109 019 THS imnnin 3 1293 01093 LIBRARY Michigan State University MSU LIBRARIES ae ae RETURNING MATERIALS: Place in book drop to remove this checkout from your record. FINES will be charged if book is returned after the date stamped below. Tests on a 75 K. W. Terry Steam Turbine. -000= A Thesis Submitted to The Faculty of the MICHIGAN AGRICULTURAL COLLEGE by PH. Gates WE. Hartman HM. Sass Candidates for the Degree of BACHELOR OF SCIENCE May -« 1918. -900- THESIS Tests of a 75 Ke W. Terry Steam Turbine. OBSECT. In this thesis, we propose to obtain the condi- tions existing in the turbine under different loads and nozzle openings. These conditions include the heat drops between the different nozzles and blades, the velocity of steam in the different stages and the quality of the steam as it passes through the turbine. The steam con- sumption will be determined for thirty different combin=- ations of loading and nozzles in use so as to determine the most economical conditions for different loads. HISTORICAL The following sketches of the development of the steam turbine are extracts from current technical maga- zines and.text books, mich of the material being obtained from Moyer's "Steam Turbines" and "The Design and Construce tion of Steam Turbines* by Martin. Although turbines have come inte common use only within the last decade, their use for experimental purposes has been found to reach back over a period of two thousand years. ~~ f ‘ te e oo C a * . ¢ i e ° sy . . ‘ . e : t : . t * . a . N aor : 7 Ley ‘ . , “ . . yo! . . a -~ ae . %. De MS : . ‘ - g os 4 ‘ - e. - +a °N a ‘ ‘ . r a8 ro $ . ‘ a @ ‘ . “ . i ' . ~ ‘ ° te : ° ~ . ¢ a ‘ , + a . a o ¢ ‘ , 1° ° ' . : a4 . te *. “ _ abe .e 2. * . .. 3 wd = bd e ., . “ ry ~ . oo - ~ , - . ~ - o ° . t @ a. . : = yo ct a ro ct ’ . “eT NP ~ : ef web « . S$ , °° ae _=- oe. , . % o a ° . e . eoee a 1 ee 4 . — -@e -@ o ° . “od ok e . . ¢ . e . . : . - . . “ » af a - oe \ ao, , - eo. 4 In a book written by Hero, about one hundred and fifty B. C., there is shown a sketch of a revolving hole low metal ball, into which steam enters through a trunion from a boiler beneath and escapes tangentially from the outer rim through two arms bent backward so that the ree action causes the ball to rotate in a direction opposite that of the escaping steam. This wheel is the prototype of the reaction turbine. Perhaps the steam turbine of the simplest type is a wheel, similar to a water wheel, which is moved by a jet of steam impinging at high velocity on its blades. Such a wheel was designed by Branca an Italian, in 1629. This type of turbine, similar to a Belton water wheel, is known as the impulse type. In most modern steam turbines both effects are used, jets of steam striking blades or tokets inserted in the rim of the wheel so as to give it a forward impulse and ese caping from it in a reverse direction so as to react upon it. The name impulse wheel, however, is now generally giv- en to one in which the pressure on both sides of the wheel containing the blades in the same, and the name reaction wheel to one in which the steam decreases in pressure while passing through the blades. In 1577 the cause of the steam turbine received its next beneficial consideration. In that year a German me- chanic is said to have used Hero's engine to rotate a mee chaniem for a turnspit. ‘ ’ . : “ot se . « ve - - yo. . - ° . . e > om ’ . * . ‘ « . 1 ° * . re t . , . a . . 4 . oo? * . ott . . . , ° “. @ 4 8 . o » *, 7 4 4 ‘ Rae - oh . ats - eo. . ° . + i¢ ’ . . . “ . oe . ‘ A 2. yg . a . ‘ . te > “7 : . , ° - . “ - - - . * € ‘ . ‘ ° ‘ * ° ‘ . - > * . a t va Me _ , . . - e . oy ‘ + ¢@ - +" - too ‘ . 1g 1 ’ . ’ - . aos " Cd] . t. “~?* 47 * ° al « : ee 8 e « A ~ 4 4 -/? - @ < * * ¢ ra © ‘ ‘ 4 . * aw oe ‘ > ° e . " @ 4. ‘ « . we e ge ° . 4 ° 30 In 1642, shortly after the Italian architect Bran- ca, had made an advancement in the steam trubind field, a Jesuit named Kircher used Branca's wheel with two jets of vapor acting instead of one. Over a hundred years later, in 1784, Wolfgang de Kempelen was granted a British patent for "Obtaining and Tranamitting Motive Power" by means of a steam turbine. This turbine was composed of a steam boiler with a smali horizontal cylinger mounted, at the center of its length, on a bearing on top. Near each end of the cylinder and on opposite sides were small apertures through which steam could escape when the turbine was in operation. The reace tion on the escaping steam on the air caused the cylinder to rotate. One half of the retating cylinder acted as a crank and moved a pump like mechanism through a connecting rod and lever arrangement. In the same year James Watt secured patents on an experimental steam trubine which was enclosed in a vessel. Soon afterward, in 1791, James Sadler, an engineer of the city of Oxford was granted a patent for an invention entitled, “An engine for lessening the consumption of steam and fuel in steam or fire engines and gaining a consider- able effect in time and force". This turbine embodied many up-to-date principles. Noble produced a wheel shortly afterward that was driven in somewhat the same manner as a Pelton water wheel. e a @ ‘ 1? ‘ * , " a ‘ t ’ ee “ é ° s tos sy . . . .- . &R~ oo ‘ : . we © ae s - + ‘ ~ 7 . . . ° r~ roe . . Se ~ . * » “ @ . * - “8 a ? v - - 6 4 “ON » * . . . - e . . « ° . . .f ? . . * , ° . woe . ¢ » ‘ > . . e+ oo ° % . . + 4 . ? . a . 4 ¢ . a - rd - “4 oy tn 6 os “ . a. ow. "y . : 0 . . ¢ . . ‘ . . ‘ “me w e - ‘ oc r- fo. ‘ - + “ k - : o- . ‘4 . . . - v . , a 7“ ~ a, we aad 4 . ™~ we -. - i ° a. ae a e ’ . oh, wy “ . “fe . ,. 4 “eo ° : : ao ¢ - , ' . . » ‘ ' - . . ag yy . _) og . a4 . a . oo “8 . - - e ' x . Ts ae A un ‘ b 4 . a © : e cr: A oo , g ¢ » eos . , . ° P > » . ? . .- Ny ws . es - -~ . ¢ ° ‘ ' ry . . ee. . - eo -d . r « - a ’ o* . 4 s v . ‘ ° $f « . ae . o . 7 “y « ” ‘ « - + - eos ' ys J 8 ow - 7 eos . a tos “=> " a ’ “¢ ~ . « Ow “* ? s , o . o , A o ‘ . . o 7 - 4. Other turbines followed, advancement in their dev- elopment being made by Ericson, Perkins, Pilbrow and others, Pilbrows machine involving the first principles of succes- sive expansion stages. This principle was later developed by Robert Wilson in 1898, first in radical-flow, then in parallel-flow turbines. From this time on rapid advancement was made in the perfection of the economical ateam turbine, especially of the Parsons type, until today we have turbines of several pressure stages and many velocity stages and in capacities up to eighty thousands of kilowatts. SHRORY Many engineers and authors have, at various times, advanced treatises on the theory of Steam Turbine operation, all of which are of some importance in drawing a consistent conclusion. In discussing the Mechanical Theory, elemental exe amples will be considered the more complex being developed from these. In an impulse turbine with a single disk containing blades at its rim, steam at high pressure enters the small-e er end of a diverging noszle and as it passes through the nozzle, is expanded adiabatically down to the pressure of the atmosphere in a nonecondensing turbine, or to the pres- sure of the vacuum if the turbine exhausts into a condenser. The steam thus expanded has its volume and its velocity enore mously increased, its potential energy being converted into t ¢ ‘ - . ° . . ° . : . . « » - “ . « ° uJ :ao . a . . ’ . ad . . , ~) “4 ' - . @ e: ' « ‘ a - a . . . ‘ ~ are « ° e- ° - , . ~ de .. (f = e “ : - . ° e : . y . . : . - . . . : . . : \ . , ® a Jo : - e . tf aA } . . . . , t ee . ' oe e ‘ J. . . . ' . . ’ -. . . a . nd * « . * . t - : . tet . . poe te a 1 as a 7h a“ ay - © soa, ne . v, a , eu . : oe - . . : a. ’ . - « 1 , : NO ae . ee t uw . a . . . e . 7 »° . ‘ . on ‘ a s ’ . 2 tobs ato . . . " ~ ‘ foe *. Aces . .- ~ . . . cee @. - - » ‘ . e , e .* e ” . i on ‘ : . ot q " tas - . . >. ‘ « - = 6 ° me ‘ . “ae * . s . ' ‘ * , : “4 ae ‘ . os . - dw ° . . . . e . = ‘ . ’ a “4 ‘ ' ‘ . > ‘ ° . a , - ‘ . . . . . : : oo ey, . 4 - e “ @ oe ° af ahs moe - . . 8 . ° ood . « : . ° . . t . os. . 2 oe L . oh ‘ . nr e ° * _¢ oo. -, “4 id . ’ : . : ee tee 2 & "e@ ae ‘ _ ° 7. e > 7 . ° . — . 