where A is the cross sectional area of the rod and F(x,t) is the axial force due to the axial 

displacement. The displacement (essential) boundary condition is the specification of the 

displacement u at the boundaries. Assuming a solution of the form 

𝑢(𝑥, 𝑡) = ∑ 𝑢̂(𝑥, 𝜔𝑛)𝑒
−𝑗𝜔𝑛𝑡𝑁

𝑛=1                                    (5.7) 

       Substituting Equation (5.7) in Equation (5.5), the reduced governing ODE becomes 

𝑐2
𝜕2𝑢

𝜕𝑥2
+ 𝜔𝑛

2𝑢̂ = 0                                                         (5.8) 

       Whose solution is of the form uoe
-jkx

. Upon substitution in Equation (5.8), the discretized 

form of the ODE becomes 

(−𝑐2𝑘2 + 𝜔𝑛
2)𝑢𝑜 = 0                                                   (5.9) 

       The wavenumber can be computed trivially in this case as kn=±wn/c and for both mods, 

wave amplitude can be taken as 1. Thus the complete solution is, 

𝑢̂(𝑥, 𝜔𝑛) = 𝑐1𝑒
−𝑗𝑘𝑛𝑥 + 𝑐2𝑒

−𝑗𝑘𝑛(𝐿−𝑥)                           (5.10) 

       Where c1 and c2 are coefficients to be determined using the boundary conditions, and L 

being the length of the element (isotropic rod). Following a derivation as shown in [1], we 

obtain a relationship between the nodal forces and nodal displacements as given by 

 

{
𝐹1̂
𝐹2̂
} = 𝑇2𝑇1

−1 {
𝑢1̂
𝑢2̂
}                                                     (5.11) 

       Where T2 and T1 are defined as  

         𝑇1 = [
𝑒−𝑗𝑘𝑛𝑥1 −𝑒𝑗𝑘𝑛𝑥1

−𝑒−𝑗𝑘𝑛𝑥1 𝑒𝑗𝑘𝑛𝑥1
] 

𝑇2 = [
𝑒−𝑗𝑘𝑛𝑥2 −𝑒𝑗𝑘𝑛𝑥2

−𝑒−𝑗𝑘𝑛𝑥2 𝑒𝑗𝑘𝑛𝑥2
]                                       (5.12) 
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       Hence, the dynamic stiffness matrix (DSM) for the rod at frequency wn is 

𝐷𝑆𝐹𝐸𝑀 = 𝑇2𝑇1
−1                                                          (5.13) 

       FFT based SFEM requires the formulation of one noded infinite segment called the 

throw off element for good time resolution. This is obtained by removing the reflected 

coefficients from the solution. The solution to the throw off elements and the dynamic 

stiffness for the throw off elements is given in Equations (5.14) and (5.15)  

𝑢̂(𝑥, 𝜔𝑛) = 𝑐1𝑒
−𝑗𝑘𝑛𝑥                                                  (5.14) 

𝐹1̂ = 𝐸𝐴𝑗𝑘𝑛𝑢1̂                                                            (5.15) 

 

5. 6 Spectral Element Formulation of Timoshenko Beams 

The guided wave propagation in a 1D composite laminate was shown in Section 3.5. There, 

we assumed a 1D waveguide that satisfies both the elementary rod and beam theory. In the 

beam theory, the slope θ is equal to dw/dx. However, in the Timoshenko theory, θ is assumed 

as an independent variable. Timoshenko beam theory captures the beam dynamics more 

accurately with the introduction of shear deformations. It is therefore preferred to generate 

responses that mimic the S0 mode. Spectral element formulation requires governing PDE, 

which for Timoshenko beam is given by 

                  𝐺𝐴𝐾
𝜕

𝜕𝑥
[
𝜕𝑤

𝜕𝑥
− 𝜃] = 𝜌𝐴𝑤̈                                            (5.16) 

𝐸𝐼
𝜕2𝜃

𝜕𝑥2
+ 𝐺𝐴𝐾 [

𝜕𝑤

𝜕𝑥
− 𝜃] = 𝜌𝐼𝜃̈                                   (5.17) 

       where w(x,t) is the transverse deformation, θ(x,t) is the rotation of the mid-plane of the 

beam, G is the shear modulus, A and I are the area and area moment of inertia of the cross 

section, K is the shape factor that takes care of anomalies in the shear stress deformation 

across the depth of the cross section. For rectangular cross section, K=0.85. All the quantities 

with two dots on them represent the acceleration. These equations are supplemented by the 

following force boundary conditions 
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𝑉 =  𝐺𝐴𝐾 [
𝜕𝑤

𝜕𝑥
− 𝜃] , 𝑀 = 𝐸𝐼

𝜕𝜃

𝜕𝑥
                                (5.18) 

       Where V is the shear force and M is the bending moment. Assuming the solution of the 

form 

𝑤(𝑥, 𝑡) = 𝐴0𝑒
𝑖(𝑘𝑥−𝜔𝑡), 𝜃(𝑥, 𝑡) = 𝐵0 = 𝑒𝑖(𝑘𝑥−𝜔𝑡)              (5.19) 

       Substituting Equation (5.19) in Equation (5.18), we get fourth order equation for 

wavenumber k, which is given by  

𝑘4 − 𝑘2 [
1

𝑐𝑠
2 + (

𝑄2

𝑐0𝑞
2 )] − [(

𝜔2

𝑐0𝑞
2 ) − (

𝑄4

𝑐𝑠
4𝑐0𝑞
4 )] = 0                     (5.20) 

       Where, 𝑐0𝑞 = √
𝐸𝐼

𝜌𝐴
,  𝑐𝑠 = √

𝐺𝐴𝐾

𝜌𝐴
,   𝑄 = √𝜌𝐴/𝜌𝐼 

       Solving Equation (5.20), we get four modes of the form 𝑘1, 𝑘2, −𝑘1, −𝑘2 and the 

complete solution at frequency 𝜔𝑛 is given by 

{
𝑤 ̂(𝑥, 𝜔𝑛)

𝜃(𝑥, 𝜔𝑛
} = ∑ 𝐶𝑚 {

𝑅1𝑚
𝑅2𝑚

}4
1 𝑒−𝑖𝑘𝑚𝑥                           (5.21) 

       Where 𝐶𝑚 is an unknown coefficient to be determined with four boundary conditions at 

the two nodes of the Timoshenko beam. Evaluating Equation (5.21) at the two ends of the 

beam situated at x=0 and x=L, where L is the length of the beam with 𝑅1𝑚and 𝑅2𝑚 being the 

amplitude ratios at four wavenumbers𝑘1, 𝑘2, −𝑘1, −𝑘2, we get [𝑻𝟏] 

