

001.2

.

THES:3

.

٠

INTRODUCTION

The effect of hydrated lime on the tensile and compressive strength of mortar and concrete has long been a source of argument between The Portland Cement Association and the National Lime Association.

In a letter submitted by The Portland Cement Association they quote the following items taken from a paper entitled "Effect of Hydrated Lime and Other Powdered Admixtures in Concrete" by Professor Duff A. Abrams of the Structural Material Research Laboratory.

(1) "In general the addition of powdered materials reduced the strength of concrete approximately in proportion to the quantity of admixture. Some exceptions are noted below.

(2) "In usual concrete mixtures, each 1% hydrated lime (in terms of the volume of cement) reduced the compressive strength 0.5%; 1% by weight of cement reduced the strength 1.2%. The reduction in strength caused by replacing cement with an equal value of hydrated lime was about 1.75 times that caused by adding hydrated lime.

(3) "High calcium and high magnesium limes produced the same effect.

(6) "Rich concrete mixes showed a greater loss in strength due to powdered admixtures than the leaner ones. Lean mixes (1:9 to 1:6) and in those with aggregates graded too coarse for the quantity of cement used, the strength

> - 1 -96038

.

was little affected or slightly increased by admixtures up to 50%.

(7) "The wetter mixes showed a greater loss in strength than the dry, due to the addition of hydrated lime.

(8) "The effect of admixtures was in general independent of the age of the cement.

(10) "Hydrated lime and other powdered admixtures used in these tests slightly increased the workability of the leaner mixes (1:9 and 1:6) as measured by the slump test. Ordinary mixes (1:5 and 1:4 were little affected; richer mixes (1:3 and 1:2) were made less plastic.

(13) "Hydrated lime had little effect on the absorption of dry concrete, increased the evaporation of water from wet concrete and produced no beneficial effect on the strength of concrete stored in air."

Also the following is a copy of the statement, (submitted to the author by letter) of T. H. Hart, Manager of Construction, Department of the Lime Association.

"Hydrated lime is used in concrete for the purpose of making it work smooth, fat and buttery. It produces an effect which no amount of water can produce, and permits the use of a dryer batch than would otherwise be possible. This leads directly to greater strength, (if the water is carefully controlled) and at the same time gives a better flow thru the mixer, better discharge from the mixer, flow in chutes and hoppers, better flow around reinforcement and complicated forms; smoother white surfaces, less segregation, etc. A

-2-

long train of advantages are inter-related. These have never been measured mathematically. In most of the tests, the water has not been properly controlled and investigators have reported a reduction in strength which was not really caused by the lime itself, but by the water which they added (quite unnecessarily) with the lime."

Mr. Hart makes several statements that conflict with those of Professor Abram. Mr. Hart says, 'Hydrated lime is used in concrete for the purpose of making it work smooth, fat and buttery. It produces an effect which no smount of water can produce and permits the use of a dryer batch than would otherwise be possible." Professor Abram contradicts the above when he states that, "Hydrated lime and other powdered admixtures used in these tests slightly increased the workability of the leaner mixes (1:9 and 1:6) as measured by the slump test. Ordinary mixes (1:5 and 1:4) were little affected; richer mixes (1:3 and 1:2) were made less plastic."

Mr. Hart also claims that when a proper amount of water is used the addition of hydrated lime will cause a stronger concrete while Professor Abram states that, 'In general the addition of powdered materials reduced the strength of concrete approximately in proportion to the quantity of admixtures.' Also, 'The wetter mixes showed a greater loss in strength than the dry, due to the addition of hydrated lime.' Professor Abram's only statement in favor of lime is that it increases the evaporation of water from wet concrete.

Some one must be in error and therefore it seems to be the policy of one association or the other to make incorrect

-3-

statements for simply commercial reasons. A consideration of the above quotations and discrepancies observed in other general sources of information lead to the idea of running a series of tests on hydrated lime and mertar for which were made a large number of standard briquets and 2 inch subes for tension and compression tests respectively. The tests were run by laboratory methods which will be described as the different tests are taken up later.

The idea conveyed by Mr. Hart in his letter has been followed as nearly as possible in eliminating plasticity as a variable from the tests and to study the effect of hydrated lime on the strength of mortar. The normal consistancy was determined for each test so that plasticity was kept constant.

A neat element mix; 1:2 mortar and 1:3 mortar were severally made up into three groups of briquets and cubes. The percentage of lime was varied from 0% to 30% by a stepped variation of 5% and was tested at the end of 7, 14 and 28 days respectively.

