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ABSTRACT 

 
ADOPTING MICRO-MOBILITY FOR URBAN PEOPLE AND FREIGHT 

TRANSPORTATION 

 

By 

 

MohammadHossein Shojaei 

 

Oil-dependent transportation is an enormous burden on the United States in varied areas. One 

recognized approach to addressing transportation oil-dependency and corollary emissions, and to 

promoting sustainability, is shared mobility. One form of shared mobility is shared micro-mobility, 

which is based on shared use of low-speed transportation modes such as regular and electric 

bicycles or scooters. The most common types of shared micro-mobility are bike-sharing and 

scooter sharing systems. Despite growing attention to shared micro-mobility in the literature, 

understanding potential users’ choice of this emergent transportation mode, and thus insights into 

potential markets of shared micro-mobility, are noticed as a major knowledge gap. Furthermore, 

design frameworks for shared micro-mobility which can help authorities better reflect the benefits 

and costs associated with these systems is another knowledge gap. On the other hand, 

understanding measures and contexts in favor of micro-mobility for urban freight delivery is also 

a gap to bridge. This research sets out to address these discerned knowledge gaps in three major 

directions. 

First, users’ stated commute mode choices, from options in a mixed fleet bike-sharing 

system as well as conventional alternatives, were captured through an online survey. The survey 

presented respondents, who were a sample of commuters to Michigan State University, with 

hypothetical commute scenarios introducing quantified health benefit values and emission costs 

of offered commute modes, as well as conventionally considered travel costs and travel context 

specification. Through discrete choice models developed with the collected data, travel time and 



 

 

dominant topography of the commute path were found to significantly affect commute mode 

choice. This observation indicates necessity of incorporating electrically assisted micro-mobility, 

namely electric bikes and scooters, to ensure success of shared micro-mobility schemes in hilly 

terrain, or shared micro-mobility programs anticipated to support long trips.  

Next, a multi-objective optimization problem is proposed, which encompasses operational 

and societal costs of a conventional urban transportation network incorporating a mixed fleet bike-

sharing system. This framework addresses the tradeoff between authoritarian perspectives 

influencing transportation and user perspectives.  Through a hypothetical case study and a 

proposed metaheuristic solution algorithm, varied analyses found pedal-assist electric bike 

(pedelec) and bus to be the most popular public modes. Results show that more authoritarian 

emphasis on public health or emission results in more pedelecs and less bus and e-scooter ridership 

in the system. Also, in cases of increased inactivity-related health care expenditure or higher 

emission costs, the design framework would provide more pedelecs to serve the demand.  

Lastly, a framework is formulated to provide insights into policy implications and 

operational insights in favor of micro-mobility for last mile freight transportation. Analyses of a 

hypothetical delivery instance in downtown Chicago indicate that electric cargo bikes and tricycles 

always serve as the optimal fleet when customers are within 3 mi of their assigned distribution 

center. In this case, increase in delivery sizes shifts the optimal fleet towards electric cargo 

tricycles. On the other hand, in case of customers lying beyond 3 mi of the distribution center, 

electric micro-mobility would not be an optimal choice; however, when customers are over 12 mi 

from the distribution center, or within 6 mi of the distribution center while pollution tax is in place, 

another sustainable alternative, namely electric van, constitutes the optimal delivery fleet.
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CHAPTER 1. INTRODUCTION 

1.1 Motivation 

Oil-dependent transportation is an enormous burden on the United States in varied areas; the U.S. 

incurs: 1) oil purchase cost of approximately $1 billion per day which can also inflict an extra $45 

billion per year due to oil price volatility, and 2) emission costs of over $55 billion annually 

manifested in health and other deteriorations [1], [2]. U.S. Department of Transportation (USDOT) 

has set out goals to reduce oil dependency and transportation-related emissions, and to promote 

sustainable practices [3]. The generally unanimous definition of sustainability is “meeting the 

needs of the present without compromising the ability of future generations to meet their own 

needs.” [4]. Sustainability in transportation practices are considered accomplishable partly by 

means of  transportation planning and operations [5].  

One currently recognized approach to transportation sustainability is shared mobility. 

Shared mobility is known as concurrent or successive use of transportation services by users, 

without ownership burdens [6]. In this line, shared micro-mobility is an innovative strategy that 

draws on low-speed transportation modes, such as regular and electric bicycles and scooters [7]. 

In addition to promoting sustainability, shared micro-mobility promises also enhanced urban 

mobility, economic development, and public health. Bike-sharing is among the most popular 

shared micro-mobility options particularly in urban areas. In bike-sharing systems, users can rent 

a bike from a station near their origin, ride it over to their destination, and drop it off at a station 

near their destination. Bike-sharing systems, which are a form of public transit, provide the benefits 

of biking to the users, without having to incur ownership complications [8]. There are multiple 
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benefits associated with bike-sharing systems, including flexible mobility, reduction of greenhouse 

gas emissions, personal savings, health benefits, mitigated traffic congestion, reduced fuel 

consumption, and support for multimodal transportation networks [8], [9]. In fact, bike-sharing 

systems are viewed as a means of public transportation whose ultimate goal is to be integrated into 

urban transportation networks [10]. Achieving this goal can lead to more efficient transportation 

systems.  

As aforementioned, electric bicycles, commonly referred to as e-bikes, are also among 

alternatives that can be deployed for shared micro-mobility. E-bikes boast enhanced performance 

compared to conventional bicycles through the ability to travel longer distances and at higher 

operating speed, and providing more convenience particularly in hilly settings [9]. In general, e-

bikes are classified into two major types of bicycle style e-bikes (BSEB) and scooter style e-bikes 

(SSEB); BSEB is partially electric and still requires pedaling, and thus can yield health benefits, 

whereas SSEB is fully electric [11]. Owing to the mentioned superiorities, e-bikes are costlier than 

conventional bicycles and there is a cost barrier to e-bike adoption. Incorporating e-bikes in bike-

sharing systems has been proposed as a solution to overcome the cost barrier [12]. E-bike-sharing 

systems are generally anticipated to draw users from competing personal and motorized travel 

modes, and elevate the environmental and social benefits of conventional bike-sharing systems 

[13].  

Freight activities form another major contributor to transportation emissions in the United 

States. It is projected that the U.S. will undergo a 23.5% increase in freight transportation by 2025, 

and another 20% growth by 2040. In accordance, it is expected that, within this time frame, freight 

transportation related emissions will surpass those from other transportation sectors, such as 

passenger transportation [14]. On the other hand, according to 2015 statistics, U.S. trucking 

https://www.sciencedirect.com/topics/social-sciences/urban-transportation
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industry incurs approximately over $56 billion due to congestion in urban settings [15]. 

Additionally, illegal parking and unloading exposes delivery companies to fine costs and causes 

road congestion [16]. In this respect, there is a growing micro-mobility trend for last-mile freight 

transportation, and cargo cycles are increasingly recognized for alleviating shortcomings of 

conventionally motorized urban freight activities, owing to environmentally-friendly and mobility-

enhancing attributes [17][18].  

Aware of the growing attention to micro-mobility for passenger and freight transportation, 

this dissertation aims to address some of the related gaps. Bridging these gaps can help cast light 

on detailed design of shared micro-mobility systems as a public transportation option, and realizing 

contexts in which last-mile logistics can benefit from cargo cycles. 

1.2 Knowledge Gaps 

Literature indicates that shared micro-mobility, as a public transportation option, and cargo cycles, 

as a micro-mobility trend in urban logistics, have been recognized in appreciation of economic, 

environmental, and health benefits. However, there exist lacks of: 

▪ understanding users’ view of shared micro-mobility in light of elaborate benefits and costs 

awareness; 

▪ design frameworks and associated decision-making tools for shared micro-mobility 

systems that accurately reflect the benefits and costs; and, 

▪ understanding measures and settings that can drive urban logistics to deploy cargo cycles, 

considering a freight company's costs as well as societal benefits, in one exhaustive 

framework. 
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This dissertation intends to address the above-mentioned gaps and contribute to the 

evolving trend of integrating the rising awareness of transportation sustainability with decision-

making procedures by both urban authorities and freight movers. 

1.3 Problem Statement 

This dissertation provides insights into passenger and freight transportation focusing on emerging 

micro-mobility technologies, and considering authoritarian and user perspectives of operational 

specifications and quantified visions of benefits and costs. To present an overview of the present 

study, the following constituent chapters are briefly introduced here. 

Chapter 2 titled “Investigating Users’ Commuting Mode Choice from Intended Shared 

Micro-Mobility Integrated with Typical Options”, addresses the knowledge gap 

as to users’ commuting mode choice when given the shared micro-mobility 

alternative in a typical transportation network. To this end, this chapter sets out 

to develop discrete choice models through data from a self-designed online 

survey, which accounts for quantified health benefit values and emission costs of 

modes, as well as conventionally considered travel costs and travel context 

specifications. The objective of this chapter is to develop transport mode choice 

models, as a transportation planning tool, and to uncover significantly influential 

factors in commuting mode choice, when both conventional and novel factors 

are presented to users. 

Chapter 3 titled “A Multi-Modal Public Transportation System Offering Shared Micro-

mobility” attends to the lack of shared micro-mobility design frameworks that 

account for detailed benefits and costs aspects. In other words, the objective of 
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this chapter is to present a framework that can help in more informed decision 

making when planning sustainable and active urban mobility, and thus proposes 

a multi-objective optimization problem entailing operational and societal costs 

of a typical urban transportation network incorporating a mixed fleet bike-

sharing system. This framework addresses the tradeoff between authoritarian 

perspectives influencing transportation, as well as users’ standpoints, considering 

quantified emission costs and health benefit values along operational costs of the 

system.  

Chapter 4 titled “Micro-Mobility and Electrification to Support Sustainable Urban Freight 

Delivery” gets to understanding emission policies and urban contexts in favor of 

electric cargo cycles and electric vans for logistics. To do so, chapter 4 presents 

a complex mathematical formulation reflecting a trade-off between operational 

costs of a freight delivery company and the societal costs imposed by the 

company on the society. The objective of this chapter is to comprehend policy 

implications and operational insights in terms of when and how green modes of 

transportation can be deployed for network sustainability enhancement. 

Chapter 5 recapitulates the present study and recommends directions to address its caveats, 

and to complement it through future research. 

1.4 Expected Contributions 

This dissertation intends to address the aforementioned knowledge gaps through the defined 

objectives, and contribute to the existing literature on adopting micro-mobility for passenger and 

freight transportation. Accordingly, Chapter 2 is expected to illuminate what factors, among 
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detailed benefit and costs associated with commuting alternatives in a typical transportation 

network offering shared micro-mobility, significantly influence commuters’ mode choice, and to 

yield transportation mode choice models developed in light of detailed considerations. Through 

these contributions, the direction and findings of Chapter 2 are expected to be informative to 

transportation decision-makers and planners contemplating shared micro-mobility alternatives. 

Next, Chapter 3 presents a design framework for multimodal transportation networks 

incorporating shared micro-mobility, considering detailed benefits and costs, through the eyes of 

both planners and users. This contribution, in response to a recognized gap in the literature, is 

anticipated to help informed planning of shared micro-mobility systems in urban transportation 

networks. Finally, Chapter 4 attends to micro-mobility adoption for last-mile logistics through a 

mathematical modeling framework that accounts for operational freight transportation costs as 

well as emission taxes, in a real-world transportation network. The contribution of Chapter 4 is to 

discern policy implications and urban contexts that can spur the uptake of electric micro-mobility 

as well as electric vans, thereby helping support sustainable urban freight delivery through micro-

mobility and electrification. 
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CHAPTER 2. INVESTIGATING USERS’ COMMUTING MODE 

CHOICE FROM INTENDED SHARED MICRO-MOBILITY 

INTEGRATED WITH TYPICAL OPTIONS  

2.1 Overview 

Bike-sharing is an increasingly evolving concept across the globe, offering diverse benefits such 

as flexible mobility, reduced fuel use, the corollary reductions in emissions, and increased physical 

activity levels [8]. Essentially, bike-sharing enables users to enjoy the advantages of biking as an 

active mode of transportation, without the complications of private bike ownership (i.e. purchase 

and regular maintenance). On the other hand, another rapidly growing aspect of today’s 

transportation is represented by e-bikes [9]. In general, there are two major types of e-bikes [11]: 

1) bicycle style e-bikes (BSEBs) which resemble conventional bicycles in both appearance and 

operation; one type of BSEB which is referred to as pedelec requires the rider to constantly keep 

pedaling while assisting the rider through electric assistance to the pedals, and 2) Scooter style 

electric bicycles (SSEBs) which share many similar features to gasoline-fueled scooters, while 

essentially relying on electric power. Figure 2-1 portrays examples of BSEB and SSEB [19]. As 

opposed to pedelecs, scooter style electric bicycles do not require pedaling. E-bikes are superior 

to conventional bicycles in many respects, such as the ability to traverse longer distances and reach 

higher speeds, and being more convenient, especially over hilly terrains. Also, even though less 

than conventional bikes, pedelecs would still provide health benefits by engaging the rider in the 

physical activity of pedaling, despite the electric assistance [9]. In the United States, the 

requirements for e-bikes are defined as a two-/three-wheeled vehicle with operating pedals, whose 
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speed is limited to 20 mph when ridden exclusively on electric power, and with 750w of power or 

less [20].  

 

a) BSEB or pedelec 

 

b) SSEB 

Figure 2-1 Examples of major e-bike types (10) 

Beside the variety of benefits e-bikes have in comparison to conventional bicycles, they 

are also costlier. To overcome the cost barrier to e-bikes adoption, inclusion of e-bikes in bike-

sharing systems has been proposed [12]. This solution also has the potential to attract more users 

from other transportation modes and contribute to the social benefits that conventional bike-

sharing systems [21]. In general, e-bike-sharing systems are anticipated to contribute to reduced 

single occupancy trips by cars, improve air quality through reduced 𝐶𝑂2 emissions, enhance public 

health by increasing physical activity levels, improve roadway mobility and safety especially for 

cyclists due to more cyclists than car users, support local economies and tourism and, at larger 

scales, the societal quality of life [13].  

As of 2007, many cities in the United States have made the acquaintance of bike-sharing 

concept as a means to overcome urban transportation challenges such as congestion, air pollution 

and public health concerns [22]. The Capital Bikeshare launched in 2010 in Washington D.C. was 
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the first major bike-sharing system in the United States [23]. Today, the American bike-sharing 

systems vary in scale, from a very small program in Des Moines, Iowa, consisting only of twenty-

five bikes and three docking stations, to the large scale program in New York City with six 

thousand bikes and three hundred stations [24]. Most of the current literature on American bike-

sharing systems are retrospective, and have travel logs data or user surveys. Among the 

investigated systems, Capital Bikeshare is supposed to be the most studied program, mostly owing 

to the free access to the usage data of this system [25], [26]. In a similar trend, studies with broader 

global scopes also majorly investigate the already implemented bike-sharing programs with 

various objectives such as identification of usage patterns, exploration modal shifts, or 

determination of influential factors in system uptakes [27].  

There are few studies in the literature attending to intended bike-sharing systems and their 

anticipated markets [28]–[33]. This scarcity is even more noticeable when it comes to e-bike-

sharing or mixed fleet bike-sharing [34]. To address this knowledge gap in terms of shared micro-

mobility, Chapter 2 of this dissertation investigates users’ preferences in a typical transportation 

network which is to offer a mixed fleet bike-sharing system. It must be noted that presenting users 

with quantified health benefit values and emission costs associated with available modes to choose 

from is a novel approach in favor of public awareness and its influences on travel mode choice. 

To this end, an online survey was designed and distributed to a sample of Michigan State 

University faculty, students and staff to collect their current travel patterns, demographics and 

outlooks on an intended mixed fleet bike-sharing system. With use of the collected data set, 

discrete choice models are developed employing both classic variables of travel time and travel 

cost, and novel factors such as emission cost and health benefit values associated with the offered 

modes. 



10 

 

2.2 Data 

In this study, an online survey about morning commutes to Michigan State University (MSU) was 

conducted. This survey was running from April to July of 2018, to which 114 participants from 

MSU responded, including faculty, staff and students. The modes considered in this study are 

private modes including, walking, private regular bike, motorcycle, and private automobile, as 

well as shared modes, such as regular bike, shared pedelec, shared electric scooter (E-scooter), and 

bus. These mode choices take place in different proposed contexts of commuting distance (5 

instances of 1 mi, 5 mi, 10 mi, 20 mi, and 50 mi) and topography (mostly flat, mostly mildly hilly, 

and mostly steeply hilly). As contributions, the survey reflects each mode’s contribution to societal 

emission cost and the health benefit values. For this purpose, modes’ quantitative characteristics 

are displayed in Table 3-1, whose values are based on the average values in the United States. The 

detailed calculation values for health benefit quantification and fare calculations are presented in 

Appendices A and C, and the survey is presented in Appendix F. It must be briefly noted that the 

emission costs and health benefit values are only specific to operation whiles of each mode. 

Accordingly, as an example, since biking emits no emission while operation, it would have 

emission costs equal to zero, while biking engages the rider in pedaling and is an active mode 

while operation, and therefore has health benefit values.  

After removing the incomplete responses to the survey, 83 respondents are retained, each 

having completed 15 distance-topography scenarios. Accordingly, a total of 1,245 observations 

are obtained.  Figure 2-2 and Table 2-1 present overview of the collected data. As can be seen in 

Figure 2-2-b, the nearly half of the commuting distances to MSU lie within 1 mi to 5 mi. Also, 

Figure 2-2-c shows that the dominant current commuting mode is private automobile. 



11 

 

 
a) Annual income level 

 
b) Commuting distance 

 
c) Current regular commuting modes 

Figure 2-2 Overview of the demographics and travel choices 

According to Table 2-1, female and male respondents constitute 42% and 58%, 

respectively. It should be noted that in this table and under Occupation variable, Professional 

student signifies a student who majors in a professional degree, which includes but is not limited 

to: doctor of education, doctor of veterinary medicine, law, dentistry, medicine, doctor of physical 

therapy, nursing, pharmacy, etc. Lifelong student/ learner is defined as a voluntary, constant self-

motivated pursuer of knowledge for personal of career-related reasons [35]. 

  

19%

7%

13%

16%

16%

13%

10%

5% 1%
Below 15,000$

15,000$ to 20,000$

20,000$ to 50,000$

50,000$ to 70,000$

70,000$ to 100,000$

100,000$ to 130,000$

130,000$ to 200,000$

200,000$ to 250,000$

Above 250,000$

5%

48%

24%

10%

8%
5%

Below 1 mi

1 mi to 5 mi

5 mi to 10 mi

10 mi to 20 mi

20 mi to 50 mi

Above 50 mi

7%

10% 1%

4%

70%

8%

Walk

Regular Bike

E-scooter

Moped/motorcycle

Car

Bus



12 

 

Table 2-1 Data overview 

Categorical Variable Frequency Percentage 

Gender Female 35 0.42 

Male 48 0.58 

Occupation Undergraduate Student 22 26.83 

MSc Student 2 2.44 

PhD student 4 4.88 

Professional Student 0 0.00 

Lifelong Student 1 1.22 

Faculty: Assistant Professor 7 8.54 

Faculty: Associate Professor 7 8.54 

Faculty: Professor 10 12.20 

Staff 29 35.37 

Responsible for children 

 

Yes  12 17 

No 71 83 

Private automobile Yes 74 89 

No 9 11 

Motorcycle Yes 7 8 

No 76 92 

Pedelec Yes  1 98 

No 82 2 

E-scooter Yes 1 98 

No 82 2 

Commuting path  Mostly Flat 68 82 

Mostly Mildly Hilly 15 18 

Continuous Variable Min. Max. Median Average 

Age 18 72 39 40.62 

Commuting time (min) 1 75 15 18.68 

Number of people 

respondent commutes with 

0 3 0 - 

State commuting mode choices across the distance-topography scenarios are shown in 

Figure 2-3. Figure 2-3 indicates that private car is the predominantly selected mode for commute. 

However, at commuting distance of 1 mile, walking is a competing alternative. When commuting 

distance increases to 5 -10 miles, mixed fleet bike sharing alterantives, namely shared bike, shared 

pedelec, and shared E-scooter, overtake private motorcyc in almost all the circumstances. Even at 

commuting distance of 20 miles, when topography is mostly flat, mixed fleet bike-sharing 
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alternatives are chosen as frequently as is private motorcycle. It can also be observed that, up to 

20 miles of cummuting distance, users choose mixed fleet bike-sharing over bus, except for when 

topography is mostly steeply hilly at 20 miles of commuting ditance. 

Figure 2-3 Stated commuting mode choices across distance-topography scenarios 

2.3 Methodology  

In this study, the R studio® software “mlogit” package intended for developing multinomial logit 

(MNL) regressions is used [36], to test a variety of discrete choice models based on the above 

presented dataset; the aim is to explore influential factors in commute mode choice and to develop 

predictive models. For this purpose, novel explanatory variables, namely quantified health benefit 

values and emission costs of commuting alternatives, as well as the more common variables such 
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as travel time, travel cost, and travel distance are considered. Since the proposed alternatives 

include also active modes whose choice is affected by topography, this variable is also 

incorporated in this study. The factors considered when developing discrete choice models include, 

but are not limited to, correlation of the predictive variables, reasonableness of the signs of 

coefficients which are statistically different from zero, and the Log-Likelihood value.  

2.4 Results 

In regards to the predictor/explanatory variables, two main categories are defined: 1) alternative 

specific variables with generic coefficients, and 2) individual specific variables with alternative 

specific coefficients. Alternative specific variables with generic coefficients are specific to each 

mode/alternative, but essentially have the same influence on mode choice regardless of the 

intended alternative’s characteristics. For example, it is considered that commuting duration has 

the same influence on commuter’s choice, irrespective of the alternative’s specifications. 

Similarly, the monetized health benefit value is an advantage that a commuter could derive by 

opting for an active mode regardless of which specific active mode has been selected.  

Accordingly, travel time, travel cost, health benefit value, and emission cost (belong to this 

category.  On the other hand, individual-specific variables with alternative-specific coefficients 

are specific to each commuter/ observation, regardless of the selected mode. However, such 

variables provoke different perceptions in association with the selected mode. Topography is thus 

an individual-specific variable reflecting the distance that each commuter traverses, which affects 

the choice of each mode differently. This classification indicates the fact that varied modes would 

induce particular notions/ feelings (e.g. comfort) in different topographical contexts. Accordingly, 

Topography is considered an individual variable with alternative specific coefficients. The 
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notations for the considered predictor variables are presented in Table 2-2. It should be noted that 

the variable DisPowered is the adjusted values of distance, in which distance value is taken to the 

power of 2 if the selected mode is among walking, private regular bike, shared regular bike, and 

shared pedelec, and to the power of 1 for other modes. This is to reflect the difficulty of traversing 

distance for the active modes in comparison to the other relatively more convenient options. 

Table 2-2 Notations of the considered predictor variables 

Predictor/Explanatory Variable  Notation 

Distance Dis 

Topography Topo 

Adjusted distance DisPowered 

Travel time  TT 

Travel cost TC 

Emission cost EmissionCost 

Health benefit value HealthValue 

2.4.1 Correlations and Covariates 

In order to come up with a well-trained regression model, correlations of the covariates for the 

entire 1,245 observations (the 83 participants each responding to 15 trip scenarios) were explored 

at the outset. The Pearson correlations matrix as well as p-values can be seen in Table 2-3. In each 

cell, the p-value can be seen in parenthesis next to the associated Pearson correlation coefficient. 

Table 2-3 Pearson correlation coefficients and respective p-values 

 Dis Topo TT TC EmissionCost HealthValue DisPowered 

Dis 1.00 

  

0.00 

(1.00) 

0.78 

(0.00) 

0.46 

(0.00) 
0.95 (0.00) -0.04 (0.17) 0.21 (0.00) 

Topo 0.00 

(1.00) 
1.00 

-0.01 

(0.68) 

0.005 

(0.06) 
-0.01 (0.67) -0.03(0.24) -0.02 (0.56) 

TT 0.78 

(0.00) 

-0.01 

(0.68) 
1.00 

0.14 

(0.00) 
0.62 (0.00) 0.52 (0.00) 0.59 (0.00) 

TC 0.46 

(0.00) 

0.05 

(0.06) 

0.14 

(0.00) 
1.00 0.59 (0.00) -0.32 (0.00) -0.06 (0.03) 
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Table 2-3 Pearson correlation coefficients and respective p-values (cont’d) 

 Dis Topo TT TC EmissionCost HealthValue DisPowered 

EmissionCost 0.95 

(0.00) 

-0.01 

(0.67) 

0.62 

(0.00) 

0.59 

(0.00) 
1.00 -0.19 (0.00) 0.06 (0.04) 

HealthValue -0.04 

(0.17) 

-0.03 

(0.24) 

0.52 

(0.00) 

-0.32 

(0.00) 
-0.19 (0.00) 1.00 0.79 (0.00) 

DisPowered 0.21 

(0.00) 

-0.02 

(0.56) 

0.59 

(0.00) 

-0.06 

(0.03) 
0.06 (0.04) 0.79 (0.00) 1.00 

 

2.4.2 Multinomial Logit Models 

An exhaustive set of standard multinomial logit (MNL) models, presented in Appendix G, are 

developed either with single covariates, or, according to Table 2-3, with covariates that are not 

highly correlated, i.e. the ones with p-values greater than 0.05. It is noteworthy that the MNL 

models are developed using R’s mlogit package which enables defining generic as well as 

alternative specific coefficients. Among covariates, “Dis” and “Topo” are travel-context-related 

and independent of alternatives. i.e. transport modes in this study; for such covariates, alternative-

specific parameters/coefficients must be introduced in the models, to reflect the fact that these 

covariates affect the choice of each alternative differently. The other covariates, however, are 

alternative-dependent, and can be considered with generic or alternative-specific 

parameters/coefficients. The first alternative, i.e. Walk is set as the reference alterative in the model 

development. The fitted models and their summaries are presented in Appendix G. Along with 

standard MNL models, whenever there are continuous covariates, i.e. TT, TC, EmissionCost, and 

HealthValue, random parameter (mixed) logit models are also tested. 
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The best model found through MNL analyses (presented in Appendix G), is concluded to 

be the mixed logit model in which TT (Travel Time) has random generic parameters, and Topo 

(Topography) has alternative-specific parameters. 

Table 2-4 Best MNL model determined 

Model Model Coefficients’ Specifications 

Note: Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 

Mixed (Random 

parameter) MNL Model 

with covariates: 

▪ TT with generic random 

parameter/coefficient 

▪ Topo with alternative-

specific 

parameters/coefficients 

 

 

Model Fit: 

▪ Log-Likelihood: -1380.3 

▪ McFadden R^2:  0.21145  

▪ Likelihood ratio test :  

chisq = 740.27 

(p.value = < 2.22e-16) 

 

 

 

 

 Estimate z-value Signif. 

Shared 

bike:(intercept)            -1.59 0.00 ** 

Shared 

pedelec:(intercept)         -3.38 0.00 *** 

Shared e-

scooter:(intercept)       -4.49 0.00 *** 

Bus:(intercept)                    -3.52 0.00 *** 

Private 

bike:(intercept)           -1.17 0.00 ** 

Private 

Motorcycle:(intercept)     -6.77 0.00 *** 

Private car:(intercept)            -3.89 0.00 *** 

TT                                -0.06 0.00 *** 

Shared bike:Topo                     -0.63 0.06 . 

