THESIS

WALISS JF PEAE MGROEETE 3. 3. BRIDEE
AI GRND LENE WOHGN
E. P. NORMH
1. M. COBURN
1322

Amalysis of Pere Marquette R. R. Bridge

at Gramd Ledge , Michigan.

A Thesis

submitted to the Faculty of

MICHIGAN AGRICULTURAL COLLEGE

by

E.P.Morth
H.M.Coburn

Candidates for the degree of

Bachelor of Science

THESIE
cop. 1

IHTRODUCTION

The subject of this thesis being an analysis of a railroad bridge, it may be well to give a short general description of the structure, its location, construction and type of traffic to which it is subjected.

The bridge in question is located on one of the main Iines of the Pere Marquette Railroad, being known as Bridge D 100.2 over the Grand River at Grand Ledge, Michigan. The structure was constructed by the Pennsylvania Steel Co. of Steelton, Pa., in the year 1904. It consists of threc single track, deck lattice spans of the Pratt type, each having six panels of 20 feet for one span making a total of 120 feet per span. At each ond of the bridge there is an approach span consisting of 50 ft. deck plate girders. The total track span over the river is therefore approximately 470 feet. The distance from the track level to the surface of the river is about 60 feet.

The location is an ideal one for a bridge of this type, the banks of the river being very high and steep and the outcropping bed rock on the banks makes a very foundation for the abuttments. The bed of the river is also of solid rock and the water is comparatively shallow.

The bridge is subjected to fairly heavy loads, the line being one of the main freight routes of Central Michigan.

$$
103: 90
$$

As the bridge is inside of the yard limits of Grand Ledge, much starting and stopping of switching cars is done in mid span.

The structure, although at date, being about 22 years old, seems to be in very good condition, and shows that it has recieved constant care and attention. Reference is made to the photographs of the structure among the follow -ing pages.

TABLE OF CONTENTS

DRAD LOAD STRESSES IN TRUSS MEMBERS page
Data on Truss 1
Loading 1
Dead Load Stresses 2
Computations for Dead Load Stresses 3
(Diagonals, Verticals, Chords)
LIVE LOAD STRESSES IN TRUSS MEMBERS
Live load Stresses in Web Members 5
n \quad n n n Chord n 5
Computations for Live Load Stresses 6-7
ANALYSIS OF COMPRESSION MEMBERS
Specifications for Compression Members 8
Section of Inclined End Post LoUl 9
n n Upper Chord UlUZ 10
n \quad n \quad n \quad URUZ 11
n \quad Vertical Post V2 12
n n n - V3 13
n n $\quad n$ n ∇ 14
ANALYSIS OF TENSION MEMBERS
Specifications for Tension Members 15
Section of Diagonal.D 16
n \quad n " Dl 16
n n Lower Chord LoLl-LlL2 16
n $n \quad n$ n L2L3 16
n n Hanger VI 17

TABIE OF CONTENTS
ANALYSIS OF LATERAL BFACING page
Specifications for Lateral Bracing 17
Upper Lateral Bracing 18
Section of Diagonal BlO 18.
n \quad Strut HlO 18
n " " n Hll 19
Lower Lateral Bracing 19
Sectional of Diagonal L8 19
n " Strut H8 19
ANALYSIS OF SWAY BRACIIG
Specifications for Sway Bracing 20
Section at third Panel 20
n n second n 21
$n n$ end n 22
ARALYSIS OF FLOOR BEAMS
Web Plate 23
Planges 24
ANALYSIS OF TRACK STRINGERS
Web Plate 25
Planges 25
Rivet Pitch in Flanges 26
ESTIMATE OF WEIGHT 27 39
BIBLIOGRAPHY 40
LISI OE DRAMINGS
Profile of span
Erection Diacram
stress sheet
Fost V2 " 12 -
rost V3 " 13
rost V " 14
Diagonal D " 26
Diasonal DI " 16
Hanger VI - 17
Floor Bean FB2 " 24
Stringer S-il " 26 26
End rosts \& Dop Chord rocket
Bottom Chords \& Lateral Bracine -...
Introduction"sere 7
followinnn

FOREWORD

In the following analysis an attempt has been made to analyze the main members of the structure with as much detail as possible. The structure was designed to Cooper's 1901 specifications, however the analysis was made according to Cooper's 1906 specifications, which may explain some slight differences in sectional area etc.

Reference is hereby made to the various drawings of the sections in question, which follow the analysis of each particular member. The drawings of the upper chord and end post as well as the lower chord and lateral bracing are to be found in the pocket on the back cover.

The writers are greatly indebted to H. K. Vedder, Professor of Givil Engineering at the Michigan Agricultural College for many helpful aids and suggestions; and to Chas. S. Sheldon, Engineer of Bridges and Structures. P. M. R. R. for aid in securing plans and specifications.

DEAD LOAD STRESSES IN TRUSS MEMBERS

Dete on Truss
Span, center to contor of end pins 120'- $0^{\prime \prime}$
Depth, between centers of chords 22'- $0^{\prime \prime}$
Width, between centers of trusses- 13'- $0^{\prime \prime}$
Number of panels 6
Panel length 20'- $0^{\prime \prime}$
Length of ond posts, c to c of pins 29'-8 7/8"
Sec 1.351
Loading
Dead load per lineal foot of bridge 2400 \#
Dead load per panel of each truss 24000 \#
Load per upper panel point 18000 \#
Load per lower panel point 6000 \#
End reaction due to dead load 60000 \#

Dead Load Stresses

Momber	Compression	Tension
Jo Lo	6000 \#	
Lo Il		54600 \#
L1 L2		54600 \#
L2 L3		87300 \#
U1 U2	87300 \#	
U2 U3	98000 \#	
Lo U1	81000 \#	
U1 L1		- 6000 \#
U2 L2	30000 \#	
U3 L3	18000 \#	
U1 L2	-----------	48700 \#
U2 L3		16300 \#

COMPUTATIONS FOR DEAD LOAD STRESSES

Diagonals

Stress in Lo Ul	81000 \#
Shear in Ul L2	-36000 \#
Stress in Ul 42	-48700 \#
Shear in UZ IS	-18000
Stress in U2 L3	-16300

Vertical Posts
With a distribution of dead load of 18000 \# at each upper panel point and 6000 \# at each lower panel point, the stress in post $U 0$ Lo would be that caused by the difference between 9000 \# at Uo and 3000 \# at Ul, or 6000 \# compressive stress. The dead load stress in UO Ll would be that caused by the load of 6000 \# at Ul, or 6000 \# tensile stress. The dead load stress in U2 L2 is equal to the shear in the section or 60000 \# - 30000 \# which is 30000 * compressive stress. The dead load stress in U3 L3 is equal to that caused by the dead load of 18000 \# at U 3 or 18000 \# compressive atress.

Chords

The dead load chord stresses were computed by the method of moments. A section is passed thru the chord in question and moments taken about the intersection of the other two members out by the section.
-

Passing a vertical section thru Lo $L l$, sum M about $U l=0$ $60000 \times 20-22$ Lo Ll $=0$

Stress in Lo $\mathrm{LI}=-54600$ \# Ll L2 $=\mathrm{LO} \mathrm{Ll}$
Passing a vertical section thru UL UZ, sum M about $L 2=0$
$60000 \times 40-24000 \times 20-22 \mathrm{UL} \mathrm{UZ}=0$
Stress in U1 UZ $=+87300$ \# $\quad-\mathrm{L} 2 \mathrm{~L} 3=+\mathrm{U} 1 \mathrm{U} 2$
Pasaing a vertical section thru UZ U3, sum M about L3 $=0$ $60000 \times 40-24000 \times 20-24000 \times 40-22$ U2 U3 $=0$

Stress in UZ U3 $=+98000$ \#

LIVE LOAD STRESSES IN TRUSS MEMBERS
The live load stresses are those due to a loading equivalent to Cooper's Standard E-50, consisting of two $177 \frac{1}{2}$ Ton ongines followed by aniform train load of 5000 \# per lineal foot. No impact wes figured in any of the computations on stresses.