MATERIALS.

<u>Cement</u>. Burt cement which is of the rock variety was secured from a local dealer in Lansing for use in the tests.

Line. A commercial hydrated line manufactured by the Ohio Hydrate & Supply Company was secured from the same dealer as was the coment.

<u>Send</u>. The sand was secured from gravel taken from a pile in the cement laboratory and screened through a 1/8" sieve.

TESTS OF MATERIALS.

1. Normal Consistency Test.

The Vicat test for normal consistency was used. 500 gms. of sement was taken in each case with a measured quantity of water. The cement and water were mixed for one-half minute with a trowel and then thoroughly mixed and kneaded by hand into a thick paste. The mass was then passed 6 times from hand to hand and then pressed into the large end of a tapered hard rubber ring. The ring was placed on a glads plate and the top of the cement was smoothed off by a single cut with a trowel.

The glass plate and the ring were placed under a rod having a diameter of 1 cm. and weighing 300 gms. The penetration in 30 seconds was determined by a scale graduated in millimeters. For normal consistency the penetration should be 10 mm. for 30 sec. The results of the tests are shown in Table 7.

It not being possible to determine the normal consistency of a mortar with the Vicat method a 1:3 mix of cement and Ottawa sand was mixed to the proper normal consistency, the proper values being taken from a table on Page 838 in Heol and Johnson's Concrete Engineers' Handbook. All the 1:2 mortar and 1:3 mortar mixes were tried out with different quantities of water until the consistency appeared to be like that of the sample made up of the proper consistency. The values determined are given in Table 7.

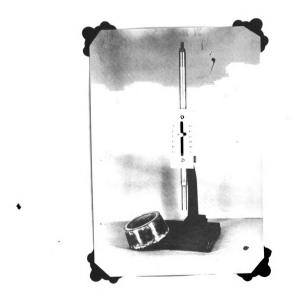

TABLE BO. VII.

Table of Normal Consistency.

		Neat Cemen	it.	1:2 Mix	1:3 Mix
Per Cent of Lime		Per Cent of Water	Penetration		
0%		25 % 25-1/2 26 26-1/2 26-1/2 27 27 27	9 Mm. 8 16 13 8 11-1/2 9		
	Av. Use	26y2 26	10.6	12 .5%	11. %
Б	Wae	27 4 27-1/2 27-1/2	8 mm. 10	12.5%	an ad
10	Use	28-1/4%	8 mm.	1° • 1/9	11.3%
20	Use	28-3/4 28-1/2	13.	13.4%	11.6%
15		29 % 29-1/2 29-1/2	7 mm. 12 11		
	UBC	29-1/2		13.85%	11.9%
20		30 % 30 6	7 mm. 14 mm.		
	Use	3 0 • 3		14.3%	12.2%
25		31 % 31	11 mm. 9		
	Use	31		14.75%	12.5%
30		30 % 32 33	5 mm. 9 13		
	Use	32		15.2%	12.8%

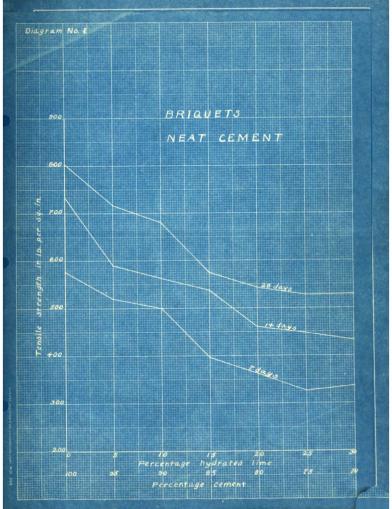
.

.

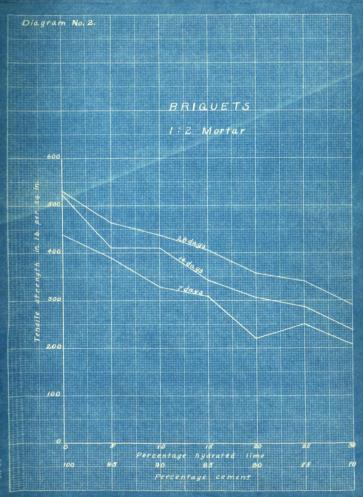
Vicat apparatus

2. Tension Tests.

Standard briquet's one-inch thick and with a crosssectional area of one square inch at the center were made for all tension tests.