                                     (5.22) 

       This matrix gives relationship between unknown coefficients 𝐶𝑚 and nodal degrees of 

freedom, {𝑤̂1 𝜃1 𝑤̂2 𝜃2}. Similarly, Forces and Moments given by Equation (5.18) is 

evaluated at two nodes located at x=0 and x=L as 𝑉(𝑥 = 0) = −𝑉̂1, 𝑉(𝑥 = 𝐿) =

𝑉̂2, 𝑀(𝑥 = 0) = −𝑀̂1,𝑀(𝑥 = 𝐿) = 𝑀̂2 
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        Evaluating the forces, we can express unknown coefficients 𝐶𝑚in terms of nodal degrees 

of freedom as  

{

𝐶1
𝐶2
𝐶3
𝐶4

} = [

𝑇211 ⋯ 𝑇214
⋮ ⋱ ⋮
𝑇241 ⋯ 𝑇244

]

{
 
 

 
 𝑉̂1
𝑀̂1
𝑉̂2
𝑀̂2}
 
 

 
 

                               (5.23) 

       Where [T2] matrix is given by 

𝑇2(1,𝑚) = −𝐺𝐴𝐾(−𝑖𝑘𝑚𝑅(1,𝑚) − 𝑅(2,𝑚)), 𝑇2(2,𝑚) = −𝐸𝐼(−𝑖𝑘𝑚𝑅(2,𝑚)) 

𝑇2(3,𝑚) = 𝐺𝐴𝐾(−𝑖𝑘𝑚𝑅(1,𝑚) − 𝑅(2,𝑚)), 𝑇2(4,𝑚) = 𝐸𝐼(−𝑖𝑘𝑚𝑅(2,𝑚))   (5.24) 

       The Dynamic stiffness matrix[𝐾̂] of the Timoshenko beam is then given by  

[𝐾̂] =[𝑇2][𝑇1]
−1                                                            (5.25) 

 

5.7 FEM vs SFEM: A comparison 

A thin 2D composite plate was modelled using the FEM approach, while 1D waveguides 

were modelled using the SFEM approach. By using the elementary rod element in SFEM, we 

could mimic the A0 mode similar to the ones generated in the FEM approach, while the 

higher order Timoshenko Beam was used to generate the S0 mode. Since the FEM model was 

in two dimensions, both the modes are coupled. Using the SFEM on 1D waveguides, the 

modes are decoupled, and A0 and S0 modes can be obtained individually depending on the 

direction of incident loading (axial loading or transverse loading). This can be seen in the 

Figure 5.9. The velocities of the two modes obtained using the two different methods are 

calculated and is outline in Table 5.2. 

Table 5.2 Wave velocities: SFEM vs FEM 

Method S0 Velocity (m/s) A0 velocity (m/s) 

SFEM 8696 1048 

FEM 8602 1064 

Error % 1.07 1.52 
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       From Table 5.2, it is observed that the velocities of the two wave modes match very well 

for both the methods. Therefore, we can conclude that, at this particular frequency and by 

using just the fundamental wave modes A0 and S0, it is possibly to scale down a thin 2D 

laminate plate to a 1D waveguide. 1D waveguides can easily be modelled in SFEM to 

generate wave modes that mimic the A0 and S0 modes generated in the FEM scheme. This is 

particularly important as SFEM is computationally many orders better than FEM. The 

computation time for an FEM simulation in this case is about 30 mins, compared to a SFEM 

simulation that takes seconds to execute.  

Figure 5.9 (a) and (b): A0 and S0 response using the SFEM method. (c) Overall raw 

waveform obtained from the COMSOL FEM simulation (d) Filtered waveform isolating the 

individual A0 and S0 reflections (filtering done using knowledge of group velocities of these 

two modes) 
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       There are of course methods to optimize the FEM model to reduce the computation time, 

but even at the best performing level, any COMSOL simulation takes couple of minute’s best 

which is still more compared to that of SFEM. It is hence important to be able scale down 

geometrically, in order to model guided waves using SFEM. This enables us to generate a 

much larger dataset that in turn can be used to train data hungry networks like 1DCNN and 

LSTMs to achieve much improved performance levels. Therefore, for the DL based 

approach, we use the SFEM approach to generate a large dataset to solve the inverse problem 

of materials characterization. 
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CHAPTER 6 

SENSITIVITY ANALYSIS AND DATA UNIQUENESS 

 

In this thesis, one of the main objectives was to build an overall framework for material 

property identification in composite structures, complete with signal processing, and other 

data handling algorithms. In this section, the different methodologies used are discussed. The 

overall flow of the research is also described in detail. Figure 1.6 (see Section 1.7) shows a 

flowchart detailing the flow of analysis methodology. Initially as part of the forward problem 

for the deep learning based approach (DL based), we model guided waves in a composite 

laminate using two different methods (Numerical FEM and Semi Analytical SFEM). For this 

process, the priori knowledge of the material properties of different composites used typically 

in the industry was considered. In the previous chapter, the advantages and disadvantages of 

the two different modelling techniques were discussed.  

        It was concluded that, for the problem of material characterization, it is most advisable 

to use SFEM to model guided waves. This allows us to collect or generate a large database of 

A0 and S0 waveforms for different combinations of material properties at a very small time. 

A large training dataset is always preferred to train deep neural networks in order to achieve 

better performance levels. Figure 6.1 shows how the A0 wave mode change for two different 

sets of material properties. 

        Note that unlike in typical wave propagation and structural health monitoring problems, 

which necessarily deals with high frequency loading (which in turn requires very very fine 

finite element mesh for analysis), material property identification analysis can be performed 

using only two guided wave modes (A0 and S0), which are low frequency modes. Hence, in 

all the analysis performed in this thesis, we use an input tone burst signal of 25 kHz. The 
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main advantage of using such low frequency signals is that the FE analysis does not require 

too fine a mesh to capture the two guided wave modes. 

 

Figure 6.1 A0 waveforms for two different sets of material properties (Blue: ρ= 1000 kg/m
3
, 

E1= 50 GPa, E2= 5 GPa, v12= 0.25, v23= 0.25,G12= 2 GPa, Orange: ρ= 1750 kg/m
3
, E1= 

111.53 GPa, E2= 5 GPa, v12= 0.25, v23= 0.25, G12= 2 GPa) 

 

       Using the two numerical models, and at the frequency range of 25 KHz, it is not possible 

to estimate or identify the shear modulus G12 (Section 6.1). Therefore, we propose an 

alternative strategy to predict shear modulus G12. This is done by using software called DC
®

 

to generate and create a dataset using group velocity dispersion curves for different sets of 

material properties [39]. The dispersion plot data for three modes A0, S0 and the shear 

horizontal mode SH0 are directly fed into a Dense Neural Network to predict the material 

properties. By incorporating the SH0 mode, the framework extends its capability to predict 

shear modulus G12. Similarly the deep models like the 1DCNN and LSTMs are trained on a 

large dataset collected using the SFE method to predict on the lamina properties. Two key 

challenges that come into picture in the process of data collection are: 

 What material properties to change every forward pass? 

