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ABSTRACT

DIOPHANTINE APPROXIMATION FOR ALGEBRAIC POINTS ON CURVES

By

Thomas Plante

A foundational result in Diophantine approximation is Roth’s theorem, which asserts that for

a given algebraic number α and ε > 0, the inequality |α − p/q | < 1/q2+ε has only finitely many

solutions in rational numbers p/q ∈ Q. Ridout and Lang subsequently proved a general form

of Roth’s theorem allowing for arbitrary absolute values (including p-adic absolute values) and

permitting arbitrary (fixed) number fields k in place of the rational numbers. Wirsing proved a

generalization of Roth’s theorem, where the approximating elements are taken from varying number

fields of degree d, and the quantity 2+ ε in Roth’s theorem is replaced by 2d+ ε. As a consequence

of a deep inequality of Vojta, Wirsing’s theorem, appropriately formulated, may be extended to

a Diophantine approximation result for algebraic points of degree d on a nonsingular projective

curve.

The main theorem of this thesis improves on this general form of Wirsing’s theorem further, but

only in the cases where d = 2 and d = 3. More specifically, if we let C be a nonsingular projective

curve over a number field k, S a finite set of places of k and P1, . . . , Pn ∈ C(k) be distinct and

define the divisor D :=
∑n

i=1 Pi, then letting R ∈ C(k) and ε > 0, we get

mD,S(P) ≤ (Nd(D) + ε)hR(P) +O(1)

for all P ∈ C(k) with [k(P) : k] = d ∈ {2, 3}, where mD,S(P) is a sum of local heights associated

to D and S, hR is a global height associated to R, and

Nd(D) := max
{���(σ−1(0) ∪ σ−1(∞)

)
∩ Supp(D)

���}
taken over all finite k-morphisms σ : C → P1 of degree d. As Nd(D) ≤ 2d, the main result gives

a refinement of Wirsing’s theorem depending on the divisor D.



In much the same way that Roth’s theorem can be used to prove Siegel’s Theorem about integral

points on a genus-0 affine curve, the main theorem of this dissertation implies Levin’s generalization

of Siegel’s theorem for algebraic points of degree d in the cases d = 2, 3.

After a review of some properties of global heights and local heights, we also show that the

main theorem is sharp, in the sense that counterexamples exist when Nd(D) + ε is replaced with

Nd(D) − ε.

To prove the main theorem, we first show that for curves of large enough genus, the number of

morphisms σ : C → P1 of degree d = 2, 3 defined over k is finite. We then prove that curves for

which the number of such morphisms is finite satisfy the main theorem. Finally, we prove the main

theorem for the remaining small genus curves on a case by case basis.

We transfer the Diophantine approximation problem for points of degree d on C to a Diophan-

tine approximation problem for rational points on Symd(C) (the dth symmetric power of C). We

exploit the map from Symd(C) to Jac(C), the Jacobian of C, and its associated geometry. We

use Diophantine approximation results for abelian varieties (when we’re on Jac(C)), Diophantine

approximation results for projective spaces (fibers of Symd(C) 7→ Jac(C)), and Diophantine ap-

proximation results on Symd(C) directly, plus algebraic geometry to connect all of these. In the

course of the proof we make use of Schmidt’s subspace theorem and its generalizations due to

Ru-Wong and Evertse-Ferretti as well as a version of Roth’s theorem for nonreduced divisors and

Faltings’ approximation theorem for rational points on abelian varieties.
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CHAPTER 1

AN INTRODUCTION TO DIOPHANTINE APPROXIMATION

1.1 The Road to Roth’s Theorem

An important question in Diophantine approximation is how closely a given real number α ∈ R

can be approximated by rational numbers p/q ∈ Q; in particular, that to approximate α closely both

the numerator, p, and denominator, q, must be large. A typical way of expressing this is to ask, for

a given α ∈ R and e > 0, whether or not the inequality����pq − α
���� ≤ 1

|q |e

has infinitely many solutions p/q ∈ Q. In 1842, it was shown by Dirichlet that

Theorem 1.1.1. For each α ∈ R \ Q the inequality����pq − α
���� ≤ 1

q2

has infinitely many solutions p/q ∈ Q.

Meanwhile, in 1844, Liouville showed that

Theorem 1.1.2 (Liouville). If α is an algebraic number of degree d and if e > d, then the inequality����pq − α
���� ≤ 1

|q |e

has at most finitely many solutions p/q ∈ Q.

In fact, given an algebraic number α of degree d, you can find an effective (explicitly described)

constant C = C(α) > 0 such that the inequality����pq − α
���� ≥ C

|q |d

holds for all p/q ∈ Q \ {α}.
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Example 1.1.3. Let α =
∑∞

i=1 10−i!. Then the partial sums
∑n

i=1 10−i! are solutions to
��� p
q − α

��� ≤
1

|q |e as long as n ≥ e. By Liouville’s theorem, α is transcendental.

In order to start getting nice applications to Diophantine equations, however, one needs an

exponent of d − ε.

Theorem 1.1.4 (Thue, 1909). Let α ∈ Q, [Q(α) : Q] = d. Let ε > 0. Then there are only finitely

many rational numbers p
q ∈ Q satisfying����α − p

q

���� < 1

q
d
2+1+ε

.

Example 1.1.5. Consider integer solutions to the equation x3 − 2y3 = 1. Then

1
y3 =

(
x
y

)3
− 2 =

(
x
y
− 3√2

) ((
x
y

)2
+

x
y

3√2 + 3√4

)
Which implies

��� x
y − 3√2

��� < C
y3 for some constant C > 0. By Thue’s theorem, there are only finitely

many solutions x, y ∈ Z.

More generally, Thue proved that if f ∈ Z[x, y] is an irreducible binary form with deg( f ) ≥ 3,

and r ∈ Z, f (x, y) = r has only finitely many integer solutions x and y.

The exponent d
2 + 1 in Thue’s theorem was subsequently improved to 2

√
d by Siegel (1921)

and
√

2d by Dyson and Gelfond (independently) (1947). In 1955 Roth managed to eliminate the

dependence on d altogether.

Theorem 1.1.6 (Roth’s Theorem). For every algebraic number α and every ε > 0, the inequality����pq − α
���� ≤ 1

|q |2+ε

has only finitely many solutions p/q ∈ Q.

Equivalently, for every real algebraic number α and every ε > 0, there exists a constant

C = C(α, ε) > 0 such that for all p/q ∈ Q \ {α}����pq − α
���� ≥ C

|q |2+ε
.
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note here that Roth’s Theorem only asserts the existence of such a constant C and provides no way

of calculating it, that is, C is not effective. Another equivalent expression of Roth’s Theorem is that

for every real algebraic number α and every ε > 0, there exists a constant C = C(α, ε) > 0 such

that for all p/q ∈ Q \ {α}

log max

{����pq − α
����−1

, 1

}
≤ (2 + ε) log max {|p|, |q |} + C.

This form is significant, because it is written in terms of functions called heights. The left hand side

of the inequality is what’s known as a local height of p/q, relative to the algebraic number α, which

for now we denote λα(p/q). note that the closer p/q gets to α, the larger the local height becomes,

so we think of local height like an inverse distance function. The height of a rational number p/q,

with gcd(p, q) = 1, is h(p/q) := log max {|p|, |q |}. Height can be thought of as a measure of the

arithmetic complexity of a number. Thus, using big-O notation, we may restate Roth’s theorem:

For every algebraic number α and every ε > 0, the inequality

λα(β) ≤ (2 + ε)h(β) +O(1)

holds for all β ∈ Q.

Generalizing to an arbitrary absolute value | · |v on a number field k (normalized as in Definition

2.1.3), we define the following:

Definition 1.1.7. Let k be a number field. Given α ∈ k and an absolute value | · |v on k (with some

fixed extension to k), define the local height associated to α at v by

λα,v(β) := log max
{���� 1
β − α

����
v
, 1

}
for all β ∈ k.

Similarly, we may define the (global) height of an algebraic number (see Definition 2.1.6).
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1.2 Further Approximation Results

In 1958, Ridout generalized Roth’s theorem to p-adic absolute values on Q and soon after Lang

generalized the result to an arbitrary number field.

Theorem 1.2.1 (Roth’s Theorem, General Form). Let S be a finite set of absolute values on a

number field k. For each v ∈ S, let αv ∈ k and fix an extension of | · |v to k. Let ε > 0. Then for

all β ∈ k \ {αv |v ∈ S} ∑
v∈S

λαv,v(β) ≤ (2 + ε)h(β) +O(1).

We can also view Roth’s Theorem as a statement about k-rational points on the projective line

by defining local heights λD,v with respect to a divisor D on P1(k) (see Definition 2.2.1). Then we

get the following:

Theorem 1.2.2 (Roth’s Theorem on P1). Let S be a finite set of places of a number field k. Let

P1, . . . , Pq ∈ P1(k) be distinct points, D =
∑q

i=1 Pi, and ε > 0. Then for all P ∈ P1(k)\{P1, . . . , Pq}

mD,S(P) :=
∑
v∈S

λD,v(P) ≤ (2 + ε)h(P) +O(1).

We will study throughout inequalities of this form, where a sum of local heights, with respect

to some divisor, is bounded by a constant multiple of a global height (where the constant may

depend on the divisor). For curves of genus greater than one, such inequalities are uninteresting

(for rational points) due to Faltings’ theorem:

Theorem 1.2.3 (Faltings’ Theorem). Let C be a smooth projective curve of genus g ≥ 2, defined

over a number field k. Then the number of k-rational points of C is finite.

Proof. See [8, Part E]. □

This is exactly the statement that, given any finite set S of absolute values on a number field

k and distinct points P1, . . . , Pq ∈ C(k), mD,S(P) ≤ O(1) for all P ∈ C(k) \ {P1, . . . , Pq}, where

D =
∑q

i=1 Pi.
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It remains to ask what happens on curves of genus one, i.e. elliptic curves. The answer for

this case is due to Siegel. It requires the notion of a global height associated to a divisor on

a curve C (see Definition 3.8). In the case of curves, we will typically take the divisor D to

consist of a single point R ∈ C(k). By Theorem 2.2.12, if R, R′ ∈ C(k), then for any ε > 0,

|hR(P) − hR′(P)| ≤ εhR(P) + O(1), so that the choice of the point R will not be significant in our

inequalities.

Theorem 1.2.4 (Siegel). Let C be a smooth projective curve of genus one, defined over a number

field k. Let S be a finite set of places of k. Let P1, . . . , Pq ∈ C(k) be distinct points and let

D =
∑q

i=1 Pi. Let R ∈ C(k) and let ε > 0. Then for all P ∈ C(k) \ {P1, . . . , Pq}

mD,S(P) ≤ εhR(P) +O(1).

Another way to generalize Roth’s theorem is to consider, instead of k-rational points, algebraic

points in C(k) of degree d over k. We denote the support of a divisor D by Supp(D).

Theorem 1.2.5 (Wirsing’s Theorem). Let S be a finite set of places of a number field k. Let

P1, . . . , Pq ∈ P1(k) be distinct points and let D =
∑q

i=1 Pi. Let ε > 0 and let d be a positive integer.

Then for all points P ∈ P1(k) \ Supp(D) satisfying [k(P) : k] ≤ d,

mD,S(P) ≤ (2d + ε)h(P) +O(1).

Theorem 1.2.6 (Vojta’s Inequality). Let C be a nonsingular projective curve defined over a number

field k with canonical divisor K . Let S be a finite set of places of k. Let P1, . . . , Pq ∈ C(k) be

distinct points and let D =
∑q

i=1 Pi. Let A be an ample divisor on C. Let ε > 0. If r is a positive

integer then

mD,S(P) + hK (P) ≤ da(P) + εhA(P) +O(1)

for all points P ∈ C(k) \Supp(D) for which [k(P) : k] ≤ r , where da is the arithmetic discriminant

(a value defined by Vojta using Arakelov theory).

Proof. See [17]. □
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Vojta’s inequality implies many important results in Diophantine Geometry, including Falt-

ing’s theorem and Wirsing’s theorem. Vojta also conjectured that the arithmetic discriminant

in the inequality could be replaced by the smaller geometric (logarithmic) discriminant d(P) :=

log |Dk(p) |/[k : Q]. The relationship between these discriminants is similar to that between the

arithmetic and geometric genus. Vojta’s conjecture implies many other famous conjectures, such

as the famous ABC conjecture.

We can use Vojta’s inequality to generalize Wirsing’s theorem to curves.

Theorem 1.2.7. Let C be a nonsingular projective curve over a number field k. Let S be a finite

set of places of k and let R ∈ C(k). Let P1, . . . , Pn ∈ C(k) be distinct and define the divisor

D :=
∑n

i=1 Pi. Let ε > 0 and let d be a positive integer. Then

mD,S(P) ≤ (2d + ε)hR(P) +O(1)

for all P ∈ C(k) with [k(P) : k] = d.

Proof. Follows from Vojta’s inequality. See [14, Equation (2.0.3)]. □

Song and Tucker show that this result is sharp in the following sense.

Theorem 1.2.8. Let C be a nonsingular projective curve over a number field k and let φ : C → P1

be a nonconstant morphism of degree d. Let S be a finite set of places of k and let R ∈ C(k). Let

ε > 0. Then there exists a choice of D such that there is an infinite set of points P ∈ C(k) with

[k(P) : k] ≤ d satisfying

mD,S(P) ≥ (2d − ε)hR(P) +O(1).

Proof. See [14, Theorem 2.3]. □

However, by replacing 2d with a constant depending on the divisor D, we found we could

improve on Theorem 1.2.7 as follows:
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Theorem 1.2.9 (The Main Theorem). Let C be a nonsingular projective curve over a number field

k. Let S be a finite set of places of k. Let P1, . . . , Pn ∈ C(k) be distinct and define the divisor

D :=
∑n

i=1 Pi ∈ Div(C). Let R ∈ C(k) and let ε > 0. Then if d ∈ {2, 3},

mD,S(Q) ≤ (Nd(D) + ε)hR(Q) +O(1)

for all Q ∈ C(k) with [k(Q) : k] = d, where

Nd(D) := max
{���(σ−1(0) ∪ σ−1(∞)

)
∩ Supp(D)

���}
taken over all finite k-morphisms σ : C → P1 of degree d.

note that the most that Nd(D) could ever be is 2d, which agrees with Theorem 1.2.7. These

diophantine approximation inequalities are closely related to qualitative results for integral points

on curves.

1.3 Integral Points on Curves

Let k be a number field and let S be a finite set of places of k containing all archimedean places.

The ring of S-integers, denoted Ok,S, is defined to be the set of all β ∈ k such that |β |v ≤ 1 for all

v < S.

Theorem 1.3.1 (Siegel’s Theorem, 1929). Let C ⊂ An be a nonsingular affine curve over a number

field k and let S be a finite set of places of k containing the archimedean places. An S-integral

point of C is a point whose affine coordinates are all in the ring Ok,S. If C has genus g > 0, or if

C has at least three distinct points at infinity, then C has only finitely many S-integral points.

