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ABSTRACT

GALOIS MODULE STRUCTURE OF WEAKLY RAMIFIED COVERS OF CURVES

By

Sugil Lee

The main theme of our study is the obstruction to the existence of a normal integral basis for

certain Galois modules of geometric origin. When𝐺 is a finite group acting on a projective scheme

𝑋 over Spec Z and F is a 𝐺-equivariant coherent sheaf of O𝑋 -modules, the sheaf cohomology

groups H𝑖(𝑋,F ) are 𝐺-modules, and one asks if its equivariant Euler characteristic

𝜒(𝑋,F ) :=
∑
𝑖

(−1)𝑖[H𝑖(𝑋,F )]

can be calculated using a bounded complex of finitely generated free modules over Z[𝐺]. Then we

say that the cohomology of F has a normal integral basis. The obstruction to the existence of a

normal integral basis has been of great interest in the classical case of number fields: As conjectured

by Fröhlich and proven by Taylor, when 𝑁/Q is a finite tamely ramified Galois extension with

Galois group 𝐺, the Galois module structure of the ring of integers O𝑁 is determined (up to stable

isomorphism) by the root numbers appearing in the functional equations of Artin 𝐿-functions

associated to symplectic representations of 𝐺. Chinburg started a generalization of the theory to

some schemes with tame group actions by introducing the reduced projective Euler characteristic

classes 𝜒𝑃(𝑋,F ). These Euler characteristics are elements of the class group Cl(Z[𝐺]) and give

the obstruction to the existence of normal integral basis.

Our aim is to generalize the theory to the ‘‘simplest” kind of wild ramification, namely to

weakly ramified covers of curves over Spec Z. If 𝑁/Q is wildly ramified, then O𝑁 is not a free

Z[𝐺]-module. Erez showed that when the order |𝐺 | is odd, then the different ideal 𝔇𝑁/Q is a

square, and the square root of the inverse different is a locally free Z[𝐺]-module if and only if

𝑁/Q is weakly ramified. Köck classified all fractional ideals of weakly ramified local rings that

have normal integral bases. We generalize both of the results to curves over Spec Z to construct

projective Euler characteristic for certain equivariant sheaves on weakly ramified covers of curves.
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CHAPTER 1

INTRODUCTION

The history of the study of Galois module structure is deeply rooted in the normal basis theorem

for finite Galois extensions. If 𝑁/𝐾 is a finite Galois extension of fields with 𝐺 = Gal(𝑁/𝐾), the

theorem asserts that 𝑁 , as a 𝐾-vector space, has a basis of the form {𝜎(𝛼)}𝜎∈𝐺 for some 𝛼 ∈ 𝑁

which is then called a normal basis, i.e., 𝑁 is a free 𝐾[𝐺]-module of rank 1. To formulate the

basic problem, let 𝑁/Q be a finite Galois extension with Galois group 𝐺. Then the ring of integers

O𝑁 has a natural Z[𝐺]-module structure. The analogous question can be asked: Does O𝑁 have a

normal integral basis, i.e., is there an element 𝛼 ∈ O𝑁 such that {𝜎(𝛼)}𝜎∈𝐺 forms a Z-basis of

O𝑁 , so that O𝑁 is free over Z[𝐺]? This existence problem and the nature of the global obstructions

have been the central theme of the subject.

The first approach to the problem was made via localization with completion. We call a finitely

generated Z[𝐺]-module 𝑀 locally free if, for all primes 𝑝 in Z, the 𝑝-adic completion 𝑀𝑝 is free

over Z𝑝[𝐺]. (This is equivalent to 𝑀 being projective, see [Swa60].) A theorem of Noether

[Noe32] states that

Theorem 1.0.1. With 𝑁/Q as above, O𝑁 is locally free over Z[𝐺] if and only if 𝑁/Q is tame, i.e.,

at most tamely ramified at every 𝑝.

Thus tame ramification is clearly necessary for the existence of a normal integral basis. The natural

question is then to ask if it is sufficient, and if not, what are the global obstructions. Explicit

examples for 𝑁/Q tame with no normal integral bases can be found in [Mar71].

The question can be rephrased in terms of a calculation of the class (O𝑁)Z[𝐺] of O𝑁 in the

class group Cl(Z[𝐺]) of the Grothendieck group K0(Z[𝐺]) of finitely generated projective modules

over Z[𝐺]. The class group Cl(Z[𝐺]) is a finite abelian group which is defined as the quotient

of K0(Z[𝐺]) by the subgroup generated by the class of the free module Z[𝐺]. If 𝑀 is a finitely

generated locally free Z[𝐺]-module, then the rank of 𝑀 and its class (𝑀)Z[𝐺] ∈ Cl(Z[𝐺]) determine
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𝑀 up to stable isomorphism: If 𝑁 is another finitely generated projective Z[𝐺]-module, then the

classes of 𝑀 , 𝑁 in Cl(Z[𝐺]) and their ranks coincide if and only if 𝑀 ⊕ Z[𝐺] � 𝑁 ⊕ Z[𝐺].

Moreover, for most 𝐺, e.g. of odd order or abelian, a stable isomorphism of locally free modules

implies an isomorphism by the Swan-Jacobinski theorem ([Swa86]; see also [Frö83]), i.e., we have

‘‘cancellation’’.

The most important discovery that provides the power, depth, and interest of the theory is

the conjecture made by Fröhlich and proved by Taylor in [Tay81]. It states that, for a finite

Galois extension of number fields 𝑁/𝐾 , if 𝑁/𝐾 is tame, then the class (O𝑁)Z[𝐺] is equal to

another invariant𝑊𝑁/Q in Cl(Z[𝐺]) which Cassou-Noguès had defined in [CN78] using the Artin

root-numbers of symplectic representations of the Galois group 𝐺. The root-number 𝑊(𝜒) of a

character 𝜒 of𝐺 is the complex constant of absolute value 1 appearing in the functional equation of

the extended Artin 𝐿-function 𝐿̃(𝑠, 𝜒) = 𝐿̃(𝑠, 𝑁/𝐾, 𝜒) (with Euler factors at infinity, see [Frö83]):

𝐿̃(𝑠, 𝜒) = 𝐿̃(1 − 𝑠, 𝜒)𝑊(𝜒)𝐴(𝜒)
1
2−𝑠

where 𝜒 is the complex conjugate representation, 𝐴(𝜒) is a positive constant. When 𝜒 is real

valued, then the root numbers are known to be ±1. These root numbers influence the existence of

non-trivial zeros of the Dedekind zeta functions: 𝐿̃(𝑠, 𝜒)𝐴(𝜒)
𝑠
2 is either symmetric or asymmetric

about 𝑠 = 1
2 depending on whether𝑊(𝜒) = 1 or = −1. If 𝜒 is a character of Gal(𝑁/𝐾), the later

case implies in turn that the Dedekind zeta function of 𝑁 vanishes at 𝑠 = 1
2 , see [Arm71].

The connection between Galois-structure invariants and Artin 𝐿-functions has been a basic

theme in research on Galois structure since then. For example, as the Artin root numbers of

symplectic characters are ±1, (O𝑁)Z[𝐺] = 𝑊𝑁/𝐾 is 2-torsion by Fröhlich and Taylor [Tay81], and

indeed

gcd(2, |𝐺 |) · (O𝑁)Z[𝐺] = 0. (1.1)

Thus when the order |𝐺 | of the group is odd, then O𝑁 is stably free; but cancellation holds when

|𝐺 | is odd, therefore we know that O𝑁 is actually a free Z[𝐺]-module.

The study of the Galois module structure of the ring of integers O𝑁 naturally extends to a

geometric situation. Suppose 𝑋 is a smooth projective variety defined over Q with an action of a
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finite group 𝐺. For any 𝐺-equivariant coherent sheaf F of O𝑋 -modules, i.e., a coherent sheaf of

O𝑋 -modules equipped with a 𝐺-action compatible with the 𝐺-action on 𝑋 , the equivariant Euler

characteristic 𝜒(𝑋,F ) = 𝜒(𝐺, 𝑋,F ) is the virtual representation

𝜒(𝑋,F ) :=
∑
𝑖

(−1)𝑖[H𝑖(𝑋,F )].

It is well-known (see [BK82]) that, if the action is free, 𝜒(𝑋,F ) is a multiple of the regular repre-

sentationQ[𝐺], i.e., the complex RΓ(𝑋,F ) in the derived category of complexes ofQ[𝐺]-modules

is isomorphic to a bounded complex of finitely generated free Q[𝐺]-modules. Suppose now that

the variety 𝑋 is extended to a regular projective scheme 𝑋′ which is flat over Spec Z and the action

of 𝐺 extended to 𝑋′ as well. For a 𝐺-equivariant coherent sheaf of O𝑋 -modules F on 𝑋′, we say

that

Definition. The cohomology of F has a normal integral basis if there exists a bounded complex

of finitely generated free Z[𝐺]-modules which is isomorphic to RΓ(𝑋,F ) in the derived category

of complexes of finitely generated Z[𝐺]-modules.

Unlike the previous case over Q, it is not true in general that the cohomology of F has a normal

integral basis. The classical example of O𝑁 is reconstructed under these settings when 𝑋′ is

the spectrum of O𝑁 in a Galois extension of number fields 𝑁/Q with the Galois group 𝐺, and

F = O𝑋′ = Õ𝑁 .

From now on, we consider the general setting for geometric Galois module structure as fol-

lowing: For a finite group 𝐺, we consider a 𝐺-cover 𝜋 : 𝑋 → 𝑌 of projective flat schemes over

Spec Z. If F is a𝐺-equivariant coherent sheaf of O𝑋 -modules, then the sheaf cohomology groups

𝑋

𝑋/𝐺

𝜋

𝐺

Figure 1.1: Galois cover.

H𝑖(𝑋,F ) are finitely generated modules over the group ring Z[𝐺]. Thus the equivariant Euler
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characteristic 𝜒(𝑋,F ) can be defined as earlier in the Grothendieck group K0(𝐺,Z) of finitely

generated Z[𝐺]-modules. The main objective is to calculate the obstruction to the existence of a

normal integral basis of the cohomology of F .

The solution to the problem depends on many geometric invariants of 𝜋 : 𝑋 → 𝑌 and F , and

the foundation of the study has been developed when 𝜋 is assumed to be at most tamely ramified,

extending the classical results on (O𝑁)Z[𝐺].

Chinburg introduced the general framework ([Chi94]; see also [CE92], [CEPT96]) in the

following sense: When 𝜋 : 𝑋 −→ 𝑌 = 𝑋/𝐺 is tamely ramified, then for any 𝐺-equivariant

coherent sheaf F of O𝑋 -modules on 𝑋 , the complex RΓ(𝑋,F ) is quasi-isomorphic to a bounded

complex of finitely generated projectiveZ[𝐺]-modules. In fact, one can take such bounded complex

𝑃• to be of free Z[𝐺]-modules except for the last projective term, thus the class of the last term

in Cl(Z[𝐺]) is the obstruction to the existence of a normal integral basis for the cohomology of

F . The Euler characteristic
∑
𝑖(−1)𝑖[𝑃𝑖] of such a bounded complex in K0(Z[𝐺]) does not depend

on the choice of the bounded complex, and is called the projective Euler characteristic 𝜒𝑃(𝑋,F ).

This maps to the equivariant Euler characteristic 𝜒(𝑋,F ) in K0(𝐺,Z) under the natural forgetful

functor

K0(Z[𝐺])→ K0(𝐺,Z)

𝜒𝑃(𝑋,F ) ↦→ 𝜒(𝑋,F )

called the Cartan homomorphism, giving us much more information on the Galois module structure

of the equivariant Euler characteristic.

Understanding these projective Euler characteristics has been the main problem of the theory

of geometric Galois structure. In [Chi94] and [CEPT96], under some additional hypotheses, the

projective Euler characteristic of a version of the de Rham complex of sheaves on 𝑋 (which

generalizes the classical obstruction (O𝑁)Z[𝐺] if 𝑋 = Spec O𝑁 ) was calculated using 𝜖-factors of

Hasse-Weil-Artin 𝐿-functions for the cover 𝑋 → 𝑌 . In [Pap98], Pappas considered the general F

on the ‘‘relative curve” case over Spec Z with a free action of 𝐺 by introducing the technique of
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cubic structures. He generalizes the equation (1.1) by showing

gcd(2, |𝐺 |) · 𝜒𝑃(𝑋,F ) = 0 (1.2)

when all the Sylow subgroups of 𝐺 are abelian. Here, 𝜒𝑃(𝑋,F ) is the class of 𝜒𝑃(𝑋,F ) in

Cl(Z[𝐺]) called the reduced projective Euler characteristic. Later the abelian restriction on (1.2)

was overcome with a stronger result with the introduction of Adams operations in [Pap15]. This

proves a case of a conjecture on unramified covers that there are integers 𝑛 (that depends only on

the relative dimension of 𝑋 over Z) and 𝛿 (that depends only on the order of 𝐺) such that

gcd(𝑛, |𝐺 |)𝛿 · 𝜒𝑝(𝑋,F ) = 0,

see [Pap08] and [CPT09] for more.

Unlike the rich progress in non-ramified and tamely ramified covers, little is known about the

simplest kind of wild ramification called weakly ramified. The Galois group 𝐺 of a finite Galois

extension of local fields 𝐿/𝐾 with respect to a discrete valuation 𝑣𝐿 has a finite chain of normal

subgroups

𝐺 = 𝐺−1 D 𝐺0 D 𝐺1 D 𝐺2 D · · ·

given by

𝐺𝑛 = {𝜎 ∈ 𝐺 | 𝑣𝐿(𝜎(𝑥) − 𝑥) ≥ 𝑛 + 1 ∀𝑥 ∈ O𝐿}

called the 𝑛’th ramification group. We say 𝐿/𝐾 is weakly ramified (resp. tamely ramified,

unramified) if 𝐺𝑛 = {1} for 𝑛 = 2 (resp. 𝑛 = 1, 𝑛 = 0) and the corresponding residue field

extensions are separable. A Galois extension of number fields 𝑁/𝐾 is weakly ramified if its

localizations at all primes in 𝑁 are weakly ramified. The main result of this thesis generalizes some

aspects of the theory of geometric Galois module structure to weakly ramified covers of curves.

Turning back to the classical example, Noether’s theorem asserts that when the ramification

of 𝑁/Q is wild, then O𝑁 does not possess a normal integral basis. However, there could be

other ambiguous ideals, i.e., fractional ideals that are also stable under 𝐺, that are free over Z[𝐺].

