a A N Se oon en Dae ee ee al nema eas ‘ are a4 aed it a . CP ye at aes OF eet 3 eh tee pea LIBRARY Michigan State University PLACE IN RETURN BOX to remove this checkout from your record. TO AVOID FINES return on or before date due. MAY BE RECALLED with earlier due date if requested. DATE DUE DATE DUE DATE DUE 6/01 c/CIRC/DateDue.p65-p. 15 +HESIS x 2| THS Tm . u Trond. Thtroduction. rcs c- cer vere ec tnenese Standard notation. ..wcescccccvsees Formulas esca#oeeeesteoeaee eee se e# ee # ee @ 8 StTeESSES. . cw eo ene ecco. Working Order of DrGCEAUrl. cece eres eeeeee Discussion of Chaoter Tiscussion of Chaoter Solution of Prososition “iscussion of Chapter C....seaees nw Solution of Provosition C.% e e a 6 Solution of Proposition Solutién of Proposi CLisecussion of * . no. SS @ 6 #8 @ Solution sc i” Siscussion of of Mesizn of interior panel one nay resign of interior tay of tlat sl meSsiga of irteritr fleor ray, one cussion of Chapter Cl... cease Cc) Cc) oO rr uv) a a n w 1 of intecior roof tray. $= va, n Discussion of Chaoter P...... 20 pesign of tysical interior colunn Liscussion of Chanter * .....00.. Desien ef single scuare footins vesign cf wall colutn feotine . Mosigr of tratasccival tne colurn Pesiven of cantilever foundation resign of basezent rall bee ae Pecizn of basement wall .......... cesign of interior flceer stairway Claperyen's theorem of three noae Le —_ of continuous Fear. ....... three NMorent and shear 1s Bar os Continuous Deas, Vinitun Tnterior colurn stresS€3......ee06 Lesign of rectangular column tuilair,g frare.,...... LO. Lod a > Cc 4 ~ I ae@é eee 6¢.e @ as @¢¢6 @ @ 4 e 6 @ « @ of 68 oe @ ¢0¢e¢ @ ae # dedtho.... oaeee ¢ @4 6 @ «0 @o64 ile floor -ea rloor....... at In cee ¢ e é e @e @ 4a e608é o e ae co rus @ o a x sa tloor.... ternwealiate 4 o oc 8 @ @&@ G@ witn bracket.... ¢ | @ e¢ @ e e@¢@ 4 6 ee ¢ 6 ao @¢ ea eo @ « a af¢@ s@ em¢ a6 oo @ a4 @ ie o e cn ag & @¢4 6 e@eee# Oo e@eese eat 22 LC wea lf 1” ee @ fe e020 he on eee Ke eee cl a eeaervt: a 8 oea ‘su = ALK eeaette ZA e@ee kT — ey he eee Ct Ca ee @ wT veo yy oe etic 7 6 eae l & ns oaeoe~ "eS - ea fe my eoele ~ oO wt ye eeeaouwrnm pe a a t QO eoewe#5r & G% eae 4 ona eaetbd f- CR a or or @eearv ft Cesign of tnrcee story and ta Hoof Slabs sssscccecvoee HOOf DEALS. ccc wee erences Foof SirderS.. cscs scene Foof, team and girder de Noef, stirrup steel scne Soof, steel schedule.... Floor slarss..ssccercace rlcor LEAT Ss we ewer wer eee © 4 ?leor slat tor loadirg ob Floor Z1rdGerS.sssccosces Floor, Feat and giraer d Floor, steel scredul¢... Fleor, stirrup schedule. Intesior columns......-.. Exterior colurns........ Tnterior footings....06- Tall fcotinds..iceeseves Platfors feotir¢g _ Colunn ewe casa cer eene G2 s a e » a & Feotinsg Pte cee ete twee Glevator shaft ana cert “J Stair shaft details.... semrent, e ° o @ 4 # d 44 wv 8m se @ @ @ 6 wiles... eoe@eeee 4 @o@e@ee@e¢##@# oe#8ee8@e @ latfor [3 ¢@° &@# @ @ @- 2Ed.see @oe«esee#?¢«##@ ¢8e0¢ @ &@ H@ @ concrete buildi a @4¢@600¢60 0066 4 4 6 Tootings for stair shaft and elevator shaft ceoting schedule........ try 1 To» ilaings plans, anda det yn O ection thru elevatcr sh 4 Stair detail dbawings... u aex to building detail >] scussicn of Chaoter on tT? tI) Oluticn of Prepvosition Sclution of Proposition Solution of Preposition Solution of Pronosition viscussion of Chapter con Discussion of Chaoter on Ciscussion of Cha.yter on ail aftr... a Sec ees YOrns, BC... Sx. kee 25 -< wY=ve@e 06 @ @ © m0 ‘ WYueeeeaes iscussion of Chanter on Puidding i Pending Mixing and Placing Concrete 4 Piscussion of Chanter on Euilaing 4 @ae4ae0eerrn @# # 2 64 9 \¢ 9 u “go ~ e ® s Ly t c+ Tt be pas wu }— tA s os e 4 464 @ 4 @e @ a a oeoecee*ivseaeeene and Placing Steel... Finishing Surfacés....e0ce5 ® e -— p—! Ty e e 4 ns ey e a e@ s ri +3 no WA ~F 49 -~— I\% ~} (") ° ne e C2) MO OO a c.) . * Ca Cc wo e ea (0.9 C51 i $. > a e ut ‘Se r a Jf. fU CN cn ~J} a e sy oy . br bd pe Pd Ps Fd HH fF Os HY HH +4 +2 — a . On 2 pd a e ‘yy Na a ® >) if » e p— b>. -a -4a +A -A fA , 8 ~J J) (> Oo >} ° . (x) e s 1 r oO ws Cc Cc) eo e s . YN aN eo 4 * a bd bd pd pS co hs Qi) a ® 4 pt ca ft eeict 2e1cé we lee 22 1lOF q. 2 oe we Ll Discussion of Liscussicn cf Craoter on fa.terproofirg Concrete...... Chapter on Construction Plant. cc... cuae Itezs to be charged against construction olant....... Cperations involvea in erection of concrete skeleton. Location of Stock COLL OSL cee ee cc ee cc ec cee eran cence Laying out of construction planti.. ccc acc wc ween ceee Purpose of the aesign on use of construction plant. Fconpmic plant desisn......ee. tssentials of oroper mixing... Section ¢, Units of cost. ‘sticate of cosi of Final total of the Keo. 1l, 7 NO. B, Appendix atles ADpend1lge appendix Nowe, end Ustimating..... eoeoe#e#e%te%¢4e8%8 @4 4 three for ¢4¢6¢4 a story and estin ate... c.isceee design... vlgérazts for des Renort ef Joint Yeinferced a) ¢ a@aeé «¢ @ @ eo 68 oe @e ee @ ae @ @ @ a2é¢0¢6¢ @ ¢$ @ @ @ oo @#¢4¢6 e eo e rent tuilding. @$@eeee0e8 6 @ oee#eoeoew#e#e#ee *“er6e# @©4# 6 6 @ Concrete o ® be bd 42 -O oc J e e ® » ® ec ~ ec my ps “A orn a® NO co) nN RY Bw AS KO AD MoO DOD YD DTD Ro ane HB BR OO MD OO Cy NA nN 2 no p+ on “J NS 9 o> INO be it Introauction. The work undertaken in tiis thesis ls the examination of each ana every Ubapter; tiie aevelopement cf such equations as