Live Load Stresses in Web Members Coopers E-50 Loading						
$\begin{array}{\|c} \text { Pan- } \\ 0 \end{array}$	Wheel at rt. end panel	```Mom. at rt. sup- port Kip feet```	```Mom. at rt. end panel Kip feet```	Shear Kips	Stress Pounds	Mem.
LoLl	4	23789.0	600.0	167.9	227000	U1IO
L1L2	3	15077.05	287.5	111.1	$\begin{array}{r} -150000 \\ 111000 \\ \hline \end{array}$	$\begin{aligned} & \text { U1L2 } \\ & \text { U2L2 } \end{aligned}$
L2L3	3	9359.4	287.5	63.5	$\begin{aligned} & 86000 \\ & 63500 \end{aligned}$	$\begin{array}{\|l\|} \hline \text { U2L3 } \\ \text { U3L3 } \end{array}$

Live Load Chord Stresses						
Sect .Wheel at sect	$\begin{aligned} & \text { Length of } \\ & \text { train } \\ & \text { Feet } \end{aligned}$	```Moment of rt. sup- port Kip Feet```	Moment at section Kip Feet	Bending Moment Kip Feet	Stress	Chord
U1LI 4	9.1	23789.0	600.0	3365.0	$\begin{aligned} & 153, \\ & 000 \end{aligned}$	$\begin{array}{\|l\|} \hline \text { LOLI } \\ \text { LIIR } \end{array}$
U2LR 6	3.08	21560.0	2050.0	5136.0	$\begin{array}{\|l\|} 233 \\ 000 \\ \hline \end{array}$	$\begin{array}{\|l\|} \hline \text { UIUZ } \\ \text { L2I3 } \\ \hline \end{array}$
U3I3 10	7.0	23001.1	5790.0	5710.6	$\begin{aligned} & 259 \\ & 600 \end{aligned}$	U3U2

Diagonal Lo Ul :
The largest possible shear in any section occurs when the live load on the panel is $\frac{1}{\mathrm{~m}}$ of the live load on the bridge, m being the number of panels in the span of the bridge.

Wheel 4 at Ll gives load of $62.5-87.5 \mathrm{Kips}$ in panel
Length of train on bridge $=118.0 \mathrm{ft}$.
Load on bridge $\quad=377.75 \mathrm{Kips}$
$\frac{1}{m}$ of $377.75=62.96 \mathrm{Kips}$
Since 62.96 is between 62.5 and 87.5 the criterion is satisfied by the above position.

Moment at right support $=23789.0 \mathrm{Kip}$ ft.
Moment at right end of panel=600.0 Kip ft.
Shear in section equals Moment at right support minus six times the moment at the right end of the panel divided by the ength of the bridge.

VLOL1 $\frac{23789-(6 \times 600)}{120}=167.9$
Stress in LOU1 $=167.9 \times 1351=227000 \#$
The above method was used in calculating the other web members and the results were tabulated in table on preceding page. The stresses computed oheck with those used in design to eithin a few pounds. All of above were taken to the greatest one hundred pounds.

The moments were taken from the moment diagram of Cooper's E-50 loading.

Chord Members
Chord LoLl :
Criterion for greatest chord stress is satisfied when the load on the left segment of the span is to the total load on the bridge as the length of the left segment is to the total length of the span.

Wheel 4 at panel point $I I=62.5-87.5$
Length of train on bridge $=9.1 \mathrm{ft}$.
Load on bridge $=355+(9.1 \times 2.5)=377.75 \mathrm{Kips}$ According to above criterion the load causing the greatest atress is one-sixth of 377.75 Kips or 62.96 Kips, as this is between 62.5 and 87.5 the criterion is Aatisfied.

Moment at rt. support $=20455+(355 \times 9.1)+1.25 \times 9.1$ $=23789.0 \mathrm{Kip}$ feet
Moment ar section 600 Kip feet
Bending moment $=1 / 6 \times 23789-600=3365 \mathrm{Kip}$ feet
Stress in LOLI $=\frac{3365}{22}=153000$ \#
The above method was used in computing the stresses in the other chords and the results are tabulated in Table III. The live load chord stresses all check•with those used in the design except LZIJ which has a difference of 6000 \#. Moments and loadings were taken from Cooper's Moment Diagram for E-50 loading. A drawing of this diagram may be found on page 122 of Merriman and Jacoby Vol. I.

ANALYSIS OF COMPRESSION MEMBERS

Compression members shall be proportioned by the following allowed unit strains:

For Medium Steel
Chord segments $P=10000-45 \mathrm{l} / \mathrm{r}$ for live load.

$$
P=80000-90 \text { l/r for dead load. }
$$

All posta of
$P=8500-45 \mathrm{l} / \mathrm{r}$ for live load. through bridges $\mathrm{P}=17000-901 / \mathrm{r}$ for dead load.
111 posts of
$P=9000-40 \mathrm{l} / \mathrm{r}$ for live load. deck bridges

$$
P=18000-80 \frac{1}{1 / r} \text { for dead load. }
$$

End posts are not to be considered chord segments.

Lateral Struts and rigid bracing $P=13000-601 / r$.
$P=$ the allowed strain in compression per square inch of oross-section, in pounds.
l = the length of compression member, in inches, c. to c., of connections $r=$ the least radius of gyration of the section, in inches.

SECTION OF INCLINED END POST - Lo Ul

1 Cover (ba) $19 \times \frac{1}{2}$
2 Webs (bd) $18 \times \frac{1}{2}$
4 Ls (bc) $3 \frac{1}{2} \times 3 \frac{1}{2} \times 7 / 16$
10 3/4" clear between Webs $1=29^{\prime}-87 / 8^{\prime \prime}=3567 / 8^{\prime \prime}$

Total Area of gross section $=38.98$
Axis l-1 I of cover plate $=19 \times(.5)^{3} / 12=.198$
Ad 2 of cover plate $=9.5 \times(9.375) 8=835.050$
I of $4 \mathrm{Ls}=4 \times 3,3=13.200$
Ad^{2} of $4 \mathrm{Ls}=4 \times 2.87 \times 8.085^{2}=750.413$ I of 2 Webs $=2 \times \frac{1}{2} \times 18^{3} / 12=486.000$ Moment of Inertia of gross sec. $=2084.861$ in. 4

Axis 2-2 I of cover plate $=\frac{1}{2} \times 193 / 12=285.791$ I of 2 Webs $=2 \times 18 \times .5^{3} / 12=.375$ ${\Delta d^{2}}^{2}$ of 2 Webs $=2 \times 9 \times 5.625^{2}=569.520$ I of $4 \mathrm{Ls}=4 \times 3.3=13.200$ Δd^{2} of $4 \mathrm{Ls} \times 4 \times 2.87 \times 6.915^{2}=549.168$ Moment of Inertia of gross sec. $=1418.054$ in. 4

Least Radius of Gyration $=\sqrt{\frac{1418.054}{38.98}}=6.02 \mathrm{in}$. $\mathrm{P}=9000-40 \frac{1}{\mathrm{r}}=9000-\frac{40 \times 356.875}{6.02}=6621.00 \mathrm{\#} / \mathrm{in} .{ }^{2}$
Stress in Lo Ul
$=267500.00$ \#
$\frac{267500}{6621}=40.4$ in. 2 reqd. 39.0 in. ${ }^{2}$ used in gross section. The formula used is from Cooper's 1906 Specifications while the structure was designed to Cooper's 1901.

