THESIS

Analysis of the Mich. C. R. Bridge at Bay City, Michigan

E. B. SCOTT. M. A. CHAMBERS.

1914

SUPPLEMENTARY MATERIAL IN BACK OF BOOK

PLACE IN RETURN BOX to remove this checkout from your record.

TO AVOID FINES return on or before date due.

MAY BE RECALLED with earlier due date if requested.

DATE DUE	DATE DUE	DATE DUE
APR 6 1/2002		
HV V		

6/01 c:/CIRC/DateDue.p65-p.15

THESIS

-::-

AN ANALYSIS

of

THE MICHIGAN CENTRAL RAILWAY BRIDGE

over

THE SAGINAW RIVER

at

BAY CITY, RICHIGAN

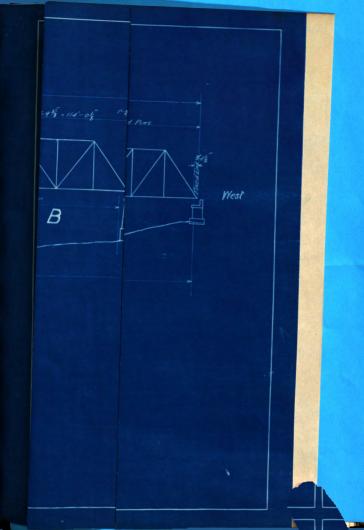
-:-:-

PRESENTED IN PARTIAL FULFILLMENT FOR A DEGREE OF BACHELOR OF SCIENCE

to

THE CIVIL ENGINEERING DEPARTMENT MICHIGAN AGRICULTURAL COLLEGE.

-: 1914 :-


E. B. SCOTT.

M. A. CHAMBERS.

THESIS

PREFACE

The object of this thesis is to analyze the bridge and to become more familiar with the make-up of the different members, and the general construction of a modern railway bridge.

The bridge runs over the Saginaw River, connecting

East Bay City and West Bay City, its direction being east

and West. The bridge contains three simple truss spans

and a draw span of the Rim Bearing Swing type.

An inspection was first made of the bridge in which all different parts of the make up of the bridge were measured and many pictures taken. Some of these pictures will be referred to from time to time and they can be found inclosed herewith.

The two trusses on the west side of the draw are of the Through Pratt type, with rivet connected joints, built by the American Bridge Co. in 1905. The draw span was built at the same time and is of the same general construction. The other simple span, on the east side of the draw, is a pin connected truss of the Through Pratt type. It was built by the Detroit Bridge & Iron Works in 1888 and has been moved to its present location from the site for which it was originally built.

The rivet connected simple trusses are made up of seven panels @ 20'-10", having a depth between centers of chords of 30'-00" and a width of 17'-00". These trusses seem to be of heavy construction having end portals made of solid sheets of metal as can be seen from photograph No.1.

The old Pin Connected Pratt truss, shown in Photos Nos. 2 and 3, contains 4 panels at 20'-00", and 2 end panels at 20'-8\frac{1}{2}". The depth is 24'-00", center to center of pins, and the width of roadway 17'-00", center to center of

chords. The truss is much lighter than the others and is made of wrought iron.

The draw span is of the Rim Bearing Swing type, containing five panels at 20'-9 5/8" on each side of the center, and a center panel of 17'-00". The tower is 33'-8" from the center of the lower chord up to the center of the pin which holds the eye-bars connecting the tower with the extending truss. The upper and lower chords of this draw span are all parallel as can be seen by photo No. 4.

The dead loads were computed by using the Cambria
Handbook in connection with the measurements taken. For
the old wrought iron truss a handbook edited in 1886 by the
Phoenix Iron Works, Phoenixville, Pa., was secured and used.

For live loads Cooper's E-50 loading was used, althounds bridge should be strong enough to carry E-55 or E-60 to be consistent with modern heavy loadings.

WEIGHTS OF SPANS.

The bridge includes three entirely different spans, for each of which a table such as Plate No. 1 was filled out. This table is made up of the measurements taken on the bridge, and the first calculations to be made. For example: the calculations were made as follows.

69.00 sq. in. = 18.00 sq. in.Gross Area 33.92 sq. in.