may seem necessary to a clear unaerstan@ding of the subject mat— ter; the discovery ot errors, if such exist; and the solution of all provlems and designs, accompanied ty complete drawings for each case. The notation usca ti.rouglout this thesis, in the soluticns ana upon the cravinzs, 1s the notation recormenaed in the revisea, cr second report of tic Joint Committee cof tie American Society of Civil angineers, American soclety for Yesting materials, American railway uneginvering ana Meintenance of tay Association, and the Associstion of American Portiana Cement manufacturers. The puclic presentation of tils report being nace to the Arer— ican Jociety cf Crvild cngineers on January lo, lvls. The stancara notation ana «ie formulas for cesisnr, as recone menaea oy the Joint Conmittee follow: (4) } 0 + bat rele + acedt) ft: a* t(Zkd—t)o - + (kd—t) 2b! a (12) Arm of resisting couple, jd =d—-2z (15) Fiver stresses, f= —L (14) f= zk : 15 C [(Zkd-t)bt + (kd-t)2b'Jjd 20) cs. Beams Reinforced for Compression. Position of neutral agis, fo k = ¢2nfprp's j + ne(prp')# ~ n(prp') (1é) Position of resultant compression, 4k2d + sp'nd'lk — go j 2 = a (17) k2 + ép'ntk - 4 Arm of resisting couple, jd =dad-a2 (1&) bhicer stresses, fo - (19) f= (20) fi = (z1) 4, Shear, Bond, and web reinforcement, In the following formulas, 2, refers to the bars constituting the tension reinforcement at the section in question, and Jd is the lever arm of the resistang couple at the section, bor rectangular beems, V =, ~V_ (22) 0D.) = —1_- 25 " Faas (25) (For aevoroximate results, j may be teken es $.) The stresses in web reinforcenent may be estinatea oy by tne following formulas: Vertical weo reinforcenent, p= a8 (24) 7 -” + ja Wed reintorcement inclinea at 48° (not oent—-uo oars), bP = 0,748 (zo) jd in which P = stress in single reinforcing wmemoer, VY = amount of totel sheer assunéea &@s carried oy the reinforcenent, ana s = horizontal soacing of the reinforcing memoers. lone sere formulés egooly to oeens reinforced for con- oression é8 résaras sheer ena oond stress tor tensile steel. tor t-ocaens, v= 5°35 (25) 0 (ror e00roxinets results, j] ney o€ tekken es $$.) c. Columns. lotel sete lLoga, rF = t,(é,tné.) = i,4td+ln-1Jo) (25) > Unit stresses, f= qesea-oe-—- oe Cc £(1+Ln-=1]0) ber) f= ni, (50) Ine workins stresses as reconnenced oy the Joint Con- mittee, which will oe used tnrougnout this thesis, follons;- RORKKING SLRESEES 1. General fAssumotions. the following working strésses @re recomnended for static josas. Prooer allonances for viodration and imoact are to ode Oe adaed to live loaas where necessary to oroduce an eouivalenit static load oefore soolying the unit stresses in orovortianing Oarts. In selecting the oermissiole working stress to oe allowea On concrete, we snould ve guioed oy ine working stresses usually allowed for otner materials of construction, so that all struc- tures oi the same class Dut comoosea of alifterent nateriels mey be gooroximately of the seme aesree of sefety. the following recommendations as to sllowable stresses are Siven in the forn of oercenteves of the ultinate strength of tas oarticular concrete whicn is to be us ; tnis ultimate strengtn ed is to oe develooed in cylinders 3 inches in disneter and 16 inches long, of tne consistency déscrioed in Séction C, Part « (é), maas end storea under lsboratory conditions, at the ase of 25 déys. Ln the aosence of aefinite Knonlease, in advence of construction, és to just wnat strenegtn ney oe exoected, the Comnltitee suomits tine following values es those which snould oe ooteined nith nateriais and workmansnio in accordance with tne reconnenaations of tnis reoort. Altnougn ocessionel tests ney show nignéer results than tnoose here given, tne Committee reconmmenas tnet these values snoula oe the meximus usea in aeslen. bespe oF SLRbAGiHS Gi Liveankad SLALUAES JH COACHES. (In oounas o¢€r souare inch) Ligregate didiz | d: dase] Li2:4 | li zdio Scr Granite, trao rockKrcccccecveves! CSV £500 2200 1oG0 devs Gravel, hard Llinestone and herd sanastone.....2.2.{ CU00 ZEUY 4000 1SCU LeU sort Limestone end nard sénd- STING cere cc ececccewesel SLUU 1s0J LeGu L2U0 LUGY CINGErS. cece ce ene cee ser cece cog CVU 7G oUC old eoy Nee HOr veriéetions in tns noauli of eleésticity sé¢e section oe, rari oc. Le =sering. nnhen comoression is aoolica to Surféece of concrete of ev least twice tns loaasa sores, 3 stress of e%.2 o€r cent of tne comoressive stréen2ztn rey o€ elloned. Se exlel UConoression. for concentric oler, tne lenstn of which aoes not exceca lz dizgmeters, comoression on & ol&gin concrete column or 44.0 00r 7. cent of the comoressive strength may oe allowed. bor other forms of columns the stresses odtained irom tnée ratios given in Section #, Part 3, may govern. 