SECTION OF UPPER CHORD UI UZ

1 Cover (bo) $19 \times 7 / 16=8.31$
2 Webs (bn) $18 \times \frac{1}{2}=18.00$
4 Ls (bk) $3 \frac{1}{2} \times 3 \frac{1}{2} \times 3 / 8=9.92$
$1=80^{\prime}=240^{\prime \prime}$
$105 / 8^{\prime \prime}$ clear bet. webs

Total area gross section $=36.23$ in. ${ }^{2}$
From the design of Lo UZ we know that the least radius of gyration is about axis 2-2.

Axis 2-2 I of cover plate $7 / 16 \times 19^{3} / 12=250.060$
I of 2 webs $2 \times 18 \times .53 / 12=.375$ Ad^{2} of 2 webs $2 \times 9 \times 5.562^{2}=556.830$

I of 4 Ls $4 \times 2.9=11.600$
Ad^{2} of $4 \mathrm{Ls} 4 \times 2.48 \times 6.8282=\underline{461.676}$
Moment of Inertia of gross sec. $=1280.541$
Radius of gyration $=\sqrt{\frac{1280.5}{36.23}}=5.94$ in.
$P=10000-45 \frac{1}{r}=10000-\frac{45 \times 840}{5.94}=8182 \# /$ in. 2
$\underline{282700}=34.6$ In. ${ }^{2}$ reqd. Gross section $=36.3$ in. ${ }^{2}$

SECTION OF UPPER CHORD U2 U3

4 Ls $3 \frac{1}{2} \times 3 \frac{1}{2} \times 7 / 16$
2 webs $18 \times \frac{1}{2}$
Cover $19 \times 7 / 16$
$103 / 4^{\text {n }}$ clear between webs
Least moment will be about
axis $2-2$ same as in predeeding work.
Axis 2-2 I of cover plate (bu) $7 / 16 \times 19^{3} / 12=250.060$
I of 2 webs (bt) $2 \times 18 \times .53 / 12=: 375$
Δd^{2} of $\&$ webs (bt) $\& \times 9 \times 5.562^{2}=556.830$
I of 4 Ls (bp) $4 \times 3.3=13.200$
Δd^{2} of $4 \mathrm{Ls}(\mathrm{bp}) \cdot 4 \times 2.87 \times 6.852^{2}=538.974$
Moment of Inertia of gress sec. $=1359.439$
Radius of gyration $=\sqrt{\frac{1359.4}{37.71}}=6.05$ in.
$P=10000-45 \frac{1}{r}=10000-\frac{45 \times 240}{6.05}=8125 \# /$ in. 2
$\frac{310000}{8 \& 15}=37.7$ in. ${ }^{2}$ reqd. Gross section $=37.8$ in. ${ }^{2}$

SECTION VERTICAL POST U2 LZ (VQ)

$4 \mathrm{Ls}(c e) 6 \times 4 \times 5 / 8=23.44$ in. ${ }^{2}$
$1=22^{\prime}=264^{n}$
Axis 1-1 I of $4 \mathrm{Ls}(c e) 4 \times 21.1=84.400$
${A d^{2}}^{2}$ of $4 \mathrm{Ls}(c e) 4 \times 5.86 \times 8.8 I^{2}=115.090$
Moment of Inertia of gross section $=199.490$
Axis 2-2 1 of 4 Ls (ce) $4 \times 7.5=30.000$
$A A^{2}$ of $4 \mathrm{Ls}(c \theta) 4 \times 5.86 \times 3.22^{2}=242.838$
Moment of Inertia of gross section $=272.838$
Least radius of gyration $=2.92 \mathrm{in}$.
$P=9000-\frac{40 \times 264}{2.92}=5384 * /$ in. 2 Allowable unit stress. $\underline{126000}=23.4$ in. 2 reqd. Gross section $=23.44$ in. 2

SECTION OP VERTICAL POST U3 L3 (V3)

4 Ls $6 \times 4 \times \frac{1}{8}=19.0$ in. 2
$1=22^{\prime}=264^{\prime \prime}$
From the previous post $V 2$ we know that the least radius of gyration is about axis l-l.
Axis l-1 1 of 4 Ls (ca) $4 \times 17.4=69.600^{\circ}$
Δd^{2} of $4 \mathrm{Ls} 4 \times 4.75 \times 2.177^{2}=\underline{90.041}$
Moment of Inertia of gross section $=159.641$
Radius of gyration $=2.90$ in.
$P=9000-\frac{40 \times 264}{2.90}=5359 \# /$ in. 2
$\frac{91000}{5359}=17.0$ in. ${ }^{2}$ reqd. Gross section $=19.0$ in. 2

SECTION OF VERTICAL POST UO LO (V)

As before least radius of gyration is about axis l-l.
$4 \mathrm{Ls}(\mathrm{cm}) 6 \times 4 \times 3 / 8=14.4$ in. 2
$1=22^{\prime}=264^{\prime \prime}$
Axis 1-1 1 of $4 \mathrm{Ls}(\mathrm{cm}) 4 \times 13.5=54.000$
Ad2 of $4 \mathrm{Ls}(\mathrm{cm}) 4 \times 3.61 \times 2.1272=65.145$
Moment of Inertia of gross section $=119.145$
Radius of gyration $=2.87$ in.
$P=9000-\frac{40 \times 264}{2.87}=5321 \# /$ in. 2
$\frac{68000}{5321}=12.8$ in. 2 reqd. Gross section $=14.4$ in. 2

ANALYSIS OF TENSION WEMBERS

All parts of the structures shall be proportioned in tension by the following allowed unit strains, net sections:

For medium steel Pounds per
Floor beams, hangers when permitted
sq. in.

Longitudinal, lateral and sway bracing, for
lateral forces
18000
Longitudinal, lateral and sway bracings, for

Solid rolled beams, used as cross floor
beams and stringers-----------------------1000
Bottom flanges of plate girders
chords and webs of lattice and pin- Dead load. Live load.
connected trusses-------------------- 200001000
Verticals carrying floor beams----------- 160008000
The required sectional area of any member is obtained by dividing the sum af (Live $\frac{1}{8}$ dead load strains) by the live load unit strains since the live load unit strains are equal to $\frac{1}{2}$ of the dead load unit strains.

In members subjected to tensile strains full allowance shall be made for reduction of section by rivit-holes, screw threads, etc.

7/8" rivets are used throughout, therefore a $\mathbf{l}^{\prime \prime}$ hole is to be deducted.

SECTION OF DIAGONAL UI L2 (D)

Stress in Ul L2 $=174360 \#$ Allowable unit stress $10000 \# / i n .2$ $\frac{174350}{}=17.43$ in. ${ }^{2}$ reqd. net sedtion.
$4 \mathrm{Ls} 6 \times 4 \times 9 / 16=4 \times 5.31=21.24$ in. 2 Gross section.
4 rivet holes $0.5625=2.25$
$21.24-2.25=18.99$ in. ${ }^{2}$ Actual net section.