Proof. See [1, Theorem 7.3.9]. □

Although this qualitative result preceded the above diophantine approximation inequalities on

projective curves, they are related in the following way:
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Let C ⊂ An be a nonsingular affine curve over a number field k. Let C̃ be the nonsingular

projective completion of C and let D be the very ample divisor on C̃ consisting of the points at

infinity of C. Let R ∈ C̃(k) and let ε > 0. By Lemma 3.1.7, the set of S-integral points on C

corresponds (up to a finite number of points) to the set of points P ∈ C̃(k) \ Supp(D) satisfying

mD,S(P) = hD(P) + O(1). If C has genus g = 0 and deg(D) ≥ 3, then C̃ is birationally equivalent

to P1 and

deg(D)hR(P) = hdeg(D)R(P)

≤ (1 + ε)hD(P) +O(1) by Theorem 2.2.12

= (1 + ε)mD,S(P) +O(1)

≤ (1 + ε)(2 + ε)hR(P) +O(1) by Theorem 1.2.2,

implying hR(P) ≤ O(1). By Theorem 2.2.11, there are only finitely many such points. If C has

genus g = 1, then Theorem 1.2.4 says mD,S(P) ≤ εhD(P) + O(1) for all P ∈ C̃ \ Supp(D). But if

mD,S(P) = hD(P) +O(1), then this implies hD(P) ≤ O(1) and once again Theorem 2.2.11 implies

there are only finitely many such points. And of course if C has genus g ≥ 2 then Theorem 1.2.3

implies mD,S(P) ≤ O(1). So if mD,S(P) = hD(P) + O(1), then hD(P) ≤ O(1) and there are only

finitely such points. Thus these three results together imply Siegel’s theorem.

In this way diophantine approximation inequalities for rational points on projective varieties can

be thought of as more precise statements of qualitative results for integral points on affine varieties.

Similar to how Roth’s theorem implies the genus-0 case of Siegel’s theorem, the main theorem

can be used to show the d = 2, 3 cases of the following qualitative result on integral points.

Theorem 1.3.2 (Levin). Let C ⊂ An be a nonsingular affine curve over a number field k and let S

be a finite set of places of k containing the archimedean places. Let C̃ be a nonsingular projective

completion of C and let (C̃ \C)(k) = {P1, . . . , Pq}. Let d be a positive integer. Let Ok,S denote the

integral closure of Ok,S in k. Then there exists a finite extension L of k such that the set

{P ∈ C(OL,S) | [L(P) : L] ≤ d}

8



is infinite if and only if there exists a morphism φ : C̃ → P1, over k with deg(φ) ≤ d and

φ({P1, . . . , Pq}) ⊂ {0,∞}.

Proof. See [10, Theorem 1.9] □

To see how this is implied by the main theorem, let C ⊂ An be a nonsingular affine curve over

a number field k and let S be a finite set of places of k containing the archimedean places. Let C̃

be a nonsingular projective completion of C and let (C̃ \C)(k) = {P1, . . . , Pq}. Let d ∈ {2, 3}. Let

D = P1 + . . . + Pq be a divisor on C̃ and let R ∈ C̃(k). Then for all P ∈ C̃(OL,S) \ {P1, . . . , Pq}

with [k(P) : k] = d,

deg(D)hR(P) = hdeg(D)R(P)

≤ (1 + ε)hD(P) +O(1) by Theorem 2.2.12

= (1 + ε)mD,S(P) +O(1)

≤ (1 + ε)(Nd(D) + ε)hR(P) +O(1) by Theorem 1.2.2,

where

Nd(D) := max
{���(σ−1(0) ∪ σ−1(∞)

)
∩ Supp(D)

���}
taken over all finite k-morphisms σ : C → P1 of degree d. But if there does not exist a morphism

φ : C̃ → P1, over k with deg(φ) ≤ d and φ({P1, . . . , Pq}) ⊂ {0,∞} then N < deg(D), and so the

above inequality implies hR(P) ≤ O(1) and by Theorem 2.2.11, there are only finitely many such

points P.

The main idea behind this result and the main theorem is that we expect almost all of the degree

d points on a curve are coming from pulling back rational points on P1 by maps of degree d. The

following are two other results that are closely related to this heuristic approach.

C is called hyperelliptic (respectively bielliptic) if it admits a map φ : C → X of degree 2 onto

a curve X of genus zero (respectively one).

9



Theorem 1.3.3 (Harris-Silverman). Let C be a nonsingular projective curve over a number field

k. Suppose C has genus g ≥ 2. Assume that C is neither hyperelliptic nor bielliptic. Then the set

of points P ∈ C(k) with [k(P) : k] ≤ 2 is finite.

Proof. See [6, Corollary 3] □

Theorem 1.3.4 (Corvaja-Zannier). Let C ⊂ An be a nonsingular affine curve over a number field

k and let S be a finite set of places of k containing the archimedean places. Let C̃ be a nonsingular

projective completion of C and let (C̃ \ C)(k) = {P1, . . . , Pq}.

(a) If q ≥ 5, then C contains only finitely many quadratic (over k) S-integral points.

(b) If q ≥ 4, then there exists a finite set of rational maps φ : C̃ → P1 of degree 2 such that

all but finitely many of the quadratic S-integral points on C are sent to P1
k by some of the

mentioned maps.

Proof. See [2, Corollary 1] □
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CHAPTER 2

REVIEW OF HEIGHTS

2.1 Heights on Projective Spaces

The height of a rational number p/q is defined to be h(p/q) = log max {|p|, |q |}. Similarly the

height of a point P = (x0, . . . , xn) ∈ Pn(Q), with coordinates chosen so that x0, . . . , xn ∈ Z and

gcd (x0, . . . , xn) = 1, is defined to be h(P) = log max {|x0 |, . . . , |xn |}. One of the key features of

heights is that, given a bound, the number of points of bounded height is finite, that is the set{
P ∈ Pn(Q) | h(P) ≤ B

}
is finite for any B > 0.

In order to generalize the concept of heights to number fields other than Q, we recall some

properties of absolute values on fields. An absolute value on a field k is a map | · | : k → R

satisfying the following.

• |α | ≥ 0 for all α ∈ k.

• |α | = 0 if and only if α = 0.

• |αβ| = |α | |β| for all α, β ∈ k.

• |α + β | ≤ |α | + |β| for all α, β ∈ k.

We say two absolute values on a field k are equivalent if they induce the same topology on k.

It can be shown that

Proposition 2.1.1. Two absolute values | · |1, | · |2 on a field k are equivalent if and only if there is

a positive real number s such that

|x |1 = |x |s2

for all x ∈ k.

11



Proof. See [11, Proposition 3.3]. □

We denote the set of equivalence classes of non-trivial absolute values on a field k by Mk and

call its elements places. If k′ is an extension of k and v is a place of k, we say a place w of k′

extends v, denoted w |v, if the restriction to k of any representative of w is a representative of v.

Definition 2.1.2. The completion of k with respect to the place v is an extension field kv , with a

place w such that:

(a) w |v

(b) The topology of kv induced by w is complete.

(c) k is a dense subset of kv in the above topology.

The completion exists and is unique up to isometric isomorphisms. By abuse of notation, we shall

denote the unique place w also by v.

The standard absolute values on Q are the (usual) archimedean absolute value | · |∞ = | · | and

the p-adic absolute values | · |p = p−ordp(·) for each prime p. By Ostrowski’s Theorem, this is a

complete list of all absolute values on Q up to equivalence.

Definition 2.1.3. Let p be a place on Q. We consider a number field k and a place v of k extending

p. For any x ∈ k, we define

|x |v = |Nkv/Qp(x)|
1/[k:Q]
p

where Nkv/Qp is the norm from kv to Qp.

note that | · |v is an extension to k of | · |[kv :Qp]/[k:Q]
p on Q, an absolute value that by Proposition

2.1 is equivalent to | · |p. That is v |p.

These normalized absolute values satisfy the following.

12



Lemma 2.1.4. Let k be a number field with a place v ∈ Mk . We consider a finite-dimensional

extension field k′ of k. For any x ∈ k∗, ∏
w∈Mk′
w |v

|x |w = |x |v .

Proof. See [1, Lemma 1.3.7]. □

Proposition 2.1.5 (The Product Formula). Let k be a number field. For any x ∈ k∗,∏
v∈Mk

|x |v = 1.

Proof. See [1, Proposition 1.4.4]. □

Definition 2.1.6. The (absolute) height of a point P ∈ Pn(Q) with homogeneous coordinates

(x0, . . . , xn) is defined to be

h(P) =
∑
v∈Mk

max
0≤i≤n

log |xi |v

where k is some number field containing x0, . . . , xn. We also define the height of an algebraic

number α ∈ Q to be the height of the point (α, 1) ∈ P1(Q)

h(α) := h((α, 1)) =
∑
v∈Mk

log max {|α |v, 1}.

Proposition 2.1.7. The height, so defined, is independent of the choice of homogeneous coordinates

for P and the choice of number field k containing them.

Proof. See [1, Lemmas 1.5.2 and 1.5.3]. □

One reason for studying heights is because they satisfy the following.

Theorem 2.1.8 (Northcott’s Theorem). For any numbers B, d ≥ 0, the set

{P ∈ Pn(Q) | h(P) ≤ B and [Q(P) : Q] ≤ d}
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is finite. In particular, for any fixed number field k, the set

{P ∈ Pn
k | h(P) ≤ B}

is finite.

Proof. See [1, Theorem 1.6.8]. □

Another important property of heights is preservation under Galois action.

Proposition 2.1.9. Let σ ∈ Gal(Q/Q). Then h(P) = h(σ(P)) for all P ∈ Pn(Q), where

σ
(
(xi)ni=1

)
:= (σ(xi))ni=1

Proof. See [1, Proposition 1.5.17]. □

2.2 Heights on Projective Varieties

Let X be a projective variety over a number field k. We denote the set of divisors on X by

Div(X). We consider a divisor D on X with associated line bundle O(D) and rational section

sD. There are base-point-free line bundles L, M on X such that O(D) � L ⊗ M−1. Now choose

generating global sections s0, . . . , sm of L and t0, . . . , tn of M , and call the data

D = (sD; L, s; M, t)

a presentation of the divisor D. We denote the support of the divisor D by Supp(D).

Definition 2.2.1. Let v ∈ Mk . For P ∈ X(k) \ Supp(D), we define the local height of P relative to

the presentation D at the place v to be

λD,v(P) := log max
k

min
l

���� sk
tl sD

(P)
����
v
.

Definition 2.2.2. If D1 and D2 are divisors with presentations Di = (sDi ; Li, si; Mi, ti), then we

define the presentation D1 +D2 of the divisor D1 + D2 to be

D1 +D2 := (sD1sD2; L1 ⊗ L2, s1s2; M1 ⊗ M2, t1t2).
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Similarly, if a divisor D has presentation D = (sD; L, s; M, t), we define the presentation −D of

the divisor −D to be

−D := (s−1
D ; M, t; L, s).

Furthermore, if π : Y → X is a morphism of projective varieties such that π(Y ) is not contained in

Supp(D), then we define the presentation π∗D of the divisor π∗D on Y to be

π∗D := (π∗sD; π∗L, π∗s; π∗M, π∗t).

With these definitions, it is immediate that the corresponding local heights satisfy

λD1+D2,v = λD1,v + λD2,v, λ−D,v = −λD,v, and λπ∗D,v = λD,v ◦ π

for all v ∈ Mk .

Definition 2.2.3. An Mk -constant is a map γ : Mk → R with the property that γv = 0 for all but

finitely many v ∈ Mk .

Theorem 2.2.4. Let D and D′ be two presentations of the divisor D. Then there is an Mk -constant

γ such that

|λD,v − λD′,v | ≤ γv .

Proof. See [1, Theorem 2.2.11]. □

For this reason, whenever an inequality holds only up to the addition of a bounded function,

we will omit the presentation D and, by abuse of notation, denote a local height relative to D at a

place v by λD,v .

Proposition 2.2.5. Let D be an effective divisor on X . Then there is a presentation D of D such

that for any P < Supp(D) and for any field extension k ⊂ k′ ⊂ k such that P ∈ X(k′) and any place

v ∈ Mk′, it holds that λD,v(P) ≥ 0.

Proof. See [1, Proposition 2.3.9]. □
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Example 2.2.6. Let α ∈ k. The point (α, 1) in P1
k has the presentation

A = (x0 − αx1;O
P1(1), (x1, x0 − αx1);OP1, 1).

For β ∈ k \ {α} and v ∈ Mk the corresponding local height is

λα,v(β) := λA,v((β, 1)) = log max
{���� 1
β − α

����
v
, 1

}
which is the local height we described in Definition 1.1.7.

Example 2.2.7. The hyperplane {x0 = 0} in Pn
k has the presentation

D = (x0;OPn(1), (x0, x1, . . . , xn);OPn, 1).

For P ∈ Pn
k with x0(P) , 0 and v ∈ Mk the corresponding local height is

λD,v(P) = log max
i

{���� xi
x0

(P)
����
v

}
and the product formula becomes

h(P) =
∑
v∈Mk

λD,v(P).

For this reason we make the following definition.

Definition 2.2.8. Let D = (sD; L, s; M, t) be a presentation of a divisor D on X . For P ∈ X(k)

there are si and t j such that si(P) , 0, t j (P) , 0 by definition of base point free line bundles. Thus

we can find a non-zero rational section s of O(D) such that P is not contained in the support of

the divisor D(s). Then D(s) = (s; L, s; M, t) is a presentation of D(s). If k′ is a finite extension

k ⊂ k′ ⊂ k such that P ∈ X(k′), then we define the global height of P relative to D by

hD(P) =
∑

v∈Mk′
λD(s),v(P).

Proposition 2.2.9. The global height hD is independent of the choices of k′ and of the section s.

Proof. See [1, Proposition 2.3.4]. □
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It is immediately clear by the definition and the above discussion that, given presentations D1,

D2, D of divisors D1, D2, D respectively and a morphism of projective varieties π : X → Y , the

corresponding global heights also satisfy

hD1+D2 = hD1 + hD2, h−D = −hD, and hπ∗D = hD ◦ π.

Furthermore, by Proposition 3.2, if D ∈ Div(X) is effective, then there exists a presentation D of

D such that hD(P) ≥ 0 for all P ∈ X(k).

For two divisors D1 and D2, we write D1 ∼ D2 if D1 is linearly equivalent to D2, i.e. the

difference D2 − D1 is a principal divisor.

Theorem 2.2.10. Let D1, D2 be presentations of divisors D1, D2 ∈ Div(X) with D1 ∼ D2. Then

there is a constant γ > 0 such that

|hD2 − hD1 | ≤ γ.

Proof. See [1, Theorem 2.3.6]. □

Similarly to local heights, whenever an inequality holds only up to the addition of a bounded

function, we will omit the presentation D and, by abuse of notation, denote a global height relative

to D by hD. Furthermore, in the special case where the divisor D is an effective divisor of degree

1 on a curve and Supp(D) = {R}, we define hR := hD.

Global heights also satisfy Northcott’s theorem.

Theorem 2.2.11 (Northcott’s Theorem). Let D be an ample divisor on X and letD be a presentation

of D. Then the set

{P ∈ X(k) | hD(P) ≤ B, [k(P) : k] ≤ d}

is finite for any constants B, d ∈ R.

Proof. See [1, Theorem 2.4.9]. □

Recall that two divisors D1,D2 ∈ Div(X) are algebraically equivalent if there exists a

connected algebraic set T , two points t1, t2 ∈ T(k) and a line bundle L on X × T such that
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O(D1) � L |X×{t1} and O(D2) � L |X×{t2}. In particular if X is a curve, then any two points on X

are algebraically equivalent.

Theorem 2.2.12. Let A, B ∈ Div(X) be algebraically equivalent divisors with A ample. Let ε > 0

and d a positive integer. Then for all P ∈ X(k) with [k(P) : k] ≤ d we have

|hA(P) − hB(P)| ≤ εhA(P) +O(1).