As this member is an upper chord and known to be always in

SPAN C

25			
T	(estate)		
L			
%	55%	2.2	43.5
LINGTH WIDTH GROSS HELD NET ESTIMATED ACTUAL 90	41.8" 124" 23.00" 8 192" 3260" 3440 # 548	20-10 124" 33.76 8 28.1" 23.90 2443 2.8	24 4156 8 343" 7950 4838 435
ESTIMATED	3260	23 90	29.50
NET	19.20	78.10"	34.30"
Hotes	B	Ю	80
GROSS AREA	23.00	33.76	41.56
WIDTH Aro B WEB	124"	123"	124"
C TO C	41-8"	20-10	30,00
Size	00/10	NB	dh.
LACING	3 P.Ls.	2 P/S	
de	ئاد	ij	i
MAKE UP	445 616x £"	445 6x613	46 6x6x3"
MOKA	270	573	14

		1	1 Michal	0	W. La No	,	Sturnoted	Actual		7	1.
	Lacing	of croc	brob Web	Area	Destroted Al	eo M	Sught	Weight	Det.	Loung of Links Area Dearest Area Weight Weight Det. (Inchest) (Inchest)	(Instead)
2 Lye Bars 6x 1/8"		20-8	1 162	20-8/2 162 19.7	13.	S /	360 #	(3,5 1360# 1644.0# 20.9	20.9		
1 2 Eye Bors 6X/8		20-0	" 19 th	20-0" 19 \$ 20.9	13.		012	13.5 1310 1586.0 21.0	21.0		
2 Eye Bars 6x1/2		20-0	20-0 162 18.0	18.0				1120 1400.0 250			
111 413 22x22x x - 1 + 22x3 125 3x 20-0" 13 3x 25:44	25 x3 x25	3, 20-0	13 %	25,44			.869,	2231.0		1695 2231.0 316 8550 1275:0	
11/2 LTIS, 10x 22	25×3×25 3 20-0" 136 2944	20.	0"134	29.44			-5961	2231.0	37.6	1965 22310 316 9420 15530	15-53.0

compression, there are no rivet holes to be deducted to get the net area.

The estimated weight is found by multiplying the gross section area, in square feet, by the length, center to center, in feet, the product being multiplied by the weight per cubic foot of steel

 $33.92/144 \times 20.833 \times 490\% = 2400\%$

In order to get the actual weight it is found necessary to add the following:-

Lattice- 26 bars - $4\frac{1}{6}$ " x $\frac{1}{6}$ " x 26" ω 16.6% = 433%.

Tie plates- 2 plates-21" x 3/8" x1'-10" 49# = 98#.

Weight to be added 614#.

Estimated weight 2400#.

Actual Weight 3014#.

The ratio of the amount to be added to the estimated weight is found, in this instance, to be

The moment of inertia is found about the axis parallel and perpendicular to the plates thru the center as follows:-

About axis 1-1 Angles.

$$I_{1-1} = I_g + \#d^2$$
.
= 4 4.33+ 3.98 x (8.02)² = 1020.

Plates.

$$I_{1-1} = \frac{1}{12} \text{ bh}^3.$$

$$= 2 \times 1/12 \times \frac{1}{2} \times 18^3 = 486.$$
Total 1506.

÷

•

ι .

, t

•

.

•

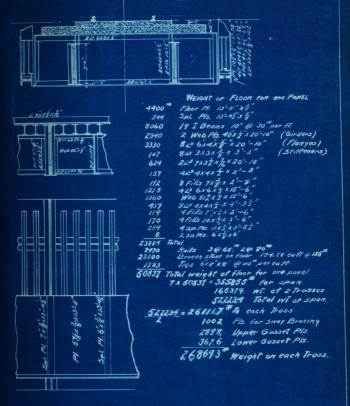
About axis 2-2

Angles.

$$I_{2-2} = 4 \cdot 4.33 + 3.98 \times (8.60)^2 = 1198.$$

Plates.

$$I_{2-2} = 2 \times (18 \times \frac{1}{2}) \times (7.25)^2 = 948.$$
Total 2146.

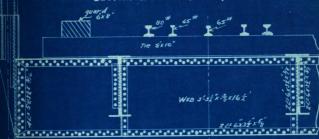

The moments of inertia about these two axes should be about the same for the best design but on account of making riveted connections with other members this is not always possible.

The above calculations were carried thru for each different member of the truss and the weights of all members
totaled. To this sum is added the weights of the sway
bracing and the end portals which are also calculated on
Plate No. 1. The sum of the weights of the trusses, sway
bracing and end portals give the total weight of the bridge
above the floor.