 How unique is each set of A0 and S0 waveform? (SFEM Method) 
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       In the next few sections, we try to answer the two above questions by using Sensitivity 

Analysis, and data uniqueness checks. 

 

6.1 Sensitivity Analysis 

Sensitivity analysis is an important part of any inverse problem. Several previous work 

revolving around solving materials characterization as an inverse problem have used 

sensitivity analysis to different effects [15][40][41][42]. The primary reason of this analysis 

with respect to this thesis is: 

1. To verify whether the five material properties and density independently have any 

effect on the A0 and S0 wave velocities. 

2. If they do have an effect, quantify it using some means to gain a better understanding. 

       This is important because the training datasets are collected by perturbing material 

properties every forward pass to collect the respective A0 and S0 wave forms. By this 

analysis, we aim to establish which parameter changes wave velocities the most, thereby 

adjusting our strategy to collect data accordingly. This is useful from the point of view of 

training a Convolutional Neural Network to learn the inverse problem effectively. The wave 

velocities are focussed as the central part of this study, as they would be the most likely 

feature to change for different sets of material properties. 

       One of the parameter is varied in a range and the effect on the velocities is calculated 

while taking the mean, minimum or maximum of other non-involved parameters. For 

example, density is varied from 400-3200 kg/m
3
 while other parameters are set at E1 = 220 

GPa (mean of the range 40-400 GPa), E2 = 41.5 GPa (mean of the range 3-80 GPa), ν12 = 

0.35 (mean of the range 0.2-0.5), ν23 = 0.35 (mean of the range 0.2-0.5), G12 = 6 GPa (mean 

of the range 2-10 GPa). Secant Sensitivity is used to quantify the sensitivity of a parameter to 

the wave velocities. It is described as: 
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𝛿 =
𝐶𝑒−𝐶𝑠

𝑃𝑒−𝑃𝑠
                                                             (6.1) 

       Where, Ce is end value of velocity in m/s for lamina property Pe and Cs in the start value 

velocity for Ps.   

 

       Figure 6.2 Sensitivity of density (rho) on A0 and S0 wave velocities 

       Figure 6.2 shows the effect of density on A0 and S0 wave velocities. Figure 6.3 shows 

the sensitivity of Young’s Modulus E1 and E2 and Figure 6.4 shows the effect of Poisson’s 

ratio and the shear modulus G12 on the wave velocities. The sensitivity values are 

summarized in Table 6.1. 

Figure 6.3 (a) Sensitivity of Young’s Modulus E1 on A0 and S0 wave velocities (b) 

Sensitivity of Young’s Modulus E2 on A0 and S0 wave velocities 
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Figure 6.4 (a) Sensitivity of Poisson’s ration v12 and v23 on A0 and S0 wave velocities (b) 

Sensitivity of Shear Modulus G12 on A0 and S0 wave velocities 

 

Table 6.1 Secant Sensitivity Values 

Parameter Secant Sensitivity 

ρ 
δ

S0
=5.61 

δ
A0

=-0.215 

E
1
 δ

S0
=24.8 

δ
A0

=1.20 

E
2
 δ

S0
=10.61 

δ
A0

=0.47 

v
12
 δ

S0
=2569 

δ
A0

=113.7 

G
12
 δ

S0
=0 

δ
A0

=0 
 

       The following conclusions can be made from the sensitivity analysis conducted above: 

1. The parameters are more sensitive to the S0 mode compared to the A0 mode. This can 

be seen both in the above figures, and in Table 6.1. 

2. The wave speeds are more sensitive to E1 compared E2. 

3. The wave speeds are most sensitive to the Poisson’s ratio. Particularly, v12 seems to 

have the biggest effect on the wave speeds 

4. G12 has no effect on the wave velocities and therefore, it is conceptually not possible 

to predict G12 from a neural network using S0 and A0 time histories as inputs.  
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       Therefore, after this analysis it was decided to not perturb shear modulus G12 as it has no 

effect on the speeds. The four material properties and density were perturbed and its 

respective A0 and S0 wave modes were collected using the SFEM model outlined in the 

previous chapter. 

 

6.2 Data Uniqueness 

The forward system is a non-unique system. For different sets of material properties, it is 

possible to get similar A0 and S0 waveforms. This can adversely affect the performance of 

any Deep Learning algorithm, for there exists similar A0 and S0 waveforms for different sets 

of material properties. This is similar to one when there is a single equation but two different 

solutions to it. In these cases, it becomes impossible to find one unique solution. Therefore, it 

is important to clean the training dataset. This is achieved by having a uniqueness check 

before training. Once again, the velocity of the wave modes are analysed and training sets 

(A0 and S0 waveforms) where A0 and S0 waves with same velocities are same are deleted. 

This then ensures that every resulting training dataset is unique to a particular set of material 

properties. 

        Originally, more than 10000 training sets were generated for more than 10000 different 

sets of material properties using the SFEM model. After the uniqueness check, only 2719 

unique training sets were found. Figure 6.5 shows the A0 and S0 velocities of an example 

training set that is 512 samples big.  After the uniqueness check, the training dataset reduced 

to a size of 88 unique A0 and S0 pairs. 
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Figure 6.5 Uniqueness check for a dataset that had 512 samples originally but trimmed down 

to 88 after the check 
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CHAPTER 7 

STUDY PARAMETERS FOR THE IDENTIFICATION OF ELASTIC PROPERTIES 

OF A COMPOSITE 

 

In this thesis, a complete framework with inter linking data analysis algorithms and different 

learning models are explored for solving the inverse problem of material property 

identification. In particular, two deep architectures i.e. there 1D Convolutional Neural 

Network and Long Short Term Memory Networks are used, while a much shallower ML 

based Dense Neural Network is also used in the framework. The data generation and 

collection, and the study parameters for the DL based and ML based approach are different 

and are highlighted in the next two sections. 

 

7.1 Study Parameters: DL Based Approach 

The DL based approach uses a dataset created by the Spectral Finite Element Method. The 

SFEM method was finalized based on the advantages it has as discussed in section 5.7. 

