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ABSTRACT

QUANTILE REGRESSION AND EXTREMES

By

Raka Mandal

The estimation of conditional quantiles of a response variable is of prime interest in many

statistical applications. Quantile regression (QR) is a powerful and popular method used

extensively to estimate conditional quantiles of a response Y in the presence of a covariate

X. Moreover, QR can quantify the effect of covariates at different quantile levels. While

modeling a rare event, quantiles at high or low tails are of particular interest. In such cases,

QR has inevitable shortfalls. Since we have fewer data at tails, QR estimates suffer from

high variability. The performance deteriorates further when the underlying distribution is

heavy-tailed. Estimation of extreme quantiles is therefore challenging, especially when the

data comes from a heavy-tailed distribution.

Extreme value theory (EVT) provides mathematical tools to analyze rare events. In prac-

tice, EVT can be used to assess the probability of more extreme events than any previously

observed occurrences. The scope of application of EVT includes financial risk assessment,

extreme climate modeling, network anomaly detection, etc. Statistical modeling using EVT

can be carried out in two approaches: Block maxima and Peak over Threshold (POT). In the

block maxima approach, Generalized extreme value (GEV) distribution is fitted to a series

of maximums derived from the observations. In the POT approach, one fits Generalized

Pareto (GP) distribution to observations exceeding a certain threshold.

An important problem while using the POT approach is the choice of the threshold.

Models based on EVT use asymptotic arguments to approximate the tail behavior. Hence,

the choice of the threshold is crucial in order to fit the GP distribution to the data. POT

approach is a popular tool for the estimation of extreme quantiles in heavy-tailed data

wherein the excesses over a threshold are modeled as a function of the covariate X. However,



the efficiency of POT is severely compromised when the threshold itself varies as a function

of the covariate.

This dissertation proposes an integrated approach for estimating extreme conditional

quantiles from a heavy-tailed distribution. We begin with the case where the threshold does

not vary as a function of the covariate X. Using the POT approach to model the scaled

conditional excess, we propose an estimator for high conditional quantile. We establish

large sample properties of our estimator in the context of the GP distribution. Through

numerical investigations, we demonstrate the superiority of our method over QR at higher

quantiles. However, this method is not adequate when the threshold itself varies as a function

of the covariate X. In order to circumvent this issue, we propose an extension of our

approach, which uses standard QR to extract information on the threshold and then model

the residuals as a GP distribution with covariate dependent parameters. We establish the

asymptotic properties of our method in the context of the GP distribution. Extending

further, we thoroughly study the asymptotic performance of this approach for a wide class of

heavy-tailed distributions using numerical simulations. Using simulation studies, we compare

our approach with existing methods used in estimation of high conditional quantiles for

heavy tailed distributions. As an application, we have implemented our method for the task

of precipitation downscaling with data obtained from the Vancouver International Airport

weather station. We have also demonstrated how our method of covariate adaptive threshold

selection can be implemented in practice.
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CHAPTER 1

INTRODUCTION

In many practical applications, we are interested in events that are rare but have very

significant consequences. For example, a sudden heavy rainfall can abruptly increase the

volume of water inside a dam. The water then released can cause flooding in the lowland

areas. Moreover, depending on the architecture and other attributes, the dam can break

if the water level exceeds a certain threshold. Hence it is vital to take into account the

extreme climate pattern while constructing the dam. Suppose that rainfall data from the

past 50 years from the location is available. The project aims to build a dam that can

sustain for the next 100 years. How can we predict an event that might happen once in

100 years with observations from the past 50 years? Extreme Value Theory provides the

theoretical justification of extrapolation beyond a range of observations. One can derive

natural estimators of relevant quantities like extreme quantiles, return levels, etc. We can

expect these estimators to have desirable analytical properties. In the example given above,

we might be interested in predicting 0.99 quantile of the daily rainfall at the construction

location.

The scope of application of Extreme Value Theory (EVT) is vast. For example, Tawn

(1992) used EVT to estimate probabilities of annual maximum hourly sea-levels. This in-

formation is necessary to accurately predict the height of sea defenses in the coastal areas.

Jansen & Vries (1991) have successfully applied EVT to analyze financial data and con-

cluded that the market crash of 1987 was not an outlier. Gilli & këllezi (2006) demonstrated

the application of extreme value distributions for risk assessment with major stock market

indices. Scarf & Laycock (1996) studied the analysis of corrosion extremes with EVT. The

main difference between traditional statistical modeling and EVT is that we generally model

the mean in the former while EVT models the extreme quantile, maxima, or some higher

order statistic. In this article, we are going to focus on methods for extreme tail quantiles.

1
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Several approaches have been proposed to address extreme tail quantile estimation based

on EVT. In the nonregression setup, the estimation of tail quantiles using EVT is based on

the assumption that observations are independently and identically distributed. For exam-

ple, Weissman (1978) approached the high quantile estimation problem where only the k

largest observations from a sample of size n are available, k < n. The choice of the optimal

sample fraction k is vital to minimize the quantile estimate’s asymptotic mean square error.

As pointed out by Li et al. (2010), one can focus on the bias reduction of the parameter

estimates that produce a reduced bias quantile estimator in turn. The first class of bias

reduction methods uses optimal k at the same rate as the theoretical optimal rate of the

tail index estimator (e.g., Beirlant et al. (2002), Gomesa & Martins (2002)) while the second

class of methods uses a larger order of k than the theoretical optimal rate (e.g., Feuerverger

et al. (1999), Peng & Qi (2004), Caeiro & Gomes (2009)). Although these methods are

developed for the nonregression setup, they are a good starting point based on which many

extensions for the regression framework can be adapted.

In a regression framework, we want to incorporate information on a covariate X into our

analysis. The foundation of regression quantiles has been laid by Koenker & Bassett (1978),

which uses liner quantile functions to explore the relationship between the response Y and

a covariate or a set of covariates X. The scope of regression quantiles proposed by Koenker

& Bassett (1978) is not just limited to tail quantiles. With quantile regression, we can

study the impact of X on different quantiles of the response distribution. There are many

advantages to choosing quantile regression over mean regression. Firstly, quantile regression

gives us a complete picture of the conditional response distribution. Secondly, it is robust

to outliers. Thirdly, it is a distribution free approach so we can apply it to non-Gaussian

models. Abrevaya (2001) used regression quantiles to study the effects of several factors

linked to newborns’ lower birthweights. Umantsev & Chernozhukov (2001) used regression

quantiles to model Value-at-Risk, a measure of market risk widely used in finance. Buchinsky

(1994) examined the effects of education and experience at different quantiles of the wage

2



distribution using quantile regression.

Although quantile regression serves as a basis, the large sample theory of quantile regres-

sion does not apply far enough into tails. For details, see Chernozhukov (2005). Moreover,

data sparsity at tails further amplifies the variability of the estimate. Naturally, behavior at

tails is contingent on the nature of the underlying distribution. Therefore, one has to build

an alternative model for tails. Many authors have proposed quantile regression or a varia-

tion of it to predict extreme quantiles. For example, Friederichs & Hense (2007b) proposed

censored quantile regression to predict high precipitation. Taylor (2008) used exponentially

weighted quantile regression to analyze stock market data. Quantile regression methods

tailored for higher quantiles have been proposed for modeling extreme weather phenomenon

like tropical cyclones (Elsner & Jagger (2008), Jagger & Elsner (2008)), severe snowstorms

(Velthoen et al. (2019a)) and heatwaves (Kyselý (2002)). Chernozhukov (2005) used the

extreme value theory framework by Feigin & Resnick (1994) to develop a theoretical un-

derstanding of the linear quantile regression models at the tail. Chernozhukov (2005) has

shown that the asymptotic distribution of extreme quantiles depends on the tail index1 and

the regression design. This tail index is a crucial indicator of the domain of attraction 2 of

the underlying process. Not all quantile estimation methods can capture the true quantile

function if the distribution belongs to the heavy-tailed3 domain of attraction.

To the best of our knowledge, there are very few methods that have been tailored for

estimating extreme quantiles in heavy tailed models. However, as pointed out by Wang &

Li (2013), the existing techniques can be broadly grouped into four classes. The first class

of methods uses fully parametric models developed using EVT. Generally, these models fit

the Generalized Extreme Value (GEV) or the Generalized Pareto (GP) distribution to the

data. Here, the information on the covariate X can be incorporated via a combination of

the location, scale, or the shape parameters of the GEV or GP distributions. These methods

1See definition 2.3.1
2See definition 2.3.1
3See definition 2.3.1
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usually require a choice of covariate dependent tuning parameter, e.g., threshold value. More

details can be found in Davison & Smith (1990), Davison & Ramesh (2000), Hall & Tajvidi

(2000), Wang & Tsai (2009), and Chavez-Demoulin & Davison (2005). The second class of

models uses local estimation to extend the EVT methods in the regression framework. Here,

the high conditional quantiles of Y givenX = x is estimated using the observations in a small

neighborhood of x. For details, see Gardes & Girard (2010), Daouia et al. (2011), Gardes &

Girard (2010), and Velthoen et al. (2019b). The efficiency of this class of method depends

on the richness of the data in the neighborhood of x. The third class of models uses quantile

regression directly to estimate extreme quantiles. More details can be found in Bremnes

(2004), Friederichs & Hense (2007a) and Jagger & Elsner (2008). The fourth and final class

of methods uses a combination of quantile regression and EVT while imposing some suitable

assumptions of the tail behavior of the underlying distribution. Chernozhukov & Du (2006)

and Wang et al. (2012) proposed methods in which the intermediate conditional quantiles

are estimated using QR and used to extrapolate to the extreme quantiles. These methods

are developed assuming that the target quantile functions are linear in the covariates and

the distribution is in the maximum domain of attraction of a heavy tailed distribution.

In this article, we propose another approach for estimating high conditional quantiles us-

ing EVT and quantile regression, where we use the GP distribution as the basis of our model.

Pickands (1975) first suggested using the GP distribution to model the upper tail of a distri-

bution and Davison & Smith (1990) extended this method for the regression setup. There are

several advantages of using GP distribution to model tails. Firstly, by Pickands–Balkema–de

Haan theorem, the exceedance over a high threshold of an arbitrary heavy tail distribution

can be well approximated by GP. Hence, regardless of the original distribution, GP can

approximate the tail behavior if it is heavy tailed. Secondly, the analytic behavior of the

parameter estimates of GP is well studied and they have desirable asymptotic properties.

This is useful for studying the behavior of different statistics based on the parameter esti-

mates. Nonetheless, approximation by GP is contingent upon the selection of an appropriate
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threshold. In a non-regression settings, the threshold is usually determined via model diag-

nostics or some nonparametric tests which assess the goodness of the fit (Langousis et al.

(2016)). These methods can be adapted in a regression framework when the threshold is

not dependent on the covariate X. However, the problem becomes challenging when the

threshold changes with X. As far as we know, the problem of covariate adaptive threshold

selection has not been addressed. In this dissertation we propose a solution to this problem

which in turn facilitates the estimation of extreme conditional quantiles.

Our contribution in this article can be summarised as following. Our approach provides

consistent estimation of quantiles for the GP family of distributions featuring a non negative

tail index. Through numerical investigations, we show that our method can overcome the

shortcomings of the standard Quantile Regression (Koenker & Bassett (1978)) far in the tail

when the distribution is heavy tailed in nature. Moreover, we propose a generalization of

our method which can accommodate a large class of distributions in the heavy tail domain

of attraction. Selection of a covariate adaptive threshold is a nontrivial problem in this

case. Through several examples, we demonstrate the choice of an optimal threshold for

implementing our method. Our numerical investigations also show that our method provides

a robust estimation of extreme quantiles for heavy tailed distributions. Wang et al. (2012)

has proposed a semi-parametric approach for estimating higher conditional quantiles in the

context of heavy tailed distributions. We demonstrate the superiority of our approach over

Wang et al. (2012) in the context of a Pareto or a Generalized Pareto distribution. When

the underlying distribution is in the heavy-tailed domain of attraction, we show that with

appropriate choice of the threshold, our approach is as efficient as Wang et al. (2012). Our

approach is computationally efficient than Wang et al. (2012) which requires estimation of

a number of intermediate regression quantiles. Moreover,it is also easy to implement in

practice and we demonstrate it though an application in the real data. The contents of the

rest of the thesis is organized as below.

Chapter 2 proposes a method for estimating conditional quantiles from a regression model
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where the scale is modeled as a function of the covariateX while the location is not dependent

X. Since the threshold is independent of the covariate, a direct adaptation of the POT

approach in Davison & Smith (1990) is shown to outperform the quantile regression at high

conditional quantiles. We establish the asymptotic properties of the proposed estimator

when the true model is GP. Through numerical investigations, we establish the efficiency

of our method over standard Quantile Regression for the case when the observations are

distributed according to a GP distribution.

Estimating conditional quantiles with GP when the threshold itself varies as a function

of the covariate is challenging. Chapter 3 proposes an extension of our method in Chapter 2,

which can be used for a covariate adaptive threshold selection. We show that our proposed

extension offers a significant improvement over our proposal in chapter 2 and standard Quan-

tile regression through numerical investigations. Also, we establish the asymptotic properties

of our estimator in the context of the GP distribution. The selection of a proper threshold

is vital for applying our method in practice where we do not know the exact underline dis-

tribution. Here, we give a guideline to choose an appropriate threshold when the underlying

distribution is a heavy tailed distribution from the Fréchet domain of attraction. We also

show that our proposed method can significantly reduce computational complexity, which

is usually associated with the optimization of the quantile loss function. Extending further,

we thoroughly study the asymptotic performance of our approach for a wide class of heavy

tailed distributions via numerical simulations. We compare the performance of our approach

with Wang et al. (2012) in estimating conditional quantiles for a variety of distributions in

the heavy tailed domain of attraction. Finally, we implement our method to predict extreme

precipitation with the data obtained from the Vancouver International Airport weather sta-

tion. We end this dissertation with some discussions regarding our proposed method in

chapter 4. Here we also propose some future directions that can be pursued.
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CHAPTER 2

QUANTILE REGRESSION AND ESTIMATION OF CONDITIONAL
QUANTILES

2.1 Introduction

The estimation of high conditional quantiles of a response variable is of prime interest

in many statistical applications. Quantile regression is a powerful and popular method for

this task. One can estimate the effects of the covariates at different conditional quantiles of

the response using quantile regression. For example, Friederichs & Hense (2007b) used me-

teorological information obtained from global climate model projections to predict localized

high precipitation. Lower infant birth weight can lead to severe health conditions. Abrevaya

(2001) used quantile regression to quantify the effects of maternal behavior, demographics,

etc. on different quantiles of the birth weight distribution. Umantsev & Chernozhukov

(2001) analyzed factors associated with high risk in finance. Although the scope of quan-

tile regression applications is vast, Chernozhukov (2005) pointed out that the large sample

theory of quantile regression is not applicable sufficiently far in the tails. Hence, we should

proceed with caution while using quantile regression at tails.