Proof. Follows from [8, Theorem B.5.9] and Theorem 2.2.11. □

Given a presentation D = (sD; L, s; M, t) of a divisor D ∈ Div(X), we have the morphisms

φ : X → Pm
k , P 7→ (s0(P), s1(P), . . . , sm(P))

and

ψ : X → Pn
k, P 7→ (t0(P), t1(P), . . . , tn(P)).

By the product formula we see that hD(P) = h(φ(P)) − h(ψ(P)). Therefore, by Proposition 2.1.9,

for any σ ∈ Gal(k/k) we have hD(σ(P)) = hD(P).

2.3 Heights on Closed Subschemes

We identify a closed subscheme X of a nonsingular projective variety V with its ideal sheaf IX .

Then for closed subschemes X and Y we define the following:

IX+Y = IXIY

IX∩Y = IX + IY

IX∪Y = IX ∩ IY .

We say X ⊂ Y if IY ⊂ IX . Let f : V → W be a morphism of projective varieties. Then

for any closed subscheme X ⊂ V and Z ⊂ W we define the scheme-theoretic image f (X) by

If (X) = Ker(OW → f∗OX ) and the scheme theoretic inverse image f ∗Z by If ∗Z = f −1IZ · OV .
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Lemma 2.3.1. Let f : V → W be a morphism of projective varieties and let Z ⊂ W be a closed

subscheme. The scheme theoretic inverse image f ∗Z is the fibered product

f ∗Z V

Z W

f

of Z and V over W , that is f ∗Z = Z ×W V .

Proof. See Tag 01JU on The Stacks Project [15, Lemma 01JU]. □

Lemma 2.3.2. Let f : V → W be a morphism of projective varieties. Then for any Zariski-closed

subschemes X ⊂ V and Z ⊂ W ,

(a) X ⊂ f ∗( f (X))

(b) f ( f ∗Z) ⊂ Z

Proof. (a) By definition of f (X) we get a commutative diagram of sheaves,

f∗OX f∗OV

OW/If (X) OW

f #

to which the corresponding commutative diagram of schemes is as follows.

X V

f (X) W

f

By the universal property of the fibered product, there exists a unique morphism X →

f (X) ×W V such that the following diagram commutes.

X f (X) ×W V

V

φ
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By Lemma 2.3.1, f (X) ×W V is the inverse image f ∗( f (X)) and the map φ is a closed

immersion. Thus we also get the commutative diagram of structure sheaves,

OV/IX OV/If ∗( f (X))

OV

φ#

which implies that If ∗( f (X)) ⊂ IX , that is X ⊂ f ∗( f (X)).

(b) By Lemma 2.3.1, we know that f ∗Z = Z ×W V . Thus we get the corresponding commutative

diagram of sheaves,
f∗O f ∗Z f∗OV

OW/IZ OW

f #

from which it follows that IZ ⊂ Ker(OW → f∗O f ∗Z ) = If ( f ∗Z), that is f ( f ∗Z) ⊂ Z .

□

Lemma 2.3.3. Let X ⊂ V be a closed subscheme. There exist effective divisors D1, . . . ,Dr such

that X =
∩

Di.

Proof. See [13, Lemma 2.2]. □

Given such D1, . . . ,Dr , we define the local heights corresponding to the closed subscheme X

to be λX,v := mini{λDi,v}, for all places v ∈ Mk . note that on Supp(Di) we may think of λDi,v as

having value ∞ so that λX,v is defined (up to a bounded function) outside
∩

Supp(Di) = Supp(X).

Theorem 2.3.4. Let V be a projective variety defined over a number field k and let v ∈ Mk . Then

up to a bounded function we have the following:

(a) For all closed subschemes X ⊂ V and places v ∈ Mk , the local height λX,v is well-defined,

up to a bounded function, independent of the choice of effective divisors D1, . . . ,Dr .

(b) For all closed subschemes X,Y ⊂ V ,

λX∩Y,v = min{λX,v, λY,v}.
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(c) For all closed subschemes X,Y ⊂ V ,

λX+Y,v = λX,v + λY,v .

(d) If closed subschemes X,Y ⊂ V satisfy X ⊂ Y , then

λX,v ≤ λY,v .

(e) For all closed subschemes X,Y ⊂ V ,

max{λX,v, λY,v} ≤ λX∪Y,v ≤ λX,v + λY,v .

(f) If closed subschemes X,Y ⊂ V satisfy Supp(X) ⊂ Supp(Y ), then there exists a constant c ≥ 0

such that

λX,v ≤ cλY,v .

(g) Let φ : W → V be a morphism of varieties, and let X ⊂ V be a closed subscheme. Then

λW,φ∗X,v = λV,X,v ◦ φ.

Proof. See [13, Theorem 2.1]. □
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CHAPTER 3

PREPARATION

3.1 Useful Results

Given a nonsingular variety V defined over a number field k and a closed subscheme X, and

given D1, . . . ,Dr such that X =
∩r

i=1 Di, we define the local heights corresponding to the closed

subscheme X to be

λX,v(P) := min
1≤i≤r

{λDi,v(P)}

for all points P ∈ V \ X and all places v ∈ Mk . These are well-defined by Theorem 2.3.4. For a set

of places S ⊂ Mk we similarly define

mX,S(P) :=
∑
v∈S

λX,v(P).

Faltings generalized Siegel’s approximation result on elliptic curves to abelian varieties as follows.

Theorem 3.1.1. Let V be an abelian variety over a number field k. Let S be a finite set of places

of k. Let X ⊂ V be a closed subscheme and A an ample divisor on V . Let ε > 0. Then for any

P ∈ V(k) \ Supp(X)

mX,S(P) ≤ εhA(P) +O(1).

Proof. See [5, Theorem 2]. □

Roth’s theorem was also generalized to higher dimensional projective spaces.

Theorem 3.1.2 (Schmidt’s Subspace Theorem). Let k be a number field. Let S be a finite set of

places of k. For each v ∈ S let {L0v, . . . , Lnv} be a linearly independent set of linear forms in the

variables x0, . . . , xn, with coefficients in k and let Hiv be the hyperplane in Pn associated with the

linear form Liv . Let ε > 0. Then there exists a finite set H of hyperplanes of Pn
k such that for all

P ∈ Pn
k \ ∪

H∈H H ∑
v∈S

n∑
i=0

λHiv,v(P) ≤ (Nd(D) + 1 + ε)h(P).
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Proof. See [1, Chapter 7]. □

We say a set of m+1 hyperplanes in Pn is in j-subgeneral position if n ≤ j ≤ m and any subset

of size j + 1 of the hyperplanes will have empty intersection. In this case we get the following

result of Ru and Wong.

Theorem 3.1.3. Let k be a number field. Let S be a finite set of places of k. Let {H0, . . . ,Hm} be

a set of hyperplanes in Pn in d-subgeneral position. Let ε > 0. Then there exists a finite set H of

hyperplanes of Pn
k such that for all P ∈ Pn

k \ ∪
H∈H H

m∑
i=0

mHi,S(P) ≤ (2d − Nd(D) + 1 + ε)h(P).

Proof. See [12, Theorem 3.5]. □

Generalizations of the subspace theorem to projective varieties have been given, independently,

by Corvaja and Zannier [3, Theorem 3] and by Evertse and Ferretti, whose version we state.

Theorem 3.1.4 (Evertse-Ferretti). Let X be a projective subvariety ofPN of dimension n ≥ 1 defined

over a number field k. Let S be a finite set of places of k. For all v ∈ S, let H0,v, . . . ,Hn,v ∈ PN be

hypersurfaces over k such that

X ∩ H0,v ∩ · · · ∩ Hn,v = ∅

Let ε > 0. Then there exists a proper Zariski-closed subscheme Z ⊂ X such that, for all points

P ∈ X(k) \ Z , ∑
v∈S

n∑
i=0

λHi,v,v(P)
degHi,v

< (Nd(D) + 1 + ε)h(P).

Proof. See [4, Theorem 1.1] □

This may be reformulated in terms of divisors as follows.

Theorem 3.1.5 (Evertse-Ferretti, reformulated). Let X be a projective variety of dimension n

defined over a number field k. Let S be a finite set of places of k. For each v ∈ S let D0,v, . . . ,Dn,v

be effective divisors on X , defined over k, in general position. Suppose there exists an ample divisor
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A and positive integers di,v such that Di,v is linearly equivalent to di,vA for all i and for all v ∈ S.

Let ε > 0. Then there exists a proper Zariski-closed subscheme Z ⊂ X such that for all points

P ∈ X(k) \ Z , ∑
v∈S

n∑
i=0

λDi,v,v(P)
di,v

≤ (Nd(D) + 1 + ε)hA(P) +O(1).

Proof. See [9, Theorem 3.1] □

Levin proved that the linear equivalence in this reformulation may be replaced by numerical

equivalence.

Theorem 3.1.6. Let X be a projective variety of dimension n defined over a number field k. Let S

be a finite set of places of k. For each v ∈ S let D0,v, . . . ,Dn,v be effective divisors on X , defined

over k, in general position. Suppose there exists an ample divisor A and positive integers di,v such

that Di,v is numerically equivalent to di,vA for all i and for all v ∈ S. Let ε > 0. Then there exists

a proper Zariski-closed subscheme Z ⊂ X such that for all points P ∈ X(k) \ Z ,∑
v∈S

n∑
i=0

λDi,v,v(P)
di,v

≤ (Nd(D) + 1 + ε)hA(P) +O(1).

Proof. See [9, Theorem 3.2]. □

Let k be a number field and let S be a finite set of places of k containing all archimedean places.

The ring of S-integers, denoted OS, is defined to be the set of all x ∈ k such that |x |v ≤ 1 for

all v < S. If S consists of only the archimedean places, we call these the ring of integers of k,

denoted Ok . If V is a projective variety over k and D a very ample effective divisor on V with

x = (x0 = 1, x1, . . . , xn) a basis for L(D), then the map P 7→ (x1(P), x2(P), . . . , xn(P)) defines an

embedding of V \ Supp(D) into An. We say a point P ∈ V(k) \ Supp(D) is (D, x, S)-integral if

xi(P) ∈ OS for 0 ≤ i ≤ n. note that for any point P ∈ V(k) \ Supp(D), we may choose a b ∈ Ok

which clears the denominators of xi(P), 1 ≤ i ≤ n, so that x′ = (x0 = 1, bx1, . . . , bxn) is a basis of

O(D) such that P is (D, x′, S)-integral. In order to find a more intrinsic definition, we need to look

at sets of points.
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Lemma 3.1.7. Let D be a very ample effective divisor on V . Let R be a subset of V(k) \ Supp(D).

Then the following are equivalent.

(a) There exists a basis x = (x0 = 1, x1, . . . , xn) of O(D) such that R is a set of (D, x, S)-integral

points.

(b) There exists a presentation D of D and an Mk -constant γ such that for all P ∈ R and all

v ∈ Mk \ S,

λD,v(P) ≤ γv .

Proof. See [16, Lemma 1.4.1]. □

Going back to Roth’s theorem, if the points Pi are not distinct we can still say the following.

Theorem 3.1.8 (Roth’s Theorem with Multiplicities). Let S be a finite set of places of a number

field k. Let P1, . . . , Pn ∈ P1
k be distinct points and let c1, c2, . . . cn be positive integers with

c1 ≥ c2 ≥ · · · ≥ cn. Let D =
∑n

i=1 ciPi and let ε > 0. Then for P ∈ P1
k

mD,S(P) < (c1 + c2 + ε)h(P) +O(1).

Proof. See [10, Theorem 2.1]. □

3.2 Sharpness of the Main Result

Let C be a nonsingular projective curve defined over a number field k. Fix a point R ∈ C(k).

For P ∈ C(k) , let k(P) be the field of definition of P (the field extension of k generated by its local

coordinates).

Theorem 3.2.1. Let P1, . . . , Pn ∈ C(k) be distinct and define the divisor D :=
∑n

i=1 Pi. Let ε > 0.

Denote the set of archimedean places of k by Sk,∞. Then there exists a finite extension k′ of k and
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an infinite collection of points P ∈ C(k) with [k′(P) : k′] ≤ d satisfying

mD,Sk′,∞(P) ≥ (N − ε)hR(P) +O(1)

where Nd(D) := max
{���(σ−1(0) ∪ σ−1(∞)

)
∩ Supp(D)

���} taken over all finite k-morphisms σ :

C → P1 of degree d.

Proof. By finitely extending k to k′, we may assume O∗
k′ is an infinite set.

Since D is effective, we know mD,Sk′,∞ ≥ O(1), so we may assume N ≥ 1. For each k-

morphism σ : C → P1 of degree d, let σ(Supp(D)) = {T1,T2, . . . ,Tr } and define ni = ni(σ) :=

|σ−1(Ti) ∩ Supp(D)| for i = 1, 2, . . . , r . Reorder indices so that n1 ≥ n2 ≥ . . . ≥ nr . Then choose

a morphism σ with T1 = 0 and T2 = ∞ such that n1(σ) + n2(σ) = N .

We consider the infinite set of points P ∈ C(k) satisfying σ(P) = (α, 1) for some α ∈ O∗
k′. For

each v ∈ Mk′ define the local height λ0+∞,v on P1 by

λ0+∞,v((a, b)) := log max
0≤i≤1

{����� x2
i

x0x1

�����
v

}�����
(a,b)
= log max

{���a
b

���
v
,

����ba ����
v

}
.

Since λ0+∞,v(σ(P)) = log max
{
|α |v,

��� 1α ���
v

}
for all v ∈ Mk′, we see that λ0+∞,v(σ(P)) = 0 for

v ∈ Mk′ \ Sk′,∞ by definition of O∗
k′. Thus

mσ∗(0+∞),Sk′,∞
(P) =

∑
v∈Sk′,∞

λσ∗(0+∞),v(P) +O(1)

=
∑

v∈Sk′,∞

λ0+∞,v(σ(P)) +O(1)

=
∑

v∈Mk′
λ0+∞,v(σ(P)) +O(1)

= h0+∞(σ(P)) +O(1)

= hσ∗(0+∞)(P) +O(1)

For any effective divisor E on C and v ∈ Mk′, we have λE,v(P) ≥ 0. Thus we have mE,Sk′,∞(P) =∑
v∈Sk′,∞ λE,v(P) ≤

∑
v∈M′

k
λE,v(P) = hE (P). So if σ∗(0 +∞) = ∑m

i=1 Qi then mQi,Sk′,∞(P) ≤
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hQi (P) and

m∑
i=1

mQi,Sk′,∞(P) = mσ∗(0+∞),Sk′,∞
(P) +O(1)

= hσ∗(0+∞)(P) +O(1)

=

m∑
i=1

hQi (P) +O(1).

Therefore in fact mQ,Sk′,∞(P) = hQ(P) for all Q ∈ Supp(σ∗(0 +∞)). So

mD,Sk′,∞(P) =
∑

Q∈Supp(D)
mQ,Sk′,∞(P) +O(1)

≥
∑

Q∈Supp(D)∩Supp(σ∗(0+∞))
mQ,Sk′,∞(P) +O(1)

=
∑

Q∈Supp(D)∩Supp(σ∗(0+∞))
hQ(P) +O(1)

≥ (n1(σ) + n2(σ) − ε)hR(P) +O(1) by Theorem 2.2.12

= (N − ε)hR(P) +O(1).

□

3.3 Facts on Trigonal Maps

From this point forward the symbol ∼ will refer to linear equivalence of divisors on a variety.

We will make frequent use of the following theorem about divisors on curves. For a divisor D

on a nonsingular projective curve C, let l(D) := dimk H0(C,O(D)).