SECTION OF DIAGONAL U2 L3 (DI)
Stress in U2 L3 $=138650$ \#
$\frac{138650}{10000}=13.87$ in. ${ }^{2}$ reqd. net section.
$4 \mathrm{Ls} 6 \times 4 \times 3 / 8=4 \times 4.75=19.0 \mathrm{in} .^{2}$
4 rivet holes $0.5=2.0$
19.0-2.0 $=17.0$ Actual net section.

SECTION OF LOWER CHORD LO LI AID LI LZ
Stress in Lo $L I=180300$ 并
$\frac{180300}{10000}=18.03$ in. ${ }^{2}$ reqd. net section.
$4 \mathrm{Ls} 6 \times 4 \times 9 / 16=4 \times 5.31=21.24 \mathrm{in} .2$
4 rivet holes $.5625=2.25$
$21.24-2.25=18.99$ in. 2 Actual net section.

SECTION OF LOWER CHORD L2 L3
Stress in L2 L3 $=282700$ \#
$\frac{282700}{10000}=28.27$ in. 2 reqd. net section.
$4 \mathrm{Ls} 6 \times 4 \times 5 / 8=4 \times 5.86=23.44$ in. 2
2 pl. $13 \times 3 / 82 \times 4.875=\frac{9.75}{33.19}{ }^{n}$
8 rivet holes $=4.0$ in. ${ }^{2} \quad 33.19-4.0=29.19$ in. 2 ret sec.

.

Stress in Ul LI $=90000 \frac{\text { 䒩 }}{}$
$\frac{90000}{}=9.0$ in. ${ }^{2}$ reqd. net section.
$4 \mathrm{Ls} 6 \times 4 \times 3 / 8=4 \times 3.61=14.44$ in. ${ }^{2}$ Gross section.
4 rivet holes $.375=1.50$
$14.44-1.50=12.94$ in. 2 Actual net section.

ANALYSIS OF LANERAL BRACING
To provide for wind and vibrations from hich-speed trains:

The top lateral bracing in deck bridges, and the bottom lateral bracing in through bridges shall be proportioned to resist a lateral force of 600 pounds for each foot of the span; 450 pounds of this to be treated as a moving load, and as acting on a train of cars, at a line 6 feet above base of rail.

The bottom lateral bracing in deck bridges, and the top lateral bracing in through bridges, shall be proportioned to resist a lateral force of 200 pounds for each linear foot for spans up to 200 feet.

All lateral, sway and portal bracing must be made of shapes capable of resisting compression as well as tension, and must have riveted connections.

UPPER LAAMEAI BPACIIG

Since the lateral diagonals are stiff members designed to take both tension and compression it will be assumed that the shear in each panel is equally divided between the two diagonals - P 163 M and J Vol. II.

Shear in first panel $=36000-6000=30000$ \#
Stress in Bl0-11-12 $=30000 \times 1.834=55000$
Stress in BlO etc. $=55000+2=27500$
$3 / 4$ of $27500=20625$ 㳻 $=$ live load stress in BlO.
$1 / 4$ of $27500=6875=$ dead $n \quad n \quad n \quad n$.
The other diagonals in the upper lateral bracing are all
designed for the stresses in the first panel.
Stress in HlO $=6000$ \#
Stress in Hll-12=12000 \#
Section of diagonal Blo
1 L $5 \times 3 \frac{1}{2} \times 3 / 8=3.05$ in. 2 Gross section.
2 rivet holes © $.375=.75$ in. ${ }^{2}$
2.30 in. 2 Actual net section.
$\frac{20625}{12000}=1.72$ in. $2 \quad \frac{6875}{18000}=.38$ in. 2
Required net section $=2.1$ in. 2
Section of Strut HlO
1 I $3 \frac{1}{2} \times 3 \frac{1}{2} \times 3 / 8=2.48$ in. 2 Gross section.
2 rivet holes $=.75 \quad I=13^{\prime}=256^{\prime \prime}$
1.73 in. ${ }^{2}$ Actual net section.

For lateral struts and rigid bracing $p=13000-\frac{61}{\mathbf{r}}$
r for 1 L $3 \frac{1}{2} \times 3 \frac{1}{2} \times 3 / 8=1.07$
$6000=1.41$ in. 2 reqd. net section.

$$
P=13000-\frac{60 \times 256}{1.07}=4253 \# / \text { in. }^{2}
$$

Section of Strut Hll

2 Ls $3 \frac{1}{2} \times 3 \frac{1}{2} \times 3 / 8=2 \times 2.48=4.96$ in. 2 Gross section.
2 rivet holes@.75. $=1.50$
$4.96-1.50=3.46$ in. ${ }^{2}$ Actual net section.
$r=1.06$ in.
$P=13000-\frac{60 \times 156}{1806}=4170 \# /$ in. 2
$12000=2.87$ in. 2 reqd. net section.
Section of strut Hl2 is same as Hll.
LOWER ILATERAL BRACING
The lower lateral bracing in deck bridges shall be proportioned to resist a lateral force of 200 pounds per lineal foot for spans up to 200 feet.
$I=200 \times 20=4000$ \# per panel. sec $\theta=1.834$
Shear in first panel $=12000-2000=10000 \#$
Stress in 18-9-10 $=10000 \times 1.834=18340$
Section of Diagonal L8
i I $3 \frac{1}{2} \times 3 \frac{1}{2} \times 3 / 8=2.48$ in. ${ }^{2}$
2 rivet holes $=.75$
$2.48-.75=1.73$ in. ${ }^{2}$ Actual net section.
$\frac{18340}{18000}=1.02$ in. ${ }^{2}$ reqd. net section.
18000
Sections of other diagonals same as L8.
Section of Strut H8
2 Ls $5 \times 3 \frac{1}{2} \times 3 / 8=6.10$ in. $2 \quad r=1.44$ in.
2 rivet holes $=.75 \quad P=13000-\frac{60 \times 156}{1.44}=6500$
$6.10-.75=5.35$ in. 2 sctual net section.
H8 will take stress of $5.35 \times 6500=34775 \#$
Extra sectinnal area is needed to stiffen lower section.

ANALYSIS OF SWAY BRACING

All deck bridges shall have transverse bracing at the ends, and at each panel.point of sufficient strength to carry half the maximum stress increment due to lateral and centrifugal forces.

All members of the web, lateral, longitudinal or sway systems must be securely riveted at their intersections to prevent sagging and rattling.

All lateral, sway and portal bracing must be made of shapes capable of resisting compression as well as tension, and mast have riveted connections.

Panel C L2 L2' C^{\prime}
WI and W2 represent the wind loads at each panel, W2 being the smaller. The difference Wl - W2 would distort the panel, if the sway bracing did not prevent it, and hence one-half this difference may be considered to act as shear across the rectangle.

Both diagonals are tension rods and C L2' receives the tensile stress $\frac{1}{2}(W l-W Z) \sec \theta$.