The literature of modern extreme value theory has provided us with elegant tools to

quantify rare events. In the nonregression framework, the problem is familiar and well

explored. For details, see Weissman (1978), Li et al. (2010), and Embrechts et al. (1997). In

the regression framework, one can model the extreme quantiles by fitting a fully parametric

model using the generalized extreme value or the generalized Pareto distribution. See Coles

et al. (2001) for details.

In this chapter, we explore different approaches for estimating conditional quantiles. We

start with quantile regression method proposed by Koenker & Bassett (1978) in section 2.2.

In section 2.3, we introduce fundamental results from the extreme value literature. In section
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2.4 we introduce the statistical modeling framework using GP that serves as an basis for our

work. In section 2.5, we propose our method for estimating conditional quantile using POT

approach. We provide large sample properties of the estimator in the context of the GP dis-

tribution. In section 2.6 we demonstrate the efficiency of our method over standard quantile

regression. From our numerical investigation, we can see that quantile regression estimates

are not adequate for estimating higher conditional quantiles. Our proposed method can be

adapted for estimating high conditional quantiles, given the data follows GP distribution.

2.2 Quantile Regression

Consider a random variable Y with distribution function F and let 0 < τ < 1. Let

QY (τ) = inf{y : F (y) ≥ τ} be the τ quantile of Y and E(Y ) is the expected value of Y .

Then

E(Y ) = argmin
c

E(Y − c)2

Or we can say that the mean E(Y ) minimizes the square error loss. Consider the function

ρτ : R→ [0,∞) such that

ρτ (y) = y
(
τ − I[y<0]

)
=


yτ if y ≥ 0

(τ − 1)y if y < 0

Where τ ∈ (0, 1) is a fixed number and I[y<0] is the indicator function. The function ρτ in

figure 2.1 is often referred to as quantile loss function or tilted absolute loss function. This

is a convex function differentiable everywhere except at 0. Like mean, quantile of a random

variable can also be derived as a solution to a minimization problem. Following Koenker

(2005) one can easily verify that

QY (τ) = argmin
c

E
(
ρτ (Y − c)

)
(2.1)

QY (τ) is the minimizer of the quantile error loss ρτ . When τ = 0.5, minimizing equation

2.1 is equivalent to minimizing E|Y − c| which is the absolute error loss. In this case,

the solution is the median of Y . In the regression paradigm, one explores the relationship
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Figure 2.1: Quantile Loss Function

between the response Y and the covariate X. In order to do so, the covariate information

must be incorporated into the response in some form. In classical regression, one models

the the conditional mean of the response. When the conditional mean is a parametric

function of the covariates, i.e, E(Y |X) = f(X, β) one can estimate the conditional mean

function E(Y |X) by minimizing the square error loss function E(Y − f(X, β))2. Suppose

we have sample observations (yi, xi), i = 1, . . . , n. The estimation of the mean function can

be achieved by the method of least squares. One can minimize the sample analog of the

squared error loss
n∑
i=1

(
yi − f(xi, β)

)2
The method of least squares enjoys computational feasibility since the loss function is dif-

ferentiable. However, it does not give more insight into the conditional distribution of the

response. Also, it lacks robustness as it is sensitive to outliers. Koenker & Bassett (1978)

introduced quantile regression as a robust alternative to mean regression. Quantile regres-

sion can be viewed as an extension of classical mean model regression where the conditional

quantile is modeled as a function of the covariates. When the conditional quantile is mod-

eled as a parametric function of the covariates, i.e., QY |X(τ) = g(X, β) one can estimate it
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by minimizing Eρτ (Y − g(X, β)). With sample observations (yi, xi), i = 1, . . . , n one can

minimize the sample quantile error loss at τ quantile
n∑
i=1

ρτ
(
yi − g(xi, β)

)
(2.2)

By choosing different values of τ , one can obtain more insight into the conditional distribution

beyond the mean. Quantile regression methods are robust and do not rely on the Gaussian

error assumption. Since the quantile loss function is not differentiable, optimization of the

objective function in 2.2 is not straightforward. Koenker & Bassett (1978) has shown that

for linear quantiles, i.e., when

QY |X(τ) = g(X, β) = α(τ) +XTβ(τ)

one can estimate the τ quantile at X = x as

Q̂Y |x(τ) = α̂(τ) + xT β̂(τ)

α̂(τ), β̂(τ) = argmin
α,β

n∑
i=1

ρτ (yi − α− xTi β)
(2.3)

The minimization of equation 2.3 can be reformulated as a linear programming problem

and solved accordingly. Moreover, the optimization has to be done separately for every

choice of τ . Nonetheless, this classical quantile regression model can be adapted for a broad

class of regression problems. In Chapter 1, we have discussed how the presence of extreme

observations in the data can increase the challenge of consistent estimation of higher quantiles

by several manifolds. Extreme Value Theory (EVT) provides us some powerful tools to deal

with the analysis of rare events. To understand the challenges, we start with a few basics of

EVT.

2.3 Extreme Value Theory: Definitions and Results

Extreme value theory deals with rare events. Rare events are events that happen with

low probability near the upper or lower endpoints of the distribution function F . Intuitively,

the asymptotic behavior of the maximum (or minimum) can give us more insight into the
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upper (or lower) tail of the distribution. Let Y1, Y2, . . . be a sequence of independent random

variables with common distribution function F and let Mn = max(Y1, . . . , Yn). Let y+ =

sup{y : F (y) < 1}, the upper endpoint of the distribution function F . Then P (Mn < y) =

{F (y)}n for any y in the domain of F and Mn converges to y+ in probability as n → ∞.

Now,

lim
n→∞

{F (y)}n =


0 if y < y+

1 if y ≥ y+

Hence, in order to obtain a nondegenerate limit distribution, proper centering and scaling of

Mn are necessary. Suppose that there exists sequence of constants an > 0 and bn such that

lim
n→∞

P ((Mn − bn)/an < y) = lim
n→∞

Fn(any + bn) = G(y)

for some distribution function G and for all y in the domain of F . The natural question

that follows is what the possibilities of the limit are? We know from Central limit theorems

that with proper centering and scaling, the sum
∑n
i=1 Yi of iid random variables converge to

normal distribution. The answer is given by the following theorem, which is also a significant

result in the extreme value literature.

Theorem 2.3.1. (Fisher-Tippet-Gnedenko) Let Y1, Y2, . . . be independent random variables

with common distribution function F and let Mn = max(Y1, . . . , Yn). If there exists a se-

quence of constants an > 0, bn such that (Mn − bn)/an converges to a non degenerate

distribution G, i.e,

lim
n→∞

Gn(y) = lim
n→∞

P ((Mn − bn)/an < y) = lim
n→∞

Fn(any + bn) = G(y)

then, the only three possible forms of the limit are:

Gumble : G0(y) =exp(−e−y), y ∈ R

Frechet : G1,α(y) =exp(−y−α), y ≥ 0, α > 0

Weibull : G2,α(y) =exp(−(−y)−α), y ≤ 0, α < 0

(2.4)
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Theorem 2.3.1 says that if the limiting distribution of Fn(any+bn) exists, then there are

only three possible forms of the limit as given above. The limits of 2.4 can be collectively

thought as a member of a single family of distributions known as Generalized Extreme Value

(GEV) distributions. We say that Y follows standard GEV distribution with parameter ξ,

Y ∼ GEV(ξ) if

P (Y < y) = Gξ(y) = exp[−(1 + ξy)−1/ξ], 1 + ξy > 0, ξ 6= 0 (2.5)

Note that the support of Y is dependent on ξ. We have −1/ξ < y < ∞ for ξ > 0 while

−∞ < y < −1/ξ for ξ < 0. This naturally leads to two very different sub-classes of

distributions within the GEV family. The parameter ξ is a crucial indicator of the sub-class

and it is known as the extreme value index or tail index. For ξ = 0, the cdf in 2.5 is not

defined. Rather, we use the limit ξ → 0 which leads us to the Gumble distribution as

mentioned in equation 2.4.

lim
ξ→0

Gξ(y) = G0(y) = exp(−e−y), y ∈ R

Again, we can see that the support has changed to entire R from the ξ 6= 0 cases. This con-

cludes the third sub-class in GEV family: Gumble. In fact, the other two limits: Fréchet and

Weibull belong to the two different sub-classes mentioned above. With a little reparametriza-

tion α = 1/ξ and Y ∗ = 1 + ξY where Y ∼ GEV(ξ) we can see that Y ∗ ∼ G1,α for α > 0

and Y ∗ ∼ G2,α for α < 0.

We have seen that the behaviour of the GEV distribution is governed by the value of

the tail index ξ. Any change of location and scale does not affect ξ. Hence, the entire GEV

family can be summarised by introducing two additional parameters: µ̃ as location and σ̃ > 0

as scale. Let Ỹ = (Y − µ̃)/σ̃. Then Ỹ ∼ GEV(µ̃, σ̃, ξ) with

P (Ỹ < y) =


exp

[
−
(

1 + ξ(y−µ̃σ̃ )
)−1/ξ]

if ξ 6= 0

exp
[
− exp

(
y−µ̃
σ̃

)]
if ξ = 0

(2.6)

Where 1 + ξ(y−µ̃σ̃ ) > 0. When Y is standard GEV with µ = 0 and σ = 1, we simply say

Y ∼ GEV(ξ). The following definitions are useful to keep in mind for future use.
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Definition 2.3.1. (Domain of attraction) Suppose that Y1, Y2, . . .
iid∼ F andMn = max(Y1, . . . , Yn).

If

lim
n→∞

P ((Mn − bn)/an) < y) = lim
n→∞

Fn(any + bn) = G(y)

for some constants an > 0 and bn and G is a non-degenerate distribution, we say F belongs

to the domain of attraction of G.

From theorem 2.3.1, we know that there are three possible domains of attraction of F ,

namely Fréchet (ξ > 0), Weibull (ξ < 0) or Gumble ξ = 0. Moreover, F can belong to

only one of the three sub-classes. In practice, we can use the value of the tail index ξ to

identify the domain of attraction. Hence we adopt the notation F ∈ D(Gξ) to indicate that

F belongs to the domain of attraction of G with tail index ξ.

Definition 2.3.2. (Heavy-tailed distribution) F is a heavy-tailed distribution if F ∈ D(Gξ)

for some tail-index ξ > 0.

When F is known, one can easily find the quantile by inverting the cdf. Here we are

interested in a higher quantile τ close to 1 when F is unknown. We will now give an outline

of approximating a higher quantile of Y using EVT. Suppose u ∈ R. One can interpret

Y > u as an extreme event for high values of u. Consider the following quantity:

1− Fu(y) = P (Y > y + u|Y > u) =
P (Y > y + u)

P (Y > u)
=

1− F (y + u)

1− F (u)

The above quantity can be interpreted as the conditional exceedance probability over a

value u. We say Fu(y) = P (Y ≤ y + u|Y > u) is the excess cdf of Y over a threshold u. If

Yu = Y |Y > u, then P (Yu < y + u) = Fu(y). The following theorem gives us the limiting

distribution of Yu as u→∞.

Theorem 2.3.2. (Pickands–Balkema–de Haan) Let Y1, Y2, . . . be independent random vari-

ables with common distribution function F . Define the conditional distribution of excess as

Y − u|Y > u ∼ Fu.

Fu(y) = P (Y − u ≤ y|Y > u) =
F (u+ y)− F (u)

1− F (u)
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If F ∈ D(Gξ) for some ξ satisfying theorem 2.3.1 then for large enough u, Fu can be

approximated as

H(y) =


1−

(
1 + ξy

σ

)−1/ξ
if ξ 6= 0

1− e−
y
σ if ξ = 0

(2.7)

for some σ > 0.

Theorem 2.3.2 is also known as the second theorem in extreme value literature, while

theorem 2.3.1 by Fisher is known as the first theorem. The distribution H in theorem 2.3.2

is known as generalized Pareto (GP) distribution with scale σ and tail index ξ. The standard

GP distribution has scale σ = 1. We say Y ∼ GP(ξ) if

P (Y > y) =


(1 + ξy)−1/ξ if ξ 6= 0

e−y if ξ = 0

(2.8)

where y ≥ 0 if ξ > 0 and 0 ≤ y ≤ −1/ξ if ξ < 0. Just like in GEV, the range of Y depends

on ξ and leads to three different sub-classes within the GP family. Consider the following

reparametrization: Y ∗ = 1 + ξY and α = 1/ξ. Then, for α > 0, P (Y ∗ > y) = y−α, y ≥ 1

which is the standard Pareto distribution. When ξ < 0, we have a bounded distribution on

0 ≤ y ≤ −1/ξ with P (Y ∗ > y) = y−1/ξ. Finally, for ξ = 0, P (Y > y) = e−y is standard

exponential distribution with rate 1. The entire GP family can be represented by introducing

two additional parameters: σ for scale and µ for location. Let Ỹ = (Y − µ)/σ then we say

Ỹ ∼ GP (µ, σ, ξ) and

P (Ỹ > y) =


[
1 + ξ

(
y−µ
σ

)]−1/ξ
if ξ 6= 0

exp
[
−
(y−µ

σ

)]
if ξ = 0

Suppose F ∈ D(Gξ) satisfies theorem 2.3.1 with limn→∞ Fn(any+bn) following GEV(µ̃, σ̃, ξ).

According to theorem 2.3.2, for large values of u the distribution of the excess Yu is well

approximated by GP(µ = 0, σ, ξ) with σ = σ̃ + ξ(u− µ̃). The important thing to note here

is that the shape parameter ξ in GP is in fact the tail index in GEV. The scale parameter

σ is a function of GEV parameters and u.
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2.4 Statistical Modeling of Extreme Values with GP

Let Y denotes the univariate random response variable and X = (X1, . . . , Xp) denotes

the p dimensional random vector of covariates. (yi, xi); i = 1, . . . , n are random samples

from the joint distribution of Y and X. We also assume that Y ∼ FY |x. In the previous

section we have seen that if F ∈ D(Gξ) then for a large enough value u, the distribution of

the excess eu = Y − u|Y > u can be approximated as

F̄u(y) = P (Y − u ≤ y|Y > u) ≈
(

1 +
ξy

σ

)−1/ξ
, y ≥ 0, (1 + ξy/σ) > 0

for some σ > 0.In a parametric regression setup, one has to incorporate the covariates’

information in the parameters of the conditional distribution FY |x. This can be done in

several ways. Let us begin with the following model:

Y = (θ +XT γ)ε (2.9)

where θ ∈ R and γ = (γ1, . . . , γp) ∈ Rp are unknown parameters. XT γ = γ1X1 + · · ·+γpXp

with θ + XT γ > 0. We assume that ε ∼ GP(ξ) with some ξ > 0. Clearly, Y |x follows GP

distribution with µ = 0, tail index ξ and scale σ = σ(x) = θ + xT γ.

