— —— eed — ee =—————— a ———e eo —E, ——__—_—. —_——_— ee WM O1N THESIS mea haa URES meee LL ¢. Cc. JONNSON sie a) woe (UTE \ pe b pF / wp Y ey a } 7A AN RXPERIMENTAL STUDY OF THE HRAT FRANSMISSION OF BUILDING MATERIAL. 4 Thesis Submitted to fhe Faculty of the MICHIGAN AGRICULTURAL COLLEGE {~ /-_ ~~ > - C. Os Johnson Candidate for the Degree of Bachelor of Science May, 1918. THESIS CONTENTS ARTICLE le. Introduction. . . 2. « «© « « « «© « « 2- Object of Test. .« « « « « « « « « « 3S. Desoription and Method of Procedure 4. Results of Experiment ....... 5. General Conolusions ....... -. 6. Notations Used in Caloulations. .. 7. Calonlations . . « « « « « « « « oe 8. Tabulations of Data. .... te @. Tabulation of Results. ...... 100246 PAGE Se INTRODUCTION. In the present age people are beginning to realize the value of the determination of the heat loss through building material under variations of speed on both sides of the material. Tests have been run upon the transmission of heat through wood, sonorete, glass, etc., with an assumption that the air on both sides was still. In order to get a better understanding of the method and object of this experiment a brief discussion of the transmission of heat through material may be given to a great advantage. Heat is a form of motion of the molecules of a substance, the more intense the heat the more the velocity of vibration of the molecules of the body. Heat is transferred in three ways namely, by radiation, oon- duction and convection. Radiant heat is considered similar to the light that is ridiated from some object as a lam. There is always a transfer of heat froma body of higher temperature to one of colder temperature by radiation. Radia- tion is dependable upon the temperature difference between the bodies and the substance of whioh they are composed. Con- duction is a form of heat transmission through the object itself or it may be condicted from one body to another when they are placed in contact with each other. The heat trans- ferred by conduction is proportional to the difference in tem- peratures between the two sides of a body and inversely propor- tional to the thickmesas. It is also proportional to the kind of material composing the object. Convection is loss by con- Se tact with air or any other form of gas. When air or gas comes into contact with a hot body it is heated and carries the heat away, this carrying away of the heat is called convection. Con- vyeation is dependable upon the form, difference of temperature between the air or gas and the body, and the velocity of the air or gas over the body. For each of the three described methods of heat transmission there is a ooOnstant which varies with the material. Due to the fact that experimental data are lacking for radiation and convection coefficients of various materials, a coefficient for the combined radiation and con- veotion is used in common practice. The coefficient of ocon- ductivity with the combined coefficient is used in determin- ing the total heat passing from a hot body through the air and then through another body to a colder body on the other side. The combined coefficient is represented by K and the eon- duotive coefficient by CG. The reciprocal of the reciprocals of the coefficients added together gives the total heat trans- mitted per sq. ft. per hour, per degree difference in temperature of the air on the two sides. Since the amount of heat received by the inside wall surface, the amount oconducted through the Wall and the amount emitted by the outside surface mst evidently be equal. The following equation is generally used; 1 U = tT 1 x Where X is the thickness of the fw 2} Ki Kp 0 materiel, K, and Kp the combined coefficient of radiation and convection for the inside and outside wall surface respectfully, C the coefficient of oonductivity. OBJECT OF TEST. The object of the test or the heat transmission of building material is to determine the amount of heat that will pass through a given piece of material per square foot, per degree difference in temperature per hour under varying conditions of velocity of the air on the two sides of the test piece. DESCRIPTION & METHOD OF PROCEDURE. The piece of tin to be tested was placed in a box 34 feet 6 inches long, and with an opening 11-1/2 inohes by 12 inches. The twelve inoh sides were split so as to insert the tin and were clamped