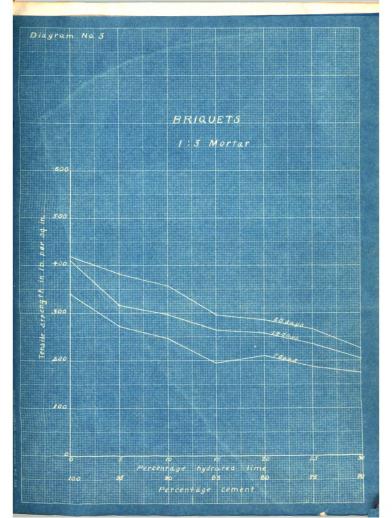

Heat Cement. Twelve briquets of neat cement of normal consistency were made for each mix of 0%, 5%, 10%, etc., to 50%. Four were tested at the end of 7 days, four at the end of 14 days and four at the end of 28 days. The forms containing the test pieces were placed in moist air for 24 hours and then the forms were removed and the briquets were placed in water at a temperature of approximately 70° F until tested.

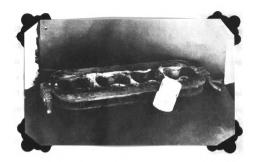
The results obtained from the tests are tabulated in Table I and comparative curves are shown in Diagram I. All the results of these tests will be summed up and compared with the other tests in the conclusions. The diagram shows that the briquets were stronger on the 28th day than on the 14th day and stronger on the 14th day than on the 7th day. If an average curve was drawn for each day's test it would be approximately parallel with the other ones. This graph bears out what Professor Abram says, 'In general the addition of powdered materials reduced the strength of concrete approximately in proportion to the quantity of admixture'. The diagram gives average results.

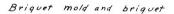

1:2 Mortar Mix. The same number of text pieces with the same variation of lime were made up for this test, as in the Neat Cement. The pieces were tested on 7, 14 and 28 day periods as was the Neat Cement. The results are given in Table II and comparative graphs shown in Diagram II.

-6-

Table No. 1	BRIQUI	ITS			
WRAT CEMENT MIX.					
- ale	7 Day	14 Day	28 Day		
0% of Lime	705 470 450 685 Ave, 577,5	720 700 790 725 734	710 850 810 <u>845</u> 804		
1B- 5% of Line	565 425 575 • <u>515</u> Ave. 520	640 660 520 <u>540</u> 590	660 650 755 <u>845</u> 716		
lC lo% of Lime	475 380 460 Ave, 501	610 510 495 635 562,5	670 660 695 <u>690</u> 681		
1D 15% of Line	400 345 425 . 415 Ave, 396	480 570 560 540 537 5	550 650 650 <u>450</u> 575		
13 20% of Line	330 365 380 <u>375</u> Ave, 362,5	410 480 480 480 480 460	530 520 580 <u>540</u> 542		
lF 25% of Lime	280 310 365 . <u>350</u> Ave, <u>326</u>	430 420 440 500- 447_5	520 525 585 480 527,5		
lG 30% of Lime	325 335 340 476, <u>345</u>	410 440 440 440 432,5	520 570 530 495 529		
Note: Averages are given in pounds per square inch.					




Table No. 2	BRTO	ITRAS	1. S. 2. A.		
BRIQUETS . 1 : 2 - Mix ₂					
	7 Day	14 Day	28 Day		
3A 0% of Lime Ave,	475 380 460 440 439	510 590 480 <u>515</u> 524	550 545 540 <u>490</u> 531		
2B 5% of Lime Ave,	370 440 415 <u>330</u> 389	410 380 420 <u>430</u> 410	490 505 420 440 464		
20 10% of Lime Ave	310 325 340 330 329	415 435 360 <u>430</u> 410	425 470 420 435 437_5		
2D 15% of Line Ave	320 280 330 <u>300</u> 310	830 340 355 <u>345</u> <u>342</u> 5	410 405 400 <u>405</u> 405		
22 20% of lime Ате;	210 250 215 215 220 221	200 285 330 <u>310</u> 306	360 370 350 <u>350</u> 357,5		
2F 25% of Lime Ave.	250 240 260 250 250	270 315 280 285 287,5	370 330 335 330 341		
20 30% of Lime Ате,	210 200 200 220 207 5	225 250 250 255 237,5	285 300 310 270 291		
Note: Averages are given in pounds per square inch.					