Our goal is to estimate quantiles from model 2.9. Let 0 < τ < 1 and QY |x(τ) = F−1
Y |x(τ).

Then from 2.8, we have

QY |x(τ) = (θ + xT γ)Qε(τ) =
(θ + xT γ)

ξ

[
(1− τ)−ξ − 1

]
(2.10)

Here Qε(τ) = 1
ξ [(1 − τ)−ξ − 1] is the τ quantile of standard GP distribution. We need to

estimate θ, γ and ξ from the data. We can obtain these parameters from maximizing the log
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likelihood

l(θ, γ, ξ) = −
n∑
i=1

dF (yi|xi)

= −
n∑
i=1

log
1

σ(xi)

(
1 +

ξyi
σ(xi)

)−1
ξ
−1

=
n∑
i=1

log σ(xi) + (1 +
1

ξ
)
n∑
i=1

log
(

1 +
ξyi
σ(xi)

)
=

n∑
i=1

log(θ + xTi γ) + (1 +
1

ξ
)
n∑
i=1

log
(

1 +
ξyi

θ + xTi γ

)
(2.11)

Note that 2.11 is valid if σ(x) = θ + xTi γ > 0. Also, there is no analytical solution for

2.11. Since the range of GP depends on its parameters, numerical optimization of 2.11 needs

separate treatment for ξ < 0. From now onward, we will only focus on the methods of

parameter estimation for ξ ≥ 0. Given ξ ≥ 0, the support of GP is unbounded above. We

numerically optimize 2.11 with the constraints ξ > 0 and θ + γxi > 0 for i = 1, . . . , n. Let

θ̂, γ̂, ξ̂ = argmin
θ,γ,ξ

l(θ, γ, ξ) = argmin
θ,γ,ξ

{ n∑
i=1

log(θ + xTi γ) + (1 +
1

ξ
)
n∑
i=1

log
(

1 +
ξyi

(θ + xTi γ)

)}
We propose the following estimator for model 2.9 by plugging in the estimators in 2.10 we

propose to estimate the conditional quantile as

Q̂Y |x(τ) =
(θ̂ + xT γ̂)

ξ̂

[
(1− τ)−ξ̂ − 1

]
(2.12)

Note that by theorem 2.3.2, we can reasonably approximate quantiles from model 2.9 by

2.12 as long as Y |x ∼ F ∈ D(Gξ) for some ξ > 0. What happens when we extend model 2.9

as

Y = φ+ (θ + γX)ε (2.13)

where φ ∈ R and θ + γX > 0 and ε ∼ GP(ξ) with Y |x ∼ GP(φ, θ + xT γ, ξ). Now we have

to estimate an additional parameter φ. We begin with our proposal in the following section.
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2.5 Proposed Method: GP for Scale Models

Let us assume the following extension of the regression model:

Y = φ+ (θ +XT γ)ε (2.14)

Where φ ∈ R and γ = (γ1, . . . , γp) ∈ Rp are unknown parameters. XT γ = γ1X1+· · ·+γpXp.

We assume that ε ∼ GP(ξ) for some ξ > 0. Clearly, here Y |x follows GP distribution with

tail index ξ, scale σ(x) = θ + xT γ and location µ = φ. Hence

P (Y > y|x) =

[
1 +

ξ(y − φ)

σ(x)

]−1/ξ
Note that in model 2.14, the true τ quantile is given by

QY |x(τ) = φ+ (θ + xT γ)Qε(τ) = φ+
(θ + xT γ)

ξ

[
(1− τ)−ξ − 1

]
(2.15)

We need to estimate the parameters φ, γ and ξ. If the true distribution of ε is GP, we can

numerically optimize 2.16 under the constraints ξ > 0, θ + xTi γ > 0 and yi − φ > 0 for all

i = 1, . . . , n.

φ̂, θ̂, γ̂, ξ̂ = argmin
φ,θ,γ,ξ

l(φ, θ, γ, ξ)

= argmin
φ,θ,γ,ξ

[
n log(θ + xTi γ) + (1 +

1

ξ
)
n∑
i=1

log
(

1 +
ξ(yi − φ)

θ + xTi γ

)] (2.16)

Then we can plug in estimates from 2.16 in 2.15 to obtain Q̂Y |x(τ). Note that the last

condition yi − φ > 0 adds n many more constraints in 2.16. In model 2.9 we had only n+ 1

constraints. Moreover, in many practical applications, the true distribution of ε might not

be GP. It can be some distribution in D(Gξ) with ξ > 0. Our aim is to find a reasonable

estimator for quantiles in regression models in a more general setup. We propose our method

in the following section.

2.5.1 Method of Estimation

Suppose that we have a random sample (yi, xi), i = 1, . . . , n from the distribution of (Y,X)

where yi ∈ R and xi = (xi1, . . . , xip) ∈ Rp. Y |x ∼ F where F ∼ GP(ξ) for some ξ > 0. Let
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τc be a fixed value such that 0 < τc < 1. Let y(1) = min(y1, . . . , yn). We fit a GP model to

ỹi = yi − y(1); i = 1, . . . , n. Clearly, ỹi ≥ 0. We can estimate θ, γ and ξ from the restricted

likelihood as:

θ̂, γ̂, ξ̂ = argmin
θ,γ,ξ

l(θ, γ, ξ) = argmin
θ,γ,ξ

[ ∑
i:ỹi>0

log(θ + xTi γ) + (1 +
1

ξ
)
∑
i:ỹi>0

log
(

1 +
ξỹi

θ + xTi γ

)]
(2.17)

with only n + 1 constraints: θ + xTi γ > 0 and ξ > 0. Here we do not estimate φ directly

form the GP likelihood. Our advantage is a huge gain in efficiency as we avoid n additional

constraints as described in 2.16. Finally, we propose the τ Quantile estimate for 2.15 as:

Q̂Y |x(τ) = y(1) +
(θ̂ + xT γ̂)

ξ̂

[
(1− τ)−ξ̂ − 1

]
= y(1) +

(θ̂ + xT γ̂)

ξ̂

[
(1− τ)−ξ̂ − 1

] (2.18)

Algorithm 1 can be used to find quantile estimates with our proposed method.

Algorithm 1: GP for scale family

1. Get ỹi = yi −min(y1, . . . , yn)

2. Get θ̂, γ̂, ξ̂ from 2.17

3. Given X = x, estimate the τ quantile as

Q̂Y |x(τ) = y(1) +
(θ̂ + xT γ̂)

ξ̂

[
(1− τ)−ξ̂ − 1

]

In the following proposition, we establish the consistency of algorithm 1 for GP distribu-

tion under the following compactness assumption on the covariate x.

Assumption (A1): |xi| ≤M for some M > 0.

Proposition 2.5.1. Let

yi = φ+ (θ + x>i γ)εi, εi
iid∼ GP (ξ).
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Let φ̂ = Y(1). With x̃i = [1, x>i ] and γ̃ = [θ, γ], let

γ̂, ξ̂ = argmin
c,d

[
n∑
i=1

log(x̃>i c) +

(
1 +

1

d

) n∑
i=1

log

(
1 +

d(yi − φ̂)

x̃>i c

)]
(2.19)

Estimate the τ quantile of Y as

Q̂Y |x(τ) = φ̂+
x̃>γ̂

ξ̂

(
(1− τ)−ξ̂ − 1

)
Then,

1.
√
n((γ̂, ξ̂)− (γ̃, ξ)) =⇒ N(0,Σ)

2.
√
n(Q̂Y |x(τ)−QY |x(τ)) =⇒ N(0, σ2)

Proof. We first show that Y(1) is a consistent estimate of φ.

P (
√
n|Y(1) − φ| > δ) = P (Y(1) > φ+ δ/

√
n) =

n∏
i=1

P ((x̃>i γ̃)εi > δ/
√
n)

=
n∏
i=1

(
1 +

ξδ

n(x̃>i γ̃)

)−1/ξ
≤

n∏
i=1

(
1 +

ξδ√
nMγ̃

)−1/ξ
≈ e
−
√
nδ/Mγ̃ → 0, n→∞

where Mγ̃ = M max |γ̃j | by assumption (A1). Thus, φ̂− φ = oP (1/
√
n).

First, suppose φ is fixed, then

γ̂0, ξ̂0 = argmin
γ̃,ξ

[ n∑
i=1

log x̃Ti γ̃ + (1 +
1

ξ
)
n∑
i=1

log
(

1 +
ξ(yi − φ)

θ + x̃Ti γ̃

)]
(2.20)

Then, the MLE is consistent and satisfies

√
n((γ̂0, ξ̂0)− (γ̃, ξ)) =⇒ N(0, I(γ, ξ)−1)

where

I(γ, ξ) =


1
ξ

∑n
i=1

x̃ix̃
>
i

(x̃>i γ)
2

−1
(1−ξ)(1−2ξ)

∑n
i=1

x̃i
x̃>i γ

−1
(1−ξ)(1−2ξ)

∑n
i=1

x̃>i
x̃>i γ

2
(1−ξ)(1−2ξ)

 (2.21)
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Thus, for φ fixed (γ̂0, ξ̂0) is the solution of the equation

∇γ̃,ξ
n∑
i=1

log x̃Ti γ + (1 +
1

ξ
) log

(
1 +

ξ(yi − φ)

θ + x̃Ti γ

)
= 0

which implies

(γ̂0, ξ̂0) = (h1(φ), h2(φ))

Now,

(h1(φ̂), h2(φ̂)) ≈ (h1(φ) + (φ̂− φ)h′1(φ), h2(φ) + (φ̂− φ)h′2(φ))

Therefore,

√
n((h1(φ̂), h2(φ̂))− (γ̃, ξ)) ≈

√
n((h1(φ̂), h2(φ̂))− (γ̃, ξ)) +

√
n(φ̂− φ)(h′1(φ), h′2(φ))

As shown previously,
√
n(φ̂− φ) = oP (1), thus

√
n((γ̂, ξ̂)− (γ, ξ)) =⇒ N(0,Σ)

where Σ = (h′1(φ), h′2(φ))I(γ, ξ)−1(h′1(φ), h′2(φ))> with I(γ, ξ) same as in (2.21).

For part (2), note that

√
n(Q̂Y |x(τ)−QY |x(τ))

=
√
n(φ̂− φ) +

√
n

(
x̃>γ̂

ξ̂

(
(1− τ)−ξ̂ − 1

)
− x̃>γ̃

ξ̂

(
(1− τ)−ξ̂ − 1

))

=
√
n(φ̂− φ) +

√
n(g(γ̂, ξ̂)− g(γ̃, ξ)) = oP (1) +

√
n(g(γ̂, ξ̂)− g(γ̃, ξ))

Now,
√
n(g(γ̂, ξ̂)− g(γ̃, ξ)) ≈

√
n((γ̂, ξ̂)− (γ̃, ξ))>∇γ̃,ξg(γ̃, ξ)

Since
√
n((γ̂, ξ̂)− (γ̃, ξ)) =⇒ N(0,Σ), thus

√
n(g(γ̂, ξ̂)− g(γ̃, ξ)) =⇒ N(0, σ2)

where σ2 = ∇γ̃,ξg(γ̃, ξ)>Σ∇γ̃,ξg(γ̃, ξ). This completes the proof.
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2.6 Simulation Study

We want to assess our proposed GP scale model’s performance in estimating quantiles

from regression models of the form Y = φ+ (θ +XT γ)ε. In this case, the quantile is linear

in covariates. Throughout this section and later, we will concentrate on estimating quantile

functions of the form:

QY |x(τ) = α(τ) + xTβ(τ)

where α(τ) is the slope and β(τ) = {β1(τ), . . . , βp(τ)} is the intercept. For our regression

model

Y = φ+ (θ +XT γ)ε, ε ∼ F

QY |x(τ) = φ+ (θ + xT γ)Qε(τ)

α(τ) = φ+Qε(τ), β(τ) = γQε(τ)

Since the quantiles are linear, quantile regression can be used without violating any model

assumptions. Note that both the slope and the intercept of the target quantile are affected

by the change in the quantile level τ . This effect is very significant at higher values of τ ,

particularly if ε ∈ D(Gξ) for ξ > 0. Hence we want to see how different values of τ and ξ

affect the quantile estimates. We start with the simple case: φ = 0 (case-I). In this case, we

can directly fit GP distribution to the data with location µ = 0, scale σ(x) = θ + xT γ > 0

and shape ξ > 0. Since we assume that φ = 0, we do not estimate it from the data. Both

the slope and the intercept of the target quantile can be estimated from a GP fit to the

data. When φ 6= 0 (case-II), we use the scaled GP method as proposed in section 2.5, where

we estimate φ as the minimum value in the data. We compare our method (GP.scale) with

quantile regression (QR) for both case-I and II. We generate our data as follows:

yi = φ+ (1 + 0.9xi)ei, i = 1, . . . , n

Here xi ∼ U(−1, 1) and ei are independent random variables, θ = 1 and γ = 0.9. Clearly,

1 + 0.9xi > 0 for all i = 1, . . . , n. We choose two different values φ = 0 and 2. For both
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φ = 0 and φ = 2, we simulate ei from two distributions: exponential with mean λ = 1

(exp(1)) and standard GP with ξ = 0.5 (GP(0.5)). Standard exponential is the limit of the

GP distribution in 2.3.2 for ξ = 0. We use two sample sizes n = 500 and 1000. The Monte

Carlo sample size for all of the cases is K = 500.
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Figure 2.2: Quantile estimates for φ = 0, exp(1) at x = 0.5 and quantile levels τ . The black
line is the true quantile function. Average ± standard error curves of the estimates are
plotted for QR (orange) and GP.scale (violet). The sample size is n = 500.

First we look at the τ quantile estimates for case-I with ei ∼ exp(1). We use the Monte
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Figure 2.3: Quantile estimates for φ = 0, GP(0.5) at x = 0.5 and quantile levels τ . The
black line is the true quantile function. Average ± standard error curves of the estimates
are plotted for QR (orange) and GP.scale (violet). The sample size is n = 500.

Carlo average estimate for the τ quantile

Q̄(τ) =
1

K

K∑
i=1

Q̂Y |x(τ)

The black line in figure 2.2 is the true quantile (q.true) function. Average estimates from

both of the methods are very close to q.true. For better visualization, we have included

only average ± standard error (se) curves for both QR (orange) and GP.scale (violet). We

plot for all quantiles 0 < τ < 1 in figure 2.2 (a). Both GP.scale and QR estimates have less

23



Table 2.1: φ = 0, GP(0.5): rel.bias(se) of quantile estimates for φ = 0 at x = 0.5 and
quantile levels τ .