7c? ® » . - - - ~_— . , => , . . & { ‘ . . , ‘ 8 . . ~ aoe . . . , . . ” . we. ’ ’ ‘ a . . : os ’ . . . . * * ed ” . . « . . . “ Le ; . e . . . ! . . ‘ -] ‘ 4 , ° ‘ ‘ - ™ 4 , ; . . se - Be kinetic energy. It then strikes tangentically the concave surface of the curved blades and thus drives the wheel for- ward. In passing through the blades it has its direction reversed, and the reaction of the escaping steam also helps drive the wheel forward. If it were possible for the direction of the jet to be completely reversed through 180° and if the velocity of the blades in the direction 04 the entering jet was one half the velocity of the jet, then all the kinetic energy due to the velocity of the jet would be converted into work on the blades and the velocity of the steam with reference to the earth would be zere. This complete reversal, however, is impossible since room has to be allowed between the blades for the passage of the steam and therefore the blades are curved through an arc considerably less than 180° so that the jet, on leaving the wheel, still has some kinetic ener- gy which is lost. The velocity of the entering steam jet is also so great, that it is not practicable to give the wheel rim a velocity equal to one half that of the jet which is bee yond a safe speed. The speed of the wheel being less than half that of the entering jet also causes the steam to leave the wheel with some of its energy unutilized. The mechanical efficiency of the wheel, neglecting internal losses, is expressed by El - E/E, ; in which E, is the kinetic energy of the steam jet impinging on the wheel and E. that of the steam as it leaves the blades. 2 r. - > ~- 7 3 4 . i. ‘ - 7 . > - , . s ’ . * ot | ° : +. ms 8 mG } >» \ , or -4 . 8 . r * tog : a’ * t. ‘ . ° . “ e . *y ‘ . ~ ve : , °y we . ‘a ws - 1’ o « we ~~ : ; ¢ ‘ : . . Oo ~ ‘ } . . s _@ ea ve -- . $ ‘ po c, “8 > t ee : “ . . . . » . . ~ on _a ‘ : t < K . ‘ ; . i. “s ‘ a > C , ‘ : - - 4 . . of ar, tee ‘ we, a . . “3 Y , ‘we. . ow - . @ - - ~ ‘ . . . t . : , ¢ t, > 7 oom - r, . : we . nn me . ; . - o- ' ° . tos ? - ban ¢ t—~ 4 & ie ‘ Z é “oe : , ' to Y. 77 ss 4-, - . - ~s . q i” ws me . Het ° a - ‘ a ‘ . ~ . ‘- & > . . ohng - e.e a . . : a | een o-* , - soe 4 . . >. an . 8 . 5 - - ~ ‘ wo! * ‘ -* °2 . “6 5) oe . _? 3 _ 3 * . ~ . ; . . €: as o 7s -- o _* ‘ “3 ‘ e LO £ v. - 5 “4 1 ¢ . +s ~ . . ? qt at - ra . : , 2 o , i ° s “a ° t 7- ~ - ‘ ’ . ~ » id . ~» +-: » o _ 1 o . Fi ‘ . a . a : a ’ - : . , , ‘ ?” oh an a. ’ “ t .. se eo ‘ ..- . . . - .c > “ ro Ot . HE a gg . eo ee . , x ‘ ee “° ‘ ; ‘ , see mo 2 oO! - : . a th es Ce - v : e - - ‘ . » . e - ton a .? : Cc 7 a4 ee. . os : rr wong 5 ‘ er . . , “, -_ . e ¢ « WZ. . . be . ‘: ‘ ¢ ef. , . , 4 a .: ' 4 ais te @ e de os \ . ” e . . v? . r r re ". ~ ve ‘ - - ¢ > .4 . . " . wy . . San . -. 45 oe, , : . . - ; a be ‘ys s “ : w. a - . » : ' - .. : . * . it * ? 4 st ry : le ry . ; et , fy os rn ; a 4 : . +. . tak 4 > . o . . : . &iot 2 . ? 4 ~ 3 ow a. . . . . - 9 2 . . - . * “ . “ . . o- t. . e-? . . “ta t < , . y : . 2 ‘ 4 . . ’ att : “ ty ‘ . ’ u., a Saal . . : . 1. * , 4 2 i ~ ~ ‘ . va * : 1 t-, ‘ . & . sy , “8 “3: ot , ” . 1 . ; a . s . . ~ *% : 1 ‘ 6 “8 - : . « *- “13 an o-4 * ‘ . 7 ¢ . i . 2 o * + r fy . -, - *) a wr. ° een . i. * . . wd . an » . . " _ + - ~ -- c- c: tos tad 4 ' ” f~ ‘ OS . ‘ . $ 2 - .! : a . % 9 te . 42 . ‘«@ wn . ‘ - ’ ° ¢ . * vos . . ew: ® s . * . ! . ? . . ~ . . . ‘ ‘ - . es my os oe é ty , . oy : = . ay 7 ‘ . . . . . » « . a ets ae - a b’. ’ & . . a "4 - ‘ . é . tos ‘ ’ , al — e - ° ‘ ° ; “y : - ; ‘2 o-} “4 ; ~ . - 5 . a 7 - ‘ . . ‘ . wt . . . ’ ° ~ 7 so. . 4 - :s wt +e : . . . ‘ x - , an “4 . - . ' ~ . uv 5 % fr, 4. ecw en ea 7 : . ’ . uy. “, . ’ : S . . , ~ ? as + ° 7 . e - . - os os ‘os oo 7) ; . we . . _ e . ’ - ' cs e . sy > . « . . . , Za as - - , ~ . . e. i “os \e a , . ‘ . ~ Sy ‘ ‘ - ‘ . 3 . vt wo y ‘ nd 3 . 7% 7 S - ay .f 1 ‘ ’ 7 } 3 z - : ; . : - : a , : ’ - ’ . ~ o-. . 1° . . } ei a ys ‘ - . . . s a. De ’ 9° . Ff a . > m+ - 7 er oa ~e . r ' . ' . ‘ ot - . . . . . . ‘ . . : -« ' ¢ . 3 , ; Re, 2 %- r: os , : “3 eos 4 : on . we e 7 ’ : AL . ee Pad - -” ais ‘ -. of . . ‘ 4 ' . vr . ‘ . ’ . .7 e- oe ” ‘ > 4 . - “y . . e - 7 7 Le ° oy . uy ens ‘ . ’ ; - 7 ors , o- 8 . - oe os - ° ~~ - . te . ¢ a“, ? 2 > . , ‘ ‘. , -! « 8 . . . * o -¢ ~ i -_ x ° . - ~ ss 7 ’ - “. ’ ” + ‘- “7 . oo * ° : ‘ 7 a “= e . s wee 7. ae . ~ . ‘ . . > 4s ot . 6 4 ° oo: ane . ° . . . ‘ ‘ ~ : 4. “3 ‘ at. . . * ‘ Yor * . ‘. . . 1 a . . A . t ‘ <. “2 . ae > r - -. : at :" >? . ~ 4 v : . -_ x : . . . - + « » .? . + . ~~ - ot s - fo. ' ou“ ? . T> N ‘, 4 s = .- , « ss L. ~~, a § een . ‘ah se - - . . . . - . » we In multi-stage impulse turbines, the high velocity of the wheel is reduced by causing the steam to pass through two or more rows of blades, which rows are separated by sta- tionary ourved blades which direct the steam from the outlet of one row to the inlet of the next. The wheel with two rows of movable blades runs at one half the velocity of the single stage turbine, and one with three rows at one third the velocity which causes the same total reduction in velocity of steam as the single stage wheel. A greater reduction in velocity of the wheel can be obtained by increasing the number of rows of blades. It is therefore possible, by having a sufficient number of rows of blades or velocity stages, to run a turbine at comparatively low speed and yet have the steam escape from the last set of blades at a lower absolute velocity than is possible with a single turbine. ° In reaction turbines, the expansion of the steam does not take place in diverging nozzles but also in statione ary expanding guide vanes and the reduction of pressure with its conversion into kinetic energy, or energy of velocity, takes place in the blades which are made of such shape as to allow the steam to expand while passing through them. The sta- tionary blades also allow of expansion in volume, thus taking the places of nozzles. In all turbines, whether of the impulse or reaction type or a combination of the two, the object is to admit steam at high pressure and discharge it into the atmosphere or into 7e a condenser at the lowest pressure and largest volume pose sible, and with the lowest possible absolute velocity, or velocity with reference to the earth, consistent with gete ting the steam away from the wheel with the least loss of energy in the wheel due to friction of the steam through the passages, to shock due to incorrect shape or position of the blades, to windage or to frictional resistance of the steam in contact with the wheel or to other causes. The minimizing of these several losses is a proe blem of extreme difficulty which is being solved by costly experiments and experience. ° ABPARATUS The 75 K. W. Terry Steam Turbine used in this thee sis is of the latest type manufactured by the Terry Steam Turbine Company of Hartford, Conn. The machine was designe ed to run at 2400 revolutions per minute on 1100 pounds gage pressure and twenty inches of mercury vacuum A good idea of the appearance of the machine can be obtained from the photographs which appear in this book. The guaranteed water rate of the turbine and the efficiency of the generator can be obtained from the drawing on page 30. The details of the nozzles and blades are show on the drawing on page<9,. The connection of the apparatus is shown on the drawing on page 2B. The turbine has five stages which operates on both impulse and reaction principles. Five diverging nozzles of sos om e 5. = «s r . -: . ¢ “ ‘ ‘ . a se ‘ ‘ “ . e ° « ‘ Jf ' a - , © ° ’ eer r aa, a : . “3 ’ . ’ : 4. eer * eo T ‘e oe en Few . “. ' . . 2 ee ee t ot t es . . - . d.. . oS awe . - . . =a «OF ‘ 1 ‘ . eo: » * . e * 7 mo o . ' _+ ‘ e . . . . ‘ ’ ‘ . ° ian ' 5 : - a Pa . . ae f - ae e . res : . ae . . ~” r fe * ‘ 1 . - ate * . . fa : % - « ‘ ye - . @ 7 ue owe 8 t . , “ e oe - 2 — yoa : ‘oo haa "4 -~ = - e : “ . - : + ‘ ‘ 8 1 6 a. - . mY 4 are ‘ 2 te \ - “¢ - - @ . ~ . . ' * ‘ .* , ° 3 . Y e « °) ‘ - . e eee u79 ’ ' 7-7 . ’ e ee - t r, ‘ . - _¢ . . « . oo. a A . .% , a a y e . € mr » é ‘¢? ° ‘ . 7 # . . ~ é / e : * . . . - . * - -# roe .. @ - weep - 2 . . =~ oe or * ‘ _ a oot, *, 7+ oe , oe . , ar awe . - ye . 7) ee . v . b Mae ae ater 3 - a. .? a . , - ~ ~~ ? . - o- : e fr fore ic ‘ 2 ooo ; f wP os « « , ' wht . . eo a . ome ". . -. a: ‘ -7 -6 “ - Yous - ’ . . eo . ‘ . . ~~ . vv a ,ore%e ‘ . . ‘ . ‘ e . > . . . - . wt a+ os . 4 - me. . y , » (ae - * - x . , e . 7 1 ¢ ’ + * + . “oy - ~ » « ‘ a « . . ’ a “y ' . . . ‘ . - ’ ° . a , . - _ .- °, " ‘ a ' . ° - * . * ey . . ® e ‘ > @.: eo . . 5 +, tee . . : . , ' . a < « ’ * a) o- .