The remainder of the dead load is in the floor and in the girders supporting the floor. A section of one is shown on Plate No. 2, on which all of the weights are tabulated for one panel. The weight of the floor is found for the seven panels. On this same plate is summed up the total weight of the span. The weights of the gusset plates were added in the last. This should have been included on Plate No. 1, which gives the total weight of steel above the floor.

one half of the total weight is placed on each truss and divided among the panel points. The weight of the truss was divided equally between the upper and lower panel points, the weight of the floor taken entirely by the lower panel points. The calculations were made so as to bring the load

	•					
				•		
				•		
				•		
					•	
-		 	 			



FLAIL AC

WEIGHT DE FLOOR FOR ONE PANEL

Web 53 5 x 2

SECTION OF FLOOR (SMAN A)


```
WEIGHT OF FLOOR FOR ONE PANEL
             Web 3'-32"x 162
             425 6x3 xx 38 x 16 x 425 6x3 xx 38 x 30'
             12 6x3 x 3 x 33"
42 6x3 x x 36 x 39"
42 5x3 x 36 x 39"
254 Rivels Heads @ 17.5/100
   146
   119
   89
2514 #
          Weight of I floor beam
  1500
  2100 3.8 6.835 12 120,
180 2.6 3.3 2 1 12
326(are) 2 Rods 2 121, (first pure!) ($x12(second) 412(third)
406 Weight of Hoor girder (1 pane!)
  2400
 4906
              Ties 18 (8x10x14) yellow pine @ 45/41.
 6300
              guard-rail 2 (6x8x20)
         Weight of timber in one parrel
 6900
  200
              added for rivets in Girders and rod fasteners
14020#
         Total wt. of floor (one panel)
2370
              5 steel Rails
16390 #
                  16390 x 6 = 98340 # floor for six panels
             1110 Wt. added for extra of "on each end.
              2514
                        extra floor Beam onend.
           82308 # W. of 2 Trusses,
             823 08
                        PIKS
            186622 Total weight of Spate
186622 93311 To each Truss.
```

...

on the end panel points equal to one half of that on the other lower panel points as shown under the division of weights on Plate No. 3.

The dead load stresses for span "C" are shown on Plate No. 4. The shear was first found for all panels. This value, when multiplied by the secant of the angle made by the diagonal with the vertical gives the stress in each web member. The shear times the tangent of this angle gives the chord increment which is added to each chord to give the stress in the succeeding one. The stresses were calculated in the above manner and tabulated, for spans "C" and "A", on Plate No. 4.

The dead load stresses for span "B", the swing span, were computed for both swinging and closed position. Plate No. 5 shows the graphical solution by which the stresses were computed when the span was in the swinging position. The results are tabulated on Plate No. 10-b1.

In order to compute the dead load stresses in the swing span when closed, the reaction at the end must be found from which the stresses can be figured by the ordinary method. This reaction is caused by a force applied at the ends in an upward direction and should be great enough to take out the deflection of the end when swinging or at least enough to counter-act any negative reaction, or tendency to lift off from the support that may be caused by a moving load on the other end. To be on the safe side, about 10,000# should be added to these negative reactions. There did not seem to any provision made for taking care of the negative reactions

DISTANBUTION OF DEAD LOAD

		SPAN A			
Weight of Weight of Trusses (in pounds)	Weight of Floor (in founds)	Might of Total Might to Truss. (In pounds) (In pounds)	Weight to One Truss. (in bounds)	Load to Oppor Load to Lower The Lower River But But I The I Do Tree Tree Logic But The Town Proto Tree Logic But The Town Can Can Lower But I	Load to Lawer Back We of Floor Theology of Floor Tream (a bounds)
8465-8	101964	186622	11886	3848	8497

	22085
	7303
	396292
SPAN B	7925-84
	485878
	306706

	2 25418
	6982
	268693
SPANC	5-37386
	34-3-85-5 5-37386
	18/8-3/

PLATE 3

DEAD LOAD STRESSES (SPANA)

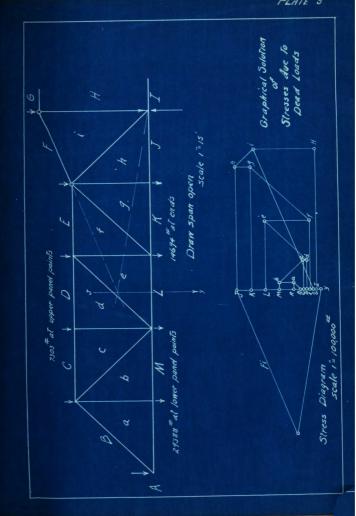
End Panels | Seco = 1.3208 | tono = 0.863 | Other Panels | Seco = 1.3018 | tan 0 = 0.8333