together by 1/4 inch mild steel bolts be- ing tightened upon some 8 inch by 4 inch planks. ‘Twelve thermometers were used in six groups, thus allowing one ther- mometer on one side of the test piece and one on the other side just opposite. Two fans were used-- one took air from the room and the other fan took air from outdoors. When running parallel the two fans were blowing the air in at the Same Opening of the box while in counter flow one fan was taken to the opposite end of the box and the air was sent in opposite to the original flow. Two funnels were made and two diffusion vanes. The funnels were used to increase the size of the pipe from the fan to the box, to the size of the box opening. The diffusion vanes broke up all eddy currents thus Oe making a steady and uniform flow of air through the box. Six inch stove pipe was used to bring the air from the outside to the fan. The velocity of one fan was varied only by choking the inlet opening, thus decreasing the quantity of air. The other was varied by choking and increasing the size of the driving pully. After having the box ready I put the thermometers into their positions and started my motors. Readings were taken from the thermometers every five minutes, and a new combination Of velocities used. The velocities were obtained by means of air anemometer by taking a two minute reading at the outlet of the box at four different positions. This result obtained from the anemometer divided by two gave the actual velocity of the eir through the box. RESULTS OF EXPERIMENT. From the results obtained from my experiment I find that the heat transmitted varies as the velocity of the air over the surface. With high velocities on the hot side, more heat was transmitted than with low velocities. My results were not uni- form enough to determine a direct ratio with different velocities, GENERAL CONCLUSION From the results obtained in determining U (the heat transmitted per square foot, per degree difference in temperature between the two sides per hour) we find that as the opening into 6a the inlet decreaded U decreased om practically every test. From the curves we find that in counter flow the greatest difference in temperature is at the entrance of the o01d air into the box. In parallel flow the greatest drop is at the entrance of the cold air but the curves slope in different directions to the curves in oounter flow, that is, in counter flow the greatest drop is near the ordinate axis or at the beginning of the ourve, while in parallel the greater drop is at the end of the ourve. In most cases of counter flow the slope of the curve in- creases as the velocity increases while in parallel flow the slope of the curves decrease as the velocity increases. HERAT TRANSMISSIONS OF BUILDING MATERIAL. PARALLEL FLOW A. air air ing ing Cold Hot Air air ing ing Cold Hot from from of of Side Side from from of of Side Side. open=- Open- Anemo. Anemo. open- open- Anemo. Anemo. ing ing Hot Cold ing ing Hot Cold Side Side Side Bide 3 1 975.5 235.6 63 68 4 1 973.5 91.5 665 68 3 1 973.5 235.5 59 69 4 1 973.5 91.5 60 69 3 1 973.5 235.5 659 69 4 1 973.5 91.5 60 69 3 1 973.5 235.5 658 69.5 4 } 973.5 91.5 58 69 3 1 973,5 235.5 58 70 4 1 973.5 01.5 58 69 3 1 973.5 238.5 657 70 4 1 973.5 91.5 58 69 3 2 825.5 235.5 63 66 4 2 825.5 91.6 66 67 3 2 625,5 235.5 68 67 4 2 825.5 91.5 62 67.5 3 zg 825.5 235.5 657 66 4 2 825.6 91.5 60 68 3 2 625.5 235.5 567 68 4 2 825.5 91.5 60 69 3 2 6825.6 235.5 56 68 4 2 825.5 91.5 59 68 3 2 825.5 835.5 56 68 4 2 825.5 91.5 60 68 3 5 470.5 2835.5 68 66 4 3 470.5 91.5 66 68 3 3 470.5 235.5 58 68 4 3 470.5 91.5 63 69 3 3 470.5 235.5 57 68.5 4 3 470.56 91.5 60 68 3 3 470.5 235.5 66 69 4 3 470.5 91.5 62 69 3 3 470.6 235.5 659 70 4 3 470.6 91.5 60 68 3 3 470.5 236.5 653 71 4 3 470.5 91.5 61 69 3 4 128 235.5 659 60 4 4 128 91.5 59 60 3 4 128 235.5 68 61 4 4 128 91.5 59 60 3 4 128 235.5 57 62 4 4 128 91.5 57.5 60.5 3 4 128 235.5 657.5 62.5 4 4 128 91.5 587 61 3 4 128 235.5 657 63 4 4 128 01.5 56 61.5 5 4 128 235.5 657 69 4 4 128 91.5 656 62 Te HEAT TRANSMISSION OF BUILDING MATERIAL PARALLEL . FLOW A. ( mp emp. Co emp. Temp. air air ing ing Cola Hot Air Air ing ing old Hot for for of of Side Side for far of of Side Side Open=e Oopen- Anemo. Anemo. open=- open- Anemo. Anemo. ing ing Hot Cold ing ing Hot 001d Side Side Bide side 1 1 973.8 318 72° 72° +8 1 973.8 300..