

PLACE IN RETURN BOX to remove this checkout from your record. TO AVOID FINES return on or before date due.
MAY BE RECALLED with earlier due date if requested.

DETERMINATION OF AZMUTH, LATITUDE

and Longitude by astronomical obstrdvations.

A

Thesis
Submitted to the Faculty
of
MICHIGAN AGRICULTURAL COLIEGE

By

M. H. Small
E. I. llatson

Candidates for the
Degree of

BACHELOR OF SCIENCE

June 1922

PREFACE

We wish to express our thanks to Professor H. K. Vedder for his aid and advice in the compilation of the data used in this Thesis.

DETERMINATION OF AZMUTH, IATITUDE
AND LONGIMUDE BY ASTROIOMTCAL OBSE?ZVATIONS.

To the average layman the subject of astronomy and the movements of all heavenly bodies is an unfathomable mystery into which he feels not the slishtest interest to delve. ' To him astronomical research is merely a pastime for the scientist who is possessed of sufficient wealth as to be able to carry on his work for his personal satisfaction. He does not realize that the field of astronomical research has contributed greatly to the store of human knowledge.

To the engineer and more especially the surveyor, a thorough knowledge of practical astronomy is very essential.

The locations of all land lines and other geographical and geodetic data obtained by the Government engineers on the Geodetic Survey, is based on the exactness of astronomical observations.

The locations of all points and places on the earth, the difference in longitude and latitude and the exact time of day can be obtained by a surveyor by observations on certain stars, and so it behooves the young engineer to acquire a thorough grounding in the
basic and fundamental laws which control the movements of the bodies of the celestial sphere.

In takinp this subject for our 'ihesis, it was our intention to accomplish three thines by astronomical observations. First - The exact latitude of Last Iansing; Second - Checking the Azimuth of a line laid out on the compass; Third - The longitude of Last Lansinc. we will attempt fur thermore to oive a description of the subject of practical astronomy that may be readily understood by anyone outside of the field of science.

Practical astronomy treats of the theory and use of astronomical instruments and the methods of computino the results obtained by observations.

That part of most importance to the surveyor is that which deals with the methods of locating points on the earth's surface and of orienting the lines of a survey, and includes the determination of; First, latitude Second, time - Third, longitude - and Fourth, Azimuth.

It would be well here to give several definitions of the meanings of terms and phrases to be used in this Thesis so that it will be more readily understood. These definitions are taken from Hosmer's work on "Practical Astronomy" and because of the plain and exact lan guage used are set down here verbatim. (See Plate 2) VERTICAL LIIP: At any point on the earth's surface is
the direction of gravity at that point, and is shown by the plamb line, or indirectly by means of the spirit level. ZENITH-NADIR: If the vertical line at any point be prolonged upward it will pierce the sphere at a point called the Zenith. Ihis point is of preat importance because it is the point on the sphere which indicates the position of the observer on the earth's surface. The point where the vertical prolonged downward pierces the sphere is called the NADIR.

HORIZON: The Horizon is the great circle on the celestial sphere cut by a plane through the center of the earth perpendicular to the vertical. The Horizon is everywhere 90° from the zenith and Nadir. It is evident that a plane through the observer pernendicular to the vertical cuts the sphere in this same great circle. The Visible Horizon is the circle where the sky and sea seem to meet. Projected onto the sphere it is a small circle below the true horizon and parallel to it. Its distance below the true horizon depends upon the height of the observer's eye above the water.

VERTICAL CIRCIES: Vertical Circles are great circles passing through the Zenith and Nadir. d'ney all out the horizon at right angles.

AIMUCANTERS: Parallels of latitude or almucanters are small circles parallel to the horizon.

POIES: If the earth's axis of rotation be produced in-
definitely it will pierce the sphere in two points called the celestial poles.

EQUATOR: The Celestial Equator is a great circle of the celestial sphere cut by a plane through the center of the earth perpendicular to the axis of rotation. It is everywhere 90° from the poles. A parallel plane through the observer cuts the sphere in the same circle.