Shared pedelec:Topo                0.62 0.01 ** 

Shared e-scooter:Topo              0.82 0.00 ** 

Bus:Topo                          0.69 0.00 ** 

Private bike:Topo                -0.06 0.77  
Private 

Motorcycle:Topo             1.09 0.00 *** 

Private car:Topo                   0.79 0.00 *** 

sd.TT                               0.21 0.00 *** 

 

 

random 

coefficients 
Min. 1st Qu. Median Mean 3rd Qu. Max. 

TT  -inf -0.20 -0.06 -0.06 0.08 Inf 
 

 

 The criteria to select this model are the largest log-likelihood values among the 

investigated models, sensible parameter/coefficient signs, and the fact that almost all of the 
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parameters/coefficients are statistically significantly different from zero. Mixed logit or random 

parameter models address both repeated measurements due to successive scenarios presented to 

survey respondents, and Independence of Irrelevant Alternatives (IIA). Accordingly, the drastic 

improvement from standard MNL with TT and Topo covariates, to the mixed logit variant with 

random TT parameter is understandable. However, a nested logit version derived from the standard 

MNL is also developed for comparison purposes.  

2.4.3 Multinomial Nested Logit Model 

To derive the nested logit model, the first step is to discern the hidden nests. To do so, a random 

alternative, in this case E-scooter, is chosen, and its travel time is altered to 70% of the previous 

values; accordingly, a new dataset was generated based on the actual data set to test IIA. To this 

end, the actual data set and fitted function in R studio mlogit package are used to obtain old 

probabilities (OProb), and the new IIA test dataset and predict function in mlogit package are used 

for developing new probabilities (NProb). After testing ratios of NProb for alternative private car 

over each of the other alternatives, except E-scooter, it was found out that alternatives private car 

and private motorcycle form one nest, which is called private motorized modes (PrivMotorModes); 

all other alternatives are one nest, which is called environmental modes (EnvironmentModes). 

Figure 2-4 displays the structure of the multinomial nested logit model. 
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Figure 2-4 Visualization of the Multinomial Nested Logit Model 

After discerning the two nests, nested logit model with TT and Topo was developed (results 

presented in Table 2-5). It was realized that this newly fitted model has smaller log-likelihood 

value than that of the mixed MNL model, which indicates better performance of the mixed MNL 

model in addressing issues with discrete choice modeling; this is a reasonable observation in light 

of mixed logit model relaxing IIA assumption and addressing panel data due to repeated 

measurements.  

Table 2-5 Nested Logit Model developed with TT and Topo covariates 

Model Model Coefficients’ Specifications 

Note: Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 

Multinomial Nested Logit 

Model with Covariates: 

▪ TT with generic 

parameter 

▪ Topo with alternative-

specific parameters 

 

 

Model Fit: 

▪ Log-Likelihood: -1511.4 

▪ McFadden R^2:  0.1366 

 Estimate z-value Signif. 

Shared 

Bike:(intercept)                -0.67 0.46  
Shared 

pedelec:(intercept)           -3.24 0.00 *** 

Shared e-

scooter:(intercept)        -4.88 0.00 *** 

Bus:(intercept)                      -3.79 0.00 *** 

Private 

bike:(intercept)             0.01 0.99  
Private 

motorcycle:(intercept)      -160.00 0.35  

Private car:(intercept)              -3.45 0.51  
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TT                                  -0.03 0.00 *** 

Shared bike:Topo                     -1.32 0.02 * 

Shared pedelec:Topo                   0.78 0.04 * 

Shared e-scooter:Topo              1.07 0.01 * 

Bus:Topo                            0.93 0.02 * 

Private bike:Topo                    -0.33 0.32  
Private 

motorcycle:Topo               15.30 0.21  

Private car:Topo                     -1.30 0.40  

iv:EnvironmentMod      1.70 0.00 *** 

iv:PrivMotorModes     58.70 0.38  
 

 

2.4.4 Mixed logit (Random Parameter) Model with Aggregated Alternatives 

In line with developing multinomial nested logit, and in order to address both IIA issue, revolving 

hidden nests of alternatives, and the panel data, repeatedly collected from same respondents, 

another approach is aggregating alternatives in one nest into one single alternative and developing 

mixed logit model. For this purpose, the two upper level nests in the multinomial nested logit 

method, namely private fossil fuel driven modes (PrivFossilFuelModes) and environmental modes 

(EnvironmentModes) are considered. In terms of predictor variables, i.e. TT and Topo (see Table 

2-2 for all notations), as TT is an alternative-specific variable, different approaches of aggregation 

were tested; for each mode choice scenario, the aggregate TT value of each nest is calculated 

through mean, median, or 85th percentile of alternatives’ TT values in that nest, for that specific 

scenario. Results of the three mixed logit models are presented in Table 2-6. 

Table 2-6  Mixed logit models with aggregated alternatives 

Mixed logit model  Summary 
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Mixed (Random 

Parameter) MNL Model 

with Covariates: 

▪  TT (Median) with random 

generic parameter 

▪  Topo with alternative 

specific parameters 

 

Model Fit: 

▪ Log-Likelihood: -410.71 

▪ McFadden R^2:  0.47253  

▪ Likelihood ratio test : 
chisq = 735.85 

  (p.value = < 2.22e-16) 

 Estimate z-value Signif. 

FossilFuelModes:(intercept) -5.25 0.00 *** 

TT_combinedAlt -0.31 0.00 *** 

FossilFuelModes:Topo_combinedAlt 0.81 0.00 *** 

sd.TT_combinedAlt 0.74 0.00 *** 

   

  

Table 2-6 Mixed logit models with aggregated alternatives (cont’d) 

Mixed logit model  Summary 

Mixed (Random 

Parameter) MNL Model 

with Covariates: 

▪ TT (Mean) with random 

generic parameter 

▪ Topo with alternative 

specific parameters 

 

Model Fit: 

▪ Log-Likelihood: -414 
▪ McFadden R^2:  0.4683  
▪ Likelihood ratio test : chi

sq = 729.26  
  (p.value = < 2.22e-16) 

 
Estimate z-value Signif. 

FossilFuelModes:(intercept) -5.34 0.00 *** 

TT_combinedAlt -0.14 0.00 *** 

FossilFuelModes:Topo_combinedAlt 0.82 0.00 *** 

sd.TT_combinedAlt 0.52 0.00 *** 
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Mixed (Random 

Parameter) MNL Model 

with Covariates: 

▪ TT (85th percentile) 

▪ with random generic 

parameter 

▪ Topo with alternative 

specific parameters 

 

Model Fit: 

▪ Log-Likelihood: -413.99 
▪ McFadden R^2:  0.46831  
▪ Likelihood ratio test : chi

sq = 729.29 (p.value = < 
2.22e-16) 

 
Estimate z-value Signif. 

FossilFuelMode:(intercept) -5.45 0.00 *** 

TT_combinedAlt -0.10 0.00 *** 

FossilFuelMode:Topo_combinedAlt 0.84 0.00 *** 

sd.TT_combinedAlt 0.45 0.00 ***  

According to Table 2-6, all the aggregation approaches result in drastic improvement in 

model fit. The largest improvement, or increase in the Log-Likelihood value is obtained through 

aggregate nests and median TT values in each scenario.  

2.4.5 K-fold Cross Validation 

Concluded from the previous sections and the model development processes, the best disaggregate 

model is the mixed multinomial logit model with TT and Topo covariates, and the aggregate mixed 

multinomial logit model, with medan value of TT, leads to substantial improvement to the 

disaggregate model. The analyses so far have focused on in-sample performances, as we have been 

trying to find the best fits to the data (indicated by largest Log-Likelihood values), as well as 

reasonable and statistically meaningful models (based upon model parameters/coefficients). In the 

modeling procedure, out-of-sample performance is also of importance, as we wish to know how 

the model performs on unseen data, or data that has not been used for training. Therefore, any 

trained model needs to be validated so that its out-of-training-set performance and transferability 
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are evaluated. For this purpose, K-fold cross validation is a robust validation approach, which 

consists of the following steps: 

1. The dataset is randomly split into K subsets/folds; 

2. One subset is reserved as the validation set, and the remaining subsets are used for training; 

3. The trained model is then tested on the reserved validation set; it is noteworthy that metrics 

such as root mean squared error (RMSE) and mean absolute error (MAE) and correlation 

between predicted and actual values (R2) are recorded as indicators of model performance; 

4. The procedure is repeated until each subset serves as a validation set once; 

5. The average of the K recorded metrics (RMSE, MAE, and R2) are then calculated to reflect 

model’s anticipated performance on any dataset. 

The caret package in R is capable of conducting K-fold cross validation with a wide variety of 

model structures, but models with multinomial dependent. Accordingly, to validate the best 

disaggregate and aggregate models found in this study, the mentioned steps were scripted in R, 

and the built-in RMSE, MAE, and R2 functions in the caret package were used to record model 

performance each time. In this study, the common value of 𝐾 = 10 is selected. It is also 

noteworthy that, technically, the used model performance metrics, i.e. RMSE, MAE, and R2, 

benchmark the model-based fitted/predicted probability of choosing the selected mode by the 

respondent, against the actual probability of choosing that mode, which is 100%. Accordingly. 

There is no variation among the actual probabilities as they are all 1.00, and thus correlation metric 

(R2) is not applicable. However, RMSE and MAE can be used, yielding differences between the 

predicted probabilities by the models and the actual probabilities, i.e. 1.00. The 10-fold cross 
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validation results for the best disaggregate and aggregate mixed multinomial logit models are 

presented in Table 2-7 and Table 2-8. 

Table 2-7 10-fold cross validation metrics for the best disaggregate mixed multinomial logit model 

 RMSE_Validatiom MAE_Validatiom RMSE_Training MAE_Training 

1 0.73 0.70 0.70 0.67 

2 0.69 0.66 0.70 0.67 

3 0.68 0.64 0.69 0.65 

4 0.64 0.59 0.66 0.61 

5 0.69 0.66 0.68 0.64 

6 0.62 0.53 0.62 0.53 

7 0.61 0.52 0.61 0.52 

8 0.66 0.62 0.66 0.62 

9 0.72 0.69 0.67 0.64 

10 0.62 0.53 0.62 0.54 

Avg 0.67 0.62 0.66 0.61 

Table 2-8 10-fold cross validation metrics for the best aggregate mixed  

multinomial logit model (with medain TT value) 

 RMSE_Validatiom MAE_Validatiom RMSE_Training MAE_Training 

1 0.43 0.40 0.44 0.41 

2 0.43 0.41 0.44 0.41 

3 0.45 0.40 0.43 0.39 

4 0.45 0.35 0.40 0.31 

5 0.39 0.29 0.40 0.31 

6 0.39 0.31 0.40 0.30 

7 0.45 0.41 0.44 0.40 

8 0.44 0.42 0.44 0.40 

9 0.42 0.39 0.44 0.40 

10 0.42 0.39 0.43 0.38 

Avg 0.43 0.38 0.43 0.37 

 

Logically, ideal value for RMSE and MAE are zero, as we aim to minimize the errors or 

differences between fitted/predicted values and actual values. According to Table 2-7 and Table 

2-8, the average values of each model performance metric for training and validation sets are close, 
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and this observation indicates appropriate similar in- and out-of-sample performances; in other 

words, the models do not suffer from overfit to the training set, or underfit to the validation set. 

Eventually, it can be seen that the aggregate mixed multinomial logit model evinces better fits and 

predictive power in comparison to the disaggregate variant.  

According to the best model summarized in Table 2-6, only travel time (TT) and topography 

(Topo) have statistically significant influence on transportation mode choice of the survey 

respondents. As expected, increase in travel time results in decreased utility of any mode. It can 

also be seen that as the topography becomes unfavorable, i.e. travel path becomes hilly(ier), private 

fossil fuel propelled modes, namely private motorcycle and private care would become more 

utilitarian than other modes. More specifically, with each level of increase in hilliness, private 

fossil fuel driven modes become 2.24 (=  𝑒0.81) times more likely to be selected.  

2.5 Conclusion  

This study is organized according to three main aspects: 1) the increasing popularity of bike-

sharing and e-bike-sharing, 2) the necessity of investigating potential users’ preferences in an 

intended mixed fleet system, and 3) the shortage of such research, particularly in the North 

America. To this end, an online survey was distributed to a sample of commuters to Michigan 

State University (MSU), including faculty, staff and students. This survey was running from April 

to July of 2018, and inquired about travel patterns, demographics and outlooks on an intended 

mixed fleet bike-sharing system. The collected data was then used to develop utility functions and 

capture users’ perspectives as to an intended transportation system.  

This study accounts for classic variables predominantly existent in discrete choice models, 

i.e. travel time and travel costs, accompanied by variables indicating dominant topographical 
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condition of commuters’ travel paths. Moreover, contributory determinants with quantified health 

benefit values and emission costs associated with proposed travel modes are incorporated. After 

exploring numerous discrete choice models, the best mode in terms of fit, reasonableness, and 

predictive power is obtained. Results suggested that the most influential factors in transport mode 

choice are travel time and travel path topography. The best [disaggregate] model shows that 

increase in terrain hilliness leads to less selection likelihood of bikes (either shared or private) for 

commute, in comparison to walking. It is an interesting finding which reveals users perceive 

walking to be more utilitarian (or perhaps more convenient) than biking when topography portends 

more hilliness. Also, this observation points out the necessity of including e-bikes to ensure 

success of shared micro-mobility in hilly settings. 

Another finding is that, unexpectedly, presenting respondents with quantified emission 

costs and health benefit values associated with transport mode choice, does not result in significant 

shift towards shared mobility. This observation can be due to the fact that the predominantly car-

driving respondents do not find the less polluting and more health-enhancing attributes of shared 

micro-mobility encouraging enough. Another explanation can be the organization of presented 

scenarios in the designed survey. The hypothetical scenarios are organized with distances of 1 mi, 

5 mil, 10 mil, 20 mi, and 50 mi, which can be not sufficiently accommodating to intervals more in 

favor of micro-mobility. This brings up a caveat to the present study which can be addressed in 

future so as to enrich the travel survey and obtain statistically stronger findings. Another caveat of 

the present study is the small sample size which can be addressed through modification to the 

survey and redistributing it.  

The findings of this study can help in-depth research and/or planning of sustainable 

transportation systems offering bike-sharing and e-bike-sharing services. More studies in similar 
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contexts, i.e. commutes to CBDs, will help enrich the findings and provide a more solid foundation. 

Also, more accurate analyses can be performed with more precise consideration of emission costs 

(e.g. by considering cradle-to-grave emission rather than running emission cost, and electricity 

generation source) and health benefit values (e.g. by incorporating health benefits of walking 

to/from public or shared modes’ stations). Continuation of research in this line can assist in 

promoting and deploying sustainable and active transportation systems with conventional and 

electric bikes, hopefully in more shared mobility contexts with further individual and societal 

benefits. 
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CHAPTER 3. A MULTI-MODAL PUBLIC TRANSPORTATION 

SYSTEM OFFERING SHARED MICRO-MOBILITY 

3.1 Overview 

Bike-sharing has been receiving growing attention and expanded drastically across the globe; in 

the late 1990s there existed only a handful of bike-sharing programs, while there are currently 

beyond 400 functional bike-sharing systems worldwide [37]. This drastic growth owes to the 

underlying factors of raised public and government awareness about the downsides of car use, as 

well as the affordability of the bike-sharing service [38].  

There are numerous studies in the literature on bike-sharing systems, which predominantly 

focus on the existing bike-sharing systems and investigate the spatial-temporal performances or 

mobility patterns of these systems through data mining methods [39]–[42]. However, attention to 

network and facility location design of bike-sharing systems from strategic planning perspectives 

is not as common. Lin and Yang [43] formulated a mathematical model for a bike-sharing system 

design problem. They consider both users’ and investors’ perspectives, respectively by considering 

the level of service, in terms of demand coverage, and system setup costs. There are a number of 

studies focusing on hub location inventory models. However, application of these models to bike-

sharing system has not received enough attention [44]. Another important concern of planners 

when designing bike-sharing systems is the locations of bike stations, as a key determinant of its 

success [45]–[47]. In addition to optimum locations of stations, fleet sizes and distribution of 

supply, considering the relocation of bikes to maximize the served demand, has been an interest to 

researchers [48]–[51]. 
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Despite the conceptual foundations for e-bike-sharing systems and high hopes for their 

promising advantages, few studies have attended to the design of such systems. In a pilot research 

at the campus of University of Tennessee, Knoxville, a small bike-sharing system offering both 

regular and electric bikes was set up. This campus was considered a good candidate for 

implementation of an e-bike-sharing system, due to the hilly terrain and the vast spatial expanse 

of the campus and was shown to have attracted more users to cycling [52].  

Aware of the shortage of studies on the design of e-bike-sharing systems, this study aims 

to bridge this gap by introducing a design framework for a public transportation system which 

offers e-bikes as well as regular bikes and buses. The main contribution of this study is considering 

the tradeoff between user preference, investment cost and social costs/benefits. The multifaceted 

objective is to minimize the investment cost, along with other social costs, such as emission cost; 

while maximizing the revenue and health benefits of the system. Quantification of these costs and 

benefits in an intended mixed fleet bike-sharing system offering both conventional bikes, e-bikes 

of both pedelec and e-scooters, as well as a bus system for a target area, is required. This 

contributory aspect to the present research helps investors and transportation planners to strike a 

trade-off between different facets of their decision on initiating a multi-modal transportation 

system. Moreover, another major contribution of this study is considering user choice through a 

utility function, added as a constraint to the proposed mathematical model.  

3.2 Mathematical Formulation  

This study considers a transportation system, including the shared or public modes (i.e. bikes, 

pedal-assist electric bicycles or pedelecs, e-scooters, and buses), as well as the private modes (i.e. 

cars and motorcycles), available to the users in the target area. Let 𝐼 denote the set of the 
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transportation modes, and │𝐼│ =  𝑁𝐼. Figure 3-1 depicts a schematic sketch of a target area, 

divided into numerous user groups with specific populations, in such a way that each group 

contains users with the same financial power for their daily transportation, and the same distance 

from the destination which is the central business district (CBD). Let 𝐽 denote the set of the user 

groups, with │𝐽│ = 𝑁𝐽. We assume that the transportation modes (𝑖 𝜖 𝐼) are numbered from 1 to 

𝑁𝐼, and the user groups ( 𝑗𝜖 𝐽) are numbered from 1 to 𝑁𝐽. 

 

Figure 3-1 Sketch of the study area; each cell represents a user group (𝐽𝑗), with a specified 

financial power and at a specific commuting distance from CBD 

Each user group is at a certain distance from the destination or CBD, denoted by 𝑑𝑗, with 

a total demand for transportation denoted by Ψ𝑗, and the financial power denoted by 𝐹𝑃𝑗
. 

The characteristics of each mode considered in this study are as follows. The capacity of 

each mode is denoted by Ω𝑖. Each mode i has an average speed represented by 𝑣𝑖. The expense of 

using mode 𝑖 by a member of user group 𝑗 is denoted by  𝐶𝑢𝑖𝑗
 expressed in dollars. The user cost 
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or 𝐶𝑢𝑖𝑗
 would be the fare for public modes denoted by  𝐶𝑟𝑖

, and would be the daily cost of 

ownership (𝐶𝑝𝑖
) and fuel cost for the private modes (𝐶𝑓𝑖𝑗

). The comfortable traveling distance by 

mode 𝑖 is denoted by 𝐷𝑖 in miles. The fuel consumption rate of mode 𝑖 is denoted by 𝐹𝑖 which 

𝐶𝑂2 signifies the amount of fuel that mode consumes to traverse unit of distance (i.e. gallons per 

mile). The purchase and maintenance costs of mode 𝑖, are respectively denoted by 𝐶𝑝𝑖
 and 𝐶𝑚𝑖

.  In 

this study we focus on as the dominant emission; the amount of 𝐶𝑂2that mode 𝑖 emits is denoted 

by 𝐺𝑖 expressed in grams of 𝐶𝑂2produced per unit fuel (i.e. gallon).  The monetary value of the 

health benefit gained from an hour of using mode 𝑖, which is associated with the physical activity 

level of mode 𝑖, is denoted by ℎ𝑖. It is worth noting that only bike and pedelec are considered to 

involve physical activity and thus other transportation modes are assumed to not provide any health 

benefits. The procedure of calculating ℎ𝑖 is provided in Appendix A. 

The fuel price and fuel tax are respectively denoted by 𝐶𝑙 and 𝐶𝑡. Our objective in this 

study is multifaceted. Primarily, we consider both the entire system’s perspective and the users’ 

perspective. From the entire system’s viewpoint, we intend to minimize the system costs, while 

maximizing the system gains. From the users’ standpoint, we develop a utility function that 

considers various aspects of users’ decision-making. The utility function accounts for the mode 

choice behavior of the users in each user group.  

Having introduced the parameters used in this study, we are ready to present our 

mathematical model:  
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    𝑀𝑖𝑛𝑖𝑚𝑖𝑧𝑒 
𝑁𝑖

       𝑍 =  ∑ (𝛾𝑐𝐶𝑠𝑖
+ ∑ ( (𝛾𝑒𝐸𝑖𝑗 − 𝛾ℎ𝐻𝑖𝑗 − 𝛾𝑟𝐶𝑣𝑖𝑗

) Γ𝑖𝑗   𝑗𝑖    

                                                  +𝛾𝑐𝜌𝑖𝑗 (Ψ𝑗𝜋𝑖𝑗 −  (
𝜋𝑖𝑗Ψ𝑗

∑ ( 𝜋𝑖𝑗Ψ𝑗)𝑗∈𝐽
) 𝑁𝑖 Ω𝑖))) 

(2-1) 

such that 

 𝐶𝑠𝑖
= {

0                                                       𝑖𝑓 𝑖 ∈ {car, motorcycle, walking, private bike}

𝑁𝑖𝐶𝑝𝑖
+ 𝑁𝑖𝐶𝑚𝑖

                              𝑖𝑓 𝑖 ∈  {shared bike, pedelec, e − scooter, bus}
  

(2-2) 

𝐸𝑖𝑗 = {

𝑑𝑗 𝐹𝑖 𝐺 𝐶𝑓 

Ω𝑖
                                                                           𝑖𝑓 𝑖 ∈ {car, motorcycle, bus}

0                               𝑖𝑓 𝑖 ∈ {walking, shared/private bike, pedelec, e − scooter}
  

(2-3) 

𝐻𝑖𝑗 = {
0                                                              𝑖𝑓 𝑖 ∈ {e − scooter, car, motorcycle, bus}

ℎ𝑖
𝑑𝑗

𝑣𝑖
                                              𝑖𝑓 𝑖 ∈ {walking, shared/private  bike, pedelec}

  
(2-4) 

𝐶𝑣𝑖𝑗   = {
𝐶𝑡𝑖

𝑑𝑗𝐹𝑖                                                                                   𝑖𝑓 𝑖 ∈ {car, motorcycle}

𝐶𝑟𝑖
                                               𝑖𝑓 𝑖 ∈  {shared bike, pedelec, e − scooter, bus}

 
(2-5) 

Γ𝑖𝑗 =  {

Ψ𝑗 𝜋𝑖𝑗                                                            𝑖𝑓  𝑁𝑖 Ω𝑖 >  ∑ Ψ𝑗 𝜋𝑖𝑗𝑗∈𝐽

(
𝜋𝑖𝑗Ψ𝑗

∑ ( 𝜋𝑖𝑗Ψ𝑗)𝑗∈𝐽
) 𝑁𝑖 Ω𝑖                                       𝑖𝑓 𝑁𝑖 Ω𝑖 ≤  ∑ Ψ𝑗 𝜋𝑖𝑗𝑗∈𝐽

      ∀𝑖 ∈ 𝐼, 𝑗 ∈ 𝐽   

(2-6) 

ρ𝑖𝑗 =  {
0                                                                     𝑖𝑓 𝑁𝑖 Ω𝑖 >  ∑ Ψ𝑗 𝜋𝑖𝑗𝑗

𝐷𝑢𝑖. 𝑑𝑗                                                             𝑖𝑓 𝑁𝑖 Ω𝑖 ≤  ∑ Ψ𝑗 𝜋𝑖𝑗𝑗
          ∀𝑖 ∈ 𝐼, 𝑗 ∈ 𝐽   

(2-7) 

𝐷𝑖 − 𝑑𝑗 ≤ 𝜇𝑖𝑗𝑀                                                                                                           ∀𝑖 ∈ 𝐼, 𝑗 ∈ 𝐽 (2-8) 

𝐷𝑖 − 𝑑𝑗 > (𝜇𝑖𝑗 − 1)𝑀                                                                                                ∀𝑖 ∈ 𝐼, 𝑗 ∈ 𝐽 (2-9) 

𝐶𝑝𝑖
− 𝐹𝑝𝑗

≤ 𝜉𝑖𝑗  𝑀                                                                                                      ∀𝑖 ∈ 𝐼, 𝑗 ∈ 𝐽 (2-10) 

𝐶𝑝𝑖
− 𝐹𝑝𝑗

> (𝜉𝑖𝑗 − 1)𝑀                                                                                             ∀𝑖 ∈ 𝐼, 𝑗 ∈ 𝐽 (2-11) 

𝑈𝑖𝑗 = 𝛽0 + 𝛽1𝑑
𝑗

𝜂1𝑖 + 𝛽2𝑁𝑖Ω𝑖 + 𝛽3𝑇𝜂2𝑖 + 𝛽4
𝑑𝑗

𝑣𝑖
+ 𝛽5𝐶𝑢𝑖𝑗

+ 𝛽6(1 − 𝜇𝑖𝑗) + 𝛽7 (1 − 𝜉𝑖𝑗) +

 𝛽8 𝐸𝑖𝑗 +  𝛽9 𝐻𝑖𝑗                                                                                     ∀𝑖 ∈ 𝐼, 𝑗 ∈ 𝐽 

(2-12) 

𝐶𝑢𝑖𝑗
= {

𝐶𝑝𝑖
+  𝐶𝑓𝑖𝑗 

                                                        𝑖 ∈ {car, motorcycle, private bike}

𝐶𝑟𝑖
                                                      𝑖 ∈ {𝑠ℎ𝑎𝑟𝑒𝑑 bike, pedelec, e − scooter, bus}

 
(2-13) 

𝐶𝑓𝑖𝑗 
=  𝐶𝑙  𝑑𝑗 𝐹𝑖                                                                                                             ∀𝑖 ∈ 𝐼, 𝑗 ∈ 𝐽 (2-14) 

𝜋𝑖𝑗 =
𝑒

𝑈𝑖𝑗

∑ 𝑒
𝑈𝑥𝑗

𝑥

                                                                                                                ∀𝑖 ∈ 𝐼, 𝑗 ∈ 𝐽  
(2-15) 

∑ 𝜋𝑖𝑗 = 1  𝑖∈𝐼                                                                                                                           ∀𝑗 ∈ 𝐽  (2-16) 

∑ 𝐶𝑝𝑖𝑖∈𝐼 𝑁𝑖 ≤ B                                              ∀𝑖 ∈  {𝑠ℎ𝑎𝑟𝑒𝑑 bike, pedelec, e − scooter, bus} (2-17) 
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𝜇𝑖𝑗 ∈ {0,1}                                                                                                                 ∀𝑖 ∈ 𝐼, 𝑗 ∈ 𝐽 (2-18) 

𝜉𝑖𝑗  ∈ {0,1}                                                                                                                 ∀𝑖 ∈ 𝐼, 𝑗 ∈ 𝐽 (2-19) 

𝜋𝑖𝑗  ∈ [0,1]                                                                                                                 ∀𝑖 ∈ 𝐼, 𝑗 ∈ 𝐽 (2-20) 

Ni ≥ {
𝑚𝑏                                                                                                          𝑖 ∈ {𝑠ℎ𝑎𝑟𝑒𝑑 bike}
0                                                                                     𝑖 ∈ { pedelec, e − scooter, bus}

 
(2-21) 

The objective of this study is to minimize the investor’s costs, while maximizing the 

systems revenue, minimizing environmental ( 𝐶𝑂2 emission) concerns, maximizing societal health 

benefits, and minimizing the entire systems unserved demand cost. Accomplishing this objective 

is under consideration of importance/weight factors for each term, i.e. 𝛾𝑐 , 𝛾𝑒 , 𝛾ℎ, 𝑎𝑛𝑑 𝛾𝑟. The 

decision variables in this problem are the numbers of public modes (i. e.  𝑁𝑖 ,∀𝑖 ∈

 {bike, pedelec, e − scooter, bus}).  