τ n = 500 n = 1000
GP.scale QR GP.scale QR

0.1 0.07(0.06) 0.14(0.11) 0.05(0.03) 0.11(0.08)
0.3 0.06(0.05) 0.09(0.08) 0.05(0.03) 0.07(0.05)
0.5 0.06(0.05) 0.08(0.06) 0.04(0.03) 0.06(0.04)
0.7 0.06(0.04) 0.08(0.06) 0.04(0.03) 0.06(0.04)
0.9 0.07(0.05) 0.1(0.08) 0.05(0.04) 0.07(0.05)
0.93 0.08(0.06) 0.12(0.09) 0.06(0.04) 0.08(0.06)
0.95 0.09(0.06) 0.14(0.11) 0.06(0.05) 0.09(0.07)
0.97 0.11(0.08) 0.18(0.14) 0.07(0.06) 0.11(0.09)
0.99 0.15(0.12) 0.29(0.31) 0.1(0.08) 0.17(0.15)

variability in lower quantiles. For better visibility, we separate our quantiles into two regions:

τ ∈ (0.9, 1) (higher quantiles) and τ ∈ (0, 0.9) (lower quantiles). In figure 2.2 (b) we can see

that both QR and GP.scale approximate lower quantiles pretty well. At higher quantiles,

QR has more variability than GP.scale. To see if the behavior changes with heavier than

exponential tails, we proceed to case-I where ei ∼ GP(0.5). In figure 2.3 (a) we can see

that GP(0.5) quantiles have a much higher range than exp(1). We do not have any issues

with QR at lower quantiles. In figure 2.3 (c) we can see that QR estimates have very high

standard error, particularly for τ > 0.95. Note that from figures 2.2 and 2.3 we do not get

any idea about the bias of the estimators. So we look at the relative bias from K iterations.

rel.bias =
1

K

n∑
i=1

∣∣∣1− Q̂Y |x,k(τ)

QY |x(τ)

∣∣∣
We have enumerated the relative bias for case-I, GP(0.5) in table 2.1. Our true quantile

values are very close to 0 for τ ≈ 0. That leads to a higher relative bias at lower quantiles.

At higher quantiles, we expect the rel.bias to be large. The relative bias of case-I, exp(1)

is given in table A.1 in the appendix. As we can see, looking at the relative bias is not

enough. Hence, we use mean square error (mse), which can account for both the bias and

the variance.

mse =
1

K

n∑
i=1

(
QY |x(τ)− Q̂Y |x,k(τ)

)2
(2.22)
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Figure 2.4 (a) gives us mse of quantile estimates for QR and GP.scale for all quantiles.
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Figure 2.4: mse(se) for φ = 0, GP(0.5) at x = 0.5 and quantile levels τ . The sample size is
n = 500.

We can see that the mse is less than 0.6 at lower quantiles for both of the methods. After

0.95 quantile, mse for both QR and GP.scale increases at a very high rate.But relative to

QR, GP.scale is more stable, particularly at higher quantiles. Note that we have very few

observations after 0.9 quantile. With a sample size of n = 500 we do not expect to do any

better. We have summarised these results in table 2.2 for some quantile levels. Clearly

for n = 500, mse of QR starts to explode after τ = 0.95. When we increase our sample

size to 1000, the performance of QR improves, but it does not surpass GP.scale. Note that
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Table 2.2: φ = 0, GP(0.5): mse(se) of quantile estimates for φ = 0 at x = 0.5 and quantile
levels τ .

τ n = 500 n = 1000
GP.scale QR GP.scale QR

0.1 0(0) 0(0) 0(0) 0(0)
0.3 0(0) 0(0) 0(0) 0(0)
0.5 0.01(0) 0.01(0) 0(0) 0.01(0)
0.7 0.03(0) 0.06(0) 0.02(0) 0.03(0)
0.9 0.29(0.02) 0.62(0.04) 0.15(0.01) 0.33(0.02)
0.93 0.61(0.04) 1.41(0.1) 0.31(0.02) 0.67(0.04)
0.95 1.23(0.08) 3.16(0.23) 0.61(0.04) 1.35(0.09)
0.97 3.39(0.23) 9.72(0.76) 1.61(0.12) 3.77(0.26)
0.99 25.32(2.04) 120.95(19.78) 11.29(0.91) 33.62(3.03)

Table 2.3: φ = 2, GP(0.5): rel.bias(se) of quantile estimates for φ = 2 at x = 0.5 and
quantile levels τ .

τ n = 500 n = 1000
GP.scale QR GP.scale QR

0.1 0.01(0) 0.01(0.01) 0(0) 0.01(0.01)
0.3 0.01(0.01) 0.02(0.02) 0.01(0.01) 0.01(0.01)
0.5 0.02(0.02) 0.03(0.02) 0.02(0.01) 0.02(0.02)
0.7 0.03(0.02) 0.04(0.03) 0.02(0.02) 0.03(0.02)
0.9 0.05(0.04) 0.08(0.06) 0.04(0.03) 0.06(0.04)
0.93 0.06(0.05) 0.09(0.07) 0.05(0.03) 0.07(0.05)
0.95 0.07(0.06) 0.11(0.08) 0.05(0.04) 0.08(0.06)
0.97 0.09(0.07) 0.14(0.1) 0.06(0.05) 0.1(0.08)
0.99 0.14(0.11) 0.26(0.25) 0.1(0.07) 0.17(0.14)

the rel.bias in table 2.1 could not reflect so many details as the magnitude of the bias is

proportional to the value of the true quantile. We do not have this issues when we use mse.

For case-I, exp(1), the magnitude of the bias is much lower than GP(0.5) at all quantiles.

These results are given in the appendix figure A.1 and table A.2.

Now we move to case-II where φ = 2. First we simulate ei ∼ GP(0.5). We want to see

how our estimates fluctuate at higher quantiles (τ > 0.9). We use two sample sizes n = 500

and 1000. Figure 2.5 gives us the quantile function and the estimates. Like in case-I, both QR

and GP.scale estimates improves with increasing sample size. In table 2.3, we can see that

the relative bias is an increasing function of quantile level τ for both of the methods. Now
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Figure 2.5: Quantile estimates for φ = 2 at x = 0.5 and quantile levels τ . The black line is
the true quantile function. Average± standard error curves of the estimates are plotted for
QR (orange) and GP.scale (violet).

the true quantile value is always more than φ = 2 since QY |x(τ) = 2 + (1 + 0.9x)Qε(τ) ≥ 2

for all τ ∈ [0, 1]. We can see that for all quantile values, GP.scale has lower rel.bias compared

to QR, even when we increase our sample size to 1000. Also, QR has very high relative bias

at τ = 0.97 and 0.99. The mse in figure 2.6 conveys the same picture as relative bias and it

is easier to interpret figure 2.6 than table 2.3. Moreover, we can see that mse for both case-I

and case-II reflects the magnitude of the bias. Hence from now onward, we will only use mse

as a measure of comparing different estimates. We have summarised mse values at some

quantile levels for case-II, GP(0.5) in table 2.4. It is evident from here that using GP.scale

is preferred over QR at higher quantiles. From our simulation studies, we see that the tails

are approximated well with GP.scale when observations are form a scale model 2.9 and the

underlying distribution is GP or exponential. Motivated by this we extend our method for

the location-scale family of regression models in the next chapter.

27



0
1

0
2

0
3

0
4

0

q

q
.h

a
t.

m
s
$

m
s
e
.1

0.90 0.92 0.94 0.96 0.98

gp.scale qr

n = 500

m
s
e

τ

0
1

0
2

0
3

0
4

0

q

q
.h

a
t.

m
s
$

m
s
e
.1

0.90 0.92 0.94 0.96 0.98

gp.scale qr

n = 1000

Figure 2.6: mse±se for φ = 2, GP(0.5) and quantile levels τ .

Table 2.4: φ = 2, GP(0.5): mse(se) of quantile estimates for φ = 2 at x = 0.5 and quantile
levels τ .

τ n = 500 n = 1000
GP.scale QR GP.scale QR

0.5 0.01(0) 0.01(0) 0(0) 0.01(0)
0.75 0.05(0) 0.09(0.01) 0.02(0) 0.04(0)
0.9 0.32(0.02) 0.67(0.05) 0.16(0.01) 0.36(0.02)
0.93 0.65(0.04) 1.39(0.1) 0.32(0.02) 0.76(0.05)
0.95 1.27(0.08) 2.47(0.16) 0.63(0.04) 1.49(0.1)
0.97 3.39(0.22) 7.84(0.51) 1.66(0.1) 4.29(0.29)
0.99 23.9(1.68) 100.11(14.26) 11.6(0.73) 38.78(3.24)
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CHAPTER 3

ESTIMATION OF EXTREME CONDITIONAL QUANTILES WITH
COVARIATE ADAPTIVE THRESHOLD SELECTION

3.1 Introduction

The study of the tail behavior of a distribution is helpful for the analysis of rare events.

Often, Generalized Pareto (GP) distribution is used for modeling the tail of a distribution.

This approach is popularly known as the Peak Over Threshold (POT) approach. In the

POT approach, a GP distribution is commonly fitted to the tail region of the data using

only the observations exceeding a certain threshold. A fundamental result in the extreme

value literature by Pickands (1975) pointed out that GP distribution can be used to model

the tail, as long as the underlying distribution satisfy certain regularity conditions. Let

Z be a random variable with distribution function F . Pickands (1975) showed that the

distribution of the conditional excess, Z −u|Z > u can be approximated by GP distribution

as long as F belongs to the maximum domain of attraction of an extreme value distribution.

It is hard to find distributions which do not belong to the maximum domain of attraction.

Hence, the POT approach can be used even when F is unknown. It is important to keep

in mind that the GP approximation is valid when u is large. As pointed out by Song &

Song (2012a), selecting a low threshold value will lead to poor approximation of the excess

by GP and hence the resulting estimates will have high bias. On the other hand, when

the threshold is too high, the effective sample size used for estimating the parameters is

small which leads to high variance. Thus, choosing an optimal threshold is necessary for the

bias-variance tradeoff. Once the threshold is determined, the rest of the parameters: scale

and shape are estimated from the GP fit to the scaled excess data. Langousis et al. (2016)

have nicely summarised the available methods for threshold selection. Davison & Smith

(1990) introduced statistical modeling of peaks over threshold with GP distribution where
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the parameters of the GP distibution are allowed to vary as a function of covariates. Some

of the more recent works which use covariate-based GP distribution for modeling peaks over

threshold include Park & Kim (2016), Song & Song (2012b), del Castillo & Serra (2015). A

comprehensive review of GP modeling where the parameters of the GP vary as a function of

the covariates has been presented in Coles et al. (2001). In all these works, the threshold of

which GP is fit is chosen among the set of empirical quantiles of the response variable. To the

best of our knowledge, the problem of choosing the threshold as a function of the covariate

has not been addressed in the literature. The main focus of this chapter is to develop a

method which can choose a covariate dependent threshold while still suitably estimating the

covariate dependent parameters of the GP distribution.

In this chapter, we approach the conditional quantile estimation problem where the

threshold can vary across different covariates. Integrating QR and EVT, we propose a con-

sistent estimation of the quantile function. This method is quite flexible in the sense that

it can be easily adapted for distributions in the heavy tail domain of attraction. Although

there are relatively few works which address the issue of estimation of high conditional quan-

tiles for heavy tailed distributions, the one by Wang et al. (2012) presents a very promising

method for this purpose. Their method uses standard QR to estimate intermediate quantiles

and then employs EVT to extrapolate this information to estimate extreme quantiles. Their

approach is semi-parametric and uses the Hill estimator (see Hill (1975)) for estimating the

tail behavior. We compare our parametric approach based on the GP distribution to that of

Wang et al. (2012) in terms of accuracy of estimation for both quantiles and the tail index.

The parametric based approach is the best method when the true observations are indeed

from a Pareto or Generalized Pareto distribution. For other distributions in the Fréchet

domain of attraction, the method is fairly competitive and comes with several advantages in

terms of practical implementation.

The rest of this chapter is organized as follows. In section 3.2 we propose our method (QR

adjusted GP) for location-scale family of regression models. In 3.2.1, we establish asymptotic
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properties of QR adjusted GP in the context of the GP distribution. We also demonstrate

efficiency of our approach over standard QR and our previous method (GP.scale, section 2.5)

through numerical investigations in 3.2.2. In section 3.3 we propose a generalization of our

method for heavy tailed distributions. We give an outline of the analytical properties of this

extension in 3.3.1. In section 3.4, we explore conditional quantile estimation in the heavy tail

domain of attraction through simulation study. In 3.4.1 we review high conditional quantile

estimation method of Wang et al. (2012) where the slopes of the quantile function also

changes with quantile levels. We compare our method with Wang et al. (2012) for different

distributions in the heavy-tail domain of attraction in 3.4.2. From our findings, we conclude

that our proposed method better or as good as Wang et al. (2012). Finally, in section 3.5

we apply our method for the precipitation downscaling task with rainfall data.

3.2 Proposed Method: QR Adjusted GP for Location-Scale Models

In chapter 2, we have seen that our proposed method is suitable for the following family

of regression models:

Y = φ+ (θ +XT γ)ε (3.1)

where φ ∈ R and θ + XT γ > 0, and ε ∼ GP(µ = 0, σ = 1, ξ). In this case, Y |X = x ∼

GP(µ = φ, σ(x) = θ + xT γ, ξ). Hence, the conditional distribution of Y depends on x only

through the scale parameter σ(x) = θ + xT γ. Now we concentrate on the general case:

Y = φ+XT ρ+ (θ +XT γ)ε (3.2)

Here the conditional distribution of Y given X = x depends on x through both the scale

σ(x) = θ + xT γ and the location µ(x) = φ + xT ρ. Clearly, the model 3.1 is a special case

of 3.2 for ρ = 0. Let ỹi = (yi − µ(xi))/σ(xi). If we try to fit the GP distribution to the

31



observations directly, the parameters in 3.4 can be estimated as

φ̂, ρ̂, θ̂, γ̂, ξ̂ = argmin
φ,ρ,θ,γ,ξ

l(φ, ρ, θ, γ, ξ)

= argmin
φ,ρ,θ,γ,ξ

[ ∑
i:ỹi>0

log(σ(xi)) + (1 +
1

ξ
)
∑
i:ỹi>0

log
(

1 + ξ
(yi − µ(xi))

σ(xi)

)]

= argmin
φ,ρ,θ,γ,ξ

[ ∑
i:ỹi>0

log(θ + xTi γ) + (1 +
1

ξ
)
∑
i:ỹi>0

log
(

1 + ξ
(yi − φ− xTi ρ)

θ + xTi γ

)]

(3.3)

We have to minimize the loss function in 3.3 such that ξ > 0, σ(xi) > 0 and yi−µ(xi) > 0 for

all i = 1, . . . , n. Like in the optimization problem of 2.11 in the previous chapter, there is no

analytical solution to this. We need to solve this with 2n+ 1 many constraints numerically.