Theorem 3.3.1 (Riemann-Roch Theorem). Let D be a divisor on a curve C of genus g. Let K be a

canonical divisor on C. Then

l(D) − l(K − D) = deg D + 1 − g.

Proof. See [7, Theorem IV.1.3]. □
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Lemma 3.3.2. Let C be a curve of genus g ≥ 3 defined over k. Then C cannot be both hyperelliptic

and trigonal.

Proof. Suppose C is both hyperelliptic and trigonal. Then there exist finite morphisms φ : C → P1

and ψ : C → P1 of degrees 2 and 3 respectively. By the universal property of fibered products

there exists a unique morphism φ : C → P1 × P1 such that the following diagram commutes.

C P1 × P1

P1 P1
φ

ψ

φ

By the commutative diagram we see the degree of φ divides the degrees of φ and ψ, that is 2

and 3, so the degree of φ is 1, meaning φ is a birational morphism. Thus φ(C) is an irreducible

curve on P1 × P1 of type (2, 3). It follows that the genus of C is bounded above by the formula

(d1 − 1)(d2 − 2) for the genus of a nonsingular curve of type (d1, d2) on P1 × P1. That is to say

g ≤ (2 − 1)(3 − 1) = 2. □

Lemma 3.3.3. Let C be a curve of genus g ≥ 5 defined over k. Then C can be trigonal in at most

one way (up to k-automorphism).

Proof. Suppose C is trigonal in more than one way. Then there exist two finite morphisms

φ : C → P1 and ψ : C → P1 of degree 3, distinct even up to an automorphism of P1. By the

universal property of fibered products there exists a unique morphism φ : C → P1 × P1 such that

the following diagram commutes.

C P1 × P1

P1 P1
φ

ψ

φ

π2
π1

By the commutative diagram we see the degree of φ divides the degrees of φ and ψ, so the degree

of φ is either 1 or 3. However if the degree of φ is 3 then the projections π1 and π2 each have

degree 1, so π1 |φ(C) and π2 |φ(C) are birational maps. Thus π1 |φ(C) ◦ π2 |−1
φ(C) is a birational map
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from P1 to P1, which necessarily extends to a k-automorphism. But then φ = π1 |φ(C) ◦ π2 |−1
φ(C) ◦ψ,

a contradiction since φ and ψ were distinct trigonal maps up to k-automorphism of P1.

Thus we conclude the degree of φ is 1, meaning φ is a birational morphism. Then φ(C) is an

irreducible curve on P1 × P1 of type (3, 3). It follows that the genus of C is bounded above by the

formula (d1 − 1)(d2 − 2) for the genus of a nonsingular curve of type (d1, d2) on P1 × P1. That is

to say g ≤ (3 − 1)(3 − 1) = 4. □

Lemma 3.3.4. Let C be a curve of genus g = 3 defined over k. Then C has only finitely many

distinct trigonal k-morphisms up to k-automorphism of P1.

Proof. Let φ : C → P1 be a finite k-morphism of degree 3. Let D be an effective divisor defined

over k in the corresponding base-point free linear system. Then deg(D) = 3, l(D) = 2. By

Riemann-Roch, l(K − D) = 1, which is to say there exists a unique point P ∈ C(k) such that

K − D ∼ P. Since K − D is defined over k it follows that P is k-rational.

If ψ : C → P1 is another trigonal morphism and E a corresponding divisor such that K −E ∼ P

then D ∼ E , implying φ and ψ correspond to the same linear system. Thus φ and ψ are equivalent

up to automorphism of P1.

By Falting’s Theorem, there exists at most finitely many k-rational points on C. Since each

trigonal k-morphism has a corresponding k-rational point and no two distinct trigonal k-morphisms

correspond to the same point, it follows that there are finitely many trigonal k-morphisms up to

automorphism of P1. □

Lemma 3.3.5. Let C be a curve of genus g = 4 defined over k. Then C can be trigonal in at most

two distinct ways up to a k-automorphism of P1.

Proof. Suppose C is trigonal in more than one way. Then there exist two finite morphisms

φ : C → P1 and ψ : C → P1 of degree 3, distinct even up to a k-automorphism of P1. Let D and

E be corresponding effective divisors of the respective base-point free linear systems. Let (1, f )

and (1, g) be local equations for φ and ψ. Because D + E + (1), D + E + ( f ), D + E + (g), and
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D+ E + ( f · g) are all effective divisors, we can think of the functions 1, f , g, and f · g as elements

of L(D + E).

Assume 1, f , g, and f · g are k-linearly dependent. Consider the map φ : C → P1 × P1

given by (φ, ψ) = (1, f ) × (1, g). Composing with the Segre embedding gives a map C → P3 with

coordinates (1, f , g, f · g). Since these are k-linearly dependent, the image lies in a hyperplane in

P3. A hyperplane in P3 cuts out a curve of type (1, 1) in P1×P1. Thus the image of φ lies in a curve

H of type (1, 1). Since neither φ nor ψ is constant, H must be a copy of P1 embedded in P1 × P1.

Thus we get an induced morphism φ′ : C → H satisfying the following commutative diagram.

C H P1 × P1

P1 P1
φ

ψ

φ′

π2
π1

Since H has type (1, 1) it follows that the projections π1 |H and π2 |H restricted to H are morphisms

of degree 1 from P1 to itself, that is automorphisms of P1. Thus φ = π1 |H ◦ π2 |−1
H ◦ ψ, a

contradiction since φ and ψ were distinct trigonal maps up to k-automorphism of P1. Thus

we see the four functions 1, f , g, and f · g must in fact be k-linearly independent. Therefore

l(D + E) = dimk L(D + E) ≥ 4.

By Riemann-Roch we have l(K − D − E) = l(D + E) − 3 ≥ 1. Since deg(K − D − E) = 0 we

conclude K − D − E ∼ 0, that is D + E is a canonical divisor.

Let ξ : C → P1 be a finite morphism of degree 3 with corresponding effective divisor F. If ξ

is not equivalent to φ (up to a k-automorphism of P1) then the same argument shows that D + F

is a canonical divisor. Thus E ∼ F, implying ψ and ξ have the same corresponding linear system,

which is to say ξ is equivalent to ψ. □
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CHAPTER 4

PROOF OF THE MAIN THEOREM

4.1 Algebraic Points on Curves

A divisor B on a projective variety X of dimension n is called big if there exists an a > 0 and

j0 > 0 such that H0(V,OV ( jB)) ≥ a jn for all j > j0.

Lemma 4.1.1 (Kodaira’s Lemma). Let B be a big divisor and D an arbitrary divisor on a nonsin-

gular projective variety V . Then for m ≫ 0,

H0(V,OV (mB − D)) , 0.

Corollary 4.1.2. Let A be an ample divisor and D an arbitrary divisor on a nonsingular projective

variety V . Then for m ≫ 0, hD(P) ≤ mhA(P) +O(1) for all P ∈ V(k).

Proof. Since ample divisors are big, by Kodaira’s Lemma we have

H0(V,OV (mA − D)) , 0

for m ≫ 0. So there exists an effective divisor E such that mA ∼ D + E . Choose an n ∈ Z so that

E + nA is very ample.

(m + n)hA(P) = h(m+n)A(P) +O(1)

= hD+E+nA(P) +O(1)

= hD(P) + hE+nA(P) +O(1)

≥ hD(P) +O(1).

□

Let C be a nonsingular projective curve of genus g ≥ 1 defined over a number field k.

Fix a point R ∈ C(k). For Q ∈ {P ∈ C : [k(P) : k] = d} let Q̃1, . . . , Q̃d be the Galois

conjugates of Q, in some order, and define Q̄ = (Q̃1, . . . , Q̃d) ∈ Cd and φ : Cd → Symd(C) by
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(P1, . . . , Pd) 7→ P1 + . . . + Pd . We identify Symd(C) with the set of effective divisors of degree d

on C. Let π1 : Cd → C be the first projection and let µ : Symd(C) → Jac(C) be the map given by

P1 + . . . + Pd 7→ OC(P1 + . . . + Pd − dR).

We’ll need the following Lemma, as shown in [9].

Lemma 4.1.3. Let S be a finite set of places of k. Let P1, . . . , Pn ∈ C(k) be distinct and define the

divisor D :=
∑n

i=1 Pi. Then for all Q ∈ C(k) with [k(Q) : k] = d

mD,S(Q) = 1
d

mφ∗π∗1D,S(φ(Q̄)) +O(1) and hR(Q) = 1
d

hφ∗π∗1R(φ(Q̄)) +O(1).

Proof. Since local heights are invariant under Galois maps,

mD,S(Q) = 1
d

d∑
i=1

mD,S(Q̃i) +O(1)

=
1
d

d∑
i=1

mD,S(πi(Q̄)) +O(1)

=
1
d

d∑
i=1

mπ∗i D,S(Q̄) +O(1)

=
1
d

m∑d
i=1 π

∗
i D,S

(Q̄) +O(1)

=
1
d

mφ∗φ∗π∗1D,S(Q̄) +O(1)

=
1
d

mφ∗π∗1D,S(φ(Q̄)) +O(1).

The proof for global heights is identical. □

Theorem 4.1.4. Let S be a finite set of places of k. Let P1, . . . , Pn ∈ C(k) be distinct and

define the divisor D :=
∑n

i=1 Pi. Let ε > 0. Then for all Q ∈ C(k) with [k(Q) : k] = d and

µ(φ(Q̄)) < µ(φ∗π∗1(D)),

mD,S(Q) ≤ εhR(Q) +O(1).

Proof. note that φ∗π∗1(D) is an effective divisor on Symd(C) and so a closed subscheme of dimen-

sion d − 1. By Lemma 2.3.2(a), φ∗π∗1(D) ⊂ µ∗(µ(φ∗π∗1(D))). Let A be an ample divisor on Jac(C).
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note that φ∗π∗1R is also ample. By Corollary 4.1.2 there exists an integer m > 0 such that

hµ∗A(E) ≤ mhφ∗π∗1R(E) +O(1)

for all E ∈ Symd(C). Furthermore, for all Q ∈ C(k) with [k(Q) : k] = d and µ(φ(Q̄)) <

µ(φ∗π∗1(D)),

mφ∗π∗1D,S(φ(Q̄)) ≤ mµ∗(µ(φ∗π∗1D)),S(φ(Q̄)) +O(1) by Theorem 2.3.4(d)

= mµ(φ∗π∗1D),S(µ ◦ φ(Q̄)) +O(1)

≤ ε

m
hA(µ ◦ φ(Q̄)) +O(1) by Theorem 3.1.1

=
ε

m
hµ∗A(φ(Q̄)) +O(1)

≤ εhφ∗π∗1R(φ(Q̄)) +O(1) by Corollary 4.1.2.

By Lemma 4.1.3, the desired result holds on C. □

Conversely, we see the following lemma.

Lemma 4.1.5. Let C be a nonsingular projective curve of genus g defined over a number field k.

Let P ∈ C(k) and let Q ∈ C(k) with [k(Q) : k] = d. Suppose that µ(φ(Q̄)) ∈ µ(φ∗π∗1(D)), that is

Q̃1 + · · · + Q̃d ∼ P + R1 + · · · + Rd−1

for some points Rj ∈ C(k). If

g ≥


1 when d = 2

2 when d = 3

then Rj , Q̃k for any j and k. In particular, there exists a k-morphism σ : C → P1 of degree d

such that σ∗(σ(Q)) = Q̃1 + · · · + Q̃d .

Furthermore if d = 4 and g ≥ 5, then we also get such a k-morphism, provided Q̃1+Q̃2+Q̃3+Q̃4

is not a sum of two hyperelliptic divisors on C.
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Proof. note that because [k(P) : k] = 1 and [k(Q̃ j ) : k] = d > 1, we know Q̃ j , P for all

1 ≤ j ≤ d.

Without loss of generality, assume Rd−1 = Q̃d , so that cancelling like terms would leave us

with

Q̃1 + · · · + Q̃d−1 ∼ P + R1 + · · · + Rd−2.

If d = 2, then this says Q̃1 ∼ P, implying either Q̃1 = P or g = 0. But Q̃1 , P and by

hypothesis g ≥ 1. Thus we reach a contradiction.

If d = 3, then this says Q̃1 + Q̃2 ∼ P + R1. If one of Q̃1 and Q̃2 is equal to one of P

and R1, then since P is not equal to Q̃1 or Q̃2, this would imply R1 is equal to either Q̃1 or

Q̃2, so P is linearly equivalent to one of Q̃1 and Q̃2 further implying g = 0, a contradiction.

On the other hand, if the points on the left side of the linear equivalence are distinct from the

points on the right side then there exists a morphism σ : C → P1 of degree two such that

σ(P) = σ(R1). Since g ≥ 2, this says C is hyperelliptic. Since P is a k-rational point and the

unique hyperelliptic map σ is a k-morphism, R1 must be k-rational as well. Let ξ ∈ Gal
(
k/k

)
.

Then ξ(R2) ∼ ξ(Q̃1 + Q̃2 + Q̃3) −P− R1 = Q̃1 + Q̃2 + Q̃3 −P− R1 ∼ R2. Since g > 0, ξ(R2) = R2.

Since ξ was arbitrary, R2 is k-rational, contradicting the assumption R2 = Q̃3 since Q̃3 is a cubic

point over k.

If d = 4, then this says Q̃1+Q̃2+Q̃3 ∼ P+R1+R2. Since g ≥ 5, there exists at most one trigonal

map (up to automorphism of P1), at most one hyperelliptic map (up to automorphism of P1), and not

both. If C has a unique trigonal mapσ withσ(P) = σ(R1) = σ(R2), by uniqueness, σ is k-rational,

else we could use Galois conjugation to get a new hyperelliptic morphism. Since P is a k-rational

point, we see that R1 and R2 are at worst quadratic conjugates. Thus for any ξ ∈ Gal
(
k/k

)
, we have

ξ(R3) ∼ ξ(Q̃1 + Q̃2 + Q̃3 + Q̃4) − P − ξ(R1 + R2) = Q̃1 + Q̃2 + Q̃3 + Q̃4 − P − R1 − R2 ∼ R3. Since

g > 0, ξ(R3) = R3. Since ξ was arbitrary, R3 is a k-rational point, contradicting the assumption

R3 = Q̃4, since Q̃4 is a quartic point over k.