HOUR CIRCLES: Hour Circles are great circles passing through the north and south celestial poles.

PARALIEIS OF DECLINATION: Small circles parallel to the plane of the equator are called parallels of declination.

MERIDIAK: The Meridian is the great circle passing through the Zenith and the poles. It is at once an hour circle and a vertical circle. It is evident that different observers will have different meridians. The meridian cuts the horizon in the north and south points. The intersection of the plane of the Meridian with the horizontal plane through the observer is the Meridian line used in surveying. PRIME VERTICAI: Prime Vertical is the vertical circle Whose plane is perpendicular to the plane of the Meridian. It cuts the horjzon in the east and west points.

IATITUDE: On the earth's surface is the angular distance of the point in cuestion north or south of the equator.

LONGITUDE: The arc of the equator between the primary meridian, which is usually taken through Greenwich, and the meridian of the point in question.

AZMUTH: (I) Azimuth is the angular distance on the horizon between the meridian and the vertical circle through the point.

AZIMUTH: (8) On the earth's survace, Azimuth is the angular distance measured from the south in a clockwise direction of the point in cuestion.

In making the observations in obtaining the data used in this Thesis, we used the equator system of coordinates on the celestial sphere.

The circles of reference in this system are the equator and great circles throush the poles, or hour circles. Ihe first coordinate of a point is its angular distance north or south of the equator. It is called the DECIIMATION.

The complement of the Declination is called the POIAR DISTAICE.

The second coordinate of the point is the arc of the equator between the vernal equinox and the foot of the hour circle through the point. It is called

Right iscension is nie asured fron the equinox
"eastward" to the hour circle through the point in question, it may be measured in degrees, minutes and seconds of arc, or in hours, minutes and seconds of time.

HOUR ANGLE: The Hour Angle of a point is the arc of the equator between the observer's meridian and the hour circle throush the point. It is measured from the meridian "westward" from 0 hours to 24 hours, or from 0° to 360°.

The instruments used in making the observations for this Thesis were a transit, with all its accessories including a prismatic eyepiece, chronometer and the data for the observations were figured from the "NAUTICAL ALMANAC AND SOLER EPHETERIS FOR 1922" issued by the Federal Government. The line and point used in this work is a line located on the drill field of the M. A. C. CAMUS, the south point of the line being a copper bolt set in a concrete monument wich is set flush with the surface of the ground. This south noint is located by the following witness: Sid corner of Armory - N 610 oo' E l28.1' feet. N : V corner of Gymnasium - $\mathbb{N} 88^{\circ} 301$ W 146.9^{1} feet. Hydrant $\mathbb{I} 2^{\circ} 15^{\prime}$ W 168.4^{\prime} feet.

The north point of tine line is an iron bolt set in a concrete monument flush with the surface of the ground, which is located by the following witnesses: S E corner of لean Bissell's house I! $69^{\circ} 30^{\prime}$:" 132.7 ' feet. S w cormer Professor Johnston's house $\mathbf{K} 81^{\circ} 16^{\prime} \mathrm{E}$ 108.4' feet. 30" Hard 「aple Tree S 80 30' E 12.5' feet.

This line is exactly parallel with an other line already established. lne alternate interior angles between the two different North and South points being $0^{\circ} 43^{\prime} 30^{\prime \prime} \quad$ (See Plate 1).

In making the observations for Azimuth, Ursa Minorus, Paloris was used. This is a star of the second magnitude which mans it is very bricht and easily seen with the naked eye. It is a circumpolar star and has a very small orbit being very close to the pole ind is the brightest of all the stars in this constellation. This is the star most generally used in determining Azimuth and the "NAUTICAL AIMMTAC" gives complete tables necessary to the computing its position in the heavens at any time.

To get the Azimuth of a line on the earth we mast get the true Azimuth from observation on some star and by means of a transit project it onto the earth. The true Azimati of Polaris can be computed for any time of the 24 hours.