« ed . , a . * a * ° v ‘oy se ye ™~ soo ° ter wey . mas ° e * e ~ oy ~ . of r. . z oo . o- . -@ 1 . we . . ee Le . ~~: circular cross section are distributed around the periph- ery of the first high pressure stage. The nozzles make an angle with the disc of about 19 degrees. All nozzles but one are fitted with valves so that any number from one to five may be open at one time. The stationary reversing blades for the second high pressure stage do not continue all around the disc but only for intervals of about five inches in front of each nozzle. After leaving the second high pressure stage, the steam is carried to the generator end of the turbine and alternately passes through three sets of stationary and move ing low pressure blades. The mean diameter of both high and low pressure stages is about 26 1/2 inches. The steam main diameter is 4 inches and the exhaust main 10 inches. The turbine is built with a throttle govenor which operates from enclosed flyballis located directly on the ture bine shaft. An overspeed govenor is operated by an entire- ly different mechanism which trips a butterfly valve in the steam main and also breaks the vacuum. This govrenor is set to operate when the speed exceeds four percent of the normal Tunning speed. The turbine is fitted with tubes for obtaining the pressure, temperatures and qualities at all points shown on the apparatus diagram. Those used were: Po throttle main pressure; P, throttle pressure; Cc, throttle quality; Po interstage pressure; T., interstage temperature; C, intere . - » . > Roe . « “ ~ 4 4 ~ ~~ of : ot a . p r™ ee » 9 stage quality; P, third stage stationary exit pressure; C3 third stage stationary lost quality; Ps fourth stage stationary exit pressure; Po fifth stage stationary exit pressure. Po: Py: Py F, were obtained by mercury manoe meters. The turbine is fitted with labyrinth seal glands and water was supplied from a tank located on an Atlas scales. The turbine is direct ly connected to an Allise Chalmers 220 volt, D. Ce. generator of 75 K. W. capacity. The field of the generator was regulated by a switchboard rheostat so as to keep the voltage constant. The load was secured by an adjustable water rheostat with running water. Weston instruments were used to measure the voltage and am- perage generated. A Schaeffer and Budenberg tachometer was used to determine the speed of the macine. It was belted to the generator shaft and had a constant of three, that is, the readings were multiplied by three to get the revolutions per minute. A wheeler surface condenser was used having a coole ing surface of 298 square feet approximately. The cooling water was supplied by a Worthington Duplex pump and discharg= ed into an orifice tank having a gauge glass and four ori- fice holes of .01 square foot area each. The number of holes in service could be varied from one to four. The condensate was removed by a Wheeler single act- ing pump and was discharged into either of two tanks locat- ‘ # xe xs ov * ’ . *y, id . , t 76 sf -1» .e cor .* +. po. . » 4 @ ° wre ‘ ° ve e.. we eo ete : . o% e . a m4 0 ee * . = “. ‘ A 9 "y f - . .4 : . o~ % ‘ . . . . i . - - . oe Lae . ® g ‘ os Sa se « a - . ‘ é a voy Me ~ - - . c- ~ eww e + « ~ e . 3 : , . ace » s » a * ’ ’ oe oF 1 sa - ° ‘ a - e a a « - . eo 4 ° A oe: + ~ oo ” - . « . “y . hee a? . v . - @. ae ‘ ' ou oe . A os * : ad . we ‘ ’ » \ ao ‘ . tf ’ _ « ¢ t . oe . - oo “, . , ‘ . . ‘ ' ‘ 4 a e * ‘*° ~~ f . - - oy . . : r - of . iat : 2 e 4 . : a v . ‘ - . ~ ~ an al ¢ - tee . = - . . . . ree - . . . . » +e * . % “4 . - wow dD e- . . ¢ fe € . ‘e ¢ . ° Ne ae et -. r + , ¢ ~~ * ., . oe 4. se wi . . » @ ¢ a 4 .* vee , e ‘ beoee ee. ‘ és v2 ; aew mer ¢ 4 ~ ee . 15 » , . ‘ coe _ ae oe se «es 1 *s wr . ’ ‘ wove ' ¢ 4 - < : . ‘ - * ‘ thoy . Ge e- . . ‘ ") . + ¢ qo: ‘ . ‘ --_ cial rn tS he ode LO. ed on Atlas scales by a deflecting pipe. These tanks were provided with large valves so that they could be emptied rapidly. Thermometers were located as follows: T. inlet b Td seal gland tank; T, interstage; C. interstage calor- cooling pipe; T. outlet cooling pipe; T. condensate pipe; 2 imeter; C3 third stage stationary exit calorimeter. A sep- arating calorimeter was placed at Pl and throttling calori- meters at P. and P.. 2 3 PRELIMINARY TESTS. In making preliminary tests on the turbine and the apparatus, many difficulties were encountered which require ed changing the original plans. The Wheeler surface condenser was tested for leaks. This was done by removing the cooling water discharge pipe and bolting a flange to the discharge opening in which was screwed a four foot length of pipe. The circulating pump was started and enough water run in to fill the stand pipe so formed. The pump was then stopped and the intake valve close ed tight. The air pump was then started and after an hours running, the water failed to recede which showed that the con- denser had no internal leaks. The seal gland tank was placed on a scales which gave the water in the tank a two foot head. A test showed this to be sufficient as the water was acted on by the suction of the glands and just enough head was necessary to carry it to the glands. -* ~~ ‘ =" -@ - - ‘ >. “ e Foal “4 -~ On 4 a . ‘¢€ . ite. .! - 4 eo @ s . . : 8 ‘ ac r . . © { He oy A * 1 oy - . e “ + cr L« - . © , “70h ‘ be’ . set . . ” ’ . my . we .f . . é . - Jaa be : , ‘ - sme @ yet oh gs 1 es, - 4 . nd . 7s wm ~” Ah oe e 1 s . . . Me . , r- va . ~ > oe tk » « ‘ t : , w a : ‘ e ; . @ . _ €,, - Pe - . ‘ woo r - o ‘ id _ 4 7 os, . ro toy - . a ak ae ates ‘ ‘ ret s- as ° - . . Toe . . i . ‘ as 4a te es a s . w ‘ Bry 6 * - - * * _ - ' e > ot. . ‘oe ° - r ‘ °, ‘ . wm, o* - ~ e ~ ° es &-g ae . ors . « . ae . e .- -, “yy vf ra. ' 2 - ‘ ,° tree. rete Fe "y - ’ , e 5 _* &. e- , . . . re, ey oc vo 4 ° 1 - e vy ‘ : ‘ ‘ ‘ fe . @ . 7 + . ~ . = ” - . \, Po 3 e ~~ & . e oe, > . sy . so fe y - ~ 2 . - t - we . 6 %. . ; \ pot we, an . . 7@ > , e . - eee s ao , ‘ - @.- - : - * , .o mo os 2 . : « . a Pe anh wow « . ° ~- oe ty 4 : ay, . ‘ _- ot . » mney . . - ‘ : : te mm - > - ~ . . . e . . . . - 1 we ' 7 . 7 \ * 1 - . eu er 7 "¥Yy . ew, eos , . - . . 4‘ = . 3 . “le . ' e » o* . - - hd } sO . - + voce ‘ ae aot . . - . ‘ a Lose . . . 4 ° . oe 4 . J es _ wy Fo les m . ° . ra - . - e —wy> % : ~ - ¢ . oe ' ‘ r * > e a t= ‘ - . x. o . 17 . re , . rs e ‘ . . ‘ . ev < . . os . - 4 . ; a li. The turbine was started and the manometer tubes tested for range. The mercury columns were all well with-e in the limits of the tubes. The two separating calorime- ters at P, and P3 were observed to fill up quite rapidly. The seal gland tank emptied very rapidly on no load which showed that the seal gland water would alter the readings for total steam consumption materially. The two throttling calorimeters at P, and P, read 213°F which indicated very 0 wet steam, too wet for throttling camotimeters. Two loads were applied, one of 50 amperes and the other of 400 amperes. The calorimeter at P, failed to separate on the heavy load and it was concluded that the steam was either superheated or the calorimeter was not of order. All readings were ta- ken for these two loads. A separator was inserted in the steam main. This was placed directly below the throttle valve. The calori- meter piping was logged with cloth and the exhaust piping and condenser were logged with magnesia covering. The first manometer tube had collected condensate. This was removed by drawing off the meroury and drying it with a cloth. The separating calorimeter at P. was removed 3 and placed at P A sampling tube was placed in the main. The valorimeter showed a quality of 94 percent which showed that a separating calorimeter would be necessary. The sep- arating calorimeter at P2 was placed at Po which indicated a quality of 71 percent. The instrument was removed, exa- mined and replaced. Another test gave similar results, so 12. it was decided not to use this instrument until thoroughly examined. The low pressure side of the three calorimeters at Py» Po and P, were then piped to the condenser. The diameter of the separating calorimeters orifi- ces were determined on a dividing engine at the Physics De- partment. The thermometers were calibrated at the same de- partment. The cooling water inlet thermometer was calibrate ed at 40°F, the outlet thermometers at 85°, the condensate thermometer at 100°F and the two calorimeter thermometers at 225°R. They were all calibrated by means of a standard, the lower temperatures being obtained with water and the higher one with o11. The thermometer connections varied from C°F to 3°F. An extra thermometer was calibrated for 100°F and 225°F, A complete series of readings at five minute inter- vals were taken for three loads of 100, 200, and 300 amperes. Five nozzles were used and each test was conducted for twenty minutes. It was found practical to take readings every five minutes and at intervals of fifteen minutes between tests showed consistent results for the following readings. From these results, data sheets and plans were made for the final tests. ve : 4 ~- ~- coat, 2 ee. ¢ . - a . anv - b.. . 