4, Conoression in kxtreme #fioer. The extrene ftioer stress of a been, calculated on the aessumotion of a constént moaulus of elasticity for concrete under working stresses, may oe allowed to reach cz. o€r cent of the comoressive strengtn. skajscent to the suooort of con- timuous beans stresses 15 oer cent nigher may o€ used. | Oo, Shear and Liayonal iension. In calculations on béEemsS in which the maximum shearing stress in a section is uséa as the meéens of measuring the resistance io alazonal tension stress, the followings ellownzole values for tre Raximun vertical shearing stress are reconnenaea: (a) hor oveans With norizontal oers only end without weo reiniorcenment céleulatea oy the method Fiven in vorsula (ex): é oer cent of the conoresslive strenzin. (o) sor oeens tnoroushly réinroresa with weo reintorceneni: the velue of tne snsarine stress céelculatea as for 6 (thet 1s, =rnéet vettice!l sneér in tortulse (22) tor unit Cl using the totvéel ext sneering stress), must not excesa 3 o€r cent of thse comoressive strenstn. lhe neo reintorcenent, exclusive of oent—ud oars, in this case, snell or orooortionea to resist tro—-tniras of tne external vebtticael sheer in tne borrules (24) or (ce). (c) kor o€@énS In whicna o€rt ot toe jonsituainel reinforcersnt is usé€d in tne torn of bent—-uo oFrs alstriodutea over € oortion of the o0€au in @ wey coverin2g tne reculréensnts Tor this tyoe of weo reintorcenent: the Linit of maxinun verticél shearing stress (tne stress calculated as for a), © oer cent or tne comoressive Stren=tn. (a) #nere ouncnins snear occurs, that 18, shearing stress r uncomodineda with conoression nornal to tne sneerins surfsecs, ana 9) ~~ whito all tension norzal to tne sneering olens oroviaeu for py U réintorceuent: @ sheerinz stress of Oo 9€r cent of tne comores- Sive strength tey be allowea. Ine oona stress Oetween concrsets eno olein réintorcing doers ney of assumed et 4 ocr cent of the conoressive streneth, or tforauleées for y o aeflection wnicn 29 not teze initio eccount the tensile strength aevelonea in tne 2oncrete, @ nooulus ons-elient of that of steecl 1S recomnendéa,. r cr ine reoo of tne Joint comnititee, with the exceotion of working stresses, notation ena tornuls, which neve elreaay deen steted, 1s aitechsa es f£ooenaix Li of tnis tnesis. | lution ot orcodlens ena in the design of structures oe 25 to verious taoles numosrea trom 1 to 183. e990 cn in bool's Volume 1 ana egr in this Jaber UF Procelbuis. ine order in whicn the various ooints will oe taken uo for consideration are: ist. ond. bow nemerks on the Unéotsr ana alscussion of errors, if any, aiscoverea. Leveloonent of couitions, wheres agéeneda to oe necessary. Statement of ¢acn oroolen or assign tollowea oy cb thé solution ana necesséry arawWings. 10. CHAPTER I. £ discussion of earth oressures, stability and eoguivalent fluid pressure, in which Rankine's Theory is stated and methods for arriving at eouivalent pressures as used in designing reine forced concrete walls are develooed. The assumotions ana the general eouation of kankine's Theory are;- Let P « resultant earth oressure in pounds on 24 resets surface St Wall eaousl to fenoth le h = total height of surface in feet. w = weignt of earth oer foot. = angle of surcharge. = angle of internal friction of the earth. nen the total oressure P uoon the wall is given by P = $w h2? cos 6 SQ8-&-F_-74_cQs*G = Ccostp_ 9s &€ = ~ cos*G — cos*p This theory assumes the filling to consist of an incon- oressibdle homogeneous, granular nass, without cohesion, the oarticles being held in vosition by internal triction on each other: that the mess is of indefinite extent, having a oléne too:, that on no olane oassins thru a given vovoint does tne obliquity of stress exceed the anglx of internal friction: on one olane it is just equal to it:, tnat the resultant oressure on a vertical wall is oarrallel to tne too surface, Let tne stresses caused by forces acting tre ené fo, and ov . UOON tNhe ol n Ro, end oBryy heve the in- tensity o éna ce. wonsider these inten- Sltlies of stress oroewen uo into overts so tna o +t © oO - 90 - . c 0 = S----— + +---- , 29 LacntilLy B xz zj + _ a . 3 +# g = 8-2£ _ g-=—2 » an identity Frg.2 a ~ These oarts of o and o nay OF cCoOnsliaéred 4s two stresses of the same Kinds: and two simi,:ar stresses of unlike sign. Gromo tne sinilgr stresses of sene sign together and the D Sitilar stresses ot unlike sign together. drew Lk = QEexce, | oC x arew 24 = Q2oxis, “j - — “gta es ; ten qg = 22 = —-f----- - £g Le Lota)vs_ Vo FAS c “Z Fig. 2. lneretfore o = angle 406 ena Lt Le? = Lp? + bi? = (27Oxcs)2 + (QtQOx ;3)2 2 2 = (228) 2( 0524/52) 2 + na = (228) 2 ice _— + noe, Le = Ba8x Ly ‘inerefore the intensity of stress an EU, ae to hue stresses acting on £8 and 5C, is ecual stress on these olanes and is nornal to to tne eoual tos intensity of tne Now arew Ga = =8alxCs I 5H drew HI] = 2=kxy- 2 / Tou O=0 wih = Lan o = Le => = Ste2. = - £5 ae DORE xcs Co A . cn Fig-5, es © = oO = ansle £ves ana Sl nekes an anyele = to o cut on ths DooOS1tE Slue of tne verticel throusi eo0lication. 0 sl? = BG oi? = (— Q2£xo5)2 + ( Baox:-) 2 3 = (— QeQ)2( C72 + £22) 2 = (~ Q=£L)2 2652 I = — SSeKee ev. tas I[NtEnNslty ot =Etvress On AE Aue to toe ugnlixs siviler stress2s aon 45 ena st = = <>* fo fina tas resultent of IFO - O—-C = - >> Ua 3 itt -— =57 7 rey Lrew £o in viv. ¢ ocrellel to #0 in _ / . _ oo + oti. 4. vey oft ue = ry = 258 nornel Lo fo. SrOf Loran is = ry = = 2228 " 2 osretilel to - 254 in sis. 4, Phew nao = po = resaltent of ry, ena re. rite Lo €s g@ center seserioe en ere, . oe oe _ oy QrO POs = = ,. = Q*2 = LOU) be J - 2 4 sos QEO 4+ OaG = 32 : - , : 2 2 of 9-0 _ ,4 2 B2O _ rl = ¢ 2 2 TN NTI < bw ~ = obliquity of r = inele Oo T A AS the plane AE moves through all the anyles about the point vo, the point will aescribe a circle about C with radius O79, Ihe locus of 5 will be an elliose. Let