WI = Panel wind load at top $=12000 \#$
WR = \quad n \quad bottom $=4000$ \#
Shear across rectangle $=\frac{1}{2}(W 1-W 2)=4000 \#$

Stress in diagonal CL2' $=4000 \times \sec \operatorname{C}$
Sec $\theta=1.23$
$4000 \times 1.23=4920 \#$
Panel B Ll Ll: Br^{\prime}
Another function of the sway bracing is to prevent the distortion of the bridge under eccentric load. In rectangle B Ll Ll' B' an eccentric load may come. The reactions of this load at the ends of the floor beam B B^{\prime} are unequal, and since the trusses are made alike their deflections would be proportional to these reactions unless they were equalized by the sway bracing. If R and R^{\prime} be these reactions, one-half of $R-R^{\prime}$ acts as shear across the rectangle, and produces the tensile stress $\frac{1}{2}\left(R-R^{\prime}\right)$ sec θ in the tie B Il'.
$R=36000 \quad R^{\prime}=12000$ sec $\theta=1.23$
Stress in B Ll' $=\frac{1}{2}(36000-12000) 1.23=29880$ \#
Allowable stress $=18000$ \#/in. 2
$29880=1.65$ in. 2 required.
18000
2 rivet holes . 75
$2.48-.75=1.73$ in. 2 Actual net section.
She stress in this last piece being greater than the one first computed, this was used throughout the bridge except in the end panels.

The bracing in the end rectangle A^{\prime} Lo' Lo A must be heavier than the sway bracing between intermediate posts, because its function is to carry wind pressure and in some cases cintrifugal load from the upper latteral system to the abutment. If the sway bracing equalizes the wind loads between the two chords, as suggested above, the horizontal force W os one-fourth of the total wind pressure on the bridge; if the upper lateral bracing carries all the wind pressure specified for the upper chord, the W is one-half of this wind pressure.

The stress in A^{\prime} Lo $=W$ sec θ $W=\frac{1}{2}$ of total wind pressure for upper chord $=34000 \frac{\text { 亲 }}{}$ $\sec \theta=215.375 \div 172.5=1.245$
$34000 \times 1.245=42330$ \# Allowable stress $=18000$ \# $/$ in. 2 $42330=2.3$ in. 2 Required net section. 18000
$1 \mathrm{~L} 53 \frac{1}{2} \times 3 / 8=3.05 \mathrm{in} .2$
2 rivet holes $=.75$
$3.05-.75=2.30$ in. 2 actual net section.
The extra sectional area in members of the sway bracing
adds additional stiffness to the cross section of the bridge.

FLOOF BEAN (FB)

iveb plate

The span of the floor beam (effective length) shall be considered as the perpendicular distance between the center lines of the trusses $=13.0^{\prime}$. The floor beam carries in addition to its weight, two concentrated loads 3'-6" from its center, each load consisting of the maximum sum of the adjacent reactions of the stringers on both sides and of the track it supports, and the corresponding live load. From the analysis of the stringers the total aesd load of one of the stringers was found to be $12600 \frac{\pi}{\hbar}$.

The equivalent uniform live load must be taken for a span of two panel lengths or 40 feet, and by means of rable I, Coopers Specifications 1906, it is found to be 9048 \# per lineal foot of track, for E-50 loadine. Ihis would give a uniform live load on each strincter of 4524 \# per lineal foot, or the total live load at each stringer connection would be $4524 \times 20=90480 \frac{1}{\pi}$. The weight of the floor beam will be assumed as being 2500击. The total maximum vertical shear would be $90480+1250+12600=104330$ 界. The allowable shearing stress is 10000 fin. ${ }^{2}$

The net area required to resist this vertical shear is 104330 : $10000=10.43$ in. ${ }^{2}$ Fequired net section.

1 web plate $34 \times \frac{1}{2}=17.0$ in. 2
6 revet holes $=3.0$
$17.0-3.0=14.0$ in. ${ }^{2}$ Actual net section.

The web plate used is plenty safe and the excess area will cio away with the necessity of stiffeners, as the span is short. Flances

The bending moment due to the two concentrated load equals $103080 \times 3=309240$ ft. $\#$, and that due to the vieight of the floor beam is $4026 \mathrm{ft} . \#$, making a total of 313302 ft . \#. Assuming an effective depth of 30.58 inches and allowing a unit stress of 15000 \#/ in. ${ }^{2}$ the required net area of the lower flange is as follows:-

$$
\frac{313302 \times 12}{30.58 \times 15000}=8.2 \text { in. }{ }^{2} \text { Required net section. }
$$

2Ls $6 \times 6 \times 9 / 16=6.43 \times 2=12.86$ in. ${ }^{2}$ gross section. 2 rivet holes \hat{c}. $0025=1.13$ $12.86-1.13=11.73$ in. ${ }^{2}$ Actual net section.

In the analysis of the web plate an allowance was made for 6 rivets, vihich is the maximum number used, a uniform pitch of $2-3 / 16^{n}$ being used throurhout.

All floor beans used in the structure are identical in section and vary only a few inches in length. The other fioor beans are F Bl and FBL. Four hs $5 \times 3 \frac{1}{2} \times 3 / 8$ are used as stiffeners under each stringer connection, which acts as a column with an excess of steel in crossmsection. The floor beams are connected to the posts by means of $2 L s \quad 5 x 5 \times 3 / 8$, a rivet pitch of $2^{\prime \prime}$ is used. See estimate of total weight for actual weight of floor beam.

TRACK STRINGELS

The span of the stringer equals the panel length of the truss or 20 feet. The loading is a load of 120000 \# equally distributed on two pairs of driving wheels spaced 6 feet center to center.

The maximum bending moment for one stringer equals $247500 f t$. $\#$ (Table I Coopers Specifications) The total dead load on one stringer equals 12600 (The dead load moment equals $30500 \mathrm{ft}$. \#. The total moment equals $30500+247500=278000 \mathrm{ft}$. $\#$ The diagram of end shears gives 60000 \# for a span of 20 feet. The shear due to dead load is 6300 \#, thus giving a total vertical shear of 66300 \#.
Allowable shearing stress. is 10000\#/in. ${ }^{2}$ $\frac{66300}{10000}=6.63$ in. ${ }^{2}$ Required net section.

1 Web plate $32 \times \frac{1}{2}=16.0$ in. 2 gross section. 7 rivets $1 / 2=3.5$ $16.0-3.5=12.5$ in. Actual net section. This section is large enough so that stiffeners are not necessary. As flange angles 6 inches wide are most suitable for stringers without cover plates, the clear distance between flange angles is 26 inches. The extra material in the web plate increases the stiffness of the stridger.

Planges

The specified allowable tensile stress is 10000 \#/ in. ${ }^{2}$ Bending moment to be resisted by the lower flange 278000 ft . $\frac{278000 \times 12}{28.58 \times 10000}=11.7 \mathrm{in} \cdot{ }^{2}$ Required net section.

2 Ls $6 \times 6 \times 9 / 162 \times 6.43=12.86$ in. 2 gross section. 2 rivet holes $0.562=1.12$ $12.86-1.12=11.74$ in. ${ }^{2}$ Actual net section. The effective depth is taken $a s 28.58$ inohes. (The distance between the centers of gravity of the flange areas will be considered as the effective depth of all plate girders.) Cooper specifies that plate girders shall be proportioned upon the supposition that the bending or chord stresses are resisted entirely by the upper and lower flanges, and that the shearing or web stresses are resisted entirely by the web plate ; no part of the web plate shall be estimated as flange area.