4. oe 274 a= . ed a a. ° ‘ ~ . 1 yy - a -. . a -. . - ts ' fh. Yoo e: e ele . ~ < ’ ¢ . 8 - w~ Nal a e ¢ ‘ aan me ' 1 8 @% 6 @° «te. . - . ete ee we ‘ . , 84. oe e, « wget - ef . ! . yy be . an ~O ‘ +» 2 te - -o | re a a . ¢t . ’ 7 . . . wee ’ - 1 i ~ ’ a6 : i = Bea - * ‘ 4 too a ‘ . v. x - .o as e- r - . e e e . “ my > ' lo rat ~ oe ‘ . ° ~ at - : . r . . . a \ : oo. a. + eows . . e . --% @ 7 ey ad a _ - . e * , ‘ ° ‘ ° ¢ - , ° o e - « . 7 ' . . ‘ ‘ € ‘ . ‘¢ ’ eee ke = v . oe . : . . . . . » m_ © . t A t ® ~ one ye , . . ey, * 1 .* = - . ’ ‘ * . tn i ' ; . : . ° . - te - ° » - 1 oe . e . a ; . _¢ , tare eo ye tft o -: . - é 7 ¢ s an eae . . . ~ . e 1 ° on, oe on wre, -~ ‘ : ee ‘ - 9 - ~ - ‘ _¢ . \e* ‘ cote ‘ of - ~w - bee ~ Mee ' f° “a, : * . . - “on oan . . ° , . wo. : - rv, . .. * e a) w. Ste wD slo ~ ws. *. . - 2 . . ‘ . e 6 a ote ~ . Ae ee . ~ . - . J 4 we ° ‘ - roe . ‘, , 2 e | wae . 2 - . - tty os ote ' . . 8 ‘ . ’ ‘ -¢ Sas oe .. , - te » - ° - e ry of t +o . ° e ‘ of . ve * . re . ‘lo . - : oo - © ot - . wW e « *& e . . so . 1 Oe get eet ste OB Gs ey TA ry MO > é . an ao, y a: . w 6 - as ~~ OY 8 y - we ~ e a: . eo . , Y ef ews. 7 * ‘ ’ ~~, ex "4 s . 1 . us s . . -< - é, — e ‘ . > = soe e e-¢ : . . we : ’ -< anN . ‘ ¢ . 7? *. -ea?” . ro. ws vs se fe *. _ @ se . ws oH eee ~ e ~ 4 . *. - i? . . = ce at eee 1a {% { e . e% oe ee ‘ tt “° ' . : ‘nee y x - @ q * 3 . w o ° . . - . . -, ’ ’ - . + , . os "y Lo je . i. . > & - ° a . ¢ eo ay ae ab bease boo ° e . - - wey . er | - ee ‘- ’ “ eet oN mo ef wha os e . ws . -_ s+ yom, . « oo. . Se: acy = ae, e: or a & s 0 . ‘ ao. a . ww : t e Lee eo , . - . e. w an) : e ° -¢ ' ‘ ,"* er | on: . ¢ . oN roe o- an) . oe ~- «~ : we ow 7 Nh ‘ vee ° ° \ : e . . ° wr t ‘ a -_ = - Tf. . ™ . 7 . . . . t. » & Keon ~~ Ae o a ‘ a . 3 . (ie ae ‘ “we rd . ra . . ve v ~ abe .|e . - ’ . ‘ oO . e , ‘ - Lo . wd . . -_ -. J ° 4 . wie “4 4 ob - te ore uy ‘ 1 7.7: e ere e we e ~ . X: a8 of ". a ~*' @ = . . 7 cA +. - . ae? -_ “. * . <4. oe Ge o ar « m5 24 gee “ . : we s w a . ~~ «a s om - @ -~ . . @ \ te . . a’ . ‘ 3 . e . ‘ °. ° ‘ my . dey - t- ' a7 ' oe .¢ sme ¢ « ae % - «yy @ oe ae o oo ow @ 6% A we > - « « oy ' woe wt @r oe + = ‘ + x ae nC woos “4 we . te ot ne te WO ~ “.¢ “ ‘ <* re ay wee a , . 7 PY wy, ¢ - oe tk Ne . , ee tay. . : ’ @ ‘.~ ct om at ' ’ - t . ~ . . m . 4 : ee a °” . ~ @ ~ : tty 7 . « : a . - eg: oe ° ‘ a . ma - - -h - ° . , . as. « ae e - e qo oem ree a. + . _ - a . . ‘ : 6 _ % . .- *. a 8 ‘ - 13.) ELNAL TESTS. The procedure for the thirty hours of final tests was as follows:- Half an hour before the test began, the condenser and circulating pumps were started and steam was by passed to the turbine to warm it upe Not enough steam was adnit- ted, however, to cause the motor to turn. Twenty minutes before starting the test, the machine was slowly brought up to speed and the overspeed govenor tried. This was done by forcing the throttle open by hand and note ing the maximum reading on the tachometer. The steam main valve was then closed, the butterfly and vacuum valves reset and the machine slowly brought back to speed. " The load to be carried by the macine for the test was then applied. The thermometers were placed in their res- pective positions. The seal gland tank was filled and the gland water regulated. The man controling the condensate tanks was in charge of test. At the exact instant of each five minute period, he blew a whistle and took the following readings in the order named, the numbers referring to the blue print page 3! , 21, 11, 4, 3, 19, 20, 12, 13, 14, 25, 26, 27. At the same instant the second man took the follow ing readings in the order named, 7, 6, 5, 8, 9, 10. At the same time the third man made the following observations: 22, 23, 24, 16, 18, 17, 15. @ u = . Vy . - - 6 a \- . x e . , 4 . ame - ‘ , . . . ea ' ° ; $. Je, nok ° ves a. oa ' ~ “ ‘ Sg . . ° ‘ ms . : 2 7% _- , 4 t =~ r ry . °. ‘ A: a ‘ . - od , XN . 9 @ 5 - . ‘ X. : . . f , ae be. . - «- . ‘ ‘ on a - Q. . ~ be a Ne : : . . , “ - e ,* oe -- on te - °: x oa @- . . . . ace ° , oo ’ a od : . ‘ a: -e . > es . a a . 1° , Ae f os + 4 e. « - . 4 x : fs ; a ' ee ’ e . os. «8 . * ‘ . . 3 . r ° ‘ . . . . ¥ bof . . co ” eo. . +e. * : oA r , s ‘ ° ae 4 om 7 we 1° ‘ yo. ‘ ’ % oa , , _ ’ t ‘ - 8 " 2 . a ~*~ ee ° ¢ Lf, . = 4 ry “« / - + - r . . ~ € * ‘ . ‘ t, * ” . , os . . ° , . a “ets ° . a . * ‘ vv so . on . f. swat or ge os e , e a wy , . ‘ Pi “ . . “i e ae | ‘ " ve ol oT > ° e. ° .- @ ew fo. 7 - * . ’ . =?” . " . co. ar “4 : ry et ss Ss 4 * _ — e . “e ~ ee . ey vig as ‘ * \ v- eee Bae Fee wet, ‘ ' : . 4 - +s we mote - ~~ . » 4 - bg eg ver ae f | . : ) 3 Ta, a . Lo | . °F "4% Sea tye oe . , ‘ HER eg eo * a . » a7 ao vo 3 ; . : . = te t e - if | . - oy wr Fey, ey, ’ ' ‘ : . . s e ? 2. . ° “~y se . . —? - yet 4 ’ : te 4 . \ . “ ’ ‘ Se ee vo | | . o . vlogs -me ee . . . . ° 4 as -yt o - . - a Nar * ~ wae . . . . - ry . ot ° . 2 ON oO _ - cm i? ct. srg o . = . . , o - - - 3 . ° ° . . 7 ate . - 7" e Ca lee . . . . ° f | eee, @: 6 . , a s@ ~ ? . " “ | ~~ sot ~*~ - _. on ; a - &# 7 i , —— ~ . . , ° . ° - ) wr Fs - 3 we’ ee 2 - . ay . Lae - - . » -~ : “ a _ oa we. . os 6 . . - . a t aa | | . ee: e- .— " . : : . | Sr ‘ so yy 7 - . 2. : . wrog aod a e~afoe . rte orp a . 6 - .- esos . a . | . b fur . - " ‘ 4: 4 °- . : " , . ~ ce - . | : : - e oa t ele aren 8 ‘ =e, oe, 4 e : oh ee t- . a °. '. . « ’ wo Gee ' - we ' . -e ‘ . x « ve a . whe 2. ye ee bee ro, v boe.. : ‘ ~ . ¢ at e _—* ‘ op on : a bhoan . ~~; 6 : : ‘. a , ~ ‘ aw 1 Bt he g! Nt fe 14. Rach test was run for a period of 45 minutes and 15, minutes were allowed between tests. Loads were used as ‘found on page @7. The daily barometer readings are also given on the same page. The following tests were made on the days specif- led. April Nozzles Load 1 5 0, 1/4 2 5 1/2.3/4, 1, 400A. 3 4 0, 1/4, 1/2, 3/4 4 4 1, 1-1/4 4 3 0, 1/4 2 3 1/2, 3/4, 1, 1-1/4 2 o, 1/4 ‘ Is 2 1/2 1, lel 2 1 0, 1/4, 1/2, 3/4 20 1 , 1-1/4 The steam main pressure varied considerably and several tests were discontinued until better pressures were obtained. LOMPUTATIONS - The data on pages 3/,352,33, 34, 35were obtained from averaging the results for each 45 minute test. The complete results from computations are also given on these pages. These results were obtained as follows: Computation of Quality at Cy. The results of computations for quality at C, were not used as the qualities obtained were unreasonable and it was concluded that the calorimeter was defective. The forme . ~~ - oe . eo Y “ > oe @. . a . . . : “8 .. . . . . . - . . @.. wv , ~ 2 ° . * ° * - to * 4 . . a » . . ° ' t + . “yy » ~ of eeu ww @ ‘s X eow .. . . ’ . o- - So. oo a a ‘ - ~ . . .* e . . ‘ - - . e ” ot 17 1 te , . . , * a ’ . . . , . e o ws, . wv eo as . 4 . a - ‘ ‘ ‘ m oe . ‘ . a ’ 4 @.- ‘ . ct . . : cw . « 1: / , » » ‘ : e wt R ae ° ’ we . t~ . e . - . . vc a - . 7 » ‘ - . ‘ ww . , . * « ¢° ‘ t ° % t , . . . . e . a t - vs , ie . ' ‘ . ¢ = . ry ‘ . ‘ ‘ . e Te te : ae . “ sore - ° a . =, - eo ~ ° @ ° . . . ¢ ° ' - Se ee mee -. ah ae ~ 7 . ; ; : a _. t . . ‘ ' 2 - - » . . Oo .. >? - , - . + . a ae a ee ‘ é . . . ~ 4 , > 7 am 8 . ~ yo TRY ARN ™ \ ° e . e-em + @ 6 et 8 mm Ow @ oO . yw. . «” , . ~ ~ . - ‘ . * ' a a . . . = v . , . ~ c “> e- 13 , . .. er. wr Lo . - . we aA at 6 ’ ' - - - ° * . hs , " . ‘ . ’ ~ “ 2 ° @ »- on ~ - . ° r .. . ef, ot fw ne ce . ’ | . . “4. . . - " = . . . . ‘ v ore e of’. . . se - = ° e : Poy ._ edo : * a ae. . a ' roy ee Le me ‘ v= ~” . : ‘ « * * - , . os ri t > . , ‘ ‘ é ~ . ° . . . . os % e . . * ~ -e 7 of ~ - . v . -* oe ‘ 4 - Ose iv weve yy . . . “ . ‘ . .? ~ oe . . ~ . vse, - - . . * hd . C a ! ' ~ e a e - . . 7 . e 6 . ¥ ‘ “~ . . © a . -- a . e “- . . l @. oo ¢ . ° ~~ ° . _ em +6 ~ oo Pa - ¢ 2 » t ’ * .- 4 ' , e oo ~ “ 7 = ' ; . . . 2 i at ’ at ’ 1° ' rae “ t ° ‘ 4 ~ e-. ae ° + mq -y ws ’ o> ' \ ny. mee e . . wor! vee. few ai .- .. oo. _. e a ‘ ' i , t. ‘ . lo. { . ~ + 7% af 2 7 a : & . ade e - i - “ . 