x anu y be the ccoruinates of tz, referred to C as Origin in Fig. ¢. =# = sina, Gi? , : xf? = sina (a) “y/ SE =cosa , ©F = @. &s yf = cos a (b) square (a) anu (b) and aad (x/P}? + (y/e)? = sin?a0 + cos?a = 1, the equation of the oath of the point =. | The maximum value of = will be when LS is dDerpenaicular TNT ae ts to At this instant angl rivnt be Cou a aliy ° then ne? = Co? — pr? r2 = (B2L)2 _ (~ bxoL)e 2 2: r* = 9Q sin ¢ = — 8=2 + BFQ = - k= 2 ? ptQ sin ¢ (pta) = =-p¥*o o Sin ¢ + @ SIN £ = —O+Q oD sins +p =-q sin ¢ + c o |= sin 3 qo 1+ sing GhUS Where o renresents tre rorlizon’ al intensity of stress anu Oo the vertical int+rsity ef stress in en unlimited rass of nome-seneous, erenular pature, ubt ratio ct ite erisgontal inten- sity of stress te the vertical wilii te A= sing. 1 + Sin ¢: ror eevilzertur the credit 5 Cero never be greater than the enele c* reoese, or erpac of internal tr ctions: tris is our angle ¢ Lhe 2 = dose ne U 1 + siros Where © 2S the apzie of interncl oriction of tne materiel unger conslaeration. consiaer a retcinin. wall, vertical tack, earth surface morisonial. ihe oresure, cetine similer te flaia oressure, will be corclieu alon, the verticsci surface 22, nitn value from C at f to the taxvinunm wh aboon Spon srachically as @ triangle. The tetsol pressure PF wili be tne erea cf the triansle, or 4wheh il ©, eq @ and is assumed to act through the center of gravity of the triangle at #h above the base. If » is the angle of internal friction for the earth Lehing the wall, ana the ratio of the horison— tal intensity of stress to the vertical intensity of stress is given Ly then the total actige oressure on the wall will be D = awh? l — sin C Now censiaer the sane tyoe of wall with With a surcharge cf earth at an ansle bo. The line of action of F is now assunea naeralle] to the surface of tne surcharge... Jll the units of material venins tre wall ure hela in equilibrium ty three fercess the vertical; the cormal te the olane of rupture, ana -N the active coressure -, wrbov, o« intensity of vertical stress, r, intensity ci stress : t 5 ue foura. if c+ ihe cratic mus Wn any aine 2c araw “0 maving the enzle o with “-. A -ay orf 7i = v “es! ~- ana \ reke 2 the riasls soint if feou the E Fe, \ \ ore Hq? ~ 6 aT - . "OT “| - - , - T A rae oo, Ch ansatz are sill Fro. ni; ~ 44. = 70S «1 ag ~ ~ oui At poem ery . . ~ A - } A(QSZ = Sa. = BX ete = Yr CCS’ COS vu ECCS or CUO TE . . bub 2G = S-= , ren vis. % 2 ‘oa’ -) BAG = var (!) 2 ZCCSu "12 = 12 + a" 2 14 soe = (-¥if)2 ~ (Yit)2 + (4SE)# , 5 - 2cosé: LCOSG’ CD = y (—¥in_)2 —_ o2COSo' but GD = 258 from Fis. &. ws BEB = /(-¥IL_)2 — (3) 2 c = »@ w hh? cose cose + ¥Y coS*co — coOSs*#¢ 16. Chanter II. A chapter uiscussing the princioal tyoes of reinforced retaining walls, cantilever, counterfort anda cellular, unaer conaitions of horizontal ana surcharged filling. In aetermining the maxinum ana minimum foundation ores Sures, it seens to me tnat the pressure formulas reccommendea by the Committee of the fmerican Kailway Engineerins Ageociation are Simoler of anplication than the equations orovosea by Prof. Hool. The reconmrenuation of the Cormitte iss: "Wnen P ecuals the vertical component of the resultant oressure on the gp asex 6b Ys the full width of tne base in feet, and eo is the pistayce from the foe to where uts the base; then 1 © is equal to or fpeater” than b/6 —™ “ D Pressure at toe = (45 - €¢) =- r2 Pressure at heel =(6¢€ — ZB) =~ when ¢C is less than B/S Pressure at toe = = Cn page so of this volume cf Fool's apnears an error ef, ‘vhe ecuation is :iven ne . “ ne . . —— (ness ” C: 7Henes Gr (ass il7. LGy AN, Hl aH > tt , ineres 17. cesign J, Page <6, f reinforced concrete centilwer wall is to be designea to have the same stability as the standard plain concrete New York, Central and Eudson iver kKailroaa retaining wall, Z& feet high, 12 feet 3g inches wiage. The cantilvere wall 1s to be 16 feet high above the grouna. Ends of cantilever 12 inches thick, vertical front face, uniform batter at back, _# “Standard . ine Lele § _— ¥ anda | | xs rata fer center gravity wall Section Area Se.rt. | vonent Arm Moment, Area a ae GL Be O20 Agee heh b Oe ae 1.60% Ase peg ‘ ¢ ae. gl Oecd f Lee re d ere oma jae eis ane De: pe ess rig tele et = Goes Aude Led zy 8 €.4347 meee LO% a7 ry ° ° NW Gres, As rT ™ 2 L£/,ee Ce Ele tad Gee ‘ : 7 A rye Ame. A Sipe C6 Ue SE AL. Ls « gi 1 ute WS oe got (MG .7ER J asic) be ded afin TES ola. 1280 .C44 . é wall from * 12g60.C4e _ af Cc Ss all fron tefl Vas _ C.24 feet Ko. 6 - ie : oe. . Oo a \ oo No my weieht of wail linear foot (2Cz.¢6;(1eU)= SC4dd lbs. ata 10r c.g. carth Section frea sa. f{t.}| Mement arn |] Noment area, c O.dF me C7 oS 16.684 £0 me . / be r m aon aw fe 87h, “ve a @ Cee ae & 0 £E0 0 47608 e4eGel n Aide ts +3 ¥ q 0 45. ¢ O moe #- CoQ 10. aQd D GC. 06 Be gle foods q aHSexst Vee aud she 777k i6¢.661 ' fa ° c.g. of earth from A, igz?.6€1 = 2.15 feet weight of earth per linear foot 7776 lbs, Take moments about 1/73 point 6f base, 4wh?(2) = Woteke + Wala, = equivalent weight of fluid, h = height of wall, Wo= weight of earth, 10C lbs. per foot cubic, Wi= weight of concrete, 150 lbs. per cu. ft. A,= area cross section of eaecth, 77.88 sq. ft. A= area cross section of wall, 2Cz.