

SUPPLEMENTAR:
MATERIAL
IN BACK OF BOOK

A 8tuly of the

Bainfall and Floods

$a t$

Tavt Lanaing. Mohigua.

4 Thenis Subaittod to
The Facmity ot
The Miohigan Agrienitural college

10.1018.

IT2300002IO

The prupose of this thonis is twopolis-
 oncincort in the iesign of etery mator carciort.
8. To anale forioaste to be mad of the site in the Bol Codar Biver at Eant Ianging and the Grand River at Ianoing for vapione sainialia 2imely to prodnce iloode.

In Fiow of the ammal dentzuotite floode in this Fiolaity this jatter information is of partioniax taluo in Warning riparion ownore of the likolibood of ilood so that they may take necoseary mand to inouxe thorimolves and proo perty agalnitt 20as.

For the dealgh of somers or mtorn water carriort, the intenaity of preaipitation is vory importent. The anmal. monthly, daily and hourly rates are userul ohioliy in problome
 ahary \quad hower taxas the anpacity of the eewer and forme a "flood meve" pareilel to the Enuctruation in interesity of the storn at a time maficiolentiy aubsequent thoreto to adiew the water to reeoh the ecwor from paremente, yarde and roofe.

Ontil reoent jeare no considorable amount of truatworthy information on intenalty of precipitation wal available. alnce all rainfell recorde included ilttle more than the total precipitation in each atorim. Moreover not mitil the entablickmant of celf-reoording rein-cecol becem momothat gonoral and sot until these had beon mainteised for a culificiont period Tas thore sufficient information on Which to predicato definite atatemente as to the celation of intenaity of rainfall to the longth 02 time curing wioh the rain might fall oontimnounly at any 8 ivan rate.
 Rochester, M. Y., itnalied ach recorde an wore arailable ama expreceed formaleo, from the date, for atorm of periode leats than one hour and for atorms creater than one hour.

Prot. 2elbot in 1892 analysed in dotall the rainfall recosele reported by the U. 8. Weather Durean. The freator part of them wore reoorde of ordinasy rain gagen, but in a fow
ceses were those of self-recoxding gagen. Thus he dovised Loxmeleo for intonsity of etorme in certain parte of the U. 8. Dat these formalac are gonoral and do not Iit any partioular oity. Recently with the inoreaning nee of automatie rain fagee and with the greater nue of the rational method of doalga among eewer ongineery, the recorte of antomatic rain gegen in the more inportant oities have been soparately analyzed in dotali, and ourven have beon prepared whiah have been used as a banis of deaign in those ofties.

This is what the writeze have done in Ourve III. We plotted the pointis, tim in manter as abseiseal and the rate of raintall per hour as ordinate. Than we drew in a mooth cerre which would take in most of these pointe but not all of the sevore etorme mioh is nevor done in any case. It is conaidered a wante in money to pat in big sewers to oarry off the water for those ntorme wich happon once in ton jears, or onee In fiftecan. Honce for hant Lansing we have a ourve which coull be used for sewer design. for any ahort period of time way tom minutes, follow mp until the encte is atruck and we read 8.5 inchae of rainiall. That is. for ton ninutes the madman rate 0 rainfell which is likoly to ocour here will be at the sate of 8.5 lachee por hour, oxoopt those wrumal etorme whian oecur ameo in tem or fifteon years.

It is cuatomary in lesigning of ty sewars to oxpreas the celathomehip botween time and intemality of rainfali in the form 01 mequation. We lerivol the equation of the time and lam temalty ourve for this locmity by plotting the curve inked in
black at hown in Ourve 1II. We took velnee from this ourve and plotted then on 20g-aritheotic paper. The pointe were found to lie mariy on a atraight line which indicaten that the dreve wes of the form $I=a x^{n}$. Determaning the conatente from the eapiricel data we have $1-18.5 \Sigma^{-}$- 58 . Prof. Hoad, of uichigan, in working on the dealgin of semare for Hint. Cevicod a molification of the Taibot formale which is more canily adaptod to local conditions I - a $\frac{00}{80}$ where "R" - madman rete for one hour, "t" is the duration in einutes and "I" is the intemaity in inches. Dy mbetitution In the equation of the time and interaity curve, we find that I-R $\frac{90}{1+80}$ milich is acaptod to this $200 a 1 i t y$.