\70 71 1 1 973.5 518 70 #+71.6 2 1 973.6 300 69.65 71 1 1 973.5 318 70 71 2 1 973.5 300 68 71 1 1 973.5 318 70 13 2 1 973.6 3800 67.5 73 1 1 973.6 318 69 74 2 1 973.6 300 66 174 1 £2 625.5 318 68.5 70 2 2 625.5 800 60 64 1 £2 685.6 318 67.5 69.9 2 2 625.5 300 659 64 1 2 625.5 318 68 #£«69.5 28 2 825.5 300 68 64 1 2 625.5 318 67 71 2 2 825.5 300 58 665 1 2 625.5 318 #66 70 2 2 625.5 300 66 66 1 2 625.5 318 66 72 2 2 6825.5 300 656 67.5 1 3 470.8 318 70 70 2 3 470.8 300 60 64 1 3 470.5 318 #69 70 2 3 470.8 300 658 64 1 3 470.5 318 69.5 70 2 3 470.5 300 656 64 1 8 470.5 318 69 72 2 3 4470.58 300 56.5 65 1 $ 470.6 318 68 71 2 3 470.6 300 £55.56 67 1 3 470.6 318 #68 72 2 38 470.5 300 659 68 1 4 128 ° 3218 59 60 2 4 2128 300 68 659 1 4 128 °& 318 59 60 2 4 4188 300 58 59.5 1 4 128 818 58.5 60 2 4&4 128 300 57 69.5 1 4 128 318 688 60 2 &@ 128 300 56.8 60.5 1 4 128 318 58 #621 2 4 128 300 656.5 61.0 1 4 128 318 68 62.5 2 4 ° 128 300 =«« 86.5 62 Cold Hot Read- Read- Temp. Temp. Gold Hot HERAT TRANSMISSION OF BUILDING MATERIAL COUNTER FLOW A 9. Read- Read- Temp.Temp. air air ing ing Cola Hot air air ing ing. Hot Cold for for of of Side Side for for of of Side Side Open- open- Anemo. Anemo. Oopen- openm- Anemo. Anemd. ing ing Hot Cold ing ing Hot Cola Side Side Side Side 1 1 973.5 318 55 75 2 1 973.5 800 59 #«®270 1 1 973.5 318 57 76 2 1 973.56 300 60 173 i 1 973.5 318 59 , 76 2 1 973.5 300 60 78 1 1 973.5 318 62 77 2 1 973.5 3800 65 £72 i 1 975.5 3518 62 79 2 1 973.5 800 685 £73 1 1 973.5 318 70 60 2 1 973.5 300 66 73 1 2 625.5 318 61 73 2 2 885.6 300 60 71 1 2 825.5 318 64 75 2 2 825.56 800 60 172.5 1 2 825.5 318 63 714 2 2 826.6 300 61 72 i 2 625.5 318 67 —6 76 2 2 825.56 300 63 £73 1 2 825.5 318 69 76 2 2 625.6 300 £67 74 1 gz 625.5 318 69 76 2 2 8286.5 300 66 £74 1 3 470.6 316 69 +68 2 3&3 470.8 3800 69 170 1 3 470.6 318 60 71 2 3 470.6 300 59 #£=71.5 1 5 470.56 318 60 71 2 3 470.6 300 60 71 1 3 470.6 318 61 71.5 2 3 470.6 3800 62 71 1 3 470.5 318 62 70 2 3 470.6 3800 63 £73 1 3 470.5 318 65 72 2 3 470.5 300 65 72 1 4 128 $18 59 70 2 4 128 500 59 #«®+70 1 4 128 318 59 70 2 4 128 300 60 #70 i 4 128 $18 61.56 72.5 2&8 4 128 500 61 £71 1 4 128 518 63 74 z 4 128 $00 62 #71 1 4 128 318 64 74.5 2 4 128 300 64 72 i 4 128 $18 66 76 2 4 128 500 64 #=72 10. HEAT TRANSMISSION OF BUILDING MATERIAL COUNTER FLOW A | Cold Hot Read- Read- Temp. Temp. Gold Hot kead- Rkead- Temp.Temp. air air ing ing Cold Hot air Air ing ing Cold Hot for for of of Side Side. for for of of Side Side. Open= open- Anemo. Anemo. open-Open- Anemo. Anemo. ing ing Hot Cold ings ing Hot Cold Side Side Side Side 3 1 . 973.5 238.5 62 73 4 1 973.5 91.5 59 60 3 1 973.5 835.5 63 75 4 1 973.5 91.5 59 #£«60 3 1 973.5 235.5 64 74 4 1 973.5 91.5 58.5 60 3 1 973.5 235.5 67 74 4 1 973.5 91.5 5&8 60 § 1 973.5 235.5 68 76.5 4 1 973.6 91.6 58 61 3 1 973.5 835.5 68 75 4 1 973.6 91.5 58 62.5 3 2 625.5 235.5 60 72 4 2 825.5 91.5 58 59 3 2 625.5 235.6 62 72 4 2 625.5 91.5 88 59.5 3 2 625.5 835.5 62 73 4 2 825.5 91.5 SF 59.6 3 2 885.5 235.5 64 73 4 28 825.5 91.5 56.5 60.5 3 2 825.5 235.5 665 73 4 2 625.5 91.5 56.5 61 3 2 825.5 235.5 66 74 4 2 625.5 91.5 56.5 62 3 3 470.5 235.5 60 71 4 3 470.5 91.5 59 #60 3 3 470.5 2835.5 61 71 4 3 470.5 91.5 58 61 3 3 470.5 235.5 61 72 4 3 470.5 91.5 57 62 3 3 470.5 235.5 63 72 4 3 470.6 91.5 57.5 62.5 3 3 470.6 835.5 65 72 4 3 470.6 91.5 6&7 63 3 3 470.5 235.5 66 74 4 3 470.5 91.5 57 64 3 4 128 235.5 659 60 4 4 128 91.5 59 60 3 80864 128 835.5 58 61 4 4 128 91.5 59 60 3 4 128 235.5 657 62 4 4 128 91.5 57.5 60.5 3 4 126 835.5 687.5 62.8 4 4 128 91.5 57 61 3 4 1968 235.5 57 68 4 4 188 91.8 56 61.5 5 4 128 235.5 57 64 4 4 128 91.5 56 682 Gold Hot Read- 1l. HERAT TRANSMISSION OF BUILDING MATERIAL PARALLEL FLOW B. Read- Temp. Temp. Gold Hot Read- Read- Temp. Temp. air air ing ing O0old Hot air air ing ing 601d Hot for for of of Side Side for for of of Side Side open- open- Anemo. Anemp. open- open- Anem. Anemo. ing ing Hot Cola ing ing Hot Oold _Side Side Side Side 1 i 1549 £318 71 72 i 2 1549 500 68.5 70 1 1 1549 318 70 72 1 2 1549 500 67.5 70 i 1 1549 318 68 70 1 2 1649 500 66 69.5 1 1 1549 318 67 70 1 2 1549 500 64.5 70 1 i 1549 318 67 70 1 2 1549 $00 64 #721 1 1 1649 3818 66 70 1 2 1549 500 63 £71.5 2 1 1200 $18 67 70 2 2 1800 500 771 74 2 1 1800 31868 67 #4=71— 2 2 1200 800 71 14 2 1 1200 318 66.5 72 2 £ 1800 S00 69.5 73.5 2 1 1200 $18 66 71 2 2 1800 