¢6 sq. ft. o= lever arm of earth mars about o. lever arm of concretfe mass about B. Weree 7778.0 dbs. WyA,= 00444.0 dbs. w (28) (7778.0)(6.C3) + (2C4e4) (2) 56608.66w = 46902 + ECEEE oBEG.66 7 ved lbs per cu. ft., the equi- valent weight, use cC lbs. Using the ecuation given on pave 12 Fool; ; Tt? 4 6t2_ _] w= 16CK 2242 + £12 _ Wl v= deChc eS + Fi > aie? = 179(Zs0i2.31)2 + £8) 092,81) _ 1) iC& (2 ) 2 (&4) (ZE) £16 = 1/6C(C.1e07 + C.04aC6 -— C.UC4E) = z20.CC lbs equivalent fltia oressure Bost ei Ohl: w= oO lts. eoguivalent fluia oressure, cantilyer ends ig inches thick, allowable soil voressure «CCC lbs. so. ft. coefficient friction earth cr concrete 0.40 angle of friction, 22° anoroximate weight of eartn, 10C Jts. cu. ft. weleht of conerete, LEC abs. per cu. ft. cencrete cE ib, ltze:4 . . dpr ° e se ~ $ Vorkine Rearing Se.c & comoressive strength, an > q = 7. = ~ - ‘CC 7 stresses. uxtreme fiber stress, c2.6 €/C compressive Qn Thear 6 ver cent cororessive, izClbs. ond, = per cent comrorecsive, 8@ lbs. steel stress, i€COC lbs. sq. in. Concrete, €ol lbs. so. in. n= 16 t = width of base, h = height = 2C' high. for w = SO, tth = 0.405, Trautwine's emperical ratio of width to height. t = C.465h = (0.405)(2C) = 5,70 feet, use 1C', then t/8 = Bh, middle third ooint under stem. 7 4 Assuming an 1&" footing at stem yives a wall 1&'6" hich above . footing. i pees Total pressure on wertical stem 7 P= gwh? = $°9C°-(1&.0)? = 6158.75 al aoplieu at #°415.06 = 6.16 feet above qr footing. vending noment at top of footing, ‘ M=O158.70°6.16°-i2= 372, 4&6.8 in.ods. f.=600, allowable compression < f.=icCCC, allowable tension in steel of oe o = steel ratio. 3 oo = aaa oon = C.CC769 : f OC BC CC (8 4) “Bee GEE + 1) ec nf, k = Y gon + (on)® — on = / B(C.CC7E0) (1B) + (C.CC7ES*15)2 — (G.$2768+-15) = C.S766 } | §=]-k =] -C.i6€s = C.E7S6 3 = ofeg = O.CC7E9: 1ECCO* Ce 78h = 1C7.E s / —_ 7 ¢ .' _ + ~- ees SC. im. unit length cf wall. 17.)" thickness recuirea at base. cor steel covering, use le." L eel réegquirea ter vertical reinforcement. 4 = 1.00 sq. in. required per linear foot of wall. os 0 ace a o C=—C. 4, 8/4 "¢ reas pive 1.77 sqwin. per linear foot, 0 from ton, = 475016) 242" 1s = ceecelG in. pas, at 1C' frem teo, = $°30--(10) 2dG--22 = 6000 in.pas. at 5S feet from top, = $°50-(5) 22-12 = 75CO in.pas. Consider a section at lé feet, Table 3, gives p = C.CC38E4, which is one half od o at foot. at 1C foot point, p less than one fifth of o at the bottom. Therefore C.CC183, which is a little for the vertical reinforcing, carry four rods up to 15 feet from top, 2 roas to 10 feet from top and one roas ton. Maximum shear on vertical stem is at top cf footing V = 6185.75 ods. ; ~ Vi. 5155, 7% ~ of fo 2. unit shear v = —4+-— = 2 2co.66 ods. g&afe) ybd 12°C. €736°17.1 ° : EYene7e nag | bond stress u = - = ae SSL E Le = e6.40 vous. 293d aoo.o0u6' OG. c7E5: 17,1 ° ” + A Pr e Wo cr ~ . embedment isi = SSibef.2e = O7.0", the Committee u lege recommends the use of more length to take care cof strain anu temoerature cracks use C.4 oer cert of steel _ . Po 4a Ae TE 7 - mA “Ss” CCCs ic $£23-]%¢ = C.55€ sg. in. use #"6 rods 4"c-c on outer face 644’ ooting. section| weivht |moment arm.] moment weight a ood4. 2b 5.04 107138.72 Pd ~ 8 rs of ~ CR - ’ s Cc © 46. 5C C.oo 11655.E5 ~ a7 oR , Cw aa . “ Y 1106, oe) G.co TOolTT.El ; ; , 6 147.251 6.08 164,42 € f i l4ic., AAG 6.¢2Z TOECE, od 2 p:\eeec* SSR == = ; Tizcis co 100375,.76 re - vi ork rs ~ ee . % Lever arm of % AMPera. Th = o.60' from A a > : me A> - CYT 6 cr c ian Y FF Se = Hes le 2O ) ? - C ,codid W 1703 1? JC an Tan 9 = pe BO = 6€°O0,c8224 = g2.fe ft. o.Ce — S2.cu = o.t6' | cuts base from A. cc on wy, "5 cuss base C.64 —- 6.0CeE = Clil' inside midale third point of Lase. fC ed — Cverturring factor 2252 = 2h , £00 Average pressure per foc t, 42baF= 1701.2 pas d ol é= ‘ doe pas. Precsure vue to benuing P,= Ci t 6: i7cig «1.46 Maximum Pressure 17CzZ + 1400. = 3192 lbs. at toe, Minimum Peessure 17C2Z — 142 = £10 lbs. at heel W92__= £128 Factor against sliding (C,4°° 19: ND aay CF sng cantilever. shear alony x, j= 11662,0041108, g5-( 42.68.4421) 6586.07 lbs, } [(11€82.0°-2.78)+(1106.25°2.78) = (6422, 1€+-2.14)] 12 | 261771.6 in. 1 min, aéoth to steel 12.74, | | oa ul 12°-107.6 atoth to satisty bond. 6,C7 vue? EC C.. G75 a * 14.4", use 1425" (1244, . Sf4+" rods at #.5" cc tetal deoth 14.6 + 1.5 = 16" 9 = -b28ds = (0114 . (iz .u)14, © aA, From lable ¢, Jj = 0.04 ae WwW ae ©? L. OL v0,C7 ” (iste oO \e ne . C a0 ‘ = ~ = 77.8 los. SC. in. LOTS, oO, 4.000 ~Ous® 44.0 allowable = Cpe, C7 =~ fo 2] . VF portkheeeto—- = 2.0 ibs. (20 los, allowable aot ced ada accoruineg to ftjnal rerort of Committee) : 561771,6 iC he! f = =. - = iCccc.,6 lbs. sg.in. s . oo _ tg _ allée ,o7 GL 7 = eo." = e°ct: “pear ana pressures ajecran. () % v ' a e x R S o (| w “ N @ “ be ¢ —-———+— 5 * [ . 0 x fe “ . Ji ~~ » > 2 O w& @ wh & e ~ & A 4 $ or” te” feo” °0* f'e* S| sem, } ’ ‘ . ’ | © N & o e e ~ «a g ~ ee 1 é 3 4 : G A eS aye fveraee betent! dese] ie,e7s| 1e.79|. 16.783) 18.6d 16.64 Weignt earth [18S6.CO| 1€€7.50C] 1€72.C0] 1E76.5CC} 1662.00] 1666. eC A ed everaee deet 1.C4] 1,126] lizk] 1. aoa] 1.3e] 1 46 Weight concretd 15€.3C| 168.ECC] 1€1.6C}] is4.acc} 2c6.7C} 197. 4C Z loaas 2C5,2.80|41C4.7C0 |6188. 20 Jee8S. SCORCSC2, EChS1€E, <6 2 pressure £65.50] 1851. CCC | Pee6. £0 | 2262. COC] 4777.8] 6423.96 Shear 16€6.€C | 8°77, 7CC| 4172.70 [4581.