Sensitivity Analysis (Section 6.1) is used to dictate the way data is generated. A dataset 

consisting of more than 10,000 pairs of A0 and S0 histories are generated for 10,000 different 

sets of material properties. The data uniqueness check is used to filter the created dataset of 

repeated and redundant data (Section 6.2). After this process, the size of the dataset is 

reduced to 2719 unique pairs of A0 and S0 time histories. The composite considered is a 16 

layered unidirectional laminate that is transversely isotropic. The thickness of the composite 

laminate is 2 mm and each of its 16 layers has the same material properties and same 

thickness. The created dataset is used to train the two main deep architectures commonly 

explored in the field i.e. the 1DCNN (Section 4.3) and the LSTM (Section 4.5). The model 
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trained on noiseless data is used to predict the five material properties (ρ, E1, E2, v12, v23) on 

data both in the presence and absence of noise of different levels. 

 

7.2 Study Parameters: ML Based Approach 

In the previous chapter (section 6.1), the limitation of the current DL based models in 

predicting Shear Modulus G12 is highlighted. Hence, we adopt an alternative Machine 

Learning based (ML based) approach that utilizes group velocity dispersion data directly as 

inputs to a multi layered Dense Neural Network (DNN). To obtain the group velocity 

dispersion data, an open source software called the DC
®

 is used. This software is very similar 

to the very popular DISPERSE
®

 software, which are both fundamentally developed to study 

the dispersion phenomena of guided waves in different materials and configurations. The 

basics of the dispersion phenomena and group velocity are introduced in Chapter 3 (Section 

3.4).  

       In order to increase the complexity of the whole framework, three different composites 

layups ([0 0]s, [0 0 0 0]s, [0 0 0 0 0 0 0 0]s) of three different thicknesses (1mm, 2mm and 

3mm) are considered. All the composite layups considered are symmetric, unidirectional and 

transversely isotropic in nature (similar to the DL based approach). Eight commonly used 

composites are considered. The material properties of the eight composites are given in Table 

7.1. 

       The data collection is done using the DC
®
 software as previously mentioned. In 

particular the group velocity data as a function of frequency is taken for three different wave 

modes. The first two modes are the fundamental wave modes of a lamb wave i.e the A0 and 

S0 mode as used in the DL based approach. The third new mode incorporated in this method 

is the Shear Horizontal (SH0) mode. Including the physics of this particular mode enables us 

to also predict Shear Modulus G12. The shear horizontal mode is another type of guided wave 
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similar to lamb waves. A lamb wave acts in plane while the SH0 mode acts out of plane i.e. if 

the lamb waves act in x-y direction, the SH0 mode acts in the x-z direction. The shear mode 

is typically generated due to a transverse loading that brings about a bending motion, thereby 

affecting the shear modulus of the composite. A typical group velocity dispersion curve 

involving the three different modes is shown in Figure 7.1. 

Table 7.1 Material Properties of the composites used for the ML based study 

Composite ρ (g/cm
3
) 

E1 

(Gpa) 

E2 

(Gpa) 
G12  (Gpa) v12 v23 

AS4M8502 1.55 144.65 9.636 6 0.299 0.289 

SAERTEX7006919 1.454 119.99 7.25 6.02 0.322 0.447 

SigrafilCE125023039 1.5 128.555 6.873 6.1 0.330 0.375 

T300M914 1.56 139.817 10.052 5.7 0.313 0.478 

T700M21 1.571 125.5 8.7 4.135 0.37 0.45 

T700PPS 1.6 149.956 9.988 4.5 0.291 0.368 

T800M913 1.55 152.137 6.653 4.2 0.252 0.543 

T800M924 1.5 161 9.25 6 0.34 0.41 

 

Figure 7.1 Group Velocity Dispersion Curve for a random composite with three modes (A0, 

SH0 and S0) highlighted 
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CHAPTER 8 

RESULTS AND DISCCUSION 

 

As previously described in the previous chapters, a large dataset containing sets of A0 and S0 

waveforms were collected by perturbing the material properties every iteration. This 

constituted the forward problem, and in the inverse problem we reverse engineer to obtain the 

material properties using the collected dataset. In this chapter, the training and testing results 

of three different ML architectures (DNN, 1DCNN and LSTM) are discussed. The benefits 

and disadvantages of the models are highlighted and related comparisons are also established. 

The performance of these models in the presence of noise of various levels in the data is also 

studied. Finally, the limitations of the frameworks used are also discussed in detail. Figure 

8.1 summarizes the research flow for the deep learning architectures (1DCNN and LSTM) 

used in this thesis. In the case of DNN, the data collection process is different as we have 

used the DC
®
 software to generate group velocity curves for different sets of material 

properties (or different composites). 

 

 Figure 8.1 Research Flow for the two Deep Learning Models (1DCNN and LSTM) 
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The metrics used to evaluate the performance of the learning algorithms are the Mean 

Absolute Error (MAE), and the coefficient of determination (R
2
 coefficient). Since the 

problem in hand can be viewed as a regression task, wherein we are trying to regress two 

inputs with reflections of certain amplitude to five absolute material property values. We are 

training our models on Google Colaboratory, which is a free cloud-based Python platform to 

train ML models. We are provided with Tesla T80 GPUs, Intel- Xeon CPU with 2.30 GHz 

clock speed (2 Cores), RAM of 12 GB and storage of 312 GB. 

 

8.1 Training Results with 1D Convolutional Neural Network 

The dataset collected using the SFEM consisted of 2819 unique A0, S0 waveforms for 2819 

different composites.  Training and validation samples are split in 9:1 ratio which gives 2448 

training examples and 282 test (validation) examples. S0 and A0 are fed as two different 

input features (Figure 8.1) into the network and 5 lamina properties act as the output labels.  

A supervised regression based 3- Conv. + 2-Dense layered 1D-CNN (see Table 8.1) is trained 

to learn the relationship between ultrasonic guided waves and corresponding lamina 

properties.  

Table 8.1 1DCNN Architecture 

Layer Units Output Parameters 
Conv1D (LRelu) (3,16) (4096,16) 112 

Maxpool (2,) (2048,16) 0 
Conv1D (LRelu) (3,32) (2095,32) 1568 

Maxpool (2,) (1022,32) 0 
Conv1D (LRelu) (3,64) (1020,64) 6208 

Maxpool (2,) (510,64) 0 
Flatten - - 32,640 

Dense (LRelu) 64 - 522,256 
Dropout (0.05) - - 0 
Dense (Linear) 5 - 85 

Total parameters 
  

530,229 
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       The hyper parameters like learning rate, batch size, number of epochs etc. were set after 

some trial and error testing where a trade-off between the best performance and quick 

training time was desired. A learning rate of 0.01 and a batch size of 4 were found most 

suitable for this architecture. An Adam optimizer (β1=0.9 and β2=0.999) with MSE as loss 

function is used. The network is trained for 500 epochs. The training is performed keeping in 

mind the factors like: 

1. Under fitting and overfitting.  

2. A smoother loss curve 

3. Generalization on test set. 

       The loss curve, MAE and R
2 

coefficient curves are given in Figures 8.2, 8.3 and 8.4 

respectively. It is seen from the above figures that the network is able to obtain a MAE of 32 

and a R2 coefficient of 0.98. The model takes 4s/epoch to train and 1ms/sample for 

prediction. The MAE and the loss is a high value, because the target labels (material 

properties) aren’t normalized. The material properties range from a scale of 10
11

 to 10
-1

.  If 

normalized, the loss and MAE values will be low and closer to zero. 