Regardless of the ramification type, Ullom in [Ull70] showed that if an ambiguous ideal in 𝑁
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is locally free over Z[𝐺], then all the second ramification groups are trivial. Thus the classical

examples of normal integral bases are all bound to weakly ramified cases. The first general result

on locally free ambiguous ideals over Z[𝐺] other than the ring of integers itself was given by Erez

in [Ere91]. When the order of the Galois group 𝐺 is odd, then by Hilbert’s valuation formula on

the different ideal 𝔇(𝑁/Q), there exists a canonical ambiguous ideal 𝐴(𝑁/Q) called the square

root of the inverse different whose square is the inverse of 𝔇(𝑁/Q). Erez’s theorem states that

Theorem 1.0.2. 𝐴(𝑁/Q) is locally free over Z[𝐺] if and only if 𝑁/Q is weakly ramified.

Note that, since the order |𝐺 | is assumed to be odd, Q[𝐺] satisfies the Eichler condition in the

Swan-Jacobinski theorem, thus the class (𝐴(𝑁/Q))Z[𝐺] determines the Galois structure of 𝐴(𝑁/Q)

up to Z[𝐺]-isomorphism.

In [Köc04], Köck classified all ambiguous ideals of weakly ramified extensions that are locally

free over Z[𝐺]. Suppose 𝐿/𝐾 is a finite Galois extension of local fields with Galois group 𝐺,

and 𝔪𝐿 denote the maximal ideal of the ring of integers of 𝐿. Then the maximal tamely ramified

subfield 𝐿𝑡 of 𝐿 over 𝐾 determines the wild inertia group 𝐺1 = Gal(𝐿/𝐿𝑡), and

Theorem 1.0.3. The fractional ideal 𝔪𝑏
𝐿 for some 𝑏 ∈ Z is free over O𝐾 [𝐺] if and only if 𝐿/𝐾 is

weakly ramified and 𝑏 ≡ 1 mod |𝐺1 |.

In the same paper, this result is then generalized to the geometric Galois module case of dimension

1, namely weakly ramified cover of curves 𝜋 : 𝑋 → 𝑋/𝐺 over an algebraically closed field 𝑘 with

𝐺-equivariant invertible sheaves O𝑋(𝐷). These sheaves admit projective Euler characteristics

defined in K0(𝑘[𝐺]).

Our main objective is to study this Galois module structure problem when 𝜋 is a weakly

ramified cover of curves over Spec Z, the first higher dimensional case. Once the meaning of

‘‘weak ramification” is clarified on finite covers of schemes of dimension 2 (which is discussed in

Chapter 4), the natural question is whether we can study the cohomologies of𝐺-equivariant sheaves

using an obstruction well-defined in Cl(Z[𝐺]). The equivariant Euler characteristic 𝜒(𝑋,F ) is

in K0(𝐺,Z), and the Cartan homomorphism K0(Z[𝐺]) → K0(𝐺,Z) is not surjective in general.
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Our first result is to define the projective Euler characteristic 𝜒𝑝 for a class of 𝐺-equivariant

invertible sheaves on 𝑋 using Chinburg’s criterion given in [Chi94]. This generalizes Köck’s work

to schemes of dimension 2 (The exact statement of the theorem is given in Chapter 4).

Theorem 1.0.4. Let 𝜋 : 𝑋 → 𝑋/𝐺 be a weakly ramified cover of curves over Z with a finite

action of 𝐺. Suppose F = O𝑋(𝐷) is an invertible sheaf of O𝑋 -𝐺-modules on 𝑋 corresponding

to a horizontal divisor 𝐷. Suppose the restriction 𝐷 ∩ 𝑋𝑝 to the special fibre 𝑋𝑝 over each

prime divisor 𝑝 of the order of 𝐺 is given by a 𝐺-equivariant Weil divisor
∑
𝑥∈𝑋𝑝 𝑛𝑥 · [𝑥] where

𝑛𝑥 ≡ −1 mod |𝐺𝑥,1 |. Then the derived complex RΓ(𝑋,F ) is isomorphic in the derived category

to a bounded complex 𝑃• of finitely generated projective Z[𝐺]-modules. Its Euler characteristic∑
𝑖(−1)𝑖[𝑃]𝑖 in K0(Z[𝐺]) is independent of choices and defines the projective Euler characteristic

𝜒𝑃(𝑋,F ).

The second main result is that the condition imposed on the 𝐺-equivariant invertible sheaves

in the theorem is not too strong, that there canonically exists a sheaf satisfying the condition when

𝑋 → 𝑌 is weakly ramified relative cover of curves over Spec Z. The canonical existence is a

generalization of the square root of the inverse different 𝐴(𝑁/Q) introduced by Erez (This is

discussed in Chapter 5).

Theorem 1.0.5. There exists an invertible sheaf F on 𝑋 such that F ⊗−2 is the torsion-free part of

the quotient sheaf O𝑋/Ann(Ω1
𝑋/𝑌

) by the annihilator of the sheaf of relative differentialsΩ1
𝑋/𝑌

and

which satisfies the assumptions of the previous theorem, so that the projective Euler characteristic

𝜒𝑃(𝑋,F ) exists.

The thesis is organized as follows. In Chapter 2, we review the background mathematics that

will be used throughout the thesis. For example, we discuss some facts about ramified extensions of

discrete valuation rings, Grothendieck groups, projectivity and cohomological triviality, quotient

scheme by a finite group, and 𝐺-equivariant sheaves. Chapter 3 is an extension to Chapter

2, discussing more on theorems of Chinburg, Köck, and Erez that will be used directly in our

main results. In Chapter 4, we introduce our first main result which gives a sufficient condition

7



for 𝐺-equivariant invertible sheaves on weakly ramified relative curves to have projective Euler

characteristic. We also demonstrate an example which naturally leads to the topic of the next

chapter. Chapter 5 discusses the canonical existence of sheaves that meet the hypothesis of the

theorem in Chapter 4, generalizing the square root of the inverse different that Erez introduced.
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CHAPTER 2

BACKGROUND

This chapter provides a succinct review of mathematics that will be used throughout this

thesis. We first recall a basic classification of ramification of discrete valuation rings using higher

ramification groups. The second part reviews group cohomology and the Grothendieck group

K0(Z[𝐺]) of finitely generated projective Z[𝐺]-modules. In the last section, we review group

actions on schemes and the Euler characteristic of equivariant sheaves.

Throughout the text, 𝐺 always denotes a finite group, and all rings are assumed to be commu-

tative and have identity.

2.1 Discrete Valuation Rings and Dedekind Domains

Dedekind domains are fundamental objects in algebraic number theory and smooth curves.

This section heavily relies on [Ser79], and proofs of basic results are mostly omitted.

Discrete Valuation Rings. Let 𝐾 be a field, 𝐾× the multiplicative group of non-zero elements

of 𝐾 . A discrete valuation of 𝐾 is a surjective homomorphism 𝑣 : 𝐾× → Z such that

𝑣(𝑥 + 𝑦) ≥ Inf(𝑣(𝑥), 𝑣(𝑦)) for 𝑥, 𝑦 ∈ 𝐾×.

Here 𝑣 is extended to 𝐾 by setting 𝑣(0) = +∞.

The set O of elements 𝑥 ∈ 𝐾 such that 𝑣(𝑥) ≥ 0 is a subring of 𝐾 called the valuation ring of

𝑣. It has a unique maximal ideal, namely the set 𝔪 of all 𝑥 ∈ 𝐾 such that 𝑣(𝑥) > 1. An element

𝜋 ∈ 𝔪 with 𝑣(𝜋) = 1 generates the maximal ideal 𝔪, and such an element is called a uniformizer

of O (or of 𝑣). The field 𝜅 = O/𝔪 is called the residue field of O (or of 𝑣).

A discrete valuation ring (O,𝔪) (or simply O) is a principal ideal domain O with exactly one

non-zero maximal ideal 𝔪. Then the field of quotients 𝐾 of O is equipped with a discrete valuation

𝑣 derived by 𝔪: For 𝑥 ∈ 𝐾×, 𝑣(𝑥) = 𝑛 where 𝑥 ∈ 𝔪𝑛 and 𝑥 ∉ 𝔪𝑛+1.

A discrete valuation ring is characterized by the following proposition:

9



Proposition 2.1.1. Let 𝐴 be a noetherian integral domain. Then 𝐴 is a discrete valuation ring if

and only if the two following conditions are met:

i) 𝐴 is integrally closed.

ii) 𝐴 has a unique non-zero prime ideal.

Dedekind Domains. Let O be a noetherian integral domain.

Proposition 2.1.2. For a noetherian integral domain O, the following are equivalent:

i) For every non-zero prime ideal 𝔭 ∈ Spec O, the localization O𝔭 is a discrete valuation ring.

ii) O is integrally closed and of dimension ≤ 1.

If O satisfies these equivalent conditions and is of dimension 1, it is called a Dedeking domain.

If 𝐴 is an integral domain with the field of fractions 𝐾 , a fractional ideal 𝐼 of 𝐴 is a sub-

𝐴-module of 𝐾 finitely generated over 𝐴. If 𝐽 is another fractional ideal of 𝐴, the product ideal 𝐼𝐽

is generated by products of elements of 𝐼 and 𝐽. One says 𝐼 is invertible if there exists a fractional

ideal 𝐽 such that 𝐼𝐽 = 𝐴.

Proposition 2.1.3. In a Dedekind domain, every fractional ideal is invertible.

The non-zero fractional ideals of a Dedekind domain form a group under multiplication called the

ideal group of the ring.

Let O be a Dedekind domain. For each non-zero prime ideal 𝔭 of O, the localization O𝔭 defines

a discrete valuation of the field of fractions 𝐾 denoted by 𝑣𝔭.

Proposition 2.1.4. If 𝑥 ∈ O, 𝑥 ≠ 0, then only finitely many prime ideals contain 𝑥.

Corollary 2.1.4.1. For every 𝑥 ∈ 𝐾×, the numbers 𝑣𝔭(𝑥) are almost all zero, i.e., zero except for

a finite number.
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If 𝐼 is a fractional ideal and 𝔭 is a non-zero prime ideal of O, then the image 𝐼𝔭 of 𝐼 in O𝔭 has

the form 𝐼𝔭 = (𝔭O𝔭)𝑣𝔭(𝐼) defining the valuation 𝑣𝔭(𝐼) of the ideal 𝐼 at 𝔭.

Proposition 2.1.5. Every fractional ideal 𝐼 of O can be written uniquely in the form:

𝐼 =
∏
𝔭

𝔭𝑣𝔭(𝐼),

where 𝑣𝔭(𝐼) are integers almost all zero.

Extensions of Dedekind Domains. Let O𝐾 be a Dedekind domain with its field of fractions 𝐾 .

Let 𝑁 be a separable extension of 𝐾 and denote by O𝑁 the integral closure of O𝐾 in 𝑁 , i.e., the set

of elements of 𝑁 that are integral over O𝐾 .

Proposition 2.1.6. The ring O𝑁 is a finitely generated O𝐾 -module and Dedekind.

If 𝔭 is a non-zero prime ideal of O𝐾 , and 𝔮 is a prime ideal of O𝑁 such that 𝔮 ∩ O𝐾 = 𝔭, we

say 𝔮 is over 𝔭 and write 𝔮|𝔭. The fractional ideal 𝔭O𝑁 decomposes into prime ideals of O𝑁 :

𝔭O𝑁 =
∏
𝔮|𝔭

𝔮𝑒𝔮

where 𝑒𝔮 = 𝑣𝔮(𝔭O𝑁) ≥ 0. The integer 𝑒𝔮 is called the ramification index of 𝔮 in the extension

𝑁/𝐾 .

When 𝔮 is over 𝔭, the residue field 𝜆 = O𝑁/𝔮 is a finite field extension of the residue field

𝜅 = O𝐾/𝔭. The degree 𝑓𝔮 of extension 𝜆/𝜅 is called the residue degree of 𝔮.

Proposition 2.1.7. Let 𝔭 be a non-zero prime ideal of O𝐾 . Then the ring O𝑁/𝔭O𝑁 is an

O𝐾/𝔭-algebra of degree 𝑛 = [𝑁 : 𝐾] isomorphic to the product∏
𝔮|𝔭
O𝑁/𝔮𝑒𝔮 .

We have the formula

𝑛 =
∑
𝔮|𝔭

𝑒𝔮 𝑓𝔮.
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If 𝔮|𝔭 and 𝑣𝔮 is the valuation induced by 𝔮, then for 𝑥 ∈ 𝐾 , 𝑣𝔮(𝑥) = 𝑒𝔮𝑣𝔭(𝑥). We say the

valuation 𝑣𝔮 extends 𝑣𝔭 with index 𝑒𝔮. Conversely:

Proposition 2.1.8. Let 𝑤 be a discrete valuation of 𝑁 extending 𝑣𝔭 for some 𝔭 ∈ Spec O𝐾 with

index 𝑒. Then there is 𝔮 ∈ Spec O𝑁 , 𝑤 = 𝑣𝔮 with 𝑒𝔮 = 𝑒.

Galois Extensions. Let 𝑁/𝐾 be as before and assume further that the extension is Galois.

Proposition 2.1.9. If 𝑁/𝐾 is Galois and 𝔮|𝔭, the integers 𝑒𝔮, 𝑓𝔮 depend only on 𝔭. If we denote

them by 𝑒𝔭, 𝑓𝔭, and if 𝑟𝔭 denotes the number of prime ideals 𝔮 over 𝔭, then

𝑛 = 𝑒𝔭 𝑓𝔭𝑟𝔭.

Let 𝐺 = Gal(𝑁/𝐾). For a non-zero prime ideal 𝔮 ∈ Spec O𝑁 , the decomposition group 𝐺𝔮 is

the subgroup of 𝐺 fixing 𝔮:

𝐺𝔮 := {𝜎 ∈ 𝐺 | 𝜎(𝔮) = 𝔮}.

For 𝔮|𝔭, denote 𝑒𝔭, 𝑓𝔭, 𝑟𝔭 by 𝑒, 𝑓 , 𝑟 respectively. Then we have extensions of fields:

𝑁

𝑁𝐺𝔮

𝐾

𝑒· 𝑓

𝑟

where 𝑁𝐺𝔮 is the fixed group of 𝑁 by the decomposition group 𝐺𝔮.

Now consider the residue field extension 𝜆/𝜅 at 𝔮. There is a natural homomorphism

𝐺𝔮 → Gal(𝜆/𝜅),

and the kernel 𝐼𝔮 of this morphism is called the inertia group of 𝔮. This gives extensions:
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𝑁

𝑁 𝐼𝔮

𝑁𝐺𝔮

𝐾

𝑟

where 𝑁 𝐼𝔮/𝑁𝐺𝔮 is a Galois extension with Galois group 𝐺𝔮/𝐼𝔮.

Proposition 2.1.10. The residue extension 𝜆/𝜅 is normal, and the natural homomorphism

𝐺𝔮 → Gal(𝜆/𝜅)

is surjective.