5300 69 £74 2 1 1200 $18 64 72 2 2 $1200 500 68 #£=73.5 £ 1 1200 $18 63 72 2 2 1200 300 67 72.5 3 1 708 318 67 #269 + «§ 2 706 300 79 1% 3 1 705 318 66 69.5 3 2 705 $00 70 174 3 1 708 316 65.8 70 38 2 705 #800 69 78 3 1 705 318 £68 71.5 §& 2 705 500 69 £78 3 1 706 $18 65 70.5 3 2 705 500 68.5 74 3 1 705 318 64 71 3 2 705 500 3=668 75.6 4 1 7 86318 69 71 4 2 247 $00 72 74 4 i 847 318 68 71.5 4 2 247 300 72 4 4 i 247 # S18 66 72 4 2 247 $00 70 £7395 4 1 .e47 818 668.5 72 4 2 247 4800 70 75 4 1 247 518 65 75 4 2 247 B00 7005 72 4 1 7 3168 682 7 44 2 247 3800 70 71.5 wt oo 12. PARELLEL FLOW B. 0 emp.T@mp. Ho emp. Temp. air air ing ing Cold Hot air air ing ing Cold Hot open- open- of of Side Side opsgn- opme- of of Side Side ing ing dAnemO. Anemo. ing ing dAnemo. Anemo. for for Hot Cold for for Hot Cold Side Bide . Side Side 1 3 1649 235.65 71.5 78 1 4 1649 91.5 73.6 17 i 3 1549 235.5 71 =72.5 1 4 1549 91.5 72.5 177.5 1 3 1549 2368.5 69 78.5 1 4 1549 91.5 71 77.5 1 3 1549 235.5 68 73 1 4 1549 91.6 70.5 77.5 1 3 1549 235.5 66 73 1 4 1549 91.5 68 717.5 L 5 1549 235.5 66.65 73 1 4 1549 91.5 66 77.5 2 5 1200 235.5 7B 175 1 4 1200 91.5 174 74 2 3 1200 255.5 72 765.5 2 4 1200 91.5 173 14 2 S$ 1800 235.6 71 75 2 1200 91.5 72 14 £ 3 1200 235.5 70 £75 2 4 1200 91.6 71 74.5 2 3 1200 835.5 68 175.5 2 4 1200 91-58 69.5 74.5 2 3 1200 2368.5 67 #176 2 4 1200 91.5 68 74.65 3 3 705 2368.56 73 # 76 3 4 705 91-5 174 75 3 3 705 235.5 72.5 75 S 4 705 91.5 174 75 5 5 705 235.5 71 #474 S 4 705 91.5 72.5 75 S 5 705 2368.5 70 174 3 4 706 91.5 M71 75.4 3 3 705 2368.5 70 7§ 8 4 705 91.5 70.5 75.5 3 3 705 256.5 69 76.5 3 £4 705 91.5 69 75.5 4 5 247 235.5 728 #476 4 4 247 91.5 74 76 4 3 247 225.5 72 76 4 4 247 91.5 74 76 4 3 247 235.5 69 75.5 4 4 247 91.5 73 76 4 5 247 235.5 70 76 4 4 247 91.5 72.5 76 4 5 247 835.5 70 76.5 4 4 247 91.5 72 77 4 5 £47 835.5 69 78 4 4 247 91.5 71 77 —_ ‘ ‘ . e . e ‘ mre, . ~. : ! oo ve .* —_ 7-7 : ’ 4 - ‘ e oe ete . .o . ty « ' . 1 . . 1 f - 8 . . . 7 1 vL , ' , ‘ . * , \ . _ eo a . . . 1 ' - x, wee . . oa - ‘ , ‘ , , r , . . ~ ee . ‘ \ ’ , m4 \ ' . . \ . ; ’ ' hoa oe. ' » s : ' 2 » \ , a ’ r - . . . q . ‘ : ‘ . - . . ‘ ‘ . v ' 13. HRAT TRANSMISSION OF BUILDING MATERIAL COUNTER FLOW B Read-._ Temp.Temp. air air air eir ing ing Cold Hot ing ing Cold Hot for for of of Side Side for for of of Side Side open- Opene Anemo. Anemo. Open- open- Anemo. Anemo. ing ing Hot Cold ing ing Hot Cold Side Side | Side Side 1 1 1549 318 81 66 1 2 1549 300 81 85 1 1 1549 318 81.5 86 1 2 1549 300 82 85.5 1 1 1549 318 80 85 il 2 1549 300 81 85 1 1 1549 316 81 65.5 1 2 1549 500 81 86 1 1 1549 318 83 86.5 1 2 1549 300 83 87.5 1 1 1649 318 64 67.5 1 2 1549 300 84.5 87-5 2 1 1200 318 61.5 86 2 2 1200 300 81 86 2 1 1200 318 82 86 2 2 1200 300 82 86 2 1 1200 318 81.5 86.5 2 2 1200 3800 81 85 2 1 1200 418 82 85.5 2 2 1200 300 81.5 86 p 1 1200 318 84 87 2 2 1200 300 84 686.5 2 1 1200 316 63 86 eB 2 1200 300 83 85.5 3 1 705 318 61 85 3 2 705 300 81 84 3 1 705 318 82 #888 3 2 705 300 62 «8S 3 1 705 318 81 85 3 P 705 300 80 84 3 1 7056 318 81 86 3 2 705 300 80.5 84.5 3 1 705 3818 62 86.5 3 2 705 300 £88 ~ 66 3 1 705 318 83 87 3: 2 706 5800 83 86.5 4 1 247 318 80 84 4 2 247 300 81.5 84.5 4 1 247 318 81 64 4 2 247 300 62 86 4 1 247 318 80 84 4 2 247 300 81 84 4 1 247 #8318 80 84.5 4 2 247 300 81 85 4 1 247 518 82 86 4 2 247 300 62 85.5 4 1 247 316 81 86 4 p 247 800 83 87 HEAT TRANSMISSION OF BUILDING MATER IAL COUNTER FLOW B. 14. TS Sa eS ae for for of of Side Side for for of of Side Side | Side Side | Side Side 1 8 1849 235.5 82 86 1l 4 1549 92.5 82 86 1 3 1849 235.5 82.6 86 1 4 1549 91.5 88 9&8 1 S$ 1649 235.5 81 386 21 4 16549 91.5 980.5, 83.5 1 S$ 1649 235.5 82 8 1 4 1849 91.6 81.5 84.5 1 3S 1849 286.5 82.5 86.5 1 4 1849 91.5 83 86 1 3 1849 285.5 83.5 86.5 1 4 1849 91.5 $83.5 86 2 3 1200 235.5 81.6 85 2 4 1200 91.68 81 85 2 3 1800 235.5 62.5 86 2 4 1200 91.6 82 86 2 3 1200 235.5 81 84 2 4 1200 91.8 6l 64 2 3 1200 236-65 82 84.5 2 4 1200 91.6 81.5 85 2 S$ 1200 235.6 82.5 86.5 2 4 1200 91.6 62.5 86.5 2 3 1800 235.5 8 86 2 4 1200 91.5 8 87 3 3 705 2365.5 80 8 8 4 705 91.5 $=81.8 85.5 3 g 705 235.5 81.5 85 38 4 705 91.6 $82.5 86 3 3 705 235.5 80 & £3 4 705 91.6 981.5 86.5 3 3 705 235.5 80.5 86.5 3 4 705 91.6 82 86 3 3 705 238.5 82 86.5 3 4 706 92.5 84.5 87 3 3 705 235.5 83 86 3 4 705 91.5 84.5 87 4 3 249 235.5 60 84 4 4 247 91.5 61 8&4 4 3 247 #2365.5 81 8 £4 4 247 91.5 88 8&4 4 3 247 235.5 80 8 4 4 247 91.6 80 983 4 3 247 235.6 80 S845 4 4 247 91.6 S81 84 4 3 247 «4236.5 61.5 86 4 4 247 «91.5 6g «88S 4 3 247 235.6 82.5 86 4 4 247 91.5 8B 86 15. HEAT TRANSMISSION OF BUILDING MATERIAL PARALLEL FLOW 6. Hot dold hRead- head- Temp. Temp. Hot Cold hRead- hkead- Toemp.Temp. air air ing ing Cold Hot air air ing ing Cold Hot for for of of Side Side for for of of Side Side open=- open- Anem. Anemo. Open=- Open-,Anemo. Anemo. ing ing Hot cold ing ing Hot Cold _ Bide Side Side Side 1 1 1261 318 78 80 1 2 1261 300 8S 8 84 1 1 1261 318 78 80 1 2 1261 300 82.5 84 1 1 1261 318 76 79.5 1 2 1261 300 81 664 1 1 1261 318 74.6 79.5 1 2 1261 300 80 84.5 1 1 1261 318 73 81 1 2 1261 300 79 86 1 1 1261 318 73 82 1 2 1261 300 76 86.5 2 1 914.5 318 80 81 2 2 914.8 300 83 85 2 1 914.5 $18 79 88 2 2 914.5 800 83 38685 2 1 914.6 318 78 61 2 2 914.5 300 61 84 £ 1 914.5 318 76.5 88 2 2 914.5 300 81 85 2 1 914.5 318 76 62.5 2 2 914.5 800 79 86 2 1 914.5 318 768.5 83 2 2 914.6 300, 78.5 87 3 1 664.5 318 80 81 3 2 564.5 300 83 84.5 3 1 554.5 318 80 81 3 2 564.5 300 83 84.5 3 1 654.5 318 78 81 3 2 554,65 300 Sl 84 3 1 654.5 318 78 82 3 2 554.5 300 80.5 85 3 1 554.5 318° 78 82 3 2 554.6 300 81 85.5 3 1 554.5 318 78.5 84 3 2 554.5 300, 81 £86 4 1 206 $18 80.5 82 4 2 206 300 88 «= 83. 5 4 1 £06 318 60.6 82.5 4 2 206 300 82.5 84 4 1 206 318 79 83 4 2 206 300 81 83 4 1 206 318 79 84 4 2 206 300 81 84 4 1 206 318 79 85 4 & 206 300 81.5 84.5 4 1 206 #318 79 86 4 2 206 300 80.6 86 - = e e e : - e e - - ‘ e . - - - ae . e e . ‘ ° - ) . . 1 s - ° : 4 . . \ a ve e e - . ' e e te . ; 5 e ve e e - . a - ro e - . . , s « 7 4 ~ . ? o- e t é 16 HEAT TRANSMISSION OF BUILDING MATERIAL PARALLEL FLOW C Read- Temp. Temp. Hot Cold Read- Read- Temp. Temp. Hot Gold Read- air air ing Cold Hot air air ing ing Cold Hot for for of of Side Side for for of of Side Side open=- Opene- Anemo. Anemo. Open- open- Anemo. Anemo. ing ing Hot Cold ing ing Hot Cold Side Side Side Sidex i 3 1261 235.5 83 84 i 4 1261 91.5 82.5 84.2 1 3 1261 235.5 83 84 L 4 1261 91.5 81 84 1 3 1261 235.5 81 84 L 4 1261 91.5 80 84.5 i 3 1261 235.5 80 85 1 4 1261 91.5 79.5 85 1 3 1261 2835.5 @%9 85 1 4 L261 91.5 77 #86 1 3 1261 235.5 78.5 85 1 4 1261 91.5 75 # £85 £ 5 914.5 235.5 828.5 84.5 2&8 4 914.5 91.5 83 #84 £ 5 914.5 235.5 62.5 865 2 4 914.5 91.6 88 # £84.5 2 3 914.5 235.6 81 85 #2 4 £924.65 91.5 60 83 2 3 914.5 235.5 81 86 2 4 914.5 91.6 79.5 83.5 z 3 914.6 2835.5 80 65.6 2 é 914.5 91.5 77.5 85 2 3 914.5 235.5 79 85.5 2 4 914.6 91.5 76 #86 3 3 554.5 235.5 82.5 84 5 4 554.5 91.5 82.5 84 3 3 564.5 235.5 82.5 84 5 4 564.5 91.5 82 84 3 3 554.5 235.5 81 84 } 4 564.6 91.5 80.5 84 3 3 554.5 235.5 681 85 3 4 5654.5 91.5 7935 84 } 3 554.5 235.5 81 685.5 3 4 664.6 91.5 77 °#85 3 5 564.5 835.5 80 685.5 6 4 554.5 91.5 76.5 85 4 3 206 235.5 82 83.5 4 4 BO6 91.5 82 83.6 4 3 206 235.5 61.5 83.5 4 4 206 91.56 82 83.5 4 3 206 255.5 79.6 84 4 4 B06 91.5 80 83 4, 5 206 255.5 79 85 4 4 206 91.5 80 68 4 3 206 835.5 79 85.5 4 4 206 91.5 80 #864 4 3 206 235.6 79 287 4 4 2806 91.5 80 64.5 17 HEAT TRANSMISSION OF BUILDING MATERIAL COUNTER FLOW C Read- Temp. Temp. Hot Cold Hot Cold Read- Read- Read- Temp.Temp. ir ose ee oe Ga sere oe ing ing Hot Gold. ing. ing Hot Gola. Side Side Side Side 1 1 1261 316 75 77 1 2 1261 300 63 84 1 1 1861 318 75 76.5 1 2 1261 300 83 64 1 1 1g61 318 4 # 76 1 2 1261 300 62 64 1 1 1261 318 4.5 77 1 2 1861 300 62 284 1 1 1261 318 76 # 78 1 2 1261 300 83.65 85.5 1 1 1261 318 76 #78 1 2 1261 300 86 84.5 2 1 914.5 318 79 ~ 860 2 2 914.5 300 84 86 2 1 914.5 318 79 ~# 80 2 2 914.5 300 64 86 p 1 914.6 318 78 80 2 2 914.5 300 682.5 84.5 p 1 914.6 318 76 80 p 2 914.5 300 83 86.5 2 1 914.6 318 79 4681.5 eB 2 914.5 300 84 87 2 1 914.6 318 80 63 2 2 914.5 300 84 86 8 1 664.6 318 61 62 3 2 6564.5 300 865 85.5 3 1 654.6 316 81 88 3 2 6564.5 300 85 85.5 3 1 654.6 318 61 81.5 38 2 554.5 300 84 86 3 1 6564.6 318 681 62.5 3 2 654.5 300 64 86 3 1 6564.5 318 61.5 83.5 3 2 684.5 300 86 87 3 1 654.6 318 81.5 84 3 2 564.5 300 85.5 87 4 1 206 316 61.6 81.5 & 2 206 300 78 68 4 1 206 318 61.5 82 4 2 206 300 79 62.5 4 1 206 318 80 6. 