Rivet Pitch in Flanges.
The maximom vertical shear at the end is 66300 \#, and the increment of flange stress per lineal inch is-----

$$
\frac{11.74}{11.7} \times \frac{66300}{28.58}=2530 \#
$$

The vertical load on the flange is $\frac{24024}{32}=750$
The resultant of these horizontal and vertical components is 2450 pounds. The allowable bearing of a $7 / 8$ inch rivet in a $\frac{1}{2}$ inch web is 7880 \#, and hence the theoretic rivet pitch at the end is $7880 / 2450=3.2$ in. The pitch used runs from 2 inches at the ends to 5 inches at the center. The sections of all stringers, $S, S 1$ and S are the same except for a slight variation in length.
'
\square

ESTIMATE OF WEIGHT

Material for one Span
End post LO UI Pour required．
2Ls 3 $\frac{1}{2} \times 3 \frac{1}{2} \times 7 / 16 \times 28^{\prime}-9^{n}$ （4） 9.8 \＃－－－－－－－－－－－－ 563.50 \＃
 556.55
2Wbs 19＂$\times \frac{1}{2}{ }^{n \prime} \times 23^{\prime}-2 \frac{11}{4}$ © © 32.3 1495.17
1Cov＊ n \quad n n （13） 32.3 747.58
2P1 48皆 ${ }^{n} \times 15 / 16 \times 41 \sim 8 \frac{1}{4}{ }^{n}$ 103.73
 36.35
1Pl 19＂$\times 3 / 8^{n} \times 2{ }^{\prime}-0 \frac{1}{2}{ }^{n}$ ¢ 24.23 49.43
1P1＂ 39.88
 Total weight of one post 3617.17 \＃
Opper Chord UO UI Four required．
4Ls 3年 $\times 3 \frac{1}{2} \times 5 / 16 \times 18^{\prime}-7 \frac{1}{8}{ }^{\prime \prime} 07.2$ \＃ 535.68 \＃
$2 \mathrm{Wbs} 18^{\mathrm{n}} \times 5 / 16^{\text {n }} \times 18^{1-7 \frac{1}{2}}{ }^{\text {n }}$ © 19.13 711.36
1P1 19＂$\times 3 / 8^{\prime \prime} \times 2^{\prime}-2^{n} \times 24.23$ 52.34
$1 P 1$＂ n $\times 2$ 2－21＂ 024.23 52.82
2P1＂\quad 1＂ー7゙ © 24.23 77.34
 193．75
 22.00Total weight of one section1645.29
-

- ${ }^{\text {i }}$
- • 1

Upper Chord Ul UZ Four required.
$4 \mathrm{Ls} 3 \frac{1}{2} \times 3 \frac{1}{2} \times 21^{\prime}-4 \frac{1}{2}{ }^{\prime \prime}$ (0. 8.5 \# 727.77 \#
2 webs $18 \times \frac{1}{2} \times 21^{\prime}-4 \frac{1}{8}$ (3) 30.60 \# 1309.68
1 cover $19^{\prime \prime} \times 7 / 16^{\prime \prime} \times 21^{\prime}-4 \frac{1}{2}{ }^{\prime \prime}$ © 28.26 \# 604.76
2 pl. $47 \mathrm{3} / 4 \times \frac{1}{8} \times 6^{\prime}-0^{(1)} 81.18$ \# 974.16
2 pl. $19 \times 3 / 8 \times$ 1'~6" $^{\prime \prime} 24.23$ \# 72.69
36 lat. bars (:same as above) 18.00
2 pl. $473 / 4 \times \frac{1}{2} \times 4^{\prime}-13 / 4^{\text {T }}$ © 81.18 \# 663.97
Total weight of one section 4378.03 \#
Opper Chord UZ L2 Two required.
4 Ls $3 \frac{1}{2} \times 3 \frac{1}{2} \times 7 / 16 \times 41^{\prime}-1 \frac{1}{2}{ }^{\prime \prime} 09.8$ \# ---0.- 1612.10 \#
2 webs $18 \times \frac{1}{2} \times 4$ l' $^{\prime} 1 \frac{1}{2}{ }^{n}$ @ 30.6 \# 2516.85
1 cover $19 \times 7 / 16 \times 41^{\prime}-1 \frac{1}{2}{ }^{\prime \prime}$ © 28.26 \# 1168. 19
4 pl. $19 \times 3 / 8 \times$ 1' $^{\prime \prime}$ © 024.23 \# 145.38
36 lat. bars (same as before) 18.00
2 pl. $303 / 4 \times \frac{1}{2} \times 2^{\text {r }}-81 / 4^{\text {n }}$ © 52.28 (..... 280.85
Total weight of section---------------- 5735.37 \#

Lower Chord B Cl Four required.

$15 \mathrm{pl} .6 \times 3 / 8 \times 0^{\prime}-8 \frac{1}{2}{ }^{n}$ (7.65 \# 78.72
$2 \mathrm{pl} .40 \times \frac{1}{2} \times 6^{\prime}-3^{\prime \prime}$ © 68.0 \# 850.00
$2 \mathrm{pl} .22 \times 3 / 4 \times 0^{\prime}-77 / 8^{\prime \prime}$ © 56.1 \# 73.61
 100.30
 51.31
$1 \mathrm{pl} .20 \frac{1}{2} \times 3 / 8 \times 21-8 \frac{1}{2}{ }^{n} \times 26.14$ \# 70.22
Total weight of one section 4025.03 \#
\square 1

1
-
1
-
-
-. -

Lower Chord B CR Two required.

2 pl. $13 \times 3 / 8 \times 46^{\prime}-3^{\prime \prime}$ © 16.58 \# - $-\cdots-{ }^{(1533.65}$
$14 \mathrm{pl} .9 \times 3 / 8 \times 0^{1}-8 \frac{1}{2}{ }^{n} 11.48$ \# - $10-0-10.25$
6 pl. $10 \times 3 / 8 \times 2{ }^{\prime}-10 \frac{1}{2}{ }^{\prime \prime}$ (12.75 \# -

Total weight of one section ------a- 5616.05 \#

Post V
Four required.
4 Ls $6 \times 4 \times 3 / 8 \times 21^{\prime}-7 \frac{10}{4} 612.3$ \# -0-0- 1057.80 \#
2 pl. $12 \times 3 / 8 \times 2^{\prime}-67 / 8^{\prime \prime}$ © 15.3 \# --0. 76.50
6 bat. $6 \times 3 / 8 \times 0^{\prime}-8 \frac{1}{4 \prime} 7.65$ * - 7 - 230.00

Total weight of one mection -------- 1460.66 \#

Hanger V1
Four required.

1 pl. 12t $\times \frac{1}{2} \times 2^{\prime}-13 / 4^{\prime \prime}$ 21.25 \# - 45.90
1 pl . $12 \frac{1}{2} \times 9 / 16 \times 1^{1}-67 / 8^{\prime \prime}$ © 23.91 \# -27.82

Total weight of one section -------- 1337.45 \#
-. -

$$
-\quad--
$$

- -

$$
-
$$

$$
\cdot \quad 1
$$

\square

$$
-
$$

$$
1
$$

$$
-
$$

$$
-\quad-\quad \cdots
$$

-

\square
Post V\& Four required.
4 Ls $6 \times 4 \times 5 / 8 \times 28^{\prime}-0 \frac{1}{4}{ }^{n}$ (10.0 \# 1760.00 \#
 30.60
1 pl. $9 \times 3 / 8 \times 2^{\prime}-1^{(1)} 11.48$ \# 23.88
1 pl. $9 \times 3 / 8 \times 6^{\prime}-11^{\prime \prime}$ (11.48 \# 80.36
6 bat. $6 \times 3 / 8 . x 9^{\prime \prime} 7.65$ 34.43
Total weight of one section 1929.27 \#
Post V3Two required.
4 Ls $6 \times 3 \frac{1}{2} \times \frac{1}{2} \times 22^{\prime}-0 \frac{1}{4}$ (1) 15.3 \# 1346.40 \#
1 pl. $9 \times 3 / 8 \times 2^{1}-1^{\prime \prime}$ (11.48 23.87
1 pl. $9 \times 3 / 8 \times 6^{\prime}-11^{\prime \prime}$ (1) 11.48 80.36
6 bat. $6 \times 3 / 8 \times 9^{\prime \prime} 07.65$ \# 34.43
Total weight of one section 1485.06 \#
Diagonal D Four required.4 Ls $6 \times 4 \times 9 / 16 \times 28^{\prime}-1$ 3/4" 18.1 \# -2038.78 \#
1 pl. $9 \times 3 / 8 \times 3^{1}-8^{n}$ © 11.48 42.02
1 pl. $9 \times 3 / 8 \times 3^{\prime}-3 \frac{1}{4}{ }^{n}$ © 11.48 \# 37.31
6 bat. $6 \times 3 / 8 \times 0^{\prime}-9^{n} 7.65$ 34.42Total weight of one section --------- 2152.53 \#

- \square
\square 1

1
-1 \square
-

Diagomal Dl Four required.