4. ‘ : vo ' i, - , - . . . , Tg ° 7 . a _ 7 , . ° 15. la used was: qd = -- =F ut+ VW Q4 s quality of stean. ue» weight of dry steam discharged. W s weight of moisture collected. To find W, Napiers Rule was used as all high pres- sures were greater than 1.73 times the low pressures. We PA 70 es pounds of steam passing through the ori- fice per second. | the absolute pressure in pounds per sq. . inch. the area of the orifice in square inches. For five nozzles, full load. PAs 58.13 x .00385 = .0032 lbs. 0 0 per second. - Number of seconds to collect .2 pounds of moisture = 123.5 Pounds of steam through orifice in 123.5 seconds = 123.5 x .0032 = .395 pounds. Quality of steam at C W 1 0664 66.4% Ww = W+y ° 39 Ee q This quality is absurd because the steam would be dryer than at the main as it contains the same heat at a lower pressure. de ee oe Meu ~ oe 16. Computation of Quality at C, and c3° The following equation for total heat of steam was used: q+xresH qs Heat of the liquid of steam at the pressure exist- ing in the steam main. re Heat of evaporization of steam at the pressure ex- isting in the steam main. xa the part of the steam that is in the form of vapor. H = Total heat of steam at the temperature and pressure existing in the calorimeter. The values of q and r are taken from Marks and Davis Saturated Steam Tables. A sample computation of ® at one half load with four nozzles open is given. Calorimeter pressure = 4.48 pounds per square inch absolute. Calorimater temperature - 172.3° F. From Marks and Davis Steam Tables. H = 1133.2 3.2.0. q s 1 3.0 B.T.U. ? 3 980.5 BeTUe x s H o 4 r 1133.2 - 163.0 0.2 . 0990 = 99.0 % quality. . 1 ~ no é t “os - > ° { » a ‘ , 7 * + . a %* ° o . . ad roe {> 7? oo ° oo ‘«s a. a * e. =. so ' t . . , ‘. » othe ~ . .° w ~ . e v - * @ . ees . . = ' : . ° . . . . ' . . . : 7 + . . ~~ , . fy : 3 m4 - . 2 Oy. , @ as r . ~ e . , ¢ ‘ . . c . 1 - -_* - a err . ° ee 8 - ¢ « .- te Oe . ~~ - . tee ‘ t ' wv 2 i ‘os . - e e . - ‘ ; . o~ ° oe. me : ‘ oo , @ ow . _. -_ or re - ° . as / & os ® «a = no ieow . - - o. ae 176 Computation for Quality at Cg The amount of cooling water used was obtained from the rome: Qs .614 f26h x 60 = 2.935 VE A = area of circular opening in square feet = .01 H sa head of water in feet. ge - Acceleration of gravity = 32.2 Q s Cubic feet per minute. For the same conditions as stated above, Qs 2.935)3 = 5.08 cubic feet per minute per nozzle. 5.08 x 60 x 3 x 62.4 s 57200 pounds of circulating water per hour. Temperature raise of cooling water = 91.8° - 48° = 43.8°F. B.T.U. per hour absorbed by cooling water 2 57200 x 43.8 = 2, 505,000 B.T.U. Temperature of condensate above 32.2 = 102.1 = 32 » 70.1°F. Weight of condensate per hour = 2920 pounds. B.T.U. of condensate above 32° F 2 70.1 x 2920 = 204,900 B.T.U. Weight of seal gland water used per hour 2 291 pounds. Temperature of gland water above 32° Fe 57.6° =32° - 25.6 Total B.T.U. per hour above 32° F in steam = 2,505,000 plus 204,900 = 8272 = 2,701,180 B. T. Ue Weight of steam used per hour 3 2630 pounds. Total heat per pound of steam = 2 180 = 1027 B.T.U. Quality of steam at the condenser XaHegq 2 1027 - agaed - .896 g 89.6% r 999. . @ ee al » -* a . * eo . ’ ‘ . ‘ : , ‘ . . ~ a da - . ‘ - . a , . 4 eee “ . 1 o - o ® ‘ s . qc . a ; on . , : - o. . e - oe “ . =e e . ae o ‘ ov e e . . r . ~’ ‘ ’ . 3 . . . ’ . . : : . . . e e en . “ . ee: > i: } : ae 4 ° oe ‘ - : . oe . . . : . . were oe ° . . ‘ . > ae a . - eo . : ° 3 ” « . . o aN \ ’ . @ . . . ae af, ‘ ° ° “ : .. - . : ~ oe . ~ i e on e oe ’ e a e : ‘ . ~ . ' ‘ oe = ‘ eo . . e - s* a . es * . ee. : ¥ , , a . oe . * \ ° ry o> . . . « «a : on ' . e. , . \ . ow eo. x os - = * . » , . . . ' - ‘ foe, . . - . : a 8 . : * ‘ ' - , : ' a4 t e@- . ~ - - . ‘oe e eo . @ , . 7 : e e . @ , e . @ . 7 ° toa ' ro « ° > . . . . L . - ‘ " . ae - , m= \ ‘ ", . =z eo . ~ ae eo eo. . . ‘ a . . . z a ’ . 9 ’ ‘ ~ - . . . oe . “ 7 . : e oid ‘ . : om oe . + . » °. —— ° ee oo °e @ . ” , . . ‘ v f € . ‘ t . « . on , } , . 1 . . . ; / e . . - ¢ . -- ‘ -~ , s . . . ¢ . 1 a8 _ 6 . os : . ; oe ww ”, 7 a a e 7 . oe - v « a . ce , . . ’ . e . f L ‘ ‘ . ~ ° @-e woes *. =a ° : . eo « » - . 2 8 s . . e @ . Lhe ‘ = ‘ & : . e - . e * . g . @ Be g ‘ ° t .? , . to. . oy moo, . . os ° °— , @ ‘ : ‘ : . _ ' ry - 1 . . t ‘ . . . ‘ ' . 1 ~-. ‘ oo 4 ‘ « . oe : ° ’ ¥ .. x - Mm 2 wee 8 he o ut oo . . . o > * ° “y , 1 ‘ . . a ae - ‘ . «© ’ ‘ . - ‘ mo ee om e a e = ; ; ed = “2 / «- a ~ 6 -— ous e-=> « ” « ° °- @ - e@ a 18. It has been stated that theoretically the fewer ime pulse nozzles open, the lower the steam consumption for a given lead up to the capacity of the nozzles. This is de to the fact that the heat drop is greater with fewer nozzles open on account of a higher initial nozzle pressure and cone stant exhaust pressure, thus getting more heat out of each pound of steam. This theory was verified in this thesis in every case accepted that under loads on five nozzles the steam consumption was lower than for four nozzles, but this was probably due to the difference in exhaust pressure which the condenser maintained. ogra e In 1913 Longmans Greenand Co. of London published a book on the "Design and Construction of Steam Turbines® by H. M. Martin. This book is one of the best of its kind and deals with all details concerned in designing and constructe ing steam turbines of various types, both condensing and none condensing. Bearing and governing problems are considered and methods of their design discussed. The volume also cone tains many drawings and diagrams with tables useful to the steam turbine engineer. In 1911, McGraw Hill Co., published a book, "Power Plant Testing" by Moyer. This book describes various methods of testing turbines as well as giving an analysis of their points of advantage. He sums up the losses in turbines as ey oo’ | . 1 . . . . , . al ° ° ’ ve . . . ‘ . : aes ’ , . ‘ . . a ; : : i) ° . 1 - .™‘ ' . * b ‘ . m7 f , . °- ; an .- ‘ '‘ ae -*« - . 4 4 . Le . l .- , Sa . e ‘ . - € . iad , . - “ Owe mes ; . _« . , - . re ~o? . ? ie coe r ‘ . . . * 7 o ¢ ? . . ‘ ~w-e = . . . . . : (4 . we ? . . r . ' Ae . ; . . - 1 : . : . . - . y “rt . . ‘ . A : oon ~ - . t . ~~ + ‘ a om ne vores a 4 ° we . see e- , a . * s a . . ~@ t* e “ve + @ 8 ’ . t . , . a ° ‘ a . > : * ° - ~ . : . .* . = . . e - o 8 . « ‘ . . & e ua e =: , : . 4 ’ . . co . . . . . . < . ‘ . r , . 7? ay * : ‘ am ~’ , -4 ‘ os . 4 * ey ~ . 6 “+ . , : , . 1 , —_ . . . , vgs , a 7 we ‘ e ° ‘ ® * 1 . . . 3 . . . a . . . . . . » . es . v "- ‘ . . ” Lad . . * ‘ * ‘ . ; . o~ * ° . oe. “> co ”~ v : - ‘ co . “ we i . . . . 2 ty . ° | . e ' ° \ - a . . - ° .° . . . . - ~ L9 follows: Nozzle losses, rotation or windage losses due to friction of the steam on the blades, bearing kinetic ener- gy in the steam leaving the turbine, and electrical output. In 1917 John Wiley and Sons published "Steam True bines® by Moyer which covers the turbine field quite thor- oughly, going into considerable detail as to construction and testing. In this book some striking contrasts are brought out relative to comparative operation of machines under dife- ferent conditions. There the statement is made that under comparative tests a steam turbine should give the following results: for a 100 # change in admission pressure the water rate changes 54 K.W. per hour, for 100° ¥ change in super- heat the water rate changes 2# per K.W. per hour, and for each inoh of meroury change in exhaust pressure a change of 1f per K.W. per hour in the water rate should be effected. These corrections ofcourse, should be applied in the right direction as will be seen with a little thought. Here also, the thermodynamic principles are treated at some length and their practical application is showmm. ‘The design of nozzles, guide vanes and moving blades for impulse and reaction true bines are treated separately and problems of design are sole ved for each case. The velocities of the steam are deternmin- ed for the different stages and a discussion and solution of the theoretical quality of the steam in different stages is given in much detail. Many commercial types of turbines are dissected and discussed at length and compared in their dif- ferent details. The treatments are very clear and self-exe plaining and very up-to-date. ‘ . ' ° ag . a ™ 4 . . se . ° “8 . - * . ' ° . - ° ° ‘ . . “ “N . ‘ ‘ a a ’ x . © e c q*° Sy . . - 8 na mo > a -. & . e . . . ee . » .o.s - ~ 1 ~~ . : » . te - - ee at o . 20 « J ° ° .O rs . . ar a at ° . ‘ . o 8 aa e a % . 4 ~ . ° . ‘ > . . he - . * - ‘ 3 . oe, ° ~~ . - eo wa . . im “oy i} . ‘ . * Spore * . . so J 4. A ” ’ - a - \ eo : y 1. Se vate . ¢ , . 74 o* ~ 4 . . oe - ° ~ ° . . ' a - >t . - . . ‘ ° oo ? ~ . aa a. an) se . . a “ qo? 7 @- . e@ oe - ec < : . ‘ a « 2 , ¢ . . - . ‘ e “y > » ‘ we . aoe * . . = e lies >. . : » - . r : ve . . é wos . e a . . . a . . . oe 4 e . » 3 ° : « e »# a ‘ ‘ e 7 8 o . 7 ~ a oe : ‘ é . a “o? . * a . - - a ° ‘ » “ ¢ - + . = f : - . whos ~¢ - ++ \ . a] an . ‘ : e . . J . . * ® - - - 7 Oe eee , - ‘ ° ‘ . . ° ‘ ” - ‘ <« &£H |. : 8 . , - ° 2 - ° . ‘ . ' . . . ; oe 4s - 4. . “* - ° ‘ Cr . e * 5 soe . e . alt : t ‘ oe e eo. a ° ~ > ~ a ne a - . . . “ 7 . re a . 7. ~ . ' ' é .? a . « e « : a . ~ . e ‘ . o ’ yas . ” - - « . df “¢@ ’ » ” ; € 0 .¢ ¢ a e 7 ~e yes . < . + mos ‘ \ a ~ . . ° - . .