Diagonals	Shears (V)	Stresses	Verticals	Stress Verticals	Chord Increment (Vtane)	Chord	Chords
	40482			12345	34936	34936	LoL, \$ L, L2
Lz Ui	24289	3/620	L2 U2	11944	20961	55897	U.U. & L. L.
L= V2	8096	10540	L3 U3	3848	6987	62884	44
		1777	3\$48 3 V2 V2 12545 12		26- 24-		

DEAD LOAD STRESSES (SPAN C)

 $5ec \theta = 1.2177$ $tan \theta = 0.6944$

• •				
				Tu .
		·		
	,			-
			 	غۇر غۇر


į,

PLATE

DEAD LOAD STRESSES (SPAN B) (SWING SPAN CLOSED)

Sece = 1.36/4 tane=0.9244

Diagonals	Shears (V)	Stresses (Vseco)		Stress In Verticals	Moments	Stress	Chords
LoU,	(kips) 57.4	70.0	L,U,	(kips) 29.4	(kip-ft.) 1148:0	46.50	Lo L, &Li
U,Lz	14.7	20.0	Lz U2	-7.3	1504.0	61.0	U,U, 8 U,U,
Lz V3	-22.0	30.0	L3 V3	29.3	1014.0	41.2	L2L381314
L3 V4	-58.7	80.0	L+ U4	29,4	5642	90.0	U4 L5-
Lo-U4	(See (hords)			336	13.6	LoLatLaLs
		(5.	WING S	PAN C	PEN	N. S.	
Diagonals	Shears (V)	(5, 5tresse (Vseo 0)	s Verticals	Stress Verticals	Moments	Chord Stresses	Chords
LoV,	14.7	20,0	L, U,	29.4	2201		
	17.7				338.0	13.6	LoL, +LiLz
ULZ	57.4	70.0	L2 U2	23.0		13.6	LoL, +L,L
U, L2 U3					1507.0	61.5	LoL, +L, L _x U, U2+ U0U2 Lx L3+ U5U4
	57.4	70.0	L2 U2	23.0	1507.0	61.5	LoL, +L, L _x U, U2+ U0U2 Lx L3+ U5U4
L2 V3	57.4 88.1	70.0	L2 U2	23.0	1507.0 35-12.0 6360.0	61.5	LoL, + L, L, U, U2 + U6 U2 L2 L3 + U5 U4 L-L4 + L4 L4
L2 V3	57.4 88.1	70.0	L2 U2	23.0	1507.0 35-12.0 6360.0	61.5-142.0	LoL, + L, L, U, U2 + U6 U2 L2 L3 + U5 U4 L-L4 + L4 L4
L2 V3	57,4 88.1	70.0	L2 U2	23.0	1507.0 35-12.0 6360.0	61.5-142.0	LoL, + L, L, U, U2 + U6 U2 L2 L3 + U5 U4 L-L4 + L4 L4

in this bridge, because when a load came on one end, the other end was seen to jump up and down considerably so only enough reaction to take out the deflection will be used in our case.

Innorder to find the force necessary to overcome the deflection, the deflection must first be found. This was done by considering a truss as a simple cantilever beam and h the formula used to find the deflection due to each panel point load was

$$f = PL^3(2 - 3k + k^3) / 6 EI$$

The computations are shown on Plate No. 6.

The live load stresses in web members for span "C" and span "A" are tabulated on Plate No. 7. All stresses were found by placing the wheel loads in that position which would cause the maximum stress.

LIVE LOAD STRESS IN Loul

This is a web member and the criterion is followed out that; - The shear in any panel of a bridge is largest when the load on the panel is equal to the total weight of the live load on the bridge divided by the number of panels, or

 $V = 1/m \times W$

where: V = shear.

m = number of panels.

W = total weight of live load.

wheel No. 2 was placed at the right hand end of the panel or at L₁ and the load on the panel is found to vary from 12.5 to 37.5 kips by moving the wheel a very small distance in either direction. The total load on the bridge is 415 kips and since "n" equals 7, the shear should be

P = End Reaction = 66061/bs

PLATE .

WEB STRESSES (Live Load,

Shans A and

Pane	Wheel of Right End of Panel	Moment at Right	Momon Sold Sold Sold Sold Sold Sold Sold Sold	Shoot Albert	15 55/4 15 55/4	Now We want	
		SPA					
LoL.	4.	24016	600.0	168.0	222.5	Lo Vi	
					84.25	U.L.	
4,42	3	15277.0	287.5	111.5	145.0	U, L2	
L2 L3	2	8320.5	100.0	63.5	- 63.5	U2 L2	
					+ 82.5	U263	
		5612.5	100.0	32.0	- 32.0	UzL.	
					+ 41.6	UzLa	
		5PI	AN C				
	4	33970	600.0	204.0	248.0	Lo U.	
					8425	U.L.	
	3	23437	287.5	146.5	178.0	U,Lz	
Lz L 3	3	16233	287,5	97.0	-97.0	Lz Uz	
						U2 L3	
	2	8745	100.0	5-8.2	- 5-8.2	L3 V3	
					+70.8		

CHORD STRESSES DUE TO LIVE LOAD SPANS A AND C.