TH CO CHICKOGHEW YORK NO. 050

Table No. 3		BI	LQUETS	
	1 : S - MIX.			
		7 Day	14 Day	28 Day
3A 0% of Lime		360	405	410
0% of Lime		315	375 450	435
		330 355	450 415	410 420
	Ave.		411	419
3B 5% of Lime		270 235	325	405
5% of Lime		235	315	370
		295 290	320 305	395 360
		272.5	316	382,5
30 10% of Lime		230	275	850
10% of Lime		240	285	375
		260 260	340 290	350 355
	Ave.	247.5	297.5	357 5
3D		220	240	305
15% of Lime		220 220	240 275	335
		130	250	275
	Ave.	210 195	290 264	270 296
			and the second	
313		260	255	280
20% of Lime		220	260	290
		200	245	290
	Ave.	160	* 270 257 5	285 286
	Ave.		201 30	200
3F		190	285	275
25% of Lime		190	220	260
		160	185	290
		210	250	240
	AAG.	187.5	200	266
30		170	190	215
30% of Lime		190	210	225
		170	205	250
		170	210	210
	Ave.	17/5	204	225

Briquet, testing machine

All that was said about the neat coment tests applies to this test. There are a few variations in the diagram as for instance: The 5% point on the 14th day shows a low test; while the 10% point on the 14th day shows a high test. The variations on the tensile tests have been charged up to the personal equation, because the variations have not held constant for the 7, 14 and 28 day graphs.

1:5 Mortar Mix. The same number of test pieces with the same variation of lime were made for this test as in the neat cement and 1:2 mortar mix. These briquets were seasoned as were the neat cement and 1:2 mortar mix. The average results are summed up in the Conclusions. The results are given in Table III and comparative graphs shown on Diagram III. What was said of the neat cement mix and 1:2 mortar mix applies to the 1:3 mortar mix, as shown by the graph.

In all the tensile tests the graph proves what Professor Abram has said and what was quoted in his paper as Item I.

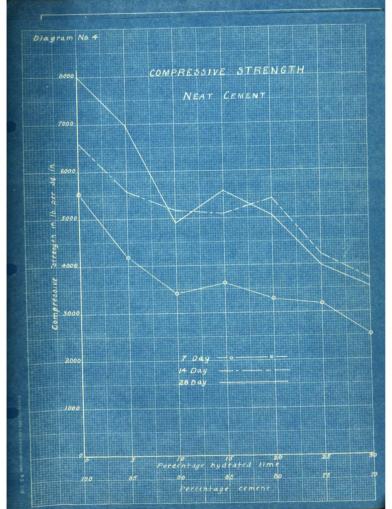
COMPRESSION TESTS.

Two-inch cubes were made of neat cement 1:2 and 1:3 mortar with a cross sectional area of four square inches, for compressive tests. All blocks were set up in plaster of paris before being broken to eliminate uneven surfaces.

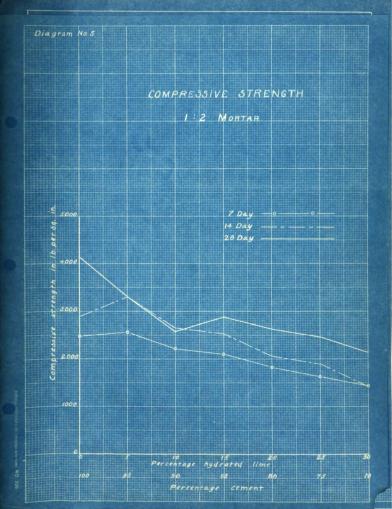
<u>Next Cement</u>. Twelve cubes of next cement of normal consistency were made for each mix;- 0%, 5%, 10%, etc., to 30%. Four were tested at the end of 7 days, four at the

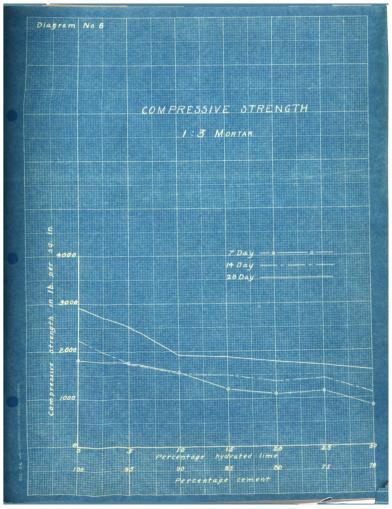
end of 14 days and four at the end of 28 days. The blocks were seasoned the same as the briquets.