If this does not give a trigonal map, say R2 = Q̃3 as well, then C has a unique hyperelliptic

map σ with σ(Q̃1) = σ(Q̃2) and σ(P) = σ(R1) and by the same argument in the d = 3 case, R1 is
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k-rational. Thus for any ξ ∈ Gal
(
k/k

)
, we have ξ(R2 + R3) ∼ ξ(Q̃1 + Q̃2 + Q̃3 + Q̃4) − P − R1 =

Q̃1 + Q̃2 + Q̃3 + Q̃4 − P − R1 ∼ R2 + R3. So σ(R2) = σ(R3). But R2 = Q̃3 and R3 = Q̃4,

so σ(Q̃3) = σ(Q̃4), meaning Q̃1 + Q̃2 + Q̃3 + Q̃4 is a sum of two hyperelliptic divisors on C,

contradicting the hypothesis. □

Theorem 4.1.6. Let S be a finite set of places of k. Let P1, . . . , Pn ∈ C(k) be distinct and define

the divisor D :=
∑n

i=1 Pi. Let σ : C → P1 be a k-morphism of degree d. Let σ(Supp(D)) =

{T1,T2, . . . ,Tr } and define ni = ni(σ) := |σ−1(Ti) ∩ Supp(D)| for i = 1, 2, . . . , r . Reorder indices

so that n1 ≥ n2 ≥ . . . ≥ nr . Let ε > 0. Then for all Q ∈ C \ Supp(D) with [k(Q) : k] = d and

σ(Q) ∈ P1(k)

mD,S(Q) ≤ (n1 + n2 + ε)hR(Q) +O(1)

Proof. Let ι : P1 → Symd(C) ⊂ Div+(C) be given by ι(T) = σ∗(T). Then ι is an embedding with

ι∗φ∗π∗1 = σ∗. Since σ(Q) ∈ P1(k), any Galois map over k will only permute the set σ−1(σ(Q))

implying ι ◦ σ(Q) = σ∗(σ(Q)) = Q̃1 + · · · + Q̃d . Thus up to O(1)

mD,S(Q) = 1
d

mφ∗π∗1(D),S(φ(Q̄)) by Lemma 4.1.3

=
1
d

mφ∗π∗1(D),S(i ◦ σ(Q))

=
1
d

mi∗φ∗π∗1(D),S(σ(Q))

=
1
d

mσ∗(D),S(σ(Q))

≤ 1
d
(n1 + n2 + ε)hσ(Q)(σ(Q)) by Theorem 3.1.8

=
1
d
(n1 + n2 + ε)hσ∗σ(Q)(Q)

=
1
d
(n1 + n2 + ε)

[
hQ̃1

(Q) + · · · + hQ̃d
(Q)

]
≤ (n1 + n2 + ε)(1 + ε)hR(Q)

= (n1 + n2 + ε(n1 + n2 + 2))hR(Q).

And replacing ε with ε/(2d + 2) gives the desired result. □

35



Lemma 4.1.7. Let S be a finite set of places of k. Let P1, . . . , Pn ∈ C(k) be distinct and define the

divisor D :=
∑n

i=1 Pi. Let ε > 0. Suppose there exist only a finite number of k-morphisms C → P1

of degree d (modulo automorphisms of P1). Then for all Q ∈ C(k) with [k(Q) : k] = d such that

σ(Q) ∈ P1(k) for some k-morphism σ : C → P1 of degree d, we have

mD,S(Q) ≤ (Nd(D) + ε)hR(Q) +O(1)

where Nd(D) := max
{���(σ−1(0) ∪ σ−1(∞)

)
∩ Supp(D)

���} taken over all finite k-morphisms σ :

C → P1 of degree d.

Proof. Let {σj } be the unique set of representatives of the equivalence classes of k-morphisms

C → P1 of degree d (modulo automorphisms of P1) such that

n1(σj ) =
���σ−1

j (0) ∩ Supp(D)
��� and n2(σj ) =

���σ−1
j (∞) ∩ Supp(D)

���
for all j, where ni is as defined in Theorem 4.1.6. By definition it is clear that N = n1(σj )+ n2(σj )

for some j. Let Q ∈ C(k) with [k(Q) : k] = d such that σ(Q) ∈ P1(k) for some k-morphism

σ : C → P1 of degree d. After composing with an automorphism of P1 we may assume σ = σj

for some j. Thus by Theorem 4.1.6, for all Q ∈ C(k) with [k(Q) : k] = d such that σ(Q) ∈ P1(k)

for some k-morphism σ : C → P1 of degree d, we have

mD,S(Q) ≤ max
j

{(n1(σj ) + n2(σj ) + ε)hR(Q) +O j (1)}

≤ (Nd(D) + ε)hR(Q) +O(1).

□

Corollary 4.1.8. Let S be a finite set of places of k. Let P1, . . . , Pn ∈ C(k) be distinct and define

the divisor D :=
∑n

i=1 Pi. Let ε > 0. If g ≥ 2, then for all Q ∈ C(k) with [k(Q) : k] = 2,

mD,S(Q) ≤ (Nd(D) + ε)hR(Q) +O(1)

where Nd(D) := max
{���(σ−1(0) ∪ σ−1(∞)

)
∩ Supp(D)

���} taken over all finite k-morphisms σ :

C → P1 of degree 2.
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Proof. For those Q ∈ C(k) with µ(φ(Q̄)) < µ(φ∗π∗1(D)) the result follows from Theorem 4.1.4,

regardless of the value of Nd(D). For those Q ∈ C(k) with [k(Q) : k] = 2 and µ(φ(Q̄)) ∈

µ(φ∗π∗1(D)), Lemma 4.1.5 implies there exists a morphism σ : C → P1 of degree 2 such that

σ∗(σ(Q)) = φ(Q̄), that is σ(Q) ∈ P1(k). Since g ≥ 2, such a hyperelliptic map is unique up to an

automorphism of P1, so the result follows from Lemma 4.1.7. □

Corollary 4.1.9. Let S be a finite set of places of k. Let P1, . . . , Pn ∈ C(k) be distinct and define

the divisor D :=
∑n

i=1 Pi. Let ε > 0. If g ≥ 3, then for all Q ∈ C(k) with [k(Q) : k] = 3,

mD,S(Q) ≤ (Nd(D) + ε)hR(Q) +O(1)

where Nd(D) := max
{���(σ−1(0) ∪ σ−1(∞)

)
∩ Supp(D)

���} taken over all finite k-morphisms σ :

C → P1 of degree 3.

Proof. For those Q ∈ C(k) with µ(φ(Q̄)) < µ(φ∗π∗1(D)) the result follows from Theorem 4.1.4,

regardless of the value of Nd(D). For those Q ∈ C(k) with [k(Q) : k] = 3 and µ(φ(Q̄)) ∈

µ(φ∗π∗1(D)), Lemma 4.1.5 implies there exists a morphism σ : C → P1 of degree 3 such that

σ∗(σ(Q)) = φ(Q̄), that is σ(Q) ∈ P1(k). If g ≥ 5, by Theorem 3.3.2 such a trigonal morphism

is unique up to an automorphism of P1. If g = 4, then by Theorem 3.3.5 there exist at most two

such trigonal morphisms. If g = 3, then by Theorem 3.3.4 there are only finitely many trigonal

k-morphisms. So the result follows from Lemma 4.1.7. □

4.2 Quadratic Points on Elliptic Curves

First, a general lemma.

Lemma 4.2.1. Let C be a projective nonsingular curve of genus g defined over a number field

k. Let S be a finite set of places of k. Let P1, . . . , Pn ∈ C(k) be distinct and define the divisor

D :=
∑n

i=1 Pi. Let R ∈ C(k) and let ε > 0. Let d be a positive integer and let Z be a finite union of

irreducible curves in Symd(C).
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(a) If g = 1 and d = 2 and there does not exist a subset {i1, . . . , i4} ⊂ {1, . . . , n} such that

Pi1 + Pi2 ∼ Pi3 + Pi4

then for all Q ∈ C(k) with [k(Q) : k] = 2 and φ(Q̄) ∈ Z we have

mD,S(Q) ≤ (3 + ε)hR(Q) +O(1).

(b) If g = 1 and d = 3 and there does not exist a subset {i1, . . . , i6} ⊂ {1, . . . , n} such that

Pi1 + Pi2 + Pi3 ∼ Pi4 + Pi5 + Pi6

then for all Q ∈ C(k) with [k(Q) : k] = 3 such that φ(Q̄) ∈ Z we have

mD,S(Q) ≤ (5 + ε)hR(Q) +O(1).

(c) If g = 2 and d = 3 and there does not exist a subset {i1, . . . , i6} ⊂ {1, . . . , n} such that

Pi1 + Pi2 + Pi3 ∼ Pi4 + Pi5 + Pi6

then for all Q ∈ C(k) with [k(Q) : k] = 2 such that φ(Q̄) ∈ Z we have

mD,S(Q) ≤ (5 + ε)hR(Q) +O(1).

Furthermore if there does not exist a subset {i1, . . . , i5} ⊂ {1, . . . , n} and a point T ∈ C(k)

distinct from Pi1, Pi2, Pi3 such that

Pi1 + Pi2 + Pi3 ∼ Pi4 + Pi5 + T

then for all Q ∈ C(k) with [k(Q) : k] = 3 such that φ(Q̄) ∈ Z we have

mD,S(Q) ≤ (4 + ε)hR(Q) +O(1).

Proof. Let Z =
∑r

j=1 Z j be the decomposition of Z into irreducible curves. Since φ(Q̄) <

Supp(φ∗π∗1D), we may assume Z j \ Supp(φ∗π∗1D) is nonempty, that is Z j is not a subset of
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Supp(φ∗π∗1Pi) for i = 1, . . . , n. We think of Z j with the reduced induced closed subscheme

structure and let ρ j : Z j → X be the closed immersion. If there are only finitely many points

Q ∈ C(k) such that [k(Q) : k] = d and φ(Q̄) ∈ Z j , then we are done. Else Z j has infinitely many

k-rational points, thus by Falting’s Theorem Z j has genus 0 or 1. If Z j has genus 1 then for those

Q ∈ C(k) with [k(Q) : k] = d and φ(Q̄) ∈ ρ j (Z j ),

mD,S(Q) = 1
d

mφ∗π∗1D,S(φ(Q̄)) +O(1) by Lemma 4.1.3

=
1
d

mρ∗jφ∗π
∗
1D,S(ρ

−1
j (φ(Q̄))) +O(1)

≤ ε

d
hρ∗jφ∗π

∗
1R(ρ

−1
j (φ(Q̄))) +O(1) by Lemma 3.1.1

=
ε

d
hφ∗π∗1R(φ(Q̄)) +O(1)

= εhR(Q) +O(1) by Lemma 4.1.3.

Alternatively if Z j has genus 0 then, since abelian varieties admit no rational subvarieties,

the image µ(Z j ) ∈ Jac(C) = C is a point. Thus Z j is contained in a fiber Y of µ. Let E ∈ Y .

Then the subvariety Y ⊂ Symd(C) may be thought of as the complete linear system |E | of the

degree d divisor E on C. Furthermore the divisor φ∗π∗1Pi |Y may be thought of as the linear system

|E − Pi | + Pi, and thus as a linear subspace of the projective space Y .

If d = g + 1, where g = 1 or 2, then by Riemann-Roch the complete linear systems of divisors

of degree d all have dimension 1, so Y = P1. Since φ∗π∗1Pi |Y is a linear subspace, it is either a

single point, or all of Y . Furthermore, because Z j has dimension 1, it follows that Z j = Y . So

either Z j ⊂ Supp(φ∗π∗1Pi), a contradiction, or ρ∗jφ∗π
∗
1Pi = φ∗π∗1Pi |Y is a degree 1 divisor.

If g = 1 and d = 3, then by Riemann-Roch, the complete linear systems of divisors of degree

d all have dimension 2. Riemann-Roch also tells us that |E − Pi | has dimension 1 and so φ∗π∗1Pi |Y

is a line in the projective plane Y . note the divisors φ∗π∗1Pi are in 3-subgeneral position, thus so

are the lines φ∗π∗1Pi |Y . By Theorem 3.1.3, there exists a finite set H of lines in Y such that for all
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P ∈ Y \ ∪
H∈H H

mφ∗π∗1D|Y ,S(P) =
n∑

i=1
mφ∗π∗1Pi |Y ,S(P) +O(1)

≤ (5 + ε)h(P) +O(1) by Theorem 3.1.3,

where h is the canonical height on Y � P2. Thus if Z j < H, then for all Q ∈ C(k) with

[k(Q) : k] = d and φ(Q̄) ∈ ρ j (Z j )

mD,S(Q) = 1
3

mφ∗π∗1D,S(φ(Q̄)) +O(1) by Lemma 4.1.3

=
1
3

mρ∗jφ∗π
∗
1D,S(ρ

−1
j (φ(Q̄))) +O(1)

≤ 1
3
(5 + ε)hρ∗jφ∗π

∗
1R(ρ

−1
j (φ(Q̄))) +O(1)

=
1
3
(5 + ε)hφ∗π∗1R(φ(Q̄)) +O(1)

= (5 + ε)hR(Q) +O(1) by Lemma 4.1.3.

Since this would satisfy every inequality in part (b), we need not consider this case any further. If

Z j ∈ H, then either Z j ⊂ Supp(φ∗π∗1Pi), a contradiction, or ρ∗jφ∗π
∗
1Pi has degree 1.

At most d of the divisors ρ∗jφ∗π
∗
1(Pi) can coincide, and if c divisors

ρ∗jφ∗π
∗
1(Pi1), . . . , ρ

∗
jφ∗π

∗
1(Pic )

coincide, then

Pi1 + . . . + Pic + Rc+1 + . . . + Rd ∼ E

for some Rc+1, . . . , Rd ∈ C(k). Let ρ∗jφ∗π
∗
1(D) = ∑p

m=1 cmEm for some positive integers

c1, c2, · · · , cp with c1 ≥ c2 ≥ · · · ≥ cp. Then for Q ∈ C(k) with [k(Q) : k] = d and φ(Q̄) ∈ Z j

mD,S(Q) = 1
d

mφ∗π∗1(D),S(φ(Q̄)) +O(1) by Lemma 4.1.3

=
1
d

mφ∗π∗1(D)|Yjk
,S(φ(Q̄)) +O(1)

≤ 1
d
(c1 + c2 + ε)hφ∗π1∗(R)|Yjk

(φ(Q̄)) +O(1) by Lemma 3.1.8

=
1
d
(c1 + c2 + ε)hφ∗π1∗(R)(φ(Q̄)) +O(1)

= (c1 + c2 + ε)hR(Q) +O(1) by Lemma 4.1.3.
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If there does not exist a subset {i1, . . . , i2d} ⊂ {1, . . . , n} such that

Pi1 + . . . + Pid ∼ Pid+1 + . . . + Pi2d

then for all Q ∈ C(k) with [k(Q) : k] = d such that φ(Q̄) ∈ Z j we have

mD,S(Q) ≤ (2d − 1 + ε)hR(Q) +O(1).

Finally, in the special case where g = 2 and d = 3, if there does not exist a subset {i1, . . . , i5} ⊂

{1, . . . , n} and a point T ∈ C(k) distinct from Pi1, Pi2, Pi3 such that

Pi1 + Pi2 + Pi3 ∼ Pi4 + Pi5 + T

then either such a linear equivalence does not exist for any T ∈ C(k) , in which case, for all Q ∈ C(k)

with [k(Q) : k] = 3 such that φ(Q̄) ∈ Z , we have

mD,S(Q) ≤ (4 + ε)hR(Q) +O(1).

Else, there does exist a subset {i1, . . . , i5} ⊂ {1, . . . , n} and a point T ∈ C(k) such that

Pi1 + Pi2 + Pi3 ∼ Pi4 + Pi5 + T

with either T < C(k) or T ∈ {Pi1, Pi2, Pi3}. However since every other point in the linear

equivalence is k-rational and thus fixed under Galois maps over k, it follows that T is also fixed,

and so T ∈ C(k) automatically. Thus T ∈ {Pi1, Pi2, Pi3}, say T = Pi3 . But that would imply

φ∗π∗1Pi3 intersects the projective line Y = Z j in more than one point, contradicting the fact that

ρ∗jφ∗π
∗
1Pi = φ∗π∗1Pi |Y has degree 1 as shown above.

Since there are only finitely many irreducible components Z j in Z , we may take the maximum

of the constants O(1) in each of the above inequalities to prove the same inequalities holds for all

Q ∈ C(k) with [k(Q) : k] = d such that φ(Q̄) ∈ Z . □

Proposition 4.2.2. Suppose g = 1. Let S be a finite set of places of k. Let P1, . . . , Pn ∈ C(k) be

distinct and define the divisor D :=
∑n

i=1 Pi. Let ε > 0. Then for all Q ∈ C(k) with [k(Q) : k] = 2

mD,S(Q) ≤ (4 + ε)hR(Q) +O(1)
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and if there does not exist a subset {i1, . . . , i4} ⊂ {1, . . . , n} such that

Pi1 + Pi2 ∼ Pi3 + Pi4

then for all Q ∈ C(k) with [k(Q) : k] = 2 we have

mD,S(Q) ≤ (3 + ε)hR(Q) +O(1).