° - + ' . . a | ‘ ‘ Me ~ om ° . ‘ . . . e . ~ . ~ “ . o~ ~ sw owke -. < oe e @e--* wae e ia . ; . .e eet . ’ eo ooo we a - . ss . . ’ “yt , ' . ° . - e » - we: Lae . . . i a o- 1 . . Aes - ’ . ‘ - - * - e . wo 4 4. e -- ae . » : @ . oe . ° rrr yy? e.° ee a. . . * . conte. e e . . a ¢ « r ’ . . * * . " ¢ “ ' “os . , . ea. . ~ . ‘ ° . . - - . - . he 7 8 rN ’ ry row . “ : . , Hoes . : a ‘ « r . e ~ * « s 1 or ¥ ° é , aa < & or tei? . ce . eo: @ os id : . a ". 4 ' ¢ : tye ee a ‘ a eet . re « *& we ~ dias . “oe . * ‘ ‘ 7 8 . . at . , : ’ “ . . —- @- 6. FP way >. ee - . ° . ‘ : ° —- cms . * , : : . e > wt é . . > Ss e * ae te ~ af . a . . oy wee ~_¢ . ’ . . eS J ~ ~ oh -. ° ’ . . . 1 Cv . 1 h wh . ee e ‘ . Ae . ¢ t ae . . . : ‘ . 4 a . ww. ’ . . o +. y so -. . wo. ’ ' : r - e so - - . # : . . . ‘ ”* . . ro. Sw, ‘ -¢ ‘ , ee e ‘ : 1 . « . “ow. ‘ ‘ . a * . o . oe. eo. : ' e e-- . ‘ te. . . : « , . , . v . an . : - 4 ‘ ‘ - oe o 1 - oe a o ~ . a f° fe . . , . , . @ a eee Me Vy! 7 . a mm e s a ’ . “a . ‘s a s ge . roe e a qos a 4 ‘ ad . . e ® _ ri . t . i : - o . ae * ‘ aem ” ’ , e ae *. i wo. hy ’ - oa ‘ . . ° 7 . 2” —e . u . = wn ia ’ 6, a . . e ° e * . 1 ' i lie . o o- . - a ot ' - ‘ fw. “Me a ae _ ‘ “Boag vy . 8 a -* Laled o , . - ove e464 - as 20. In 1902 Longmans Green and Co. published "Steam Tur- bines® by R. M. Neilson, which outlines the history and dev- elopment of the steam turbine from its earliest experimental stage. He gives credit to many foreigners for the perfece- tion ef the present day machine saying that the Inglishman Pilbrow devised the first turbine involving successive expan- sion stages. This principle was later developed by Robert Wilson in 1849. This work describes the development of the Parsons Turbine and compares steam turbines to the other mo- tors and engines as to their relative merits. The questions of vanes and velocities, thermodynamic considerations, and nozzles are briefly discussed. Cuts of a number of De Laval, Parsons, and Rateau turbines are given. A short discussion of the application of turbines to marine work is also include ed. In 1917 John Wiley and Sons published "Mechanical Equipment of Buildings" Vol II by Harding and Willard, in which the authors give comparison between the steam turbine and the reciprocating engine and show in what details the turbine excels in medium and large sizes with the use of su- perheated steam and low exhaust pressures. It deals with the factors governing economy and gives curves for the exti- mation of consumption for any size of unit under almost any condition. This book goes into the elementary theory of the turbine, the features of construction of the De Laval tur- bine, impulse turbines with velocity stages, velocity dia- grams, the use of the Mollier diagram for steam, impulse and = - a -~ ’ , « .. ‘ « ad . ' : ° ty ‘ . we -~ . ’ . . 4 : a e " : . ) - . e . ‘ tg §s ww . . ‘ ‘ ~* 5 oe , ‘ e - aso ’ ‘ ° ae row \ “ . - - . Y “ & . ' 0 ° que . : ' , 4 oe . - . . r “ Bee , . a » ! - ‘ ' + -. a v4 af. » . , : . . ¢ . og ew it oe = 7 . rs a = 1 . . ; . e , . . - ‘. toe eo .:. ve . + ‘ > e ace weg . » on ‘ od € . . ‘ we e e — weg ft - ve - “6 ,. °° . , ' . . . , ¢ “7 a v 2 ee’ - ‘ 4 a. * - \ a . ° mao Aa C . ‘ ' , . - . te , & s ae ‘ . . ; , . ¢ * oe » . . ‘ > - . v 4 t. . . e . - - . 4 . - . eo . @ _* ~o . fe y . ‘4 «of ' . : - . - e .o . - . ‘ . “6 . . . - . oe ' ‘ . - o- ‘ -, . . . - e@ ‘ a2 . ° - . my \ : ~ ' Co. . 6 wa A “ : » ' o° . - @. . “ - ha . a ' "4 . . 2 * - - - s 4, e -. ‘ “~ e . ° * wa ° ‘ . “40 - - ™ . ~- mw, ye . “. Sout . . - e , « . . ee , ° t a ° € x . “8 - *) : oe : ‘ te e 4 tc wy ey ‘ 2 ae e ‘aA a as oy » ue . o be @. . . mk - . a 4as we . @ «-- e nm . * , . : . * . ; ' a. f ‘ > -®. . -~ “6 ‘_-_ eo . . . . ” - - . . . 7 ny . . ae os 4 ' * - . e , ‘ . , ; - sy e-, “a gt o 4 : . ry see 8 ww 8 a . . . . , 1? 7 . a ow a ‘ . r - ¢ -¢ t . ‘ ‘ t Ree, 3 - . a e. a a se . . oy ‘ ~~ o's Cd 4 . ' . on a - » : ~ ‘ . ~ ,~ : Frtoey ~ 1 ae - - - @ - SA. - © ‘ 4° . ° ‘ ° or ‘ ; ‘ g am af . ~~ - . c's e . . . , a? Le . , 4 - - _. e ¢ a 4 2le reaction turbines and their principles. Some data is also given on low pressure and mixed pressure turbines and gives tables and data on many sizes and makes of turbines. Here it is stated that a turbine is most economical under high vacuum and that under a vacuum of 24" - 26" igs only as econe omical as a high grade reciprocating engine. The heat drop in different stages is discussed both in the theoretical and practical cases and velocity diagrams are shown of the steam in different stages. The difference between impulse and re- action turbines is made clear and it shows how the economy of a plant can be increased by the use of reciprocating en- gines of the nonecondensing type and low pressure turbines with high vacuum. In 1914 McGraw Hill Co. published “Heat Engines" by Allen and Bursley in which some of the elementary princi- ples of the steam turbine are discussed, distinguishing clear- ly between impulse and reaction turbines. They dwell at some Length on nozzle design and shape the subjects of action of steam in the blades, and nozzles, speed of blades and veloce- ity of jets are discussed briefly. Many commercial types of machines are described and compared in their salient features. In 1914 Henry Holt and Co. published "Thermodynamics* by Goodenough in which all the thermodynamic principles of steam turbines are discussed. Mention is made of the fact that the loss of efficiency due to energy transformation in a turbine is a considerable factor. This book points out the differences in the thermal problem of reciprocating engines and steam turbines. There is developed a formila for the wrk - . . - J e . en t.« 3 « ry ft o a7 ee 12. a c a ° “Ss wo? ¢ 2 sey . oe _ » . . - - m or. 4 . « 5 « e ‘ _6 « a. ’ « o fan ~ a» , . . . hal . ” . , . ‘ od . “rye " . . wer: + - “ot - , ee . ee oye @ an sos . - ° . ‘ . - . . eo NM . r ~ . ° re “ ° , ory . . yo, _ -¢ . . 4 . . : a L : 4} ' . ' ' : . : t. : Song is 2 . . 4 a 7: : 4 ‘ ~ 4 aoa , . . 4 -w! aoe - e . ~ - 1 . . . : e ” - - é . . . rye . : . - s -. ~« +7 ° . { v . : , : ; ‘ ; « es . ow * + om . , - 4 . . - ~ ' . ~~ no a. Ne@ bas po . ad 1 - e . . . ° © ’ e ' . - | mye 4 . . o-g . - ws se . + oe * o? , . ro? “| 4 : : eo . ‘ . ’ : = 4 . 7 @ : . - - a e ° e ~ ,’ - a . . . o » or at - . - oY .f . “, : ft : te moe -* py - o- . es G , ; { my oy a e e e ‘ , ~ _ a ue, Ne - . . ~w . we ~f we a a - 0 wo. ad . ‘ . ~ wt * ’ . ee ‘ “4 ° nm 1 0 , sous ‘ : - 4 or +e e @ mY . 17 we “4 a rN , tet yy o- a . . - ood a NY S . ' . L . * - ‘ * to4 “ aeee . at he . 2 oo t ° - e . >. anw ‘ . ? “ e e . « - , ‘ . ‘ . « b no » yr? . . eo . . a * . . , . ae os , - 4 , oo. a 2 e : ‘ tle , , : a e.: es NO. .. j 4 » a - e . - e - Pa 28 4 ee we . + ial ° ~ 4 . ° . ' 4 = @e - a eo . ~.- . a a ! -_. . a . ees -~— «+ . - ee ves . . ae he . oe A ow ! 4 Roos we ie . , . soe , . - - ’ . 7 s - 7 1 rs . - ‘) ’ .- y “ t ¥ r sr i . . 1 48 . ‘ an oO - . . - - . a . .’ 2 ° . ate . a. é \w eto. ve oe . . - . - ro ‘ . . : . - - . - . are gee : - e . 4 . .. +h. “ a ore: wo eo . =" eo. ‘ + . . ‘ - eee « o . e ‘ 7 yy . wy . ° - @ ' @>-. » . ‘ - ? -~- ~> . e ‘ Cary ° ‘ v - 2 e « . e@- ’ - -_« . = 38 es soe . . “Toye ' ‘ ’ . r . . . . . oe . . e :. r . vw. oe . . we o ao ‘ 1» -! ew.’ ‘ . ' . + 4. .°- eor-” ~ s . ‘ ~ - on . e v o * t f : . verte ar) “4 os , 1 * ¢ an) ‘ ' 7 re r ~ “y: oo: ‘ -_! 2 .. - « ~ ‘ 4 - te ~! ite be. > ot ~ ‘ » ou? ~ « -, : e « . . e . e- ra as oe. oe. . - oo . . . . “ me . . . ¢ 7 fee e “A . Te ae ©. be” - r - - ~ - |. et ‘ a7 Nw we ‘ » . . o ve e .- oe -. & “- - - mae , eS . 8 oF wm we ~ . “ + ~. . . . . —_ Ss rr gg :” , oN , . ‘ Co a ap - eye eee . . : , . ‘ - a6 : woof @ . « . . re vs des re, 2 ° : . e oe : . ° ° - 4 r - . . . . ~ . " . . ‘ : s f° my e 7 ee " om ‘ "Ay - o rs . jay ae ee. 2 ' “wu , . og . . . o ‘ > - a. = -* 5 ee re a ’ r ‘ t Sd * , ge c oe ” ‘e . é o a. . . o. ° os ‘ “8 oo . me . ? “OF ve « *” t . . . . t : -¢ - s wh ‘ oe. ih . a -~4 . e = ¢ ‘ os . 2 - 5 e . . « * ‘ vs , 8 ‘ . a o . i 7 - e . a) ee Ue - * af . . e w- Zi ‘ , Cae 2 . of t how - - . . - : . * . . . + ° e . . - . ~ “ . - - - . os we > .- ' +r; . or’ ° 4 . . . . wot eo. . : _ ores . 4 ue . > ne « a ~~ ~ a. . . . + « Ne we soa - > - . . @ .- . . - ee ye - ‘ soe oY a x “3° - 6 ' A "sa « ow e YT “ . £ “rt ' } ‘ . . . . . a ee - oe ~ . « . 8 Done v of ~ ‘ - : - - . - . * . o _- : . ‘ , ‘ . - ° . 78 . ® e ‘ ys oo . cue .e 4 os ee : . . : . ‘ . “ 1 . 1 . ’ ‘ . . - : . . . we wd ae . ae Sos eo. s 4 ~ ae ® ~ 2 ° . . ° Py e : . 7 . : r , : . - \ . eo, ~ ., c . aan . . ‘ a . ae 8 - ’ be & . @.- 1 . ’ .. ey . . “ a . awe 4 e e . . . - ’ . . ¢ 4 - . .? + 2 « ary . ~ . . 