𝐶𝑠𝑖
 denotes the investment cost for mode 𝑖, defined by the normalized purchase cost 𝐶𝑝𝑖

, 

plus the maintenance cost 𝐶𝑚𝑖
 of the mode (Constraint 2-2). In fact, the investment cost is incurred 

by the authority implementing the public transportation system.  𝐸𝑖𝑗 is the emission cost function 

for mode 𝑖 adopted by group 𝑗. The emission production cost for each user is a function of the 

group’s distance from destination (𝑑𝑗), the fuel consumption rate of the mode (𝐹𝑖), the 

𝐶𝑂2 production rate of mode 𝑖 (𝐺𝑖), the 𝐶𝑂2 burden cost (𝐶𝑓), divided by the capacity of the 

mode(Ω𝑖) (Constraint 2-3). 𝐻𝑖𝑗 is the health benefit value function of mode i used by group j, 

which is a product of hourly value of adopting a mode (ℎ𝑖) and the time needed to reach the 

destination by that mode (Constraint 2-4). It is noteworthy that health benefit values in this study 

are calculated as inactivity costs forgone as a result of engaging in physical activity. In other words, 

inactivity costs for American adults are considered to be avoided if individuals are active per 

physical activity guideline for Americans [53]. 𝐶𝑣𝑖𝑗 is the revenue function, which is the fare of a 

mode if it is a public mode of transportation, and the fuel tax if the mode is private (Constraint 2-

5). The calculations of the fares are explained in the Appendix C. 
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 Γ𝑖𝑗 (Constraint 2-6) represents the adoption of mode i by user group j. When the demand 

for mode i in group j is less than the availability, the number of users, experiencing the societal 

costs and generating the revenue equals the demand. However, in case the demand exceeds the 

availability, the number of users, experiencing the societal costs and generating the revenue, would 

be restricted to availability and there would be unserved demand. In case there is unserved demand, 

there would be penalty, also known as the inconvenience cost of remaining unserved, which is 

denoted by 𝜌𝑖𝑗 (Constraint 2-7). In this study, it is assumed that the unserved demand for 

shared/public modes would have to rely on Taxi/Uber to make the commute; the average unit cost 

is thus calculated as 𝐷𝑢. The calculation of this cost is explained in the Appendix E. 

Constraints 2-8 through 2-9 stipulate distance feasibility of each mode for each user group. 

If mode 𝑖 is feasible for user group 𝑗, from the distance comfortability perspective, which means 

if the group’s distance to CBD is less than the comfortable distance of the mode, 𝜇𝑖𝑗 would equal 

1; otherwise, 𝜇𝑖𝑗 would be zero. Similarly, Constraints 2-10 and 2-11 investigate financial 

feasibility. 𝑈𝑖𝑗 denotes utility of mode i for group j (Constraint 2-12). The utility of each mode for 

each user group depends on the factors such as distance, mode availability, topography of the area, 

travel time, user expenses, distance and financial feasibilities, emissions costs and health benefits. 

The coefficients of utility function are derived from literature [54], [55].  

User expenses that is denoted by 𝐶𝑢𝑖𝑗
would be the fare if 𝑖 is a public mode. In case  𝑖 is a 

private mode (i.e. private bikhe, motorcycle, car), use expenses would entail normalized daily 

purchase cost of the relevant mode, and if the private mode is motorcycle or car, the fuel cost (𝐶𝑓𝑖𝑗
) 

incurred by user group 𝑗 to make the the commute to the CBD is also included. A private mode’s 

fuel cost denoted by 𝐶𝑓𝑖𝑗
  is product of fuel price, the vehicles consumption rate and the user’s 

distance from destination (CBD) (Constraints 2-13 and 2-14). 𝜋𝑖𝑗 which is the probability of group 
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j using mode i is calculated based upon logit model and the utility function 𝑈𝑖𝑗 (Constraint 2-15). 

Constraint 2-16, ensures that the sum of probabilities across the modes for each group j equals 

unity. Constraint 17, mandates that the cost of purchasing the modes of the shared and public 

system not be greater than the total system implementation budget (B). Constraints 2-18 through 

2-21 are feasibility constraints. It is noteworthy that, in Constraint 21, a minimum number of 

shared bikes are considered in the system which is derived from managerial insights. 

This problem is a formulated as an integer programming. Moreover, the probability 

function used for users’ mode choice modeling, is a nonlinear function of the mode counts. As the 

probability function is a component of the objective function and one of the constraints as well, 

the problem is of non-linear nature. 

3.3 Solution Algorithm 

Due to the nonlinearity of the utility function, the optimization model is computationally 

challenging for the available commercial solvers. Thus, a metaheuristic based upon Simulated 

Annealing (SA) is proposed and modified to fit the proposed model. There are a number of 

transportation-related studies (i.e. facility location models) in the literature which have adopted 

SA-based algorithms to solve flow capturing mixed integer programs (MIPs) [56], [57]. Proven 

efficiency of SA algorithm for these types of problems inspired our proposed solution algorithm. 

SA-based metaheuristic is inspired by annealing in metallurgy. The iterative process resembles the 

heating and controlled cooling of a solid material to increase the size of its crystals and reduce 

their defects. At the cooling stage, an equilibrium state should be achieved at each temperature 

before moving to a lower temperature. The final solution is achieved at the minimum or final 

temperature. 
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An SA-based algorithm typically has two main steps. In the first, it searches over the 

feasible set of the integer solutions, starting from a current feasible solution and then moving to a 

neighbor feasible solution. The second step compares the objective functions of the current and 

the new solutions, and based on the difference, replaces the current solution with the new one with 

a probability. The probability is gradually reduced as the solution process proceeds. SA schemes 

allow larger objective function values (worse solutions) relative to the current solution be accepted, 

which offers a mechanism to avoid getting trapped in local optimum solutions. This feature is very 

useful when the problem is known to have multiple local optima.  

The initial solution used in this study which is derived from a series of sensitivity analyses, 

is set to be one vehicle for each public mode. The pseudo-code of the deployed solution algorithm 

presented as follows. 

1. Input: Maximum number of temperature changes 𝐾0, Maximum number of inner iterations 

at each temperature 𝐾1, different costs, vehicle and user characteristics, utility function 

parameters. 

2. Output: 𝑁𝑖
∗ ∈ Ν 

3. Initialize: 

4. Set the current temperature stage 𝑡 = 0, choose initial temperature 𝑢𝑡 

5. Set a state variable 𝜉 = 1, which indicate that a mode count should be added. 𝜉 = 0 when a 

mode count should be removed. 

6. Initialize 𝑁𝑖
𝑡 ∈ Ν 

7. While 𝑡 <  𝐾0, do 

8.   Set inner iteration index 𝑘 = 0. Set 𝑁𝑖
𝑘 = 𝑁𝑖

𝑡  

9.   While 𝑘 < 𝐾1 do 

10.    Calculate 𝑈𝑖𝑗 

11.    Calculate Γ𝑘 

12.    Set Λ be a weighted matrix of different modes (assumed to have the same values). 

13.    Set a random number 𝛾 = 𝑢[0,1]. 

14.    If Λ >  𝛾 then 

15.     𝜉 = 0  

16.    else 

17.     𝜉 = 1  

18.    end if 

19.     If 𝜉 = 1 then 
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20.                                              𝑁𝑖
𝑘 = 𝑁𝑖

𝑘 + 1 

21.                                             If 𝐵𝑐 ≥ 𝐵 then 

22.                                                  𝑁𝑖
𝑘 = 𝑁𝑖

𝑘 − 2 

23.                             end if 

24.     else  

25.                                             𝑁𝑖
𝑘 = 𝑁𝑖

𝑘 − 1 

26.                                             If 𝑁𝑖
𝑘 = 0 then 

27.                                                𝑁𝑖
𝑘 = 𝑁𝑖

𝑘 + 2 

28.                              end if 

29.     end if 

30.    Set  Γ𝑘 and  Γ𝑘−1 be the objective function values associated with the perturbed  

and current solutions respectively 

31.    Set k=k+1 and the perturbed solution as 𝑁𝑖
𝑘. Draw a random number 𝛾 = 𝑢[0,1]. 

32.    If Γ𝑘 < Γ∗ then 

33.      Γ∗ = Γ𝑘, 𝑁𝑖
∗ = 𝑁𝑖

𝑘  

34.    end if 

35.    If Γ𝑘 > Γ𝑘−1  and exp (
Γ𝑘−1−Γ𝑘

𝑢𝑡
) > 𝛾 then 

36.     Discard the perturbed solution, i.e. set 𝑁𝑖
𝑘 = 𝑁𝑖

𝑘−1. 

37.    end if 

38.   end while 

39.   Set 𝑡 = 𝑡 + 1 and and 𝑢𝑡 = 𝜃𝑢0, where 𝜃 = 0.85. 

40. end while 

41. Γ∗and 𝑁𝑖
∗ 

3.4 Numerical Example 

In this section, a hypothetical numerical example is presented solution assessment. In this respect, 

the metaheuristic solution algorithm is tested, pareto frontier is investigated considering different 

factors for objective function components, and sensitivity analyses are performed on a number of 

parameters or example specifications to explore solutions under varied scenarios.  

3.4.1 Case study 

The proposed model has the ability to capture a variety of modes and user groups. However, a case 

study based on a hypothetical network is fabricated which encompasses walking, biking (private 
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and shared), pedelec, e-scooter, bus, motorcycle and car, to be used by six user groups. The modes’ 

characteristics used for our case study are displayed in Table 3-1, whose values are based on the 

average values in the United States. The detailed calculation values and procedures are presented 

in Appendices A through E. The configuration of the user groups is available in Table 3-2. Among 

the public modes, buses have the highest comfortable travelling distance. Thus, it is decided that 

the farthest user group is at a distance that users can at least use buses to commute to the central 

business district (CBD).  

The health benefit hourly values in this study are calculated following an approach 

proposed by Trubka et al. [58], and based upon the inactivity costs in the United States [59]; in 

this approach it is assumed that the inactivity costs would be avoided if one abides by the physical 

activity guideline for Americans (24). Another noteworthy aspect in the proposed modelling 

framework, is that the utility function determines the desirability of a mode based upon various 

factors including distance from the CBD, mode availability, topography of the area, travel time, 

user expenses, distance and financial feasibilities, emissions costs and health benefits. Among 

these factors, the only varying component is the mode availability which is defined in this study 

as the mode counts multiplied by the capacity of a specific mode. Public mode counts are the 

decision variables and intended to be optimized in the objective function which considers a trade-

off between the implementation cost and unserved demand cost. Considering this trade-off, the 

system chooses to incur unserved demand cost in lieu of providing more of a specific public mode, 

if the cost of provision is greater than the unserved demand cost. Therefore, if any of the modes 

considered in the modeling framework were acceptable to the users and if the investment cost was 

comparable to the inconvenience cost of unserved demand, the users would have been assigned to 

one of the existing modes. However, depending on the various characteristics of each mode 
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(mentioned above), it is not always the optimum decision to serve all the users in the system with 

the public modes discussed in the model. In such instances, a user who is unserved, has to opt out 

for another mode that is not included in the public transit system. Therefore, we assumed this mode 

as taxi/Uber. The unserved demand cost, 𝐷𝑢𝑖
 can be further adjusted for each specific mode 𝑖 for 

improved accuracy. Another insight incorporated in this framework is a minimum number of 

shared bikes in the system based upon managerial insights. For the numerical example purposes, 

average station density (7.3 (𝑠𝑡𝑎𝑡𝑖𝑜𝑛𝑠/𝑠𝑞 𝑚𝑖)) and a minimum number of bikes per station are 

considered [60]. Additionally, the average population density of Ingham and Clinton counties, 

which equals 1,454 (pp/sq mi) [61], is considered for obtaining coverage areas for each population 

sector. 

 

Table 3-1 Characteristics of common modes used for commuting 

Characteristics  walking 

Bike 

(shared/

private) 

Pedelec 
E-

Scooter 
Car Bus Motorcycle 

Comfortable 

travelling distance 

(mi) (𝑫𝒊) 

1[62] 3.8[62] 5.01 6.2 12.1 

[62] 

10.2[62

] 

12.1[62] 

Average speed (mph) 

(𝝂𝒊) 

3.5[62] 10[62] 12 13.4 28.9 

[62] 

11.4[62

] 

29.5[62] 

Average daily cost of 

ownership ($) (𝑪𝒑𝒊
) 

- 0.28 1.6 1.03 5.75 68.5 1.52 

Average daily 

maintenance cost ($) 

(𝑪𝒎𝒊
) 

- 0.34 1.94 1.25 3.85 1.1 2.07 

Health benefit hourly 

value ($/h) 

14.44 15.2 14.06 - - - - 

Trip cost of public 

modes (Fare)  

- 0.22(
$

ℎ𝑟
)  1.4(

$

ℎ𝑟
) 2.58(

$

ℎ𝑟
) - $1.25 

[63] 

- 

Fuel cost ($/gallon) 

(𝑪𝒍) 

- - - - 2.485 

[64] 

2.485 2.485 

Fuel consumption rate 

(gallon/mi) (𝑭𝒊) 

- - - - 0.043 

[65] 

0.307 

[65] 

0.023[65] 
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Table 3-1 Characteristics of common modes used for commuting (cont’d) 

Characteristics 

 
walking 

Bike 

(shared/

private) 

Pedelec 
E-

Scooter 
Car Bus Motorcycle 

Emission production 

rate (grams of 

𝑪𝑶𝟐/gallon) (𝑮) 

- - - - 8,887 

[66] 

8,887 8,887 

Financial burden of 

emission ($/grams of 

𝑪𝑶𝟐) (𝑪𝒇) 

- - - - 0.0002 0.0002 0.0002 

[54] 

Fuel tax (cents /gallon) 

(𝑪𝒕) 

- 
 

- - 26.3 

[67] 

26.3 26.3 

Table 3-2 Hypothetical user class specifications 

User group 1 2 3 4 5 6 

Distance from CBD area (mi) 1 1 5 5 10 10 

Financial power ($/commute) 2.6 12 2.6 12 2.6 12 

Population 1,000 1,000 1,000 1,000 1,000 1,000 

3.4.2 Algorithm Performance 

Considering a budget of $15,000, equal importance/weight factors (𝛾𝑐 = 𝛾𝑒 = 𝛾ℎ =  𝛾𝑟 = 1), 

setting the inner iteration to 150 and the outer iteration to 200, and starting with an initial solution 

of 1 shared bike, 1 pedelec, 1 e-scooter and 1 bus, the algorithm successfully converges for our 

case study after 90 outer iterations. The algorithm performance can be seen in Figure 3-2. The 

optimum mode counts are determined as 156 shared bikes, 1,928 pedelecs, 27 e-scooter and 105 

buses, having consumed almost 69% of the budget, namely $10,348. 
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a) General trend of the objective function b) Objective function trend for different inner and 

main (outer) iterations  

Figure 3-2 SA algorithm performance 

3.4.3 Pareto Front Investigation 

In multi-objective optimization, essentially, different incorporated objectives can have varied 

importance/weight in decision making process. In the framework of this problem, investment and 

unserved demand cost (𝛾𝑐), emission cost ( 𝛾𝑒), health benefit value ( 𝛾ℎ), and system revenue 

(𝛾𝑟) are represented by the associated factors/weights in the objective function. The underlying 

reason is the fact that importance of investment cost and system revenue, emission cost, and health 

benefit, may differ in the eyes of the decision makers. In this numerical example, sensitivity 

analysis is performed on different values of the above-mentioned factors in order to prepare a 

pareto front with a-priori weights.  

 To come up with a basis for factors, relative importance of different terms are considered. 

For this purpose, total public transit investment equaling $24.38 billion [68], [69], vehicle tailpipe 

𝐶𝑂2 emission cost in urban areas equaling $56.99 billion, and the average annual inactivity-related 

health care expenditure equaling $66.14 billion, are considered. Based upon these total costs, and 

setting the importance factor of investment cost to 1, relative importance factors of emission cost 
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and health benefit values would be 2.3 and 2.7, respectively.  Table 3-3 presents pareto front 

sensitivity analysis scenarios and the determined optimal mode counts for each scenario. Note that 

optimal mode counts show the number of each public mode that the system optimally provides, 

and not the demand for each mode. The pareto frontier derived from sensitivity analysis on the 

importance factors can be seen in the Figure 3-3. The axes indicate setup and investment cost, and 

emission cost, and the colors show magnitude of health benefit values in the system corresponding 

to each scenario. 

Table 3-3 Pareto front sensitivity analysis scenarios and associated optimal mode counts 

Scenario Decision Factors 

 [Investment Emission Health] 

Optimal Mode Counts 

'S1' [1.00 1.00 1.00] 

shared Bike: 156, Shared pedelec:1928, shared 

E-scooter:26, Bus:105 

'S2' [1.00 1.00 1.70] 

shared Bike: 156, Shared pedelec:2005, shared 

E-scooter:0, Bus:100 

'S3' [1.00 1.00 2.70] 

shared Bike: 156, Shared pedelec:2000, shared 

E-scooter:0, Bus:100 

'S4' [1.00 1.00 3.50] 

shared Bike: 156, Shared pedelec:2000, shared 

E-scooter:0, Bus:100 

'S5' [1.00 1.00 4.00] 

shared Bike: 156, Shared pedelec:2000, shared 

E-scooter:0, Bus:100 

'S6' [1.00 1.50 1.00] 

shared Bike: 156, Shared pedelec:1935, shared 

E-scooter:26, Bus:105 

'S7' [1.00 1.50 1.70] 

shared Bike: 156, Shared pedelec:2005, shared 

E-scooter:0, Bus:100 

'S8' [1.00 1.50 2.70] 

shared Bike: 156, Shared pedelec:2000, shared 

E-scooter:0, Bus:100 

'S9' [1.00 1.50 3.50] 

Shared Bike: 156, Shared pedelec:2000, shared 

E-scooter:0, Bus:100 

'S10' [1.00 1.50 4.00] 

shared Bike: 156, Shared pedelec:2000, shared 

E-scooter:0, Bus:100 

'S11' [1.00 2.30 1.00] 

shared Bike: 156, Shared pedelec:1944, shared 

E-scooter:26, Bus:105 

'S12' [1.00 2.30 1.70] 

'shared Bike: 156, Shared pedelec:2005, shared 

E-scooter:0, Bus:100' 

'S13' [1.00 2.30 2.70] 

'shared Bike: 156, Shared pedelec:2000, shared 

E-scooter:0, Bus:100' 

'S14' [1.00 2.30 3.50] 

'shared Bike: 156, Shared pedelec:2000, shared 

E-scooter:0, Bus:100' 
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'S15' [1.00 2.30 4.00] 

'shared Bike: 156, Shared pedelec:2000, shared 

E-scooter:0, Bus:100' 

Table 3-4 Pareto front sensitivity analysis scenarios and associated optimal mode counts 

(cont’d) 

Scenario Decision Factors 

 [Investment Emission Health] 

Optimal Mode Counts 

'S16' [1.00 3.00 1.00] 

'shared Bike: 156, Shared pedelec:1952, shared 

E-scooter:27, Bus:104' 

'S17' [1.00 3.00 1.70] 

'shared Bike: 156, Shared pedelec:2005, shared 

E-scooter:0, Bus:100' 

'S18' [1.00 3.00 2.70] 

'shared Bike: 156, Shared pedelec:2000, shared 

E-scooter:0, Bus:100' 

'S19' [1.00 3.00 3.50] 

'shared Bike: 156, Shared pedelec:2000, shared 

E-scooter:0, Bus:100' 

'S20' [1.00 3.00 4.00] 

'shared Bike: 156, Shared pedelec:2000, shared 

E-scooter:0, Bus:100' 

'S21' [1.00 4.00 1.00] 

'shared Bike: 156, Shared pedelec:1961, shared 

E-scooter:27, Bus:104' 

'S22' [1.00 4.00 1.70] 

'shared Bike: 156, Shared pedelec:2005, shared 

E-scooter:0, Bus:100' 

'S23' [1.00 4.00 2.70] 

'shared Bike: 156, Shared pedelec:2000, shared 

E-scooter:0, Bus:100' 

'S24' [1.00 4.00 3.50] 

'shared Bike: 156, Shared pedelec:2000, shared 

E-scooter:0, Bus:100' 

'S25' [1.00 4.00 4.00] 

'shared Bike: 156, Shared pedelec:2000, shared 

E-scooter:0, Bus:100' 

 

 



44 

 

Figure 3-3 Pareto frontier (importance/weight factor sensitivity analysis) 

  According to Figure 3-3, different analyzed importance/weight factors do not result in 

substantial changes in the associated values. Some of the scenarios even share very close 

costs/values such that overlaps are seen in  Figure 3-3; specifically, there are overlaps between 

scenarios 3, 4, 5, 8, 9, 10, 12, 13, 14, 15, 18, 19, 20, 23, 24, and 25, and between scenarios 2, 7, 

17, and 22. However, this trend can be observed in Table 3-3 that, with increase in emission cost 

weight, the system turns away from bus to pedelec. This means that in case of rising emission 

burden cost, pedelec competes with, and manages to replace, bus ridership. On the other hand, 

increase in health importance factor leads to decrease in the adoption of both bus and e-scooter, 

namely the inactive public modes. Overall, pedelec is a desirable mode in the system that sompete 

with e-scooter and bus due to its health benefits and zero running emission.  

3.4.4 Cost Sensitivity Analysis 

This section focuses on investigating the effects of different costs on the users’ mode choice and 

optimum configuration of public modes. Thus, various scenarios are investigated for financial 

burden of emission, health benefit value, trip cost, and fuel cost. It is noteworthy that all 

importance/weight factors are assumed to equal 1 in the following analyses. 

 Financial Burden of Emission 

The sensitivity of the model is tested for four scenarios of financial burden of emission: scenario 

1 with $2× 10−6/grams of 𝐶𝑂2, scenario 2 with $2× 10−4/grams of 𝐶𝑂2 (base case), scenario 3 

with $0.01/grams of 𝐶𝑂2, and scenario 4 with $0.02/grams of 𝐶𝑂2. The optimum mode counts and 
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demand percentages for each mode under each of the four scenarios are shown in Error! 

Reference source not found.-a and Error! Reference source not found.-b, respectively. As the 

financial burden of emission increases, the system would provide fewer buses, to a point that in 

the fourth scenario the system does not provide any buses. In return, more pedelecs are provided. 

Looking into the changes in demands across the scenarios in Error! Reference source not found.-

b, it can be observed that demand for bus declines with the rise of emission burden cost, and the 

users turn to pedelec as a primary choice, followed by walking. The ability of pedelec to cover 

longer trips is the reason users prefer to choose pedelec over walking and biking, when buses are 

not a utilitarian option due to being pollutant. 

 Health Benefit Hourly Values 

Four scenarios were implemented to investigate the model’s sensitivity to the value of health 

benefits. In these four scenarios, the health benefit hourly value for each of the active modes were 

respectively multiplied by factors of 0.1, 1, 2 and 5. The optimum mode counts and demands for 

each modes across the scenarios are shown in Error! Reference source not found.-c and Error! 

Reference source not found.-d, respectively. As expected, with the increase of health benefit 

hourly values (i.e. hospital or other illness treatment costs increases), the demand for bus and e-

scooter which are assumed to have no health benefit value decline. On the other hand, more users 

would choose pedelec and walking due to their increased health benefit values. It is also observed 

that demands for both shared and public bikes decrease as well, even though biking has a higher 

health benefit value than the other active modes, namely pedelec and walking. The reason people 

would prefer walking over biking in particular, is the distance coverage of the two modes and the 

groups’ distance configuration of the first two user groups. These groups would choose to walk 
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more because it is free of charge and would also provide comparable health benefits to biking. On 

the other hand, users at the distance of 5 mi from campus would predominantly choose to ride 

pedelec since pedelec accounts for longer comfortable travelling distance than bike, and is less 

costly than e-scooter. The last two groups would mainly depend on bus as it is feasible for them 

from distance perspective, while also being more affordable than car and motorcycle. Based upon 

the approach in this study for calculating health benefit hourly values, increase in the health benefit 

hourly values of the modes results from increase in the inactivity costs including the doctor and 

hospital fees. As a result of this increase, the public transportation system should provide more 

pedelecs as they enjoy both reasonable comfortable ranges and health benefit values, while 

reducing the numbers of shared bikes, e-scooters and buses. 

 Trip Cost 

To investigate the sensitivity of the user groups to the public modes’ fares, four scenarios are 

arranged such that the trip costs/fares of the base case are multiplied by factors of 0.5, 1, 1.5, and 

2.5. Error! Reference source not found.-f shows that as the trips costs increase, more users would 

choose pedelec and the demands for the other public modes drop. Also, the number of users who 

choose to walk increases. The underlying reason is that users from the first two groups whose 

commuting distances are within the comfortable distance of walking would choose to walk in order 

to avoid costs of increasingly expensive public modes. The third and fourth groups’ users also 

would prefer pedelec more as it is a feasible choice which is less costly than e-scooter and bus. 

Aligned with the demand trends, the optimum count of pedelec increases as trip costs increase, but 

the system reduces the number of buses and shared bikes (Error! Reference source not found.-

e) while still satisfying the demands. Only in the first scenario there is unserved demand for e-
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scooter as the system does not provide e-scooter in the first scenario. The reason here is that the 

system decides to leave the demand for e-scooter unserved in this case, rather than incurring the 

cost of providing the demanded e-scooters, due to the large investment costs. Another important 

finding by trip cost sensitivity analysis was that increasing public modes’ fares by above 150% 

would prevent users from choosing public modes.  

 Fuel Cost 

Four fuel cost scenarios are considered to analyze the sensitivity of the model to fuel cost.  In the 

four scenarios, the current fuel cost is multiplied by 0.1, 1, 2, and 10, respectively. Under these 

changes, the optimum mode counts and demand percentages remain unvarying. This suggests the 

insensitivity of our model to fuel cost. The reason is that due to the limited travel distances of user 

groups the fuel dependent modes are not very popular even in the base case condition of fuel cost. 

In other words, for example, the first two groups would normally prefer walking due to being both 

free of charge and also health beneficial, the third and fourth groups tend to opt for pedelec as it 

would be less costly than other modes while also providing health benefits, and the last two groups 

would be inclined to use bus as the comfortable range of bus accommodates the distances of the 

last two groups from the CBD and is more affordable than the other modes. Under these 

circumstances, further changes in fuel cost only affect a relatively small percentage of system’s 

demand, so the changes are not visible.   
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a) Optimum mode counts (numbers of 

each public mode) for 𝐶𝑂2cost scenarios 

b) Demand percentages for 𝐶𝑂2cost scenarios 

Values of 𝐶𝑂2burden cost are the four scenarios are as follows: scenario 1 with $2× 10−6/grams of 𝐶𝑂2, 

scenario 2 with $2× 10−4/grams of 𝐶𝑂2 (base case), scenario 3 with $0.01/grams of 𝐶𝑂2, and scenario 4 

with $0.02/grams of 𝐶𝑂2. 