The defining short exact sequence of the inertia group 𝐼𝔮 is thus given as

0→ 𝐼𝔮 → 𝐺𝔮 → Gal(𝜆/𝜅)→ 0.

Completion. Suppose 𝐴 is a commutative ring with identity, and 𝐼 is an ideal of 𝐴. We denote

by 𝐼𝑛 the 𝑛’th power of the ideal 𝐼. Then there are natural homomorphisms

𝐴/𝐼 ← 𝐴/𝐼2 ← 𝐴/𝐼3 ← · · · .

This makes (𝐴/𝐼𝑛) an inverse system of rings, and its inverse limit ring 𝐴𝐼 = lim←−𝐴/𝐼
𝑛 is called

the completion of 𝐴 with respect to 𝐼 or the 𝐼-adic completion of A. For each 𝑛, we have a natural

map 𝐴 → 𝐴/𝐼𝑛, and by the universal property of the inverse limit, we obtain a homomorphism

𝐴→ 𝐴𝐼 .

Similarly, if 𝑀 is an 𝐴-module, we define 𝑀̂ 𝐼 = lim←−𝑀/𝐼𝑛𝑀 , and call it the 𝐼-adic completion

of 𝑀 . It has a natural structure of 𝐴𝐼 -module. When no confusion arises, we would skip 𝐼 and

denote 𝐴𝐼 , 𝑀̂ 𝐼 by 𝐴, 𝑀̂ , respectively.

We state some important properties of 𝐼-adic completion without proofs (see II. §9 in [Har77]).
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Proposition 2.1.11. Let 𝐴 be a noetherian ring, and 𝐼 an ideal of 𝐴. Then:

i) 𝐼-adic completion commutes with finite direct sums (this holds true without noetherian as-

sumption on 𝐴);

ii) 𝐼 = lim
←−
𝐼/𝐼𝑛 is an ideal of 𝐴. For any 𝑛, the power 𝐼𝑛 = 𝐼𝑛𝐴, and 𝐴/𝐼𝑛 � 𝐴/𝐼𝑛;

iii) if 𝑀 is a finitely generated 𝐴-module, then 𝑀̂ � 𝑀 ⊗𝐴 𝐴;

iv) the functor 𝑀 ↦→ 𝑀̂ is an exact functor on the category of finitely generated 𝐴-modules;

v) 𝐴 is a flat 𝐴-module;

vi) 𝐴 is a noetherian ring;

vii) if (𝑀𝑛) is an inverse system where each 𝑀𝑛 is a finitely generated 𝐴/𝐼𝑛-module, and for all

𝑛 < 𝑛′,

0→ 𝐼𝑛𝑀𝑛′ → 𝑀𝑛′ → 𝑀𝑛 → 0

is exact, then 𝑀 = lim
←−
𝑀𝑛 is a finitely generated 𝐴-module, and for each 𝑛, 𝑀𝑛 � 𝑀/𝐼𝑛𝑀 .

In most of cases of our study, we consider the 𝔪-adic completion for a discrete valuation ring

(𝐴, 𝐼) = (O,𝔪).

Complete Fields. Consider a field 𝐾 equipped with a discrete valuation ring (O𝐾 ,𝔪𝐾). The

𝔪𝐾 -adic completion of O𝐾 is a discrete valuation ring Ô𝐾 with the maximal ideal 𝔪̂𝐾 . Its field of

fractions 𝐾 is the completion of 𝐾 with respect to an ultrametric absolute value on 𝐾 defined by,

for some real number 0 < 𝑎 < 1,

| |𝑥 | | = 𝑎𝑣(𝑥) for 𝑥 ≠ 0,

| |0| | = 0.

The topology determined by this metric does not depend on the choice of 𝑎. The field 𝐾 is complete

if 𝐾 = 𝐾 .
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A complete field𝐾 is a local field if its residue field 𝜅 is finite. A local field of characteristic zero

is either Q𝑝 , the completion of Q for the topology defined by the 𝑝-adic valuation, or the Laurent

power series in a formal variable. A local field with finite characteristic 𝑝 > 0 is isomorphic to

the field 𝐹((𝑇)) of formal Laurent power series for some finite field 𝐹. When 𝐾 is a local field, a

canonical way to choose the number 𝑎 is to take 𝑎 = 𝑞−1, where 𝑞 is the cardinality of the finite

residue field 𝜅.

Extension of a Complete Field. Let 𝐾 be a field equipped with a discrete valuation ring O𝐾 .

Suppose 𝐾 is complete in the topology determined by O𝐾 . Let 𝐿/𝐾 be a finite extension of fields,

and O𝐿 the integral closure of O𝐾 .

Proposition 2.1.12. Under the above assumptions,

i) O𝐿 is a discrete valuation ring;

ii) O𝐿 is a free O𝐾 -module of rank 𝑛 = [𝐿 : 𝐾];

iii) 𝐿 is complete in the topology determined by the maximal ideal of O𝐿 .

Corollary 2.1.12.1. If 𝐿/𝐾 is separable, then O𝐿 is a finitely generated free O𝐾 -module.

There is a unique valuation 𝑣𝐿 of 𝐿 extending the valuation 𝑣𝐾 of 𝐾 .

Corollary 2.1.12.2. For every 𝑥 ∈ 𝐿, 𝑣𝐿(𝑥) = 1
𝑓 · 𝑣𝐾(𝑁𝐿/𝐾(𝑥)) where 𝑓 is the residue degree.

Extension and Completion. Suppose a field 𝐾 is the fraction field of a discrete valuation ring

(O𝐾 ,𝔪𝐾) which is not assumed to be complete, and there is a finite separable extension 𝑁/𝐾 with

O𝑁 the integral closure of O𝐾 in 𝑁 . Then 𝔪𝐾 decomposes into a product of primes 𝔮𝑖 of O𝑁 as

𝔪𝐾O𝑁 =
𝑟∏
𝑖=1

𝔮
𝑒𝑖
𝑖 .

Each 𝔮𝑖 |𝔪𝐾 has a residue degree 𝑓𝑖 = [O𝑁/𝔮𝑖 : O𝐾/𝔪𝐾 ]. Let 𝑁𝑖, 𝐾 be the completions of 𝑁 , 𝐾

in the topologies induced by 𝔮𝑖, 𝔪𝐾 , respectively.
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𝑁 𝑁𝑖

𝐾 𝐾

Figure 2.1: Extension and then completion.

Proposition 2.1.13. For 𝑁𝑖, 𝐾 as given above,

i) [𝑁𝑖 : 𝐾] = 𝑛𝑖 = 𝑒𝑖 𝑓𝑖;

ii) The ramification index of 𝑁𝑖/𝐾 is 𝑒𝑖, and the residue degree of 𝑁𝑖/𝐾 is 𝑓𝑖;

iii) the canonical homomorphism 𝑁 ⊗𝐾 𝐾 →
∏
𝑖 𝑁𝑖 is an isomorphism.

Corollary 2.1.13.1. If 𝑁/𝐾 is Galois with Galois group 𝐺, and if 𝐺𝔮𝑖 denotes the decomposition

group of 𝔮𝑖 |𝔪𝐾 , the extension 𝑁𝑖/𝐾 is Galois with Galois group 𝐺𝔮𝑖 .

Thus 𝑁 ⊗𝐾 𝐾 is a 𝑛 = [𝑁 : 𝐾]-dimensional vector space over 𝐾 . The following proposition

shows the similar for O𝑁 ⊗O𝐾 Ô𝐾 .

Proposition 2.1.14. With the same hypotheses and notation as above, let O𝑁𝑖 be the ring of

valuation with respect to 𝔮𝑖 |𝔪𝐾 . Then the canonical homomorphism

O𝑁 ⊗O𝐾 Ô𝐾 →
∏
𝑖

Ô𝑁𝑖

is an isomorphism.

Corollary 2.1.14.1. Let 𝑀 be a finitely generated O𝑁 -module. Consider 𝑀 as an O𝐾 -module via

the natural inclusion O𝐾 → O𝑁 . Let 𝑀̂ denote the 𝔪𝐾 -adic completion of 𝑀 . Then

𝑀̂ �
∏
𝑖

𝑀̂𝔮𝑖 .
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Higher Ramification Groups. Let 𝐿/𝐾 be a finite Galois extension of fields with compatible

non-trivial discrete valuations. Let 𝐺 = Gal(𝐿/𝐾), and assume that the residue field extension

is separable with characteristic 𝑝 > 0. Denote the corresponding rings of integers by O𝐿/O𝐾 ,

maximal ideals by 𝔪𝐿/𝔪𝐾 , and residue fields 𝜆/𝜅, respectively.

For integers 𝑛 ≥ −1, the 𝑛’th ramification group 𝐺𝑛 is defined by

𝐺𝑛 := {𝜎 ∈ 𝐺 | for all 𝑥 ∈ O𝐿 , 𝜎(𝑥) − 𝑥 ∈ 𝔪𝑛+1
𝐿 }.

Thus 𝐺−1 = 𝐺; 𝐺0 = 𝐼 is the inertia subgroup, the kernel of the natural quotient

0→ 𝐼 → 𝐺 → Gal(𝜆/𝜅)→ 0.

Recall that the wild inertia subgroup in 𝐼 is Gal(𝐿/𝐿𝑡) where 𝐿𝑡 is the maximal tamely ramified

subextension in 𝐿/𝐾 . Indeed, 𝐺1 is the wild inertia group which is also a Sylow 𝑝-subgroup of

𝐺0, where 𝐺0/𝐺1 is finite cyclic of order 𝑒𝑡 prime to 𝑝 by the canonical injection into 𝑘× given

the choice of a uniformizer of O𝐿 .

𝐿 𝜆

𝐿𝑡

𝐿 𝐼 𝜅𝑠 = 𝜆

𝐾 𝜅

𝑝𝑚

𝑒𝑡

1

𝑓 𝑓

Figure 2.2: Subextensions with respect to higher ramification groups.

The ramification groups form a chain

𝐺 D 𝐺0 D 𝐺1 D 𝐺2 D · · ·

of normal subgroups of𝐺. For sufficiently big 𝑛,𝐺𝑛 is trivial. The extension 𝐿/𝐾 is called weakly

ramified (tamely ramified, unramified), if 𝐺𝑛 is trivial for 𝑛 = 2 (𝑛 = 1, 𝑛 = 0, respectively) and

𝜆/𝜅 is separable.
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Let O𝑁/O𝐾 be an extension of Dedekind domains with a finite Galois extension 𝑁/𝐾 . For a

non-zero prime ideal 𝔮 of O𝑁 and 𝔭 = 𝔮 ∩ O𝐾 , let 𝑁𝔮, 𝐾𝔭 denote the completions with respect to

corresponding discrete valuations of 𝑁 , 𝐾 , respectively. We say 𝑁/𝐾 is weakly ramified (tamely

ramified, unramified) at 𝔮 if 𝑁𝔮/𝐾𝔭 is weakly ramified (tamely ramified, unramified). If 𝑁/𝐾 is

weakly ramified (tamely ramified, unramified) at all non-zero prime ideal 𝔮 ∈ Spec O𝐿 , then 𝑁/𝐾

is called weakly ramified (tamely ramified, unramified).

Hilbert’s Formula. Let 𝐾 be a complete discrete valued field under 𝑣𝐿 and 𝐿/𝐾 finite Galois

with 𝐺 = Gal(𝐿/𝐾). Then the different ideal 𝔇(𝐿/𝐾) can be determined by the ramification

groups (cf. [Ser79], IV.1 Proposition 4).

Proposition 2.1.15. If 𝔇(𝐿/𝐾) denotes the different of 𝐿/𝐾 , then

𝑣𝐿𝔇(𝐿/𝐾) =
∑
𝑖≥0

(|𝐺𝑖 | − 1).

Normal Integral Basis. Let O𝑁/O𝐾 be an extension of Dedekind domains with the extension of

fields of fractions 𝑁/𝐾 as before. Suppose 𝑁/𝐾 is Galois with 𝐺 = Gal(𝑁/𝐾). We saw that O𝑁

is a finitely generated O𝐾 -module. If there is an element 𝛼 ∈ O𝑁 such that the set of its conjugates

{𝜎(𝛼)}𝜎∈𝐺 forms a O𝐾 -basis of O𝑁 , we say O𝑁 has a normal integral basis. Thus having a

normal integral basis means O𝑁 is a free O𝐾 [𝐺]-module. For a prime 𝔭 ∈ Spec O𝐾 , we say O𝑁 is

free at 𝔭 if the 𝔭-adic completion Ô𝑁,𝔭 is free over Ô𝐾,𝔭[𝐺]. We say O𝑁 is locally free if it is free

at all primes 𝔭 of O𝐾 simultaneously.

Assume further that 𝑁/𝐾 is an extension of number fields, i.e., finite extensions of Q. To be

a free O𝐾 [𝐺]-module, it is certainly necessary that the module should be locally free. Noether’s

theorem (cf. [Noe32]) part of which goes back to Speicer (cf. [Spe16]) relates the existence of

normal integral basis to ramification.

Theorem 2.1.1 (Noether). O𝑁 is locally free over O𝐾 [𝐺] if and only if 𝑁/𝐾 is tame.
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2.2 Galois Modules

The term Galois module is used as a synonym for𝐺-module, i.e., Z[𝐺]-module. Let 𝐴 be a ring

and 𝑀 a finitely generated module over the group ring 𝐴[𝐺] for some finite group𝐺. We say 𝑀 has

a normal integral basis over 𝐴 if𝑀 has elements 𝛼1, ..., 𝛼𝑛 such that the set {𝜎(𝛼1), ..., 𝜎(𝛼𝑛)}𝜎∈𝐺
is an 𝐴-basis of 𝑀 , i.e., 𝑀 is free over the group ring 𝐴[𝐺].

We say 𝑀 is free at 𝔭 ∈ Spec 𝐴 if 𝑀𝔭 is a free 𝐴𝔭[𝐺]-module. We say 𝑀 is locally free over

𝐴 if it is free at all 𝔭 ∈ Spec 𝐴. When 𝐴 = Z, we simply say 𝑀 has a normal integral basis or is

locally free without referring to Z.

Local-global methods originated in number theory (Hasse principle) are extended to Galois

module theory, and one of the most important results is Swan’s theorem: Suppose 𝐴 is a Dedekind

domain whose field of fractions has characteristic zero. Let𝐺 be a finite group such that no rational

prime dividing the order of 𝐺 is a unit in 𝐴. Then finitely generated projective 𝐴[𝐺]-modules are

locally free over 𝐴[𝐺] and also locally free after completion, i.e., for all non-zero prime 𝔭 ∈ Spec 𝐴,

𝑀̂𝔭 is is a free 𝐴𝔭[𝐺]-module ([Swa60]). The converse follows readily from Theorem 7.3.29 in

[BK00]. Thus the terms ‘‘projective" and ‘‘locally free" will be used interchangeably throughout

the rest of the text.