1 ey , . > o~ . o* . - é o of 1 a - mo -~ + , nw + . ~ - ’ ,a@e, see “@ow. : a ‘ . . . . . 1 , ~ a . e , - sty > 7 . . - ar *¢@ ' 1 eT tat . . Y . . . . . , . o . - . ‘ @ aw. 7? a ‘ : . ~ . of mh “- 4 . . . . . « r ’ e 4 vt « - t eee at 7 i - ‘ Ls a “ j .@ oo. oN 4 5 oh ° - 6 et RYAN . - . - ae, «@ «=~ & on ‘ ae 6 62k oe om ‘ -_ # w : . . ; et. ade yan me ‘ _ . s { . - ~ . -. - . . . - ‘rv oy 7 . ' 5 ~~ r ri ‘ r. .e * Ca ‘ +> i . « , ‘ x . ~ . a . — . . a @ . - - 7 ds ’ = o 22. of a jet and a complete solution for a single stage veloc- ity turbine. The mitiple turbine and the miltiple pres- sure turbine are also discussed at length in their thermo- dynamic principle. Many good facts concerning steam turbines may be found in Kent's “Mechanical Engineers Handbook" published by John Wiley in 1914. The work covered in this reference describes briefly the different types and makes of steam turbines, the mechanical and heat theory of the steam ture bine, methods of calculating the velocity of the steam in the nozzles and the speed of the blades, losses in the tur- bine, factors governing efficiency, results of tests on large machines, and reduction gears for lowering speed. Kent also states that the mechanical efficiency of a turbine is the difference between the kinetic energy of the jet of steam impringing on the wheel and the kinetic energy of the steam leaving the blades, divided by the former factor. Some data is also given on design of turbines, nozzles, blades, allow- ances for windage, friction, blade leakage, rotation losses, and residual velocity losses. — In the A.8.M.E. Journal vol. 39 Noe 12 for Dec. 1917, an article appeared by M.J.A. London, a member of the socie- ty. The article was devoted to a discussion of various come mercial types of turbines and their status in power plants in general. The author advances many new ideas concerning the commercial field, perhaps the most interesting being that prac- tically every tuilder has resorted to the composite type, that : : : a soo : ee! Yr. ' so? - . “ * , ‘ o > : ' vos rf wi ys . “_«- os hey oN ee se wa 4 2 . as re ‘ ‘ ' ee ut ’ . ' a “ “ ‘ - . - Fam) e tr ° 7 ow . a . . + ine . . . cr es «= ¢ aso ‘ -> ,! oe ) rc . : . J au a a am law. . a we om ¢ 8h ate ame oy te ‘ . . @ - Bu -- oor, " . - - - fs, ‘ . ° r 4" . ‘ “pe - Of . “ . t. 8 . a . . . a . . ° -- . . i o- wate & o . ' ‘ ’ . . . e - . “ © - . . e ‘ : a o . ‘ “ . ~ ' . ‘ rh : ° gs . - . 1 . ‘ - 4 oo. 6 oe « . ‘ a ee a ao! . soy : 4 : - : . - . . , e a) . - tau re - £ -¢ é ¢. t 7” . t s ' . + s + a . ‘+ 4. » G a. e- - _ 2-2 ~ e *. we . Nw - weer ~~ oe me _ - - * ’ . ar ee ° re ~ . t - .# ™\e it e € Ve - \ . ° . . . o° ‘ — ' ‘ ' = t ary . . - ‘ ame k& coke . ' eo OAG se ~ @ - . e.@ > . «a. 4, 7 @ et, ¢:, . 7 t e « ' c . a wt ete, ‘ s “s el tet . . st ‘ 1 a ' . . . - west . ' . t - a) ae ts - . ‘ ~ ae toe : _ . ° e Cc . . vw o a e on o of se - . c wet . N . ~* - e ‘ ee > : ‘4 ‘ ‘ ' Led one. _ i _ * a: > . a - { ‘ . _— wt « . o ae ae eer o f - ve yiog et: es . , . . ° @ - aoe “ - oo. ae? ’ ~ os 6, - 4 « * . x -- - « - a bow * . , a . . . . . 4 oa” . . ee : »* 3 “lo. , . . . 2 - - rey Get ee wet Ne + 4 ea . T ae — @ te ". * ¢ - a . ° << e 3 Sow . ° - ook, ef - * * . ze 4 ee : . wo “A - > , ' : 6 Soy oa ‘ ae a et @. . & Qe . eos _ & oe coe . De oN 2 eo . . A » - fa . . " soe , ore 7 OG. ow ye f weg tt ras . . a ye, .7 ¢ . roy ae . tf ic . ti ¢ . , \ ' ‘ \ ‘ ' — e Se ™ - we we -* ~ \ ‘ a ww N - J ws . oe @ . 8 Ge . e . . * ~ . 4 . e . . ec . -- pos ve “ ° - ¢g ” ! *) f NA . . ve e w. t a4 _* cf * . a“ : . . s . “ ww » * a. ., Xt . eo. hs mb - . ‘ . ‘ ¢ : ° ~ Poo ¢, - : i. , °. a re , eS eo, , an ary as x er, fr ee FO, WO . wa el o, " e°@. crane ‘ i . . . we ’ ‘ ‘ * ‘) . ‘9 =~ = aes « Powwow eat . ay A . . Mk ‘ a. -- \ 24, ha . . r - . a . - a . "_ Ww w . - . . Fad ° . , . ‘ ' wen “-¢ one d , . @ ; c ‘ + . . ' woe oo . . ’ . < aw. 1 fo ae a° . 7 & nea . o> ae baw ‘. a . ~ e e e « rd a , ‘ . w a ery * . . : , , o. “y . ‘ o 1 ue? ~’ @ -- . we . > . . “ .. e ~ «! e . es . ‘ -. 7 ‘ og w - . rity Lr er aan , ‘ see oat 8 oes o ~e - o- ‘ - e ay q* - ° eo. € qe. . x . > ~ ote ao ae# te . © «- ty ae ~ . - > ° . . . * . -_ - . . . . . a . } ’ . t A .% oe y . . ‘ : \ t , e re a _d an , e 4 ’ b o . . we a . . woe ‘ e 4 ~~. S m& «@ eg . bas “ a e a é x al e ” - rf v ° * mtg ~ f we o.* ’ i ' . 4 ty «at o a ors ute - w We wt ow « ~~ a a r +" ‘ er 1° . ~~ . Co. eer . y * - Ps "ee . 4q 48 ‘ . - ‘ e @ @ wesw kh) ote @- .': - a) > @..@..¢6 e.. yo, .& . a e t os e e , . 7 4 « . o° * ‘ ‘ . . te 4° . “ 2 ’ . ' 1. sr fe ete te - en t es: . . . ’ ‘ a \ ) } : . ’ 1 : ‘ oe . . . - moo . ? . ue ! . -« t ° . > . . @. ww e . & @. @ -@- - ~ mm . “ o ‘ . . r 6 as we = a ® *y “m , . . f Sat 7 ra . _ mom “oof . ‘ . ‘ e- wn ’ e. ° - + ‘ - ~ o- - ‘ > . . te le . ae ’ o- . . . . 20 . . - - tyes a .. _ a, - C4 °. . eyes Co- « ‘ . ov ' . « . - ad * L o _ ee ~- eeu .! 14 o. - , ay ea 4 ta ‘ ae ’ dé ve « & e ° . -_ on . » . a . ~ . e- +6 eee ~ e , : ry ; . “ . > ‘1 e e « “2. . _* . ~ 9 * s > - @.i¢. ‘ 2 « . o ’ ~ ° o wes * .@ m = ot ‘ “¢ . } we . e- . . _ * 1 a. Oe ' . 2s 5 se a - a & . co Ne . . oo. e-- yw » ed 8 ° « - ° +4 3 = 4 , . ’ «+ *. er t ee: Fw . es . - ~ , . ao \ ‘) . os ' 4 . a q eae ‘, 7 ~ ~ . oe me “ . - . me . wee . ere . . sme on é ‘ we oe ew is a multievelocity staging in the low pressure end. In the A.SeMeBe Journal vol. 38 No. 11 for Nov. 1916 an article appeared by Samuel Insull. It is another analysis of the commercial problems of power plants. The author advances the idea that the maximum practical capa- city for turbines has been reached and laments the build- ing of more machines of 60,000 and 70,000 K. W. capacity. In the reprint No. 167 of bulletin vol. 7, No. 4 of the Bureau of Stds. was published an article on the steam turbine in which there is a good discussion on the calculation of the reheat factor and the form of the ex- pansion line on the Mollier diagram. In 1912 the Van Nostrant Co. published "The Design and Construction of Steam Turbines" by H.M. Martin in which is given a short historical sketch of the steam turbine and its development, some valuable data on the reheat factor, a chapter on the design of nozzles, guide vanes and rotors. A problem of designing an impulse turbine is solved. In this book also there is given a chapter on high speed bearings in which it is stated that in well lubricated high speed bear- ings the jowmmal never comes in contact with the brasses so that there is practically no wear on either jownal or brass- es. There is also a good discussion and description of nume erous turbines of commercial importance. The marine turbine is also given some consideration. In Mechanical Engineers Handbook by L. S. Marks the steam turbine is discussed by L. C. Lowenstein. He first 23. . oo - an) x +e ,° ) . ¢ . - : . ‘ vs . : ' ? - . . ~ oy . » e ‘ . oo” ‘ 4 +. w oe - . ¢ , ey 4 e e “® ‘ oa . e ~~, » , ‘ . - e = - ’ . . . : -? - - . a: . e . , - - « * . ‘ o ce > . . . . e- « . ‘ - ‘ . ~ : » . . . . - 4 ‘ s -” . . . 7 . ° * “ . : . - . wo o. Sat? “# eo . 8 re ’ : 7. bas ont ot a ", et a - BS =e . . om 6 oe e e ' . . . . . . - . . 4 ‘ ~ e = t "s tr ° io aria . - Le 4 a - ot ‘ ’ ‘ - aos ke oy ‘ ‘ eo, -. to .? . 2 . eur ‘me -4 * « » ~ - “ew. ho . - > *% : . eve soe . wf. » ' : - e . . . ‘ ° * e " . eo. 9 . ‘ . ‘ sy - a ° . wee fo. ; ty M tev ae - o 4. ° . . ‘ "4 rc : pee 24. classifies turbines and tells how to recognize each class, discusses the application of steam turbines, the utiliza- tion of vacuum, the effect of superheat, steam consumption, flow of steam through nozzles, bucket velocity and coeffi- cients, and bearing and rotation losses. The details of impulse turbines, nozzles, rotors, packings and bearings are considered. Reaction turbines are considered as to de- gree of reaction, grouping of stages, leakage losses, and thrust and balancing pistons. Problems of the design of an impulse and reaction turbine are worked out at length. Low pressure mixed pressure and extraction turbines are all described. The adaptation of turbines to the propulsion of ships is considered and the series arrangement, velocity stages, gear reductions, hydraulic transmission, reversing turbines and combination drives are all discussed. The sec- tion closes with general turbine data on foundations, expan- gion joints, and water rates. In 1900 the McGraw Hill Co. published "High Speed Steam Engines” by W. Norris and B. H. Morgan in which is giv- en a short discussion of early Parsons and De Laval turbines but not much that is of practical advantage today except his- torically. In 1907 the Van Nostrant Co. published "The Steam Engine*® by Heck in which there is a discussion of the action of steam in various types of turbines and a chapter is devote ed to the theory of the design of nozzles and blades in dife ferent types. There is also a good discussion of the princi- ples and practice used in the governing of turbines and also of bearing packing. a” o- a " 4 . > s ‘ . a ' - Lew s my . . . ; . . ' ; : ae % . ” o . v- ey w~ . : : ‘ ¢ 4 1 “ r ~ we . - . , , . , . a _ . 