Proof. We may assume n > 2. Since π∗1(R) + π
∗
2(R) is an ample divisor on C2, we see that

φ∗(π∗1(R) + π
∗
2(R)) = 2φ∗π∗1(R) is an ample divisor on Sym2(C) and therefore so is φ∗π∗1(R).

Since any two points on a curve are numerically equivalent, we also have φ∗π∗1(Pi) is numerically

equivalent to φ∗π∗1(R) for all i. The divisors φ∗π∗1(Pi) are in general position since the intersection

of φ∗π∗1(Pi1) and φ∗π∗1(Pi2) in Sym2(C) is the point Pi1 + Pi2 .

For each v ∈ S, choose two of the divisors φ∗π∗1(Pi) to be D1,v and D2,v . Then applying Theorem

3.1.6 with X = Sym2(C), A = φ∗π∗1(R) and di = 1, for 1 ≤ i ≤ 2, we see there exists a proper

Zariski-closed subscheme Z ⊂ Sym2(C) such that for all points Q ∈ C(k) with [k(Q) : k] = 2 and

φ(Q̄) ∈ Sym2(C)(k) \ Z ,∑
v∈S

2∑
i=1

λDi,v,v(φ(Q̄)) < (3 + ε)hφ∗π∗1(P1)(φ(Q̄)).

Since at most two of the divisors φ∗π∗1(Pi) intersect at a point, we see that a point in Sym2(C)(k)\ Z

can be v-adically close to at most two of these divisors for each v ∈ S. Points v-adically closest

to D1,v and D2,v cannot be (arbitrarily) v-adically close to any other of the divisors φ∗π∗1(Pi), that

is those local heights λφ∗π∗1(Pi) are bounded for such points. Thus for all points Q ∈ C(k) with

[k(Q) : k] = 2 and φ(Q̄) ∈ Sym2(C)(k) \ Z with φ(Q̄) v-adically closest to D1,v and D2,v for each
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v ∈ S,

mD,S(Q) = 1
2

mφ∗π∗1(D),S(φ(Q̄)) +O(1) by Lemma 4.1.3

=
1
2

∑
v∈S

n∑
i=1

λφ∗π∗1(Pi),v(φ(Q̄)) +O(1)

=
1
2

∑
v∈S

2∑
i=1

λDi,v,v(φ(Q̄)) +O(1)

<
1
2
(3 + ε)hφ∗π∗1(R)

(φ(Q̄)) +O(1)

= (3 + ε)hR(Q) +O(1) by Lemma 4.1.3.

Since this inequality does not depend upon the choices of D1,v and D2,v for each place v ∈ S, the

result follows for all Q ∈ C(k) with [k(Q) : k] = 2 and φ(Q̄) ∈ Sym2(C)(k) \ Z .

Since φ(Q̄) ∈ Sym2(C)(k) it only remains to consider the case where φ(Q̄) ∈ Z . By Lemma

4.2.1, then for all Q ∈ C(k) with [k(Q) : k] = 2 such that φ(Q̄) ∈ Z we have

mD,S(Q) ≤ (4 + ε)hR(Q) +O(1)

and if there does not exist a subset {i1, i2, i3, i4} ⊂ {1, . . . , n} such that

Pi1 + Pi2 ∼ Pi3 + Pi4

then for all Q ∈ C(k) with [k(Q) : k] = 2 such that φ(Q̄) ∈ Z we have

mD,S(Q) ≤ (3 + ε)hR(Q) +O(1).

Combining the above inequalities, we get that the proposition holds for all Q ∈ C(k) with [k(Q) :

k] = 2. □

Corollary 4.2.3. Let C be a nonsingular projective curve of genus-1 defined over a number field k

and let R ∈ C(k). Let S be a finite set of places of k. Let P1, . . . , Pn ∈ C(k) be distinct and define

the divisor D :=
∑n

i=1 Pi. Let ε > 0. Then for all Q ∈ C(k) with [k(Q) : k] = 2,

mD,S(Q) ≤ (N2(D) + ε)hR(Q) +O(1)
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where N2(D) := max
{���(σ−1(0) ∪ σ−1(∞)

)
∩ Supp(D)

���} taken over all k-morphisms σ : C → P1

of degree 2. If no such k-morphism exists, we say N2(D) = 0.

Proof. First note that since degree 2 morphisms are at most 2-to-1, we have N2(D) ≤ 4. By

Riemann-Roch, the dimension of the complete linear system |E | of any divisor E on C of positive

degree is given by dim|E | = deg(E) − 1. If there are only finitely many points Q ∈ C(k) with

[k(Q) : k] = 2, then mD,S(Q) ≤ O(1), so we assume there are infinitely many points Q ∈ C(k) with

[k(Q) : k] = 2. In particular, there exists a pair of conjugate k-quadratic points Q1,Q2 ∈ C(k).

Since |Q1 + Q2 |=1 and |Q1 + Q2 − T | = 0 for all T ∈ C(k), it follows that Q1 + Q2 is a degree 2

divisor defined over k, whose complete linear system, |Q1 + Q2 |, is base-point-free of dimension

1. Thus it induces a degree 2 morphism ω : C → P1 defined over k.

If deg(D) = 1, then after composing with a k-automorphism of P1, we may assume ω(P1) = 0,

so N2(D) = 1. If deg(D) = 2, then after composing with a k-automorphism of P1, we may assume

ω(P1) = 0 and either ω(P2) = 0 or ω(P2) = ∞, so N2(D) = 2. In both these cases N = deg(D), so

we have

mD,S(Q) ≤ hD(Q) by Definition 2.2.8

≤ (deg(D) + ε)hR(Q) +O(1) by Theorem 2.2.12

= (Nd(D) + ε)hR(Q) +O(1).

Suppose deg(D) ≥ 3. Then since |P1 + P2 |=1 and |P1 + P2 − T | = 0 for all T ∈ C(k), it

follows that P1 + P2 is a degree 2 divisor defined over k, whose complete linear system, |P1 + P2 |,

is base-point-free of dimension 1. Thus it induces a degree 2 morphism σ : C → P1 defined

over k, such that σ(P1) = σ(P2). By composing with an automorphism of P1, we may assume

σ(P1) = σ(P2) = 0 and σ(P3) = ∞. Thus we see N2(D) ≥ 3.

If N2(D) = 4, then the inequality follows from Proposition 4.2.2.

Conversely, if there exists a subset {i1, i2, i3, i4} ⊂ {1, . . . , n} such that Pi1 + Pi2 ∼ Pi3 + Pi4 ,

then there exists a k-morphism σ : C → P1 of degree 2 such that σ(Pi1) = σ(Pi2) = 0 and

σ(Pi3) = σ(Pi4) = ∞, so that N2(D) = 4.
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Thus if N2(D) = 3, then such a subset of {1, . . . , n} does not exist and the inequality again

follows from Proposition 4.2.2. □

4.3 Cubic Points on Curves of Low Genus

It remains to show the main theorem holds for points of degree 3 on curves of genus 1 and 2.

Theorem 4.3.1. Let X be an irreducible projective surface defined over a number field k. Let S be

a finite set of places of k and let n ∈ N. For each v ∈ S, let D1,v, . . . ,Dn,v be effective divisors on

X, defined over k having no irreducible components in common in their supports. Suppose there

exists an ample divisor A and positive integers di,v such that Di,v is numerically equivalent to di,vA

for all i and for all v ∈ S. Suppose there exists a nonconstant k-morphism σ : X → E for some

elliptic curve E defined over k. Let ε > 0. Then there exists a proper closed subscheme Z ⊂ X

such that for all points P ∈ X(k) \ Z ,∑
v∈S

n∑
i=1

λDi,v,v(P)
di,v

≤ (3 + ε)hA(P) +O(1).

Proof. Let R ∈ E(k). By Theorem 3.1.1, for any Q ∈ E(k) we have

mQ,S(P) ≤ εhR(P) +O(1)

for all P ∈ E(k) \ {Q}. Thus for any Q ∈ E(k)

mσ∗Q,S(P) = mQ,S(σ(P)) +O(1)

≤ εhR(σ(P)) +O(1)

= εhσ∗R(P) +O(1)

for all P ∈ X(k) \ σ∗(Q). By Corollary 4.1.2, there exists an M ∈ N, depending only on R and A,

such that for all P ∈ X(k)

εhσ∗R(P) ≤ εM · hA(P) +O(1).

By replacing ε with ε/M we can say that for any Q ∈ E(k)

mσ∗Q,S(P) ≤ εhA(P) +O(1)
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for all P ∈ X(k) \ σ∗(Q). Therefore, by Lemma 2.3.2(a) and Theorem 2.3.4(d), for any Q ∈ X(k)

we have

mQ,S(P) ≤ mσ∗(σ(Q)),S(P) +O(1)

≤ εhA(P) +O(1)

for all P ∈ X(k) \ σ∗(σ(Q)).

For each v ∈ S, let

Yv =
∪

1≤i< j≤n
Supp(Di,v) ∩ Supp(D j,v).

Since no two of the divisors share irreducible components in common, it follows that Yv is a finite

set of points. Partition the set X by which of the points of Yv each point is v-adically closest to.

note that if a point is v-adically closest to two points of Yv , then it cannot be v-adically close to any

of the divisors Di,v , that is all of the local heights λDi,v,v will be bounded. Consider those points

P that are v-adically closest to Q ∈ Yv .

For each pair of indices i and j we have, by definition,

λDi,v∩Dj,v,v(P) = min{λDi,v,v(P), λDj,v,v(P)}

for all P ∈ X(k) \ Supp(Di,v) ∩ Supp(D j,v). But if Q ∈ Supp(Di,v) ∩ Supp(D j,v), we have

λQ,v(P) = min{λDi,v,v(P), λDj,v,v(P)} +O(1)

for those points P ∈ X(k) \ {Q} such that Q is the v-adically closest point to P out of all of the

points in Yv . Thus we have

min{λDi,v,v(P), λDj,v,v(P)} ≤ εhA(P) +O(1)

for all such P ∈ X(k) \σ∗(σ(Q)). Since we can repeat this for each pair of indices i and j, it follows

that at most one of the local heights λDi,v,v(P), say λDiQ,v
,v(P), can be greater than ε · hA(P) for

infinitely many of the points P ∈ X(k) \ σ∗(σ(Q)) that are v-adically closest to Q. As such∑
i

λDi,v,v(P)
di,v

≤
λDiQ,v

,v(P)

di,v
+ ε(n − 1)hA(P) +O(1)
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for all P ∈ X(k) \
(∪n

i=1 Supp(Di,v) ∪ σ∗(σ(Q))
)

that are v-adically closest to Q.

Repeating this process for each v ∈ S gives a collection of partitions, which together make a

finer partition of X into those Qv ∈ Yv that the points are closest to for each v ∈ S together with a

proper (since σ is nonconstant) closed subscheme of X ,

Z1 =
∪
v∈S

∪
Q∈Yv

σ∗(σ(Q)).

Then we have
n∑

i=0

∑
v∈S

λDi,v,v(P)
di,v

≤
∑
v∈S

λDiQv ,v
,v(P)

di,v
+ ε(n − 1)|S |hA(P) +O(1)

for all P ∈ X(k) \ ∪
v∈S

(∪n
i=1 Supp(Di,v) ∪ σ∗(σ(Qv))

)
that are v-adically closest to Qv for each

v ∈ S. But by Theorem 3.1.6, there exists a proper closed subscheme Z2 ⊂ X such that∑
v∈S

λDiQv ,v
,v(P)

di,v
≤ (3 + ε)hA(P)

for all P ∈ X(k) \ Z2. Let Z =
∪

v∈S
∪n

i=1 Supp(Di,v) ∪ Z1 ∪ Z2. Then for all P ∈ X(K) \ Z

n∑
i=0

∑
v∈S

λDi,v,v(P)
di,v

≤ 3hA(P) + ε (1 + (n − 1)|S |) hA(P) +O(1).

Thus by replacing ε with ε/(1 + (n − 1)|S |), we obtain the desired result. □

Proposition 4.3.2. Let C be an elliptic curve defined over k. Let S be a finite set of places of k.

Let P1, . . . , Pn ∈ C(k) be distinct and define the divisor D :=
∑n

i=1 Pi. Let R ∈ C(k) and let ε > 0.

Then for all Q ∈ C(k) with [k(Q) : k] = 3

mD,S(Q) ≤ (6 + ε)hR(Q) +O(1)

and if there does not exist a subset {i1, . . . , i6} ⊂ {1, . . . , n} such that

Pi1 + Pi2 + Pi3 ∼ Pi4 + Pi5 + Pi6

then for all Q ∈ C(k) with [k(Q) : k] = 3 we have

mD,S(Q) ≤ (5 + ε)hR(Q) +O(1).
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Proof. By Theorem 3.1.6, there exists a proper closed subscheme Z ⊂ Sym3(C) such that for all

Q ∈ C(k) such that [k(Q) : k] = 3 and φ(Q̄) < Z we have

mD,S(Q) = 1
3

mφ∗π∗1D,S(φ(Q̄)) +O(1) by Lemma 4.1.3

≤ 1
3
(4 + ε)hφ∗π∗1R(Q) +O(1) by Theorem 3.1.6

= (4 + ε)hR(Q) +O(1) by Lemma 4.1.3.

Let Z j be an irreducible component of Z . Then µ|Zj is a k-morphism from the irreducible surface

Z j to an elliptic curve Jac(C) = C.

If µ|Zj is a constant map then Z j is contained in a fiber of µ. But the fibers of µ are 2-dimensional

by Riemann-Roch, so it follows that Z j is a fiber of µ, so there exists an E ∈ Div(C) such that

Z j = |E | � P2. Since φ∗π∗1Pi is the set of effective divisors on C with Pi in their support, we

see that it cuts out the 1-dimensional linear system |E − Pi | + Pi in |E |. Furthermore the divisors

(φ∗π∗1Pi)|Zj on Z j are in 3-subgeneral position. Thus we may apply Theorem 3.1.3 with r = 2 and

Li = (φ∗π∗1Pi)|Zj to get

mD,S(Q) = 1
3

mφ∗π∗1D,S(φ(Q̄)) +O(1) by Lemma 4.1.3

=
1
3

n∑
i=1

mLi,S(φ(Q̄)) +O(1)

≤ 1
3
(5 + ε)hφ∗π∗1R(Q) +O(1) by Theorem 3.1.3

= (5 + ε)hR(Q) +O(1) by Lemma 4.1.3.

for all Q ∈ C(k) such that [k(Q) : k] = 3 and φ(Q̄) ∈ Z j \ Yj , where Yj is a union of hyperplanes

Yj k ⊂ Z j � P2. By Lemma 4.2.1, if there does not exist a subset {i1, i2, i3, i4, i5, i6} ⊂ {1, . . . , n}

such that Pi1 +Pi2 +Pi3 ∼ Pi4 +Pi5 +Pi6 , then for all Q ∈ C(k) with [k(Q) : k] = 3 and φ(Q̄) ∈ Yj

mD,S(Q) ≤ (5 + ε)hR(Q) +O(1)

otherwise

mD,S(Q) ≤ (6 + ε)hR(Q) +O(1).
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Combining the above inequalities we get the result on all of Z j . Since there are only finitely many

irreducible components Z j in Z , we may take the maximum of all of the above constants in O(1) to

get the result for all Q ∈ C(k) with [k(Q) : k] = 3. □

Lemma 4.3.3. Let C be a nonsingular projective curve of genus 1 over an algebraic number field

k. Let d ≥ 3 be an integer and let P1, . . . , P2d−1 ∈ C(k) be distinct. Let P2d−1 be the identity

element of the elliptic curve C. Suppose that for every morphism σ : C → P1 over k of degree d

we have ���(σ−1(0) ∪ σ−1(∞)
)
∩ {P1, . . . , P2d−1}

��� ≤ 2d − 2.