An important corollary to Swan’s theorem (Corollary 6.4 in [Swa60]) is as following:

Proposition 2.2.1. Let 𝐺 be a finite group, 𝐴 a local integral domain, 𝐾 its field of fractions. Let

𝑃,𝑄 be finitely generated projective modules over 𝐴[𝐺]. If 𝑃 ⊗𝐾 � 𝑄 ⊗𝐾 as 𝐾[𝐺]-modules, then

𝑃 � 𝑄.

Tate Cohomology Groups. We first recall the basic definitions and results on the homology and

cohomology of groups. A 𝐺-module 𝑀 is projective if the functor 𝐻𝑜𝑚𝐺(𝑀, ·) is exact, injective

if the functor 𝐻𝑜𝑚𝐺(·, 𝑀) is exact.

The 𝐺-module 𝑀 is induced if it has the form Z[𝐺] ⊗Z 𝑋 for some abelian group 𝑋 . Every
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𝐺-module is a quotient of an induced module, canonically given by the surjection

Z[𝐺] ⊗ 𝑀0 → 𝑀

where 𝑀0 is just 𝑀 with its abelian group structure. Dually, a 𝐺-module 𝑀 is called co-induced if

it has the form HomZ(Z[𝐺], 𝑋) for some abelian group 𝑋 . Each 𝐺-module 𝑀 embeds canonically

in the co-induced 𝐺-module HomZ(Z[𝐺], 𝑀0). When the group 𝐺 is assumed to be finite, the

notions of induced and co-induced modules coincide, and this is our case.

Let𝑀𝐺 be the submodule of𝑀 consisting of the elements fixed by𝐺; it is the largest submodule

of 𝑀 on which 𝐺 acts trivially. If 𝑓 : 𝑀 → 𝑀′ is a morphism of 𝐺-modules, then 𝑓 maps 𝑀𝐺 to

𝑀′𝐺 , thus we can speak of the functor 𝑀𝐺 . It is a left exact additive functor. By definition, the

right derived functors of the functor 𝑀𝐺 are the cohomology groups of 𝐺 with coefficients in 𝑀 ,

denoted by H𝑖(𝐺, 𝑀), 𝑖 ≥ 0. Note that 𝑀𝐺 = Hom𝐺(Z, 𝑀) where Z is considered as a 𝐺-module

with trivial action. Then H𝑖(𝐺, 𝑀) = Ext𝑖
Z[𝐺]

(Z, 𝑀) since Ext𝑖
Z[𝐺]

(Z, ·) are the derived functors

of the functor Hom𝐺(Z, ·) = HomZ[𝐺](Z, ·).

Let 𝐷𝑀 be the subgroup of 𝑀 generated by 𝜎(𝑥)−𝑥, 𝑥 ∈ 𝑀 , 𝜎 ∈ 𝐺. The quotient 𝑀/𝐷𝑀 will

be denoted by 𝑀𝐺 ; it is the largest quotient module of 𝑀 on which 𝐺 acts trivially. The functor

𝑀𝐺 is a right exact additive functor. By definition, its left derived functors are the homology

groups of 𝐺 with coefficients in 𝑀 , denoted by H𝑖(𝐺, 𝑀) for 𝑖 ≥ 0. We have 𝑀𝐺 = Z ⊗Z[𝐺] 𝑀 ,

hence H𝑖(𝐺, 𝑀) = TorZ[𝐺]𝑖 (Z, 𝑀) as the derived functors.

In the group algebra Z[𝐺], the element
∑
𝜎∈𝐺 𝜎 will be called the norm and be denoted 𝑁 . For

every 𝐺-module 𝑀 , 𝑁 defines an endomorphism of 𝑀 by the formula

𝑁(𝑥) =
∑
𝜎∈𝐺

𝜎(𝑥).

Let 𝐼𝐺 denote the augmentation ideal of Z[𝐺], the set of linear combinations of the 𝜎 − 1, 𝜎 ∈ 𝐺.

Then obviously

𝐼𝐺𝑀 ⊂ Ker(𝑁) and Im(𝑁) ⊂ 𝑀𝐺 .
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Since H0(𝐺, 𝑀) = 𝑀/𝐼𝐺𝑀 and H0(𝐺, 𝑀) = 𝑀𝐺 , it follows that 𝑁 defines an induced homo-

morphism

𝑁∗ : H0(𝐺, 𝑀)→ H0(𝐺, 𝑀).

Suppose that 0→ 𝐴→ 𝐵→ 𝐶 → 0 is an exact sequence of 𝐺-modules. Then the diagram

H1(𝐺,𝐶) H0(𝐺, 𝐴) H0(𝐺, 𝐵) H0(𝐺,𝐶) 0

0 H0(𝐺, 𝐴) H0(𝐺, 𝐵) H0(𝐺,𝐶) H1(𝐺, 𝐴)

𝑁∗
𝐴

𝑁∗
𝐵

𝑁∗
𝐶

is commutative, and there is a canonical homomorphism

Ker(𝑁∗𝐶)→ CoKer(𝑁∗𝐴)

by the snake lemma. Moreover (cf. [CE56], V. 10), the above diagram gives a long exact sequence

· · · → H1(𝐺,𝐶)→ Ker(𝑁∗𝐴)→ Ker(𝑁∗𝐵)→ Ker(𝑁∗𝐶)

→ CoKer(𝑁∗𝐴)→ CoKer(𝑁∗𝐵)→ CoKer(𝑁∗𝐶)→ H1(𝐺, 𝐴)→ · · · .

This leads to the Tate cohomology groups Ĥ𝑖(𝐺, 𝑀) which are defined as

Ĥ𝑖(𝐺, 𝑀) = H𝑖(𝐺, 𝑀) if 𝑖 ≥ 1

Ĥ0
(𝐺, 𝑀) = Coker(𝑁∗)

Ĥ−1(𝐺, 𝑀) = Ker(𝑁∗)

Ĥ−𝑖(𝐺, 𝑀) = H𝑖−1(𝐺, 𝑀) if 𝑖 ≥ 2.

Restriction and Corestriction. If 𝐻 6 𝐺 is a subgroup, a 𝐺-module 𝑀 inherits the natural

𝐻-module structure by restricting the group action to 𝐻. We write this 𝐻-module as Res𝐺𝐻(𝑀).

Clearly 𝑀𝐺 ⊂ 𝑀𝐻 , and this induces restriction homomorphisms

Res : H𝑖(𝐺, 𝑀)→ H𝑖(𝐻, 𝑀).

Also this induced action of 𝐻 yields 𝑀𝐻 → 𝑀𝐺 which leads to corestriction homomorphisms

Cor : H𝑖(𝐻, 𝑀)→ H𝑖(𝐺, 𝑀).
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Now given a transversal of the left cosets 𝐺/𝐻 in 𝐺, an element 𝑥 of 𝑀𝐻 can be mapped to

𝑀𝐺 by taking the norm of 𝑥, ∑
𝜎∈𝐺/𝐻

𝜎(𝑥).

This induces corestriction homomorphisms

Cor : H𝑖(𝐻, 𝑀)→ H𝑖(𝐺, 𝑀)

and restriction homomorphisms

Res : H𝑖(𝐺, 𝑀)→ H𝑖(𝐻, 𝑀).

These naturally extend to the Tate cohomology groups as restriction homomorphisms

Res : Ĥ𝑖(𝐺, 𝑀)→ Ĥ𝑖(𝐻, 𝑀)

and corestriction homomorphisms

Cor : Ĥ𝑖(𝐻, 𝑀)→ Ĥ𝑖(𝐺, 𝑀).

We have the following restriction-corestriction formula (cf. [Ser79], VIII. 2. Proposition 4).

Proposition 2.2.2. If 𝑛 = [𝐺 : 𝐻], then Cor ◦ Res = 𝑛.

Corollary 2.2.2.1. If 𝑛 is the order of 𝐺, then all the groups Ĥ𝑖(𝐺, 𝑀) are annihilated by 𝑛.

Shapiro’s Lemma. Let 𝑀 be an 𝐻-module, 𝐻 a subgroup of𝐺. Then the induced and coinduced

𝐺-modules are defined by

Ind𝐺𝐻(𝑀) = Z[𝐺] ⊗Z[𝐻] 𝑀,

Coind𝐺𝐻(𝑀) = Hom𝐻(Z[𝐺], 𝑀).

A fundamental tool in calculation is Shapiro’s lemma (cf. [Wei94], Lemma 6.3.2).

Proposition 2.2.3 (Shapiro). H𝑖(𝐺, Ind𝐺𝐻(𝑀)) � H𝑖(𝐻, 𝑀); and H𝑖(𝐺,Coind𝐺𝐻(𝑀)) � H𝑖(𝐻, 𝑀).
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Proposition 2.2.4. If the index [𝐺 : 𝐻] is finite, Ind𝐺𝐻(𝑀) � Coind𝐺𝐻(𝑀).

Corollary 2.2.4.1. If 𝑀 is a projective 𝐺-module, then all Tate cohomology groups Ĥ𝑖(𝐺, 𝑀)

vanish.

Double Coset Formula. Another useful tool is Mackey’s double coset formula (cf. [Ser77],

7.3 Proposition 22). Let 𝐻1, 𝐻2 be two subgroups of 𝐺. If 𝑊 is a representation of 𝐻1, we set

𝑉 = Ind𝐺𝐻1(𝑊). The double coset formula determines the restriction Res𝐺𝐻2(𝑉). Choose a set of

representatives 𝑆 for the (𝐻1, 𝐻2) double cosets of 𝐺, i.e., 𝐺 is the disjoint union of 𝐻1𝑠𝐻2, for

𝑠 ∈ 𝑆. For 𝑠 ∈ 𝑆, let 𝐻1,𝑠 = 𝑠𝐻1𝑠
−1 ∩ 𝐻2 6 𝐻2. Let𝑊𝑠 be the 𝐻1,𝑠-module with the underlying

set𝑊 and the action of 𝑥 ∈ 𝐻1,𝑠 given by 𝑠−1𝑥𝑠 ∈ 𝐻1.

Proposition 2.2.5 (Mackey). Res𝐺𝐻2Ind𝐺𝐻1(𝑊) � ⊕
𝑠∈𝑆

Ind𝐻2𝐻1,𝑠(𝑊𝑠)

Projectivity and Cohomological Triviality A 𝐺-module 𝑀 is called cohomologically trivial if,

for every subgroup 𝐻 of 𝐺 and every 𝑛 ∈ Z, Ĥ𝑛(𝐻, 𝑀) = 0. By Corollary 2.2.4.1, projective

Z[𝐺]-modules are cohomologically trivial. A refined statement of the converse is given as Theorem

7 in [Ser79], IX. 5 (see also Proposition 1.3 in [Köc04]):

Proposition 2.2.6. Let 𝐴 be a Dedekind domain and 𝑀 be a 𝐴[𝐺]-module. Then 𝑀 is projective

over 𝐴[𝐺] if and only if 𝑀 is projective over 𝐴 and cohomologically trivial.

As a result, cohomological triviality and projectivity would often be equivalent in what follows.

Checking cohomological triviality will be our main tool in finding locally free Z[𝐺]-modules.

Here are some general statements describing locally free Galois modules in terms of group

cohomology. First we recall the notion of the projective dimension of a module. Given a module

𝑀 , a projective resolution of 𝑀 is an infinite exact sequence of modules

· · · → 𝑃𝑛 → · · · → 𝑃2 → 𝑃1 → 𝑃0 → 𝑀 → 0
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with all the 𝑃𝑖 projective. Every module possesses a projective resolution made out of free modules,

but the resolution could be infinite. The length of a finite resolution is the subscript 𝑛 such that

𝑃𝑛 is non-zero and 𝑃𝑖 = 0 for 𝑖 > 𝑛. If 𝑀 admits a finite projective resolution, the projective

dimension of 𝑀 is the minimal length among all finite projective resolutions of 𝑀 .

Proposition 2.2.7 ([Chi94]). Suppose 𝐴 is a ring and 𝑀 is an 𝐴[𝐺]-module.

i) If 𝐴 is a field, then 𝑀 is cohomologically trivial for 𝐺 if and only if 𝑀 is projective for 𝐴[𝐺].

ii) Suppose 𝐴 is a Dedekind domain. Then 𝑀 is cohomologically trivial for 𝐺 if and only if 𝑀

has projective dimension at most one as an 𝐴[𝐺]-module.

iii) Suppose 𝐴 is a Dedekind domain and that the image of the natural morphism Spec 𝐴→ Spec Z

contains the prime divisors of the order of𝐺. A finitely generated 𝐴[𝐺]-module𝑀 is projective

if and only if it is locally free.

Grothendieck Groups ofZ[𝐺]-modules. Our problems are often stated in terms of Grothendieck

groups. Let 𝑅 be a ring and C a category of left 𝑅-modules. The Grothendieck group of C is the

abelian group defined by generators and relations as follows: A generator [𝐴] associated with each

𝐴 ∈ C, and the relation [𝐵] = [𝐴] + [𝐶] is associated with each exact sequence

0→ 𝐴→ 𝐵→ 𝐶 → 0 where 𝐴, 𝐵, 𝐶 ∈ C.

The two most common examples are the Grothendieck group K0(𝐺,Z) of finitely generated

Z[𝐺]-modules and the Grothendieck group K0(Z[𝐺]) of finitely generated projectiveZ[𝐺]-modules.

When working with a category of 𝐺-modules, elements of Grothendieck groups are also called

virtual representations. For example, given an exact sequence of modules

0→ 𝑀1 → 𝑀2 → 𝑀2 → 𝑀3 → 𝑀4 → · · · → 𝑀𝑛 → 0

in any of the above examples of Grothendieck groups, we have a corresponding virtual represen-

tation given by an alternating sum

[𝑀1] = [𝑀2] − [𝑀3] + [𝑀4] − [𝑀5] + · · · + (−1)𝑛[𝑀𝑛].
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An equality in K0(Z[𝐺]) gives a stable isomorphism: If [𝑀] = [𝑀′] in K0(Z[𝐺]), there is

𝑛 ≥ 0, 𝑀 ⊕ Z[𝐺]⊕𝑛 � 𝑀′ ⊕ Z[𝐺]⊕𝑛. The Swan-Jacobinski theorem states that whenever the

Eichler condition is satisfied (cf. p. 178 in [Swa86]; see also p. 50 in [Frö83]), stable isomorphism

implies isomorphism, i.e., ‘‘cancellation” holds. This is the case whenever none of the simple

components of Q[𝐺] are totally definite quaternion division algebras over a totally real field, e.g.,

for 𝐺 of odd order or 𝐺 abelian. There are more groups with the cancellation law, but it does

not hold for all groups (e.g. 𝐺 = 𝐻32, see [Swa79]). Nevertheless, cancellation often holds, and

knowing that [𝑀] is equal to a free Z[𝐺]-module in K0(Z[𝐺]) is a strong approximation to the

existence of a normal integral basis.