Note that n many constraints come from the condition yi−µ(xi) > 0. Our proposed method

can reduce the computational challenge by removing these constrains. We discuss the details

in the next section.

3.2.1 Method of Estimation

We assume the following location-scale regression model

Y = φ+XT ρ+ (θ +XT γ)ε, (3.4)

where φ, θ ∈ R, ρ = (ρ1, . . . , ρp) and γ = (γ1, . . . , γp) in Rp are unknown parameters.

θ+XT γ > 0 for all X in its domain. XT γ = γ1X1+· · ·+γpXp and XT ρ = ρ1X1+· · ·+ρpXp

are the linear combinations of covariates in equation 3.4. Given X = x and a quantile level

0 < τ < 1, the conditional quantile is given by

QY |x(τ) = φ+ xT ρ+ (θ + xT γ)Qε(τ)

Suppose ε follows standard GP distribution with tail index ξ > 0, i.e., ε ∼ GP(ξ). Then Y

given X = x follows GP distribution with location µ(x) = φ+xT ρ, scale σ(x) = θ+xT γ > 0,

and tail index ξ > 0. The conditional quantile is

QY |x(τ) = φ+ xT ρ+
(θ + xT γ)

ξ

[
(1− τ)−ξ − 1

]
(3.5)
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Through our numerical investigation in section 2.6, we have seen that for the scale family

of models Y = φ+ (θ +XT γ)ε, ε ∼ GP(ξ), quantile regression can reasonably approximate

any lower quantile τ ∈ (0, 0.9). But quantile regression suffers from very high variability,

particularly when τ > 0.95. Although we need an alternative of quantile regression when τ

is close to 1, we can use the information from quantile regression estimates a lower quantiles.

For covariate free threshold µ = φ, we can use the first order statistic Y(1) to estimate µ.

Motivated by this, we propose using the quantile regression estimate at quantile level τc = 1
n

as our threshold.

µ̂(x) = ̂φ+ xT ρ = Q̂RY |x
( 1

n

)
Q̂RY |x

( 1

n

)
= α̂

( 1

n

)
+ xT β̂

( 1

n

) (3.6)

We obtain α̂( 1n) and β̂( 1n) from equation 2.3. Suppose

e
( 1

n
, x
)

= Y − Q̂RY |x
( 1

n

)
= Y − µ̂(x)

Then mimicking the procedure in 2.17, we estimate the rest of the parameters θ, γ, and ξ as

θ̂, γ̂, ξ̂ = argmin
θ,γ,ξ

l(θ, γ, ξ)

= argmin
θ,γ,ξ

[ ∑
i:e( 1n,xi)>0

log(θ + xTi γ) + (1 +
1

ξ
)

∑
i:e( 1n,xi)>0

log
(

1 + ξ
(yi − µ̂(xi))

θ + xTi γ

)]

= argmin
θ,γ,ξ

[ ∑
i:e( 1n,xi)>0

log(θ + xTi γ) + (1 +
1

ξ
)

∑
i:e( 1n,xi)>0

log
(

1 + ξ
e( 1n , xi)

θ + xTi γ

)]

(3.7)

Finally, using 3.7 and 3.6, we can estimate the quantile function in 3.5 as

Q̂Y |x(τ) = Q̂RY |x
( 1

n

)
+
θ̂ + xT γ̂

ξ̂

[
(1− τ)−ξ̂ − 1

]
The algorithm of the estimation procedure is outlined below.

In the following proposition, we establish the consistency of algorithm 2 for GP distribu-

tion under the compactness assumption (A1) on the covariate x.
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Algorithm 2: QR adjusted GP

1. Get Q̂RY |xi

(
1
n

)
= α̂

(
1
n

)
+ xTi β̂

(
1
n

)
from 3.6.

2. Get e( 1n , xi) = yi − Q̂Ryi|xi

(
1
n

)
3. Get ξ̂, θ̂ and γ̂ from 3.7

4. Given X = x and 0 < τ < 1, estimate the τ quantile as

Q̂Y |x(τ) = Q̂RY |x
( 1

n

)
+
θ̂ + xT γ̂

ξ̂

[
(1− τ)−ξ̂ − 1

]

Proposition 3.2.1. Let yi = φ+ x>i ρ+ (θ + x>i γ)εi, εi
iid∼ GP (ξ).

With x̃i = [1, x>i ], γ̃ = [θ, γ] and ρ̃ = [φ, ρ], let

̂̃x>i ρ̃ = Q̂RY |xi

(
1

n

)
and

γ̂, ξ̂ = argmin
c,d

 n∑
i=1

log(x̃>i c) +

(
1 +

1

d

) n∑
i=1

log

1 +
d(yi −

̂̃x>i ρ̃)

x̃>i c

 (3.8)

and estimate the τ quantile of Y as

Q̂Y |x(τ) = ̂̃x>i ρ̃+
x̃>γ̂

ξ̂

(
(1− τ)−ξ̂ − 1

)
Then,

1.
√
n((γ̂, ξ̂)− (γ̃, ξ)) =⇒ N(0,Σ)

2.
√
n(Q̂Y |x(τ)−QY |x(τ)) =⇒ N(0, σ2)

Proof. We first show that Q̂RY |xi(1/n) is a consistent estimate of x̃>i ρ̃.
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In this direction, note that by relation (7.1) in Chernozhukov (2005), we have

√
n(Q̂RY |xi(1/n)−QY |xi(1/n)) ∼ N

(
0,

1/n(1− /n)

f2(F−1(1/n))
(E(XX ′))−1

)
where f and F denote the density and cumulative distribution function of GP(ξ) respectively.

Since F−1(1/n) = (1/ξ)((1− 1/n)−1/ξ − 1)→ 0, f2((1/ξ)((1− 1/n)−1/ξ − 1))→ 1. Hence,

√
n(Q̂RY |xi(1/n)−QY |xi(1/n)) = oP (1)

Also,

√
n(QY |xi(1/n)− x̃>i ρ̃) =

√
nx̃>i γ̃
ξ

((
1− 1

n

)−1/ξ
− 1

)
.

√
nMγ̃

n
= oP (1)

where Mγ̃ = M maxj |γj | by assumption (A1). Hence,

√
n(Q̂RY |xi(1/n)− x̃>i ρ̃) = oP (1)

First, suppose x̃>i ρ̃ is known, then

γ̂0, ξ̂0 = argmin
γ̃,ξ

[ n∑
i=1

log x̃Ti γ̃ + (1 +
1

ξ
)
n∑
i=1

log
(

1 +
ξ(yi − x̃>i ρ̃)

θ + x̃Ti γ̃

)]
(3.9)

Then,
√
n((γ̂0, ξ̂0)− (γ̃, ξ)) =⇒ N(0, I(γ̃, ξ)−1)

where I(γ̃, ξ) is same as defined in (2.21). Thus, for x̃>i ρ̃ known (γ̂0, ξ̂0) is the solution of

the equation

∇γ̃,ξ
n∑
i=1

log x̃Ti γ + (1 +
1

ξ
) log

(
1 +

ξ(yi − x̃>i ρ̃)

θ + x̃Ti γ

)
= 0

which implies

(γ̂0, ξ̂0) = (h1(x̃>i ρ̃), h2(x̃>i ρ̃))

Now, by Taylor expansion, we have

(h1(̂̃x>i ρ̃), h2(̂̃x>i ρ̃))

≈ (h1(x̃>i ρ̃), h2(x̃>i ρ̃)) + ((̂̃x>i ρ̃− x̃>i ρ̃)h′1(x̃>i ρ̃), h2(x̃>i ρ̃) + (̂̃x>i ρ̃− x̃>i ρ̃)h′2(x̃>i ρ̃))
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Therefore,

√
n((h1(̂̃x>i ρ̃), h2(̂̃x>i ρ̃))− (γ̃, ξ))

≈
√
n((h1(x̃>i ρ̃), h2(x̃>i ρ̃))− (γ̃, ξ)) +

√
n(̂̃x>i ρ̃− x̃>i ρ̃)(h′1(x̃>i ρ̃), h′2(x̃>i ρ̃))

As shown previously,
√
n(̂̃x>i ρ̃− x̃>i ρ̃) = oP (1), thus

√
n((γ̂, ξ̂)− (γ, ξ)) =⇒ N(0,Σ)

where Σ = (h′1(φ), h′2(φ))I(γ, ξ)−1(h′1(φ), h′2(φ))> with I(γ, ξ) same as in (2.21). For part

(2), note that

√
n(Q̂Y |x(τ)−QY |x(τ))

=
√
n(̂̃x>i ρ̃− x̃>i ρ̃) +

√
n

(
x̃>γ̂

ξ̂

(
(1− τ)−ξ̂ − 1

)
− x̃>γ̃

ξ

(
(1− τ)−ξ − 1

))

=
√
n(̂̃x>i ρ̃− x̃>i ρ̃) +

√
n(g(γ̂, ξ̂)− g(γ̃, ξ)) = oP (1) +

√
n(g(γ̂, ξ̂)− g(γ̃, ξ))

Now,
√
n(g(γ̂, ξ̂)− g(γ̃, ξ)) ≈

√
n((γ̂, ξ̂)− (γ̃, ξ))>∇γ̃,ξg(γ̃, ξ)

Since
√
n((γ̂, ξ̂)− (γ̃, ξ)) =⇒ N(0,Σ), thus

√
n(g(γ̂, ξ̂)− g(γ̃, ξ)) =⇒ N(0, σ2)

where σ2 = ∇γ̃,ξg(γ̃, ξ)>Σ∇γ̃,ξg(γ̃, ξ). This completes the proof.

3.2.2 Simulation Study: GP Distribution

We want to assess performance of our method when the data is simulated from the following

regression model

Y = φ+XT ρ+ (θ +XT γ)ε, ε ∼ GP(ξ)

QY |x(τ) = φ+ xT ρ+ (θ + xT γ)Qε(τ)

α(τ) = φ+ θQε(τ), β(τ) = ρ+ γQε(τ)

(3.10)
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Again, we see that quanitles are linear in x. So we can use quantile regression in this case

without violating any model assumption. We simulate (xi, yi), i = 1, . . . , n iid observations

from 3.10. We use φ = θ = 1, ρ = (1, 1) and γ = (0.9, 0) so that

yi = 1 + x1i + x2i + (1 + 0.9x1i)ei

We simulate xij ∼ U(−1, 1) for j = 1, 2 so that 1 + 0.9x1i > 0 for all i = 1, . . . , n. We want

to see how QR and GP.scale perform compared to our proposed method QR adjusted GP

(QR.GP) for estimating higher quantiles above 0.9. We simulate ei from two distributions:

exponential with mean λ = 1 (exp(1)) and standard GP with ξ = 0.5 and 0.8 (GP(ξ)). We

use two sample sizes n = 500 and 1000. From proposition 3.2.1, we know that τc = 1
n leads to

consistent estimation of higher quantiles with QR.GP when the true distribution is GP. Here

we want to validate our proposition through simulations. We also investigate the performance

of QR.GP and QR.Scale with varying threshold. For that purpose, we choose τc from a grid

of values in (0,1). When the data is generated from a GP or exponential distribution, values

of τc close to 0 would be the best choice. We start with the case ei ∼ GP(0.5). We use mse

as our measure of assessment and our monte carlo sample size is K = 500.

The results for sample size n = 500 is summarised in figure 3.1. We can see in 3.1 (a)

that GP.scale is not appropriate in this case. It fails to capture the effect of the covariate

x at at any given higher quantile 0.9 ≤ τ ≤ 0.99. QR.GP performs better than QR for

threshold τc = 0.01 at any quantile level 0.9 ≤ τ ≤ 0.99. In 3.1 (b), we can see how mse of

QR.GP changes for different values of τc when the quantile level is τ = 0.93. QR.GP has

lower mse than QR for all τc except at τc = 0.95. When we increase the quantile level to

τ = 0.97, QR.GP has lower mse than QR for all values of τc (figure 3.1 (c)).

Now we increase our sample size to n = 1000. In figure 3.2 (a) we can see that even with

an increase in the sample size, QR.GP outperforms QR at τc = 0.01. From figure 3.2 (b)

and (c), we get an understanding of the effect of τc on the estimated quantile by QR.GP.

The mse is an increasing function of τc in this case. This is bound to happen since the

effective sample size used for estimation decreases when we increase τc. Note that according
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Figure 3.1: mse±se for, GP(0.5) at x = (0.5, 0.5) and quantile levels τ . The sample size is
n = 500. (a): τc = 0.01 for QR.GP (b) and (c): 0 < τc < 1

to algorithm 2, given τc, we only use {yi : yi − xTi Q̂R(τc) > 0} to estimate the scale and

the shape parameters. We get the best performance from QR.GP when τc = 0.01. We can

comfortably choose any τc as long as τc ≤ 0.85. Any choice of τc higher than 0.85 leads

to inconsistent estimation of GP parameters as we have very few observations above the

threshold.

Sparsity of the observations at tail of a distribution is associated with higher values of

the tail index ξ. Next we simulate samples of size n = 1000 from GP with tail index ξ = 0.8.

In figure 3.3 (a) we can see that the magnitude of the mse is higher than the previous case
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Figure 3.2: mse±se for, GP(0.5) at x = (0.5, 0.5) and quantile levels τ .The sample size is
n = 1000. (a): τc = 0.01 for QR.GP. (b) and (c): 0 < τc < 1

ξ = 0.5 for all the methods. Nonetheless, we still outperform QR. From figure 3.3 (b) and

(c), we can see that lower τc produces lower mse. Note that, our choice of τc is still 0.01

even when we increase ξ from 0.5 to 0.8. We end this section with our final simulation

study for the exponential case, i.e., ei ∼ exp(1). This is an asymptotic case of GP(ξ)) when

ξ → 0. Hence, we start with larger sample size n = 1000. After experimenting with different

τc, we have seen that τc ≈ 0 is optimal for QR.GP in this case. We have also seen that

for τc ≤ 0.15 we do reasonably well and our performance deteriorates when we increase τc.