€0 | £555.00] E724, 3C "Toes not = maximum shear as the triangle of earth along tack of wall is neplectea, OCTER Cantilever. welght of concrete 4«&0.CC los. -ever arm about voint &. 2.40’ pot" ‘ Mo= S€Ce]liletig = €264.4 in. lbs. " Lowara pressure at &, __/2 were & 0 Sow ® = wr ige is: (ic-». ce) = 2532.4 lbs. 1C W of uowara force cx c - 7 A +3 GC. C & - . a ; - . | (S2s425 Ar eeS )o.26+C.cSJig = 61684 in. lts. y ino tre vertical wall there is 1.7 SQ. in. oer feot so tnat tenaineg uil the reds into tne outer Gantilever -lves sore ifat the recuireu area cf Steel. Leni caeh clbternate rou. a. . t . e tr: — e a - + “oe ee a a an _ mF , ~_ ( ton. = = +. } et ( —_ oC Ot - to - _ e ye . - Ly ‘ = C.c7e = eee CRS Ee _ (+ Cae Fe ec oe Ch COO eT e using a 60" uenin Peles Cantilever G a . , oe A, 9 = -¥+$-5-- = C.CC49 eye? 0 fron Table ©, g = (.8E4 sre ¢ ( UF ---S+++++-+- sso - = 7 ibs. ww wewoour’l eb it mae 6556.07 12:0 .694: 20 = 2601,771,6 ey a SS €,0049°C.S5S4°-12(02C ) 2 _— ) yo, 12 450°0.7 ~ 4 oe. " 'S it fRe “fh I © a 2 Krom Table 3, "Oo ‘ va sae A” eo dt xa: “% f _ fO2C se. 6 8 C0074: 0.576 mate | acyt Zale Q C et) mobs.’ sq. in. Le¢50 lbs. } nen t: S e 4+ lbs. sa. los. sa. in. 4 ra 7 lbs. SQ. In. INS in. Ld Ered 11'9°Ak Me $l rea 207K hy . | iz ' | | | . Srods qe 4 . "| > far « ° ‘| A aN ROLY A; we | . oe ‘ 0 0 z So } °Ce ! | ! al Mw OO Lo, Ale _ we 20" fh es. tt s'#$" _ oT | b| § co, | ¢ ‘ ~—~ iss. _ a 9, fc... S qfo3 ¢ + pe ee 7? ° . @ 4 8 | ct rede A Lo desececceelyeceee, so cceeaeane., __ Le’ 2 76* ty War | — om Concrete I:2:4 - 13.47 cu.gd per 10° length of wall Stee! 1966" per 10‘ length of wall. Use Neo.IG Wire ties. lap longitudinal reinforcement 2'O and wrap seliée with wire. DESIGN Nal. CANTILEVER WALL. & 4., on e Chanter IIT. A’ chapter dealing with construction, is very short, in fact gives very little information or discussion of the work necessary to construction. The Chanter XIX referred to is comolute in regard to erecting and vourings forms. Design No. &. Design a cantilever retaining wall 15 feet high above sround suoporting an sarth bank whose surface has an upward 14 to &_ slope from the too of wall. Tne face of the wall is to be placed on a oroperty line ani tus foundation is to be 4+ feet telow the grouna sur face, .Ssumotions;: “arth 1CC los. ofr sa. ft. Concrete 1lbC los. oer sq. ft. Alleovwsole soil oressure €CCO lbs. per sq. ft. Coefficient of friction, concrete on earth, O.4 2sQuivalent Tluia oressure, 2: lbs. oer ft, CCG lb. coneretes Phickness of Yoobing ee tnen-s. -Orking stresses oeaGPine, Ol.0 9. cent conorussive strensth, “near, @ oor 2 aL coLoressive strensin, SONG, + Orr ent covenorlssive strongen. SLlewebl. stees. surces, 2° CO leg. ua. das. SLlowe.sle conerete stress, Get tos. sa, in, n= 1, 20.643 for w= 78 lbs, Ve met O.es56 = €.8', use 1G' base conus | | || os’ | ! | , | | : | ( | ( | i ! ( S|, ; aq © : a XN ( ‘e| r | ¢'6" Over Steel, toaoer to is" at ton, D = ©.CC77 fro, Pable °. 7 _. : Os~ POIFRLLUTT* 1o913 881.524 sq. in — oe Diagram 3 gives #$" rods soaced <$", area 1.55 sq. in. At 10' from the top. = gvn2n = 2820122° = 4166.65 ft. pds. 3 “ or an = 4166.66: 12. 16.9 “bd? ° -:12(18.7)? At 5! ceaSt§ fhe top. : s2)\2 520.3 Ft. pds. De dh 13 p= Sede. 285 n a ae lee les can ‘ be usea to find n. Tao Takings 3 = 4 Ro = 16.59 = O.¢C1n at 1C' fron ton fo3 16600°0 66 0 = ~-2ad-—--— = C.C0C17 at 5' from too " 16CCO: 0,86 'S i 4 of steel = Cy Gon7 = 0,.CC11 4 of steel = © Coen i4 v- , ane £ 1 , «> i « fa 4 Run every seventh rod to 5' from top ana wvery 1 — t Ro 1 rod to top, stop six rois at iC" from too I Thear on vertical ctem is horisontaul component oF earth oressure, is waxinim at top of “ooting = “ool los. Srom alafram 5, ( = €.78c 4 . ~ . Vv = Y_-. = aw-— = 14.71 Los. oer sa. ncn. | gocstscrcrcn. t Oa bo eee at roe bi u = Y__= wed —— = 1.1 SQ. 186. 4 , a “ ~ ~ . ) _ fou 4 —+ 2. ° “te 1c ~, _ Cl. ae ; OL, tha tat tb OS eaeh rot must Ge opbeiaera ot least rol Ne) it. « ant _ er - a. 1 ot . - \ oY 1 ) == ~e = = pons aa an —_— eared. t_ Yy SOM tu = Il {, . a LS 99 Ua ] 4 4a > 41 45) "- ‘ ; ° . yw ouyier - 7. a , oo i) >. use Clé goer ceat susrel for srprinne. > re lntorcement. c — A : ™ \ o An C C G oF ( tela Git ‘ i 4 = a ae) 35 4 rhe “ Use 8 =— $" rois ner “oot, round rors five ©.8.0P sq. inche: ; " . > - a00u - space §" c—c on front ana is" c-c on back. . Y why \! if - Section ve cht hon. Arm Mon, weight c.an eam rr mr 47 on : I BOo6. SE 2.267 34248 G9 “) Ooms if L OCG 12756 OG ~ Ah ely. UY yuu A072 4 J 7 1/U9 2. 2U t.074 (aGe lo 7e 4 n2CC LCC 3. OOC — 0100.C00G IA ay min 1 wt . wt 4%. FO 137 4Y e 465 ; . . a Pr ty a ae ; row ny ~ever arm tuout qoel = + Se Total earth pressure on plane thru heel of footing considering slove of earth above too of wall equivalent to a surcharge equal to onsehalf of Six, 6 being the increase of h' over h. 42’0~ R = S P2+v2e+00Vagsy R = 362°3.89 lbs, 2 oe. foe —_ | paMhl= 4°:25--(25)? =. 