Motivated by this, we consider the reduced Grothendieck group K0(Z[𝐺])
red which is the

quotient of K0(Z[𝐺]) by the subgroup generated by [Z[𝐺]]. By Proposition 2.2.7, K0(Z[𝐺])
red is

identified with the locally free class group Cl(Z[𝐺]) of Z[𝐺] which is obtained as following: Let

𝑁 be a number field and 𝔄 an order in 𝑁[𝐺], i.e., a subring of 𝑁[𝐺] with 1 ∈ 𝔄. A locally free

𝔄-module 𝑀 is a finitely generated 𝔄-module so that, for all prime divisors 𝔭 of 𝑁 , the 𝔄𝔭-module

𝑀𝔭 is free. Its rank 𝑟(𝑀) is defined as the rank of the free 𝑁[𝐺]-module 𝑀 ⊗O𝑁 𝑁 spanned by 𝑀 .

This rank is finite, and is also the rank of 𝑀𝔭 over O𝔭[𝐺] for all 𝔭.

The Grothendieck group 𝔎0(𝔄) of locally free 𝔄-modules is the abelian group with generators

[𝑀] corresponding to the 𝔄-isomorphism classes of locally free 𝔄-modules 𝑀 and with relations

[𝑀1 ⊕ 𝑀2] = [𝑀1] + [𝑀2].

The map N→ 𝔎0(𝔄) which takes 𝑛 into the class [𝔄⊕𝑛] extends to a homomorphism Z→ 𝔎0(𝔄),

and we define the locally free class group Cl(𝔄) to be its cokernel. For an alternative description

of Cl(𝔄) called "Hom description", see I.2, [Frö83].

The class group is known to be a finite abelian group, and we will denote the image of

[𝑀] ∈ K0(Z[𝐺]) in Cl(Z[𝐺]) by (𝑀)Z[𝐺].

The natural forgetful functor

K0(Z[𝐺])→ K0(𝐺,Z)
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called the Cartan homomorphism. This morphism is neither injective nor surjective in general.

When studying an arbitrary finitely generated𝐺-module 𝑀 , knowing that [𝑀] ∈ K0(𝐺,Z) is in the

image of the Cartan homomorphism is a huge advantage in analyzing its Galois module structure.

Given a ring 𝐴, the Grothendieck groups K0(𝐴[𝐺]) and K0(𝐺, 𝐴) are defined similarly. We

also mention that CT(𝐴[𝐺]) denotes the Grothendieck group of finitely generated 𝐴[𝐺]-modules

which are cohomologically trivial. When 𝐴 is a Dedekind domain, the forgetful homomorphism

K0(𝐴[𝐺])→ CT(𝐴[𝐺]) is an isomorphism by Proposition 2.2.7.

More on Cohomological Triviality. Here we list a couple more theorems on cohomology for a

finite group which provide background to Proposition 2.2.6 and 2.2.7 (see [Ser79] for proofs and

more).

Proposition 2.2.8. Let 𝐺 be a 𝑝-group and let 𝑀 be a 𝐺-module without 𝑝-torsion. The following

conditions are equivalent:

i) 𝑀 is cohomologically trivial for 𝐺,

ii) Ĥ𝑖(𝐺, 𝑀) = 0 for two consecutive values of 𝑖,

iii) the F𝑝[𝐺]-module 𝑀/𝑝𝑀 is free.

Proposition 2.2.9. Let 𝐺 be a finite group, 𝑀 a Z-free 𝐺-module, and 𝐺 𝑝 a Sylow 𝑝-subgroup of

𝐺 for each prime number 𝑝. The following conditions are equivalent:

i) 𝑀 is Z[𝐺]-projective,

ii) For every prime number 𝑝, the𝐺 𝑝-module𝑀 satisfies the equivalent conditions of Proposition

2.2.8.

2.3 Algebraic Geometry

We introduce basic notions in algebraic geometry required for describing geometric Galois

modules and Euler characteristics of equivariant sheaves.
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Quotient Scheme by a Finite Group. Let 𝑋 be a scheme and 𝐺 ⊆ Aut(𝑋) a finite group acting

on 𝑋 . We are interested in when we can form the quotient scheme 𝑋/𝐺. The following statement

can be found in [Mum70].

Proposition 2.3.1. Suppose the orbit of any point is contained in an affine open subset of 𝑋 . Then

there is a pair (𝑌, 𝜋) where 𝑌 is a scheme and 𝜋 : 𝑋 → 𝑌 is a morphism such that

(i) As a topological space, (𝑌, 𝜋) is the quotient of 𝑋 for the action of 𝐺;

(ii) the morphism 𝜋 : 𝑋 → 𝑌 is 𝐺-invariant, and if (𝜋∗O𝑋)𝐺 denotes the subsheaf of 𝜋∗O𝑋 of

𝐺-invariant functions, the natural homomorphism O𝑌 → (𝜋∗O𝑋)𝐺 is an isomorphism.

The pair (𝑌, 𝜋) is uniquely determined up to isomorphism by these conditions. The morphism 𝜋 is

finite and surjective. We denote 𝑌 by 𝑋/𝐺, and it has the functorial property: for any 𝐺-invariant

morphism 𝑓 : 𝑋 → 𝑍 , there is a unique morphism 𝑔 : 𝑌 → 𝑍 such that 𝑓 = 𝑔 ◦ 𝜋.

In particular, if 𝑋 → Spec Z is projective, then the quotient scheme 𝑋/𝐺 exists. Throughout

the text, we assume that a scheme 𝑋 with a finite group action 𝐺 admits a quotient scheme

𝜋 : 𝑋 → 𝑌 .

We list a few corollaries on properties of 𝜋 and 𝑋/𝐺.

Corollary 2.3.1.1. The quotient map 𝜋 : 𝑋 → 𝑌 is open.

Proof. Suppose𝑈 ⊆ 𝑋 is open. Then 𝜋(𝑈) is open if and only if 𝜋−1(𝜋(𝑈)) is open. The later

is just the union of the orbits of𝑈 under 𝐺. �

Corollary 2.3.1.2. If 𝑋 is of finite type over Z and 𝑌 = 𝑋/𝐺 exists, then both 𝑋 and 𝑌 are

noetherian.

Proof. Since the structure morphism 𝑋 → Spec Z is of finite type and Spec Z is noetherian,

𝑋 is also noetherian. We check that 𝑌 is quasi-compact and locally noetherian. Suppose {𝑉𝑖}𝑖∈𝐼

is an open covering of 𝑌 . This gives an open covering {𝑈𝑖 = 𝜋−1(𝑉𝑖)}𝑖∈𝐼 of 𝑋 , and since 𝑋 is

quasi-compact, we can choose a finite subcovering {𝑈𝑖}𝑖∈𝐽 . Since 𝜋 is open and surjective with
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𝑉𝑖 = 𝜋(𝑈𝑖), {𝑉𝑖}𝑖∈𝐽 is then a finite subcovering of {𝑉𝑖}𝑖∈𝐼 . Also for each 𝑦 ∈ 𝑌 , there is an open

affine neighborhood Spec 𝐵 such that 𝜋−1(Spec 𝐵) = Spec 𝐴 is noetherian and 𝐵 = 𝐴𝐺 ⊂ 𝐴.

Since 𝜋 is finite, by the theorem of Eakin-Nagata (Theorem 3.7(i) in [Mat87]), 𝐵 is also noetherian,

hence 𝑌 is locally noetherian. �

Corollary 2.3.1.3. Suppose 𝑋 is of finite type over Z and 𝑌 = 𝑋/𝐺 exists. If F is a coherent

sheaf of O𝑋 -modules, then 𝜋∗F is a coherent sheaf of O𝑌 -modules.

Proof. This follows from that 𝑋 , 𝑌 are both noetherian and 𝜋 is a finite morphism (see II. Ex.

5.5 in [Har77]). �

Purity of Branch Locus. Suppose 𝑥 ∈ 𝑋 maps to 𝑦 ∈ 𝑌 = 𝑋/𝐺 under the canonical projection

𝜋 : 𝑋 → 𝑌 . Denote the corresponding extension of local rings by O𝑋,𝑥/O𝑌,𝑦, maximal ideals

by 𝔪𝑥/𝔪𝑦. Throughout the text, we assume that all residue field extensions are separable. The

extension of local rings O𝑋,𝑥/O𝑌,𝑦 is unramified if 𝔪𝑦O𝑋,𝑥 = 𝔪𝑥 in O𝑋,𝑥 . This coincides with

the previously defined notion of unramified extension if O𝑋,𝑥/O𝑌,𝑦 are discrete valuation rings.

The projection 𝜋 is unramified at 𝑥 if O𝑋,𝑥/O𝑌,𝑦 is unramified.

Let 𝑈 be the largest open subscheme of 𝑋 such that the restriction 𝜋 |𝑈 is étale, i.e., 𝜋 is flat

and unramified at every point in 𝑈. The complement 𝑋 −𝑈 is naturally equipped with the closed

subscheme structure defined by the annihilator of the sheaf Ω1
𝑋/𝑌

of relative differentials, and we

call this subscheme 𝑅𝜋 the ramification locus of 𝜋. Since 𝜋 is finite, the image 𝜋(𝑅𝜋) is closed,

and its unique reduced induced closed subscheme structure is called 𝐵𝜋 the branch locus of 𝜋. If

both 𝑋 and 𝑌 are regular, then 𝜋 is flat (Remark 3.11 in [Liu02]).

Often, the irreducible components of 𝑅𝜋 (resp. 𝐵𝜋) are all of codimension 1. This property is

called purity of ramification (resp. branch) locus.

Proposition 2.3.2 (Purity of branch locus). Let 𝑓 : 𝑋 → 𝑌 be a morphism of locally noetherian

schemes. Let 𝑥 ∈ 𝑋 and set 𝑦 = 𝑓 (𝑥). Suppose

i) O𝑋,𝑥 is normal;
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ii) O𝑌,𝑦 is regular;

iii) 𝑓 is quasi-finite at 𝑥;

iv) 𝑑𝑖𝑚(O𝑋,𝑥) = 𝑑𝑖𝑚(O𝑌,𝑦) ≥ 1;

v) for all 𝑥′ that specialize to 𝑥 with 𝑑𝑖𝑚(O𝑋,𝑥′) = 1, 𝑓 is unramified at 𝑥′.

Then 𝑓 is étale at 𝑥.

Equivariant Euler Characteristic. Let 𝑋 be a scheme over a noetherian ring 𝐴 with 𝐺 ⊂

Aut𝐴(𝑋) a finite group. An O𝑋 -𝐺-module F on 𝑋 (or 𝐺-equivariant sheaf) is a sheaf of

O𝑋 -modules having an action of 𝐺 which is compatible with the action of 𝐺 on O𝑋 in the

following sense: Suppose 𝑥 ∈ 𝑋 and 𝜎 ∈ 𝐺. Let 𝜎(𝑥) be the image of 𝑥 under 𝜎. The action of 𝜎

on O𝑋 and F gives homomorphisms of stalks O𝑋,𝜎(𝑥) → O𝑋,𝑥 and F𝜎(𝑥) → F𝑥; both of these

homomorphisms will also be denoted by 𝜎, and 𝜎(𝑎 · 𝑚) = 𝜎(𝑎) · 𝜎(𝑚) for all 𝑎 ∈ O𝑋,𝜎(𝑥) and

𝑚 ∈ F𝜎(𝑥). If such F is a quasi-coherent (resp. coherent, locally free) O𝑋 -module sheaf, then

F is called a quasi-coherent (resp. coherent, locally free) O𝑋 -𝐺-module. An example of a locally

free O𝑋 -𝐺-module of rank 1 on 𝑋 can be given as O𝑋(𝐷) where 𝐷 =
∑
𝑛𝑍 · 𝑍 is a 𝐺-equivariant

divisor on 𝑋 , i.e., 𝑛𝜎(𝑍) = 𝑛𝑍 for all 𝜎 ∈ 𝐺 and 𝑍 ∈ 𝐷.

If F is an O𝑋 -𝐺-module on 𝑋 , then the sheaf cohomology groups H𝑖(𝑋,F ), 𝑖 ≥ 0,

are Z[𝐺]-modules in a natural way. Suppose each cohomology group is a finitely generated

Z[𝐺]-module. This holds if, for instance, F is a coherent O𝑋 -𝐺-module on 𝑋 and 𝑋 is projec-

tive over Spec 𝐴 (III. Theorem 5.2 in [Har77]). We define the equivariant Euler characteristic

𝜒(𝑋,F ) = 𝜒(𝐺, 𝑋,F ) to be the virtual representation

𝜒(𝑋,F ) :=
∑

(−1)𝑖[H𝑖(𝑋,F )]

in the Grothendieck group K0(𝐺, 𝐴) of all finitely generated modules over the group ring 𝐴[𝐺].

Now assume that 𝑋 is projective over Spec 𝐴. As seen before, the quotient 𝜋 : 𝑋 → 𝑌 then

exists, 𝑌 = 𝑋/𝐺. We will call such quotient a Galois cover. An O𝑌 [𝐺]-module G on 𝑌 is just
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a O𝑌 -𝐺-module on 𝑌 where 𝐺 acts trivially on 𝑌 . In most of our applications, G = 𝜋∗F for a

coherent O𝑋 -𝐺-module F . In this case, since 𝜋 is finite and thus affine, H𝑖(𝑋,F ) = H𝑖(𝑌, 𝜋∗F )

for all 𝑖 ∈ Z, and 𝜋∗F is coherent by Corollary 5, therefore 𝜒(𝑋,F ) = 𝜒(𝑌, 𝜋∗F ) in K0(𝐺,Z).

By an 𝐴[𝐺]-module on𝑌 we mean a sheaf of 𝐴[𝐺]-modules on𝑌 . The category of 𝐴[𝐺]-modules

on𝑌 has enough injectives (cf. [Chi94]). We say the cohomology of F has a normal integral basis

over 𝐴 if there exists a bounded complex of finitely generated free 𝐴[𝐺]-modules that is isomorphic

to RΓ(𝑋,F ) in the derived category of complexes of 𝐴[𝐺]-modules. An equality between 𝜒(𝑋,F )

and a multiple of [𝐴[𝐺]] in K0(𝐺, 𝐴) is often too weak to study the existence of normal integral

basis, thus one hopes to have a better approximation in the Grothendieck group K0(𝐴[𝐺]) of finitely

generated projective 𝐴[𝐺]-modules. As noted in 2.2, the Cartan homomorphism

K0(𝐴[𝐺])→ K0(𝐺, 𝐴)

is not surjective in general, and the foundation of our study is based on characterizing O𝑋 -

𝐺-modules F that admit a projective Euler characteristic 𝜒𝑃(𝑋,F ) in K0(𝐴[𝐺]) which will be

introduced in the next chapter.
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CHAPTER 3

IMPORTANT THEOREMS

In this chapter, we recall two important results, Chinburg’s criterion for the existence of

projective Euler characteristics and Köck’s classification of projective fractional ideals in weakly

ramified extension of discrete valuation rings.