The results are tabulated in Table IV and comparative graphs are shown in Diagram IV. The graph shows a decided difference between the tests of the cubes and those of the briquets. The test of the 7 day cubes is very similar to that of the 7th day briquets and also the 14th day. The 28 day are stronger than the 14 day test pieces at 0% and 5%. Then the 28 day dropped below the 14 day; rose above at 15%; went below to 20% and continued so to 30%. The graphs show that in rich mixtures after a certain age the mortar begins to lose strength. The only way that it can be accounted for is that on drying the lime sets up forces that cause very small cracks invisible to the maked eye and as a result of the small cracks, the strength is reduced. This is one of Professor Abram's theories. This graph not only shows that age decreases the strength. but that Professor Abrams first item is checked again.


1:2 Mortar Mix. The same number of cubes with the same variation of lime were made for this test as were for the neat cement. These cubes were seasoned the same as the other ones.

The results are given in Table V and comparative graphs shown in Diagram V. The 5% tests of the 14th day is the same as 5% tests for the 28th day which shows that age decreases the strength and ggain the 28th day, 10% tests fall below the 14th day 10%. From here on the graph is similar


-8-


	A STATE OF A STATE		
Table No. 4			
	CUEES -	2 in.	
	NEAT CEMENT	COMPRESSIVE STRENG	
	7 Day	14 Day	28 Day
14	22140	25905	Over -
0% of Line	25760	25940	31000
	21000	27135	
	19690 5537	26725 6607	8000
AVO.	0001	0807	0000
1B 5% of Lime	18130	19620	27145
5% OI LIME	16890 17415	24200 23230	31000 24680
	14460	22110	27600
Ave .	14460 4181	5573	6964
10	12080	24140	21020
1C 10% of Lime	13515	16500	18510
	16055	19775	17055
	12960	20400	21885
Ve.	3413	5176	4905
1D 15% of Lime	13240 146 30	20495	18090
15% of Lime	14630	16225	23340 23390
	15520 14680	21670 23070	24440
ATO.	3630	5091	5579
1.2	11920	21850	20990
20% of Lime	13750	22200	21860
	13720	21715	18600
	13160 3284	20750	19330 5049
AVC.	3284	D/ <u>4</u> U/7	D0 4 3
		18000	16590
1F 25% of Lime	13310 11270	13690 18900	19460
20/01 11100	13380	20040	13300
	12840	14710	14465
Ave.	3175	4210	3988
lG	9510 10460 10590	13725	12760
lG 30% of Lime	10460	16260	15425 150 50
		15020 14210	13230
470	2525	3701	3530
Note: Averages are gi	von in pounds p	er square inch.	

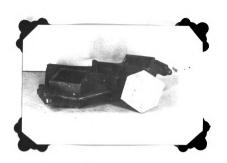


Table No. 5	CUE	83 - 2 in.	STORE STORE			
	ANT 2 MIX COMPRESSIVE STRENGTH					
	7 Day	14 Day	28 Day			
24	12075	12525	16720			
2A O% of Lime	8000	10925 10460	15695			
	9800	10460	17630			
	9850	12150	16900			
	Ave. 2483	2879	4184			
2B .	10370	13805	12380			
2B 50% of Line	9550	12210	14105			
	10190	11595 15200	12270			
	10840	15200	14105			
	Ave. 2560	3301	3304			
20	8430	10640	9110			
2C 19% of Lime	8710	9545	10550			
	8340	10895	10525			
	Ave. 9920	<u>11290</u> 2648	11060 2578			
	Ave. 2213	2645	2076			
CS	8725	9815	12370			
15% of Lime	7885	9545	10940			
	9000	9555	11005			
	Ave. 2101	<u>11535</u> 2526	11745 2879			
	Ave. 2101					
2E 20% of Lime	7770	7750	10310			
20% of Lime	7250	. 8130	10555			
	7370	8725	10460			
R. Law Contraction	Ave. 1837	8360 2060	10865 2637			
	146* 1004	0002				
25	6310	7525	10280			
25% of Lime	6750	7700	9590			
	6530	80.00	9200			
	6435	7155	10380			
	A ve. 1627	1899	2467			
2G	5415	5575	8615			
2G 30% of Lime	5540	6095	8960			
CARLES STREET	6120	5525	9050			
	5850	5525	7710			
	Ave. 1433	1420	2146			