16625 lbs, acts pnarallel to Slope 9: ° of earth at h/S =. S5:)=.6.33' from bottom of footing. oO I tany = 4, 9 = €5941'29" Irn ae 4 | ' | .! ! . | — r Pe wes en nsse eee 4 “f= tango = 0,€64666:5,0=3, 23! | | a= 20° —~y = 56°18'37" | A? = P2 + W2 + 2PYeosy pee | é | i ’ | 2s LP i odin sa aa _ nba «= peep ! Dot TE ASS os ‘ Sing = #{8108% = geog: —2LOG_ i chara 2Q i - ery) IO Lo Ce 1 log P= 4,1938260 7 | log sina = 9,936151341 : s cglog 2 = 5,4158510-10 & . . aan = - 333 A se le" los sins =19 0298 523-26 | e" voy d = 19° 47' 53" ©") ‘) mes y d1Sbtance ~~ cuts “rom toe “actor safety asgairst . porte FOF ae ~~ 5 oC t “ ” — ™ ._ — "EN ENED 2 : * AMM: re ~ fer. Como. of = = Peoscs COOSA SEC 24059 = 7A 14,0 lbs, Tl , + ™ — ~< ~_We ‘ ~ e a . OVEN , “Or, Oro. of % = Bsinis CECB EO*C, SG874 = 2CCO.C lbs vy o~™ a ~ \ . yer. SOMD. OF P= OCLLIA — 2°les ory = S945, 25 Jen 2 c- ~ ° - e . 1 @ 2 4. mo - 4 “a ~ “actor safety usainst sligjns fest hidn.€ L 1.1] ~~ e tendency tb slide 12CCC kbs, Frictional resistance 14466 .C0 los, 2106.5] 2165.5] 2165.5] 21Cd.F] 526.3 Zz Loads $325.5 116081.0 124170. 4 181¢94.C6 133523, 3 Goward Pressure}1254.0| 4970.0 |12187.¢ |z2eue8.c |26260.7 Shears 7069.5 411411.0]11(C3.5] 7868.0] 6552.6 2 2¥. Fhenr Cwree TT 25:39" 1 7 6-6 PY mee ble hear > eemenea 8 x = S(C5) = SB=3°-1.8-5, G = C,4' y= vb d=40* 12°00 875*-Lis oC 49 at _ end of cantileer , at maximum rt of cu aes 11411 = 4c: 12. 2&7 / d= oT ? veoth required at £3 56" x Vo= 40°12 -C.€75°-26 = 1£120 lbs. -“endines moment at 4 = bending moment of earth + bending moment of concrete — moment of uoliftin:s yressure, Woe ((4eset22 Js. 5-100-4. @]so5282.5 * mae hiwote. eG d OF) = 18546. 85 vay TABI Ce eae), ss= HCS419 075 PelOs.& + LPAdA aS ~ 68419 75 = SO95P 6G ft. los snidine moment due to vertical component, c: tN oA T ms — ms6.c0 % Sh = 76C4S,125 ft. lps Total moment 118022. 7¢ ft. lbs, oY) eenth of steel required for aonent = filer 23 = Ora" * requires 66 + 14 = 87,5" use 6 — embed LECCE-G el 4°20 a At maximum ooint of curve shear is 12263.75 lbs. 30nd at this voint, ates = AeOve7ZO mo =. Se. 4 lbs Pov (42) (2.36) (g) (30.5) If every alternate rod is stooped at middle point of base Qos alo =, 64.8 lbs., allowable. (TE) ( (2. 36) (50.5) i! OE - r- Tots {-------- ----- adhe | [otc ccc ttgg tt ccc cts Ae. 7 1 ‘ ' ' | ' ! —— t 1 ! ' ‘ a ‘ ' ‘ ‘ ie t = nRoewewes es e@eeeweeeeneeea@eeeaetenteaeen Pee a4 @ «€ « @ -- - . . e ESnroewwe @WOemwmeoe ee 2B ee eweewrnese @Beeawre eg ec ww ewes a a | . . a - ° . . - - moe =" ——emmemamarene 9 « So - &’6” al 6 ' t 6 ‘ ’ ( § i ' 8 6 é ! ! ' t ¢ ! ! § 4 § , é ! 6 t ' ¢ 8 $ é ‘ _! 8,- i,¢e ot Y ‘- 82-%¥ 9A e” tb b------ eeesweweeqeweewewhteeee#tege wse @2@ 2 we ao we pe 22’d” /8°o” __27'0" > ¢ [----%e--b- _—owoe adele -e eeoa -peebe wehbe Concrete: Senne 42: 4 ~ 18.57 cny de. perte'wall | | ok: bers. Vee N0.16 wire ties. : R'O" ond wrap with ewrre for Steel: | wooo ne cen cen ce eee ce ne 17$3* per 10° veell. Oefornp eee | ok | a Jengitudinalaplice. aeaneenenen a @®ee@eenwmeneewenwevwes" 2 «#& 2 @ = «= ~eece f= = Be eo te wm woh Be asct®eeewenexe 2s Gu tmadt OA ee annenneene ee eee femaSmnnaf | [ . og. Sere ae | oerweonw wwe nwaeeee weee @ mee @ © C6 we wen = © ! | muniinns TF — —_ — . 3 ; 2+ pat ete reser esteem af ee eee - a w ‘ oye ("piles ° : ® $ hd, “eh L 4’o" | 3’‘o" /e’°oO” LOO” evmgipee Section. Elevation 20, Design No, 3. Cantilever retaining wall 18' high above ground suoporting an earth bank with surface sloping upward at 14 to 1 from top of wall. Bace of wall on voroverty line. Toundation 4' feet below sround surface. . Assumoticns;: warth 1OQ lbs. per cu. foot. Concrete 160 lts. per cu. ft. -earing pressure of soil 6000 los. ver sq. ft. Coefficient of friction, concrefe on earth, 0.4. Ys angle of internal friction of eartn, 45° C' Rankine's formula for pressure to be used. Concrefe ma - C e f. CCC i ce @e@ @ @ ~A. oN =! Tes - - ~ a N —_ ~ PPIX LIE . ) ~N v! Ste . a A ae ‘sO S 2 7 = Vv e ee 5 a) Cn — 4 \ ones, _ mise = A oo a ae a \ . oo. f rn im yout - joe. ; 2e He, . a? . “NOD Y - shor A ee LO times g UO iy) e “ aa — ~ _ - 3 \ { ~ “AA ak U, Lee _ = a 4 — " 4 > . = . { — rr Aa. 1 ) t 4 eee ao) _ ae PU. ow los, : 4 _ 4 an Deere of gee ' = tbl os Oo. &! ? 5 | Ten 17 re yr ee t OO Ae — Rte C . Atl de wis, rOwrent wy 1 . apn 7 ae 40.7 , use 16" ‘ wl ~“Oial Lc Oh al 1 " 7N/ . ) ~ . me -. a/ 2 a”, 7a oo V 2 9) - C, CEU 7 " eT DQ2IFL COT Ty Ss "s . . - oe : Ld Lice Sq. Yn. Steel at 15 feet from the top w= £ESS6,7(3e)3 = 449: Nh, at 1C feet roi tne too 0,9 e er my ct o c n GA 3 eve | (7 OE )3 yo Ms Cz3. =) = 402.€ for 15 feet. = 15.6 for @0 feet. SO At { I: | ee = eteel = C,CCC1l for 15 feet C.CC1ll for 1C feet. "SO: 1 } | | Ir Ic \ 4 of C.CC77 = C.CCCE, at 1& feet from top drop « bars. eof G.C077 = G.CCI11, at 1C feet from top arcp 1 bar. Carry ¢ach sixth bar to too ot wall. Shear «at ton of footing = 6076.4 lbs. V 7 L\CT7E. : . bia aC e7ee ad - 7 a ry ' . . oud eden G0 O.e7e , . 4 eo a4 4 - ? — t (. ° ‘ —_ o- ey . embeament +84 = dulce airie = €4,4, use S€ inches. 4-U «a. ° = £ a4 Use «< = #" rous oer foot horisontel te provide for Oo n shrinkage, lz” gs t eno rear, ai ternating. nauth ct case assumed at C.ch at “| “ront fuce. 0. 6 Spent MM. o. ONY, Oe eet 1 wee @ ibe GC. e7 B75 18. { | Stla.e gf CG LLeet, 7 | | Tee dw. el oT EOE G4, | : : Peis Oe 248 1ICS EY, i} | $ “UPTRTET" 0 GRE EY@var | i | Verooumr ¢f 9 G Nt ebout | = ‘ \ 9! © vA Hee I eet el, heres | « 1, —s = picc cf) 2 2 c7Cecent =C, | 4 yy Co oLGatl lg , - = Glee ibs or —_— “ ae i) ” nhs Proms 2. cit, 666€= 2.8: = . ~ ~ “ - ¢ . — K -_ Yo lu: a e < e . 