Section	Wheel at	Length of	Moment at	Moment of Section	Bending Morr	Street Street	Chords
			SPA	N A	,		
ULLI	4	9.7'	24017	600	35/7	746.5	Lotithe
UzLz	6	3.7'	21782	2050	5250	12190	L243 U, U2
U3L3	10	7.7'	23255	5790	5865	244.0	1364 U2 U3
	//	15.7	24794	6510	5865	244.0	1309
			-5P	AN C	;		
U,L,	4	34	33970	600	4250	1/41.5	604,4 4, 42
U2 L2	6	27.16	31016	2050	68/0	+ 728	1243+4,02
U3L3	9	22.33	28995	4370	80 60	±269	L3L4 1/2 1/3
	10	30.33	32350				4.04

.

i

415/7 or 59.3. As this value does not lie between 12.5 and 37.5 the condition mentioned above does not satisfy the criterion. Wheel No. 3 was then tried. The load on the panel varies from 37.5 to 62.5 and the total load is 427.5. We found that 427.5/7 = 61.2 lies between the required limits, satisfying the cruterion and the shear due to this loading is found. Wheel No. 4 also satisfied the criterion but wheel No. 5 did not. The largest shear of those caused by wheels No. 3 and 4 at L₁ was used which gives the stress when multiplied by the secant of the angle, the same as in the case of dead loads. This method was followed out for all of the web members.

For the chord members, the criterion

 $P' = n'/m \times W$

where P' = sum of loads on left side of panel
thru which section is taken.

m' = number of panels on the left side of the center of moments.

m = number of panels in truss.

W = total weight on bridge.

was used to find the wheel position which gives the maximum chord stress.

The wheels were moved so as to satisfy this criterion and the stress found by taking moments about the center of moments for each chord.

For L_2L_3 the center of moments is taken at U_2 . Wheel No. 6 was tried at L_2 and found to satisfy the criterion, as P^* varies from 112.5 to 128.75 kips and W=121 kips, which falls between the required limits. With this load the mom-

. ·

ent about the left support is 31016, which, divided by the length of the span, 145.833°, gives the left reaction as 213 kips. The moment about U_2 of this reaction is then 213 x 41.6 = $^{+}8900$.

The moments of the loads on the left about $U_2 = 2050$ and the difference gives the moment about the center of moments which is resisted by L_2L_2 .

8900 - 2050 = 6850, 6850/30 = 228 kips which is the live load stress for L_2L_3 . This method is used for finding all of the chord stresses. The stress in the verticals is the maximum shear found in the section. The end verticals, as U_1L_1 , were found by placing the wheels so as to satisfy the criterion

P = 2P

where P =the load in both panels, L_0L_3 P'= the load in L_0L_1

and then substituting values in the formula

 $R_b = (\mu_c - 2 \mu_b)/P$

where R_b = reaction at L_1 or the stress inU₁L₁ M_c = moment of the loads about L_2 M_b = moment of the loads about L_1 P = panel length.

The live load stesses in the swing span were found graphically as is shown on Plate No. 11. Stresses were found for all of the chord members and shears for all of the web members for a load of unity at each panel point and the influence line drawn for each member. The loads are then placed so as to cut the maximum ordinates, the sum of these ordinates, each multiplied by its wheel load gives the stress or dhear desired. In getting moments and shears for these

, . . .

· ,

.

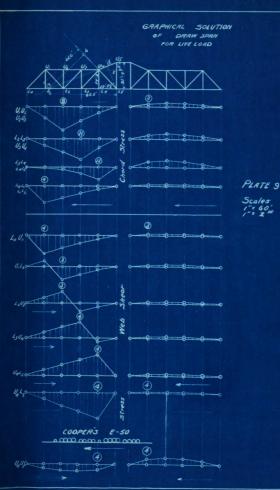
•

diagrams, a book, The Designing of Draw Spans, by Wright was used. As the members in the center panels are very light the case was taken of no shear transferred across the ce center panel. Coefficients for reactions for this case can be taken from this book, page lll. Take for example member U_1U_2 :- Take center of moments as L_2 . Now for unit load at L_1 the left hand reaction is 0.760. Taking moments about L_2 for a load of unity at L_1