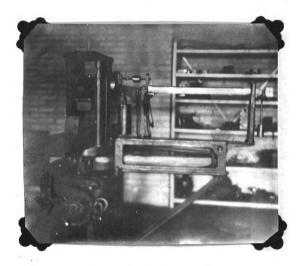


Table No. 6	in the second	CUBES	- 2 in.	and the second
		1 : 3 MIX 0	OMPRESSIVE STREN	
		7 Day	14 Day	26 Day
34 0% of Lime		6350 7630	9860 9550	13205 9750
		7630 7060 8020 1816	9860 9550 7500 8750 8750	10740 12910
	Ave.	1816	2229	2913
3B 5% of Lime		7440	6015	11025
1 200 OI TITUO		6800	6015 7950 7335 6710	9000 9960
	Ave.	7180 1767	6710 1751	<u>10445</u> 2527
3C 10% of Lime		6410	4710	7705
10% of Lime		6180 5760	6540 6670	7285 7640
		6410 6180 5760 6510 1554	6725	8205
			1540	1927
3D 15% of Lime		4685	5575 6560	7900 7350
15% OI LIME		4870 5480	5525	6810
	Ave.	4345 1211	6380 1503	8040 1881
36		4510	5015	7295
3E 20% of Line		4100 4285	5015 6140 5785	7295 7370 6365 7520
	170	4510 4100 4285 4860 1110	4840 1361	7520
3F 25% of Lime		4550	6495 5035 5605	6075 7315
2.578 01 11.000		4600	5605	7030
	Ave.	5025 1150	5755 1431	6805 1702
3G		3400	4475	5740
3G 30% of Lime		3200 3670	4070 4410	6335 5980
	Ave.	5400 3200 3670 <u>3240</u> 844	4410 4835 1112	7285
Note: Averages			per square inch.	

Cube mold and cube

Cube testing machine

to that of the briquets. The variation may be due more to the personal equation.

1:5 Mortar Mix. The same number of cubes with the same variations were used in this test as in the other tests. The cubes were seasoned as were all the other cubes.

The results are given in Table VI and comparative graphs shown in Diagram VI. This graph shows that the age is not effective as far as this test goes. This still further proves Professor Abram's first item in his paper. There is a alight variation in the 5% and 10% cubes at 7 and 14 days, but this is due to the personal equation.

CONCLUSIONS.

From the tests preformed it seems proper to conclude that under no condition does rich mixtures of mortar (neat cement, 1:2 and 1:3) with lime increase the tensile and compressive strength, but bears out the statement of Professor Abram's in which he says, 'In general the addition of powdered materials reduced the strength of concrete approximately in proportion to the quantity of admixtures."

There may often be places where the value of lime for producing color, etc., will out-weigh the importance of high strength, but under ordinary conditions lime should be left dut of concrete.

Finally, the investigation outlined herewith plainly indicates that Mr. Hart's statements are in error. Possibly he has been led to extravagant claims by the enthusiasm of advertising campaign, a not uncommon occurrence in business.

-9-

APPENDIX I

The following is a list of the books, articles and papers covering work on concrete from which much valuable information was obtained in the preparation of this thesis.

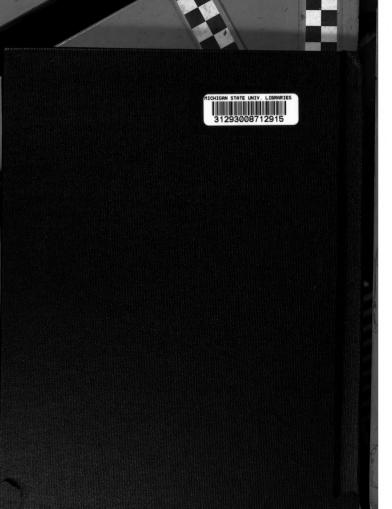
- 1. Concrete Engineers Handbook. Hool and Johnson.
- 2. Effect of Hydrated Lime on Portland-Cement Mortars. Henry S. Spackman.
- 3. The Effect of Hydrated Lime on Portland-Cement Mortars. Professor Herry Gardner.
- 4. Letter Portland Cement Association. J. B. Freeman.
- v
- 5. Letter National Lime Association. F. H. Hart.
- 6. Letter Lewis Institute. Professor Duff A. Abrems.

•

.

The following is a copy of the plan for the work on this thesis submitted previous to the beginning of the work.

Subject: The effect of hydrated lime on the tensile and compressive strength of mortar.


Proportions: Neat, 2:1 and 3:1

Percentages (by weight) of lime: 0 - 5 - 10 - 15 20 - 25 - 30.

Age: 7, 14 and 28 days.

Number: 21 kinds x 3 different ages x 4 for each test = 252 briquets.

Humber of cubes: The same as for briquets - 252.