Hence in figure 3.4 (a), we have plotted mse of QR.GP at τc = 0.01. Although QR has
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Figure 3.3: mse±se for, GP(0.8) at x = (0.5, 0.5) and quantile levels τ . The sample size is
n = 1000. (a): τc = 0.01 for QR.GP. (b) and (c): 0 < τc < 1

lower mse than QR.GP, the magnitude of the difference is not much (less than 1.5 at higher

quantiles). When we increase our sample size to n = 2000, we outperform QR at all the

higher quantiles.

From our simulation studies, we can conclude that when the data is generated from GP

or exponential distribution, optimal threshold for the QR.GP is close to 0. Performance of

the QR deteriorates with increasing quantile level τ and higher values of the tail index ξ.

Now we want to investigate how QR.GP behaves when the underlying distribution is a heavy

tailed distribution other than GP.
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Figure 3.4: mse±se for, exp(1) at x = (0.5, 0.5) and quantile levels τ . τc = 0.01 for QR.GP.

3.3 Extension to the Nonparametric Problems and Threshold Se-
lection

So far, we have only focused on the GP distribution, i.e., ε ∼ GP(ξ), ξ ≥ 0. Now we

want to generalize for the case when ε is any heavy tailed distribution, i.e., ε ∼ F where

F ∈ D(Gξ), ξ > 0. When we do not know F , we can use GP approximation to compute a

higher quantile. First we focus on the nonregression case. Let Y ∼ F where F ∈ D(Gξ) for

some ξ > 0. Then, by Theorem 2.3.2, for a large enough value u, Y |Y > u is approximately

distributed according to a GP distribution. Hence, for any y > u,

P (Y > y|Y > u) =

(
1 +

ξ(y − u)

σ

)−1/ξ
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Let yτ be the τ quantile of Y such that yτ ≥ u. Then

P (Y > yτ ) = P (Y > u)P (Y > yτ |Y > u)

= F̄ (u)
(

1 +
ξ(yτ − u)

σ

)−1
ξ

= 1− τ

therefore, yτ = QY (τ) = u+
σ

ξ

[(1− τ
F̄ (u)

)−ξ
− 1
]

(3.11)

Clearly, if we know F , we can substitute the exact expression for F̄ (u) in 3.11. In practice

we do not know F so we estimate F̄ (u) = E(I(Y > u)) with p̂u =
∑n
i=1 I(yi > u)/n. Hence

we can estimate the quantile in 3.11 as

Q̂Y (τ) = u+
σ̂

ξ̂

[(1− τ
p̂u

)−ξ̂
− 1
]

(3.12)

where σ̂ and ξ̂ are estimated as

σ̂, ξ̂ = argmin
σ,ξ

∑
i:yi>u

log(σ) + (1 +
1

ξ
)
∑
i:yi>u

log
(

1 + ξ
(yi − u)

σ

)
An important thing to note here is that we do not estimate u from the data. Moreover, 3.11

is an approximation of the true quantile for large u.

3.3.1 Method of Estimation

We assume model 3.4 with ε ∼ F , F ∈ D(Gξ) for some ξ > 0. Let 0 < τc < 1 be an

intermediate quantile level such that τc is not too close to 1. Here we use µ̂(x) as our

threshold.

µ̂(x) = Q̂RY |x(τc)

Q̂RY |x(τc) = α̂(τc) + xT β̂(τc)

(3.13)

We obtain α̂(τc) and β̂(τc) from equation 2.3. In 3.2.1 we used τc = 1
n . Here we want

to choose τc appropriately so that Y − µ̂(x) approximately follows GP distribution. Let
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e(τc, x) = Y − Q̂RY |x(τc). Then

e(τc, x) = φ+ xT ρ+ (θ + xT γ)ε− Q̂RY |x(τc)

= φ+ xT ρ+ (θ + xT γ)ε− α̂(τc)− xT β̂(τc)

= φ− α̂(τc) + xT (ρ− β̂(τc)) + (θ + xT γ)ε

We assume that given τc, e(τc, x)|e(τc, x) > 0 ≈ GP(µ = 0, σ(x) = θ + xT γ, ξ). Hence, we

can estimate the rest of the unknown parameters θ, γ and ξ by fitting a scaled GP model to

the conditional residuals e(τc, xi)|e(τc, xi) > 0 for i = 1, . . . , n.

θ̂, γ̂, ξ̂ = argmin
θ,γ,ξ

l(θ, γ, ξ)

= argmin
θ,γ,ξ

∑
i:e(τc,xi)>0

log(θ + xTi γ) + (1 +
1

ξ
)

∑
i:e(τc,xi)>0

log

[
1 + ξ

e(τc, xi)

θ + xTi γ

] (3.14)

We need to minimize the loss function in 3.14 such that ξ > 0 and θ + xTi γ > 0 for all

i = 1, . . . , n. Using Q̂RY |x(τc) to estimate µ(x) = φ + xT ρ, we have reduced n constraints

in our optimization problem. Let τ be a high quantile level such that Qe(τc,x)(τ) > 0. Then

from 3.11 we have

Qe(τc,x)(τ) ≈ σ(x)

ξ

[( 1− τ
P (e(τc, x) > 0)

)−ξ
− 1
]

Let p̂0(τc, n) = 1
n

∑n
i=1 I[e(τc, xi) > 0]. Following 3.12 we can estimate the τ quantile of the

residual e(τc, x)

Q̂e(τc,x)(τ) =
θ̂ + xT γ̂

ξ̂

[( 1− τ
p̂0(τc, n)

)−ξ̂
− 1
]

(3.15)

Finally, combining 3.15 and 3.13, we can estimate the conditional quantile of Y given x at

a quantile level τ as

Q̂Y |x(τ) = Q̂RY |x(τc) + Q̂e(τc,x)(τ)

= α̂(τc) + xT β̂(τc) +
θ̂ + xT γ̂

ξ̂

[( 1− τ
p̂0(τc, n)

)−ξ̂
− 1
]

The algorithm for estimation is outlined below.
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Algorithm 3: QR adjusted GP for location-scale family

start: Set 0 < τc ≈ 0; fix x, δ > 0;

I. Obtain Q̂RY |xi(τc) = α̂(τc) + xTi β̂(τc) from 3.13.

II. Get e(τc, xi) = yi − Q̂Ryi|xi(τc)

III. Get ξ̂, θ̂ and γ̂ from optimizing 3.14 and p̂0(τc, n) = 1
n

∑n
i=1 I[e(τc, xi) > 0]

IV. For 0 < τ < 1 estimate τ quantile as

Q̂Y |x(τ) = Q̂RY |x(τc) +
θ̂ + xT γ̂

ξ̂

[( 1− τ
p̂0(τc, n)

)−ξ̂
− 1
]

V. Set τc = τc + δ such that 0 < τc < 1 and repeat steps I-IV

end: Stop when τc ≈ 0.95

3.3.2 Discussion: Threshold Selection for Heavy Tailed Distributions

According to proposition 3.2.1, if the underlying distribution is GP, QR adjusted GP with

τc = 1
n leads to a consistent quantile estimator for a quantile level τ close to 1. Here we

propose an outline to generalize our method when the underline distribution is in the heavy-

tail domain of attraction. Let Z1, . . . , Zn be an independent and identically distributed

sample with common distribution function F ∈ D(Gξ). Then, given Z(n−k,n), the order

statistics differences

(Z̃1, . . . , Z̃k) = (Z(n−k+1) − Z(n−k,n), . . . , Z(n,n) − Z(n−k,n)) (3.16)

follow approximately GP distribution with tail index ξ. Using theorem 2.3.2, we can find

the parameters of GP by maximizing the log likelihood

σ̂, ξ̂ = argmin
γ,ξ

 ∑
i:z̃i>0

log(σ) +

(
1 +

1

ξ

) ∑
i:z̃i>0

log

(
1 +

ξz̃i
σ

)
In Theorem 3.4.2 of de Haan & Ferreira (2010), it has been shown zi

d
=

cξ

(k/n)ξ
+

wi√
k(k/n)ξ

where W = (w1, . . . , wk) follows multivariate normal distribution. This allowed them to
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prove
√
k((ξ̂, σ̂/(k/n)−ξ)− (ξ, 1)) =⇒ N(µ,Σ)

Under the same set of assumptions, in Theorem 3.1 of Diebolt et al. (2007), it has been

shown that for

Q̂Z(τ) = z(n−k,n) +
σ̂

ξ̂

(1− τ
k/n

)−ξ̂
− 1


where

QZ(τ) = F−1Z (τ)

then
√
k(k/n)ξ(Q̂Z(τ)−QZ(τ)) =⇒ N(m, s2).

For a regression model of the form,

Yi = φ+ x>i ρ︸ ︷︷ ︸
x̃>i ρ̃

+ (θ + x>i γ)︸ ︷︷ ︸
x̃>i γ̃

εi, εi ∈ D(Gξ), εi iid

We consider

Ei = Yi − Q̂Y |xi

(
1− k

n

)
where k is the same which ensures that given E(n−k,n)

(E(n−k+1) − E(n−k,n), . . . , E(n,n) − E(n−k,n))

are approximately independent and identically distributed as GP with tail index ξ.

By Theorem 5.1 in Chernozhukov (2005),

√
k(k/n)ξ

(
Q̂Y |xi

(
1− k

n

)
− x̃>i ρ̃− x̃

>
i γ̃F

−1
ε (1− k/n)

)
=⇒ N(0, σ2X)

Therefore,

Ei = x̃>i γ̃(εi − F−1ε (1− k/n)) +OP

(
1√
k

(n
k

)ξ)
Applying Theorem 5.1 in Chernozhukov (2005) with covariate x = 1 (i.e. only constant

term), we get
√
k(k/n)ξ

(
ε(n−k,n) − F

−1
ε (1− k/n)

)
=⇒ N(0, σ2ε )
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By assumption (A1), x̃>i γ̃ ≤M maxj |γj | = Mγ̃ , therefore

Ei = x̃>i γ̃(εi − ε(n−k,n)) +OP

(
1√
k

(n
k

)ξ)
Let i0, i1, i2, . . . , ik be the indices corresponding to ε(n−k+1,n), . . . , ε(n,n), then

S = {i : Ei > 0} ≈ {i1, . . . , ik}

Since, ε(n−k+1,n)− ε(n−k,n), . . . , ε(n,n)− ε(n−k,n) are iid observations from GP distribution.

This implies Ei1 , · · · , Eik are iid observations from GP distribution with scale x̃i>γ̃ and tail

index ξ.

Therefore, we can fit GP distribution on the residuals and estimate the parameters as

γ̂, ξ̂ = argmin
γ,ξ

 ∑
i:ei>0

log(x̃>i γ) +

(
1 +

1

ξ

) ∑
i:ei>0

log

(
1 +

ξei

x̃>i γ

)
Note that ei closely share the asymptotic behavior of z̃i’s as defined in (3.16), i.e. ei =

OP (1/
√
k(k/n)ξ). However, the proof of asymptotic normality of the ei’s is too involved and

is thereby omitted in this dissertation.

Mimicking the steps of Theorem 3.4.2 in de Haan & Ferreira (2010), the rate of conver-

gence of the tail index γ̂ and the scale coefficient γ̂ can be determined.

Similary, mimicking the steps of Theorem 3.1 in Diebolt et al. (2007), one can determine

the convergence rate of Q̂Y |X=x(τ). For the non-parametric regime, we explore the perfor-

mance of our method from a numerical standpoint. Intricate details on the exact convergence

rates of the tail index and the quantiles from a theoretical standpoint have been avoided.

However, the above formulation does give us an insight into the choice of τc. Note that

we vary τc = 1 − k
n , k = 1, . . . , n and choose k such that estimation of ξ stabilizes. Figure

3.6 displays the tail index estimate for t-distributed errors with by applying the GP-fit to

errors and the proposed QR-GP method to the regression output y’s. Note that the plot

stabilizes at τc ≈ 0, which means that k = 0. Indeed the tail index estimation based on our

approach for regression model closely agrees with the estimates if GP had been directly fit

to the errors. Also, the estimate of the tail index agree with the true value.

46



Figure 3.6 displays the tail index estimate for t-distributed errors and burr-distributed

errors by applying the GP-fit to errors and the proposed QR-GP method to the regression

output y’s. For t-distributed errors, for τc lying between 0.75-0.9, the plot stabilizes, thus

one can choose 1 − k/n ≈ 0.75. For Burr-distributed errors, for τc lying between 0.4-0.6,

the plot stabilizes, thus one can choose 1− k/n ≈ 0.4. Note that the region of stabilization

completely agree to the case if a GP model had been fit to the original errors. Therefore, this

approach gives an alternative to GP modeling when both location and scale are functions of

the covariate.
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GP on Y GP on E

Figure 3.5: Tail index estimates with changing values of τc. Red line corresponds to the
estimate of ξ when GP is fit to the error εi. Black line corresponds to the estimate when
our proposed method is fit to yi. True tail index is 0.8.

3.4 Simulation Study: Nonparametric Problem

In section 3.2.2, our focus has been on the cases ε ∼GP(ξ) for ξ ≥ 0. We have assessed

the efficacy of our method for higher quantile levels 0.9 ≤ τ ≤ 0.99. In section 3.3, we have

proposed a guideline to extend our method for distributions in the heavy tail domain of

attraction. Also, we have seen that selecting thresholds of the form τc = 1− k
n would lead to

consistent estimation of the tail index ξ. The value of k is determined by the nature of the
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Figure 3.6: Tail index estimates with changing values of τc. Red line corresponds to the
estimate of ξ when GP is fit to the error εi. Black line corresponds to the estimate when
our proposed method is fit to yi. True tail index is 0.8. Left: T-distributed errors. Right:
Burr-distributed errors

underlying distribution. Let ξ̂ = ξ̂(k) be the estimated tail index for threshold τc = 1 − k
n .