FUTUER RSTIMATES.

Where rainfall records of only a fow yoare mut be male the basit of engincering eompratationo, it becomes inportant to inquire how rellable moh records may be.

Alex. A. BLnnio. momion of the Institute of O. I. Aram coro conclusions in the Sooiety 1poceedinge, Vol. 209. P. 89272. Ho mare "Depondence on be placed on any ge04 zecort of twonty IfFe peare duration to givo man rainfall coryestly Within two per cent of the truth". It. Rattor reviewing the paper naye. Mor recosde irca twenty to thirty Iive yeare in Ioncth the error may be axpected to vayy from 8.85 town to two per cont and thet for chorter periole the variation of she exrer 18 a1gintiy hager".

Mr. Eonry has drems the following comalualon. For ton Jear period the 2011 owing variatione from the normal hare oocured:

IT. Efonsy femel tor total 40 year peciol that the avorage variaston was $+0 x-8$ por cont. Dut is in a fat that the ralninil for a paxticular 100115 mat arexeg conolderably Gelow the mean for man peare aftor whloh mat tollow, parhape.
an equally 10 on period of earplug. A study of Curve I and table I verifies this atatomint, and ale o agrees with me. Henry's concluaions. From 1876 to 1885 the mxplin over the average was 28.85 and ruder the average by 28.8% the man is 51.84 inches which in the average for a 50 gear period. se we may expect this mean to be about 2.0§ + Ox - .

In Cosigning water work e in tagiand it hat been the onto to assume as the man rainfall for the three driest years 80% of the mean. In this country the 2 went perecntagen for the one, two, and three extent yearn with the exception of a Low oxtrom cases are about the man over a large portion of the V. 8. and may reasonably be place l at 60, $90-78$ par cont for the lat it and south with a redrotion to 50,60 and 90 reapectively for the Yorthweat and plains region. Looking at Table I we see for the region that the parcontege for the elves three direct years are 61.8. 67.4 and 78.8 which is very O20se to the standard of 60, 70 and 76. Detroit given 65, 78 and 79 with a man rainfall of 82.5 for a period of 46^{\prime} years.

-

Per sewer dosifn these curren have no elgoifteance. walle tor problor of water mapply ther are abselutely mocencery. Enpecial2t valmable is that pondtion of the diagon vioh alvilen the moan amual ralnfall into the three periole whioh constitriso tho "water jear". It is onstomary, in onginooring problen relatinc to weser cupply. to stady tho mumodt in three distinot periods of the jear ingtead of the celonder rear an mole. Those three poriods together is anled the "water goarn. The firet perdod whioh is fron Deoenber to May inaluelve is aplici the storace period, the accond period.
 and the Lant Iron Soptomber to Yovember inaluadve is callad the replonishing period.

Buch a diviaion of rainiali into the periol. constituting the water jear chould be dellowad by almilar afolaion of the
 thorengh mituly to be made of the selation of raintali to rmo op2. It wat the orighal parpone of the writory of this thonis to investigate thi mejation in cotail. Iack of time, however. Encen it inpoeaible to propare the rumgert ata at thin biation whth arpthing near the precision of the rainfall data,
and any oomparison betweon reinfall and run-01f dintribution not bamed on data of equal relimbility would be fritie and worthleat. Honee it is with regrot that this interesting relationahip eamot be inoorporated in this themis.

Bome catromiy intorenting and nsetul informition. however, has been compiled to show how the river at mant Lansing and at Ianaing reapomals to reinfalls of rarging cogrees of intenatity.

$$
\begin{aligned}
& i=s \\
& j
\end{aligned}
$$

 zue AT cins tints.