7 y . . 4 7 a , - : aw .. ‘ 4 . 1 . a . “ . . . e ‘ . ‘ v} = . . - ” _é . : ’ te ' ‘ » . . “ .« ° ". ~~ . . ‘ “ . as a6 £6 — LOADS in AMPERES Cat Mey, FULL LOAD —S NOZZLES - 340 AMPERES ce lee ol. av. eae, > ! ; | an | BSE 4 oy ys | yi | Dim | fa AOS San ay Aa eS Ae eo Pod i i a ve} TF /46 | im Sag 3 cs/ | /02 | sf3 | 20+ add | 4 | 68 | 176 | 204 | 272 kas 5 | e5 1170 |\e55 | 340 rtm BAROMETER UV.S.W.B. E.LANSING , MICH. 3:00 P.M. DATE inches hg. lbs. per i APRiL 1 28.65 Sn ed « 2 28.94 al) “ 3) 29./8 he “ 129.92 ead « S| £9.48 Ped eee ie, rel “ 9g | 29.59 /#.51 " 46| 28.99 I “ go! 28.02 Lae THERMOMETER READINGS TEMP. Ta — 2° LOW TEMP.C4 —-— 3° LOW TEMP, Cz — 2-5°L0W 1 Leay — ee 4 = > WSS AY bi te Pee wade, mt zt padakeade as LY yt Le ha S35 fare s saved oe uo ve at eR SE m2 hEOuan an 20 6a paace- * yprek ah: wr ee en ong! AGh*e --te ob Slam Ege! eet parvo Baw BEE RMS. = abe’ A Se Marts gem eg a. . Pee ET ye Rega RP ee Le. ‘ow eB . AQPa- PTE he pAP aR AY Ta. ate See see ewe ht aA ee a - oa BPN 39 e OFS TLS TRG * EPA Ne Se eZ we es teat pe shows . re Rover che reer Pee Rea PENS UO SE ARR E EG ae Moyer 5 : MEGS Bet Urs ced AL SERRA SPH eb TPae rd — i - ar ~. “oo, ee el dete : : WERTH 4, HORT OAKES SawAEt OOERAL ET Se 3 Pak Aw PBC ee OT EW eee : : auques wnine aa wes seeetd sees sauat is a s<>8- sat . i Adowedesae& same vin | PRuuaaaag Ste nabucus 4 ws : a ‘ ae 6 FSEmD: : : net i zee a os Het dette be wit bhaes ee S7zsausng ssqaeve Saupe ng : rr Rts the femewnts na agus anita ; area reBSces chores » ati Pe « of eaeEas ateert ne re sere == hisbins maESES EF Pr SEP ERE EOE a ail 7 ih AES Oe pe many i . er apeeste STORM 2% BIT te rake se -1 B® rn La e ee oe, é. : 1 : . 4 ees Cn . im! ; A f ee | . 86 ote eo eee | A f a OD ee er) es ‘ i} H U ‘oy ¥ if ni enenes Cannan anes 4 i H nS i ' i BRERS CBEST KOS ME OUR AERO TERT era sae . Et wees coebereces feecwese Ore mmwe~ . ,epwe, eae bn ae nt ae ee 7 mM ype ore waghan auee & @Gas We er“ aT -ocbu OPEV RSE vs TACRRERARSE 14 hws. ORR OR RSME TENE SH LOC et ee SRE, Per RE ee: csapane vue Oe ee Biome pay Ate i a “eb ie er ee ees paaces faces Seen, SOPs eae satitit ¢es3 POR se 2 OR Ae SE Ae to e280 se seetersatiaeress sRiEaS sriiztlics a e2: oe ee : rat exons bgeegedt: cogs “4° Bae users aoe aa 2 - ees Hae OHA a yee st weB SM BE soe oon Om oo. . . ~ AS aN Oem | : < ore cheEne rw . an cP RES Fr ye lta we * ey et. Oe WIE 1 Oe Bech twa. f aa te . oye, Ph AS EE epee e ET BL PTF. Bee SeBnTae Be - ca settee rt ec Gale - 77 ee eS re et oe BOM ERB OU POMS Fs btu ht , : Sara eon Gg * wy te * Moe | . Me / Ppetem &* HRN E Te COS eee. tate Tab eed te ee - ” : 32m Reoate acrste sae gheives seuiereadiaalisegg a 2 ee ’ ie ieigna eer 2.o8 19; cave von : ' | 4 / / | E J ; - P | See fecord Wp NW? 4- 1 iva fa Ae Mio d BY: t Pitta ; | | : 2 | ‘ehbeadss. Boos reeseaeus z | Guaranteed Water Kare ) ) Ele iS feam Press. VYecvern DB wd (ok 14h AO) te > "> | Ff we = ‘ ~ = We Og) aay Te nea LO eye Wl JSadal eo es A at ee Valea LIA a, i ESE) PE La 800 oo ee) 799 VALE ELA 26 AL ag fe] 17 EY mL TA 68 re oH Une sad Puaynsorayy ee 2900 eens rie PPPS | V4) PF i P22) 220 25 PPI 53 pee 37S | 2400 7.50 Pian -4s 2A oR ay) VL Pog dda Me Ld al Oo eh eT 2 /é 2o 20 Zo es ney yy sed DE ae od A i fa) 12.0 96.7 66.7 <-) daa OE) ep ee oat) ers Pe) PJ A) WE aM Lee XT ee Pd th) (ee te Y:) eek] <3 CT de ok ee Lg) ee el Rie 3790 oie Py es EPr 5d WT ee MY a Se. dal) 38/00 R/T 3eI00 | /6/7 FL pee ed Me ee Fe al hee Ld ee AT /2399 /438 | 348 4537 F-f+) EMT, tea Pied del), F3 2 3 rs | 47 | ¢8 | 49 TS CT ae LA Ly Me oa he /8¢ \38i00 WALL Bt hae PT SOA ae pe A od PT) ee eee F-7 mié Se ee os 4 le Ae aed Lr Pi Rd 3 1) oie ee ae TUT “a7 Ta WIE) Ld Ld yr Fo kee] 800 799 798 ELA rs AE Lg oO ‘7 ‘ia A ej FJ re 2441794 VE PPE) Fa ea Zao Pie) ia Cy LL LE ed PPE TL) Me Sd fe iF a, 20 4) a") SF TL MM doe ehh re tes 2900 —— Vf} ee ~ | Eee dd i BG 7.60 “Hag |\2397 RT: 4 neg My sed OPE a Le dd 235.8 | 3.76 | 2400 fe /12.0 Te 86-7 | /8,75 |\233!1 2a 31) 1) Ae ee 49M IO/9I A 44PAYL ID I2 PB ) 27 2é6 /8 Ra OT Ld de ok hed La ee eal 356 Eo cee cies lo WT me Mey Lae TXT Me LS +i bs s aK * SRS RSs ° SCI OSt AY SAAN DSR en " yy eA ny onl lee las (2 ~ aati eae eae aS Db e rt tet Ter Led a i, es # rf MODE Les NY “ % gis br DD lee al Laie aed say) ) ee te eo) A b rs ¢ PO dat ii Sethe Sy 8 es a | ey vad ae ra 3S S = Le id fee ge ley A an ON ld fa Ma, Sd % ™|™ PN eld lade 2 4 ty NI KY x - eee) Po) Oy CT a Las ee ars) NX) paybye prhar R 3 4 oA | a vanssud wey Y-\~ | | [ ey — et ee pe 4 » bd % 3 . poey-2y % | ily Fa K Tet > eae a SS S Pa a el ee an PPT eae proy popedl a ae aa | ° ~ Cai ™ Pe ey A ae l ) + wr ei 2s aed Ny } | a RS ee ee ee oe os Gi oar ~~ tem ne e le ) a. Pen. Tee 4 a <2 ee lao ma a a Fe a eo eee aed A AV. E77. Pe) eae ee a ee ee ea At an a ee ToT We MEHaAT /NTERSTA6A = “3S i eee ls ae ae ed 2 ee ee) i a oe a hd hd A - — e e 4225.7/ 798 = 22ers Ae a Ved stear af reezz/e x 26.5 2t#0o a , tld ~ Se iA pare. ee a Ye oF 5a a a) fe f ec a oto r—- Pam ame Nec veleocery = ae eae ri ee ae Sas , = 2F°— FS ’ V =/84/5 fossce a . a ) Chasity a) WE oe Yate St apt Vere 2 ao i S25, ) Pr ee arn ame, Te eee Wozede =f/FI5 Ve = Ves Stear7 ertfetin aa A a Vieng Slades = //60 VA hn “or measured aagles Te blades ared gee Pn bore) Tor Vs = 27° Vig CTO *) DO f see: er if Le Vg = 620 ft/sec. i Ji fsec FA oa a Ke 9 A ee Se ee ee cree Pw, ded did ae pee ee ed LD a ee er a Aa eg a errs =7o tania ae ne eB. eS Ra al Se Pe Pe FFs 223.7 Residual vel= 250 Vi J SEC. Fate ow ao Y aan ae gd Vig TS a oe ee Pe ad FER a as oe — ial ee ie oak) ie Ne I CUGH Pressure s3fage Sy Seagrar Va ee Sy caloryvmeters //35 —/038= Me Mle EG oem eh Vota/ oss 27 So eek PX a. B.ta@. radtzatiarz BAli7de CorvvecrZ-av FE LETRA AES. he stato ary eh ee a ede ame aed aa eed Moe ae Sve we oe ffererrce Van a hae tage ee ade de are gles, COME? wentiy We pressure Werw rhe 2207 absolutely Fats Ur It 2, Pa a ray cas eel Ms A ca ox ae ae Tk La od WE.F1. 2 H/GH FPRESSURE VELOC/T Y DIAGRAST ¥ NOZZLES FULL LOAD ScALe — 4% = 2ZOOFT FER Sle. a 24-45" Le A 7. ter ZF [are 30-~-<0’ oe fo mele) FT RT; i te) Y (Pol 2go) edie i 77 Se A Poros TYPIGAL VELOC/TY DIAGRAST CONSTRUGTED FROIT SPIEASURED ANGLES AND WITH RESULTS HERE OBTAINED WL CALCULATIONS an VELOC/TIES /N LOW PRESSURE STAGE AND EQUIVALENT HEAT LOSS Pressure 27 %7tEersvage = 43.54 72. Pressure ¢st lel stage = 7. FZ ee Pressure 271d vel stage = ~ 20 @ Pressavre aed ver ees ae ae. ee Pressure £02 cGordenser = 3.975 6. ke CA LM A AEE a oe Jora/ pear caorrdlerser = /O3/ £4.74. ee ee at Le dae A ol EE ee a Ae oe Dl enn 223.7 V3F6E = 43/8 ad sec. AHecoretica/ ee a 777 eac4 r0zz~e vl Nad ra ee Ae Lhd vel #/ =66S Jt [eee 43/8 — 66S =653 f6 (sec. or Pa ee ne SD = LT ee ee ——_—_— ee 4 Is 2 fo Po) & fg75- sd Pn = Ye ee CN ir de B-CO2 EPR ee) 223.7 fess per roc Sf Pe en a la hae ee i a ed ek a ne in ae JOSS aniferraty Sstribated, repeat per s7age as ys Vs oy a Kagtan (s FF Bre. sevce rhe residual feat 23 Ge gee OF Fee a 223.7 IXSGB.S3S FCFIXKS.92 ~.22/ = 35:.7¢ Pe om Pe ee a AS AGAINST FFA. C6 Creorerica/ Sass. The rrezzies were gesegaed Yor pure sr77Pe/se Py ee ae a a oe a ee wa pulse—reactro?, a3 thay @ 3€er7 Da eg dada a an XT it ee Me an bia ae ak Ee hte eS US Paes ae et Me eA ee 76 haat SraP Teen Pt ie ma BS icaceke eet Pe Ee a LA Py oaks accurare . Ahh Te ha ia ss found ey éefore tind? GE Mis > Os a ag Oe VP) 60 dad a rn LOW PRESSURL VELOCITY DIAGRATT TF NOZELLS “FULL LOAD SSIPULSE - REACTION e/VD STAGE SGRD STAGE LOW FRESSURE NOZZLE ANGLES ANO BLADE ENTRANCE ANDO EX/T AAIVGLESS LQUAL FOR TARE FS VELOC/TY STAGES : ; ie SS asiee ef 434 Ww ot i | gets he! ee | . ae Ee , te ———l aE = ' wt cv . 7 es “ ro * a . el 7 c-. - . s ou I -s” 4 cy 2 "e ‘ ca . 8 « . x 5 yer oy > RUS Gan --==0@ URRSSVERET SHEN SAHOLD PORES ETERS TESELTS=EN PTUSCSE TT RUSTE TNS ES FEL EEE CBE RC TERRE BE CENT V6 7: yevPeRs Woes DESSER PEREESSETSETEAIS TEL? Tats. 58 Lee benenes es oye) sa / + | ; | et ) ) i | / } ; | : ; = fe - sr nee ;eawmaeny oe : : i ; ; / J | SuIg Bn eo- ae es noe a Uary Seika nk ae a perk } Mee iad WM» i ; ie + ; 7 eae rr eee Lveeye Lah a tpa] a b MICHIGAN STATE UNIV. LIBRARIES UML OMN 31293010930828