We have demonstrated through numerical simulations that when we select k such that ξ̂(k)

is stable, we predict ξ accurately. The estimation of the tail index is an important problem

in the extreme value literature. There have been several alternative approaches to estimate

the tail index, namely: method of moments, Hill estimator, Pickands estimator, etc.(Haan &

Ferreira (2006)). Hill (1975) has proposed a nonparametric estimator for ξ > 0 using upper

ordered statistics. Suppose that Z1, . . . , Zn are n iid random variables with distribution F ,

which is unknown. An equivalent condition for theorem 2.3.1 says that if F ∈ D(Gξ) for

some ξ > 0 if and only if

lim
u→∞

F̄ (uz)

F̄ (u)
= z
−1
ξ ξ > 0, z > 1 (3.17)

i.e., as u → ∞, the conditional excess P (Z > uz|Z > u) behaves like Pareto. Meaning

that for large u, the scaled excess Z/u conditioned on Z > u is approximately Pareto with

tail index ξ. Theorem 1.2.2 in Haan & Ferreira (2006) gives an equivalent form of of the
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condition in 3.17

lim
u→∞

∫∞
u (1− F (z))dzz

1− F (u)
= ξ

Further simplification leads to

lim
u→∞

∫∞
u (log z − log u)dF (z)

1− F (u)
= ξ

Let Z(i) be the i
th ordered observation with Z(n) = max(Z1, . . . , Zn). Replacing u by Z(n−k)

and F by the empirical distribution function, the Hill estimator for ξ based on k upper order

statistics Z(n−k+1), . . . Z(n) is

ξ̂H(k) =
1

k

k∑
i=1

log
[Z(n−i+1)

Z(n−k)

]
(3.18)

Let k = k(n) such that k(n)→∞, k(n)/n→ 0, and k(n+1)/k(n)→ 1 as n→∞. Then, by

the theorem 3.2.4 in Haan & Ferreira (2006), ξ̂H(k)→ ξ in probability. More details about

the derivation of the Hill estimator and its asymptotic properties can be found in Haan

& Ferreira (2006), Hill (1975). Also, due to the nonparametric nature of the estimator,

this method can be easily adapted as long as the underlying distribution is heavy tailed.

But different choices of k leads to different values of ξ̂H(k); hence it is crucial to choose k

appropriately for consistent estimation of ξ. Wang et al. (2012) combined quantile regression

and the Hill estimator to estimate conditional quantiles from a heavy tailed distribution.

We outline the method of estimating higher quantiles by Wang et al. (2012) in the following

section.

3.4.1 Review of an Existing Method for Extreme Quantile Estimation

In Wang et al. (2012) the authors have proposed methods for regression models with quantile

functions QY |x(τ) = α(τ) + xTβ(τ) where Y |x ∼ D(Gξ) for some ξ > 0. Let 0 < τc < 1 be

a fixed constant, close to 1. The authors have assumed the linear quantile function only for

higher quantiles τ ∈ [τc, 1].

QY |x(τ) = α(τ) + xβ(τ) for τ ∈ [τc, 1]
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QY |x(τ) has no specific form for τ ∈ (0, τc). Let τc < τj = j/(n + 1) be a sequence of

quantiles where j = n − k, . . . ,m and m < n is an integer close to n. Suppose [a] denotes

the integer part of a. The authors assume m = n− [nη] with η > 0 being a small constant

such that nη < k. They also assume that as n → ∞, k = k(n) → ∞, and k(n)/n → 0.

Consider the sequence of quantile levels τc < τn−k <, · · · < τm < 1. The authors use quantile

regression to obtain a reasonable quantile estimate at the intermediate quantile level τj for

j = n− k, . . . ,m. Let

qj =α̂(τj) + xT β̂(τj)

α̂(τj),
ˆβ(τj) = argmin

α,β
ρτj

n∑
i=1

(yi − α− xTi β)

be the QR estimate at τj . Then one might consider qj as an upper ordered statistic of a

sample from FY |x. The authors have used qj as a replacement for Y(j) in equation 3.18.

Using k+ (n−m) many upper quantiles, they have proposed to estimate the tail index ξ as

ξ̂H(k, n) = ξ̂ =
1

k − [nη]

k∑
j=[nη ]

log
qn−j
qn−k

(3.19)

Let U be the tail quantile function, i.e.,

U(t) = inf{z : F (z) ≥ 1− 1/t}, t ∈ [1,∞)

U(t) is the 1− 1/t quantile. When F ∈ D(Gξ) and ξ > 0, we have for z > 0

lim
t→∞

U(tz)

U(t)
= zξ

let 1− 1/t = τn−k = 1− (k+ 1)/(n+ 1) and 1− 1/tz = τn so that as n→∞, τn → 1. Then

for large n,
U(tz)

U(t)
=

Q(τn)

Q(τn−k)
≈
(1− τn−k

1− τn

)ξ
(3.20)

Combining 3.19 and 3.20, the conditional quantile is estimated as

Q̂Y |x(τn) =
(1− τn−k

1− τn

)ξ̂
qn−k (3.21)
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Before we get into our simulation model, we would like to briefly discuss the optimal choice

of tail sample fraction determined by k = k(n). As noted by Wang et al. (2012), the choice

of k is a very important problem in statistical applications of extreme value theory. By

optimally choosing k we identify the tail sample fraction that may have the most relevant

information on the tail behavior. Garrido & Lezaud (2013) explained the influence of k on

ξ̂H(k). For small values of k, the variance of the estimate is large, while increasing k leads

to higher bias. The trade off between the bias and the variance comes at some intermediate

value of k. We would like to see how the method proposed by Wang et al. (2012) (QR.Hill)

behaves for different values of k. We will discuss more on the choices for k and η during our

numerical investigation. Wang et al. (2012) has also proposed a variation of their method

for β(τ) = β, i.e., when the slopes are constant at higher quantiles. That is a special case

of our simulation model in 3.10 with γ = 0. We restrict ourselves to the general case, i.e.,

γ 6= 0. In section 3.4.2, we compare our proposed QR.GP method with QR.Hill for heavy

tailed data at higher quantiles. We have outlined the algorithm for QR.Hill in algorithm 4.

We use algorithm 3 to implement QR.GP.

3.4.2 Simulation Study

We simulate from the following model

Y = φ+XT ρ+ (θ +XT γ)ε

ε ∼ F ∈ D(Gξ), ξ > 0

(3.22)

We have the same model as in 3.10. We now explore different distributions in the domain

of attraction of the Fréchet distribution. The conditional τ quantile of 3.22 is given by

QY |x(τ) = φ+ xT ρ+ (θ + xT γ)Qε(τ) (3.23)

For all 0 < τ < 1. Hence the true quantile function 3.23 is linear in x. Moreover, both

the slope α(τ) = φ + θQε(τ) and the intercept β(τ) = ρ + γQε(τ) vary with τ . Thus, we

satisfy the model assumption 2.10 in Wang et al. (2012) with any τ ∈ (0, 1). We simulate
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Algorithm 4: QR.Hill

start: Set 0 < τc ≈ 1; fix x, δ > 0;

I. Set k = n− [nτc] and m = n− [nη]. Select k upper quantiles τj = j
n+1 for

j = n− k, . . . ,m. Get

qj = Q̂RY |x(τj) = α̂(τj) + xT β̂(τj)

II. Estimate tail-index ξ as

ξ̂ =
1

k − [nη]

k∑
j=[nη ]

log
qn−j
qn−k

III. Estimate τ quantile as

Q̂Y |x(τ) = qn−k
(1− τn−k

1− τ

)ξ̂
IV. Set τc = τc − δ such that 0 < τc < 1 and repeat steps I-IV

end: Stop when τc ≈ 0.01

(xi, yi), i = 1, . . . , n iid observations from 3.22

yij = 1 + x1i + x2i + (1 + 0.9x1i)ei

Here φ = θ = 1, ρ = (1, 1) and γ = (0.9, 0). We simulate xij ∼ U(−1, 1) for j = 1, 2 and

ei ∼ F . We choose three example distributions F in the Fréchet domain: Pareto, absolute

t and Burr. See Table B.1 in the appendix for a list of well known distributions in the

heavy-tail domain. The true τ quantile at x is

QY |x(τ) = 1 + x1 + x2 + (1 + 0.9x1)(Qε(τ)) (3.24)

Pareto: We start our analysis with standard Pareto distribution Pa(α). Note that Pareto

distribution is a special case of standard GP distribution. If Y ∼ Pa(α) and Y ∗ = α(Y − 1)

then Y ∗ ∼ GP(µ = 0, σ = 1, ξ = 1
α). Pa(α) has tail index ξ = 1

α . Tails of GP and Pareto

behave very similarly. In section 3.2.2, we have looked into quantiles up to 0.99 from GP

with ξ = 0.5 and 0.8.
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Figure 3.7: mse±se for Pareto(0.5) at x = (0.5, 0.5) and quantile levels τ . The sample size
is n = 1000 and 0 < τc < 1

Now we will focus on the four extreme quantile levels τ ∈ (0.985, 0.991, 0.995, 0.998). We

compare our method QR.GP with QR.Hill for different values of tuning parameter τc = 1− k
n

for k = 1, . . . , n. We choose from a grid of values τc ∈ (0.01, 0.05, . . . , 0.95). When we look

into extreme quantiles, the data is even more sparse. So we choose sample sizes n ≥ 1000 in

our simulations. Our monte carlo sample size is K = 500 for all of the cases. we are going

to compare QR.GP (algorithm 3) with QR.Hill (algorithm 4) for different choices of τc. We

choose m = n− [n0.1] for QR.Hill as per the recommendation by Wang et al. (2012).

Figure 3.7 summarises mse of the quantile estimate at x = (0.5, 0.5) for sample size
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n = 1000 and tail index ξ = 0.5. Clearly, the optimal threshold for QR.GP is τc = 0.01.

Our result is consistent with our findings in section 3.2.2. We can see that we outperform

QR.Hill regardless of the choice of threshold at τ = 0.985, 0.991 and 0.995 quantiles. For

QR.Hill, optimal τc is between 0.8 and 0.9. Now we increase our sample size to 2000 and

compare QR.Hill with QR.GP at τ = 0.998. In figure 3.8 (b) we can see that QR.GP has

lower mse than QR.Hill at all threshold values. With increasing sample size, we can see that

QR.GP can outperform QR.Hill at quantile level τ = 0.998.
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Figure 3.8: mse±se for Pareto(0.5) at x = (0.5, 0.5) at quantile τ = 0.998 and sample sizes
(a) n = 1000, (b) n = 2000
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Figure 3.9: mse±se for Pareto(0.8) at x = (0.5, 0.5) and quantile levels τ . The sample size
is n = 2000 and 0 < τc < 1

We now look into the case when ξ = 0.8. We choose the sample size 2000 as higher

values of ξ is associated with even more data sparsity. From figure 3.9 (a), (b) and (c) we

can clearly see that QR.GP is uniformly better that QR.Hill at all but quantile τ = 0.998.In

fact, we can see in figure 3.11 that we achieve uniform dominance at quantileτ = 0.998

for n = 5000. For τ = 0.985, QR.GP is still uniformly better than QR.Hill even when we

increase our sample size form 2000 to 5000. We can see this in figure 3.10.

55



2
0

4
0

6
0

8
0

1
0

0

0.01 0.15 0.30 0.50 0.70 0.85

qr.hill qr.gp

τc

(a) n = 2000

2
0

4
0

6
0

8
0

1
0

0

0.01 0.15 0.30 0.50 0.70 0.85

qr.hill qr.gp

τc

(b) n = 5000
τ=0.985

m
s
e

Figure 3.10: mse±se for Pareto(0.8) at x = (0.5, 0.5) at quantile τ = 0.985 and sample sizes
(a) n = 2000, (b) n = 5000
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Figure 3.11: mse±se for Pareto(0.8) at x = (0.5, 0.5) at quantile τ = 0.998 and sample sizes
(a) n = 2000, (b) n = 5000
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Absolute t: Next we simulate ε from the absolute t distribution. The tail index for t

distribution is ξ = 1
ν where ν is the degrees of freedom. We choose ξ = 0.5 and 0.8. Note that

now the underlying distribution is asymptotically GP with tail index ξ. Here we explore the

optimal choice for τc in the case of absolute t distribution. From our numerical investigations,

we have seen that τc around 0.75 works best with QR.GP. For QR.Hill, the optimal is 0.7.

In figure 3.12 we demonstrate their performance at their corresponding optimal across lower

quantiles 0.9 ≤ τ ≤ 0.99 for sample sizes n = 1000 and 2000.
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Figure 3.12: mse±se for absolute t with ξ = 0.5 at x = (0.5, 0.5) and quantiles
0.9 ≤ τ ≤ 0.991. Sample sizes (a) n = 1000, (b) n = 2000

We can see in figure 3.12 (a) that both QR.GP an QR.Hill are consistent in the sense that

they have low mse when τ ≤ 0.95. For n = 1000, QR.Hill outperforms QR.GP at τ > 0.95.

When we increase our sample size to n = 2000, QR.Hill cannot outperform QR.GP at any

quantile level between 0.9 and 0.991. Next we move into higher quantiles. Figure 3.13

illustrates QR.GP and QR.Hill across different choices of τc for τ = 0.985, 0.991.
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Figure 3.13: mse±se for absolute t with ξ = 0.5 at x = (0.5, 0.5). Quantile values
τ = 0.985, 0.991 and sample sizes n = 1000, 2000 and 5000
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Figure 3.14: mse±se for absolute t with ξ = 0.5 at x = (0.5, 0.5). Quantile values
τ = 0.995, 0.998 and sample sizes n = 1000, 2000 and 5000
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Figure 3.15: mse±se for absolute t with ξ = 0.8 at x = (0.5, 0.5). Quantile values
τ = 0.985, 0.991 and sample sizes n = 1000, 2000 and 5000
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Figure 3.16: mse±se for absolute t with ξ = 0.8 at x = (0.5, 0.5). Quantile values
τ = 0.995, 0.998 and sample sizes n = 1000, 2000 and 5000
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Figure 3.17: mse±se for absolute t with ξ = 0.8 at x = (0.5, 0.5) and quantiles
0.9 ≤ τ ≤ 0.991. Sample sizes (a) n = 2000, (b) n = 5000

We achieve uniform dominance at quantile 0.985 with sample size n = 2000. We do so

for quantile 0.991 with n = 5000. In figure 3.14 we can see that for τ = 0.995 and 0.998,

QR.GP is comparable to QR.Hill. An important observation we have is that QR.GP is more

robust to the choice of τc than QR.Hill. Little deviation from optimal τc results to huge

fluctuation in the mse of QR.Hill. In comparison, our mse is bounded and converges to 0 as

we increase n for all τc ∈ (0, 1). Next we want to see how changing values of ξ can affect our

predictor. We increase ξ to 0.8. From our numerical investigations, we saw that τc = 0.4 is

optimal for both QR.GP and QR.Hill. Figure 3.17 shows mse at optimal values of τc = 0.4

at quantiles 0.9 < τ < 0.99. QR.GP does a better job at higher values of τ . Note that for

QR.Hill, the optimal τc is 0.7 when ξ = 0.5 while for ξ = 0.8, optimal τc = 0.4. The optimal

threshold τc is between 0.4 and 0.5 for QR.GP. We plot mse for different choices of τc and

quantiles τ = 0.985 and 0.991 in figure 3.15. We can see that any τc between 0.4 and 0.6

works well for QR.GP. Figure 3.16 shows large sample behavior of the quantile estimates at

quantiles τ = 0.995 and 0.998. With increasing sample size, QR.GP can approximate the

tail well for thresholds 0.4 ≤ τc < 1.
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Burr: We simulate from the Burr distribution with tail index 0.5. The results for

quantiles τ = 0.985 and 0.991 are summarised in figure 3.18. Optimal τc for QR.GP is close

to 0.5. Any τc > 0.5 works well when the sample size is 5000. For QR.Hill, the optimal

τc is around 0.6. In case of |t(0.5)| we have seen in figure 3.13 that with increasing sample

size, QR.GP can approximate the 0.985 quantile for all τc ∈ (0, 1). We notice the same

characteristic here. Moreover, with increasing sample size QR.GP and QR.Hill both are

comparable at their optimal. For quantiles 0.991 and 0.995, we can see from figure 3.19 that

QR.GP is comparable with QR.Hill at their optimal. Now we simulate from Burr with tail

index 0.8. From figure 3.20 we can see that the optimal τc is 0.5 for QR.GP whereas optimal

τc for QR.Hill is 0.7. For higher quantiles τ = 0.995, 0.998, we can see in figure 3.21 that

both QR.GP and QR.Hill are comparable at their corresponding optimals.