When an attoript in male to stuly the aendistion mick
 It in luportent to know at whit tim of tho jear the pise wae zoted, aleo, wan the ranoott melted mow and 100 or jurt the rala whion foll during a atosm Binilarily othor acmes ahoula
 hore to got the exaot rrum-0it int to otruly the condition which cance a rapid rise in the river 0 in othar worde to etuay the
 eay. "It may happen in som cacon that the meximum fhow of Itream will occur when a warm rainfall upen mow already on

 al cilowing a portion of it to molt and rum exf with the rain.
 preoipitation or oven mose. In the acee of atrean of ocnaiderable magitride, whore the time necomeary for comoentration 1a aeveral hours or posalbly oven dafi and were the mar. rate of prooipitation, which probabiy prevailed orer but a limited aren. is a comparatively mail frotor in determinine the max. rate of remmeff, max. incod comaltions are partioularly
 caces it is doairable to entimate the approydmate equivalent of the anow or ice upor the cround, in terme of copth of

Wetor. The U. 8. Woathor Baresu "Instruetieag to 000perative
 wetor equivalent of mon by melting, one-tenth of the mearured dopth of move on a loval open place is to be taken as the water equavalent, although it is recogalaed that this relation varies widely in different caaen, dopending on the wotnoen of the mow. The water oquivalozt of mem may we as
 Topth of the syow. Theac tigures apply to recuntiy sullem mow, f the water equivalent of men whiok has been on the eround fox som 4 imo and mich is therefore compaeted to some extext, would be greator. R. I. Eoxton atatea in the meanthiy Teathor Roviown Mn. 2005: -
"A21 records indicate thet for the heary and persiotent snow acourniations oocersing in Hew York apd How Rngiand, a progseanive grewth in the mater equivalent per inoh of enow On ground will namally take place at the soagon adrances, due to oorpacting by wini, rain and particil melising, and to the
 weter oquivalont of compaoted neon acoumiotion is commony botweon one-third and onc-itith, or at leant double that for frowly fazlon mpow.
"The solation botween the thicknese of an lec legor and the cosroaponding lopth of mater 10 more miform, and for practical purposen one ineh of iee may be congidorod an equiveleat to 0.9 inch of ralm. ${ }^{\circ}$

 Ralin of great intomalty axe of ocmparativoly rare eccurreace
 effeot of mow weat the grown would nmally to to retart the

 gralual rate than the ralntuil harlag trats portion 02 the stesno It 1a, however, posadble mader extrome onsiltione, thet mar.
 foliowing aftar a period of comparatively ilchit prooipitation if which the mow has bom naturated and moarly moltel, thet the max. rate of rwaneff nidet ovan be in excess of the creatent rete of preoipitation, apd the peselbility of this comalition

A stray of the graphe in figure iv will at amee mem that the greatest zises in the ziver have coourrel in the monthe whon mow ond 100 have beon on the cround. This comaition fellowed by repid rise in temperature with inich preelpitation have produced our greatest iloods hore. For oxanple, on Jsnuary jiot. of this gear, ${ }^{1918}$ there ware 18 inchen of mew on the gromp in compaet form. Warm weathor with alcht proeipitation
 cate to say that 011 of this malted mow ran off in the givor,
 does. The height coindigated Mroh 16th when aftor 1.70" ralin
 cooy at lant Traning ant 26.8 It . at Lanating. 80 we see that
 1ec and mow, and huace wo oan expoet to leok for flools in

 the hoavieat proelpitation reoopled here and yot the xiver rese
 piver frem miation rocy mach.

```
45
J.
```

Craph V is a curve oonstruoted to mow the months in Whioh floode are most likely to ooour. The ourve for Rast Lansing was constructed through pointe which ropresonted the mumber of timen the river hat risen over 5 ft . for each month, the ourve for Lansing for those times which it rose over 8 ft. thene recorde were taken from the period of 1911 - 1910 inalusive. The eurve ehows the greatest probability of floods to ocour in Marah, wich agrees with the records which whow that the three greateat R100ds that have occurred here alnce 1904 heve e0m in Maroh.

IHDIX TO FOLDER.
Sheet A. Onives I, II, and II.
8hoet B. Ourtes IV and V.
Sheet C. Tine and Intensity Graph.
8heet D. Table 带I.
\square