 
Figure 8.2 Loss curve: MSE vs number of epochs for 1DCNN 
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Figure 8.3 MAE curve: MAE vs number of epochs for 1DCNN 

 
Figure 8.4 R

2 
coefficient curve: R

2 
coefficient vs number of epochs for 1DCNN 

 

       Once the 1DCNN is trained, a dataset containing previously unseen examples are fed in 

to the network to predict its respective material properties. The prediction results are 

presented in the Figure 8.5 and Table 8.2. Looking at Figure 8.5, the ideal scenario would be 

all scatter points lying on the linear y=x line (green dotted). The network performs very well 

in predicting the material properties, but they are certain outliers or poor predictions. One 

such prediction is highlighted in red (see Table 8.2 for values). For the material property E2 in 

the 2
nd

 example, the predicted value is 28.8 GPa but the true value is 9 GPa. We have tried to 
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use the model to predict on samples with almost similar material properties (only one/two 

parameter(s) are different) to verify the robustness of our architecture. All the prediction 

results are plotted on normalized values (to accommodate bigger modulus values and the 

smaller Poisson’s ratio) 

 

 
Figure 8.5 Prediction Results: True vs Predicted Plot for 1DCNN 

Table 8.2 Prediction Results from the 1DCNN 

Example  ρ (kg/m
3

) E
1
(Gpa) E

2
(Gpa) v

12
 v

23
 

Example 1 True 1500 160 25 0.28 0.36 

 
Predicted 1316 160 28.8 0.31 0.35 

Example 2 True 1500 180 9 0.28 0.36 

 
Predicted 1362 160 28.8 0.30 0.34 

Example 3 True 2200 160 25 0.28 0.36 

 
Predicted 1998 196 31.8 0.28 0.34 

Example 4 True 2200 180 25 0.28 0.36 

 
Predicted 2205 181 28.5 0.28 0.35 

 

       The poor predictions can mainly be due to two reasons: 

 The model is trained on about 2500 samples approximately, and as per our 

understanding, it is still a small dataset considering how data hungry convolutional 

neural networks are. The waveforms change very little physically for different 
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composites (i.e. different material properties) and a larger dataset might be a viable 

solution to avoid poor predictions. 

 One of the facts which are not highlighted in deep learning literature is the limitation 

of regression-based neural networks in extrapolation. It is observed that neural 

networks do not predict well on a data point that lies outside the range of training or 

towards the extreme points of the training range. For example, the range of E2 is 

between 5-50 GPa in training and the predictions are not good on 9 GPa (near to one 

the extremes of the range i.e. 5 GPa) as compared to the prediction on 25 GPa. 

       Currently, the training and predictions have been on noiseless data. But in no practical 

consideration, one can expect no noise. Experimental data from guided wave testing typically 

have many uncertainties that manifest itself into noise and corrupt the original signal. 

Therefore, any framework that aims to work with such signals should be robust to noise. 

There are two ways to make a framework/model robust.  

 
Figure 8.6 (a) Original Signal (b) Original signal corrupted with a noise of SNR5 

       The first method should be to use a model trained on noiseless data to predict on noisy 

data. If the performance is satisfactory, the trained model is already robust to noise. If not, 

one would have to include noisy data in the training process itself. In this thesis, we use the 

former and try to leverage a model trained on noiseless data to predict on data with different 
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levels of noise. Additive White Gaussian Noise (AWGN) of different levels (SNR5, SNR10 

and SNR20) was added to the original signal to create three separate datasets on which the 

trained model will predict on. Figure 8.6 shows how the original signal is corrupted with a 

noise of SNR5. Figures 8.7, 8.8 and 8.9 show the prediction results on data with noise levels 

of SNR20, SNR10 and SNR5 respectively. 

 

Figure 8.7 Prediction results on data with noise of SNR20 for 1DCNN 
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Figure 8.8 Prediction results on data with noise of SNR10 for 1DCNN 

 

Figure 8.9 Prediction results on data with noise of SNR5 for 1DCNN 

        The noise levels are very high in these cases in order to test the limit of the algorithms, 

but such high noise levels (i.e. SNR5) typically do no occur in guided wave testing. From 
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Figures 8.8 to 8.9, we observe that the predictions are much poorer on noisy data compared to 

noiseless data. This was expected, but as long as the predictions are within a certain error 

range, they can be acceptable. In order to quantify the prediction performance of the 1DCNN 

architecture, a new parameter called Number of Wrong Predictions (NOWP) is introduced. 

Any prediction is termed a wrong prediction if the predicted value lies outside the 15% error 

range of the true value. Figure 8.10 shows the NOWP for the prediction on noiseless 

(baseline) and different levels of noisy data. It is clearly visible that the performance 

deteriorates in the presence of noise, but an interesting observation can be made for the SNR5 

dataset  . SNR5 signifies that the noise level is highest compared to SNR10 and SNR20, but 

the predictions on the SNR5 dataset is better compared to that of SNR10 and SNR20. In fact, 

the predictions on the SNR5 dataset are second best after the predictions on the noiseless 

data. There is certainly no linear trend in terms of performance of the model and increasing 

noise levels. 

 
 

                     Figure 8.10 NOWP for the predictions on noisy and noiseless data for 1DCNN 
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 8.2 Training Results with Long Short Term Memory Networks (LSTM) 

A LSTM network is used to map the A0 and S0 waveforms to the target material properties 

in this case. The most important difference with respect to 1DCNN’s apart from the working 

of the model is that the LSTM layer takes way too long to train. Therefore, in this thesis an 

inbuilt tensorflow API called CuDNNLSTM (in place of LSTMs) is used which accelerates 

the training process of LSTMs. The CuDNNLSTM layer can easily ramp up the training 

speed by more than 10 times. This is done by skipping repeated activation functions at every 

gate. They have shown to be equally accurate and have been used in various applications in 

signal processing, biomedical image processing etc. The architecture of the LSTM model 

used is shown in Table 8.3. A learning rate of 0.9e-3 and a batch size of 8 are found suitable. 