From the "FiAUTICeT ALramac" we first find the RIGHT ASCEi:SION of the mean sun at Greenwich, this must now be corrected for l. A. C. This correction amounts to 55.52 seconds because II. A. .. is on the $84^{\circ} 30^{\prime}$ meridian of lonsitude and Greenwich is on the zero meridian. Whis correction is obtained by multiplying the variation per hour of the sun's right ascension by the number of desrees of lonaitude between M. A. C. and Greenvich expressed in hours - 15° of longitude being equal to one hour of time. This correction is added to the rirht ascension for Greenwich because we are ..'est of Greenwich which gives us the sun's rjght ascension for mean noon at M. A. C.

The right ascension of Polaris for the day of observation is then obtained from the table, no correction being used as they are very small, being decimals of a second and would make no difference in the final result. Subtract the Ripht Ascension of Polaris from the Risht Ascension of the Sun which gives the Sidereal Interval. As the table for Azimuths of Polaris at any hour anple and depree of latitude is in Solar time, this Sidereal Interval must be changed into Solar time.

Now choose ny convenient time for making
the observation in mean standard time, and as M.A.C. is east of the 90th Neriaian, the time interval must be added which for $84^{\circ} 30^{\prime}$ is 22 minutes. Iow add the mean Solar time for observation as corrected, to the Solor interval obtained above and we have the hour angle of Polaris, the chosen time. From the table of Azimuths already referred to, the Azimuths can be readily obtained.

AZDUTH.

In making the observations for Azimuth, the following method was used: The transit was set up directly over the center of the south point of the Ine already mentioned - the plates leveled up, the instrument being set very firmly in the ground. This is very essential for in makine the observation, on y little jar however small may cause the instrument to go out of adjustment, thus causino an error in the results obtained. The index error on the vertical arc, if any, is very important and should be known and allowances made for it. By means of a flashlisht the north point of the line whose Azimuth we were determining, was located and the vertical cross-hair set on it, the plates being set at zero.

The lower plate was now clamped tightly and the upper plate loosened so as to be moved with the tangent screw as the time of observation approched. The star was broucht into the field of the telescope, and by means of the tangent screw, the observer kept the vertical cross-hair directly on the star, - his assistant calling out the seconds and giving a tip at the exact time. The reading on the vernier should now check the $\begin{gathered}\text { zimuth as computed from the tables in }\end{gathered}$ in the Almanac for the hour angle assumed. The n to obtain the dzimuth of the assumed line, this reauing
will be the number of degrees or minutes from true North. Iurn this off, thus obtaining true Ilorth, and then the Azimutin of the line in cuestion can be readily obtained by reading the ancle between the lines.

LATITTIDE.

In making the observation for latitude, all the above precautions of set-up of instrument and technic of observation should be followed. The compilino and computing of the necessary data is also some what similiar.

The Right Ascension of the mean sun at Greenwich being taken from the table, and this corrected for M. A. C. The Rirht sscension of Polaris is then obtained for the day of observation and if the observation is made at culmination as was done in the work for this Thesis, the Ripht Escension of Polaris is subtracted from the corrected Ripht Ascension of the mean sun to which has been added 12 hours for lower Culmination. For upper Culmination, the two Right Ascensions are added.

The result is then changed to mean Solar time and then reduced to mean standard time for l.A.C. by subtracting the correction as above. This result gives the exact time to observe.

The Declination of Polaris is then obtained for that Right Ascension from the table, and as lower Culmination was used, this Declination is subtracted from 90° and added to the observed reading on the vertical arc. The result is the exact latitude of the place, i.e. M. A. C.

LONGITCDE

In obtaining lon itude it is imperative that the time be exact. The precisi on of the results depends entirely on the correctness of the chronometer. As we received our correct time from Arlington at nine o'clock, we chose stars for tiee observation which transited very close to nine o'clock standard time. Spica, and 1 of the constellation Virco were used.

The time of transit of these stars being computed from the "INUMICAI AIMAXAS" in the same manner as for Polaris. This mast be exnressed in mean Solor time for M. A. C.