$$u_1 u_2 = (0.760 \times 41.66) - (1 \times 20.8) - u_1 u_2 \times 24.66$$
 $u_1 u_2 = (0.760 \times 41.66) - 20.8 = 0.473$

which is laid off to some scale under L1 where the load was. Points are plotted in the same way for a load ay each point and a straight line joining each of these points gives the stress influence line for the member U1 U2. The same is calculated for each member. The stresses are found and tab-The diagrams give shear for the web members, this must be multiplied by the secant of the angle to give the In the panel next to the center there are two diastress. gonal members and the method of moments had to be used. From the shear influence line for this panel it is found that the maximum shear occurs when wheel No. 4 is at L_A with the wheels moving toward the center. Take moments for loading about the same points "a", the intersection of the other two members, as shown on Plate 10.

By similar triangles


cu5 : u4c = u5L5 : als

9 : 22.8= 33.66: aL₅

al₅= 85.5' distance to center of moments.

t. . . •

.

Alao

 $U_4L_4:U_4L_5 = ab:aL_5$ 24.66: 33.59 = ab: 85.5

ab = 62.5' gives the distance at which $U_A L_5$ acts.

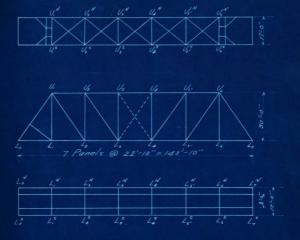
With these distances known, an influence line can be drawn for both U_4U_5 and U_4L_5 , always taking the moments of the loads to the left of the section.

After all the stresses due to live load, dead load and impact were calculated a stress sheet such as plate 10 was made out for each different span. These stresses were summed up and the unit stress computed. A column of allowable stresses was calculated and placed alongside. These two results were then compared.

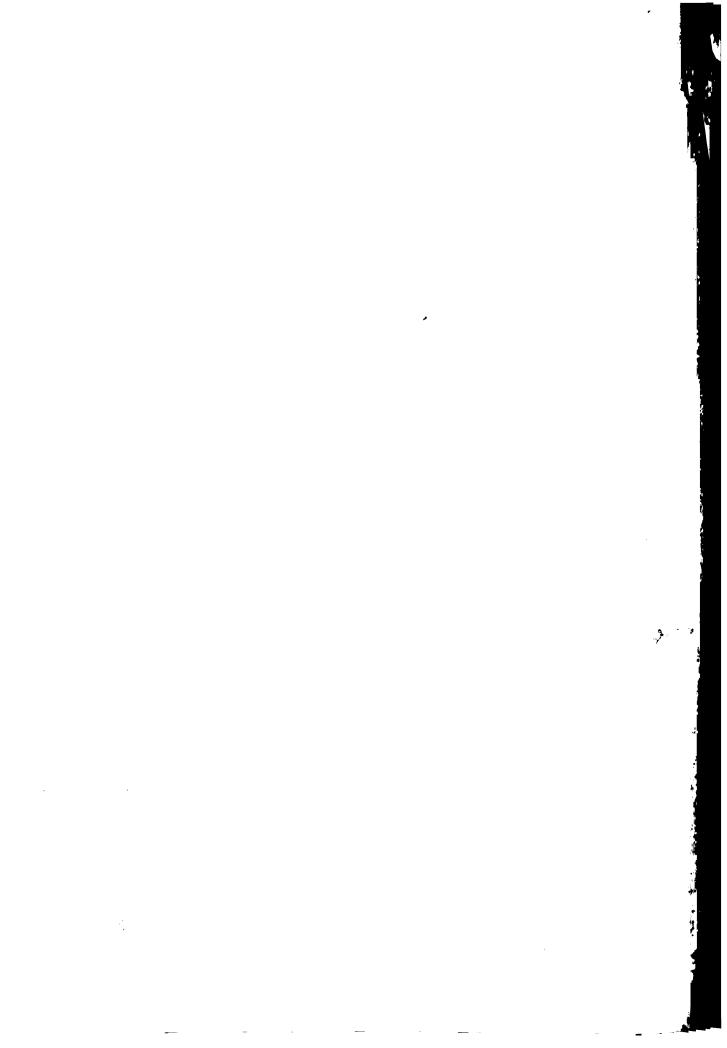
This is far from a complete analysis but it has served the purpose for which it was intended, namely to go a little more into construction detalis than we have had time for in the regular course.