The model is run over 50 epochs. 

Table 8.3 LSTM Architecture 

Layer Activation Output (Feature map, Units) Parameters 

Batch Normalization - (4096,2) 8 
CuDNNLSTM - (4096,10) 560 
Dropout (0.2) - (4096,10) 0 

Flatten - 40960 0 
Dense ReLU 16 655386 

Batch Normalization - 16 64 
Dropout (0.05) - 16 0 

Dense Linear 5 85 
Total parameters 

  
656,093 

 

        

       Figures 8.11, 8.12 and 8.13 show the loss curve, MAE and R
2
 curves respectively. The 

training performance of the LSTM model is very similar to that of the 1DCNN. It reaches a 

MAE of 37 and a R
2 

coefficient of 0.98. The network takes 120 ms per epoch to train which 

is almost 30 times more than that of the 1DCNN. This increase is even after using the 

CuDNNLSTM layer. 
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Figure 8.11 Loss curve: MSE vs number of epochs for LSTM  

 

 

 

Figure 8.12 MAE curve: MAE vs number of epochs for LSTM 
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Figure 8.13 R
2
 coefficient curve: R

2
 coefficient vs number of epochs for LSTM 

       The trained model is then fed with previously unseen examples. The data here is 

noiseless and will serve as the baseline for evaluation of the performance on noisy data. 

Figure 8.14 outlines the prediction results of the LSTM network. Similar to the 1DCNN, the 

trained LSTM network was utilized to predict on noisy data of three different levels. The 

performance of the network on noisy and noiseless data is quantified using the NOWP 

parameter. Figures 8.15, 8.16 and 8.17 show the performance of the trained model on noisy 

data of SNR20, SNR10 and SNR5 respectively. 
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Figure 8.14 Prediction Results: True vs Predicted Plot for LSTM 

  

Figure 8.15 Prediction results on data with noise of SNR20 for LSTM 
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Figure 8.16 Prediction results on data with noise of SNR10 for LSTM 

 

Figure 8.17 Prediction results on data with noise of SNR5 for LSTM 
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       The limitations of the LSTM network are similar to that of the 1DCNN architecture. 

Therefore the reasons might be similar to the ones explained for the 1DCNN architecture. 

The performance of the network on noisy and noiseless data is quantified as mentioned 

before using the NOWP parameter. The NOWP plot is shown in Figure 8.18. The 

performance of the LSTM network on noisy data is seen to be similar to the performance on 

noiseless data. Unlike the 1DCNN, the predictions do not deteriorate in the presence of noise 

of various levels. 

  

Figure 8.18 NOWP for the predictions on noisy and noiseless data for LSTM network 

       The performance of the two deep models i.e. 1DCNN and LSTM on noiseless data is 

comparable as seen in Figure 8.19 where the NOWP is plotted for both in presence and 

absence of noise in data. But the LSTM model has the edge when it comes to predictions on 

noisy data. It comfortably outperforms the 1DCNN model in the presence of noise. For the 

1DCNN model, the performance clearly deteriorates as noise is added, but the performance 

of the LSTM network is consistent even as the noise levels are increased. The downside of 

the LSTM architecture is that the training time is very high compared to the 1DCNN 
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network. This is evident in Figure 8.20 where the training time per epoch for the LSTM is 

almost 30 times that of the 1DCNN network. Even though convergence is relatively quicker 

in a LSTM network, the overall training time is naturally quite high when compared to 

1DCNN. Higher accuracy of LSTM comes with longer training time which may not be 

feasible with big datasets. There should be a trade-off between training time and accuracy of 

the results depending upon the complexity of the problem in hand. It may be useful to start 

with both 1DCNN and LSTM with small subsets of the training set and compare the results 

and decide the trade-off. Another way of solving this dilemma is to develop a hybrid network 

like the Convolutional Recurrent Neural Network (CRNN). [43] 

  

Figure 8.19 NOWP for the two deep architectures in the presence and absence of noise in the 

signal 
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Figure 8.20 Training time per epoch for the two deep architectures (1DCNN and LSTM) 

 

8.3 Training Results with Dense Neural Network 

In the previous two sections, we presented the training and prediction using two Deep 

Learning architectures i.e. the 1D Convolutional Neural Network and the Long Short Term 

Memory Networks. Though the models perform very well even in presence of high noise 

levels, the current framework is incapable of predicting the Shear Modulus (G12) (See Section 

6.1). In this section we present the results of a DNN trained on data collected using the DC
®

 

software. The data collection process is explained in detail in Chapter 7. This framework is 

capable of predicting the shear modulus due to the incorporation of the SH0 mode physics in 

our dataset. As mentioned in Chapter 7, we have considered 8 composites widely used in the 

industry. We have generated and collected group velocity (Cg) dispersion curves for the eight 

unidirectional composites with three different layups ([0 0]s, [0 0 0 0]s, [0 0 0 0 0 0 00]s) and 

three different thickness ( 1mm, 2 mm and 3 mm). This results in generating a total of 72 

(8*3*3) different dispersion plots. Different layups and different thickness of the composites 

were introduced to increase the complexity of the problem in hand. The training procedure is 
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illustrated in the Figure 8.21. We use the dispersion curve data (i.e. Cg v/s frequency) for the 

A0, S0 and SH0 mode as our input features, while the output labels are the six material 

properties (ρ, E1, E2, v12, v23, G12). The Cg information for all A0 modes of all the 72 

combinations as a function of the frequency vector is concatenated into a single input vector. 

Similarly, all S0 and SH0 modes are concatenated respectively to form three long input 

feature vectors. 

 

       Figure 8.21 Research Flow for the ML based approach 

       The architecture of the dense neural network used is shown in Table 8.4.  The training 

and testing dataset is split in a 39:1 ratio. The training dataset is further split in to a separate 

training and validation dataset with a 4:1 ratio. A learning rate of 1e
-3

 and a batch size of 8 

are found suitable for this architecture. The network is run over 100 epochs. We have used 

similar metrics and loss functions to the ones used for 1DCNN and LSTM to evaluate the 

performance. 
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Table 8.4 DNN (MLP) Architecture 

Layer Activation Output (Units) Parameters 

Dense ReLU 512 2048 
Dropout (0.0001) - - 0 

Dense ReLU 256 131328 
Dense ReLU 64 16448 

Dropout (0.0001) - - 0 
Dense Linear 6 590 

Total parameters 
  

150,214 
 

       The loss (MSE) curve is shown in Figure 8.22, while the MAE curve is shown in Figure 

8.23. The R
2 

coefficient is shown in Figure 8.24. It is seen that the model trains very well and 

attains a MAE value of only 0.84 and a very high R
2
 coefficient of 0.98. The spikes in the 

loss and MAE curve are an unavoidable consequence of Mini-Batch Gradient Descent in 

Adam (batch size=8). Some mini-batches have 'by chance' unlucky data for the optimization, 

inducing those spikes that are seen in the cost function. 