3.1 Projective Euler Characteristic

Let 𝜋 : 𝑋 → 𝑌 be a Galois cover over a noetherian ring 𝐴 with a finite group 𝐺 as in 2.3.

𝑋

𝑌

Spec 𝐴

𝜋

𝐺

𝐺 trivial

Figure 3.1: Galois cover.

Let K+(𝑌, 𝐴, 𝐺) (resp. K+(𝐴, 𝐺)) be the category of complexes of 𝐴[𝐺]-modules on 𝑌 (resp.

𝐴[𝐺]-modules) which are bounded below. Morphisms in these categories are homotopy classes of

morphisms of complexes. A morphism is a quasi-isomorphism if it induces isomorphisms in coho-

mology. The derived categories D+(𝑌, 𝐴, 𝐺) and D+(𝐴, 𝐺) are the localizations of K+(𝑌, 𝐴, 𝐺)

and K+(𝐴, 𝐺), respectively, with respect to the multiplicative systems of quasi-isomorphisms in

these categories. There are enough injectives in the category of sheaves of 𝐴[𝐺]-modules on𝑌 (III.

Proposition 2.2 in [Har77]; also [Chi94]). Hence the global section functor Γ has a right-derived

functor RΓ+ : D+(𝑌,Z, 𝐺)→ D+(Z, 𝐺).

Theorem 3.1.1 (Chinburg, Theorem 1.1 in [Chi94]). Suppose G • ∈ K+(𝑌, 𝐴, 𝐺) has the following

properties:

i) G • is a bounded complex of 𝐴[𝐺]-modules on 𝑌 ,
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ii) each term of G • is a quasi-coherent O𝑌 [𝐺]-module,

iii) each stalk of each term of G • is a 𝐺-module which is cohomologically trivial for 𝐺, and

iv) the cohomology groups of RΓ+(G •) are finitely generated 𝐴[𝐺]-modules.

Then RΓ+(G •) is isomorphic in D+(𝐴, 𝐺) to a bounded complex 𝑃• of finitely generated

𝐴[𝐺]-modules which are cohomologically trivial for 𝐺. The Euler characteristic 𝜒(𝑃•) =∑
(−1)𝑖[𝑃𝑖] ∈ CT(𝐴[𝐺]) depends only on G •, and will be denoted 𝜒RΓ+(G •).

By Proposition 2.2.7, the natural forgetful homomorphism K0(𝐴[𝐺]) → CT(𝐴[𝐺]) is an

isomorphism when 𝐴 is a Dedekind domain. We call the preimage of 𝜒RΓ+(G •) under the

forgetful homomorphism the projective Euler characteristic of G denoted by 𝜒𝑃(𝑌,G ). Indeed,

modules of a bounded complex 𝑃• of projective finitely generated 𝐴[𝐺]-modules quasi-isomorphic

to RΓ+(G ) = RΓ(𝑌,G ) can be chosen to be free except the last term. The class of the last module in

Cl(𝐴[𝐺]) is ± the obstruction 𝜒𝑃(𝑌,G ) to the existence of a normal integral basis, i.e., to RΓ(𝑌,G )

being represented by a perfect complex of 𝐴[𝐺]-modules. In [CE92], Chinburg and Erez showed

that when 𝜋 : 𝑋 → 𝑌 is tame in the sense that the order of the inertia subgroup at every closed point

𝑥 ∈ 𝑋 is relatively prime to the characteristic of the residue field, then for all𝐺-equivariant coherent

sheaves F on 𝑋 , the projective Euler characteristic 𝜒𝑃(𝑋,F ) = 𝜒𝑃(𝑌, 𝜋∗F ) is well-defined.

3.2 Weakly Ramified Extensions

Recall that when a Galois extension of number fields 𝑁/𝐾 with Galois group 𝐺 is tame, then

O𝑁 is projective over O𝐾 [𝐺] by Noether’s criterion. An addition to that, in [Ull70], Ullom showed

that when 𝑁/𝐾 is tame, all ambiguous ideals in 𝑁 (fractional ideals of 𝑁 that are 𝐺-modules)

are indeed projective over O𝐾 [𝐺]. The same question can be asked for weakly ramified Galois

extensions.

Let 𝐿/𝐾 be a finite Galois extension of local fields with 𝐺 = Gal(𝐿/𝐾) and positive residue

characteristic 𝑝, and write O𝐿/O𝐾 , 𝔪𝐿/𝔪𝐾 , 𝜆/𝜅 for the corresponding extensions of discrete
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valuation rings, maximal ideals, and residue fields as in 2.1. In [Köc04], Köck classified all

ambiguous ideals in the local field 𝐿 that are free over O𝐾 [𝐺].

Theorem 3.2.1 (Köck, Theorem 1.1 in [Köc04]). Let 𝑏 ∈ Z. Then the fractional ideal 𝔪𝑏
𝐿 of 𝐿 is

free over O𝐾 [𝐺] if and only if 𝐿/𝐾 is weakly ramified and 𝑏 ≡ 1 mod |𝐺1 |.

An important canonical example of a locally free ambiguous ideal in a weakly ramified Galois

extension 𝑁/𝐾 of number fields is the square root of the inverse different 𝐴(𝑁/𝐾) considered by

Erez in [Ere91]. Here we assume [𝑁 : 𝐾] is odd. By Proposition 2.1.15, the order of the different

ideal 𝔇(𝑁/𝐾) at a prime 𝔭 in 𝑁 can be calculated in terms of the orders of the higher ramification

groups as

𝑣𝔭(𝔇(𝑁/𝐾)) =
∑
𝑖≥0

(|𝐺𝔭,𝑖 | − 1)

where 𝐺𝔭 is the decomposition group

𝐺𝔭 = {𝜎 ∈ 𝐺 | 𝜎(𝔭) = 𝔭}.

When 𝑁/𝐾 is further assumed to be weakly ramified so that all |𝐺𝔭,2 | = 1, this shows that there

is an ideal 𝐴(𝑁/𝐾) in 𝑁 with

𝐴(𝑁/𝐾)2 = 𝔇(𝑁/𝐾)−1

which justifies the name. Since 𝔇(𝑁/𝐾) is stable under the action of 𝐺, so is 𝐴(𝑁/𝐾). By the

criterion of Köck, 𝐴(𝑁/𝐾) is projective over 𝑂𝐾 [𝐺].
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CHAPTER 4

WEAKLY RAMIFIED COVERS OF CURVES

4.1 Weakly Ramified Covers

Let 𝐴 be a Dedekind domain of characteristic 0 with a finite flat structure morphism Spec 𝐴→

Spec Z. Let 𝑋 be a proper flat regular curve over 𝐴, i.e., 𝑋 has dimension 2 and all fibres have

dimension 1. By Theorem 3.16, § 8.3 in [Liu02], 𝑋 is projective. Thus, for a finite group action

𝐺 ⊂ Aut𝐴(𝑋), we have a Galois cover 𝜋 : 𝑋 → 𝑌 with the quotient scheme 𝑌 = 𝑋/𝐺 in the sense

of 2.3. For each 𝑥 ∈ 𝑋 and 𝑦 = 𝜋(𝑥), we further assume that the residue field extension 𝑘(𝑥)/𝑘(𝑦)

is separable. The decomposition group 𝐺𝑥 = {𝜎 ∈ 𝐺 | 𝜎(𝑥) = 𝑥} of 𝑥 acts on O𝑋,𝑥 and on the

stack F𝑥 for any O𝑋 -𝐺-module F on 𝑋 . If O𝑋,𝑥/O𝑌,𝑦 is an extension of discrete valuation rings,

for each integer 𝑖 ≥ −1, the 𝑖’th ramification group 𝐺𝑥,𝑖 at 𝑥 is well-defined for all 𝑖 ≥ −1. Recall

that an extension O𝑋,𝑥/O𝑌,𝑦 is called weakly ramified if 𝐺𝑥,2 is trivial.

We will say that the Galois cover 𝜋 : 𝑋 → 𝑌 of curves over Spec 𝐴 is weakly ramified if the

following extra conditions are met:

i) 𝑌 is also regular,

ii) the branch locus 𝐵𝜋 of 𝜋 is horizontal i.e., each irreducible component of 𝐵𝜋 surjects onto

Spec 𝐴 via the structure morphism,

iii) for each rational prime 𝑝 dividing the order of 𝐺 and each 𝔭 ∈ Spec 𝐴 over 𝑝 via the structure

morphism Spec 𝐴→ Spec Z, the special fibre𝑌𝔭 intersects each irreducible component of 𝐵𝜋

transversally and at smooth points, and

iv) at all such smooth points 𝑦 ∈ 𝑌𝔭 and 𝑥 ∈ 𝑋𝔭 which 𝜋(𝑥) = 𝑦, the extension of discrete

valuation rings O𝑋𝔭,𝑥/O𝑌𝔭,𝑦 is weakly ramified.
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𝑌

Spec 𝐴
generic point*

𝔭

𝑌𝑝

𝐵𝜋

Figure 4.1: Weakly ramified Galois cover of curves.

Remark. Our definition of weakly ramified Galois cover is still tamely ramified relative to

𝐵𝜋 in the sense of Definition 2.1 in [Chi94] because of the discrete valuation condition: Since the

branch locus 𝐵𝜋 is assumed to be horizontal and 𝑋 ,𝑌 are regular, for each 𝑦 ∈ 𝐵𝜋 of codimension 1

and 𝑥 ∈ 𝑋 over 𝑦, O𝑋,𝑥/O𝑌,𝑦 is a tamely ramified extension of discrete valuation rings. However,

we do not require 𝐵𝜋 to have normal crossings which is an additional crucial condition for tame

covers given in Definition 2.5 in Chinburg’s paper.

Our first main result is a sufficient condition for an invertible O𝑋 -𝐺-module F to have a

well-defined projective Euler characteristic 𝜒𝑃(𝑋,F ).

Theorem 4.1.1 (L, 2020). Let 𝜋 : 𝑋 → 𝑌 be a weakly ramified cover of curves over 𝐴 with a

finite action of 𝐺 ⊂ Aut𝐴(𝑋). Suppose F = O𝑋(𝐷) is an invertible sheaf O𝑋 -𝐺-module on 𝑋

corresponding to a𝐺-equivariant horizontal divisor 𝐷. Assume that, for each 𝑝 dividing the order

of 𝐺 and 𝔭 ∈ Spec 𝐴 over 𝑝, the pull-back 𝐷 ∩ 𝑋𝔭 to the special fibre 𝑋𝔭 is given by a Weil divisor∑
𝑥∈𝑋𝔭 𝑛𝑥 · 𝑥 of 𝑋𝔭 where 𝑛𝑥 ≡ −1 mod |𝐺𝑥,1 |. (If 𝑋𝔭 is not smooth at 𝑥, take |𝐺𝑥,1 | to be 1.)

Then each stalk of the direct image sheaf G = 𝜋∗F is cohomologically trivial for 𝐺.

Proof. Take G = 𝜋∗F and let 𝑦 = 𝜋(𝑥) ∈ 𝑌 for some 𝑥 ∈ 𝑋 . If 𝜋 is tamely ramified at

𝑥, then by Theorem 2.7 in [Chi94], G𝑦 is cohomologically trivial for 𝐺. Thus it remains to show

cohomological triviality at 𝑦 ∈ 𝐵𝜋 of codimension 2, over (𝑝) ∈ Spec Z where 𝑝 divides the order
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of 𝐺. Notice that since G𝑦 is a flat module over Z and thus torsion-free, by Proposition 2.2.9, it

is enough to show that, for all rational primes 𝑞 > 0, G𝑦 is cohomologically trivial for the Sylow

𝑞-subgroup 𝐺𝑞 of 𝐺. For 𝑞 not dividing the order of 𝐺, 𝐺𝑞 is trivial and cohomological triviality

is obvious. For 𝑞 ≠ 𝑝 dividing the order of 𝐺, 𝑞 is a unit in O𝑌,𝑦 inducing an automorphism

Ĥ𝑖(𝐻,G𝑦)
𝑞
� Ĥ𝑖(𝐻,G𝑦)

for all subgroups 𝐻 ≤ 𝐺𝑞. Since the order of a finite group annihilates its Tate cohomology groups

by Corollary 2.2.2.1, G𝑦 is cohomologically trivial for 𝐺𝑞 . The remaining case is for 𝐺 𝑝, the

Sylow 𝑝-group, so suppose 𝐺 = 𝐺 𝑝 . We have a short exact sequence

0 −→ G𝑦
𝑝
−→ G𝑦 −→ G𝑦/𝑝G𝑦 −→ 0

which induces a long exact sequence of the Tate cohomology groups

· · · → Ĥ𝑖(𝐻,G𝑦)
𝑝
→ Ĥ𝑖(𝐻,G𝑦)→ Ĥ𝑖(𝐻,G𝑦/𝑝G𝑦)→ Ĥ𝑖+1

(𝐻,G𝑦)→ · · ·

for all subgroups 𝐻 6 𝐺. Since each Ĥ𝑖(𝐻,G𝑦) is annihilated by a power of 𝑝, as in the previous

case, it is enough to show that G𝑦/𝑝G𝑦 is cohomologically trivial for 𝐺. This can be done by

restricting G𝑦 to the special fibre 𝑌𝔭. The special fibres 𝑋𝔭, 𝑌𝔭 form a weakly ramified cover

of curves 𝜋𝔭 : 𝑋𝔭 → 𝑌𝔭 with its ramification locus (resp. branch locus) exactly induced by the

intersection of 𝑅𝜋 (resp. 𝐵𝜋) and 𝑋𝔭 (resp. 𝑌𝔭) in 𝑋 (resp. 𝑌 ) because Ω1
𝑋𝔭/𝑌𝔭

= Ω1
𝑋/𝑌
⊗O𝑋 F𝑝 .