The transit was set upat an intermediate point on the meridian, and the exact standard time of transit taken. I'he difference between the observed standard time and the Solar time of transit oives the difference in longitude between the 90° meridian and M. A. C. in minutes of time. The exact loncitude of M. A. C. was then found by reaucing this difference to degrees and subtracting it from 90°.

AZIMUTH (SAIPIE COIPUMATIOI:S)

For May 22, 1922

Right Ascension mean Sun at Greenwidh
Correction for M. A. C.
Right Ascension mean Sun
at M. A. C.
Right Ascension of Polaris
Sidereal Interval

3^{h}	57^{m}	19.08^{0}
		55.52
3^{h}	58^{m}	14.6^{0}
1	32	30.46
2	25	44.14
		24
2^{h}	25^{m}	20.8
9	52	
12^{h}	17^{m}	20^{s}

Azimath of Polaris at M. A. C. for an hour angle of 12^{h} $17^{\mathrm{m}} 20^{8}=6.5^{\text { }}$ East of North

Angle read on Plate 6.5' East of North

IATITUDE (SAIPIE COIPUTATIOIS)
Observation on May 22,1922

Right Ascension mean Sun at Greenwich	$3^{\text {h }}$	57^{m}	19.08^{8}
Correction			55.52
Right Ascension mean Sun at M. A. C.	3	58	14.60
Right Ascension of Polaris M. A. C.	1	32	30.46
Add 12 hours for lown culmination	12		
	13 3	$\begin{aligned} & 32^{\mathrm{m}} \\ & 58 \end{aligned}$	$\begin{aligned} & 30.46^{8} \\ & 14.16 \end{aligned}$
Sidereal Interval	9	34	15.86
Correction Sidereal to Solar		1	34.04
Solar Interval	9	32	41.82
Difference between M. A. C. and Standard		22	1.38
Mean Solar Time of Transit at M. A. C.	$9^{\text {h }}$	10^{m}	40.44
	90°		
Declination of Poleris May 22	88°	53^{\prime}	6.74
	10	6^{1}	53.26
Observed Angle on Transit	41	37^{\prime}	
Latitude of M. A. C.	42°	43^{1}	53^{\prime}

LONGITUDE (SAIPIE COMPUTATION:

June 12, 1922

Spica Deciination $\quad-10^{\circ} 45^{\prime} 26.57^{\prime \prime}$

Right Ascension of mean Sun at Greenwi ch June 12

Correction

Right Ascension of mean Sun at M. A. C.

Right Ascension of Spica at Washington June 12

Sidereal Interval at M. A. C.
Sidereal to Solar
Solar Time of Transit
Watch Time of Transit
(Correction from arlington at 9:00 P.M. Standard Time $1^{m} 13^{s}$ fast)
Standard Time of Transit

Difference in Longitude between M. A. C. and Madison
$22^{m} 3^{s}=-5^{\circ} 30145^{\prime \prime}$

5^{h} 20^{m} 6.76^{8} 55.52 $\overline{5^{\mathrm{h}} \quad 21^{\mathrm{m}} \quad 2.28^{\mathrm{g}}}$ | $\begin{array}{cc}13^{\mathrm{h}} & 21^{\mathrm{m}} \\ 5 & 21\end{array}$ | 7.13^{s} | |
| :---: | :---: | :---: |
| 8^{h} | 0^{m} | 4.28 |
| | 1 | 18.64 |
| 7^{h} | 58^{m} | 46.21^{s} |
| 7^{h} | 37^{m} | 56^{s} |
| | 1 | 13 |
| 7^{h} | 36^{m} | 43^{8} |