Conclusions

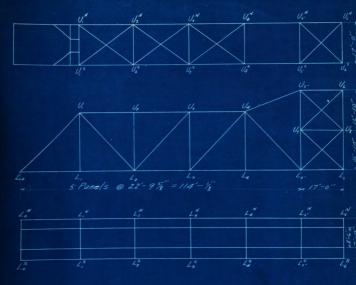
We found that the old truss is stressed in some members nearly to the elastic members. This is not in keeping with the best modern practice. In time a permanent set will probably take place.


The results were not altogether unexpected. It was thought that the bridge was in this condition on account of cettain unverified reports that its use was to be discontinued. It has carried heavy loads for some time and will probably continue to do the same in the future, but we would advise replacing the old span with a more modern structure.

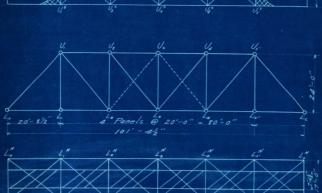
r . . .


.

1-TUIT 10


STRESS SHEET SPANC.

Member	Stress Dead	Stress Lire	Stress Impoct	Allowable Unit Stress	Stress	Actual Area	(Length)	Least & Radius G
	-/43.87		-168.0	11.3	114	54.0"	192173	44.2
	+95.91	+1780	+128.0	15.0		24.3		
U243	+47.96	+118.0	+90.0	15.0	14.8	17.3		
11344		+10.8	+56.6	15.0	16.3	7.8		
1041	182.04	+141.5	+971	15.0		19.2		
	182.04		+97.1	15.0	16.7	19.2		
L245	H36.73	+228.0	+156.8	15.0	18.6	28.1		
1344	H64.08	+2690	+186.7	15.0	18.0	34.3		
U, Uz	-136.73	-228.0	-1568	13.3	15.4	34.0	75076	44.3
0205	-164.08	-2690	-1867	13.3	15.4	39.9	75076	43.6
0304	-164.08	-2620	-1867	13.3	15.4	39.9	75076	
0,4	+37.40	+84.3	+57.1	15.0	14.8	11.7		
Ushz	-46.36	-97.0	-70.0	9.7	10.2	20.6	129600	17.3
	-62.82			10.1	11.2	14.7	129600	



STRESS SHEET SPAN B.