  

Figure 8.22 Loss curve: MSE vs Epochs for the DNN 
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Figure 8.23 MAE curve: MAE vs Epochs for the DNN 

 

 
 Figure 8.24 R

2
 coefficient curve: R

2
 coefficient vs Epochs for the DNN 
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       For the testing or predictions process, group velocity dispersion curves of previously 

unseen composites are fed in to the trained model. The prediction results are shown in Figure 

8.25 and in Table 8.5. It is seen that the predictions are very satisfactory for almost all cases. 

Unlike the prediction by 1DCNN and LSTM, the DNN can predict any value of E2 

accurately. Moreover it is also able to accurately predict the shear modulus G12. The 

drawback here is the poor predictions on Poisson’s ratio v23 (highlighted in red in the Table 

8.5 and Figure 8.25). In most cases (except the Poisson’s ratio v23) , the network was able to  

predict the material properties accurately. The accuracy of the predictions on the Poisson’s 

ratio v23 is only about 55% compared to the accuracies of the other material properties that 

are more than 95%. 

        Figure 8.26 shows the NOWP for all three models we have used in the study. A0 and S0 

waveforms were used as inputs for the deep models, while velocity dispersion data was used 

for the DNN. 1DCNN has the least NOWP and DNN the most. Though, all the NOWP for 

the DNN are resulting from the poor predictions on the Poisson’s ratio v23. In terms of 

predicting other material properties, the DNN seems to do a much better job as it can 

effectively predict E2 and G12 accurately. But the dispersion data has been collected using the 

DC
®
 software that is not developed for the purpose of generating lots of dispersion curves. It 

is rather a software to generate a couple of dispersion curves to study the dispersion 

phenomenon of the guided wave. Hence data collection and then training using that data is 

not probably a solution that would be viable for real time use. We have only used it in this 

thesis, for we wanted our framework to be capable of predicting all the material properties 

including the Shear Modulus.  
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Figure 8.25 Prediction results using DNN 

Table 8.5 Prediction Results using DNN 

Example  ρ (kg/m
3

) E
1
(Gpa) E

2
(Gpa) G12(GPa) v

12
 v

23
 

Example 1 True 1500 161 9.25 6 0.34 0.41 

 
Predicted 1520 150.28 9.35 6.28 0.31 0.58 

Example 2 True 1450 119.99 8.25 6.02 0.32 0.45 

 
Predicted 1530 122.84 8.32 6.18 0.34 0.65 

Example 3 True 1581 125.5 8.8 4.13 0.34 0.45 

 
Predicted 1582 129.3 8.85 4.40 0.33 0.61 

 

     The training time per epoch for the DNN is 3 ms. Figure 8.27 shows the training time per 

epoch for the three models. The overall training time is the least for the DNN, while 1DCNN 

also takes similar computational time. The LSTM lags behind the other two architectures in 

this regard as it takes about 120 ms per epoch which is 30 times more than the 1DCNN and 

40 times more than the DNN. Do note that the comparisons are made for the deep 

architectures using only the noiseless data. It does not make sense to add noise to the 

dispersion data as they are purely simulated, and aren’t subject to a lot of uncertaininity.  
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Figure 8.26 NOWP using DNN 

 
Figure 8.27 Training time per epoch using DNN
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CHAPTER 9 

CONCLUSIONS AND FUTURE WORK 

 

9.1. Conclusions 

In this thesis, we have explored different learning models to estimate and predict the elastic 

properties of composites using Ultrasonic Guided Waves. We have evaluated the 

performance of the models by predicting on data in the presence and absence of noise. Some 

of the major conclusions that can be drawn from this thesis are: 

1. We used two different modelling methods to simulate guided waves in a composite, and 

showed how at the operating frequency range, and by using fundamental modes we can 

geometrically scale down a 2D model to a 1D waveguide. 

2. It is seen that with A0 and S0 time histories as inputs and five properties as outputs, and 

in this frequency range, the inverse problem of property identification is limited by its 

uniqueness. Due to this, it is not possible to measure shear modulus using fundamental 

modes.  

3. This being a conceptual work, and with a limited amount of dataset, the predictions from 

the 1DCNN and the LSTM models on unseen examples are very satisfactory. Further, the 

performance of these models on noisy data is also satisfactory. It can be concluded that 

the two deep neural networks can learn the inherent relationship between ultrasonic 

guided wave signal and material properties. It can also be concluded that the deep models 

are robust to noise of various levels.  

4. It is seen that the LSTM network is better in terms of performance when it comes to 

noisy data, but LSTM’s also take longer time to learn. Therefore, there is a trade-off 

required depending on the complexity of the problem in hand.  
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5. ML based DNN performs very well generally but is limited on its predictions on 

Poisson’s ratio. Moreover, the data collection for this particular method is time 

consuming and not viable for real time use. 

6. Some of the other research works have demonstrated the use of a single transmitter and 

multiple sensors. Using multiple sensors may not be a feasible option for a lot of 

applications. On the other hand, we have demonstrated the use of UGW for property 

identification using a single transmitter and a single sensor. 

7. Previous research is more inclined to solve the inverse problem of materials 

characterization using global optimisation schemes like GA, SA etc. With this research, 

we have obtained good results with deep learning networks trained using Adam 

optimization (variant of stochastic gradient descent with added momentum and adaptive 

learning rate) on mean square loss function.  

8. Heuristics based GA and SA takes a long time with very high computation resources. 

With neural networks and stochastic gradient descent, the training can be accelerated 

with the use of GPUs.  

9. The learning is necessary to automate a materials characterization problem. Neural 

networks provide that automation since it learns the inverse problem by minimising the 

loss function on the dataset.  

10. It is also required the estimation is real time and quick. Unlike previously explored 

methods like GA or SA, any new prediction here takes only 1 ms which enables the 

deployment of the algorithms in real time scenarios. As per the author’s knowledge, there 

is no literature available on the application of deep learning techniques for the 

identification of materials properties. Our research demonstrates the application of this 

concept clearly, and even in the absence of experimental results, the performance is very 



 

104 

 

good even with high noise content. Our future research will be focused towards 

implementation on real experimental data. 