 

 

c) Optimum mode counts (numbers of 

each public mode) for health benefit 

hourly value scenarios 

d) Demand percentages for health benefit hourly value 

scenarios 

The four health benefit scenarios, health benefit hourly values of each of the active modes were multiplied 

by factors of 0.1, 1, 2 and 5, respectively. 

Figure 3-4 Cost sensitivity analysis 
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Figure 3-4 Cost sensitivity analysis (cont’d) 

 

 

e) Optimum mode counts (numbers of 

each public mode) for trip cost scenarios 
f) Demand percentages for trip cost scenarios 

In the four trip cost scenarios, trip costs/fares of the base case are multiplied by factors of 0.5, 1, 1.5, and 

2.5, respectively. 

 

 Budget Sensitivity Analysis 

Changes in the budget on hand considerably affects the investment power in public modes. To 

explore the sensitivity of our model to the initial budget, this section considers four scenarios which 

change the initial budget of our numerical experiment, respectively by factors of 0.5, 0.75, 1, and 

1.5. As can be seen in Figure 3-5, the optimum mode counts of scenarios 2-4 are identical as the 

budget constraint is not binding. The percentages of used budget versus the initial budget are 

99.99%, 91.89%, 68.92%, 45.95% for scenarios 1-4, respectively.  It can be observed the best 

investment strategies, irrespective of the available budget, is to circumvent investing in e-scooters, 

unless the cost and characteristics of this mode changes.  
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Figure 3-5 Budget sensitivity analysis 

 Distance Sensitivity Analysis 

To analyze the sensitivity of the model to user groups’ travel distance distribution, three different 

scenarios were tested as shown in  

Table 3-4. 

Table 3-4 Distance Sensitivity Analysis Scenarios 

Scenario1 Scenario 2 Scenario 3 

User 

group 

Distance 

from 

CBD 

Financial 

power 

User 

group 

Distance 

from 

CBD 

Financial 

power 

User 

group 

Distance 

from 

CBD 

Financial 

power 

1 1 2.6 1 1 2.6 1 2 2.6 

2 1 12 2 1 12 2 2 12 

3 5 2.6 3 3 2.6 3 2.5 2.6 

4 5 12 4 3 12 4 2.5 12 

5 10 2.6 5 10 2.6 5 10 2.6 

6 10 12 6 10 12 6 10 12 

 

Optimum mode counts and demand percentages for the three scenarios are presented in 

Figure 3-6. In the first scenario, which is our base case scenario in this study, the most popular 

public modes are bus and pedelec. The reason is that these two modes (bus and pedelec) are less 

expensive and have the ability to traverse longer distances in comparison to similar modes (i.e. e-

scooter/car and bike). The other popular mode in the first scenario is walking for the first two user 
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groups that are located closer to CBD area. In scenario 2, the percentage of the users who choose 

to walk, remains almost invariant as walking remains a feasible mode for the first two user groups. 

Bus would still be the most popular public mode, and shared bike competes to take pedelec’s place. 

The reason is that the users in this scenario are distributed closer to CBD. In particular, distances 

from the CBD of the users in the third and fourth group fall within the comfortable range of bike 

in the second scenario. Therefore, as shared bike is less expensive than pedelec, users reasonably 

switch from pedelec to shared bike. In scenario 3, walking becomes an infeasible mode for all the 

groups, as the distances from CBD has increased. As a result, the demand for shared bike 

significantly increases, as shared bike becomes the feasible and affordable mode for the first four 

groups. The demand for private bike also significantly increases, as private bike is also feasible 

for the first four groups as well as being more affordable than the other modes.  

 

 

a) Optimum mode counts (numbers of 

each public mode) for different distance 

scenarios 

b) Demand percentages for different distance scenarios 

Figure 3-6 Distance sensitivity analysis 

 Demand Sensitivity Analysis 

In this section, four scenarios are arranged to explore the sensitivity of the model to the demand. 

In the base case scenario, each user group has a population of 1000. For the scenarios 1-4 for the 
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demand sensitivity analysis, we consider demand variations by factors of 0.1, 1, 2 and 10. In 

addition, the initial budget is also increased to a high value ($150,000) to ensure that budget 

constraint would not be violated. The optimum mode counts and demand percentages are shown 

in Figure 3-7. As the modal demand distribution is a function of mode characteristics and not the 

total demand, demand percentages/distributions for different modes remain unchanged across the 

scenarios as expected (Figure 3-7-b). According to Figure 3-7-a, the optimum mode counts seem 

to have high correlation with demand except for pedelec in scenario 4. This phenomenon is due to 

the fact that increasing pedelec up to 10 times of the base case optimum value would not justify 

the associated benefits, and thus at this scale, the system decides to have unserved demand for 

pedelec, because the unserved demand cost is less than the cost that would be incurred to satisfy 

the demand. 

 

 

a) Optimum mode counts for demand 

scenarios 

       b) Demand percentages for demand scenarios 

Figure 3-7 Demand sensitivity analysis 
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3.5 Conclusion 

While bike-sharing is an increasingly thriving concept across the globe, there is a shortage in the 

literature on bike-sharing design framework. To address this shortage, a contributory approach is 

taken in this study, to account for users’ perspectives through a utility function and complement it 

by considering investors viewpoint and societal concerns/costs and benefits in the multi-faceted 

objective function. The costs of the system entail implementation and maintenance costs as well 

as emission costs, while the benefits include quantified health benefits and system revenue. The 

problem is formulated as a nonlinear integer programming problem. Due to the non-linearity in 

the mathematical framework, a metaheuristic based on simulated annealing (SA) algorithm is 

proposed to solve the problem. This algorithm showed successful convergence through a 

hypothetical numerical example, which ensures an optimal solution; it must be noted, however, 

that as with any metaheuristic, this optimal solution can be a sub-optimum and not necessarily the 

global optimum. The main findings derived from the hypothetical numerical example are as 

follows: 

▪ Giving more importance/weight to health benefit results in more pedelecs and less bus and 

e-scooter ridership in the system; also, more importance/weight of emission burden cost 

would lead to switching from bus to pedelec; 

▪ As the value of health benefit increases, the system requires more pedelecs, while reducing 

the numbers of shared bikes, e-scooter and buses. 

▪ The most popular public modes are bus and pedelec, because these two modes (bus and 

pedelec) can traverse longer distances in comparison to walking and biking which are free 

of charge and more affordable, respectively. On the other hand, bus and pedelec are less 

expensive than e-scooter, motorcycle and car.  
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▪ Increasing financial burden of emission was found to reduce the demand and the optimum 

mode counts for bus while increasing the demand and optimum mode counts for pedelec. 

▪ For small communities with short travel distances, as users would not choose fuel 

consuming modes, the model is insensitive to fuel cost.    

▪ Similarly, when trip costs/fares of the public modes are raised, demands for bus and e-

scooter would decline in general, and users would choose to walk or ride pedelec instead.  

It is noteworthy that the findings rely on the hypothetical case study and the parameters are 

estimated based on the average values in the United States. In fact, the flexible modeling 

framework and successful solution algorithm suggest that the proposed framework can be 

deployed by related authorities in decision-making organization such as metropolitan planning 

organization (MPO), municipality departments, etc.  

The utility function in this study is premised upon the existing literature and the coefficients 

are estimated. One of the next steps of Chapter 3 would be to incorporate the utility functions from 

Chapter 2 and analyze the results. Eventually, the performance of the proposed metaheuristic 

algorithm can be tested using an analytical solution method or other metaheuristics, such as genetic 

algorithm. In other words, as metaheuristics do not guarantee global optimum solutions, analytical 

methods can be tested to investigate possible improvement of the results by the proposed 

metaheuristic, i.e. SA algorithm, or other metaheuristics can be employed for comparison purposes 

in terms of both computation time and solution quality. 

One of the limitations of this study is disregarding the last mile of travel, which affects the 

health benefits provided by walking to bike-sharing stations or public transit mode. However, it 

has been consistently disregarded for both modes should not affect the main findings of the study. 
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This can simply be addressed, by adjusting the parameter values in accordance with planners’ 

intentions.  

Another extension to this study can be considering the rebalancing of the mixed fleets of 

the proposed bike-sharing system. This process is normally executed using motorized vehicles 

which lead to emission generation and disregarding it could overrate bike-sharing as a clean and 

emission-less transportation mode. Similarly, emissions from electricity production can also be 

considered. Another concern regarding biking and e-bike riding that has not been addressed in this 

study is their safety. In fact, there are safety concerns about using these modes on roadways since 

they are not as protected as motorized transportation modes. However, these modes are known to 

be safer for the other users in the system. In terms of solution algorithm, this study employs a 

metaheuristic algorithm due to non-linearity in the mathematical framework imposed by one of 

the constraints incorporating the probability function. One direction for further analysis is to 

linearly approximate the probability function to relax the non-linearity in the associated constraint, 

and investigate the optimality gap and compare computation complexities with the metaaheuristic 

approach.  
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CHAPTER 4. MICRO-MOBILITY AND ELECTRIFICATION TO 

SUPPORT URBAN FREIGHT DELIVERY 

4.1 Overview 

Freight delivery makes up a large portion of urban daily traffic and is indispensable to economic 

vitality in cities. While intercity freight delivery undergoes longer travel distances, the last miles 

of freight delivery inside urban areas suffer from significant inefficiency [70]. An underlying 

factor in this inefficiency is that urban freight delivery can contribute to congestion and increased 

travel time, such that the cost of delay for commercial vehicles in the United States in 2010 is 

estimated to be $23 billion [71]. Trucks, for example, comprise only 6% of urban traveled distances 

but incur 26% of the gross congestion cost [72]. Another operational problem that motorized 

delivery vehicles encounter is parking and unloading. This process can lead to browsing for a 

parking spot and eventually illegal parking, which results in roadway blockage and congestion, as 

well as exposing delivery companies to major fine costs [16]. Moreover, motorized freight delivery 

can  affect urban life by air and noise pollution, as well as posing safety concerns [73]. In fact, the 

large delivery vehicles particularly on narrow urban streets can lead to the perception of unsafe 

roadways. 

In order to address the side effects of motorized urban freight delivery, cargo cycles are 

currently gaining recognition. Cargo cycles are commonly known as freight bikes, but can also 

refer to three-wheeled vehicles for carrying people or goods [70]. Cargo cycles have been around 

since the nineteenth century and were initially used by tradesmen, grocers, milkmen, and 

messenger boys [74]. However, they have only recently been recognized as a means for urban 
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freight delivery. One of the contexts in which cargo cycles have proven to be successful are urban 

areas with high congestion levels and limited on-street parking [75]. In a before-and-after study 

on a trial in London, an office supplies company replaced its delivery diesel vans with electric 

tricycles in addition to electric vans (e-van) [76]. This shift led to per package total distance 

reduction by 14% while decreasing CO2 emission reduction by 55%. In a study in Manhattan, New 

York, the feasibility of cargo cycles for delivery in urban areas was investigated [77]. It was 

suggested that micro-consolidation centers in urban areas makes cargo cycles an appropriate 

alternative to urban freight trucks. In another study, small businesses that are not willing to expand 

their practices are identified as barriers to further growth of cargo logistics. The geographical 

context is another important factor influencing the uptake of cargo cycles, in the sense that high 

density urban contexts and the presence of narrow streets make cargo cycles more appealing. It is 

suggested in this research that several measures can be taken to facilitate adoption of cargo cycles; 

the recommended measures encompass: improved infrastructure for cycles, incentives/subsidies 

to spur companies to deploy cargo cycles in their supply chain, deregulation of electrically assisted 

cycles, and policies such as zero emission zones or drive-through traffic reduction [78]. In a set of 

pilot projects in Italy from April 2013 to March 2016, electric bikes and electric scooters were 

found to result in CO2 reduction and energy savings [79]. Cargo cycles are legally allowed to use 

bicycle lanes in many urban areas and can thus avoid mixing with roadway traffic and circumvent 

congestions [80]. Moreover, they can park both on- and off-street which is another superiority over 

motorized urban freight delivery vehicles (particularly trucks). Another asset to cargo cycles is 

that they do not yield local air and noise emissions [81]. This is a major benefit with the increasing 

awareness of environmentally friendly transportation. In this line, subsidization of cargo cycles 

and electric vans is suggested as a policy solution to significantly reduce last-mile freight delivery 
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emissions [82]. Influences of other policies such as pollution charges/taxes remain to be explored 

to further complement the literature.  

There are studies in the literature that formulate single depot problems where distance and 

temporal duration constraints are based on approximations of vehicle routing problem [83], [84]. 

Classic vehicle routing problem (VRP) algorithms try to optimize the cost of distributing goods 

from a storehouse to a set of customers by several vehicles, each allowed to serve only one route. 

The problem was firstly presented by modeling the fleet of homogenous trucks seeking to 

minimize their travel distance from a center to several gas stations [85]. Then, the problem was 

extended to incorporate more than one vehicle with varying capacities in the formulation [86]. In 

the more recent studies of VRP, each of the variants strive to include more real-world aspects of 

logistics. Among these, periodic VRPs [87], dynamic VRPs [88], VRP with Time Windows 

(VRPTW) [89], [90], VRP with Pickup and Delivery (VRPPD) [91], and vehicle routing with split 

deliveries [92] can be mentioned. Use of heterogeneous fleet of vehicles is another variant of the 

classical VRP.  In other words, the classical VRP utilizes identical vehicles, and this limitation is 

relaxed in studies on the heterogeneous fleet VRP (HFVRP) [93]–[97]. Another relatively recent 

and increasingly evolving variant of VRP is knows as Green vehicle routing problem (G-VRP), 

which revolves around environmental aspects. Based upon literature, G-VRP chiefly branches into 

either fuel consumption reduction, or refueling/recharging of alternative fuel vehicles [98]. In 

order to address environmental issues associated with vehicle routing problems, the most 

straightforward action is to reduce fuel consumption, which results in emission reduction and 

environmental benefits [99]–[101] . The other major approach to G-VRP is to target driving range 

and refueling infrastructure scarcity [102]–[104].  
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In an effort to bridge the literature gap as to influential policies and urban settings in cargo 

cycles adoption for freight delivery, we propose a heterogeneous fleet G-VRP (HF G-VRP) in this 

study. In our HF G-VRP, we aim to illuminate influences of pollution taxes and realistic urban 

routing on selection of alternative delivery fleets, particularly cargo cycles. To this end, the 

proposed HF G-VRP aims to minimize delivery costs including enforced pollution taxes. In order 

to explore impacts of pollution taxes on optimal delivery fleet composition, the HF G-VRP needs 

to be solved for various scenarios. Since HF G-VRP is a variant of the classic VRP, it is an NP-

hard problem, and the exact solution to this problem, or the global optimum, becomes 

exponentially intractable with problem size increase. In practice, numerical experiments 

demonstrate that, not only commercial solvers encounter difficulty in finding the solution to even 

small instances of the proposed HF G-VRP problem, but even a recently developed metaheuristic 

approach in the literature, known as variable neighborhood search (VNS) cannot provide the 

optimal solution within reasonable computation time. Therefore, a new metaheuristic algorithm is 

also developed in this study to address computational difficulties. Also, rigorous and realistic 

parameter estimations for various specifications of vehicle types are conducted in this study; a 

thorough literature review in addition to logical assumptions provide all of these specifications in 

one table. Finally, the numerical experiments are provided for a large-scale realistic case study of 

downtown Chicago.  

This chapter is structured as follows. The next section provides problem statement and model 

formulation including objective function, decision and state variables, parameters, and constraints. 

This section is followed by proposing solution algorithms to solve the problem of interest in this 

study. The next section provides the numerical experiments including case study definition, 
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parameters estimation, and numerical results for comparing the solution methods and sensitivity 

analyses. The last section provides the concluding remarks of this study. 

4.2 Mathematical Formulation 

In this study, a heterogeneous fleet of delivery vehicles including diesel and electric vans, as well 

as electric pedal-assist bikes and trikes, and moped-style bikes and trikes are considered, which 

total to ℎ𝑀 =6 types, i.e. ℎ ∈ 𝐻 = (1, … , ℎ𝑀). 𝑉 = (1, … , 𝑧𝑀) in this problem represents the set 

of the network vertices/nodes, and 𝐴 = (1, … , 𝑒𝑀) indicates the network links. Note that in 𝑉, 𝑧 =

1 denotes the depot, and (2, … , 𝑧𝑀) indicate customers. 𝑙 represents the vector of link lengths, such 

that the length of link 𝑒 would be specified by 𝑙𝑒 . The matrix 𝑡 indicates vehicle travel time for 

each link in the network, i.e.  𝑡𝑒ℎ denotes the travel time of vehicle type ℎ on link 𝑒. The volume 

capacity and mass capacity of each vehicle type are denoted in vectors Q and 𝑃𝐿, respectively. In 

these vectors, 𝑄ℎ indicates the volume capacity and 𝑃𝐿ℎ denotes the mass capacity of vehicle type 

ℎ. Another considered vehicle property, namely range, is represented by the vector 𝑅, wherein 𝑅ℎ 

denotes the range of vehicle type ℎ on full tank in miles (diesel or electricity). The purchase price 

(expressed in $ per day over the average life of the vehicle) and maintenance cost (expressed in $ 

per mile) of vehicles are shown by vectors 𝐶𝑝 and 𝐶𝑚, such that 𝐶𝑝ℎ is the normalized daily 

purchase price and  𝐶𝑚ℎ is the maintenance cost of vehicle type ℎ. Fuel consumption rates 

(expressed in $ per miles) are denoted by vector 𝐶𝐹; 𝐶𝐹ℎ is the fuel consumption rate of vehicles 

of type ℎ. The inversed average density of the transported cargo is denoted by 𝐶𝐷 (expressed in 

𝑓𝑡3/𝑡𝑜𝑛). The driver’s labor cost is represented by 𝐶𝐿, i.e. 𝐶𝐿 ℎ denotes the labor cost of driving 

vehicle type ℎ (expressed in $ per hour). The societal costs of CO2 emission and noise (in $ per 
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miles) are denoted by 𝐶𝑐𝑜𝑠𝑡 and 𝑁𝑐𝑜𝑠𝑡, respectively;  𝐶𝑐𝑜𝑠𝑡ℎ and 𝑁𝑐𝑜𝑠𝑡ℎ indicate the societal 

CO2 emission cost and noise cost of vehicle type ℎ, respectively. 

The time window within which all deliveries must be made is denoted by 𝑇. The required time 

to unload delivery demand at each customer’s location, i.e. the service time, is denoted by 𝑆𝑇𝑧, 

wherein z is a customer, i.e. z ∈ (2, … , 𝑧𝑀). Matrix 𝐸 indicates the entering links to each vertex 

 𝑧 ∈ (1, … , 𝑧𝑀) as a binary variable, such that  𝐸𝑧
𝑒 takes the value of 1 if node 𝑧 is the downstream 

node of link 𝑒, and zero otherwise. Similarly, matrix 𝑂 depicts the outgoing links from network 

nodes, where 𝑂𝑧
𝑒 equals 1 if node 𝑧 is the upstream node of the link 𝑒 and zero otherwise. 

In this HF G-VRP, we introduce taxes for CO2 emission and noise pollution into the objective. 

For each vehicle type, i.e. ∀ℎ ∈ 𝐻, 𝐶𝑇𝑎𝑥ℎ and 𝑁𝑇𝑎𝑥 ℎ denote tax on CO2 emission and noise, 

respectively, both of which are expressed in $ per miles. Thus, the delivery company would adjust 

its fleet choice and routing in response to taxes, as a result of which the generated CO2 emission 

and noise pollution imposed on the society are affected.  

The decision variable in our problem is the binary variable 𝑥 that allocates each customer 

(downstream node of each link) to a certain vehicle type to be served by, i.e. 𝑥𝑒ℎ equates to 1 when 

a vehicle type ℎ traverses link 𝑒 and serves the customer located at the downstream of link 𝑒. 

Variable 𝑦 is a state variable, where 𝑦ℎ expresses the number of deployed vehicles of type ℎ to 

serve the delivery demand. 𝐿 is another state variable introduced to track vehicle loads; 𝐿𝑒ℎ denotes 

the remaining volume in vehicle type h, traversing link 𝑒. In order to track traveled distance of 

deployed vehicles up to and after a link, state variables 𝑅𝑢 and 𝑅𝑑 are defined, respectively. This 

variables ensure feasibility of an assigned tour to a vehicle type in terms of the vehicle range. 

𝑅𝑢
𝑒ℎ  and 𝑅𝑑

𝑒ℎ  are thus continuous state variables respectively indicating the distances a vehicle 

type ℎ has traversed up to the upstream and downstream nodes of link 𝑒. Similarly, to track the 
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travel times of deployed vehicles up to and after a link, state variables 𝑇𝑢 and 𝑇𝑑 are introduced, 

respectively. Accordingly, 𝑇𝑢
𝑒ℎ  and 𝑇𝑑

𝑒ℎ  show the elapsed travel times of a vehicle type ℎ up to 

upstream and downstream of link 𝑒, respectively in a tour that is traversed by vehicle type ℎ. The 

total cost of the delivery company is represented by variable F and the company margin of benefit 

is depicted as α. Table 4-1 recapitulates the notations and definitions of the model parameters and 

variables. 

Table 4-1 Notations and definitions of model parameters/ variables 

Parameter/ 

variable 

Definitions 

𝑉 Set of network vertices 

𝐴  Set of network links 

𝐻 Set of vehicle types 

𝑙𝑒  The length of link 𝑒 

𝑡𝑒ℎ The travel time of vehicle type ℎ on link 𝑒 

𝑄ℎ The volume capacity of vehicle type ℎ 

𝑃𝐿ℎ The mass capacity of vehicle type ℎ 

𝑅ℎ The range of vehicle type ℎ on full tank in miles (diesel or electricity) 

𝐶𝑝ℎ The normalized daily purchase price of vehicle type ℎ 

𝐶𝑚ℎ The maintenance cost of vehicle type ℎ 

𝐶𝐹ℎ The fuel consumption rate of vehicles type ℎ 

𝐶𝐿 ℎ  

𝐶𝐷 Inversed average density of the transported cargo (expressed in 𝑓𝑡3/𝑡𝑜𝑛). 

𝐶𝑐𝑜𝑠𝑡ℎ  The societal CO2 emission cost of vehicle type ℎ 

𝑁𝑐𝑜𝑠𝑡ℎ The societal noise cost of vehicle type ℎ 

𝑇 The time window within which all deliveries must be made 

𝑆𝑇𝑧 The required time to unload delivery demand at customer 𝑧’s location, i.e. The service 

time at customer 𝑧 

𝐸𝑧
𝑒 A binary variable: 1 if node 𝑧 is the downstream node of link 𝑒 and zero otherwise 

𝑂𝑧
𝑒 A binary variable: 1 if node 𝑧 is the upstream node of the link 𝑒 and zero otherwise 

 CTaxℎ Tax on CO2 emission 

NTax ℎ Denote tax on noise emission 

𝑇𝐷𝑡𝑜𝑡𝑎𝑙ℎ
 The total distance traveled by vehicle type ℎ 

𝑥𝑒ℎ  A binary decision variable equating to 1 when a vehicle type ℎ traverses link 𝑒 and serves 

the customer located at the downstream of link 𝑒 

𝐿𝑒ℎ The remaining volume in vehicle type h, traversing link 𝑒 

𝑅𝑢
𝑒ℎ   A continuous state variable indicating the distances a vehicle type ℎ has traversed up to 

the upstream node of link 𝑒 

𝑅𝑑
𝑒ℎ   A continuous state variable indicating the distance a vehicle type ℎ has traversed up to 

the downstream node of link 𝑒 

𝑇𝑢
𝑒ℎ    The elapsed travel time of a vehicle type ℎ up to upstream of link 𝑒 by vehicle type ℎ 
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Table 4-1 Notations and definitions of model parameters/ variables (cont’d) 

Parameter/ 

variable 

Definitions 

𝑇𝑑
𝑒ℎ   The elapsed travel time of a vehicle type ℎ up to downstream of link 𝑒 by vehicle type ℎ 

 

Equations (1-27) display the objective function and constraints of our model, which would be 

explained subsequently. 

  
   𝑀𝑖𝑛𝑖𝑚𝑖𝑧𝑒 

𝑥, 𝑦, 𝐿, 𝑅𝑢, 𝑅𝑑, 𝑇𝑢, 𝑇𝑑   𝐹 

    = ∑ 𝑦ℎ

ℎ𝑀

ℎ=1
𝐶𝑝ℎ

+ ∑ ∑ ( 𝑙𝑒𝑥𝑒ℎ (𝐶𝑚ℎ
+ 𝐶𝐹ℎ + 𝐶𝑇𝑎𝑥ℎ

𝑒𝑀

𝑒=1

ℎ𝑀

ℎ=1

+  𝑁𝑇𝑎𝑥 ℎ) + 𝐶𝐿 ℎ𝑡𝑒ℎ𝑥𝑒ℎ) 

(1) 

 

such that 

 

 

∑ ∑  𝐸𝑧
𝑒𝑥𝑒ℎ = 1

𝑒𝑀
𝑒=1

ℎ𝑀
ℎ=1                 ,         ∀ 𝑧 ∈ {2, … , 𝑧𝑀}  (2) 

∑ ∑  𝑂𝑧
𝑒𝑥𝑒ℎ = 1

𝑒𝑀
𝑒=1

ℎ𝑀
ℎ=1                 ,         ∀ 𝑧 ∈ {2, … , 𝑧𝑀}  (3) 

            ∑ 𝐸𝑧
𝑒𝑥𝑒ℎ

𝑒𝑀
𝑒=1 = ∑ 𝑂𝑧

𝑒𝑥𝑒ℎ 
𝑒𝑀
𝑒=1           ,         ∀ 𝑧 ∈ {1, … , 𝑧𝑀}, ∀ℎ ∈ {1, … , ℎ𝑀} (4) 

              ∑  𝑂1
𝑒𝑥𝑒ℎ = 𝑦ℎ 

𝑒𝑀
𝑒=1                      ,           ∀ℎ ∈ {1, … , ℎ𝑀}            (5) 

             ∑  𝑂1
𝑒𝐿𝑒ℎ = ∑ ∑ 𝐸𝑧

𝑒𝑥𝑒ℎ
𝑒𝑀
𝑒=1

𝑧𝑀
𝑧=2 𝑞𝑧  

𝑒𝑀
𝑒=1 ,  ∀ℎ ∈ {1, … , ℎ𝑀} (6) 

            ∑ ∑ 𝐸𝑧
𝑒𝐿𝑒ℎ 

𝑒𝑀
𝑒=1

ℎ𝑀
ℎ=1 −  ∑ ∑ 𝑂𝑧

𝑒𝐿𝑒ℎ 
𝑒𝑀
𝑒=1

ℎ𝑀
ℎ=1 =  𝑞𝑍,                    ∀ 𝑧 ∈ {2, … , 𝑧𝑀} (7) 

𝐿𝑒ℎ ≤  𝑥𝑒ℎ min {𝑄ℎ, 𝑃𝐿ℎ 𝐶𝐷}     ,           ∀𝑒 ∈ {1, … , 𝑒𝑀},      ∀ℎ ∈ {1, … , ℎ𝑀} (8) 

∑ 𝐸1
𝑒𝐿𝑒ℎ = 0 

𝑒𝑀
𝑒=1                          ,          ∀ℎ ∈ {1, … , ℎ𝑀} (9) 

∑ 𝑂1
𝑒 𝑅𝑢

𝑒ℎ 

𝑒𝑀
𝑒=1 =0                         ,         ∀ℎ ∈ {1, … , ℎ𝑀} (10) 

∑ 𝐸𝑧
𝑒𝑅𝑑

𝑒ℎ 
 𝑒𝑀
𝑒=1 =  ∑ 𝑂𝑧

𝑒𝑅𝑢
𝑒ℎ  

 𝑒𝑀
𝑒=1  ,          ∀ℎ ∈ {1, … , ℎ𝑀},   ∀ 𝑧 ∈ {2, … , 𝑧𝑀}    (11) 

𝑅𝑢
𝑒ℎ + 𝑙𝑒𝑥𝑒ℎ = 𝑅𝑑

𝑒ℎ                 ,           ∀ 𝑒 ∈ {1, … , 𝑒𝑀}, ∀ℎ ∈ {1, … , ℎ𝑀} (12) 

𝑅𝑢
𝑒ℎ ≤  𝑥𝑒ℎ𝑅ℎ                           ,          ∀ 𝑒 ∈ {1, … , 𝑒𝑀}, ∀ℎ ∈ {1, … , ℎ𝑀} (13) 

𝑅𝑑
𝑒ℎ ≤  𝑥𝑒ℎ𝑅ℎ                           ,           ∀ 𝑒 ∈ {1, … , 𝑒𝑀}, ∀ℎ ∈ {1, … , ℎ𝑀} (14) 

∑ 𝑂1
𝑒 𝑇𝑢

𝑒ℎ 

𝑒𝑀
𝑒=1 =0                         ,          ∀ 𝑒 ∈ {1, … , 𝑒𝑀}, ∀ℎ ∈ {1, … , ℎ𝑀} (15) 
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In this mathematical formulation, the objective, formulated in Equation (1), is to minimize 

the freight delivery company’s costs, inclusive of fleet purchase and maintenance expenses, fuel 

costs (electricity and gas), CO2 and noise emission taxes, and labor costs associated with the fleet 

drivers. Constraints (2) and (3) ensure that each customer is served exactly once (using one 

incoming link and one outgoing link). Constraint (4) ascertains the conservation flow to make sure 

each vehicle that serves a customer location would subsequently exit to serve another customer or 

go back to depot, while both sides of the constraint are equal to one. For vehicle types that do not 

serve the customers both sides of the constraint are equal to zero. Constraint (5) determines the 

number of deployed vehicles of each type. Constraints (6-9) track the load of selected vehicle to 

serve the customers in the delivery network and make sure that no vehicle exceeds its capacity. 