If 𝑥′ ∈ 𝑋𝔭 maps to 𝑥 and 𝑦′ ∈ 𝑌𝔭 maps to 𝑦 via base change, by assumption, 𝑋𝔭 and 𝑌𝔭 are

𝑋𝔭 𝑋

𝑌𝔭 𝑌

𝑖

𝜋𝔭 𝜋

𝑖

Figure 4.2: Galois cover of special fibres.

smooth at 𝑥′, 𝑦′. Taking the 𝔭-adic completion, we have a weakly ramified extension of discrete

valuation rings Ô𝑋𝔭,𝑥′/Ô𝑌𝔭,𝑦′. Say 𝑚̂𝑥′ is the maximal ideal of Ô𝑋𝔭,𝑥′. Again by the assumption,
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𝑖∗F̂𝑥′ = 𝑚̂𝑏
𝑥′ where 𝑏 = −𝑛𝑥′ ≡ 1 mod |𝐺𝑥′,1 |. Therefore by Theorem 3.2.1, 𝑖∗F̂𝑥′ is a free

Ô𝑌𝑝,𝑦′[𝐺𝑥′]-module.

Denote 𝑖∗F and 𝑖∗G by F ′, G ′, respectively. Since 𝜋𝔭∗O𝑋′𝑦′ = ⊕
𝜋𝔭(𝑥′)=𝑦′

Ô𝑋′,𝑥 , we have

G ′
𝑦′ = Ind𝐺

𝐺𝑥′
F ′
𝑥′ = Z[𝐺] ⊗Z[𝐺𝑥′] F

′
𝑥′. Hence for all integers 𝑖, Shapiro’s lemma implies that

Ĥ𝑖(𝐺,Z[𝐺] ⊗Z[𝐺𝑥′] F
′
𝑥′) � Ĥ𝑖(𝐺𝑥′,F

′
𝑥′).

Thus Ĥ𝑖(𝐺,G ′
𝑦′) = 0 for all 𝑖. By applying Mackey’s double coset formula for all subgroups of 𝐺,

we conclude that G ′
𝑦′ = G𝑦/𝑝G𝑦 is cohomologically trivial for 𝐺. �

Corollary 4.1.1.1. Let 𝜋 : 𝑋 → 𝑌 , F be as in the above theorem. Then there is a well-defined

projective Euler characteristic 𝜒𝑃(𝐺, 𝑋,F ) ∈ K0(𝐴[𝐺]) which maps to the equivariant Euler

characteristic 𝜒(𝐺, 𝑋,F ) ∈ K0(𝐺, 𝐴) via the Cartan homomorphism K0(𝐴[𝐺])→ K0(𝐴, 𝐺).

Proof. Since 𝜋 is finite and thus affine, we have H𝑖(𝑋,F ) = H𝑖(𝑌, 𝜋∗F ) for all 𝑖 ∈ Z. Now

G = 𝜋∗F and 𝑌 satisfy the hypotheses of Theorem 3.1.1: G is a coherent sheaf on 𝑌 , and since

𝑌 is projective, Theorem 5.2, III. in [Har77] implies that each H𝑖(𝑌,G ) is a finitely generated

𝐴[𝐺]-module. Moreover, Theorem 4.1.1 gives cohomological triviality at each stalk. Therefore, by

Theorem 3.1.1, there exists a bounded complex 𝑃• of finitely generated 𝐴[𝐺]-modules which are

cohomologically trivial for𝐺, and that its Euler characteristic 𝜒(𝑃•) =
∑
(−1)𝑖[𝑃]𝑖 in CT(𝐴[𝐺]) is

determined by F and is mapped to the equivariant Euler characteristic 𝜒(𝐺,𝑌,G ) = 𝜒(𝐺, 𝑋,F )

via the forgetful functor CT(𝐴[𝐺])→ K0(𝐴, 𝐺).

We reproduce this construction here just to have a self-contained proof: Let U be a finite open

affine cover of 𝑌 . The Čech complex 𝐶•(𝑌,U ,G ) of G is isomorphic to RΓ+(𝑌,G ). Each term

of 𝐶•(𝑌,U ,G ) is a direct sum of 𝐴[𝐺]-modules of the form G (𝑈) where 𝑈 is the intersection of

finitely many elements of U . Since 𝑌 is separated over Spec 𝐴,𝑈 is affine, say𝑈 = Spec 𝐵.

We first show that each G (𝑈) is cohomologically trivial. We showed that each stalk G𝑦 at

𝑦 ∈ Spec 𝐵 is cohomologically trivial in the previous theorem. Since the local ring O𝑌,𝑦 = 𝐵𝑦 is a

flat 𝐵-module, for all subgroups 𝐻 ⊂ 𝐺,

Ĥ𝑖(𝐻,G𝑦) = Ĥ𝑖(𝐻,G (𝑈)) ⊗𝐵 𝐵𝑦 = 0.
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Since this holds for all 𝑦 ∈ Spec 𝐵, G (𝑈) is cohomologically trivial for 𝐺.

SinceG is coherent, the cohomology groups of𝐶•(𝑌,U ,G ) are finitely generated 𝐴[𝐺]-modules.

We first construct a complex 𝑃• of finitely generated free 𝐴[𝐺]-modules (possibly not bounded

below) together with a quasi-isomorphism of complexes

𝑃• ↦→ 𝐶•(𝑌,U ,G )

by the following usual inductive procedure (cf., Lemma III.12.3, [Har77]). Let

0→ 𝐶0 𝑑0→ 𝐶1 𝑑1→ 𝐶2 → · · · 𝑑
𝑛
→ 𝐶𝑛+1 → · · ·

be the Čech complex 𝐶•(𝑌,U ,G ). For a large 𝑁 , we have 𝐶𝑛≥𝑁 = 0. Take 𝑃𝑁 = 0. Now

suppose the inductive hypothesis: For 𝑖 > 𝑛, we have a morphism of complexes

𝑃• : 𝑃𝑛+1 𝑃𝑛+2 · · ·

𝐶• : · · ·𝐶𝑛 𝐶𝑛+1 𝐶𝑛+2 · · ·

𝑔

𝜙𝑛+1

𝑔𝑛+1

𝜙𝑛+2

𝑔𝑛+2

𝑑𝑛

such that, for 𝑖 > 𝑛 + 1, the induced homology groups are isomorphic

ℎ𝑖(𝑃•) � ℎ𝑖(𝐶•)

and ker 𝜙𝑛+1 → ℎ𝑛+1(𝐶•) is surjective. We will construct 𝑃𝑛 by the following steps: Choose

a finite set of generators of ℎ𝑖(𝐶•), say {𝑥1, ..., 𝑥𝑟 } from {𝑥1, ..., 𝑥𝑟 } ⊂ ker 𝑑𝑛. Also consider

𝑔−1(im 𝑑𝑛) ⊂ 𝑃𝑛+1. Since 𝑃𝑛+1 is assumed to be finitely generated over the noetherian ring 𝐴,

the submodule 𝑔−1(im 𝑑𝑛) ⊂ 𝑃𝑛+1 is also finitely generated. Choose a finite set of generators

𝑦𝑟+1, ..., 𝑦𝑠 of 𝑔−1(im 𝑑𝑛) ⊂ 𝑃𝑛+1. Then their images 𝑔(𝑦𝑖) ∈ im 𝑑𝑛 can be lifted to 𝑥𝑖 ∈ 𝐶𝑛,

𝑖 = 𝑟 + 1, ..., 𝑠.

Take 𝑃𝑛 to be the free 𝐴[𝐺]-module of rank 𝑠 with generators 𝑒1, ..., 𝑒𝑠 and define 𝜙𝑛 : 𝑃𝑛 →

𝑃𝑛+1 by

{𝑒1, ..., 𝑒𝑟 } → {0}

𝑒𝑖≥𝑟+1 ↦→ 𝑦𝑖 .
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Also define 𝑔𝑛 : 𝑃𝑛 → 𝐶𝑛 by

𝑒𝑖 ↦→ 𝑥𝑖

for all 𝑖. Then we have a commutative diagram

𝑃• : 𝑃𝑛 𝑃𝑛+1 𝑃𝑛+2 · · ·

𝐶• : 𝐶𝑛 𝐶𝑛+1 𝐶𝑛+2 · · ·

𝑔

𝜙𝑛

𝑔𝑛

𝜙𝑛+1

𝑔𝑛+1

𝜙𝑛+2

𝑔𝑛+2

𝑑𝑛

such that ℎ𝑛+1(𝑃•) → ℎ𝑛+1(𝐶•) is an isomorphism, and that ker 𝜙𝑛 → ℎ𝑛(𝐶•) is surjective as

desired.

The constructed complex 𝑃• of finitely generated free 𝐴[𝐺]-modules is bounded above but not

necessarily below. However, the Čech complex 𝐶• is bounded, say 𝐶𝑖 = {0} for 𝑖 < 0.

· · · 𝑃−2 𝑃−1 𝑃0 · · ·

· · · 0 0 𝐶0 · · ·

𝜙−2 𝜙−1

Figure 4.3: 𝑃• and 𝐶•.

Replace 𝑃−1 by 𝑃−1/im 𝜙−2 and the lower dimensions 𝑃𝑖 for 𝑖 < −1 by {0}. Then we still

have a quasi-isomorphism 𝑔 : 𝑃• → 𝐶•, but the lowest term 𝑃−1 might not be free anymore. Since

𝑔 is a quasi-isomorphism, the mapping cylinder 𝐿• of 𝑔 is an exact bounded complex ([Chi94]).

Furthermore, since all of the terms of 𝐶• are cohomologically trivial, at most one term of 𝐿• is

not cohomologically trivial for 𝐺. However, the exactness now forces all of the terms of 𝐿• to be

cohomologically trivial for 𝐺, from which it follows that the same is true for all of the terms of 𝑃•.

By Proposition 2.2.7, CT(𝐴[𝐺]) is isomorphic to K0(𝐴[𝐺]). Thus we have the projective Euler

characteristic 𝜒𝑃(𝐺, 𝑋,F ) ∈ K0(𝐴[𝐺]),

𝜒𝑃(𝐺, 𝑋,F ) ↦→ 𝜒(𝑃•)

under this isomorphism. �
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4.2 Example: Cyclic Action

Let 𝑝 be an odd prime and consider 𝐴 = Z[𝜁 ] for a primitive 𝑝-th root of unity 𝜁 . Then

𝑝 = 𝑢 · 𝜆𝑝−1 for some unit 𝑢 where 𝜆 = 𝜁 − 1 is a uniformizing parameter of the unique prime

𝔭 of 𝐴 above 𝑝. Let 𝑋 = P1
𝐴
= Proj(𝐴[𝑋0, 𝑋1]) and 𝐺 be a cyclic group of order 𝑝 acting on 𝑋

generated by

𝜎(𝑋0) = 𝜁𝑋0 + 𝑋1, 𝜎(𝑋1) = 𝑋1.

Since 𝐺 is a finite group, the quotient scheme 𝑋/𝐺 of the projective space exists. Since 𝑋 is

normal, 𝑋/𝐺 is also normal. Consider the finite morphism 𝜋 : 𝑋 → 𝑌 = P1
𝐴

of degree 𝑝 given by

𝜋([𝑋0 : 𝑋1]) =

[
(𝜆𝑋0 + 𝑋1)

𝑝 − 𝑋 𝑝1
𝜆𝑝

: 𝑋
𝑝
1

]
.

This is invariant under the action of 𝐺, therefore it factors through the canonical projection

𝑋 = P1
𝐴

𝑋/𝐺

𝑌 = P1
𝐴

𝜋

𝜙

by the universal property of the quotient scheme 𝑋/𝐺. Since the canonical projection is also a

finite morphism of degree 𝑝, 𝜙 is a finite birational morphism of integral schemes where 𝑋/𝐺 is

normal. This implies that 𝜙 is the normalization of 𝑌 which is an isomorphism as 𝑌 is already

normal.

The ramification locus 𝑅𝜋 consists of two irreducible components which are the two divisors

given by (𝜆𝑋0 + 𝑋1) and (𝑋1). For (𝜆𝑋0 + 𝑋1) = (𝜎(𝑋0) − 𝑋0),

𝜎(𝜆𝑋0 + 𝑋1) = 𝜆(𝜁𝑋0 + 𝑋1) + 𝑋1 = 𝜁(𝜆𝑋0 + 𝑋1).

The branch locus 𝐵𝜋 is as in the Figure 4.2
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∞ = [1 : 0]

[1 : −𝜆𝑝]

Spec 𝐴
(𝜆)

𝑌Q 𝑌𝔭

𝐵𝜋

Figure 4.4: The collapse in the example describes the wild ramification from Kummer to
Artin-Schreier extension, see [SOS89] for more.

We first see that 𝜋 is weakly ramified: At 𝔭 = (𝜆), the cover of the special fibres 𝑋𝔭 → 𝑌𝔭

is ramified only at (𝑋1) as 𝜆 ≡ 0 mod 𝔭. Consider the affine patch where 𝑋0 = 1, writing

𝑋1/𝑋0 = 𝑥1. At the local ring O𝑋𝔭,𝑥1 , we have

𝜎(𝑥1) − 𝑥1 =
𝑥1

𝑥1 + 1
− 𝑥1 =

−𝑥21
𝑥1 + 1

. 0 mod (𝑥1)
3.

Therefore the second ramification group is trivial at all points of all fibres.

Consider the following 𝐺-equivariant divisor

𝐷 = (1 − 𝑝) · (𝑋1) + (1 − 𝑝) · (𝜆𝑋0 + 𝑋1)

supported on the ramification locus. Since 𝑝 is assumed to be odd, −𝐷/2 is also a well-defined

divisor on 𝑋 . At a point 𝑥 ∈ 𝑋 over (𝜆) ∈ Spec 𝐴, the two components of 𝑅𝜋 merge to (𝑋1), and

−𝐷/2 restricts to

−𝐷/2|𝑋𝔭 = −1 · (𝑋1)|𝑋𝔭 .

This shows that the invertible O𝑋 -𝐺-module F := O𝑋(−𝐷/2) satisfies the restriction hypothesis

given in Theorem 4.1.1. As argued in the proof of the theorem, G = 𝜋∗F has cohomologically

trivial stalks.

Let𝑈0 = Spec 𝐴[𝑥0],𝑈1 = Spec 𝐴[𝑥1] form an open affine cover U of P1
𝐴

where 𝑥0 = 𝑋0/𝑋1,

41



𝑥1 = 𝑋1/𝑋0, and consider the Čech complex 𝐶• of F given by U :

F (𝑈0) = (𝜆𝑥0 + 1)(1−𝑝)/2𝐴[𝑥0],

F (𝑈1) = (𝜆 + 𝑥1)
(1−𝑝)/2 · 𝑥(1−𝑝)/21 𝐴[𝑥1],

F (𝑈0 ∩𝑈1) = (𝜆 + 𝑥1)
(1−𝑝)/2 · 𝑥(1−𝑝)/21 𝐴[𝑥1, 1/𝑥1].