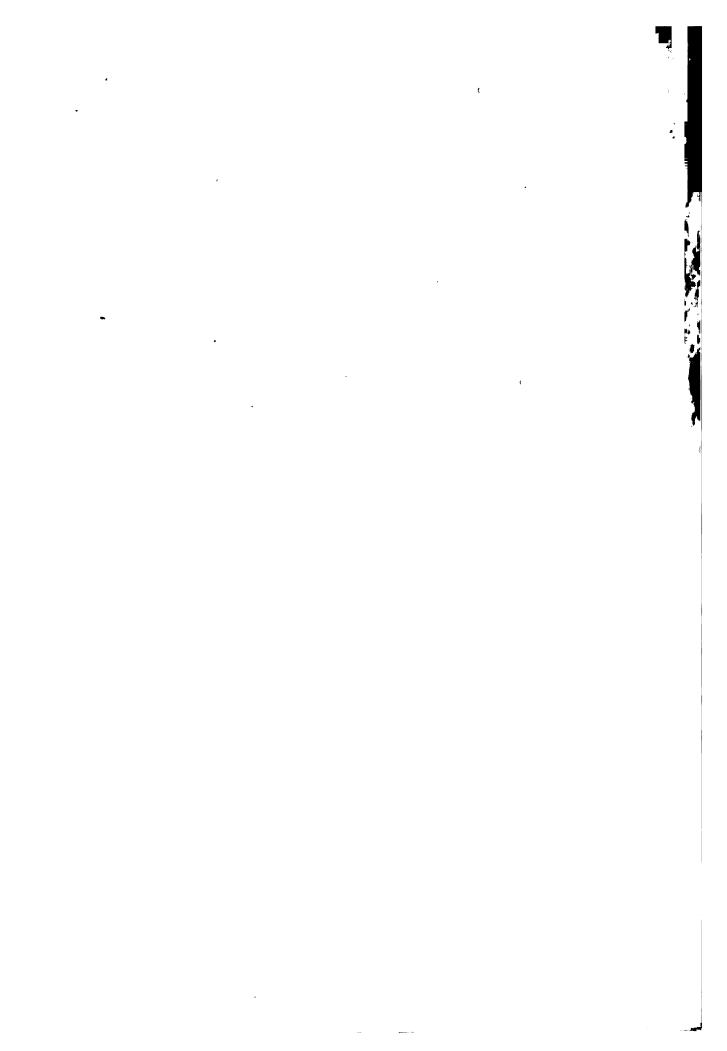


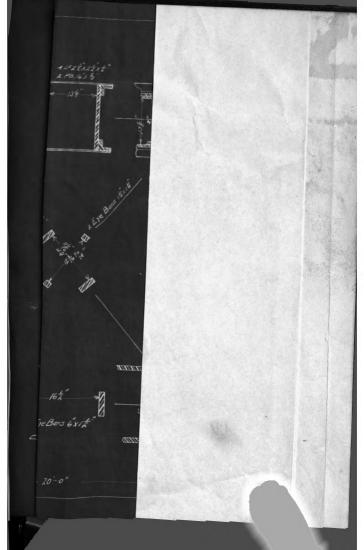
Member	Stress. Deod	Stress Live	Stress Impact	Allowable Unit Stress	Stress	Actual Area	(Length)	Least 2 Rodius Gyi
	- 70.0	-/83.0	-/34.2	11800	11700	36.1	162000	44.0
	-20.0	-/03.9	- 75.9	11100	11100	18.0	162000	34.8
	+ 30.0	+68.0	+ 53.6	15000	10060	15.0		
	180.0	+/39.0	1/16.3	15000	13800	24.3		
	-154.5	-212.0	-1550	12000	11350	45.8	162000	49.3
	+46.5	+12345	+90.5	15000	13900	18.7		
	+ 46.5	42345	+90.5	15000	13900	18.7		
U, U2	-61.0	-161.8	-117.9	13000	13600	25.0	76500	490
U2 U3	-61.0		717.9	13000	13600	25.0	76500	49.0
	+ 41.2	+150.75	+110.5	15000	14400	21.2		
0004	1/2	-150.75		11900	10600	28.7	76500	44.8
Lake	-258.0	+72.0	+54.5	11900	9000	287	76500	44.8
LaLs	-258.0		+54.5		9000	28.7	76500	44.8

STRESS SHEET SPAN A

Member	Stress	Stress	Stress Impact	Allowable Unit Stress	Stress	Actual Area	(Length)2	Least 2 Radius Gyr.
4001	53.47		-161.0	11.15	13.9	31.44	145000	
4.42	+31.62	+145.0	+110.8	15.0	25.0	11.25		
UzLs	+10.54	+82.5	+67.1	15.0	22.85	7.00		
UsLa		141.6	+35.8	15:0	25.6	3.13		
6041	+34.94	146.5	+23.2	15.0	15.75	13.50		
L,62	+34.94	+/46.5	+23.2	15.0	15.75	13.50	120	
1369	+55.90	+219.0	+61.7	15:0	18.7	18.00		1000
	-55.90		-61.7	12.7	13.2	25:44	57600	33.6
	-62.88		-68.5	13.4	127	29.44	57600	31.9
0,4	+12.35	+84.25	+68.5	150	204	8.10		-
UzLa	-11.94	-63.5	-57.6	10.2	13.85	9.60	83000	13.25
0343	-385	-32.0	-27.54	10.2	6.6	9.60	83000	13.25
Lz43	+55.90	+219.0	+61.7	15.0	18.67	18.00		
			1000	43				

Member	Stress	STress	Stress Impact	Allowable Unit Stress	Stress	Actual Area	(Length)	Least 2 Radius 6n
0,4,	29.4	112.2	81.5	15000	16800	13.3		
0262		0	0	15000	600	12.2		
UsL,	29.3	77.9	63.0	11000	9700	17.6	88000	184
Ugla	29.4	1122	81.5	15000	16800	13,3		


Graphical results from Plates 20000 Lou, 60000 U. Uz 0203 = 60000 = 145000 U4U5 = 320000 U.Lz = 70000 = /20000 = 5500**0** 30000 = 18000 = 95000 30000 128000 15000 15000 143000 44 = 258000 Lyls = 258000



If this was done, the bridge would be in fair condition, as the remainder has a factor of safety of about 4 throughout.

On account of this bridge being on a branch and not on a main line, Cooper's E-50 loading was used, but a bridge of the present time should be safe under E-55 or E-60 loading when there is any possibility of the heaviest engines of the road passing over it.

There is a rule requiring all trains to cross the bridge a speed not greater than six miles per hour. If this rule is lived up to, it may make the life of the bridge much longer by reducing the stress caused by impact.

Packet hus: 14 Photos 10 post cords Carlot Line