Constraint (6) mandates that vehicles of each type depart the depot with a total volume (summed 

over all the vehicles of that type) of the customers’ demands that are served by that particular 

∑ 𝐸𝑧
𝑒𝑇𝑑

𝑒ℎ 
 𝑒𝑀
𝑒=1 + 𝑆𝑇𝑧 =  ∑ 𝑂𝑧

𝑒𝑇𝑢
𝑒ℎ,

 𝑒𝑀
𝑒=1   ∀ℎ ∈ {1, … , ℎ𝑀},   ∀ 𝑧 ∈ {2, … , 𝑧𝑀}    (16) 

𝑇𝑢
𝑒ℎ + 𝑡𝑒ℎ𝑥𝑒ℎ = 𝑇𝑑

𝑒ℎ               ,          ∀ 𝑒 ∈ {1, … , 𝑒𝑀}, ∀ℎ ∈ {1, … , ℎ𝑀} (17) 

𝑇𝑢
𝑒ℎ ≤ 𝑥𝑒ℎ 𝑇                             ,           ∀ 𝑒 ∈ {1, … , 𝑒𝑀}, ∀ℎ ∈ {1, … , ℎ𝑀} (18) 

𝑇𝑑
𝑒ℎ ≤ 𝑥𝑒ℎ 𝑇                             ,            ∀ 𝑒 ∈ {1, … , 𝑒𝑀}, ∀ℎ ∈ {1, … , ℎ𝑀} (19) 

𝑥𝑒ℎ  ∈ {0,1}                                 ,           ∀ 𝑒 ∈ {1, … , 𝑒𝑀}, ∀ℎ ∈ {1, … , ℎ𝑀} (20) 

𝐿𝑒ℎ  ≥ 0                                      ,           ∀ 𝑒 ∈ {1, … , 𝑒𝑀}, ∀ℎ ∈ {1, … , ℎ𝑀} (21) 

𝑅𝑢
𝑒ℎ  ≥ 0                                   ,            ∀ 𝑒 ∈ {1, … , 𝑒𝑀}, ∀ℎ ∈ {1, … , ℎ𝑀} (22) 

𝑅𝑑
𝑒ℎ  ≥ 0                                   ,            ∀ 𝑒 ∈ {1, … , 𝑒𝑀}, ∀ℎ ∈ {1, … , ℎ𝑀} (23) 

𝑇𝑢
𝑒ℎ  ≥ 0                                   ,            ∀ 𝑒 ∈ {1, … , 𝑒𝑀}, ∀ℎ ∈ {1, … , ℎ𝑀} (24) 

𝑇𝑑
𝑒ℎ  ≥ 0                                   ,            ∀ 𝑒 ∈ {1, … , 𝑒𝑀}, ∀ℎ ∈ {1, … , ℎ𝑀} (25) 

           𝑆𝐶 =  ∑ ∑ 𝑙𝑒𝑥𝑒ℎ

𝑒𝑀

𝑒=1
(

ℎ𝑀

ℎ=1
𝐶𝑐𝑜𝑠𝑡ℎ + 𝑁𝑐𝑜𝑠𝑡ℎ) (26) 

           𝑆𝑅 =  ∑ ∑ 𝑙𝑒𝑥𝑒ℎ

𝑒𝑀

𝑒=1
(

ℎ𝑀

ℎ=1
 𝐶𝑇𝑎𝑥ℎ +  𝑁𝑇𝑎𝑥 ℎ) (27) 
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vehicle type. This constraint loads the total required delivery demand for each vehicle type, which 

needs to be distributed between selected tours for that vehicle type. Constraint (7) reduces the load 

tracking state variable by amount of customer demand for selected vehicle type and tour to serve 

those customers. Constraint (8) makes sure that the load on any selected vehicle to serve customers 

is not exceeding its capacity. Note that if customers at upstream and downstream nodes of a link 

are not served by a certain vehicle type, then the load tracking state variable would be set to zero. 

Constraint (9) stipulates that all selected vehicles of different types return to the depot empty. 

Constraints (10-14) track the traveled distance by each selected vehicle and make sure it does not 

exceed its maximum range. Constraint (10) initializes the traveled distance to zero for all selected 

vehicles while departing the depot. Constraint (11) indicates that the traveled distance by any 

selected vehicle to serve a customer is the same right before and after serving the customer. 

Constraint (12) states that the traveled distance for a selected vehicle downstream of a link equals 

to its traveled distance up to the upstream node of the link plus the link length. Note that if the 

customers downstream and upstream of a link are not served with a certain vehicle type, then the 

traveled distance would not change. Constraints (13) and (14) ensure that traveled distances of 

selected vehicles do not exceed their associated range. Constraints (15-19) ensure that all 

customers are served during a given time window. Constraint (15) sets the travel time of all 

selected vehicles for delivery to zero while departing the depot. Constraint (16) states that travel 

time of each vehicle right after serving a customer is equal to travel time right before serving the 

customer plus the required time to drop off the delivery demand. Constraint (17) indicates that 

travel time of each selected vehicle downstream of a link in its tour equals to the travel time of that 

vehicle upstream of the link plus the time it takes for the vehicle to traverse that particular link. 

Constraint (18) and (19) ascertain that travel times of each selected vehicle along its tour is limited 
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to the delivery time window at all times. It also sets the travel time to zero for non-selected vehicle 

types to serve customers of each link (upstream and downstream customers). Constraint (20) states 

that the decision variable x is binary. Constraints (21-25) state that the state variables associated 

with the load, traveled distance, and travel time are non-negative continuous values. Equation (26) 

determines the cost-benefits to the society due to the company’s delivery activity, and thus entails 

both the societal costs of emission, and the pollution tax revenues. 

4.3 Solution Algorithm 

The proposed problem is solved with three approaches; a commercial solver, an existing 

metaheuristic approach in the literature, and a modified metaheuristic approach incorporating 

Simulated Annealing (SA) concept. The first approach, i.e. the commercial solver, is not able to 

address large scale applications due to computational complexities. The second approach, 

developed in the literature, can be applied to large scale applications, but it fails to find the optimal 

solutions in a reasonable time. Therefore, the third approach, a modified version of the second 

approach, is proposed in this study to address the computational efficiency challenge and provide 

a better solution to the problem of interest.  

4.3.1 Commercial Solver  

In the first approach, a commercial optimization software (CPLEX® solver using AMPL®) is 

applied to solve the problem of interest in this study. Commercial solvers such as CPLEX® are 

used widely to find the exact solution of problems. However, once a problem is NP-hard, the 

problem size grows exponentially with increase in the number of customers, and commercial 

solvers are either unable to find the exact solution, or fail to do so within a computationally 
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reasonable time. Vehicle Routing Problem (VRP) and its variants, which can be reduced to a 

classical VRP, are known to be NP-hard [105]. Therefore, our proposed problem formulation, 

which is a Heterogeneous Fleet Vehicle Routing Problem (HFVRP), cannot be solved using 

commercial solvers for case studies with large number of customers, as it is shown in the numerical 

results section. However, smaller size problems are solved using the commercial software to 

provide benchmarks to assess the performance of the metaheuristic algorithms that are used in this 

study.  

4.3.2 Variable Neighborhood Search (VNS-Based) Metaheuristic 

To overcome the computational efficiency challenge for large scale applications, we opted for a 

metaheuristic approach based on variable neighborhood search (VNS) algorithm proposed by Salhi 

et al. [105] with certain minor modifications to adapt it for the problem of interest in this study. 

The VNS-based metaheuristic algorithm is proposed for combinatorial optimization problems, 

which has evinced successful performances [106], [107]. This metaheuristic algorithm is portrayed 

in Figure 4-1.  

As can be seen in Figure 4-1, an initial solution is built up through the sweep algorithm 

[108] and is improved by the 2-opt procedure [109]. Next, following Salhi et al. [105], a cost 

network is constructed for the built tours by 2-opt algorithm, to which the Dijkstra algorithm is 

applied. The selected shortest path in the proposed cost network provides final tours and vehicle 

type allocation to each tour resulting from the initial solution. In this study, the cost network 

construction proposed by Salhi et al. [105] is adjusted in accordance with the proposed problem 

formulation. In this regard, for any given solution (tours), all tours are combined into one route to 

form a giant tour, which begins from the depot and covers all k customers with a known order in 
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the given giant tour. Then, a cost network is built for this giant tour, in which every link 𝑖𝑗 would 

have a cost 𝐶𝑖𝑗 (minimum sum of the operating cost to serve costumers i to j by one tour over 

different available vehicle types) calculated as shown in Equation (4-27): 

𝐶𝑖𝑗 = min
ℎ

𝐶𝑝ℎ
+  (𝐶𝑚ℎ

+ 𝐶𝐹ℎ + CTaxh +  NTax ℎ)(𝐷𝑑,𝑖 + ∑ 𝐷𝑘,𝑘+1
𝑗−1
𝑘=𝑖 + 𝐷𝑗,𝑑) +

𝐶𝐿ℎ (𝑡(𝑑,𝑖)ℎ +  ∑ 𝑡(𝑘,𝑘+1)ℎ
𝑗−1
𝑘=𝑖  + 𝑡(𝑗,𝑑)ℎ)   

(4-27) 

In Equation 4-27, ℎ represents feasible vehicle types that can serve customers on the link 

𝑖𝑗 (ij tour) of the cost network. 𝐷𝑚,𝑛 is the distance from node m to node n, and 𝑡(𝑚,𝑛)ℎ is the travel 

time from node m to n using vehicle h. Each node represents a customer or the depot. Unlike the 

proposed approach by Salhi et al. [105], which starts from the smallest capacity vehicle 

considering only purchase and maintenance costs to serve the customers in each hypothetical link 

of the cost network, the present study takes advantage of all components of the multi-faceted 

objective function to find a vehicle resulting in the least objective function value. Once the cost 

network is built, the Dijkstra shortest path algorithm is used to determine the tours and their 

assigned vehicle types resulting in the least objective function value.  
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a) VNS-based metaheuristic 

 
b) VNS module 

Figure 4-1 Visualized VNS based metaheuristic 

Subsequently, the VNS module is applied following Salhi et al. [105] proposition (shown 

in Figure 4-1-b) to further enhance the initial solution. In each iteration of the VNS module, the 

so-called shaking steps are taken based upon insertions and exchanges, known as neighborhood 

structure (NS) operators, in order to reach a feasible neighbor solution. An insertion consists of 
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taking out a random customer node from a randomly selected tour and inserting it into another 

randomly chosen tour. On the other hand, an exchange includes selecting a random set of nodes 

from a random tour, and trading it with another random set from another random tour. After 

shaking a route to a feasible neighbor solution, local search (LS) operators are performed to find 

an improved solution. Iterative applications of these neighborhood structures and performing 

various local searches on each neighbor solution converges to a good solution for the problem of 

interest, without ensuring optimality. Note that in each neighborhood structure a random solution 

is found, while in the local search all possible options are searched and the best option is selected. 

Note that the order of the neighborhood structure or local search operators matters. At any instant 

that the current solution is improved in one of the neighborhood structure or local search steps, the 

current solution would be updated and the neighborhood structure or local search step would be 

reinitiated to the first step. This means at each iteration all steps are repeated until no improvement 

is observed in the current solution incorporating all NS and LS operators, orderly.       

Six NS operators, which are provided in the study by Salhi et al. [105], are used in this 

algorithm (𝑁𝑆𝑚𝑎𝑥 denotes the maximum number of NS operators) within each iteration of the 

VNS module. These neighborhood structures, in the order proposed and implemented by Salhi et 

al. [105], are briefly explained as follows: 

▪ 𝑁𝑆 = 1; “1-1 interchange” in which a random customer is chosen from a randomly 

selected tour, and is systematically switched with customers from all other tours, until 

a feasible swap (in terms of vehicle capacity and range) is constructed.  

▪ 𝑁𝑆 = 2; “type-1 2-0 shift” in which two consecutive random customers chosen from a 

randomly selected tour are checked for a feasible insertion in other tours. 
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▪ 𝑁𝑆 = 3; “2–1 interchange” in which two consecutive random customers from a 

randomly selected tour are swapped with another customer in another tour ensuring the 

feasibility. 

▪ 𝑁𝑆 = 4; “type-1 perturbation” in which one randomly chosen customer is removed 

from one tour and relocated to another randomly selected tour, while one another 

customer is also relocated from the second tour to a third randomly selected tour 

considering feasibility in the updated (second and third) tours. 

▪ 𝑁𝑆 = 5; “type-2 perturbation” which is similar to “type-1 perturbation”, relocating two 

consecutive customers instead of one customer. 

▪ 𝑁𝑆 = 6; “type-2 2-0 shift” which is similar to “type-1 2-0 shift”, checking two 

consecutive random customers for feasible insertions into two different tours. 

The successive multi-level local searches performed within each of the six neighborhood 

structure (NS) operators of the VNS module are briefly explained as follows: 

▪ 𝐿𝑆 = 1; “inter-tour 1-insertion” in which a customer is removed from a tour and 

checked for insertion in another tour, while maintaining feasibility. 

▪ 𝐿𝑆 = 2; “2-opt algorithm” which is applied to each tour of the current solution (see 

[109] for more details).  

▪ 𝐿𝑆 = 3; “intra-route swap” in which a pair of customers are swapped within each tour. 

▪ 𝐿𝑆 = 4; “intra-tour 1-insertion” in which a customer is removed from its position in a 

tour and relocated to another position in the same tour. 

▪ 𝐿𝑆 = 5; “intra-tour 2-insertion” which is similar to “intra-tour 1-insertion”, relocating 

two consecutive customers. 
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Once the initial VNS module is implemented, the major loop of the metaheuristic algorithm 

begins. Within the major loop, a similar VNS module is repeated, where the input route to this 

module is updated by two other modules, namely, diversification and cost network. The cost 

network module is described as part of the initial solution generation process earlier. The cost 

network module is applied until no improvement in the current solution is observed, while the 

diversification module is implemented for a given number of iterations [105]. The diversification 

module gets the latest current solution generated over the VNS iterations as an input. Combining 

the proposed tours in this current solution, the module generates a giant tour based on certain rules. 

Then, an optimization approach breaks this giant tour and allocates the best vehicle type to each 

tour. This process is performed to alter the current solution in order to search for a different 

possible solution satisfying the same customer orders generated by the VNS module. Once all the 

iterations of the diversification module are performed, a final cost network application searches 

for an improved solution. If the improved solution is found, the diversification loop would be 

repeated, while if there is no improvement, then the best solution is found by the algorithm. For 

more details on the solution algorithm for this metaheuristic algorithm please see Salhi et al. [105]. 

We also propose to modify the heuristic approach in our study based on the concept of simulated 

annealing (SA) to prevent trapping into a local optimal solution.  

In an effort to prevent trapping in locally optimal solutions, we propose incorporating 

simulated annealing (SA) concept into the VNS-based metaheuristic. In general, an SA-based 

algorithm, inspired by annealing phenomenon in metallurgy [110], typically consists of two main 

steps. In the first step, the algorithm starts from a current solution and perturbs it to a neighboring 

feasible solution. Subsequently, the second step compares the objective function value of the 

current and the feasible solution obtained from the first step, and replaces the current solution with 
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the new one under a probabilistic condition, which is one for a better solution and a certain 

probability based on the objective function difference between two solutions, even for worse 

neighbor solutions. The acceptance probability of the worse solutions reduces gradually as the 

solution process proceeds using a control parameter that would be updated after certain number of 

iterations. The rationale behind accepting worse solutions probabilistically is to avoid being 

trapped in local optima. However, to ensure convergence of the algorithm, the probability of 

accepting worse solutions is reduced as the number of iterations proceeds. SA-based 

metaheuristics have proven efficiency in transportation studies [56], [57], [111]. The SA-based 

VNS metaheuristic algorithm proposed by this study is depicted in   Figure 4-2. 

According to   Figure 4-2-a, the initial solution is fabricated through the same procedure 

as the one in the VNS-based metaheuristic. Therefore, the main difference between the VNS-based 

metaheuristic and the SA-based VNS metaheuristic lies in the major loops. In the SA-based VNS 

metaheuristic, we deploy VNS as the first step of the SA algorithm, which searches for a new 

feasible solution to be compared with the current solution. Additionally, as can be seen in   Figure 

4-2-b, we made changes to the VNS procedure proposed by Salhi et al. [105]; first, we employ the 

diversification procedure as an NS operator, and thus there are seven NS operators (i.e. 𝑁𝑆𝑚𝑎𝑥 =

7). Second, the NS operators do not follow the trend proposed by Salhi et al. [105]; rather, in each 

VNS procedure iteration, one NS operator is selected at random, instead of repeating all NS 

operators until no further improvement is found. Accordingly, each modified VNS procedure 

iteration would be faster compared to the VNS procedure iteration conforming to Salhi et al. [105]. 

Once all local search operators are orderly repeated for a randomly selected neighborhood 

structure, until no improvement in the updated solution is captured, this solution would be 
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considered as the neighbor solution and would be compared with the current solution at the SA 

level, which is also the input to the VNS module.  

If the neighbor solution is better than the current solution, it would update the current 

solution with probability of one. However, even if the neighbor solution is worse than the current 

solution in terms of the objective function, probabilistically it might replace the current solution. 

Note that the probability of accepting a worse solution depends on the objective function difference 

between the neighbor and current solution (i.e., how much worse it is) in addition to a control 

parameter. This control parameter is kept fixed over inner loop iterations, and is decreased at each 

outer loop iteration. This control parameter and its variations allow to find an equilibrated solution 

at each outer loop iteration and assists the algorithm to converge to a final solution over the outer 

loop iterations. The modified VNS module is repeated until the maximum number of SA iterations 

is reached (Outer iterations). Then, the cost network procedure is applied as the extra refinement, 

identically to the VNS-based metaheuristic algorithm. The SA would be repeated if the cost 

network module can find a better solution, otherwise the algorithm would be terminated. The flow 

of SA-based VNS metaheuristic can be seen in   Figure 4-2. 
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a) SA-Based VNS metaheuristic 

 

 

b) The modified VNS module 

       Figure 4-2 Visualized SA-based VNS metaheuristic 

Random-SA-VNS is another variant of SA-based VNS metaheuristic that is proposed and 

tested here. In this variant, similar to Neighborhood Structures, the Local Searches are also selected 

randomly instead of going through the entire structure. This is expected to improve the 

computational efficiency.  
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4.4 Numerical Experiments 

In this section, a case study is inputted into the mathematical formulation along with model 

parameters, and the solution algorithms are tested. Subsequently, sensitivity analyses are 

performed on emission taxes and package sizes to investigate their impacts on delivery activities. 

4.4.1 Case Study  

The Chicago downtown network is considered to be the case study for the numerical results. This 

network is bound from the west and the east by O'Hare Airport and Lake Michigan, respectively 

[112]. This network includes downtown Chicago and some western and northern suburban cities 

of Chicago, and contains 1,578 nodes, 4,805 links, and 218 zones. Figure 4-3 depicts the 

configuration of the Chicago downtown network. The size and level of congestion and the 

downtown structure makes this network a great case study to implement the proposed framework. 

As our aim is to solve a single depot HFVRP, we assume that the depot in our problem of 

interest is located at the location of a UPS® store in downtown Chicago. 100 randomly selected 

nodes are considered to be the maximum number of customers that need to be served by this one 

single depot. These 100 customers are categorized into five levels each consisting of 20 customers. 

The levels represent customers within 3 miles (level 1), between 3 miles and 6 miles (level 2), 

between 6 miles and 9 miles (level 3), between 9 miles and 12 miles (level 4), and beyond 12 miles 

(level 5) of distance from the depot.  
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Figure 4-3 Configuration of Customers and Depot in Chicago Downtown Network 

4.4.2 Assumptions and Model Parameters 

This study intends to investigate policy implications on freight delivery activities in urban areas 

and realize how more sustainable transportation modes can be deployed to this end. We assume 

that our hypothetical company aims to choose from a set of delivery vehicles including 

conventional cargo vans, electric vans, pedal-assist and all electric cargo bikes, as well as pedal-

assist and all electric cargo trikes. The specifications of the alternatives are presented in Table 4-2. 

In order to calculate the normalized daily maintenance cost for an electric van, 5-year 

maintenance cost [113], i.e. $4870, is divided by the average of vehicle miles traveled (VMT) for 

delivery trucks and light trucks [114], i.e. average annual VMT of 12,414 miles. For the social 

carbon cost, we use the average of EPA proposed values for 2015 and 2020 [115], which have 

been calculated in 2007 USD, and convert the amount to 2018 USD [116], which yields $47.23 

per ton of 𝐶𝑂2.  To obtain emission cost for conventional cargo van, we use the specifications of 
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Ford® Transit Connect [117]. Using the city gas mileage of 24 mi/gal [118], and the amount of 

carbon dioxide produced when burning a gallon of gasoline, i.e. 9071.85 g/gal, the emission cost 

of conventional cargo van is estimated to be $0.0178 per mile. Note that for cargo vans we have 

considered only operational emission generation. However, for other modes, the well to wheel 

emission is considered. Regarding the electric van, we use the average emission production rate of 

Nissan Leaf, i.e. 149 𝑔/𝑚𝑖 [119]. The emission production rate of all cargo cycles are assumed to 

be equal to 35.2 𝑔/𝑚𝑖 [120]. In terms of fuel cost, the national average gas price of $2.73 per 

gallon is used [121], and together with the city gas mileage of 24 mi/gal [118], the fuel cost of 

conventional cargo van is estimated at $0.11 per mile. The average electricity cost for the 

transportation sector is $0.0958 per kWh [122]. With use of each electric vehicle’s battery size and 

range and the average electricity cost, we calculate the associated fuel costs. It must be noted that 

the battery size for pedal-assist bike and trike is assumed to be 0.418 kWh with the resultant range 

of 50 mi, while the electricity mileage of all electric bike and trike is assumed to be 0.024 kWh/mi 

[123]. The labor cost in this study is assumed to be equal to the average delivery driver wage in 

the United States, i.e. $17 per hour [124]. In terms of customer demands, we assume an average 

package size of 1.22 𝑓𝑡3, and weight of 14.6 𝐼𝑏𝑠. The average package size is calculated assuming 

60% of an average urban delivery truck’s capacity is utilized each day, which is equivalent to 500 

identically-sized packages. To capture the weight of each package, dimensional weight is 

calculated with the divisor for domestic shipments, i.e. 166 [125].  It is also assumed that the 

delivery truck is a 20’ carrier with the capacity of 1,016 𝑓𝑡3 [126]. Table 4-2 presents the 

considered parameters for the mathematical framework in section 4.2. 

One of the main steps in developing and adopting metaheuristic algorithms is calibrating 

the parameters of the algorithm. These parameters for SA algorithm are numbers of inner and outer 
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iterations, as well as the parameters defining the probability. Based on previous studies by the 

same authors regarding applications of SA in various problems, 30 inner and 30 outer iterations 

are considered in this study for the SA approach (35-39). For the VNS metaheuristic approach, the 

suggested values by Salhi et al. [105] are used. 

Table 4-2 Input parameters into the proposed mathematical formulation (section 4.2) 

 

Specifications Cargo van 
Electric 

Cargo Van 

Pedal-

assist 

bike 

All 

electric 

bike 

Pedal-

assist 

trike 

All 

electric 

trike 

Life Span (years) 12 [127] 10 [127] 5 [70] 5 [70] 5 [70] 5 [70] 

Purchase price ($) 
24,275 

[117] 

38,481 

[128] 

1,244 

[70] 

4,058 

[70] 

6,491 

[70] 

11,236 

[70] 

Normalized daily 

purchase cost 

($/day) 

5.54 10.54 0.68 2.22 3.55 6.15 

Normalized daily 

maintenance cost 

($/mi) 

0.08 [113], 

[114] 
0.12 [70] 

0.02 

[70] 

0.02 

[70] 

0.02 

[70] 

0.02 

[70] 

Single 

charge/fueling 

range (comfortable 

range for bikes and 

trikes) (mi) 

379 [118] 173 [128] 
50 [129] 

 

49 [130] 

 

50 

[129] 

 

49 

[130] 

 

Volume capacity 

(ft3) 
123 [117] 148 [70] 5 [70] 5 [70] 49 [70] 49 [70] 

Payload (lb) 1549 [117] 1,697 [70] 200 [70] 200 [70] 
550 

[70] 

550 

[70] 

Max operating 

speed (mph) 
30 [131] 30 [131] 10 [70] 

15.5 

[70] 
10 [70] 

15.5 

[70] 

Emission Cost 

($/mi) 
0.0178 0.00704 0.00166 0.00166 

0.0016

6 
0.00166 

Noise cost ($/mi)  0.01 [132] 0 0 0 0 0 

Fuel cost ($/mi) 0.11 0.023 0.0008 0.0022 0.0008 0.0022 
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4.4.3 Comparison of Different Methods 

In this section, the exact solution method using a commercial solver is compared with the proposed 

methods of VNS, SA-VNS, and Random-SA-VNS for various problems with different number of 

customers that are randomly selected from the entire 100 customer pool. The results are presented 

in Figure 4-4 and confirm that a metaheuristic is required to solve the larger problems, since a 

commercial solver is unable to provide a solution as the size of the problem grows (more than 20 

customers). Also, it can be observed that the proposed SA-VNS has the ability to increase 

computational efficiency significantly compared to VNS algorithm providing solutions with much 

lower objective functions. SA-VNS even showed better performance in finding the optimal 

solutions for larger problems. It is worth noting that even though Random-SA-VNS provides 

solution closer to VNS rather than SA-VNS, its computational efficiency is much better than the 

other approaches. Another observed pattern is the increasing pattern of the solution time and 

objective function value. This is expected, since larger number of customers increases the number 

of variables and tour sizes, as a result of which operational costs and solution times would increase.  
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(a) Objective function 

 
(b) Solution time 

Figure 4-4 Comparison of different solution methods 

In order to find the optimum policy to minimize the cost to the society, a variety of sensitivity 

analyses are performed in this section. The sensitivity to emission and noise tax multiplication 

factors for different package sizes and distance levels are presented in Table 4-3. Results are 
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presented for select distance levels 1, 3, and 5 to provide meaningful variations in the solution set. 