7^{h}	58^{m}	46^{s}
7^{h}	36^{m}	43^{s}
	22^{m}	3^{s}

90°	00°	00
5	30^{1}	45
84°	291	$15^{\prime \prime}$

Time of Observation (Standard Time)	Azimuth of Polaris 00(Expressed in lininutes)	Azimath of Time nxpressed in rinutes
May 22-8:30	16.5' ${ }^{\text {W }}$	01
n \quad - 9:30	6.51 E	01
May 23-8:30	15. ${ }^{10} \mathrm{~W}$	-5' E
n $n-9: 30$	8.'0 E	. 0^{1}
May 26-8:30	10.5 ${ }^{\text { }} \mathrm{W}$. ${ }^{1}$
" \quad - 9:30	13.0' E	$1.0{ }^{1} \mathrm{~W}$
May 27-8:30	$9.0^{1} \mathrm{~W}$	0^{\prime}
n \quad - 9:30	14.5 E	01
May 28-8:30	7.5' W	0^{1}
n \quad - 9:30	15.5' E	$0{ }^{1}$
May 29-9:00	$5.5{ }^{\prime} \mathrm{E}$. 5 W
n $n-9: 30$	16.0' E	. 5 W
May 30-9:00	7.0' E	0
" \quad - 9:30	17.0' E	0
June 1-9:00	10.5' E	0
n \quad - 9:30	23.0' E	0
June 6-9:00	15.0' E	0
n \quad - 9:30	28.5' E	$1.0{ }^{1} \mathrm{E}$
June 7-9:00	16.5 E	0
n \quad - $9: 30$	29.0' E	0

-

Lower Culmination on Polaris on:	Correction to be added				$\begin{gathered} \text { Observed } \\ \therefore \text { nsle } \end{gathered}$		Latitude of M. A. C.		
May 22	$1^{\circ} 6$	6^{1}	53^{\prime}		41°	371	42°	43^{\prime}	$53^{\prime \prime}$
May 23	$1{ }^{0} 6$	$6 '$	53^{\prime}		41°	371	42	43	53
May 26	$1{ }^{0} 6$	$6{ }^{\prime}$	54"		41°	37^{1}	42	43	54
May 27	$1^{0} 6$	6^{\prime}			41°	37	42	43	54
Nay 28	$1{ }^{0} 6$	6^{1}	54"		41°	37	42	43	54
May 29	$1^{0} 6$	61	55"		41°	37	42	43	55
May 30	$1{ }^{0} 6$	6^{1}	55^{\prime}		41^{0}	37	42	43	55
June 1	$1^{0} 6$	$6{ }^{\prime}$	55^{\prime}		41°	37	42	43	55
June 6	$1^{0} 6$	6^{\prime}	57^{1}		41°	37	42	43	57
June 7	$1{ }^{0} 6$	$6{ }^{\prime}$	57^{1}		41°	37	42	43	57

RESUITS

RESU:TS OF OBSRAVATTO:.S FOR TOMOTMTDE

From Observations or Spica (See Samnle Computations on Ioncitude)

Longitude $\mathrm{I} . \mathrm{A} . \mathrm{C} . \quad 84^{\circ} \mathrm{29} 15^{\prime \prime}$

From Observations on 1 Vircins.
Solar qime of riransit at M. A. . . $8^{\mathrm{h}} 50^{\mathrm{m}} 55$
Standard iijne of Iransit at "
$\frac{8^{h} 28 \quad 53}{22^{\mathrm{m}} \quad 2^{3}}$
$22^{\mathrm{m}} 2^{8}$ of Solar lime is equal to $5^{0} 30$ '
$90^{\circ} \quad 00 \quad 00$
$5^{\circ} 30^{\prime} \quad 00^{\prime}$
$84^{\circ} 30^{1} \quad$ Longitude of M. A. C.

```
BI BIIOGRAPEY
```

1. Text-Book on Practical Astronomy - By Hosmer.
2. Determination of Time, Loncitude, Iatitude, and Azimuth - Department of Commerce, U. S. Coast and Geodetic Survey By win. Jowie.
3. Geodetic Survey - By Cory.
4. General Instructions for Field Work - U. S. Coast and Geodetic Survey.
5. Geodesy - Clarke.

The Spuere Sfen egontue Outhiol

Thestar S has the altitude $R S$, azimuth $S^{\prime} R$, hour angle $M m$, right ascenston Vm, and declination mS ; the meridian is ZUS'.