1 pl. $9 \times 3 / 8 \times 2$ - 5 3/8" 11.48 \# - 34.32
 Total weight of one section ----------- 1857.64 \#

2 Ls $3 \frac{1}{2} \times 3 \frac{1}{2} \times 3 / 8 \times 10^{\prime}-11 \frac{1}{4} 108.5$ \# 18.65
4 Ls $3 \frac{1}{2} \times 3 \frac{1}{2} \times 3 / 8 \times 0^{1}-63 / 4^{\text {n }}$ © $8.5 * \cdots-\cdots 20.40$

Lower Strut H B
Two required.

8 lat. bars $23 / 4 \times 5 / 8 \times 2^{\prime}-15 / 8^{n} .5 \# \ldots 4.00$

1
-1

1

1

1

- 1
1

1
$-\quad-$

Lower Strat H9
Five required.

Upper Latteral Strut HlO Two required.

Strut Hll Two required.

Total weight of one section ----------- 263.82 \#

Strut H12 Three required.

Sway Bracing in Intermediate Posts Five required.

2 pl . $13 \frac{1}{2} \times 3 / 8 \times$ l' $^{\prime}-3 \frac{1}{2}{ }^{n} 17.21$ \# -------- 43.03
4 Is $4 \times 3 \frac{1}{2} \times 3 / 8 \times 1^{\prime}-0^{n} 9.1$ \# 36.00

Total weight of one section --a-------- 476.54 \#
\square
.

- - -

-1
1
\qquad
Upper Latteral Bracing Four required．
1 L $5 \times 3 \frac{1}{2} \times 3 / 8 \times 21^{\prime}-93 / 4^{\prime \prime}$＠ 8.5 \＃————— 184.96 \＃
1 上 $5 \times 3 \frac{1}{2} \times 3 / 8 \times 10^{\prime}-7 \prime$（1） 8.5 \＃ 124.10
1 L $5 \times 3 \frac{1}{2} \times 3 / 8 \times 10^{1}-7 \frac{1}{2}{ }^{n}$（1） 8.5 \＃ 125.00
1 pl． $8 \frac{1}{2} \times \frac{1}{8} \times 2^{1}-10 \frac{1}{2}{ }^{n}$（ 14.03 \＃ 42.00
2 Ls $3 \frac{1}{2} \times 3 \frac{1}{2} \times 3 / 8 \times 0^{1}-9 \frac{1}{2}{ }^{n}$＠ $8.5 \#$ 12.65
2 Ls $3 \frac{1}{2} \times 3 \frac{1}{2} \times 3 / 8 \times 0^{\prime}-113 / 4{ }^{\prime \prime} 0.5$ \＃ 17.00
$2 \mathrm{Ls} 3 \frac{1}{2} \times 3 \frac{1}{2} \times 3 / 8 \times 0^{1}-9 \frac{1}{2}{ }^{n}$（1） 8.5 \＃ 12.65
1 pl ． $14 \times 3 / 8 \times 3^{\prime \prime}-9 \frac{1}{4}{ }^{(10} 17.85$ \＃ 66.94
11 $4 \times 3 \frac{1}{2} \times 3 / 8 \times 1^{\prime}-3^{\prime \prime}$ © 9.1 \＃ 11.38
1 I $4 \times 3 \frac{1}{2} \times 3 / 8 \times 21-3 \frac{1}{4}$ 푸 9.1 \＃ 20.48
1 pl ． $14 \times 3 / 8 \times 3^{1}-6 \frac{1}{2}{ }^{n}$（2） 17.85 \＃ 62.47
交 L $4^{\prime} \times 3 \frac{1}{2} \times 3 / 8 \times 3^{\prime}-11 / 8^{n} 0.1$ \＃ 13.75
交 pl． $12 \frac{1}{2} \times 3 / 8 \times 3^{\prime}-7^{\prime \prime}$ © 15.94 \＃ 55.79
Total weight of one section 749.17 \＃
Bracing of Inclined End Post Four required．
2 Ls $3 \frac{1}{2} \times 3 \frac{1}{2} \times 3 / 8 \times 15^{\prime}-9^{\prime \prime} 0.5$ \＃ 267.75 \＃
6 pl． $9 \times 3 / 8 \times 1^{\prime}-6 \frac{1}{4}$ © 11.48 \＃ 103.32
2 Ls $3 \frac{1}{2} \times 3 \frac{1}{2} \times 3 / 8 \times 7^{\prime}-8 \frac{1}{2}{ }^{n}$ © 8.5 \＃ 130.22
3 pl． $9 \times 3 / 8 \times 1^{\prime}-6 \frac{1}{4}{ }^{0}$＠ 11.48 \＃ 51.66
2 Ls $3 \frac{1}{2} \times 3 \frac{1}{2} \times 3 / 8 \times 7^{1}-8 \frac{1}{2}{ }^{n}$（1） $8.5 \#$ 130.22
3 p1． $9 \times 3 / 8 \times$ 1＇$^{\prime}-6 \frac{1}{4}{ }^{n}$（11．48 $\#$ 51.66
4 pl ． $14 \frac{1}{2} \times 3 / 8 \times 2^{\prime}-03 / 8^{\text {n }}$（ 18.49 \＃ 148.00
 55.08
1 fill． $3 \times \frac{1}{2} \times 1^{\prime}-67 / 8^{n}$（2） 5.1 昔 7.65
2 pl ． $12 \times 3 / 8 \times 1^{\prime}-95 / 8^{n}$（ 15.3 \＃ 55.08
Total weight of one section 1000．64 㒶
-1

1

$$
-\quad-\quad-
$$

-
-
- - .
-
- - - . ,

Strut H5 Two required.
 8 lat. bars $2 \frac{1}{2} \times 3 / 8 \times 11^{1}-4 \frac{11}{4} \times 3.19$ \# --- 292.68
 Total weight of one section 741.06 \#

Two required.