A direct computation shows that H0(𝑋,F ) is a free 𝐴-module of rank 𝑝 generated by

1

(𝜆𝑥0 + 1)(𝑝−1)/2
· 𝑥𝑖0

for 𝑖 = 0, ..., 𝑝 − 1. The first cohomology group H1(𝑋,F ) vanishes as F (𝑈0 ∩ 𝑈1), as an

𝐴-module, is generated by (𝜆 + 𝑥1)
(1−𝑝)/2 · 𝑥(1−𝑝)/21 · 𝑥𝑛1 for all integers 𝑛, and

(𝜆 + 𝑥1)
(1−𝑝)/2 · 𝑥(1−𝑝)/21 · 𝑥𝑛1 =


(𝜆 + 𝑥1)

(1−𝑝)/2 · 𝑥(1−𝑝)/21 · 𝑥𝑛1 ∈ F (𝑈1), if 𝑛 ≥ 0

(𝜆𝑥0 + 1)(1−𝑝)/2 · 𝑥𝑝−1−𝑛0 ∈ F (𝑈0), otherwise.

Thus the equivariant Euler characteristic 𝜒(𝐺, 𝑋,F ) is just [H0(𝑋,F )] in K0(𝐺, 𝐴). Since

H𝑖(𝑋,F ) � H𝑖(𝑌,G ) for all 𝑖,

𝜒(𝐺, 𝑋,F ) = [H0(𝑌,G )] ∈ K0(𝐺, 𝐴).

To find its projective Euler characteristic in K0(𝐴[𝐺]), first take an open cover 𝑉 = {𝑉0, 𝑉1}

of 𝑌 = P1
𝐴

where each 𝑉𝑖 is stable under the action of 𝐺. For example, take 𝑉0 = Spec 𝐴[𝑥0]

and 𝑉1 = Spec 𝐴[𝑥1, 𝜎(𝑥1), ..., 𝜎𝑝−1(𝑥1)]. The intersection 𝑉0 ∩ 𝑉1 is also affine, and let Spec 𝐵

denote any of 𝑉0, 𝑉1, or 𝑉0 ∩ 𝑉1. The corresponding Čech complex used in computing the sheaf

cohomology of G is then

𝐶0 = G (𝑉0) ⊕ G (𝑉1)

𝐶1 = G (𝑉0 ∩𝑉1)

which are finitely generated 𝐴[𝐺]-modules. We have a short exact sequence of 𝐴[𝐺]-modules

0→ H0(𝑌,G )→ 𝐶0 → 𝐶1 → 0.
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At each 𝑦 ∈ Spec 𝐵, we saw that G𝑦 is cohomologically trivial. Since 𝐵𝑦 is a flat 𝐵-module,

the Tate cohomology groups over tensor products give

Ĥ𝑖(𝐺,G𝑦) = Ĥ𝑖(𝐺,G (Spec 𝐵)) ⊗𝐵 𝐵𝑦 = 0

for all 𝑖. Since this is true for all 𝑦 ∈ Spec 𝐵, we conclude that G (Spec 𝐵) is cohomologically

trivial for 𝐺. Thus the terms of 𝐶• are also cohomologically trivial for 𝐺, and so is H0(𝑌,G ).

Since H0(𝑌,G ) is also a finitely generated free 𝐴-module, we conclude that the projective Euler

characteristic 𝜒𝑃(𝐺, 𝑋,F ) ∈ K0(𝐴[𝐺]) is given by the class [H0(𝑋,F )] in the Grothendieck

group K0(𝐴[𝐺]).

Since the rank of H0(𝑋,F ) over 𝐴 is 𝑝, it will be interesting to see if the class of 𝜒𝑃(𝐺, 𝑋,F ),

the obstruction to the existence of a normal integral basis of the cohomology of F , is trivial in

Cl(Z[𝐺]).

Proposition 4.2.1 (L, 2020). H0(𝑋,F ) is a free 𝐴[𝐺]-module, so 𝜒𝑃(𝑋,F ) = 0.

Proof. For simplicity, denote 𝑥0 by 𝑥 and replace H0(𝑋,F ) by the 𝐴-module generated by

{1, 𝑥, ..., 𝑥𝑝−1}which is 𝐴[𝐺]-isomorphic to H0(𝑋,F ). We claim that H0(𝑋,F ) has an 𝐴[𝐺]-basis

given by

𝛼 =
1

𝑝

𝑝−1∑
𝑖=0

(𝜆𝑥 + 1)𝑖 .

To see that 𝛼 belongs to H0(𝑋,F ), write

𝑝−1∑
𝑖=0

(𝜆𝑥 + 1)𝑖 =

𝑝−1∑
𝑖=0

𝑖∑
𝑗=0

(
𝑖

𝑗

)
𝜆 𝑗𝑥 𝑗 =

𝑝−1∑
𝑗=0

𝑝−1∑
𝑖= 𝑗

(
𝑖

𝑗

)
𝜆 𝑗𝑥 𝑗 =

𝑝−1∑
𝑗=0

(
𝑝

𝑗 + 1

)
𝜆 𝑗𝑥 𝑗

where the last equality is from
𝑝−1∑
𝑖= 𝑗

(
𝑖

𝑗

)
=

(
𝑝

𝑗 + 1

)
.

Since the coefficient 𝜆𝑝−1 of the last term is also divisible by 𝑝, the whole sum is divisible by 𝑝,

hence 𝛼 ∈ H0(𝑋,F ).

We observe the change of 𝐴-bases from {1, 𝑥, ..., 𝑥𝑝−1} to {𝛼, 𝜎(𝛼), ..., 𝜎𝑝−1(𝛼)} can be

broken into three steps of 𝐴-linear transformations between 𝐾-bases, 𝐾 being the fraction field of

43



𝐴: first from {1, 𝑥, ..., 𝑥𝑝−1} to {1, 𝜆𝑥 + 1, ..., (𝜆𝑥 + 1)𝑝−1}, then to {𝑝𝛼, 𝜎(𝑝𝛼), ..., 𝜎𝑝−1(𝑝𝛼)},

then finally to {𝛼, 𝜎(𝛼), ..., 𝜎𝑝−1(𝛼)}. Since

(𝜆𝑥 + 1) 𝑗 =

𝑗∑
𝑖=0

(
𝑗

𝑖

)
𝜆𝑖𝑥𝑖,

the corresponding matrix to the first linear transformation is triangular and the determinant is∏𝑝−1
𝑗=0 𝜆

𝑗 = 𝜆𝑝(𝑝−1)/2. The matrix for the second linear transformation is the Vandermonde

matrix

𝑀 =



1 1 1 · · · 1

1 𝜁 𝜁2 · · · 𝜁 𝑝−1

1 𝜁2 (𝜁2)2 · · · (𝜁2)𝑝−1

...
...

...
...

...

1 𝜁 𝑝−1 (𝜁2)𝑝−1 · · · (𝜁 𝑝−1)𝑝−1


where determinant is given by

∏
1≤𝑖< 𝑗≤𝑝(𝜁 𝑗−1 − 𝜁 𝑖−1) = 𝑢′ · 𝜆𝑝(𝑝−1)/2 for some unit 𝑢′ ∈ 𝐴×.

The last linear transformation has determinant 𝑝−𝑝 = (𝑢 ·𝜆𝑝−1)−𝑝 . The composition of these three

transformations has a unit determinant as all 𝜆’s cancel out. �

We will see in the next chapter that the choice of 𝐷 and −𝐷/2 in the example is somewhat more

canonical than the other possible choices of invertible sheaves satisfying the restriction hypothesis

of Theorem 4.1.1.

44



CHAPTER 5

SQUARE ROOT OF THE INVERSE DIFFERENT

Let 𝜋 : 𝑋 → 𝑌 = 𝑋/𝐺 be weakly ramified as in the previous chapter with 𝐺 of odd order. In

this chapter we discuss the canonical existence of an invertible sheaf on 𝑋 verifying the conditions

of Theorem 4.1.1.

Lemma 5.0.1. Let 𝐴 be a ring flat over Z, 𝐼, 𝐽 ideals of 𝐴. Suppose that 𝐴/𝐼, 𝐴/𝐽 are Z-torsion

free. If 𝐼 ⊗ Q = 𝐽 ⊗ Q ⊂ 𝐴 ⊗ Q, then 𝐼 = 𝐽.

Proof. We show that one is contained in the other, say 𝐼 ⊆ 𝐽. Let 𝑥 ∈ 𝐼. Since 𝐼 ⊗ Q = 𝐽 ⊗ Q,

𝑥 ⊗ 1 =
∑
𝑖

𝑎 𝑗 ⊗ 𝑛 𝑗 ∈ 𝐽 ⊗ Q.

By clearing the denominators of 𝑛 𝑗 , there is an integer 𝑎 with 𝑎𝑥 ∈ 𝐽. Since 𝑎𝑥 ≡ 0 in 𝐴/𝐽 and

𝐴/𝐽 is torsion-free, 𝑥 ∈ 𝐽. �

Theorem 5.0.2 (L, 2020). There exists an invertible sheaf F on 𝑋 such that F ⊗−2 is the tor-

sion-free part of the quotient sheaf O𝑋/Ann(Ω1
𝑋/𝑌

). Here, Ann(Ω1
𝑋/𝑌

) is the annihilator of the

sheaf of relative differentials Ω1
𝑋/𝑌

. The O𝑌 [𝐺]-module 𝜋∗F has cohomologically trivial stalks,

and so the projective Euler characteristic 𝜒𝑃(𝑋,F ) is well-defined.

Remark. This generalizes the square root of the inverse different discussed at the end of 3.2,

see [Ere91]. When 𝑁/𝐾 is an odd degree Galois extension of number fields with Galois group

𝐺, then by a formula of Hilbert (Proposition 4 on p. 64 in [Ser79]), the order of the different

ideal 𝔇(𝑁/𝐾) at every 𝔭 ∈ Spec O𝑁 is always even, hence there exists an ideal whose square is

𝔇(𝑁/𝐾)−1.

Proof. Consider the annihilator ideal sheaf Ann(Ω1
𝑋/𝑌

) ⊆ O𝑋 of the sheaf of relative differ-

entials Ω1
𝑋/𝑌

. Then the Z-torsion-free part of O𝑋/Ann(Ω1
𝑋/𝑌

) is again a quotient sheaf of O𝑋

which determines a closed subscheme 𝑍1 of 𝑋 flat over Spec Z. We take I to be the ideal sheaf

45



of 𝑍1. On the other hand, we assume that the ramification locus 𝑅𝜋 is horizontal, so let 𝑥 be

the generic point of an irreducible component of 𝑅𝜋 which is of codimension 1. Let 𝑦 = 𝜋(𝑥).

Since we assume that all residue field extensions are separable, by Proposition 12 on p. 57 in

[Ser79], the discrete valuation ring O𝑋,𝑥 can be given by O𝑌,𝑦[𝑇 ]/( 𝑓 (𝑇)) where 𝑓 is monic. Then

Ann(Ω1
𝑋/𝑌,𝑥

) = ( 𝑓 ′(𝑡)) where 𝑡 is the image of 𝑇 in O𝑋,𝑥 . This is the same as the different ideal

of O𝑋,𝑥 over O𝑌,𝑦 by Proposition 14 on p. 59 in [Ser79], and since the ramification is tame at the

horizontal 𝑥, by Proposition 13 on p. 58 in [Ser79], its order is 𝑒𝑥 − 1 where 𝑒𝑥 is the ramification

index at 𝑥. Using 𝑒𝑥 for each irreducible component {𝑥} ∈ 𝑅𝜋, consider the divisor

𝐷 =
∑

𝑥∈𝑅𝜋 of codim 1
(1 − 𝑒𝑥) · {𝑥}.

Let 𝑍2 be the closed subscheme of 𝑋 with the structure sheaf O𝑍2 determined by O𝑋/O𝑋(𝐷).

By construction, Supp(O𝑋/I ) = Supp(O𝑋/O𝑋(𝐷)) = 𝑅𝜋 as a set. Over the generic fibre,

O𝑋Q(𝐷) = IQ as IQ = Ann(Ω1
𝑋Q/𝑌Q

) is without Z-torsion and we defined 𝐷 by the closure of

the divisor corresponding to Ann(Ω1
𝑋Q/𝑌Q

) ⊆ O𝑋Q . Thus the flat closed subschemes 𝑍1, 𝑍2 are

identical by Lemma 5.0.1, and we conclude that I = O𝑋(𝐷).

Note that since the order of 𝐺 is odd, 1 − 𝑒𝑥 in 𝐷 is always even, thus −𝐷/2 is a well-defined

divisor on 𝑋 . Since 𝐷 is 𝐺-equivariant, we can take F = O𝑋(−𝐷/2) to be our O𝑋 -𝐺-module.

We check that F satisfies the intersection hypothesis of Theorem 4.1.1. Let 𝑥 be a point in

the intersection of −𝐷/2 and 𝑋𝔭 the special fibre where 𝔭 ∈ Spec 𝐴 is over 𝑝 and 𝑝 divides the

order of𝐺. By assumption, 𝑋𝔭 is smooth at 𝑥, and we have an extension of discrete valuation rings

O𝑋𝔭,𝑥/O𝑌𝔭,𝑦 where 𝑦 is the image of 𝑥 under the canonical projection of special fibres 𝑋𝔭/𝑌𝔭.

We can compute the valuation of −𝐷/2 at 𝑥 by first computing the valuation of Ann(Ω1
𝑋𝔭/𝑌𝔭

)𝑥 .

This can be computed using the higher ramification groups 𝐺𝑥,𝑖 and a formula of Hilbert on

the valuation of the different ideal of local extensions: Since the valuations remain unchanged

after taking completion, assume O𝑋𝔭,𝑥/O𝑌𝔭,𝑦 is a weakly ramified extension of complete discrete

valuation rings over F𝑝 (hence 𝐺𝑥,2 is trivial). Let 𝔪𝑎
𝑥 be its different ideal for some integer 𝑎.
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Then from Proposition 2.1.15 we have

𝑎 =
𝑖=∞∑
𝑖=0

(|𝐺𝑥,𝑖 | − 1) = |𝐺𝑥,0 | + |𝐺𝑥,1 | − 2.

Therefore the valuation 𝑣𝑥(−𝐷/2) of −𝐷/2 at 𝑥 is

𝑣𝑥(−𝐷/2) =
|𝐺𝑥,0 | + |𝐺𝑥,1 | − 2

2
≡ −1 mod |𝐺𝑥,1 |

since 𝐺𝑥,1 6 𝐺𝑥,0. Therefore F satisfies the hypothesis of Theorem 4.1.1, and the direct

image sheaf 𝜋∗F has cohomologically trivial stalks. Corollary 4.1.1.1 gives the projective Euler

characteristic 𝜒𝑃(𝐺, 𝑋,F ) of F . �
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