63



1.
5

2.
0

2.
5

3.
0

0.01 0.10 0.20 0.30 0.40 0.50 0.60 0.70 0.80 0.90

 τ = 0.985 n = 1000

qr.gp qr.hill

3
4

5
6

7
8

9

0.01 0.10 0.20 0.30 0.40 0.50 0.60 0.70 0.80 0.90

 τ = 0.991 n = 1000

qr.gp qr.hill

0.
8

1.
0

1.
2

1.
4

1.
6

0.01 0.10 0.20 0.30 0.40 0.50 0.60 0.70 0.80 0.90

 τ = 0.985 n = 2000

qr.gp qr.hill

2
3

4
5

6
7

8

0.01 0.10 0.20 0.30 0.40 0.50 0.60 0.70 0.80 0.90

 τ = 0.991 n = 2000

qr.gp qr.hill

2
4

6
8

0.01 0.10 0.20 0.30 0.40 0.50 0.60 0.70 0.80 0.90

 τ = 0.985 n = 5000

qr.gp qr.hill

1
2

3
4

5
6

7

0.01 0.10 0.20 0.30 0.40 0.50 0.60 0.70 0.80 0.90

 τ = 0.991 n = 5000

qr.gp qr.hill

m
se

τc

 | Burr(0.5) |

Figure 3.18: mse±se for Burr with ξ = 0.5 at x = (0.5, 0.5). Quantile values
τ = 0.985, 0.991 and sample sizes n = 1000, 2000 and 5000
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Figure 3.19: mse±se for Burr with ξ = 0.5 at x = (0.5, 0.5). Quantile values
τ = 0.995, 0.998 and sample sizes n = 1000, 2000 and 5000
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Figure 3.20: mse±se for Burr with ξ = 0.8 at x = (0.5, 0.5). Quantile values
τ = 0.985, 0.991 and sample sizes n = 1000, 2000 and 5000
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Figure 3.21: mse±se for Burr with ξ = 0.8 at x = (0.5, 0.5). Quantile values
τ = 0.995, 0.998 and sample sizes n = 1000, 2000 and 5000
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3.5 Application to precipitation downscaling

According to the National Oceanic and Atmospheric Administration (NOAA), “Statis-

tical downscaling encompasses the use of various statistics-based techniques to determine

relationships between large-scale climate patterns resolved by global climate models and

observed local climate responses.” Statistical downscaling techniques aim to quantify the

relationship between global scale climate model outputs and local scale climate variables.

Statistical downscaling methods are useful for making predictions about local climate vari-

ables like precipitation, temperature, wind speed and direction, air quality, etc.. In this

section, we want to apply our proposed method to predict extreme quantiles of precipita-

tion. Here we are not looking for the best set of predictors form the global scale model

outputs that explains regional precipitation. Instead, we use relevant variables like sea level

pressure, specific humidity, etc. which contain necessary information and use them as our

predictors. Using a pre-determined set of covariates, we assess the predictive performance of

three different methods: QR, QR.GP, and QR.Hill in the context of the estimation of high

conditional quantiles.

Cannon (2011) have used historic precipitation data obtained from the Vancouver In-

ternational Airport (WMO station 71892, 49◦12′N, 123◦10.8′W) weather station to demon-

strate an application of their proposed method: quantile regression with neural network.

This dataset is publicly available with the R package ‘qrnn’. The dataset consists of daily

precipitation records of 30 years, from 1971-2000. From figure 3.22, we can see that the

distribution of the precipitation is unimodal and skewed. Moreover, out of the total 10958

days, there are 5978 dry days. Precipitation for these days is recorded as 0mm. We did not

encounter any missing values in this dataset. The maximum precipitation is 89.4mm while

less than 1% of the observations are above 31mm.

We use three global climate model outputs: daily sea-level pressure, 500-hPa geopotential

height, and 700-hPa specific humidity as covariates. The predictor variables are obtained

from the NCEP/NCAR reanalysis project by Kalnay et al. (1996) from the nearest grid
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Figure 3.22: Daily precipitation at the Vancouver International Airport, 1971-2000

point: 50◦N, 122.5◦W. We also include the sine and cosine of the day of the year as our

predictors. We standardize each of these variables before the analysis.

In real data, we do not know the true quantiles. In order to compare the predictive per-

formance of a quantile estimation method, we need a reference quantile estimate. Following

the suggestion by Cannon (2011), we use monthly sample quantiles as our reference quantile.

Given a quantile level τ , let QY (m,i)(τ) be the monthly sample quantile for the day i of the

month m. Then QY (m,i)(τ) is the sample τ quantile based on the observations from month

m, and we assume the same value for all the days of month m.

Here our aim is to compare the performance of three different quantile estimators: QR,

QR.GP, and QR.Hill. For all three methods, we use the same set of covariates as described

earlier in this section. We can directly fit QR as there is no threshold selection involved. For
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both QR.Hill and QR.GP, we need to choose a threshold.

Using a grid of threshold values τc in (0.01, . . . , 0.8), we fit QR.GP to the data following

algorithm 3. In figure 3.23, we have plotted different values of the estimated tail index against

the thresholds. The tail index estimate stabilizes around τc ≈ 0.7. We choose τc = 0.68 (red

dotted line in figure 3.23) for which ξ̂ = 0.18. Next, we fit QR.Hill to the data using four

different threshold values τc = 0.8, 0.85, 0.9, and 0.95. To assess the goodness of fit, we look

into mean square prediction error at τ quantile

MSPE(τ) =
1

n

n∑
i=1

(
Q̂Y |xi(τ)−QY (m,i)(τ)

)2
where Q̂Y |xi(τ) is the predicted conditional τ quantile given xi andQY (m,i)(τ) is the monthly

sample quantile for day i. Note that for both QR.GP and QR.Hill, we can only predict

Figure 3.23: Estimated tail index (ξ̂) at different choices of τc ∈ (0, 1). Method of
estimation is QR.GP
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quantiles τ above the threshold τc. We choose τ ∈ {0.9, 0.91, 0.92, 0.93, 0.94, 0.95, 0.96,

0.97, 0.98, 0.985, 0.99, 0.995}. We use only quantile levels above 0.95 for the case τc =

0.95 (QR.Hill). Figure 3.24 shows the mean square prediction error for different quantile

estimates. We can see that the mspe for QR.GP is lower than QR at all quantile levels

τ > 0.9. Although the performance of QR and QR.GP are not very different. Note that the

tail index estimated by QR.GP is ξ̂ = 0.18 which indicates that the data is not very heavy

tailed. We have seen from our numerical investigations that QR performs poorly when ξ

is 0.5 or above. But for ξ = 0 (exponential), QR is comparable with QR.GP. Moreover,

we have a decent sample size n = 10958 which gives QR some benefit. Hence we are not

very surprised that the performance of QR closely follows our method. On the other hand,

predictive performance of QR.Hill is very sensitive to the choice of τc. Higher thresholds

tend to work better at higher quantile levels. For QR.Hill, we cannot agree upon a universal

threshold value that gives us the lowest mspe at all quantile levels above 0.9.

Implementation of the QR.Hill method in practice is challenging. Firstly, For a given

value of the predictor x, Wang et al. (2012) proposed to choose τc such that ξ̂|x is stable.

This makes the choice of tail index dependent on the covariate. Thus, we cannot choose

a optimal τc for all x. Meanwhile, with QR.GP we can still select a covariate adaptive

threshold for a fixed τc as we use QR(τc|x) to estimate the threshold. Secondly, due to the

nature of QR.Hill, one has to compute QR estimates for n(1 − τc) many quantiles. This is

computationally challenging, particularly when τc is low or the sample size n is high. For

this data, with the sample size of n = 10958 implementing QR.Hill is very time consuming.

Compared to that we compute QR only once for each choice of τc.
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CHAPTER 4

DISCUSSIONS AND FUTURE DIRECTIONS

Estimation of extreme conditional quantile is of prime interest in many fields of science.

Quantile Regression is useful to quantify effects of the covariates at different quantile levels.

When the underlying distribution is heavy tailed in nature, Quantile Regression estimates

suffer form high variability particularly at higher quantiles.

In this dissertation, we have developed methods tailored for estimating high conditional

quantiles for heavy tailed distributions. We have used the GP distribution to model the tail

behavior. Selection of an appropriate threshold is necessary for fitting a GP model. The

threshold selection problem itself is challenging: a higher threshold leads to high variance

while a lower threshold is associated with higher bias. The efficiency of the GP model is

severely compromised when the threshold itself varies as a function of the covariate. The

common practice is to use an empirical quantile of the response variable as a threshold which

is not covariate adaptive. Combining Quantile Regression with Extreme Value theory, we

have proposed a novel method (QR.GP) of selecting a covariate adaptive threshold which in

turn produce a consistent estimator for higher quantiles. We establish desirable asymptotic

properties: consistency and asymptotic normality of QR.GP when the distribution is belongs

to the GP family. We have shown that with proper thresholding, QR.GP can be adapted

for a wide class of distribution in the heavy tailed domain of attraction. Although there

are relatively few works which address the issue of estimation of high conditional quantiles

for heavy tailed distributions, the one by Wang et al. (2012) presents a very promising ap-

proach. We have compared QR.GP approach which is fully parametric with that of Wang

et al. (2012). Our findings show that when the underlying distribution is Pareto or General-

ized Pareto, QR.GP provides consistent estimation of higher quantiles and has lower mean

square error that Wang et al. (2012). From our numerical investigations, we show that the

value of the threshold in QR.GP is different for different distributions in the heavy tailed
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domain. Nonetheless, we have proposed a guideline for choosing the threshold when we

implement QR.GP in practice. Compared to Wang et al. (2012) our method is more robust,

computationally much faster and easy to interpret and apply in real data.

In our work, we have focused on the linear quantile functions. As pointed out by Wang

& Li (2013), the linearity assumption is restrictive. Wang & Li (2013) have used Box-Cox

power transformation in which the quantiles of the transformed response variable is linear

in the covariates. An extension of work could be modeling some power transformation of

the response variable with GP distribution. Our method features a constant tail index.

In future, we can look at a possible extension where the tail index is also a function of

the covariate. Establishing asymptotic properties of our method is challenging when the

underlying distribution is a heavy tailed distribution other than Pareto or GP. This is an

open ended problem and one can explore further in this direction.
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APPENDIX A

APPENDIX FOR CHAPTER 2

Supplemental figures and tables:

Table A.1: φ = 0, exp(1): rel.bias(se) of quantile estimates for φ = 0 at x = 0.5 and
quantile levels τ .

τ n = 500 n = 1000
GP.scale QR GP.scale QR

0.1 0.04(0.03) 0.14(0.11) 0.03(0.03) 0.11(0.08)
0.3 0.04(0.03) 0.08(0.06) 0.03(0.03) 0.06(0.05)
0.5 0.04(0.03) 0.06(0.05) 0.03(0.02) 0.05(0.04)
0.7 0.04(0.03) 0.06(0.04) 0.03(0.02) 0.04(0.03)
0.9 0.04(0.03) 0.06(0.04) 0.03(0.02) 0.04(0.03)
0.93 0.04(0.03) 0.06(0.05) 0.03(0.02) 0.05(0.04)
0.95 0.04(0.03) 0.07(0.05) 0.03(0.02) 0.05(0.04)
0.97 0.04(0.03) 0.07(0.06) 0.03(0.03) 0.05(0.04)
0.99 0.05(0.04) 0.1(0.08) 0.04(0.03) 0.07(0.05)

Table A.2: φ = 0, exp(1): mse(se) of quantile estimates for φ = 0 at x = 0.5 and quantile
levels τ .

τ n = 500 n = 1000
GP.scale QR GP.scale QR

0.1 0(0) 0(0) 0(0) 0(0)
0.3 0(0) 0(0) 0(0) 0(0)
0.5 0(0) 0.01(0) 0(0) 0(0)
0.7 0.01(0) 0.01(0) 0(0) 0.01(0)
0.9 0.03(0) 0.06(0) 0.02(0) 0.03(0)
0.93 0.04(0) 0.09(0.01) 0.02(0) 0.05(0)
0.95 0.05(0) 0.12(0.01) 0.03(0) 0.07(0)
0.97 0.08(0.01) 0.21(0.01) 0.05(0) 0.12(0.01)
0.99 0.18(0.01) 0.71(0.05) 0.1(0.01) 0.36(0.02)
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Figure A.1: mse(se) for φ = 0, exp(1) at x = 0.5 and quantile levels τ . The sample size is
n = 500.
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APPENDIX B

APPENDIX FOR CHAPTER 3

Table B.1: Probability distributions in heavy-tail domain

Distribution 1− F (y) ξ Parameters F−1(τ)

GP(µ, σ, ξ)
(

1 +
ξ(y−µ)
σ

)−1
ξ ξ µ < y, σ, ξ > 0 µ+ σ

ξ

[
(1− τ)−ξ − 1

]
GP(0, 1, ξ) (1 + ξy)

−1
ξ ξ 0 < y, ξ > 0 1

ξ

[
(1− τ)−ξ − 1

]
exp(λ) exp(−λy) 0 y > 0, λ > 0 − 1

λ log(1− τ)

Pa(α) y−α 1
α y > 1, α > 0 (1− τ)−

1
α

Frechet(α) 1− exp(−y)−α 1
α y > 0, α > 0 (− log(τ))

1
α

Burr(η, λ, ν) 1−
(

η
η+y−ν

)λ
1
ν y > 0, η, λ, ν > 0

[
η
(
τ
− 1
λ − 1

)]−1
ν

|T(n)| 2
(

1− Ft(n)(y)
)

1
n y > 0, n > 0 F−1

t(n)

(
1+τ
2

)
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