Then for every i ∈ {1, . . . , 2d − 2}, the inverse of Pi in the elliptic curve C is Pj for some

j ∈ {1, . . . , 2d − 2} \ {i}.

Proof. We proceed by induction on the number of pairs of inverse points identified. Trivially,

we have already identified zero such pairs. Suppose we have identified m pairs already and that

m < d − 1. Let M ⊂ {1, . . . , 2d − 2} be a set of representative indices, each pair of inverse points

being represented by exactly one index, so that |M | = m. For each i ∈ M , define i∗ to be the index

of the inverse of Pi, that is to say Pi + Pi∗ ∼ 2P2d−1. Let I ⊂ {1, . . . , 2d − 2} be a subset disjoint

from M with |I | = d − 2−m and let J = {1, . . . , 2d − 2} \ (M ∪ I). By Riemann-Roch, there exists

a unique R ∈ C(k) such that

R + P2d−1 +
∑

i∈M∪I
Pi ∼

∑
j∈J

Pj .

Furthermore R ∈ C(k) by uniqueness. If R < {Pj | j ∈ J}, then this linear equivalence defines a

base-point-free 1-dimensional linear system over k of degree d. Thus there exists a corresponding

morphism σ : C → P1 over k with σ−1(0) = {R, P2d−1} ∪ {Pi | i ∈ M ∪ I} and σ−1(∞) = {Pj |

j ∈ J}, so that ���(σ−1(0) ∪ σ−1(∞)
)
∩ {P1, . . . , P2d−1}

��� = 2d − 1.
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As this would contradict the hypothesis, we conclude there exists an r ∈ J such that R = Pr . That

is to say

P2d−1 +
∑

i∈M∪I
Pi ∼

∑
j∈J\{r}

Pj . (4.1)

Once again by Riemann-Roch, there exists a T ∈ C(k) such that

P2d−1 +
∑

j∈J\{r}
Pj ∼ T + Pr +

∑
i∈M∪I

Pi .

By the same reasoning as above, either T = P2d−1 or T ∈ {Pj | j ∈ J \ {r}}. But if T = P2d−1,

then ∑
j∈J\{r}

Pj ∼ Pr +
∑

i∈M∪I
Pi .

Comparing this to equivalence (4.1) reveals that Pr ∼ P2d−1. But according to Riemann-Roch, if

two points on C are linearly equivalent, then they are equal, that is Pr = P2d−1, a contradiction

since r , 2d − 1 and the Pi are distinct. Therefore there exists a t ∈ J \ {r} such that T = Pt . That

is to say

P2d−1 +
∑

j∈J\{r,t}
Pj ∼ Pr +

∑
i∈M∪I

Pi . (4.2)

Adding equivalences (4.1) and (4.2) together we get

2P2d−1 +
∑

i∈{1,...,2d−2}\{r,t}
Pi ∼

∑
i∈{1,...,2d−2}

Pi .

And after cancelling, we get Pr + Pt ∼ 2P2d−1, which is exactly the condition that Pr and Pt are

inverse points in the elliptic curve C with identity P2d−1. Thus we have determined m + 1 distinct

pairs of inverse points on C. Therefore, by induction we conclude that we can find d − 1 distinct

pairs of inverse points, which must consist of P1, . . . , P2d−2 as desired.

□

Proposition 4.3.4. Let C be a nonsingular projective curve of genus 1 over an algebraic number

field k. Let P1, . . . , P5 ∈ C(k) be distinct. Suppose that for every morphism σ : C → P1 over k of

degree 3 we have ���(σ−1(0) ∪ σ−1(∞)
)
∩ {P1, . . . , P5}

��� ≤ 4.
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Then if one of the five given points is chosen to be the identity element of the elliptic curve C, the

five given points then form a subgroup of C(k) of order 5.

Proof. Without loss of generality, let P5 be the identity element of the elliptic curve C. By Lemma

4.3.3, for every k ∈ {1, . . . , 4} there exists a k∗ ∈ {1, . . . , 4} \ {k} such that Pk + Pk∗ ∼ 2P5. Let

these four non-identity points be called Pi, Pi∗, Pj, Pj∗ .

By Riemann-Roch, there exists an R ∈ C(k) such that

R + P5 + Pi∗ ∼ Pi + Pj + Pj∗ . (4.3)

Since we assume the above morphism σ does not exist, it must be the case that either R = Pi,

R = Pj , or R = Pj∗ . But if R = Pi, then equivalence (4.3) simplifies to

P1∗ + P5 + Pi∗ ∼ Pi + 2P5.

So Pi∗ ∼ P5. By Riemann-Roch, this implies Pi∗ = P5, a contradiction.

Therefore R = Pr with r ∈ { j, j∗}. In this case, equivalence (4.3) simplifies to

Pr + P5 + Pi∗ ∼ Pi + 2P5.

Adding Pi to both sides and cancelling like terms gives Pr + P5 ∼ 2Pi. As elements of the elliptic

curve C, this says 2Pi = Pr . Taking inverses, we also get 2Pi∗ = Pr∗ . Repeating this process for

the linear equivalence

T + P5 + Pj∗ ∼ Pj + Pi + Pi∗

gives T = Pt for some t ∈ {i, i∗} and so Pt + P5 ∼ 2Pj . As elements of the elliptic curve C, this

says 2Pj = Pt and 2Pj∗ = Pt∗ . Since 2P5 = P5, we see that these five points are closed under

doubling.

Once again by Riemann-Roch, there exists a point A ∈ C(k) such that

A + Pi + Pj ∼ Pi∗ + Pj∗ + P5.

Since we assume the above morphism σ does not exist, it must be the case that either A = Pi∗ ,

A = Pj∗ , or A = P5. If A = P5 however, then Pi + Pj = Pi∗ + Pj∗ and adding Pi + Pj to both sides
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gives Pr + Pt = 0, which is not possible, given r ∈ { j, j∗} and t ∈ {i, i∗}. Thus A ∈ {Pi∗, Pj∗} and

Pi+Pj = Pu for some u ∈ {i∗, j∗}. Taking inverses gives Pi∗+Pj∗ = Pu∗ . Similarly, Pi+Pj∗ = Pv

for some v ∈ {i∗, j} and so Pi∗ + Pj = Pv∗ . Thus the set {P1, . . . , P5} is closed under addition, and

therefore forms a subgroup of order 5 in the elliptic curve C. □

It is worth noting that this obstruction does not appear in higher degree examples, as demon-

strated in the following.

Proposition 4.3.5. Let C be a nonsingular projective curve of genus 1 over an algebraic number

field k. Let d ≥ 4 be an integer and let P1, . . . , P2d−1 ∈ C(k) be distinct. Then there exists a

morphism σ : C → P1 over k of degree d such that���(σ−1(0) ∪ σ−1(∞)
)
∩ {P1, . . . , P2d−1}

��� = 2d − 1.

Proof. By way of contradiction, assume such a morphism does not exist. Let P2d−1 be the identity

element of the elliptic curve C. Then by Lemma 4.3.3, for every i ∈ {1, . . . , 2d − 2} there exists an

i∗ ∈ {1, . . . , 2d − 2} \ {i} such that Pi + Pi∗ ∼ 2P2d−1. Let M be a set of representative indices

of these pairs, that is for each i ∈ {1, . . . , 2d − 2}, either i ∈ M or i∗ ∈ M and not both, so that

|M | = d − 1. Let M1 = M \ {1, 1∗} and note |M1 | = d − 2.

The proof is broken into two cases, but those cases are treated very similarly. First suppose d

is even. Let K ⊂ M1 with |K | = d−2
2 . By Riemann-Roch, there exists an R ∈ C(k) such that

R + P1 +
∑

i∈M1\K

(Pi + Pi∗) ∼ P2d−1 + P1∗ +
∑
i∈K

(Pi + Pi∗). (4.4)

Since we assume the desired morphism does not exist, it must be the case that either R = P2d−1,

R = P1∗ , or R ∈ {Pi | i ∈ K or i∗ ∈ K}. But if R = P2d−1, then equivalence (4.4) simplifies to

P2d−1 + P1 + (d − 2)P2d−1 ∼ P2d−1 + P1∗ + (d − 2)P2d−1.

So P1 ∼ P1∗ . By Riemann-Roch, this implies P1 = P1∗ , a contradiction to Lemma 4.3.3. And if

R = P1∗ , then equivalence (4.4) simplifies to

P1∗ + P1 + (d − 2)P2d−1 ∼ P2d−1 + P1∗ + (d − 2)P2d−1.
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So P1 ∼ P2d−1. By Riemann-Roch, this implies P1 = P2d−1, a contradiction to the hypothesis.

Therefore R = Pr for some r ∈ {1, . . . , 2d − 2} with either r ∈ K or r∗ ∈ K . In this case

equivalence (4.4) simplifies to

Pr + P1 + (d − 2)P2d−1 ∼ P2d−1 + P1∗ + (d − 2)P2d−1.

Adding P1∗ to both sides and cancelling like terms gives

Pr + P2d−1 ∼ 2P1∗ . (4.5)

Now choose K′ ⊂ M1 \ {r, r∗} with |K′| = d−2
2 . note this subset exists because |M1 \ {r, r∗}| =

d − 3 and d−2
2 ≤ d − 3 ⇐⇒ d ≥ 4. By Riemann-Roch, there exists an T ∈ C(k) such that

T + P1 +
∑

i∈M1\K′
(Pi + Pi∗) ∼ P2d−1 + P1∗ +

∑
i∈K′

(Pi + Pi∗). (4.6)

Once again this implies that T = Pt for some t ∈ {1, . . . , 2d − 2} with either t ∈ K′ or t∗ ∈ K′.

Therefore equivalence (4.6) simplifies to

Pt + P1 + (d − 2)P2d−1 ∼ P2d−1 + P1∗ + (d − 2)P2d−1.

Adding P1∗ to both sides and cancelling like terms gives

Pt + P2d−1 ∼ 2P1∗ . (4.7)

Comparing equivalences (4.5) and (4.7) reveals that Pr ∼ Pt , which implies that Pr = Pt , but that

implies r = t, a contradiction to the construction of K′. Therefore our initial assumption must have

been false and there exists a morphism σ : C → P1 over k of degree d such that���(σ−1(0) ∪ σ−1(∞)
)
∩ {P1, . . . , P2d−1}

��� = 2d − 1.

Now suppose d is odd. Let K ⊂ M1 with |K | = d−1
2 . By Riemann-Roch, there exists an

R ∈ C(k) such that

R + P2d−1 + P1 +
∑

i∈M1\K

(Pi + Pi∗) ∼ P1∗ +
∑
i∈K

(Pi + Pi∗). (4.8)
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Since we assume the desired morphism does not exist, it must be the case that either R = P1∗ or

R ∈ {Pi | i ∈ K or i∗ ∈ K}. But if R = P1∗ , then equivalence (4.8) simplifies to

P1∗ + P2d−1 + P1 + (d − 3)P2d−1 ∼ P1∗ + (d − 1)P2d−1.

So P1 ∼ P2d−1. By Riemann-Roch, this implies P1 = P2d−1, a contradiction.

Therefore R = Pr for some r ∈ {1, . . . , 2d − 2} with either r ∈ K or r∗ ∈ K . In this case

equivalence (4.8) simplifies to

Pr + P2d−1 + P1 + (d − 3)P2d−1 ∼ P1∗ + (d − 1)P2d−1.

Adding P1∗ to both sides and cancelling like terms gives

Pr + P2d−1 ∼ 2P1∗ . (4.9)

Now choose K′ ⊂ M1\{r, r∗} with |K′| = d−1
2 . note this subset exists because |M1\{r, r∗}| = d−3

and d−1
2 ≤ d − 3 ⇐⇒ d ≥ 5. By Riemann-Roch, there exists an T ∈ C(k) such that

T + P2d−1 + P1 +
∑

i∈M1\K′
(Pi + Pi∗) ∼ P1∗ +

∑
i∈K′

(Pi + Pi∗). (4.10)

Once again this implies that T = Pt for some t ∈ {1, . . . , 2d − 2} with either t ∈ K′ or t∗ ∈ K′.

Therefore equivalence (4.10) simplifies to

Pt + P2d−1 + P1 + (d − 3)P2d−1 ∼ P1∗ + (d − 1)P2d−1.

Adding P1∗ to both sides and cancelling like terms gives

Pt + P2d−1 ∼ 2P1∗ . (4.11)

Comparing equivalences (4.9) and (4.11) reveals that Pr ∼ Pt , which implies that Pr = Pt , but that

implies r = t, a contradiction to the construction of K′. Therefore our initial assumption must have

been false and there exists a morphism σ : C → P1 over k of degree d such that���(σ−1(0) ∪ σ−1(∞)
)
∩ {P1, . . . , P2d−1}

��� = 2d − 1.

□
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Now we prove the desired inequality holds for cubic points on elliptic curves, excluding the

special case when the support of the divisor consists of exactly five points forming a subgroup of

the elliptic curve.

Corollary 4.3.6. Let C be a nonsingular projective curve of genus 1 defined over a number field

k and let R ∈ C(k). Let S be a finite set of places of k. Let P1, . . . , Pn ∈ C(k) be distinct, such

that the set {P1, . . . , Pn} is not a subgroup of order five of the elliptic curve (C(k), Pn) (which is

automatically true if n , 5). Define the divisor D :=
∑n

i=1 Pi. Let ε > 0. Then for all Q ∈ C(k)

with [k(Q) : k] = 3,

mD,S(Q) ≤ (N3(D) + ε)hR(Q) +O(1)

where N3(D) := max
{���(σ−1(0) ∪ σ−1(∞)

)
∩ Supp(D)

���} taken over all k-morphisms σ : C → P1

of degree 3. If no such k-morphism exists, we say N3(D) = 0.

Proof. First note that since degree 3 morphisms are at most 3-to-1, we have N3(D) ≤ 6. We also

clearly have N3(D) ≤ deg(D). By Riemann-Roch, the dimension of the complete linear system |E |

of any divisor E on C of positive degree is given by dim|E | = deg(E) − 1. If there are only finitely

many points Q ∈ C(k) with [k(Q) : k] = 3, then mD,S(Q) ≤ O(1), so we assume there are infinitely

many points Q ∈ C(k) with [k(Q) : k] = 3. In particular, there exists a triple of conjugate k-cubic

points Q1,Q2,Q3 ∈ C(k). Since |Q1 + Q2 + Q3 | = 2 and |Q1 + Q2 + Q3 − T − U | = 0 for all

T,U ∈ C(k), it follows that Q1 +Q2 +Q3 is a degree 3, very ample divisor defined over k, whose

complete linear system |Q1+Q2+Q3 | has dimension 2. Thus it induces an embedding F : C → P2

defined over k, whose image is a curve over k of degree 3 such that the points F(Q1), F(Q2), F(Q3)

lie on a line H over k. Projecting from any k-rational point A not on the curve F(C) in P2 produces

a degree 3 morphism fA : C → P1 over k.