 

9.2. Future Work 

The results presented in this thesis can be looked at as a sort of starting step towards a bigger 

problem that is using Deep Learning for Material Property Identification. Though our models 

perform very well and predict with accuracies more than 85%, they are still subject to 

improvements. One approach to improve the existing framework would be to further refine 

our FEM and SFEM models. For example, if one can optimize the FEM model better to 

reduce the computational time, a dataset can be created using the FEM model instead of the 

SFEM model. The FEM model incorporates more physics compared to the SFEM model as 

the wave modes are coupled. This might lead to better predictions. Another possible direction 

to pursue would be to incorporate experimental data in the framework. There are two way to 

do this. The first being using a model trained on simulation data to predict on experimental 

data. If the performance is not satisfactory, some of the experimental data can even be 

included in the training process itself. 

       The current work presented is limited to composite laminates. The framework can be 

extended easily to other materials like metals, soft polymers etc. Experimental determination 

of material properties of soft polymers is specifically hard due to the flimsy nature of the 

materials which make it sometimes impossible to conduct experiments on. 

 

9.3. Thesis Contributions 

There is little or no literature available on the application of deep learning techniques for the 

identification of materials properties. The thesis demonstrates the application of this concept 

clearly, and even in the absence of experimental results, the performance of all the learning 
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models used is very good even with high noise content. We aim to propose a complete 

framework complete with intermediate data analysis algorithms and different learning models 

for solving the problem of material property identification. The proposed framework can 

possibly be extended to characterize other materials used in NDE/SHM 
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APPENDIX A 

 

Symmetric Solution 

For a symmetric solution, the ux component of the particle displacement vector and shear 

stresses are symmetric about the mid-plane across the thickness of the 2D infinite plate. 

                     𝑢𝑥(𝑥, −𝑑) = 𝑢𝑥(𝑥, 𝑑)                          𝜏𝑦𝑥(𝑥, −𝑑) = −𝜏𝑦𝑥(𝑥, 𝑑) 

                     𝑢𝑦(𝑥, −𝑑) = −𝑢𝑦(𝑥, 𝑑)                       𝜏𝑦𝑦(𝑥, −𝑑) = 𝜏𝑦𝑦(𝑥, 𝑑)                (A.1) 

       Symmetric boundary conditions also include traction free surfaces, therefore a part of 

Equation (A.2) becomes: 

                                                      𝜏𝑦𝑥(𝑥, −𝑑) = −𝜏𝑦𝑥(𝑥, 𝑑) = 0                                  (A.2)                                                                       

   𝜏𝑦𝑦(𝑥, −𝑑) = 𝜏𝑦𝑦(𝑥, 𝑑)=0 

       Using the general solution for potentials in Equations (3.22) and (3.23), and expressions 

for stress and displacements, Equation (A.2) can be expressed as: 

−2𝑖𝜉𝐴2 sin 𝑝𝑑 + 𝐵1(𝜉
2 − 𝑞2) sin 𝑞𝑑 = 0                  (A.3) 

𝐴2(𝜉
2 − 𝑞2) cos 𝑝𝑑 − 2𝑖𝜉𝐵1 cos 𝑝𝑑 = 0                   (A.4) 

       A non-trivial solution for the above linear system of equations exists if the determinant 

in the above Equation vanishes. 

𝛥𝑆 = (𝜉2 − 𝑞2)2 sin 𝑞𝑑 cos 𝑝𝑑 + 4𝜉2𝑝𝑞 cos 𝑞𝑑 = 0       (A.5) 

       Rearranging, the dispersion relation for the symmetric mode is obtained. 

tan𝑝𝑑

tan𝑞𝑑
=

(𝜉2−𝑞2)
2

4𝜉2𝑝𝑞
                                                           (A.6) 

       Where p and q have been described in Equation (3.18) and (3.19) respectively. 
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APPENDIX B 

 

Anti-Symmetric Solution 

For an anti-symmetric solution, the ux component of the particle displacement vector and 

shear stresses are anti-symmetric about the mid-plane across the thickness of the 2D infinite 

plate. 

                     𝑢𝑥(𝑥, −𝑑) = −𝑢𝑥(𝑥, 𝑑)                          𝜏𝑦𝑥(𝑥, −𝑑) = 𝜏𝑦𝑥(𝑥, 𝑑) 

                     𝑢𝑦(𝑥, −𝑑) = 𝑢𝑦(𝑥, 𝑑)                       𝜏𝑦𝑦(𝑥, −𝑑) = −𝜏𝑦𝑦(𝑥, 𝑑)                  (B.1) 

       The anti-symmetric boundary conditions also include traction free surfaces, therefore a 

part of Equation (B.1) becomes: 

                                                      𝜏𝑦𝑥(𝑥, −𝑑) = 𝜏𝑦𝑥(𝑥, 𝑑) = 0                                        (B.2)                                                                       

     𝜏𝑦𝑦(𝑥, −𝑑) = −𝜏𝑦𝑦(𝑥, 𝑑)=0    

       Using the general solution for potentials in Equations (3.22) and (3.23), and expressions 

for stress and displacements, Equation (B.2) can be expressed as: 

2𝑖𝜉𝐴1 cos 𝑝𝑑 + 𝐵2(𝜉
2 − 𝑞2) cos 𝑞𝑑 = 0                    (B.3) 

𝐴1(𝜉
2 − 𝑞2) sin 𝑝𝑑 − 2𝑖𝜉𝐵2 cos 𝑝𝑑 = 0                     (B.4) 

       A non-trivial solution for the above linear system of equations exists if the determinant 

in the above Equation vanishes. 

𝛥𝑆 = (𝜉2 − 𝑞2)2 sin 𝑞𝑑 cos 𝑝𝑑 + 4𝜉2𝑝𝑞 cos 𝑞𝑑𝑠𝑖𝑛 𝑞𝑑 = 0       (B.5) 

       Rearranging, the dispersion relation for the symmetric mode is obtained. 

tan𝑝𝑑

tan𝑞𝑑
=

4𝜉2𝑝𝑞(𝜉2−𝑞2)
2

(𝜉2−𝑞2)2
                                                   (B.6) 

       Where p and q have been described in Equation (3.18) and (3.19) respectively. 
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LIST OF PUBLICATIONS 

1. Karthik Gopalakrishnan, Mahindra Rautela and Yiming Deng ( submitted and accepted), 

“Deep Learning Based Identification of Elastic Properties Using Ultrasonic Guided 

Waves”, European Workshop on Structural Health Monitoring, July 2020. 

 

2. Rautela M, Karthik Gopalakrishnan, Yiming Deng and Gopalakrishnan S (in press). 

Ultrasonic Guided Waves Based Identification of Elastic Properties Using 1D-

Convolutional Neural Networks. 2020 IEEE International Conference on Prognostics and 

Health Management (ICPHM). 
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