4 2 206 300 781 88 4 1 206 318 80 6g 4 2 206 300 78 88 4 1 206 3168 61 88 4 2 206 S00 79 83 4 1 206 318 #61 ~~ 68 4 2 806 300 7935 a4 18. HERAT TRANSMISSION OF BUILDING MATERIAL COUNTER FLOW C. Hot Cold Read- Read- Temp. Temp. Hot Cold Read- Read- Yemp.Temp. air air ing ing Cold Hot air air ing ing Cold Hot for for of of Side Side for for of of Bide Side Opene Open- Anemo. Anemo. Open- Op@i- Anemo. Anemo. ing ing Hot Cold ing ing Hot Cold Side Side Side Side 1 S 1261 235.5 179 83.5 1 4 1261 91.5 80 84 L é 1261 235.5 80 63.5 1 4 1261 91.5 81 84 1 3 1261 235.5 79 83 1 4 1261 91.5 81 83 1 3 1261 235.5 680 83.5 1 4 1261 91.5 61.5 83.5 1 3 1261 235.5 81 84 1 4 1261 91.6 8&8 #84 1 3 1261 235.5 81.5 84 1 4 1261 91.5 83 £84.65 2 3 914.5 235.5 78.5 82 2 914.5 91.5 80.5 83.5 2 3 914.5 235.5 78.5 82.5 2 4 914.5 91.5 81 84 £ 3 914.5 235.5 78.5 82 g 4 914.5 91.4 81 83 2 3 914.5 235.5 79 83 2 & 914.5 91.4 82 83 2 3 914.6 235.6 80 84 2 4 914.5 92.5 82.5 84.5 2 3 914.5 235.5 81 84 2 4 914.6 91.5 82.5 84 3 3 §54.6 235.6 81 84 3 4 654.5 91.5 80 83 3 3 554.6 235.5 79 83 3 4 5654.56 91.56 81 83 3 3 554.5 235.5 80 83 3 4 5654.6 91.5 80 8&2 3 3 554.5 235.5 79 83 3 4 5654.5 91.5 80 682.5 3 3 564.5 235.5 179 83 3 4 554.5 91.5 82 84 5 3 654.5 235.5 81.5 84 3 4 554.5 91.5 82 84 4 3 '206 235.5 81 83.5 4 4 206 91.5 80.5 83 4 3 206 235.5 79 82 4 4 206 91.5 81.5 83.5 4 3 206 235.5 80 82 é 4 206 91.5 80 83 4 3 806 235.6 78.5 681.5 4 4 206 91.5 80 83.5 4 3 206 235.5 79 62.5 4 4 206 91.5 81 84 4 3 206 235.5 80 82.5 4 4 206 91.56 82.5 84.F 19. NOTATIONS USED IN CALCULATIONS. Cy = specific heat for a cubic foot of air = .018 A= Area of tin qi .j B.F.U/S transmitted per hour at ot s Area of opening =» Intaxe opening in hot. fan on Vy Ve Vg Cy (tp ~- ty) = Heat in B.T.U. received by hot surface Intake opening in cold fan Velocity of air on hot side Velocity of air on cold side Vg = Cp (tg ~ t )= Heat in B. T. U. emitted by cold side Q = B.T.U. transmitted per degree, per minute 7 U ws BTU. transmitted per degree, per minute per seq. ft. per hour A.Be & Oo are designatione of groups of experiments Vg = Volume of hot air V, = Volume of oold air to & t) = temperatures at extreme ends of hot side to be ty = tmeperatures at extreme ends of cold side CALCULATIONS Balculation for Parallel Flow A with hot and cold fan open- ings wide open (hot L, coldl) (a) Area of tin = aeeB’ x 51.25" = 30 sq. ft. of heating surface. (o) Vy = 973.5'/min. (oc) Vo = 318'/min. 20 (a) v, = atv, = (22:52%5) 973.5 = 467 cu. ft. “144 (e) Vp = a Vo = 1-5X 6» 316 = 152 op. ft. 144 (£) V. Oy = 467 x .018 = 8.4 (a) Vy C, = 152.5 x .018 = 2.74 (h) Va O, (tg © t,) = VO, (ty - tt) . gi 467 x .018 x 2 = 162.6 x .018 x 3 = Qt 16.8 = . 8.22 = gi Use Ql as 8.22 for the difference between the heat received and emitted is lost by radiation thru the openings of the box. Therefore Qi = 8.22 B.T.U.'S per hour Q = 2:22 gan U ss 60 x Qo 2 5042 x 60 = 6.84 BTU. 4 350 U = 6.84 B.T.U. 2le PARALLEL FLOW A 0 Oo Va Ve VaCn($2-t1) VpCp(te-ti) @ U 1 1 973.5 318 16.8 6.22 3.42 6.84 2 1 625.5 316 148 6.85 224 4.48 3 1 470.68 318 8.12 5:48 228 4.56 4 1 128 318 2.75 2.74 127 2.64 1 2 £973.65 300 25.8 10.4 2.42 4.84 2 2 625.6 300 24.9 10.4 1.43 2.86 3 2 470.6 300 16.24 185.65 1.75 3.50 4 2 188.0 4300 3.30 2.73 0.86 1.72 1 3 973.5 235.6 16.8 12.18 lee 204 2 3 625.5 235.6 14.2 142 1.62 3.04 3 3 470.6 236.5 26.3 16.27 1.63 3.06 4 3 128.0 235.6 4.4 4.06 0.90 1.80 1 4 973.6 91.6 84 5.39 0.67 1.14 2 4 625.5 91.5 7.12 4.62 0.68 1.436 3 4 470.5 91.6 4.06 3.86 0.59 °# 1.18 4 4 128.0 91.6 2.20 2.31 0.67 1.34 ts se é Ree COUNTER FLOW A O 0" V} Vea VaCp(tg-t]) VpCp(tg-t;) Q U 1 1 973.5 318 42,00 38.36 2.35 4.70 2 1 825.5 318 21.36 21.92 2.30 4.60 3 1 470.5 318 12.18 16.44 1.71 3.42 4 1 128.0 318 6.60 19.18 1.70 3.40 1 2 973.5 300 25.20 18.20 1.82 3464 2 2 825.5 300 21.36) 15.60 1.59 2.18 3 2 470.5 300 12.18 15.60 1.53 3.06 4 2 128.0 300 2620 13.00 1.40 2.80 1 3 973.5 235.5 16.80 18.18 1.33 2466 2 3 825.5 235.5 14.24 12.18 1.27 2.54 3 3 470.5 235.5 12.18 12.18 1.30 2.60 4 3 128.0 235.5 3680 12.18 1.15 2.30 1 4 973.5 91.5 16.80 7.70 1.11 2.22 2 4 825.5 91.5 14.24 6.93 1.00 2.00 3 4 470.5 91.5 12.18 6.16 0.77 1.54 4 4 128.0 91.5 6.60 6.16 0.66 1.32 256 0 V7 Vp Walp (tg-ty) Vp0p (t2-ty)} Q U 1 1 1549 318 26.72 13.70 5.48 10.96 2 1 1200 318 20.72 10.96 1.90 3.80 3 1 705 318 12.16 6.22 1.70 5.40 4 1 247 318 6.39 5.48 0.86 1.76 1 2 1549 300 20.04 14.30 3.01 6.02 2 2 1200 300 15.54 10.40 2.40 4.80 3 2 705 300 9.12 7.80 1.60 5.20 4 2 247 300 5.32 5.20 2.01 4.02 1 3 1549 235.5 13436 10.16 2.53 5.06 2 3 1200 235.5 10.36 10.15 1.90 3.80 3 3 7106 235.5 9.1 8.12 2.03 4.06 4 3 247 235.5 6.39 6.09 1.07 2.14 1 4 1549 91.5 6.7 5-775 0.806 1.61 2 4 1200 91.5 5.18 4.52 1.506 3.01 3 4 705 91.5 3.10 3.80 1.140 2.28 4 4 247 91.5 2.13 2.21 0.610 1.22 COUNTER FLOW B 0 0 V1 Ve Valpltg-tz) Vy% (t g-ty ) Q U 1 1 1549 $18 20.04 8.22 1.90 3.80 2 1 1200 318 10.36 4-11 1.05 2.10 3 1 705 S18. 