The emission and noise tax factors are multiplied by societal costs of emission (i.e. 𝐶𝑂2) and noise 

to represent the tax amounts. It can be observed that for small distances (0-3 miles from depot) 

bikes and trikes form the optimal fleet. As the package size grows, trikes are required to substitute 

bikes so as to handle larger-sized packages. For long distances, i.e. distance level 3 representing 

customers at 6-9 miles of distance from depot, and for lower levels of emission tax, the optimum 

option is regular van; however, as the amount of tax grows, electric vans form the optimal fleet. 

At higher distance levels (level 5, beyond 12 miles from depot) electric vans are always the 

optimum option, since lower fuel and maintenance costs of these vehicles compensate for the 

higher purchase price when traveling longer distances.  

Table 4-3 Sensitivity to emission and noise tax 

Distance 

from Depot 

Package 

Size Factor 
Costs and Vehicles Types 

Emission and Noise Tax Factor 

0 1.5 2 

Level 1 

(0-3 miles) 

0.5 

Company Cost  4.87 4.95 5.04 

Emission Cost  0.08 0.08 0.08 

Tax Revenue 0 0.08 0.15 

Vehicle Type 3 Bikes 3 Bikes 3 Bikes 

1 

Company Cost  5.70 5.76 5.82 

Emission Cost 0.06 0.06 0.06 

Tax Revenue 0 0.06 0.12 

Vehicle Type Trike Trike Trike 

Level 3 

(6-9 miles) 

0.5 

Company Cost  24.24 26.15 27.12 

Emission Cost 4.16 0.97 0.97 

Tax Revenue 0 0.97 1.94 

Vehicle Type Van E-Van E-Van 

1 

Company Cost  24.24 26.15 27.12 

Emission Cost 4.16 0.97 0.97 

Tax Revenue 0 0.97 1.94 

Vehicle Type Van E-Van E-Van 
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Table 4-3 Sensitivity to emission and noise tax (cont’d) 

Distance 

from Depot 

Package 

Size Factor 
Costs and Vehicles Types 

Emission and Noise Tax Factor 

0 1.5 2 

Level 5 

(>12 miles) 

0.5 

Company Cost  28.73 30.02 31.31 

Emission Cost 1.29 1.29 1.29 

Tax Revenue 0 1.29 2.58 

Vehicle Type E-Van E-Van E-Van 

1 

Company Cost  28.73 30.02 31.31 

Emission Cost 1.29 1.29 1.29 

Tax Revenue 0 1.29 2.58 

Vehicle Type E-Van E-Van E-Van 

4.5 Conclusion 

The objective of this study is to find the optimum configuration of freight delivery fleet in urban 

areas. The optimization includes minimizing both the company and the societal costs in a bi-level 

optimization model. A metaheuristic solution algorithm is developed to solve the bi-level 

optimization problem efficiently. The numerical results on a large-scale case study (Chicago 

downtown network with up to 100 customers) compare different solution algorithms and 

demonstrates superiority of the proposed solution method in this study in terms of solution time 

and optimality. Furthermore, a thorough sensitivity analysis on the average package size, 

customers’ distance relative to the depot, and the emission tax values are presented. The following 

concluding remarks are noted:  

▪ CPLEX® as a commercial solver cannot solve large size problems; 

▪ SA-VNS that is developed in this study is superior to VNS that is developed in the 

literature in terms of both solution time and objective function value. In the numerical 

experiments of this study, SA-VNS provides at most 27% lower objective function 

relative to VNS, and with 50% to 80% lower solution times; 
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▪ Random SA-VNS (a variant of SA-VNS) provides solutions close to VNS in terms of 

objective function with much better computational efficiency even relative to SA-VNS 

(up to 70%); 

▪ At short distances, bikes and trikes are selected. The average package size may switch 

the optimal solution from bikes towards trikes; 

▪ At long distances, bikes and trikes are not feasible. Due to longer distances that need 

to be covered, the operational costs dominate purchase cost of vehicles and as a result, 

E-van is selected; 

▪ At medium distances, operational costs cannot dominate the purchase cost and as a 

result cargo van is selected. In this case, once the emission taxes are introduced, the 

model switches from cargo van to E-van; 

This study provides a modeling framework along with a proper solution algorithm to 

develop a sustainable urban freight delivery system considering various vehicle types. In addition 

to the methodological contributions, our study provides insights into how and when, which modes 

are selected for delivery, and what the societal outcomes are. Despite the significant environmental 

benefits of the presented framework and computational benefits of the solution algorithm, there 

are still some limitations that can be considered for future research. For example, the presented 

modeling framework and solution algorithm can be extended to a dynamic and stochastic model 

in the future studies. In addition, we propose a multiple-depot freight delivery problem for future 

studies. Locating optimal points for depot(s) (single or multiple) can be another future research 

direction. 
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CHAPTER 5. OVERALL CONCLUSIONS, CONTRIBUTIONS, AND 

RECOMMENDATION 

 

Growing awareness of the downsides to the heavily fossil fuel driven transportation in the U.S. 

has led to sustainable transportation planning and operations. For this purpose, recognition of 

emerging technologies for transportation of passengers and freight is on the rise. Light two-/three-

wheeled electric vehicles, increasingly known as micro-mobility, are gaining attention due to 

numerous advantages such as environmental-friendliness, mobility improvement, and health 

benefits. This dissertation explores incorporation of micro-mobility into urban transportation 

networks, through the lenses of authorities as well as users. The highlights and contributions of 

this dissertation are as follows: 

▪ An online survey is designed to capture users’ stated mode choice in different commuting 

settings. The aim is to determine influential factors, among conventional as well novel 

attributes, in commute mode choice.  

o Analysis of discrete choice models suggest that alternatives’ travel time and travel 

path topography have significant influence on commute mode choice.  

o Offering e-bikes can help increase bike-sharing attractiveness when the terrain is 

hilly, or when user looks for a faster option; 

o Urban settings like areas around CBDs and university campuses with essentially 

short trips are proper candidates for mixed fleet bike-sharing systems; 

▪ A design framework for a multi-modal transportation system is introduced, focusing on a 

mixed fleet bike-sharing system. The mixed fleet bike-sharing system is to offer both 
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conventional and electric bikes, and is intended within a typical transportation network for 

commuting to a CBD. Considering quantified health benefit values and emission costs of 

commuting modes is a contribution in this study. Another major contribution is striking a 

trade-off between authoritarian and user perspectives. Conclusively, the proposed design 

framework is capable of determining optimal fleets, accounting for detailed societal and 

individual costs. Through a hypothetical numerical example with relatively short 

commuting distances, the following main findings are derived:  

o Generally, bus and pedelec are the most popular modes due to the trade-off between 

affordability and range; 

o With increase in health benefit values, pedelc becomes the dominant public 

transportation mode for commuting;   

o As emission cost increases, commuters find pedelec more utilitarian than bus; 

o Increasing financial burden of emission was found to reduce the demand and the 

optimum mode counts for bus while increasing the demand and optimum mode 

counts for pedelec; 

o As a result of the relatively short commuting distances and general inclination for 

non-fuel consuming modes, the model is essentially insensitive to fuel cost; 

o Increasing fares or trips costs would drive users more towards pedelec and walking. 

▪ Deploying electric cargo cycles, as well as electric and conventional vans for urban freight 

delivery is investigated. The main findings of this research include, but are not limited to, 

the following: 
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o When delivery distances from depot are relatively short, bikes and trikes are 

selected for freight transportation; under these circumstances, as the package size 

increases, optimal fleet would deploy more bikes than trikes; 

o At medium delivery distances, in a trade-off between purchase and operating costs, 

cargo vans constitute the optimal fleet; in this case, E-vans replace cargo vans if 

emission taxes increase;  

o In instances with long delivery distances from depot, bikes and trikes are not 

feasible; also, the operational costs dominate purchase costs as a result of longer 

distances, and thus E-van becomes the optimal choice; 

In terms of future studies, revising the travel survey and incorporating social marketing 

strategies can yield interesting insights into impacts of public awareness of emission and health 

aspects of transportation modes and micro-mobility. Moreover, exploring covariates not 

investigated in the present study can help improve the deterministic portions of the models thus 

reduce error terms, thereby illuminating influences of unexplored factors. Enhancing the 

quantitative calculations of mode attributes can be another research direction for more accurate 

findings.  

With improved mode choice models, the design framework for shared micro-mobility can 

be enhanced. Other extensions to the shared micro-mobility design framework can be detailed 

formulation looking into candidate shared micro-mobility station locations, micro-mobility fleet 

rebalancing, and quantified safety aspects adopting shared micro-mobility. In terms of micro-

mobility for urban freight transportation, more realistic variants of vehicle routing problem can be 

deployed to incorporate multiple depots, optimal locating of depot(s), deliveries with time 

windows, dynamic vehicle routing, and so on. Furthermore, the problem can be extended to 
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explore large scale impacts of deploying micro-mobility for urban freight transportation, and 

investigate varied policy scenarios. 
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APPENDICES 
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APPENDIX A.   HEALTH VALUES 

For public health promotion, Pate [133] recommends that American adults must engage in at least 

30 minutes of moderate-intensity physical activity on most or preferably all weekdays. To 

determine intensity of physical activity, the index of Metabolic Equivalent of Task (MET) is 

commonly used. A compendium presenting MET values for a wide range of physical activities 

was developed in 1989 by Ainsworth et al. [134] and was published in 1993. This compendium 

was updated in 2000 [135] and underwent a second update in 2011 [136]. Pate [133] states that 

METs of moderate-intensity physical activities are from 3 to 6 and refer researchers to the 

compendium [134] for examples of moderate intensity physical activities. Another important point 

of the paper by Pate et al. is that they articulate "physical activity is any bodily movement produced 

by skeletal muscles that results in energy expenditure" and " ... is closely related to, but distinct 

from, exercise and physical fitness." According to physical Activity Guidelines for Americans in 

2008, for substantial health benefits, adults need to do at least: (a) two hours and 30 minutes (150 

minutes) each week of moderate-intensity aerobic activity (e.g. brisk walking), or (b) one hour and 

15 minutes (75 minutes) each week of vigorous-intensity aerobic activity (e.g. jogging or running, 

or (c) an equivalent mix of moderate- and vigorous-intensity aerobic activity. Note that every 

session of physical activity must be no shorter than 10 min for advantage gain. Also, the index that 

shows intensity is abbreviated as MET which stands for metabolic equivalent of task. 

In transportation discipline, active transport (AT), basically including walking and cycling, 

is associated with less dependence on car use and higher levels of physical activity and is thus 

supposed to provide substantial health benefits [137], [138]. By incorporating a bike share system, 

with both conventional and electric bikes, into existing transportation systems, our research also 
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aims to contribute tobli public health and minimize the financial burden physical inactivity could 

put on society’s shoulders.  

For the purpose of our study, we need to first) know the MET value for e-biking, and 

second) quantify the price of biking and e-biking. 

In a study, Simons et al. [139] aimed to evaluate the potential of e-biking as a means for 

providing substantial health benefits. Twelve normally active adults volunteered and were asked 

to traverse a path of 4.3 km length as they would normally ride for commuting, with e-bikes at 

three modes of no support, low or eco support, and high or power support. Mean speeds and mean 

intensities of the activities are as follows: 

Table A-1 Findings from the study by Simons et al. [130] 

Mode Mean speed  Mean intensity (MET) 

No support  12.25 mph 6.1 

Eco (light) support 13.2 mph 5.7 

Power (high) support 14.6 mph 5.2 

 

Even though e-bikes, when ridden without electric assistance or at "no support" mode, are 

harder to manoeuver than conventional bikes, we assume that e-biking with no support is 

equivalent to regular biking.  

The average biking speed for commuting to work in the United States is 10.8 mph [62]. 

Based upon this value and the study by Simons et al. [139], the speed of riding pedelec in the 

United States would be scaled to 11.6 mph, which is assumed to be 12 mph in our study. On the 

other hand, we assume the biking to work speed is 10 mph, consistently with the compendium of 

physical activities [136], and thus the MET of biking to work is 4. Accordingly, the MET of riding 

pedelec to work would be 3.7. In terms of walking to work in the U.S., the average speed is 3.7 
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mph [62]. Consistently with the compendium of physical activities [136], we assume that walking 

speed is 3.5 mph with the MET of 3.8. 

To come up with average commuting distance with pedelec, as well as the average 

commuting speed and distance by SSEB, we deployed the results from [140]. In this paper, pedelec 

riders were found to speed 17% higher and reach distances 32% farther, as compared to regular 

bikes. With extrapolation, we assume in our study that SSEB riders would speed 34% higher and 

traverse 64% longer distances than regular bike commuters do. Accordingly, we assume that 

average commuting distance by pedelec would be 5.01 mi, and the average commuting distance 

and speed by SSEB would respectively be 6.2 mi and 13.4 mph in the United States. 

In order to quantify monetary values of moderate-intensity physical activities, in a study 

conducted in Australia, [58] decided that inactivity costs can be avoided if Australian physical 

activity guideline is met. The calculations were done as follows: 

They initially consider annual direct cost of inactivity in Australia. Additionally, indirect 

costs are also addressed and thus the total economic burden of inactivity is determined. Next, they 

deduce that if the inactive adult population participate in physical activity as the recommendations 

in guideline, the costs would be avoided, and on this basis, they mention that an adult is required 

to perform at least 2.5 hours of moderate-intensity physical activity in each of the 52 weeks of the 

year. Finally, they calculate monetary value of an hour of moderate physical activity based on 

these considerations. Following [58], we calculated physical activity value in the United States 

with a similar approach. We first obtained the extra mean per capita expenditure on health care 

that an able-bodied, inactive American adult has to make annually, compared to health care 

expenditure of an active adult from the study by [59]. Note that this value of $ 1,015 does not 

consider indirect costs. According to a Canadian ratio, 54.3% of total cost would be indirect portion 
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which concerns issues such as productivity losses due to premature death. Thus, the total financial 

burden equals $ 2,221. Per capita monetary value of an hour of moderate-intensity physical activity 

id determined when the total cost is divided by 130 hours, that is: 

Per capita monetary value of an hour of moderate-intensity physical activity = $17.08 /ℎ𝑟 

In this approach, the calculated value applies to the generic term of "moderate intensity 

physical activity". In other words, there is no difference between prices of biking and e-biking for 

example. As we are trying to determine numbers of fleets partially based upon their financial 

benefits, it matters to us to differentiate in this study. For this purpose, we assume that the $ 17.08 

is the value of an hour of a physical activity with intensity of 4.5 METs, which is the mean value 

in the range of "3 ≤ MET ≤ 6". We assume that, in this range, there is linear relationship between 

intensity and value which is represented by a line that passes through the origin. Therefore, as we 

have coordinates of one point on this line, that is (4.5, 17.08), we can calculate the slope, which is 

$3.79/ ℎ. 𝑀𝐸𝑇 , and obtain varied values for moderate activities with different intensities. 

 With the formula "Y = 3.8.X”, where 𝑌 is the hourly value and 𝑋 is the intensity, 

and the MET values provided in the [136] and [139] we have the following values: 

Table A-2 Estimated health benefit hourly values 

Commuting mode MET Mean Speed (𝑚𝑝ℎ) Value ($/ℎ𝑟) 

walking 3.8 3.5  14.44 

Biking  4 10 15.2 

E-biking (pedelec) 3.7 12 14.06 
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APPENDIX B. AVERAGE DISTANCE AND SPEED FOR THE 

COMMON COMMUTING MODES 

Table B-1 Modes' distances and speeds 

Commuting Mode Mean Speed (𝑚𝑝ℎ) Average Commuting 

distance (mi) 

walking 3.5  1 

Biking  10 3.8 

Pedelec 12 5.01 

E-scooter 13.4  6.2 

Bus (public transit) 11.4 10.2 

Motorcycle 29.5 12.1 

Car 28.9 12.1 
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APPENDIX C. FARE CALCULATIONS 

To calculate the fares for the shared/public modes in this study, we relied on the bike-sharing 

system [141] and the electric scooter sharing system [142] in Vancouver, BC, Canada. Also, the 

fares are charged for 30-minute interval uses. 

First, based upon the annual pass for the bike-sharing system, we determined the monthly 

pass value at almost $11/mo. Next, assuming average biking commute distance of 3.8 mi, we came 

up with the average daily biking commuting distance (to and from work) of 7.6 mi. Thus, the value 

of biking in Vancouver would be: ( $11/𝑚𝑜) / (228 𝑚𝑖/𝑚𝑜)  =  $0.05/𝑚𝑖 Considering the 

biking speed of 10 mi/h, we would obtain: $0.05/mi *10 mi/h = $0.5/h = $ 0.25/(.5h) in Canada. 

Based upon the value of Canadian dollar against the American dollar on July 4th, 2017, (One 

Canadian dollar cost 0.77 U.S. dollar), the bike-sharing fare in Canada was adjusted at “US$ 0.19 

/(.5h) “. Next, in order to conjecture the fare for a bike in the intended system in East Lansing, 

Michigan, the ratio of bus fares in Vancouver to East Lansing was calculated as U.S. $ 2.19/ 1.25 

= 1.76. Accordingly, the bike fare in East Lansing was set to $0.11/(0.5h). 

Based on the electric scooter fare in Vancouver, the monthly pass 15 Canadian dollars, as 

well as 40 cents per mile. Considering the average commuting distance with electric scooter at 6.2 

mi, and thus 12.4 mi per day, we would have: ($15/mo) / (372 mi/mo) = $ 0.04 /mi. In total, the 

fare would be $ 0.04 /mi + $0.4 /mi = $0.44/mi. Next, considering the average speed of 13.4 mph, 

the fee would be $5.9/h, or $2.95/ (.5 h) in Canada, and thus US$ 2.27/ (.5h). With use of the bus 

fare ratio of 1.76, the e-scooter sharing fee in East Lansing would be: $1.29/(.5h). In this study, 

we assume that the fare for pedelec would be the average of regular bike and electric scooter fares, 

namely $0.7/(.5h). 
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APPENDIX D. DAILY COSTS OF OWNERSHIP AND MAINTENANCE 

For a regular bike, either shared or private, we assume the average purchase price as $350 [143]. 

For pedelec, we assume the base price of $1500 in the U.S. [13]. To have an estimate of the base 

price for an SSEB, we rely on a ratio of SSEB price to pedelec price in china [11] and estimated a 

base price of $2600 for SSEB in the U.S.  

Based upon the life expectancies of regular bike, pedelec and SSEB as 9375 mi, 9375 mi 

and 31250 mi respectively [144], and with a similar approach to Appendix C by assuming that an 

average commuting distances of 7.6 mi/day, 10.02 mi/day and 12.4 mi/day for regular bike, 

pedelec and SSEB respectively, the expected life cycle of regular bike, pedelec and SSEB would 

respectively be 1234 days, 925 days and 2520 days. Accordingly, the daily cost of ownership for 

regular bike, pedelec and SSEB are estimated as $0.28, $1.6, and $1.03. Assuming the annual 

maintenance cost of a bicycle at $125 [145], the daily maintenance cost of regular bike would be 

$0.34. If we assume that the ratio of daily maintenance cost to daily ownership cost of regular bike 

applies to pedelec and SSEB, the daily maintenance costs of pedelec and SSEB would be $1.94 

and $1.25 respectively. For bus, the average purchase price is $300,000 over a lifespan of 12 years 

[146], which yields the daily cost of ownership of $68.5. The average daily maintenance cost of 

bus is assumed to be $1.1 according to the annual bus maintenance cost of $400 [147]. 

For a motorcycle, we assume an average purchase price of $7500 [148], over an average 

lifespan of 13.5 years [149], and thus the average motorcycle ownership cost is estimated at $1.52. 

Daily motorcycle maintenance cost is assumed to be $2.07 [150]. For a car, the average purchase 

price is assumed to $21,000 enduring for 10 years, and thus the average daily ownership cost would 

be $5.75 [54]. The daily maintenance cost of car is considered to be $3.85. 
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APPENDIX E. UNSERVED DEMAND COST 

When the demand for one of the shared/public modes is greater than the availability, we assume 

that the unserved demand turns to Taxi/ Uber for their commute. As we are presenting hypothetical 

user group configurations in East Lansing, Michigan, we initially estimated the Taxi fare for a 

commuting distance of 4 mi, as $17.77, with use of 

(https://www.taxifarefinder.com/main.php?city=Lansing-MI). Considering the distance, we then 

calculated the per mile trip cost when taking Taxi as $4.5/mi. Next, estimating the Uber fare for 

the same distance ($10.2), the per mile trip cost with Uber was calculated as $2.55/mi. Thus, the 

fare per mile cost was averaged to $3.53/mi. 
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APPENDIX F. SURVEY: DEVELOPMENT OF COMMUTE MODE 

CHOICE MODELS 

Please read through the following must-know concepts for this survey:   

▪ Bike-sharing systems: Bike-sharing systems are majorly intended for urban trips and are 

composed of stations across varied locations offering bicycles to customers for pickup, as 

well as empty docks to customers who are returning the rented bicycles. A customer can 

pick up a bicycle at a station near their origin, travel to a station near their destination and 

return the bicycle.    

▪ Electric bicycles (Pedelecs): Pedelecs are similar to regular bicycles in appearance and 

function and require the rider to keep pedaling. However, pedelecs assist the rider in 

pedaling through the electric power they administer to the pedals, and make riding less 

physically demanding. Thus, pedelecs enable the rider to reach higher speeds, traverse 

longer distances and hilly (upgrade) topographies more easily.    

▪ Electric scooters: Electric scooters do not need the rider to pedal and can be ridden as a 

gasoline-powered scooter would be, with the difference that electric scooters rely on 

electric power.   
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Electric bicycle (Pedelec)   

Source:  

Jonathan Weinert, Joan Ogden, Dan Sperling, Andrew Burke, The future of electric two-

wheelers and electric vehicles in China, Energy Policy, Volume 36, Issue 7, 2008, Pages 2544-

2555, ISSN 0301-4215,http://dx.doi.org/10.1016/j.enpol.2008.03.008.   

(http://www.sciencedirect.com/science/article/pii/S0301421508001298)   
    

  

 
 
 
Electric scooter   

Source:   

Jonathan Weinert, Joan Ogden, Dan Sperling, Andrew Burke, The future of electric two-

wheelers and electric vehicles in China, Energy Policy, Volume 36, Issue 7, 2008, Pages 2544-

2555, ISSN 0301-4215,http://dx.doi.org/10.1016/j.enpol.2008.03.008.   

(http://www.sciencedirect.com/science/article/pii/S0301421508001298)   
     

  

 

Figure F- 1 Pedelec and electric scooter examples 
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➢ In the following section, please select the appropriate answer: 

▪ Do you own a private car? 

o Yes   

o No  

▪ Do you own a private motorcycle/moped? 

o Yes  

o No  

▪ Do you own a private electric bike (pedelec)? 

o Yes  

o No  

▪ Do you own a private electric scooter? 

o Yes  

o No  

➢ In the following section, please answer the questions as to your regular morning commute 

from your residence to Michigan State University: 

▪ Please select the range within which your commute distance (in miles) falls: 

o Below 1 

o 1 to 5 

o 5 to 10 

o 10 to 20  

o 20 to 50 

o Above 50 
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▪ Please enter your approximate in vehicle commute travel time (in minutes): 

 

▪ How do you regularly commute to campus? 

o Walk  

o By Regular Bicyle 

o By Electric Bike (Pedelec) 

o By Electric Scooter/Moped 

o By Motorcycle/Moped 

o By Private Car 

o By Bus  

o By Taxi/ Uber 

 
 

▪ How would you describe the topography of your commuting path? 

o Mostly Flat  

o Mostly Mildly Hilly  

o Mostly Steeply Hilly  
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➢ In the following questions, please assume that a bike-sharing system is 

readily available and easily accessible from your residence and offers regular bikes, pedelecs, 

and electric scooters. You can rent any of the three types to make your morning commute from 

your residence to your destination, which is assumed to be Michigan State University in this 

survey. Also, assume that there is a station near your destination on campus to which you can 

return the regular bike/ pedelec/ electric scooter you rent. In addition, please assume that you 

can also own both private motorcycles and private cars. 

Please be advised that each question is specific in terms of the presented distance and 

the resulting characteristics of each mode (i.e. travel time, fare, emission burden cost, and 

health value), and/or the topography condition. 

Considering the above-mentioned information and assuming that you are making 

your morning commute from your residence to Michigan State University, please answer the 

following questions: 
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➢ Please assume that it is a mild day with no precipitation, and your commute distance is 

about 1 mi, and the trip costs and benefits are as shown in Table F-1:   

        Note: Please be advised that the active modes which yield health benefits involve 

different levels of physical activity. In fact, each person in the United States would incur $2,221 

annually for being physically inactive, and the active modes help save a portion of this amount, 

depending on trip length and the mode used. The health benefits presented in the table below, 

for each mode, represent the amount that can be saved by each trip.   

      Also, the emission burden cost values are the amounts of financial burden that each fuel-

driven vehicle imposes on the environment on each trip due the 𝐶𝑂2 gas emission.        

  Table F- 1 Trip costs and benefits of modes when commuting distance is 1 mi 

 
Travel Time 

(min) 

Cost/Fare ($) Emission 

Burden Cost ($) 

Health Benefit 

Values ($) 

Walking 18 0 0 4.13 

Bike-Sharing: Bike 6 0.11 0 1.52 

Pedelec 5 0.7 0 1.17 

Electric Scooter 5 1.29 0 0 

Bus 6 1.25 0.03 0 

Private Regular Bike 6 0.62 0 1.52 

Private Motorcycle 3 3.65 0.04 0 

Private Car 3 9.71 0.08 0 

 

▪ Now, assuming that the topography of your commuting path is mostly flat, which of the 

following modes would you select? 

o Walking  

o Bike-sharing: Regular bike 

o Bike-sharing: Pedelec 

o Bike-sharing: Electric scooter 

o Bus transit 
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o Private regular bike 

o Private Motorcycle 

o Private car 

 

▪ In the previous question, if the topography of your commuting path is mostly mildly 

hilly, which of the following modes would you select? 

o Walking  

o Bike-sharing: Regular bike 

o Bike-sharing: Pedelec 

o Bike-sharing: Electric scooter 

o Bus transit 

o Private regular bike 

o Private Motorcycle 

o Private car 

▪ In the previous question, if the topography of your commuting path is mostly steeply 

hilly, which of the following modes would you select? 

o Walking  

o Bike-sharing: Regular bike 

o Bike-sharing: Pedelec 

o Bike-sharing: Electric scooter 

o Bus transit 

o Private regular bike 

o Private Motorcycle 

o Private car 
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➢ Please assume that it is a mild day with no precipitation, and your commute distance is 

about 5 mi, and the trip costs and benefits are as shown in Table F- 2: 

           Note: Please be advised that the active modes which yield health benefits involve 

different levels of physical activity. In fact, each person in the United States would incur $2,221 

annually for being physically inactive, and the active modes help save a portion of this amount, 

depending on trip length and the mode used. The health benefits presented in the table below, 

for each mode, represent the amount that can be saved by each trip. 