If deg(D) = 1, then choose any line L over k in P2 containing F(P1). As the intersection of two

lines over k, the point A := L ∩ H is k-rational, thus different from F(Q1), F(Q2), F(Q3), thus not

a point on F(C). So fA is a degree 3 morphism over k and after composing with a k-automorphism

of P1, we may assume fA(P1) = 0, so that N3(D) = 1.
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If deg(D) = 2, then let L be the line in P2 containing F(P1) and F(P2), thus a line over k.

As the intersection of two lines over k, the point B := L ∩ H is k-rational, thus different from

F(Q1), F(Q2), F(Q3), thus not a point on F(C). So fB is a morphism of degree 3 over k and after

composing with a k-automorphism of P1, we may assume fB(P1) = fB(P2) = 0, so that N3(D) = 2.

If deg(D) = 3, then after composing with a k-automorphism of P1, we may assume fB(P1) =

fB(P2) = 0 and fB(P3) = ∞, so that N3(D) = 3.

If deg(D) = 4, then let H2 be the line in P2 containing F(P1), F(P2), F(P3), and let gA :

C → P1 be the morphism of degree 3 over k induced by the projection from a point A ∈ H2(k).

Then gA(P1) = gA(P2) = gA(P3), so composing with a k-automorphism of P1, we may assume

gA(P1) = gA(P2) = gA(P3) = 0 and gA(P4) = ∞, so that N3(D) = 4.

If deg(D) = 5, then by the hypothesis and by Proposition 4.3.4, we have N3(D) = 5.

In these cases N3(D) = deg(D), so we have

mD,S(Q) ≤ hD(Q) by Definition 2.2.8

≤ (deg(D) + ε)hR(Q) +O(1) by Theorem 2.2.12

= (N3(D) + ε)hR(Q) +O(1).

Now suppose deg(D) ≥ 6. If we assume that N3(D) ≤ 4, then by Proposition 4.3.4, we know

that the points {P1, . . . , P5} form a subgroup of order 5 of the elliptic curve C with identity element

P5. In particular there exist i, j ∈ {2, 3, 4} such that Pi + Pj = P1. Replacing P1 with P6 and

applying Proposition 4.3.4 again to show that the points {P2, . . . , P6} form a subgroup of order

5 in the elliptic curve C with identity element P5. But these points obey the same group law as

before, and Pi + Pj = P1, meaning the set is not closed under addition, a contradiction. Therefore

we conclude that N3(D) ≥ 5.

If N3(D) = 6, then the inequality follows from Proposition 4.3.2.

Conversely, if there exists a subset {i1, i2, i3, i4, i5, i6} ⊂ {1, . . . , n} such that Pi1 + Pi2 + Pi3 ∼

Pi4 + Pi5 + Pi6 , then there exists a k-morphism σ : C → P1 of degree 3 such that σ(Pi1) =

σ(Pi2) = σ(Pi3) and σ(Pi4) = σ(Pi5) = σ(Pi6). After composing with a k-automorphism of
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P1, we may assume σ(Pi1) = σ(Pi2) = σ(Pi3) = 0 and σ(Pi4) = σ(Pi5) = σ(Pi6) = ∞, so that

N3(D) = 6.

Thus if N3(D) = 5, then such a subset of {1, . . . , n} does not exist and the inequality again

follows from Proposition 4.3.2. □

Proposition 4.3.7. Let C be a nonsingular projective curve of genus 2 defined over a number field

k. Let S be a finite set of places of k. Let P1, . . . , Pn ∈ C(k) be distinct and define the divisor

D :=
∑n

i=1 Pi. Let R ∈ C(k) and let ε > 0.

If there exists a subset {i1, i2, i3, i4, i5, i6} ⊂ {1, . . . , n} such that Pi1+Pi2+Pi3 ∼ Pi4+Pi5+Pi6 ,

then for all Q ∈ C(k) with [k(Q) : k] = 3

mD,S(Q) ≤ (6 + ε)hR(Q) +O(1).

If such a linear equivalence does not exist, but there exists a subset {i1, i2, i3, i4, i5} ⊂ {1, . . . , n}

and a point T ∈ C(k) distinct from the points Pi1, Pi2, Pi3 such that Pi1 +Pi2 +Pi3 ∼ Pi4 +Pi5 +T ,

then for all Q ∈ C(k) with [k(Q) : k] = 3

mD,S(Q) ≤ (5 + ε)hR(Q) +O(1).

And if neither of these hold, then for all Q ∈ C(k) with [k(Q) : k] = 3

mD,S(Q) ≤ (4 + ε)hR(Q) +O(1)

Proof. By Theorem 3.1.6, there exists a proper closed subscheme Z ⊂ Sym3(C) such that for all

P ∈ Sym3(C)(k) \ Z ,

mD,S(P) ≤ (4 + ε)hφ∗π∗1R(P).

Let Z j be an irreducible component of Z . Then µ|Zj is a k-morphism from the irreducible surface

Z j to the abelian variety Jac(C).

If µ|Zj were a constant map then Z j would be contained in a fiber of µ. But the fibers of µ are

1-dimensional by Riemann-Roch, a contradiction, so µ|Zj is nonconstant.
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If the image of µ|Zj is a curve, then Theorem 4.3.1 says there exists a proper closed subscheme

Yj of Z j such that for all P ∈ Z j (k) \ Yj

mD |Zi
,S(P) ≤ (3 + ε)h(φ∗π∗1R)|Zi

(P) +O(1).

Since Yj is a proper closed subscheme we may assume it is 1-dimensional, and is thus a union

of curves. By Lemma 4.2.1, if there does not exist a subset {i1, i2, i3, i4, i5} ⊂ {1, . . . , n} and a

point T ∈ C(k) distinct from the points Pi1, Pi2, Pi3 such that

Pi1 + Pi2 + Pi3 ∼ Pi4 + Pi5 + T,

then for all Q ∈ C(k) with [k(Q) : k] = 3 and φ(Q̄) ∈ Yj

mD,S(Q) ≤ (4 + ε)hR(Q) +O(1).

And if there does not exist a subset {i1, i2, i3, i4, i5, i6} ⊂ {1, . . . , n} such that Pi1 + Pi2 + Pi3 ∼

Pi4 + Pi5 + Pi6 , then for all Q ∈ C(k) with [k(Q) : k] = 3 and φ(Q̄) ∈ Yj

mD,S(Q) ≤ (5 + ε)hR(Q) +O(1),

else

mD,S(Q) ≤ (6 + ε)hR(Q) +O(1).

Finally, if the image of µ|Zj is all of Jac(C), then Yj = Supp
(
µ∗µ∗φ∗π∗1D |Zj

)
is a finite union

of irreducible curves Yj k on Z j . By Theorem 4.1.4, it is enough to show the inequality holds on

these curves, which of course follows once again from Lemma 4.2.1.

Combining the above inequalities we get the result on all of Z j . Since there are only finitely

many irreducible components Z j in Z , we make take the maximum of all of the above constants

O(1) to get the result for all Q ∈ C(k) with [k(Q) : k] = 3.

□

Lemma 4.3.8. Let C be a nonsingular projective curve of genus 2. Let D be an effective divisor

on C of degree 3. Then the complete linear system |D | has a base point if and only if K ≤ D for a

canonical divisor K on C.
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Proof. By Riemann-Roch, dim|D | = 1. Suppose D has a base point P ∈ C(k). Then there exists

an effective divisor E of degree 2 such that D = E + P. Furthermore dim|E | = dim|D − P | =

dim|D | = 1. By Riemann-Roch, dim|K − E | = 0, and since deg(K − E) = 0, this implies E ∼ K .

That is to say, E is a canonical divisor with E ≤ D, as was to be shown.

Conversely, suppose K ≤ D for a canonical divisor K . Then D = K + P for some P ∈ C(k).

Thus dim|D − P | = dim|K | = 1 = dim|D |, so P is a base point of D. □

Corollary 4.3.9. Let C be a nonsingular projective curve of genus 2 defined over a number field

k. Let S be a finite set of places of k. Let P1, . . . , Pn ∈ C(k) be distinct and define the divisor

D :=
∑n

i=1 Pi. Suppose that either n ≤ 2 or else that there exist i1, i2, i3 ∈ {1, . . . , n} such that the

set {Pi1, Pi2, Pi3} does not contain a pair of hyperelliptic conjugates (which is automatically true

when n ≥ 5). Let ε > 0. Then for all Q ∈ C(k) with [k(Q) : k] = 3,

mD,S(Q) ≤ (N3(D) + ε)hR(Q) +O(1)

where N3(D) := max
{���(σ−1(0) ∪ σ−1(∞)

)
∩ Supp(D)

���} taken over all finite k-morphisms σ :

C → P1 of degree 3. If no such k-morphism exists, we say N3(D) = 0.

Proof. First note that since degree 3 morphisms are at most 3-to-1, we have N3(D) ≤ 6. We also

clearly have N3(D) ≤ deg(D). If there are only finitely many points Q ∈ C(k) with [k(Q) : k] = 3,

then mD,S(Q) ≤ O(1), so we assume there are infinitely many points Q ∈ C(k) with [k(Q) : k] = 3.

In particular, there exists a triple of conjugate k-cubic points Q1,Q2,Q3 ∈ C(k). By Riemann-Roch,

dim|Q1 +Q2 +Q3 | = 1.

If the linear system |Q1 +Q2 +Q3 | has a base point, then by Lemma 4.3.8, K ≤ Q1 +Q2 +Q3

for a canonical divisor K on C. Without loss of generality, say K = Q1 + Q2. By uniqueness, |K |

is fixed under Galois action. Thus if ξ is any Galois action that takes Q2 to Q3, then ξ(Q1) = Qi

for some i ∈ {1, 2}, so Q1 + Q2 ∼ ξ(Q1 + Q2) = Qi + Q3 and subtracting Qi from both sides

leaves Q j ∼ Q3 for some j ∈ {1, 2}, implying Q j = Q3, a contradiction. Therefore |Q1 +Q2 +Q3 |

is a 1-dimensional base point free linear system of degree 3 defined over k. It follows that the
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corresponding k-morphism ω : C → P1 has degree 3 with ω(Q1) = ω(Q2) = ω(Q3). Therefore if

deg(D) = 1 or 2, then N3(D) = deg(D).

Alternatively, if there exist i1, i2, i3 ∈ {1, . . . , n} such that {Pi1, Pi2, Pi3} does not contain a pair

of hyperelliptic conjugates, then the complete linear system |Pi1 + Pi2 + Pi3 | is base point free

by Lemma 4.3.8. So there exists a k-morphism γ : C → P1 of degree 3 with γ(Pi1) = γ(Pi2) =

γ(Pi3) = 0. If deg(D) = 3, then this shows N3(D) = 3.

In these cases, where N3(D) = deg(D), we have

mD,S(Q) ≤ hD(Q) by Definition 2.2.8

≤ (deg(D) + ε)hR(Q) +O(1) by Theorem 2.2.12

= (N3(D) + ε)hR(Q) +O(1).

From here on, suppose deg(D) ≥ 4. Then there exists a fourth point in the support of D and

the morphism γ must map it somewhere. After a k-automorphism of P1, we may assume it is sent

to infinity, and so N3(D) ≥ 4.

If N3(D) = 6, then the inequality follows from Proposition 4.3.7.

Conversely, if there exists a subset {i1, i2, i3, i4, i5, i6} ⊂ {1, . . . , n} such that Pi1 + Pi2 + Pi3 ∼

Pi4 + Pi5 + Pi6 , then there exists a k-morphism σ : C → P1 of degree 3 such that σ(Pi1) =

σ(Pi2) = σ(Pi3) = 0 and σ(Pi4) = σ(Pi5) = σ(Pi6) = ∞, so that N3(D) = 6.

Thus if N3(D) = 5, then such a subset of {1, . . . , n} does not exist and the inequality again

follows from Proposition 4.3.7.

If N3(D) ≥ 5 then there exists a subset {i1, i2, i3, i4, i5} ⊂ {1, . . . , n} and a k-morphism

δ : C → P1 of degree 3 such that δ(Pi1) = δ(Pi2) = δ(Pi3) = 0 and δ(Pi4) = δ(Pi5) = ∞.

Since 0 ∼ ∞ in P1, it follows that δ∗0 ∼ δ∗∞. That is Pi1 + Pi2 + Pi3 ∼ Pi4 + Pi5 + T for some

T ∈ C(k). Since δ(T) = ∞, it is clear that T is distinct from the points Pi1, Pi2, Pi3 . Since δ

is defined over k, for any Galois action ξ ∈ G(k/k) we have ξ(δ∗(∞)) = δ∗(ξ(∞)) = δ∗(∞) so

Pi4 + Pi5 + ξ(T) = ξ(Pi4 + Pi5 + T) = Pi4 + Pi5 + T , implying ξ(T) = T . Since ξ was arbitrary,

we have T ∈ C(k). Ergo if such a subset and point do not exist, then N3(D) < 5, so N3(D) = 4 and
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the result follows from Proposition 4.3.7. □

Corollary 4.3.10. Let C be a nonsingular projective curve of genus 2 defined over a number field

k. Let S be a finite set of places of k. Let P1, . . . , Pn ∈ C(k) be distinct and define the divisor

D :=
∑n

i=1 Pi. Let ε > 0. Then for all Q ∈ C(k) with [k(Q) : k] = 3,

mD,S(Q) ≤ (Ñ3(D) + ε)hR(Q) +O(1)

where Ñ3(D) = N3(C, k,D) := max
{���(σ−1(0) ∪ σ−1(∞)

)
∩ Supp(D)

���} taken over all finite mor-

phisms σ : C → P1 of degree 3. If no such morphism exists, we say Ñ3(D) = 0.

Proof. note that N3(D) ≤ Ñ3(D), so the inequality is implied by Corollary 4.3.9 except in cases

where deg(D) = 3 or 4.

Consider the morphism [·, ·] : C2 → Jac(C) defined by [T,U] = O(U −T). If [T,U] = [T′,U′],

then T +U′ ∼ T′ +U, and since the hyperelliptic morphism is unique, it follows that [·, ·] is 2-to-1,

and comparing dimensions, we see it is surjective.

Thus if deg(D) = 4, there exist T,U ∈ C(k) such that

Pi1 + Pi2 + T ∼ Pi3 + Pi4 +U.

We can always arrange the points so that Pi1 and Pi2 are not hyperelliptic conjugates and Pi3 and

Pi4 are not hyperelliptic conjugates, so this defines a base point free linear system of dimension 1

and degree 3. Thus there is a morphism σ : C → P1 of degree 3 with σ(Pi1) = σ(Pi2) = 0 and

σ(Pi3) = σ(Pi4) = ∞, that is Ñ3(D) = 4.

Similarly if deg(D) = 3, then for any V ∈ C(k) there exist T,U ∈ C(k) such that

Pi1 + Pi2 + T ∼ Pi3 + V +U.

We can always arrange the points so that Pi1 and Pi2 are not hyperelliptic conjugates and choose

V so that V is not the hyperelliptic conjugate of Pi3 and V is not equal to Pi1 or Pi2 , so that this

defines a base point free linear system of dimension 1 and degree 3. Thus there is a morphism

σ : C → P1 of degree 3 with σ(Pi1) = σ(Pi2) = 0 and σ(Pi3) = ∞, that is Ñ3(D) = 3.
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In these cases, where Ñ3(D) = deg(D), we have

mD,S(Q) ≤ hD(Q) by Definition 2.2.8

≤ (deg(D) + ε)hR(Q) +O(1) by Theorem 2.2.12

= (Ñ3(D) + ε)hR(Q) +O(1).

□
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