12.16 5.48 1.34 2.68 4 1 247 318 4.286 2e74 0.76 1.52 1 2 1549 800 33.40 9.10 2.30 4.60 2 2 1200 300 5.18 5.20 1.38 2.76 3 2 705 300 15.20 5.20 1.45 2.90 4 2 247 500 5.33 3.90 1.40 2.60 1 3 1549 235.5 6 .68 3.04 0.82 1.64 2 3 1200 235.5 10.36 3.04 1.04 2.08 3 3 705 235.5 12.16 6.09 1.58 3.04 4 3 247 235.6 4.26 5.07 1.35 28.70 1 4 1549 91.56 26.70 1.44 0.61 1.02 2 4 1200 91.5 20.72 2.31 0.67 1.34 3 4 705 91.5 9.12 2.31 0.67 1.34 4 4 247 91.5 4.26 1.54 0.54 1.08 PARALLEL FLOW 25. C 0 oOo Vy Ve VaCp(to-ty) VyC,(t-ty) Q u 1 1 1261 318 21.76 13.70 2.700 65.40 2 1 914.5 318 15.76 11.33 2.570 6.14 3 1 554.5 318 11.90 9.96 3.200 6.40 4 1 206 318 5.98 4.11 0.967 1.98 1 2 1261 300 16.32 13.00 3.10 6.20 2 2 914.5 300 15.76 10.53 2.38 4.76 3 2 554.5 500 7.17 5.20 1.59 3.18 4 2 206 300 4.42 4.00 1.45 2.90 1 3 1261 235.5 10.88 9.14 2.43 4.86 2 2 914.5 235.6 7.88 7.10 1.73 3.46 3 3 554.5 235.5 7.17 5.07 1.52 3.04 4 3 206 235.5 6.19 6.09 1.28 2.56 1 4 1261 91.5 68.70 5.80 1.53 3.06 2 4 914.5 91.5 7.88 5.39 1.20 2.40 % 4 554.5 91.5 4.78 4.72 1.01 2.02 4 4 206 91.5 1.77 1.54 0.53 1.06 266 COUNTER FLOW c 0 0 Vy Vo VgCp(ty-tz) VyCp(tg-t;) 4 U 1 1 1261 318 10.88 2.74 1.50 3.00 2 1 914.5 318 23.60 2.74 1.37 2.74 3 1 554.5 318 9.56 1.37 0.98 1.96 4 1 206 318 2.65 1.37 0.67 1.74 1 2 1261 300 5.44 2.60 1.90 3.80 2 2 914.5 300 7.88 2.60 .36 2.72 3 2 554.65 300 7.17 1.30 1.04 2.08 4 2 206 300 3.64 3.90 0.907 1.814 1 3 1261 255.5 6.44 5.07 1.45 2.90 2 3 914.5 235.5 19.70 5.07 1.37 2.74 3 3 554.6 235.5 2.39 4.06 1.23 2.46 4 3 206 235.5 3.64 3.04 0.98 1.96 1 4 1261 91.5 10.86 2.30 0.96 1.92 2 4 914.65 91.5 3.94 1.54 0.73 1.46 3 4 554.5 91.65 4.78 1.54 0.64 1.28 4 4 206 91.5 2.65 1.59 0.55 1.10 oetae caer P=reeenne® Fl Pere, rae eee tee ts ak ee 8 ie eit Pai ror | VELOCITY ee eel ds Frog tages Ps an a + LL5 , =e Zo) p FAN ¥ erring yas Poe lta Otte y = = i i y L i 7 | oma", / = : +4 ae iP Saaees: Mabon ound Sit oh tea he” 292 te A da ees aed aE al of | | aarti a Aa canes Sanaa Spageneens peeeeeas: - sees suse cnasnouenn om = Tada igreeetentiemeetins eueeeaet eet | | | ee : | : a 30 bau i | paste : eur | se } | tt ‘ <4 42° EBemas (Re oH ye [PUFF CRATE SOHNE POSSAeKuse 2008 Foney ABRMSTHE SA A VeRR ‘ee aue ns er eG Ney | ) ; ) } eee or ne } ; } F ; ease nes scp unswevenssacasegecss : = 9 wens : tt mae | } east oe egos ; | (ob 92 seeeeneee’ (s Tia I | +z Teal? RAN F e Benes raat so <3 Sbaes eegessnses crarevetes cemeens sean s EBS eT cede | } Rd Gbosnanced cossocsnce sunccaesasuscsuscs 23 2 jeseeneseas ) | : : | : = sigeda cseceaassu! se ee piecs=-- °*~s-noeue babes I, yess i / BH tae bocce = tas merc ne ey | a Tae) i) ee j Q Hot_ FAN WELeCITY fe Saeeses | -Snne SURE Ze SEUe wt vonwe aacRee Te =} / i : . ss! i: | peer ° i * eve § pp} rr 2 aN Eros 7 fi Haemeetses songr-, SE A poet / eeo2 aN OTS: j ; fe Le Taw: (ann seeuesess re TT’ bh @euban og ubc oak sues Suse: i { a NS OU | | | gi FroBessun seaGhesune cecessusss basenaeens boson oe seanses bussuusnes pusesuswennane ; a pa SSESEESEES SESESS™” © oon ens GREEEEEET! ) yl Sales TA aie eee y Ase } eye) | i ’ oe me arid ao eae yates et Lafen | ona were see | ; ; } ea ' | : | | : eeenes bo ary) seecsatses = rT ries eB oe fF sans5” 75% 5 Cr) FAN ri ee Tiers a ee oe ; . erred att } y ye — ro ore ! ; | Pi} ES et z THESIS By eae Tita ena = PARALLEL FLOW a rs ; iedetedel Ev casaags ae! f seen enase 3 a ’ ’ oy m bo jadge Goss: nt ~~~ 4. Sess HSSSRETEES ESSE: iL BAAN S 8 | : as a is sasaeesess Ses § wi fidea cevenns PFE A a ~ eespeees ealsse: o ino its ne Aa? og $88 oes TUT eel. oe re RTT Seat eeu tenchaul ied etl 5 3598302553 ReacaS SESE SSESELIEES 22525 : jSeeerertss Ha S545 EE: ; Fe! ' yeanes cenee i | : ee Eu 5 oa $03 se5z 2g 23 SESSUET cssEEESSSS Srerne Pere re ca ee ere ae ail 35 SEbCSE3EEE os Rae r ara | a Beitrag tears ; | | ; : ee ; / } : } | | ; } | | i | | / / } / ; ; | a asses BESESES te eee - ead Bees j—— | i } } | ' : | ; | , ' | / j / } 1s t ’ } ' Pe adeanacenteetaasatiat seian stint A rr eye STITT ae Lake aera V7? es ; ox weeee! ; S. a errear Fete TIT Tine oY Pow eorritettee ime