         Also, the emission burden cost values are the amounts of financial burden that each fuel-

driven vehicle imposes on the environment on each trip due the 𝐶𝑂2 gas emission.      

  Table F- 2 Trip costs and benefits of modes when commuting distance is 5 mi 

 
Travel Time 

(min) 

Cost/Fare ($) Emission 

Burden Cost ($) 

Health Benefit 

Values ($) 

Walking 86 0 0 20.63 

Bike-Sharing: Bike 30 0.11 0 7.6 

Pedelec 25 0.7 0 5.86 

Electric Scooter 23 1.29 0 0 

Bus 27 1.25 0.14 0 

Private Regular Bike 30 0.62 0 7.6 

Private Motorcycle 11 3.88 0.20 0 

Private Car 11 10.13 0.38 0 

 

▪ Now, assuming that the topography of your commuting path is mostly flat, which of the 

following modes would you select? 

o Walking  

o Bike-sharing: Regular bike 

o Bike-sharing: Pedelec 

o Bike-sharing: Electric scooter 

o Bus transit 
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o Private regular bike 

o Private Motorcycle 

o Private car 

▪ In the previous question, if the topography of your commuting path is mostly mildly hilly, 

which of the following modes would you select? 

o Walking  

o Bike-sharing: Regular bike 

o Bike-sharing: Pedelec 

o Bike-sharing: Electric scooter 

o Bus transit 

o Private regular bike 

o Private Motorcycle 

o Private car 

▪ In the previous question, if the topography of your commuting path is mostly steeply hilly, 

which of the following modes would you select? 

o Walking  

o Bike-sharing: Regular bike 

o Bike-sharing: Pedelec 

o Bike-sharing: Electric scooter 

o Bus transit 

o Private regular bike 

o Private Motorcycle 

o Private car 
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➢ Please assume that it is a mild day with no precipitation, and your commute distance is 

about 10 mi, and the trip costs and benefits are as shown in Table F-3: 

   Note: Please be advised that the active modes which yield health benefits involve different 

levels of physical activity. In fact, each person in the United States would incur $2,221 annually 

for being physically inactive, and the active modes help save a portion of this amount, 

depending on trip length and the mode used. The health benefits presented in the table below, 

for each mode, represent the amount that can be saved by each trip.   

     Also, the emission burden cost values are the amounts of financial burden that each fuel-

driven vehicle imposes on the environment on each trip due the 𝐶𝑂2 gas emission.         

  Table F- 3 Trip costs and benefits of modes when commuting distance is 10 mi 

 
Travel Time 

(min) 

Cost/Fare ($) Emission 

Burden Cost ($) 

Health Benefit 

Values ($) 

Walking 172 0 0 41.26 

Bike-Sharing: Bike 60 0.22 0 15.2 

Pedelec 50 1.4 0 11.72 

Electric Scooter 45 2.58 0 0 

Bus 53 1.25 0.27 0 

Private Regular Bike 60 0.62 0 15.2 

Private Motorcycle 21 4.16 0.41 0 

Private Car 21 10.67 0.76 0 
 

▪ Now, assuming that the topography of your commuting path is mostly flat, which of the 

following modes would you select? 

o Walking  

o Bike-sharing: Regular bike 

o Bike-sharing: Pedelec 

o Bike-sharing: Electric scooter 

o Bus transit 
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o Private regular bike 

o Private Motorcycle 

o Private car 

▪ In the previous question, if the topography of your commuting path is mostly mildly hilly, 

which of the following modes would you select? 

o Walking  

o Bike-sharing: Regular bike 

o Bike-sharing: Pedelec 

o Bike-sharing: Electric scooter 

o Bus transit 

o Private regular bike 

o Private Motorcycle 

o Private car 

▪ In the previous question, if the topography of your commuting path is mostly steeply 

hilly, which of the following modes would you select? 

o Walking  

o Bike-sharing: Regular bike 

o Bike-sharing: Pedelec 

o Bike-sharing: Electric scooter 

o Bus transit 

o Private regular bike 

o Private Motorcycle 

o Private car 
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➢ Please assume that it is a mild day with no precipitation, and your commute distance is 

about 20 mi, and the trip costs and benefits are as shown in Table F-4: 

   Note: Please be advised that the active modes which yield health benefits involve different 

levels of physical activity. In fact, each person in the United States would incur $2,221 annually 

for being physically inactive, and the active modes help save a portion of this amount, 

depending on trip length and the mode used. The health benefits presented in the table below, 

for each mode, represent the amount that can be saved by each trip.   

     Also, the emission burden cost values are the amounts of financial burden that each fuel-

driven vehicle imposes on the environment on each trip due the 𝐶𝑂2 gas emission. 

  Table F- 4 Trip costs and benefits of modes when commuting distance is 20 mi 

 
Travel Time 

(min) 

Cost/Fare ($) Emission 

Burden Cost ($) 

Health Benefit 

Values ($) 

Walking 343 0 0 82.51 

Bike-Sharing: Bike 120 0.44 0 30.4 

Pedelec 100 2.8 0 23.43 

Electric Scooter 90 3.87 0 0 

Bus 106 1.25 0.55 0 

Private Regular Bike 120 0.62 0 30.4 

Private Motorcycle 41 4.16 0.82 0 

Private Car 42 10.67 1.53 0 

 

▪ Now, assuming that the topography of your commuting path is mostly flat, which of the 

following modes would you select? 

o Walking  

o Bike-sharing: Regular bike 

o Bike-sharing: Pedelec 

o Bike-sharing: Electric scooter 

o Bus transit 
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o Private regular bike 

o Private Motorcycle 

o Private car 

▪ In the previous question, if the topography of your commuting path is mostly mildly hilly, 

which of the following modes would you select? 

o Walking  

o Bike-sharing: Regular bike 

o Bike-sharing: Pedelec 

o Bike-sharing: Electric scooter 

o Bus transit 

o Private regular bike 

o Private Motorcycle 

o Private car 

▪ In the previous question, if the topography of your commuting path is mostly steeply 

hilly, which of the following modes would you select? 

o Walking  

o Bike-sharing: Regular bike 

o Bike-sharing: Pedelec 

o Bike-sharing: Electric scooter 

o Bus transit 

o Private regular bike 

o Private Motorcycle 

o Private car 
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▪ Please assume that it is a mild day with no precipitation, and your commute distance is 

about 50 mi, and the trip costs and benefits are as shown in Table F-5: 

     Note: Please be advised that the active modes which yield health benefits involve different 

levels of physical activity. In fact, each person in the United States would incur $2,221 annually 

for being physically inactive, and the active modes help save a portion of this amount, 

depending on trip length and the mode used. The health benefits presented in the table below, 

for each mode, represent the amount that can be saved by each trip.   

     Also, the emission burden cost values are the amounts of financial burden that each fuel-

driven vehicle imposes on the environment on each trip due the 𝐶𝑂2gas emission.         

Table F- 5 Trip costs and benefits of modes when commuting distance is 50 mi 

 
Travel Time 

(min) 

Cost/Fare ($) Emission 

Burden Cost ($) 

Health Benefit 

Values ($) 

Walking 858 0 0 206.29 

Bike-Sharing: Bike 300 1.1 0 76 

Pedelec 250 6.3 0 58.58 

Electric Scooter 224 10.32 0 0 

Bus 264 1.25 1.36 0 

Private Regular Bike 300 0.62 0 76 

Private Motorcycle 102 4.16 2.04 0 

Private Car 104 10.67 3.82 0 

 

▪ Now, assuming that the topography of your commuting path is mostly flat, which of the 

following modes would you select? 

  Walking  

o Bike-sharing: Regular bike 

o Bike-sharing: Pedelec 

o Bike-sharing: Electric scooter 

o Bus transit 
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o Private regular bike 

o Private Motorcycle 

o Private car 

▪ In the previous question, if the topography of your commuting path is mostly mildly hilly, 

which of the following modes would you select? 

o Walking  

o Bike-sharing: Regular bike 

o Bike-sharing: Pedelec 

o Bike-sharing: Electric scooter 

o Bus transit 

o Private regular bike 

o Private Motorcycle 

o Private car 

▪ In the previous question, if the topography of your commuting path is mostly steeply 

hilly, which of the following modes would you select? 

o Walking  

o Bike-sharing: Regular bike 

o Bike-sharing: Pedelec 

o Bike-sharing: Electric scooter 

o Bus transit 

o Private regular bike 

o Private Motorcycle 

o Private car 
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▪ In the following section, please select your preferred mode under different weather conditions: 

▪ Please select what mode you would choose for your regular daily morning commute under 

each of the weather conditions: 

 Walking  

Bike-

sharing: 

Regular 

bike 

Bike-

sharing: 

Pedelec 

Bike-

sharing: 

Electric 

Scooter 

Bus 

Private 

regular 

bike 

Private 

Motorcycle 

Private 

Car 

Rainy o  o  o  o  o  o  o  o  

Snowy o  o  o  o  o  o  o  o  

Cloudy 

(Temperature 

= 70°F) 
o  o  o  o  o  o  o  o  

Cloudy 

(Temperature

= 25°F)  
o  o  o  o  o  o  o  o  

Sunny 

(Temperature

= 70°F)  
o  o  o  o  o  o  o  o  

Sunny 

(Temperature 

= 25°F)  
o  o  o  o  o  o  o  o  
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▪ In the following section, please select your preferred mode under different air quality 

conditions: 

▪ Please select what mode you would choose for your daily morning commute under each of 

the air quality conditions: 

 Walking 

Bike-

sharing: 

Regular 

bike 

Bike-

sharing: 

Pedelec 

Bike-

sharing: 

Electric 

Scooter 

Bus  

Private 

regular 

bike 

Private 

Motorcycle 

Private 

Car 

Air 

quality: 

Low 

pollution 

levels   

o  o  o  o  o  o  o  o  

Air 

quality: 

Medium 

pollution 

levels  

o  o  o  o  o  o  o  o  

Air 

quality: 

High 

pollution 

levels  

o  o  o  o  o  o  o  o  
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➢ In the following section, you will be offered questions centered on your attitude towards the 

transportation mode you choose for your regular daily morning commute: 

▪ Please specify how important each of the following factors are in your commuting 

mode choice: 

 
Not at all 

important 

Slightly 

important 

Moderately 

important 

Very 

important 
Essential 

Commuting distace  o  o  o  o  o  

The availability of 

the transportation 

mode   
o  o  o  o  o  

The topography of 

the commuting path  o  o  o  o  o  

The commuting 

travel time o  o  o  o  o  

The cost of the 

transportation mode  o  o  o  o  o  

Environmental 

concerns o  o  o  o  o  

Health-related 

concerns  o  o  o  o  o  
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▪ Please specify your gender: 

o Male  

o Female 

▪ Please enter your age 

▪ Please select your occupation: 

o Undergraduate student 

o M.Sc. student  

o Ph.D. student  

o Professional student  

o Lifelong student  

o Faculty: Assistant Professor 

o Faculty: Associate Professor 

o Faculty: Professor  

o University Staff  

▪ Please select the range within which your annual income level before tax (in dollars) falls: 

o Below 15,000 

o 15,000 to 20,000 

o 20,000 to 50,000 

o 50,000 to 70,000 

o 70,000 to 100,000  

o 100,000 to 130,000  

o 130,000 to 200,000  

o 200,000 to 250,000 
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o Above 250,000  

▪ Please enter the number of people you typically commute with, excluding yourself (e.g. 

dropping siblings/parents/friends/etc. off, carpooling, etc.): 

________________________________________________________________ 

▪ Are you responsible for driving anyone under the age of 16? 

o Yes  

o No  
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APPENDIX G.  INVESTIGATED MULTINOMIAL LOGIT (MNL) 

MODELS 

The fitted models and their summaries are presented in Table G-1; the alternatives are as follows: 

“1” is walking, “2” shared bike, “3” is pedelec, “4” is E-scooter”, “5” is bus, “6” is private bike, 

“7” is motorcycle, and “8” is private car. Along with standard MNL models, whenever there are 

continuous covariates, i.e. TT, TC, EmissionCost, and HealthValue, random parameter (mixed) 

logit models are also tested. 

Table G-1 Investigated MNL models 

Base Covariate: Dis 

Model Model Coefficients’ Specifications 

Note: Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 

MNL model with Covariate(s): 

▪ Dis with alternative-specific 

parameters 

 

 

Model Fit:  

▪ Log-Likelihood: -1516 

▪ McFadden R^2:  0.13397  

▪ Likelihood ratio test :  

chisq = 469.01 

 (p.value = < 2.22e-16) 

 

 Estimate z-value Signif. 

2:(intercept) -1.10 0.00 *** 

3:(intercept) -0.70 0.00 ** 

4:(intercept) -1.95 0.00 *** 

5:(intercept) -1.85 0.00 *** 

6:(intercept) -0.14 0.51  

7:(intercept) -2.01 0.00 *** 

8:(intercept) -0.05 0.79  

2:Dis 0.11 0.10  

3:Dis 0.20 0.00 *** 

4:Dis 0.31 0.00 *** 

5:Dis 0.34 0.00 *** 

6:Dis 0.20 0.00 *** 

7:Dis 0.38 0.00 *** 

8:Dis 0.38 0.00 *** 
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Table G-1 Investigated MNL models (cont’d) 

Model Model Coefficients’ Specifications 

Note: Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 

MNL model with Covariate(s): 

▪ Dis & Topo with 

alternative-specific 

parameters 

 

 

Model Fit: 

▪ Log-Likelihood: -1487.2 

▪ McFadden R^2:  0.15042  

▪ Likelihood ratio test :  

chisq = 526.62 

             (p.value = < 2.22e-16) 

 

 Estimate z-value Signif. 

2:(intercept) 0.16 0.78  

3:(intercept) -1.68 0.00 *** 

4:(intercept) -3.43 0.00 *** 

5:(intercept) -3.20 0.00 *** 

6:(intercept) 0.14 0.74  

7:(intercept) -3.59 0.00 *** 

8:(intercept) -1.03 0.01 ** 

2:Dis 0.10 0.14  

3:Dis 0.21 0.00 *** 

4:Dis 0.32 0.00 *** 

5:Dis 0.34 0.00 *** 

6:Dis 0.20 0.00 *** 

7:Dis 0.38 0.00 *** 

8:Dis 0.39 0.00 *** 

2:Topo -0.76 0.01 * 

3:Topo 0.48 0.03 * 

4:Topo 0.71 0.01 ** 

5:Topo 0.65 0.00 ** 

6:Topo -0.16 0.42  

7:Topo 0.76 0.00 *** 

8:Topo 0.48 0.01 ** 
 

MNL model with Covariate(s): 

▪ Health benefit value 

(generic parameter)  

▪ Dis (alternative-specific 

parameters) 

 

 

Model Fit: 

▪ Log-Likelihood: -2485.4 

▪ McFadden R^2:  -0.41984  

▪ Likelihood ratio test : chisq = -1469.8  

(p.value = 1 

 

 Estimate z-value Signif. 

2:(intercept) -0.01 0.95  

3:(intercept) 0.00 1.00  

4:(intercept) -0.01 0.95  

5:(intercept) -0.01 0.97  

6:(intercept) 0.02 0.89  

7:(intercept) -0.01 0.97  

8:(intercept) 0.09 0.57  

HehValue 3.43 0.88  

2:Dis 8.94 0.88  

3:Dis 10.13 0.88  

4:Dis 14.15 0.88  

5:Dis 14.15 0.88  

6:Dis 8.94 0.88  

7:Dis 14.15 0.88  

8:Dis 14.16 0.88  
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Table G-1 Investigated MNL models (cont’d) 

Model Model Coefficients’ Specifications 

Note: Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 

MNL model with Covariate(s): 

▪ Health benefit value 

(generic parameter) 

▪ Dis & Topo with 

alternative-specific 

parameters 

 

 

Model Fit: 

▪ Log-Likelihood: -2484.5 

▪ McFadden R^2:  -0.41935  

▪ Likelihood ratio test : chisq = -1468.1 

 (p.value = 1) 

 

 

 Estimate z-value Signif. 

2:(intercept) -0.01 0.99  

3:(intercept) -0.01 0.97  

4:(intercept) -0.02 0.94  

5:(intercept) -0.02 0.95  

6:(intercept) 0.04 0.91  

7:(intercept) -0.03 0.93  

8:(intercept) 0.07 0.82  

HehValue 3.43 0.88  

2:Dis 8.94 0.88  

3:Dis 10.13 0.88  

4:Dis 14.15 0.88  

5:Dis 14.15 0.88  

6:Dis 8.94 0.88  

7:Dis 14.15 0.88  

8:Dis 14.16 0.88  

2:Topo 0.00 0.99  

3:Topo 0.01 0.96  

4:Topo 0.01 0.96  

5:Topo 0.01 0.96  

6:Topo -0.01 0.96  

7:Topo 0.01 0.94  

8:Topo 0.01 0.94  
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Table G-1 Investigated MNL models (cont’d) 

Base Covariate: Topo 

Model Model Coefficients’ Specifications 

Note: Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 

MNL model with Covariate(s): 

▪ Topo with alternative-

specific parameters 

 

 

Model Fit: 

▪ Log-Likelihood: -1725.6 

▪ McFadden R^2:  0.014186  

▪ Likelihood ratio test : chisq = 49.664 

 (p.value = 1.6814e-08) 

 Estimate z-value Signif. 

2:(intercept) 0.49 0.34  

3:(intercept) -0.83 0.07 . 

4:(intercept) -1.72 0.00 ** 

5:(intercept) -1.18 0.01 * 

6:(intercept) 0.92 0.01 * 

7:(intercept) -0.85 0.05 * 

8:(intercept) 1.83 0.00 *** 

2:Topo -0.77 0.01 * 

3:Topo 0.41 0.05 . 

4:Topo 0.58 0.02 * 

5:Topo 0.50 0.02 * 

6:Topo -0.21 0.26  

7:Topo 0.56 0.00 ** 

8:Topo 0.27 0.08 . 
 

MNL model with Covariate(s): 

▪ Topo with alternative-

specific parameters 

▪ TT introduced with generic 

parameter 

 

 

Model Fit: 

▪ Log-Likelihood: -1516.8 

▪ McFadden R^2:  0.13348  

▪ Likelihood ratio test : chisq = 467.32  

(p.value = < 2.22e-16) 

 

 Estimate z-value Signif. 

2:(intercept) -0.80 0.13  

3:(intercept) -2.36 0.00 *** 

4:(intercept) -3.38 0.00 *** 

5:(intercept) -2.63 0.00 *** 

6:(intercept) -0.37 0.34  

7:(intercept) -3.67 0.00 *** 

8:(intercept) -0.96 0.01 * 

TT -0.03 0.00 *** 

2:Topo -0.72 0.02 * 

3:Topo 0.49 0.02 * 

4:Topo 0.66 0.01 ** 

5:Topo 0.57 0.01 * 

6:Topo -0.15 0.44  

7:Topo 0.71 0.00 *** 

8:Topo 0.42 0.02 * 
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Table G-1 Investigated MNL models (cont’d) 

Model Model Coefficients’ Specifications 

Note: Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 

MNL model with Covariate(s): 

▪ TT & Topo with 

Alternative-specific  

parameters 

 

 

Model Fit: 

▪ Log-Likelihood: -1487.1 

▪ McFadden R^2:  0.15045  

▪ Likelihood ratio test : chisq = 526.72 

 (p.value = < 2.22e-16) 

 

 

 Estimate z-value Signif. 

2:(intercept) 0.12 0.84  

3:(intercept) -1.70 0.00 *** 

4:(intercept) -3.36 0.00 *** 

5:(intercept) -3.12 0.00 *** 

6:(intercept) 0.11 0.80  

7:(intercept) -3.37 0.00 *** 

8:(intercept) -0.85 0.08 . 

2:Topo -0.76 0.01 * 

3:Topo 0.48 0.03 * 

4:Topo 0.71 0.01 ** 

5:Topo 0.65 0.00 ** 

6:Topo -0.16 0.42  

7:Topo 0.76 0.00 *** 

8:Topo 0.48 0.01 ** 

1:TT -0.05 0.23  

2:TT -0.13 0.29  

3:TT -0.14 0.36  

4:TT -0.13 0.44  

5:TT -0.11 0.46  

6:TT -0.12 0.35  

7:TT -0.26 0.50  

8:TT -0.25 0.50  
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Table G-1 Investigated MNL models (cont’d) 

Model Model Coefficients’ Specifications 

Note: Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 

MNL model with Covariate(s): 

▪ Topo with Alternative-

specific parameters 

▪ TC with generic parameter 

 

 

Model Fit: 

▪ Log-Likelihood: -1722.2 

▪ McFadden R^2:  0.016131  

▪ Likelihood ratio test : chisq = 56.473 

(p.value = 2.2812e-09) 

 

 

 Estimate z-value Signif. 

2:(intercept) 0.53 0.30  

3:(intercept) -0.57 0.21  

4:(intercept) -1.33 0.02 * 

5:(intercept) -1.04 0.03 * 

6:(intercept) 0.99 0.01 ** 

7:(intercept) -0.39 0.41  

8:(intercept) 3.03 0.00 *** 

TC -0.11 0.01 * 

2:Topo -0.77 0.01 * 

3:Topo 0.41 0.05 * 

4:Topo 0.58 0.02 * 

5:Topo 0.50 0.02 * 

6:Topo -0.21 0.26  

7:Topo 0.56 0.00 ** 

8:Topo 0.27 0.08 . 
 

MNL model with Covariate(s): 

▪ Emission cost with generic 

parameter 

▪ Topo with Alternative-

specific parameters 

 

 

Model Fit: 

▪ Log-Likelihood: -1560.3 

▪ McFadden R^2:  0.10862  

▪ Likelihood ratio test : chisq = 380.28 

 (p.value = < 2.22e-16) 

 

 

➢ Model does not make sense in 

terms of Emission cost sign 

 

 Estimate z-value Signif. 

2:(intercept) 0.49 0.34  

3:(intercept) -0.83 0.06 . 

4:(intercept) -1.73 0.00 ** 

5:(intercept) -1.50 0.00 ** 

6:(intercept) 0.92 0.01 * 

7:(intercept) -1.36 0.00 ** 

8:(intercept) 0.45 0.19  

EmissionCost 1.43 0.00 *** 

2:Topo -0.78 0.01 * 

3:Topo 0.41 0.05 * 

4:Topo 0.58 0.02 * 

5:Topo 0.51 0.02 * 

6:Topo -0.21 0.26  

7:Topo 0.58 0.00 ** 

8:Topo 0.32 0.05 * 
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Table G-1 Investigated MNL models (cont’d) 

Model Model Coefficients’ Specifications 

Note: Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 

MNL model with Covariate(s): 

▪ Health value with generic 

parameter 

▪ Topo with alternative-

specific parameters 

 

 

Model Fit: 

▪ Log-Likelihood: -1516.2 

▪ McFadden R^2:  0.13381  

▪ Likelihood ratio test : chisq = 468.44 

 (p.value = < 2.22e-16) 

 

 

➢ Model does not make sense in 

terms of Health value sign 

 

 Estimate z-value Signif. 

2:(intercept) -0.55 0.30  

3:(intercept) -2.12 0.00 *** 

4:(intercept) -4.64 0.00 *** 

5:(intercept) -4.11 0.00 *** 

6:(intercept) -0.12 0.75  

7:(intercept) -3.77 0.00 *** 

8:(intercept) -1.09 0.00 ** 

HehValue -0.12 0.00 *** 

2:Topo -0.71 0.02 * 

3:Topo 0.50 0.02 * 

4:Topo 0.78 0.00 ** 

5:Topo 0.71 0.00 ** 

6:Topo -0.14 0.46  

7:Topo 0.77 0.00 *** 

8:Topo 0.48 0.01 ** 
 

MNL model with Covariate(s): 

▪ Topo & DisPowered with 

alternative-specific 

parameters 

 

 

Model Fit: 

▪ Log-Likelihood: -1485.5 

▪ McFadden R^2:  0.15134  

▪ Likelihood ratio test : chisq = 529.84  

(p.value = < 2.22e-16) 

 

 

 

 

 Estimate z-value Signif. 

2:(intercept) 0.44 0.41  

3:(intercept) -0.95 0.04 * 

4:(intercept) -3.18 0.00 *** 

5:(intercept) -2.96 0.00 *** 

6:(intercept) 0.77 0.04 * 

7:(intercept) -3.36 0.00 *** 

8:(intercept) -0.79 0.04 * 

2:Topo -0.77 0.01 * 

3:Topo 0.43 0.04 * 

4:Topo 0.69 0.01 ** 

5:Topo 0.63 0.01 ** 

6:Topo -0.19 0.31  

7:Topo 0.74 0.00 *** 

8:Topo 0.46 0.01 ** 

2:DisPowered 0.00 0.46  

3:DisPowered 0.00 0.00 *** 

4:DisPowered 0.23 0.00 *** 

5:DisPowered 0.26 0.00 *** 

6:DisPowered 0.00 0.00 *** 

7:DisPowered 0.30 0.00 *** 

8:DisPowered 0.30 0.00 *** 
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Table G-1 Investigated MNL models (cont’d) 

Model Model Coefficients’ Specifications 

Note: Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 

MNL model with Covariate(s): 

▪ Topo with alternative-

specific parameters 

▪ DisPowered with generic 

parameter 

 

 

Model Fit: 

▪ Log-Likelihood: -1585 

▪ McFadden R^2:  0.094502  

 

 

 

 Estimate z-value Signif. 

2:(intercept) 0.50 0.34  

3:(intercept) -0.83 0.06 . 

4:(intercept) -2.80 0.00 *** 

5:(intercept) -2.26 0.00 *** 

6:(intercept) 0.92 0.01 * 

7:(intercept) -1.92 0.00 *** 

8:(intercept) 0.76 0.02 * 

DisPowered -0.01 0.00 *** 

2:Topo -0.78 0.01 * 

3:Topo 0.41 0.05 * 

4:Topo 0.66 0.01 ** 

5:Topo 0.58 0.01 ** 

6:Topo -0.21 0.26  

7:Topo 0.64 0.00 ** 

8:Topo 0.36 0.03 * 
 

MNL model with Covariate(s): 

▪ Topo with alternative-

specific parameters 

▪ Emission cost with generic 

parameter 

 

 

Model Fit: 

▪ Log-Likelihood: -1560.3 

▪ McFadden R^2:  0.10862  

 

 

➢ Model does not make sense in 

terms of Emission cost sign 

 

 Estimate z-value Signif. 

2:(intercept) 0.49 0.34  

3:(intercept) -0.83 0.06 . 

4:(intercept) -1.73 0.00 ** 

5:(intercept) -1.50 0.00 ** 

6:(intercept) 0.92 0.01 * 

7:(intercept) -1.36 0.00 ** 

8:(intercept) 0.45 0.19  

EmissionCost 1.43 0.00 *** 

2:Topo -0.78 0.01 * 

3:Topo 0.41 0.05 * 

4:Topo 0.58 0.02 * 

5:Topo 0.51 0.02 * 

6:Topo -0.21 0.26  

7:Topo 0.58 0.00 ** 

8:Topo 0.32 0.05 * 
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Table G-1 Investigated MNL models (cont’d) 

Model Model Coefficients’ Specifications 

Note: Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 

MNL model with Covariate(s): 

▪ Topo with alternative-

specific parameters 

▪ Emission cost & Health 

value with generic 

parameter 

 

 

Model Fit: 

▪ Log-Likelihood: -1496 

▪ McFadden R^2:  0.14537  

▪ Likelihood ratio test : chisq = 508.93 

(p.value = < 2.22e-16) 

 

 

➢ Model does not make sense in 

terms of Emission cost & 

Health value sign 

 

 Estimate z-value Signif. 