4 Ls $3 \frac{1}{2} \times 3 \frac{1}{2} \times 3 / 8 \times 11^{\prime}-4 \frac{1}{4}$ © 8.5 \# ------ $391.00 \#$
8 lat. bars (same as above) 《 3.19 \# ------- 292.68
2 pl . $18 \times 3 / 8 \times 3 / 8 \times 1 \mathrm{l}^{\prime}-4 \frac{17}{4}$ (10) 22.95 \# -- 57.38
Total weight of one section ----------- 741.06 \#

Sway Bracing in Vertical End post Two required.
2 Ls $5 \times 3 \frac{1}{2} \times 3 / 8 \times 18^{\prime}-23 / 8^{\prime \prime}$ © 10.4 \# --- $37.79 \#$

Total weight of one section -.-.-.-.-.-- 225.17 \#

Stringer S
Four required.
4 Ls $6 \times 6 \times 9 / 16 \times 19^{\prime}-11$ 3/4" © 21.9 \# --- 1732.00 \#

Total weight of one section -.-..-....-- 3100.07 \#

4 Ls $6 \times 6 \times 9 / 16 \times 19^{\prime}-113 / 4^{n}$)

4 Ls $6 \times 6 \times 9 / 16 \times 21-71 / 8^{\text {n }}$)
4 fill. $6 \times 9 / 16 \times 1^{1}-8 \frac{1}{4}{ }^{10}$)
1 web $32 \times \frac{1}{2} \times 19^{\prime}-113 / 4^{n} 3100.07$ \#

Stringer 82

4 Ls $6 \times 6 \times \frac{1}{2} \times 8^{\prime-7} 1 / 8^{n}$ © $19.6 \#-\cdots-\infty-203.84$

4 fill. $6 \times 9 / 16 \times 1^{1-8 \frac{1}{4}}$ @ $11.48 \#$ - $\quad 76.23$
Total weight of one section ----------- 3214.68 \#

Stringer S3
Two required.
Same as stringer 52
3214.68 \#

Floor Beam F B Four required.

4 Ls $5 \times 5 \times 5 / 8 \times 2^{\prime}-9$ 1/8" © 20.0 \# ————— 220.00

8 Ls $5 \times 3 \frac{1}{2} \times 3 / 8 \times 2^{1}-91 / 8^{\prime \prime}$ 2 10.4 훈 228.80
4 fills $7 \times 9 / 16 \times 1^{\prime}-10 \frac{1}{4}{ }^{\prime \prime} 13.39$ \# --0-0-0 107.00 Total weight of one section ---------- 2437.54 \#
End Frame for Stringers Seven required.

$2 \mathrm{pl} .10 \times 7 / 16 \times \mathrm{l}^{1}-1 \frac{11}{4}{ }^{10}$ 包 14.88 \# 32.74
Total weight of one section 183.62 \#
Floor Beam F Bl Two required.

1 web $34 \times \frac{1}{2} \times 12{ }^{\prime}-3 \frac{1}{4}{ }^{n} @ 57.8$ \# 708.05
4 Ls $5 \times 5 \times 5 / 8 \times 21-91 / 8^{n}$ (1) 20.0 \# ----- 220.00
4 fills $8 \times 9 / 16 \times 1{ }^{1}-10 \frac{10}{4}$ © 15.3 \# 122.40
8 Ls $5 \times 3 \frac{1}{2} \times 3 / 8 \times 21-91 / 8^{\prime \prime}$ (18) 10.4 \# 228.80
4 fills $7 \times 9 / 16 \times$ 1' $^{\prime}-10 \frac{1}{4}{ }^{\prime \prime}$ (24 13.39 \# 107.00
Total weight of one section 2459.35 \#
Floor Beam Fib2 One required.

l web $34 \times \frac{1}{2} \times 12^{\prime-2 \frac{1}{2}}{ }^{n}$ (4.8 705.16
4 Ls $5 \times 5 \times 5 / 8 \times 21-91 / 8^{\prime \prime}$ (1) 20.0 \# 220.00
4 fills $8 \times 9 / 16 \times 1$ - $10 \frac{1}{4}{ }^{n}$ (1) 15.3 \# 122.40
8 Le $5 \times 3 \frac{1}{2} \times 3 / 8 \times 2^{\prime}-91 / 8^{n}$ (10 10.4 \# 228.80
 107.00
Total weight of one section 2452.08 \#

Lateral Bracing for. Stringers Two required.

2 pl. 121 $\times 3 / 8 \times 2^{2}-2^{n} 15.94$ \# ---------- 68.63

1 L $5 \times 3 \frac{1}{2} \times 3 / 8 \times 10^{\prime}-1 \frac{1}{2}{ }^{\prime \prime} 10.4$ \# …-...... 10.50

1 L $3 \frac{1}{2} \times 3 \frac{1}{2} \times 3 / 8 \times 0$ - $93 / 16=8.5$ \# …… 6.46 Total weight of one section ----------- 1342. 19 \#
-

1
.
-
-. - -
.
-1
,

4 end posts 10 Ul	4×3617.17	14468.68 \#
4 upper chord Uo Ul	4×2645.29	6582.16
$4 \cdots$ - U1 U2	4×4372.03	17488.12
$2 \times$ U 2 UR	2×5735.37	11470.74
4 Lower * B Cl	4×4025.03	16100.12
$2 \quad n \quad n \quad B \quad C 2$	2×5616.05	11232.10
4 Post V	4×1460.66	5842.64
4 Hanger VI	4×1337.45	5349.80
4 Post V2	4×1929.27	7717.08
2 V V	2×1485.06	2970.12
4 Diagonal D	4×2152.53	8610.12
$4 \quad \mathrm{n}$ Dl	4×1857.64	7430.56
Lower Lateral	2×930.96	1861.92
$2{ }^{(1)}$ Strut H8	2×913.12	1826.24
	5×345.67	1728.35
5 Upper ${ }^{\prime}$ H1O-H12	5×124.10	620.50
$2 \times \mathrm{n}$ Hl	2×263.82	527.64
n Lateral	4×749.17	2996.68
Sway bracing Int.	5×476.54	2383.70
" \quad End	2×225.17	450.34
Bracing Inclined Post	4×1000.64	4000.66
4 Strut H5-H6	4×741.06	2964.24
8 Stringer S-Sl	8×3100.07	24800.56
4 - S2-S3	4×3214.68	12858.72
7 End Frame	7×183.62	1285.34

Bracing for Stringer	2×1342.19	2684.38 \#
4 Floor Beam F B	4×2437.54	9750.16
$2 \cdots \quad \cdots \quad \mathrm{~F}$ (2×2459.35	4918.70
$1 \times \cdots \quad \begin{array}{ll}\text { n }\end{array}$	1×2452.08	2452.08
Weight of Tradk	20×220.00	4400.00
Tota		197770.45 \#
Rivet Heads * 6% of	aight	12623.65
Tota		210394.10 \#
$210394 * 120=1754.6$ / / lin. ft. of Bridge.		

BIBLIOGRAJHY

Books

IESNIMAN and JaCOBY, Roofs and Bridees-Yart I-Stresses

MINRILAIf and JacOBY, Roofs and Bridges-Part III Bridqe Design

THEODOLE COOPER. General Specifications for Steel aailroad Bridges 1906

GARNEMIE SAEN CO. Hand Book

In concluding this analysis, it may be said that the structure, from the standpoint of desien is an exceedingly safe one. Specifications were followeá closely and all cross-sectional areas are safely in excess of those required. The design was made vithout allowing for impact, vihich may be exnlained by the fact that at the time the bridge vas designed this practise vis not closely folloved. ive can offer no explanation for the live load stress, which my be noted on hanger Vle a feneral idea of the struoture may be ceince by reference to the photorranhs which are to he foun in tire fore nurt of tris rook. as has veen before noted, the bricre although being over twenty vears old, erncers to ke in ver: cooù condition.

It is the intention of the ririters to construct a model of this bridee, to one-ciehth scale. The miterial uscd beiro a snecial molding of cross-section rerresenting the different sizes of ancles in the structure. The verious sizos of unsics being reduced to three sizes with o minirum thiclincss of onoeighth inch. at the tine of writine the roacl spoicen of is not completed.