ae yf ; Paes | | | | | eeeeeeena 6.77 | ea a EY) ils aD) War Yee e p2e | ; 3 4 2 ry: ‘8B 2/ Or) er) Es) ° > an i» of : Hai ioe ne! 3 | : youes : as , 7 rat aie VA p FAN VE ee Tyee Ve Ure ate aoe" ZO > £ ms - AN VEL Bear, a ee FAN VELOCITY qj. 423 meee Se See ew © Ean Sete rs" 7 na } * = = . —— : ae ima d a * ¢ meres” iP rye) A rat i? FAN 5 a ; ; % > a ; + Lé lu bi Fe! 2 bed, 4 re » ] ee) anaes eager FENN Ewerss=e=~— ges =} CAN VELOGH eeCrPyey we Taba ey caket~ cezanereen eel ae en VELO ! y, at] ; oz ~ van li a a ay wena Cve oe ry a COLD FAWN VELoc; HOT FAN YELOC! HOT FAN aaa TEs Sa : p25 oa A aay oP PPA TT aoene eee YEEE 2c ore a a : r A AN ie coleman? i isaek Coin FAN VE loc me aac d, e ° ; ba ae Th = mite me : bage eal’ ar a = { 1 . 7 . © ' r "| = aac 7 ay = vr 3g a lhe aes re U ae 2 , oT 8P =F ae i. JIB 4 ty creep i tnetnd eettte, SSS Tye Ss aa SSSERECES ETC By > OU FAN VELOCITY Bd a) Yr COLD Fan ater tell, ae ae . a ; aa CRS mewent? P81 f bes seeted Siie3ee p i or FAN va a : ial FE arp a FAS fF ays) aw, VELac,; a ars 7 ie 1/2 re 6 CC JOHNSON aii cee ee iran WA A VELOCITY 7 ’ , j “ > r j » Ge On OAS Bl ie te dee Se | So an © : 6 ik I | en © Aa " GET -¥-VJERP-2° 9 > tae ore ae seat Contec” [1 eas 2 Da V oF]; ah ar-cyaraee io 3t4 Ave en 3 ie — a ify aay vor wei ¥ Pan pay ¥ > A v . ve ae og | Aguas 5. pe eae ee | ~~ LT 2 M ——-— is a = 2 ee | it} A he i cod , | Me asl ak _— o cy ar : Woe lst ae Lae P p= 5 A PS Ay : Wee 4 PARALEEL mae, ee ae PP a ee B28 Se REE | —— res BS8P —— 2 Yor F751 ae ae yey Lute Oi t V4 Ps y 2] a) aa a : ag | r 7h as ‘ Dares a are xa! AMES 7 at “or FAN VELOCITY ek: ya y wi Pa VR Oa goat 4 mwas ey: ITY. 2 A eet TIE Ln ea VELOCITY io - = = —_ - —_ Z BEI iw) a aa Tye eer 9 TAA an D : pee oe uae RB as : japseateSe on—rsat- selene yr < Tate fe = T7 Coke A re ne Y aeene: rey : tr ELOCITY AN yr = ri Wot FA™ ares. mse SGREnEC IE SY VA oe Fae I. Pome VELoOr* oe a mr acvT st oa bf 74 Ae roy a 2 , eyTr rT. Tea aa ‘HoT. FANLVE Pf re 7 VELoeITY Bh Fal ~~ziipFAN = _ piorsr* fe J VME Ee i fe a ~ Cad Pare-s? Unt ul ee pee Dn VELOG ue ena. a y, | | Tat OME aa , eae eee ed Peenee: as eH coreg t i tdeesheypeht Dili litt, +4444 fs ay rad ae / > eer e saad paysite t Dery : esta | i = 1 ane a ea EE | 3} ae eed re bebe cx gait ; |. 27 oe cr oa 2 LOciTY 31 . FAN INFE | | x : : ’ WERGSAGE BR. Weeks PEERS PaSeE es : ay eee woe as: maga Fi oat uv / bets teeta a Le} / aden ~ } sae A ae} eaugarss: . | Fl ive) ay F eenee / | ’ f | ease ss! ; ones ; : : aes sae oone Fe setass peasaaqes qeaeees | ; / } | a | a we aan ba eeor ooeeas eoeeeecens aoe aH ' | oes Be } | : ee soe R ji e a ie LL fie is a | | ay a Py Veaentnengrct CD all Jiiaie ae aaa Sot aes SuRGRESES3 ThpESanSes presspeses Suceeuss. | secssences eranctsase t ise fat | ad av —— + / : — te : ue ir mani a ; ee 2 di sadesnmeed esttaseet mes a aaiaial ak c4sdip 6 | t+ El i EEUEREERE sestaaats cae a i ia nae : oo Ee se ghend eESRBEES ms ttt rt saeeee ' secre! PSS Ez Et pewERes zea Bwens ons. ed ie ; / ai i 2 a en e : esse: ae ageteed beseeteess sere ereagepedetae See ser Ee eaests ue secarsa! SeaSSees ot co cSESREe" 7 sone ya tae siiseezse Be ae a Teahiae Fl Fe ee ena: poser: i ga! ; | Gages 228 Sc sRrpge aseeng GEER EERE #02 stepept MODERIEE eee a ae : eeee: eer e ae ete se Yer A a Galas call t} feeess=="*--—e lag mar 78 FAN | } ee azEt Eddins deus is | | RT Seaseoteny bapauntand sazzsreems emoeas ee dee eel eee ee eeea"” Z sl Ab az cae test by ate | | | qi isas2 cod s4sss8s80sfestsesstd iesseeacet fessiaSes] : ra Ca ay . o v rei ee ae | aN ETL a 7-93! eet ' ae 2: Lined UE ff ' ra as j2anvust vam rea x6 al Sie re nae cay iad ETB rs 2 eo ; as ae re ’ } oes es reeaeet . pees bee wepee ara i SP CSeSe ae Or +4 Sees! ie ani i. ‘ } oi ears ; 4 eee: Mi ee ore aren ; \ emne oS: oe Seas ses = PTOSS es 1 es . ake eed we Bet eee. ey pa oe aa a + 4 err r oe + 4 thes A rar -« + oes anol . i Sam 08/0) ae fens ER an bP FV gta a0) bal Tee 9 Pee ; . : : og hOLITY LOGY Col D FAN VELOCITY 975 easeee pe HOT FA} Perm epee lr ie _ AN WEL OCITY ial bo aeitated FAN VELoc ¥ a aah dae iF egetes: ae $F <2 nA oe rum ~ “. =~ ; 8 .. (TOL FAN \WELOCITY Abilis b FAN VFLOcITY @rr7. i | . cal te ea ¥ pa7 Piz 3 §R8R-Pe0 Re - wr ere or we pene: * eeese, f-AN VELOCITY ea Col D FAN YE) Cia hae BP P=EP yeasts etane cesar o" 5 Che! MOT FAN VELOCITY 20t es LO FAN VELociTyY 235.5 Apt "4 Y I< 3 sam ME iui c