2:(intercept) -0.39 0.46  

3:(intercept) -1.91 0.00 *** 

4:(intercept) -3.76 0.00 *** 

5:(intercept) -3.48 0.00 *** 

6:(intercept) 0.04 0.92  

7:(intercept) -3.30 0.00 *** 

8:(intercept) -1.10 0.00 ** 

EmissionCost 0.64 0.00 *** 

HehValue -0.09 0.00 *** 

2:Topo -0.72 0.02 * 

3:Topo 0.49 0.02 * 

4:Topo 0.72 0.00 ** 

5:Topo 0.66 0.00 ** 

6:Topo -0.15 0.42  

7:Topo 0.73 0.00 *** 

8:Topo 0.47 0.01 ** 
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Table G-1 Investigated MNL models (cont’d) 

Model Model Coefficients’ Specifications 

Note: Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 

MNL model with Covariate(s): 

▪ Topo & DisPowered with 

alternative-specific 

parameters 

▪ Emission cost with generic 

parameter 

 

 

Model Fit: 

▪ Log-Likelihood: -1485.5 

▪ McFadden R^2:  0.15139  

▪ Likelihood ratio test : chisq = 530 

(p.value = < 2.22e-16) 

 

 

 

 Estimate z-value Signif. 

2:(intercept) 0.44 0.40  

3:(intercept) -0.95 0.04 * 

4:(intercept) -3.15 0.00 *** 

5:(intercept) -2.91 0.00 *** 

6:(intercept) 0.77 0.04 * 

7:(intercept) -3.33 0.00 *** 

8:(intercept) -0.78 0.04 * 

EmissionCost -9.04 0.70  

2:Topo -0.78 0.01 * 

3:Topo 0.43 0.04 * 

4:Topo 0.69 0.01 ** 

5:Topo 0.63 0.01 ** 

6:Topo -0.19 0.31  

7:Topo 0.74 0.00 *** 

8:Topo 0.46 0.01 ** 

2:DisPowered 0.00 0.50  

3:DisPowered 0.00 0.00 ** 

4:DisPowered 0.23 0.00 *** 

5:DisPowered 0.50 0.42  

6:DisPowered 0.00 0.00 *** 

7:DisPowered 0.66 0.48  

8:DisPowered 0.99 0.57  
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Table G-1 Investigated MNL models (cont’d) 

Model Model Coefficients’ Specifications 

Note: Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 

MNL model with Covariate(s): 

▪ Topo & DisPowered with 

alternative-specific 

parameters 

 

 

Model Fit: 

▪ Log-Likelihood: -1485.5 

▪ McFadden R^2:  0.15134  

 

 

 Estimate z-value Signif. 

2:(intercept) 0.44 0.41  

3:(intercept) -0.95 0.04 * 

4:(intercept) -3.18 0.00 *** 

5:(intercept) -2.96 0.00 *** 

6:(intercept) 0.77 0.04 * 

7:(intercept) -3.36 0.00 *** 

8:(intercept) -0.79 0.04 * 

2:Topo -0.77 0.01 * 

3:Topo 0.43 0.04 * 

4:Topo 0.69 0.01 ** 

5:Topo 0.63 0.01 ** 

6:Topo -0.19 0.31  

7:Topo 0.74 0.00 *** 

8:Topo 0.46 0.01 ** 

2:DisPowered 0.00 0.46  

3:DisPowered 0.00 0.00 *** 

4:DisPowered 0.23 0.00 *** 

5:DisPowered 0.26 0.00 *** 

6:DisPowered 0.00 0.00 *** 

7:DisPowered 0.30 0.00 *** 

8:DisPowered 0.30 0.00 *** 
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Table G-1 Investigated MNL models (cont’d) 

Model Model Coefficients’ Specifications 

Note: Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 

MNL model with Covariate(s): 

▪ Topo & DisPowered with 

alternative-specific 

parameters 

▪ TC with generic parameter 

 

 

Model Fit: 

▪ Log-Likelihood: -1484.4 

▪ McFadden R^2:  0.15199  

▪ Likelihood ratio test : chisq = 532.12 

 (p.value = < 2.22e-16) 

 

 

➢ Model does not make sense in 

terms of TC sign 

 

 Estimate z-value Signif. 

2:(intercept) 0.40 0.44  

3:(intercept) -1.21 0.01 * 

4:(intercept) -3.33 0.00 *** 

5:(intercept) -3.27 0.00 *** 

6:(intercept) 0.56 0.16  

7:(intercept) -4.58 0.00 *** 

8:(intercept) -4.22 0.06 . 

TC 0.35 0.13  

2:Topo -0.78 0.01 * 

3:Topo 0.43 0.04 * 

4:Topo 0.68 0.01 ** 

5:Topo 0.63 0.01 ** 

6:Topo -0.20 0.30  

7:Topo 0.74 0.00 *** 

8:Topo 0.46 0.01 ** 

2:DisPowered 0.00 0.56  

3:DisPowered 0.00 0.20  

4:DisPowered 0.16 0.01 ** 

5:DisPowered 0.24 0.00 *** 

6:DisPowered 0.00 0.00 *** 

7:DisPowered 0.28 0.00 *** 

8:DisPowered 0.28 0.00 *** 
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Table G-1 Investigated MNL models (cont’d) 

Base Covariate: TT 

Model Model Coefficients’ Specifications 

Note: Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 

MNL Model with Covariate(s): 

▪ TT with generic parameter 

 

 

Model Fit: 

▪ Log-Likelihood: -1543.7 

▪ McFadden R^2:  0.11811  

▪ Likelihood ratio test : chisq = 413.48 (p.v

alue = < 2.22e-16) 

 

 

 

 Estimate z-value Signif. 

2:(intercept) -1.93 0.00 *** 

3:(intercept) -1.38 0.00 *** 

4:(intercept) -2.03 0.00 *** 

5:(intercept) -1.48 0.00 *** 

6:(intercept) -0.62 0.00 *** 

7:(intercept) -2.22 0.00 *** 

8:(intercept) -0.12 0.49  

TT -0.03 0.00 *** 
 

Random Parameter MNL Model 

with Covariate(s): 

▪ TT with random parameter  

▪ random coefficients: 

       Min.    1st Qu.     Median       Mean    3rd 

Qu. Max. 

TT -Inf -0.1886656 -0.0583696 

-0.0583696 0.07192638  Inf 

 

 

Model Fit: 

▪ Log-Likelihood: -1413.4 

▪ McFadden R^2:  0.19254  

▪ Likelihood ratio test : chisq = 674.05 

 (p.value = < 2.22e-16) 

 Estimate z-value Signif. 

2:(intercept) -2.49 0.00 *** 

3:(intercept) -2.08 0.00 *** 

4:(intercept) -2.77 0.00 *** 

5:(intercept) -2.07 0.00 *** 

6:(intercept) -1.19 0.00 *** 

7:(intercept) -4.41 0.00 *** 

8:(intercept) -2.17 0.00 *** 

TT -0.06 0.00 *** 

sd.TT 0.19 0.00 *** 
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Table G-1 Investigated MNL models (cont’d) 

Model Model Coefficients’ Specifications 

Note: Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 

Random Parameter MNL Model 

with Covariate(s): 

▪ TT with random parameter  

▪ random coefficients 

      Min.    1st Qu.      Median        Mean    3rd 

Qu. Max. 

     TT -Inf -0.2006971 -0.06206938 -0.06206938 

0.07655838  Inf 

▪ Topo with alternative-

specific parameter 

 

 

Model Fit: 

▪ Log-Likelihood: -1380.3 

▪ McFadden R^2:  0.21145  

▪ Likelihood ratio test : chisq 

= 740.27  

(p.value = < 2.22e-16) 

 

 Estimate z-value Signif. 

2:(intercept) -1.59 0.00 ** 

3:(intercept) -3.38 0.00 *** 

4:(intercept) -4.49 0.00 *** 

5:(intercept) -3.52 0.00 *** 

6:(intercept) -1.17 0.00 ** 

7:(intercept) -6.77 0.00 *** 

8:(intercept) -3.89 0.00 *** 

TT -0.06 0.00 *** 

2:Topo -0.63 0.06 . 

3:Topo 0.62 0.01 ** 

4:Topo 0.82 0.00 ** 

5:Topo 0.69 0.00 ** 

6:Topo -0.06 0.78  

7:Topo 1.09 0.00 *** 

8:Topo 0.79 0.00 *** 

sd.TT 0.21 0.00 *** 
 

TC 

Model Model Coefficients’ Specifications 

Note: Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 

MNL Model with Covariate(s): 

▪ TC with generic parameter 

▪ DisPowered with 

alternative-specific 

parameter 

 

 

Model Fit: 

▪ Log-Likelihood: -1513.4 

▪ McFadden R^2:  0.13542  

▪ Likelihood ratio test : chisq = 474.1 

 (p.value = < 2.22e-16) 

 

 

➢ Model does not make sense in 

terms of TC sign 

 

 Estimate z-value Signif. 

2:(intercept) -0.86 0.00 *** 

3:(intercept) -0.35 0.14  

4:(intercept) -1.89 0.00 *** 

5:(intercept) -1.95 0.00 *** 

6:(intercept) 0.22 0.29  

7:(intercept) -3.02 0.00 *** 

8:(intercept) -3.29 0.15  

TC 0.35 0.13  

2:DisPowered 0.00 0.46  

3:DisPowered 0.00 0.32  

4:DisPowered 0.14 0.01 * 

5:DisPowered 0.23 0.00 *** 

6:DisPowered 0.00 0.00 *** 

7:DisPowered 0.27 0.00 *** 

8:DisPowered 0.27 0.00 *** 
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Table G-1 Investigated MNL models (cont’d) 

Model Model Coefficients’ Specifications 

Note: Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 

Random Parameter MNL Model 

with Covariate(s): 

▪ TC with random parameter  

▪ random coefficients 

▪ random coefficients 

   Min. 1st Qu.   Median     Mean  3rd Qu. 

Max. 

TC -Inf 1.26584 1.469072 1.469072 

1.672303  Inf 

 

➢ DisPowered with 

alternative-specific parameter 

 

 

Model Fit:  

▪ Log-Likelihood: -1326 

▪ McFadden R^2:  0.24249  

▪ Likelihood ratio test : chisq = 848.95 

 (p.value = < 2.22e-16) 

 

➢ Model does not make sense in 

terms of TC sign 

 

 

 Estimate z-value Signif. 

2:(intercept) -1.0 0.0 *** 

3:(intercept) -1.1 0.0 *** 

4:(intercept) -2.9 0.0 *** 

5:(intercept) -3.5 0.0 *** 

6:(intercept) -0.4 0.1 . 

7:(intercept) -7.4 0.0 *** 

8:(intercept) -15.1 0.0 *** 

TC 1.5 0.0 *** 

2:DisPowered 0.0 0.3  

3:DisPowered 0.0 0.8  

4:DisPowered 0.0 0.4  

5:DisPowered 0.3 0.0 *** 

6:DisPowered 0.0 0.0 *** 

7:DisPowered 0.3 0.0 *** 

8:DisPowered 0.4 0.0 *** 

sd.TC 0.3 0.0 *** 
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Table G-1 Investigated MNL models (cont’d) 

Model Model Coefficients’ Specifications 

Note: Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 

1 

MNL Model with Covariate(s): 

▪ Topo and DisPowered with 

alternative-specific 

parameter 

▪ TC with generic parameter 

 

 

Model Fit: 

▪ Log-Likelihood: -1484.4 

▪ McFadden R^2:  0.15199  

▪ Likelihood ratio test : chisq = 532.12  

(p.value = < 2.22e-16) 

 

 

➢ Model does not make sense in 

terms of TC sign 

 

 Estimate z-value Signif. 

2:(intercept) 0.41 0.44  

3:(intercept) -1.21 0.01 * 

4:(intercept) -3.33 0.00 *** 

5:(intercept) -3.27 0.00 *** 

6:(intercept) 0.56 0.16  

7:(intercept) -4.58 0.00 *** 

8:(intercept) -4.22 0.06 . 

TC 0.35 0.13  

2:DisPowered 0.00 0.56  

3:DisPowered 0.00 0.20  

4:DisPowered 0.16 0.01 ** 

5:DisPowered 0.24 0.00 *** 

6:DisPowered 0.00 0.00 *** 

7:DisPowered 0.28 0.00 *** 

8:DisPowered 0.28 0.00 *** 

2:Topo 0.78 0.01 * 

3:Topo 0.43 0.04 * 

4:Topo 0.68 0.01 ** 

5:Topo 0.63 0.01 ** 

6:Topo -0.20 0.30  

7:Topo 0.74 0.00 *** 

8:Topo 0.46 0.01 ** 
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Table G-1 Investigated MNL models (cont’d) 

Model Model Coefficients’ Specifications 

Note: Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 

Random Parameter MNL Model 

with Covariate(s): 

➢ Topo and DisPowered with 

alternative-specific parameter 

➢ TC with random parameter 

o random coefficients 

   Min.  1st Qu.   Median     Mean  3rd Qu. 

Max. 

TC -Inf 1.275938 1.486062 1.486062 1.69

6185  Inf 

 

 

Model Fit: 

➢ Log-Likelihood: -1291.4 

➢ McFadden R^2:  0.26223  

➢ Likelihood ratio test : chisq = 918.06  

(p.value = < 2.22e-16) 

 

 

➢ Model does not make sense in 

terms of TC sign 

 

 Estimate z-value Signif. 

2:(intercept) 0.27 0.62  

3:(intercept) -2.03 0.00 *** 

4:(intercept) -4.67 0.00 *** 

5:(intercept) -5.23 0.00 *** 

6:(intercept) -0.12 0.79  

7:(intercept) -9.59 0.00 *** 

8:(intercept) -16.90 0.00 *** 

TC 1.49 0.00 *** 

2:DisPowered 0.00 0.42  

3:DisPowered 0.00 0.96  

4:DisPowered 0.07 0.27  

5:DisPowered 0.32 0.00 *** 

6:DisPowered 0.01 0.00 *** 

7:DisPowered 0.37 0.00 *** 

8:DisPowered 0.40 0.00 *** 

2:Topo -0.77 0.02 * 

3:Topo 0.48 0.03 * 

4:Topo 0.79 0.00 ** 

5:Topo 0.78 0.00 *** 

6:Topo -0.17 0.38  

7:Topo 0.98 0.00 *** 

8:Topo 0.75 0.00 *** 

sd.TC 0.31 0.00 *** 
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Table G-1 Investigated MNL models (cont’d) 

Base Covariate: EmissionCost 

Model Model Coefficients’ Specifications 

Note: Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 

MNL Model with Covariate(s): 

▪ Topo with alternative-

specific parameter 

▪ Emission cost with generic 

parameter  

 

 

Model Fit: 

▪ Log-Likelihood: -1560.3 

▪ McFadden R^2:  0.10862  

▪ Likelihood ratio test : chisq = 380.28 

 (p.value = < 2.22e-16) 

 

➢ Model does not make sense in 

terms of Emission cost sign 

 

 Estimate z-value Signif. 

2:(intercept) 0.49 0.34  

3:(intercept) -0.83 0.06 . 

4:(intercept) -1.73 0.00 ** 

5:(intercept) -1.50 0.00 ** 

6:(intercept) 0.92 0.01 * 

7:(intercept) -1.36 0.00 ** 

8:(intercept) 0.45 0.19  

EmissionCost 1.43 0.00 *** 

2:Topo -0.78 0.01 * 

3:Topo 0.41 0.05 * 

4:Topo 0.58 0.02 * 

5:Topo 0.51 0.02 * 

6:Topo -0.21 0.26  

7:Topo 0.58 0.00 ** 

8:Topo 0.32 0.05 * 
 

Random Parameter MNL Model 

with Covariate(s): 

▪ Topo with alternative-

specific parameter 

▪ Emission cost with random 

parameter 

▪ random coefficients 

                              Min.  1st Qu.   Median     Mean  

3rd Qu. Max. 

     EmissionCost -Inf 2.344622 4.858723 

4.858723 7.372825  Inf 

▪  

 

 

Model Fit: 

▪ Log-Likelihood: -1446.3 

▪ McFadden R^2:  0.17375  

▪ Likelihood ratio test : chisq = 608.27  

(p.value = < 2.22e-16) 

 

 

➢ Model does not make sense in 

terms of Emission cost sign 

 

 

 Estimate z-value Signif. 

2:(intercept) 0.50 0.35  

3:(intercept) -0.84 0.07 . 

4:(intercept) -1.73 0.00 ** 

5:(intercept) -1.64 0.00 *** 

6:(intercept) 0.92 0.01 * 

7:(intercept) -1.61 0.00 *** 

8:(intercept) -0.78 0.04 * 

EmissionCost 4.86 0.00 *** 

2:Topo -0.78 0.02 * 

3:Topo 0.42 0.05 . 

4:Topo 0.58 0.02 * 

5:Topo 0.53 0.02 * 

6:Topo -0.21 0.26  

7:Topo 0.62 0.00 ** 

8:Topo 0.42 0.02 * 

sd.EmissionCost 3.73 0.00 *** 
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Table G-1 Investigated MNL models (cont’d) 

Model Model Coefficients’ Specifications 

Note: Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 

MNL Model with Covariate(s): 

▪ DisPowered with 

alternative-specific 

parameter 

▪ Emission cost with generic 

parameter 

 

 

Model Fit: 

▪ Log-Likelihood: -1514.5 

▪ McFadden R^2:  0.13482  

▪ Likelihood ratio test : chisq = 471.98 

 (p.value = < 2.22e-16) 

 

 

 

                  

 Estimate z-value Signif. 

2:(intercept) -0.82 0.00 *** 

3:(intercept) -0.09 0.58  

4:(intercept) -1.69 0.00 *** 

5:(intercept) -1.58 0.00 *** 

6:(intercept) 0.43 0.00 ** 

7:(intercept) -1.77 0.00 *** 

8:(intercept) 0.17 0.33  

EmissionCost -9.56 0.68  

2:DisPowered 0.00 0.40  

3:DisPowered 0.00 0.01 ** 

4:DisPowered 0.21 0.00 *** 

5:DisPowered 0.50 0.42  

6:DisPowered 0.00 0.00 *** 

7:DisPowered 0.67 0.47  

8:DisPowered 1.02 0.56  
 

Random Parameter MNL Model 

with Covariate(s): 

▪ DisPowered with 

alternative-specific 

parameter 

▪ Emission cost with random 

parameter 

▪ random coefficients 

                       Min. 1st Qu.   Median     Mean  3rd 

Qu. Max. 

   EmissionCost -Inf 72.9959 75.53337 75.53337 

78.07084  Inf 

 

 

Model Fit: 

▪ Log-Likelihood: -1405.2 

▪ McFadden R^2:  0.19722  

▪ Likelihood ratio test : chisq = 690.44 

(p.value = < 2.22e-16) 

 

 

 

➢ Model does not make sense in 

terms of Emission cost sign 

 

 Estimate z-value Signif. 

2:(intercept) -0.78 0.00 *** 

3:(intercept) -0.05 0.80  

4:(intercept) -1.23 0.00 *** 

5:(intercept) -1.69 0.00 *** 

6:(intercept) 0.47 0.00 ** 

7:(intercept) -1.81 0.00 *** 

8:(intercept) -0.51 0.01 ** 

EmissionCost 75.50 0.00 ** 

2:DisPowered 0.00 0.88  

3:DisPowered 0.00 0.61  

4:DisPowered 0.13 0.00 *** 

5:DisPowered -1.76 0.01 ** 

6:DisPowered 0.00 0.00 *** 

7:DisPowered -2.70 0.01 ** 

8:DisPowered -5.27 0.00 ** 

sd.EmissionCost 3.76 0.00 *** 
 

 



137 

 

Table G-1 Investigated MNL models (cont’d) 

Model Model Coefficients’ Specifications 

Note: Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 

MNL Model with Covariate(s): 

▪ DisPowered & Topo with 

alternative-specific 

parameter 

▪ Emission cost with generic 

parameter 

 

 

Model Fit: 

▪ Log-Likelihood: -1485.5 

▪ McFadden R^2:  0.15139  

▪ Likelihood ratio test : chisq = 530 

(p.value = < 2.22e-16) 

 

 

 

 Estimate z-value Signif. 

2:(intercept) 0.44 0.41  

3:(intercept) -0.95 0.04 * 

4:(intercept) -3.15 0.00 *** 

5:(intercept) -2.91 0.00 *** 

6:(intercept) 0.77 0.04 * 

7:(intercept) -3.33 0.00 *** 

8:(intercept) -0.78 0.04 * 

EmissionCost -9.04 0.70  

2:DisPowered 0.00 0.50  

3:DisPowered 0.00 0.00 ** 

4:DisPowered 0.23 0.00 *** 

5:DisPowered 0.50 0.42  

6:DisPowered 0.00 0.00 *** 

7:DisPowered 0.66 0.48  

8:DisPowered 0.99 0.57  

2:Topo -0.78 0.01 * 

3:Topo 0.43 0.04 * 

4:Topo 0.69 0.01 ** 

5:Topo 0.63 0.01 ** 

6:Topo -0.20 0.31  

7:Topo 0.74 0.00 *** 

8:Topo 0.46 0.01 ** 
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Table G-1 Investigated MNL models (cont’d) 

Model Model Coefficients’ Specifications 

Note: Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 

Random Parameter MNL Model 

with Covariate(s): 

▪ DisPowered & Topo with 

alternative-specific 

parameter 

▪ Emission cost with random 

parameter 

▪ random coefficients 

                        Min.  1st Qu.   Median     Mean  

3rd Qu. Max. 

   EmissionCost -Inf 74.80909 77.41118 77.41118 

80.01327  Inf 

 

 

Model Fit: 

▪ Log-Likelihood: -1374.8 

▪ McFadden R^2:  0.21459  

▪ Likelihood ratio test : chisq = 751.25 

(p.value = < 2.22e-16) 

 

 

➢ Model does not make sense in 

terms of Emission cost sign 

 

 Estimate z-value Signif. 

2:(intercept) 0.50 0.36  

3:(intercept) -0.89 0.07 . 

4:(intercept) -2.63 0.00 *** 

5:(intercept) -3.08 0.00 *** 

6:(intercept) 0.83 0.03 * 

7:(intercept) -3.55 0.00 *** 

8:(intercept) -1.61 0.00 *** 

EmissionCost 77.40 0.00 ** 

2:DisPowered 0.00 0.94  

3:DisPowered 0.00 0.55  

4:DisPowered 0.14 0.00 *** 

5:DisPowered -1.80 0.01 ** 

6:DisPowered 0.00 0.00 *** 

7:DisPowered -2.76 0.01 ** 

8:DisPowered -5.40 0.00 ** 

2:Topo -0.79 0.02 * 

3:Topo 0.42 0.05 . 

4:Topo 0.66 0.01 ** 

5:Topo 0.66 0.01 ** 

6:Topo -0.20 0.29  

7:Topo 0.82 0.00 *** 

8:Topo 0.52 0.00 ** 

sd.EmissionC

ost 3.86 0.00 *** 
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Table G-1 Investigated MNL models (cont’d) 

Base Covariate: HealthValue 

Model Model Coefficients’ Specifications 

Note: Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 

Mnl.HealthValueandDis 

MNL Model with Covariate(s): 

▪ Health value with generic 

parameter 

▪ DisPowered with 

alternative-specific 

parameter 

 

 

Model Fit: 

▪ Log-Likelihood: -2485.4 

▪ McFadden R^2:  -0.41984  

▪ Likelihood ratio test : chisq = -1469.8  

(p.value = 1) 

 Estimate z-value Signif. 

2:(intercept) -0.01 0.95  

3:(intercept) 0.00 1.00  

4:(intercept) -0.01 0.95  

5:(intercept) -0.01 0.97  

6:(intercept) 0.02 0.89  

7:(intercept) -0.01 0.97  

8:(intercept) 0.09 0.57  

HehValue 3.43 0.88  

2:Dis 8.94 0.88  

3:Dis 10.10 0.88  

4:Dis 14.20 0.88  

5:Dis 14.20 0.88  

6:Dis 8.94 0.88  

7:Dis 14.20 0.88  

8:Dis 14.20 0.88  
 

Random Parameter MNL Model 

with Covariate(s): 

▪ Health value with random 

parameter 

▪ DisPowered with 

alternative-specific 

parameter 

 

 

➢ Model does not run due to 

matrix singularity issues 
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Table G-1 Investigated MNL models (cont’d) 

Model Model Coefficients’ Specifications 

Note: Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 

MNL Model with Covariate(s): 

▪ Health value with generic 

parameter 

▪ Topo with alternative-

specific parameter 

 

 

Model Fit: 

▪ Log-Likelihood: -1516.2 

▪ McFadden R^2:  0.13381  

▪ Likelihood ratio test : chisq = 468.44 

 (p.value = < 2.22e-16) 

 

 

➢ Model does not make sense in 

terms of Health value sign 

 

 Estimate z-value Signif. 

2:(intercept) -0.55 0.30  

3:(intercept) -2.12 0.00 *** 

4:(intercept) -4.64 0.00 *** 

5:(intercept) -4.11 0.00 *** 

6:(intercept) -0.12 0.75  

7:(intercept) -3.77 0.00 *** 

8:(intercept) -1.09 0.00 ** 

HehValue -0.12 0.00 *** 

2:Topo -0.71 0.02 * 

3:Topo 0.50 0.02 * 

4:Topo 0.78 0.00 ** 

5:Topo 0.71 0.00 ** 

6:Topo -0.14 0.46  

7:Topo 0.77 0.00 *** 

8:Topo 0.48 0.01 ** 
 

Random Parameter MNL Model 

with Covariate(s): 

▪ Health value with random 

parameter 

▪ Topo with alternative-

specific parameter 

 

 

➢ Model does not run due to 

matrix singularity issues 
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Table G-1 Investigated MNL models (cont’d) 

Model Model Coefficients’ Specifications 

Note: Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 

MNL Model with Covariate(s): 

▪ Health value with generic 

parameter 

▪ Topo & Dis with 

alternative-specific 

parameter 

 

 

Model Fit: 

▪ Log-Likelihood: -2484.5 

▪ McFadden R^2:  -0.41935  

▪ Likelihood ratio test : chisq = -1468.1 

 (p.value = 1) 

 

 Estimate z-value Signif. 

2:(intercept) -0.01 0.99  

3:(intercept) -0.01 0.97  

4:(intercept) -0.02 0.94  

5:(intercept) -0.02 0.95  

6:(intercept) 0.04 0.91  

7:(intercept) -0.03 0.93  

8:(intercept) 0.07 0.82  

HehValue 3.43 0.88  

2:Topo 0.00 0.99  

3:Topo 0.01 0.97  

4:Topo 0.01 0.96  

5:Topo 0.01 0.96  

6:Topo -0.01 0.96  

7:Topo 0.01 0.94  

8:Topo 0.01 0.95  

2:Dis 8.94 0.88  

3:Dis 10.10 0.88  

4:Dis 14.20 0.88  

5:Dis 14.20 0.88  

6:Dis 8.94 0.88  

7:Dis 14.20 0.88  

8:Dis 14.20 0.88  
 

Random Parameter MNL Model 

with Covariate(s): 

▪ Health value with random 

parameter 

▪ Dis &Topo with 

alternative-specific 

parameter 

 

 

➢ Model does not run due to 

matrix singularity issues 
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