1 e e+; dle, . hee FOL Lege ~ _ «|? » t, ee - ~ &. ee Tt ew HOO bit Me eo = af . “ ye) <4 ea ef Sytr 21 OG ct SPN oo = Sane ot = eee +E ‘5924939 log 10,582.45 log sin 56°18'37.”" colog 37, 249,39 log sin a a Os =, on tana = £.0245863 9,9201513 = 10 2..3288608 _=_10 219 ,3736184 - 20 13° 40' 24" 32 5.93 x 9,24328 = 1,44 R cuts the bass at 11,00 — 5.45 ~ 1.44 = 4,11' from toe one-third base = 11+3 = 3,67' Therefore R cuts base at 4.11 — 3.67 = 0.44' inside middle third Factor of safety against sliding. Horizontal component d R =, 8804.6 lbs. Vertical component of R = 30,323.75 + 5879.9 = 36,193.75 lbs. WS OM .n_ R x coet. E ~ 396193,75 » 6.4 comp. "8804.6 Tendency to slide is 8804,6 lbs, Resistance to sliding 14477.5 lbs. Factor safety against overturning. Co + so = 5,55 * 1,44 = 3,85, Pressure on base, L4(ac) - 6(Cs) | safe, 1.64, safe pressure on toe [4xi1 -— 64,11] 5784.98 lbs, allowable. Al [6{Cs) - 2(4e)] “coma. __ pressure on heel [6x4.11 - 2x11) 36183) 7 ra = 795.66 lbs. 1 2 4 D 6 7 & set. | 20.0/ 24.5 33) aat aer aey that ae ge, fade 51C0 .0| 2450 .0| 2383.0] 2317.0] 2250 .0| 2183.0] 1117 .0P3000.0 Bei cones 2,0 4,09 2,0 6.9 2,0 4,0 2,0 2.0 Wet.Conc.| 750.0| 275.0] 375.0] 375.0] 375.0] 375.0] 375.0| 562.5 V.C.Pres.|1235.6| 617.8| 617.8] 617.8] 617.8] 617.8] 617.8] 926.7 ZLpads | 7085,.6/D528 , 4|B904. 2/7214,0|2456.8|23632.6|B742, 4|D735, 2 Z U.P. | 2346,0| 4269.0]6572.0| 9427. 5]12588 .0/5437.01424,0127436.0 Shears | 4739.6|6259 .4|7332.2|7786.] 7868.8] 7196.6] 6318, 4| 3299.2 see diagram drawn from this table on Page 33, at the maximum point 7869 = (4U)(1z) (0.87&) (4) qd= = 4840 at inner edge of contilever foot, 7869 + 403,33 = 19.0", use 20" ab, the depth will have to be Diatance Scele goa’ lead scale N s joos™ — pr Qe _. - - i= —. gg _._._. 8 Fe 9a Wii} (8,5 x ) + 1Z = ec,e" v= 40x12x0.875x24 At secticn number ¢ 4Q0x12x0,575x*d = 72ez | d= 18,1", use 18.5" At ab depth with be, due to depth at section 3, (8.6 x 842 ) + 12 = 26.8", use <6" VW = 40x12x0,875x26 = 10486,c3 lbs. Taking monents at ab; M = (21800%*4,97) + (9562,5%4,75) - (2838*v.,5*3,6) O> (a0 Hos Y680 lbs. = 1083 46 + 16941,88 - 98769 ,6 = £6498, 28 g2M «= £6495.23 = 39,2 d® (26)? =z gi,s 59.2 __ = 0,006 Pp" TET” 16000%778 uo a,= pod = 0,COd8xlexz6 = 0.8736 sq. inches. use 5/8 inch rods at 3" c=c gives 0.9204 sq. in. embed fei. = 16000243 = 21,40", use 33" 4y 4 x 85) 33. use 24" at inner edge of cantilever. 22’0° Ja’ @* 253@ G*os9 6° ey we 0 edie be 1 on 7° fe e «6 o | 2. * ° “7 SOD 2a 4a° th. Stoxg one rod at 5 feet from end of cantilever. = _f = 7336 = 37.2 lbs. afe. " pjd W2x8 870x185 Ber gue u = --1 = 2336___.. ———- = 853.8 lbs. to high ZoeJd = (1248) (1.964)(0.875)(18.5) must carry all rods thru 2332 — = 76.8 lbs, allowable. (1244)(1,964)(0,875)(18.5) Concrete 1/2/4 —/6.93 cu.yd per so’ wall, Stee! (484 jbs per /0' wall, defermed bars Use Ne. 16 wire tres. lop 2'o” aadct wwure corap le ag tudtneal splices, Sy ~ ~~--4---—4---;--~4---1-- LL! p— -— ——. — | . 7 « _- Sa . " L! °reds 6%C-c se we i ae ae eee - 2 onfrent c-——4 (42°%e@-¢ On |) ov ae — 6 mec ~~ &@e Ge me — ~ me ee lume le Ul oe em ee 2 “ [a qi @ T_T i ea ees ae _— ~ . w 2 ™ a| & ~~ Ni a _—— ee mee ell _—_— ee i i lew 1970" ! | i —-— =— -« 4 —_— er wm ee em ew ee ee — —_— ~- “~~ - _- —_ » -—— — a» . ; { eo | Pe . j e ° t ° , ‘ 6 e , -- | || . : _ { t om -— — a eo mG =e out . -- J / a > eo ° e . :. . e . . + . ~~} m & -@€ os. - ¢—-.- & © ~ — + . - > — e -—— & wb --=@ ¢ ; ~— ~- e e ~ - 4 ‘ Lm —~ ~ _-™ & = ~ e *- ~ - - + @ . l OH pepe peepee | ee . \ | + ’ 2. ‘ | . - = 4 8 ° we ® g‘6” ~~: ¢ @# oe = a * ré - @. se -. . he rpeere .'¢@ eee oe jap pee ew of ¢ SEF. a" e-c ee re we o , , 6 - A ‘ - 9 * q 4 e br ot mnt. . i. o. oe % 1? * #8 8 4 . my Phew o S —- . "rods #"C-e’ oa , —— w oe pol. | : i pi in iit | | . - se pt itt men rd i Vii ' : so 0” al ae 4 oo Section Eleyotron Design No. 4. Design a counterforted retaining wall sO feet high above the ground which is to support a level bank of earth. The wall is also to sustain an additional 5 foot surcharged The vertical slab is to be placed so as to give a minimum amount of material in the wall. Counterforts to be spaced 8 feet center to center. The face of the wall is to be placed on the proveriy lige with foundation 4 feet below the ground surface. Assumptions: Concrete 150 los. per cu. ft. bLarth 100 lbs. per cu. ft. Bearing pressure of soil, 6000 lbs. per sq. ft. Coefficient of friction, earth on concrete 0.4. Equivalent fluid pressure cS lbs. cu, ft. Concrete 1:.2:4, zOQ00 lbs. Footing assumed for preliminary 30" deep. Working stresses: Bearing 32,5 percent of compressive strength. Shear 6 percent of compressive strength. Bond 4 per cent of compressive strength. Steel, 16000 Lbs. per sq. in, Concrete, 650 lbs. per sq. in. n= 5. From table 1, ratios and equivalents, : for w= .63 |8 88 [70778 .79 < 7 . 427.625" =m es w@& @ wee ew e@ eee f& = ©— «& i 62179 .69 | 523451, 27| ; Lever arms about A e23401,67 = ! ’ @2i79,69. °° a8 Ft. BD = BC t 11,25 x 42UW)___= 2,71! : 3 BC tan BeD = 2179.69 * AD = 6.42 = 2.71 = 8.71! ¥ ee o th R cats base at 0,71 — $#2= @.04' inside mid.thira 37 actor safety against sliding 821/3,69_~_0.4 = 1,66 8.42 2.71 = 3.1 Average unit pressure on base S2i72.60 = 3657.6 lbs. ft. Factor safety against overturnijg Pressure at toe (4%17-6x5.71)S#i722.82_ = 7259.16 1bs.sq.ft. This is to high, use piling at toe, single row, 4° c-c Pressure at heel (6x5.71-2%17 82072482 = 59.04 lbs. sq. ft. Floor slab:, Slab assumed at depth of footing 28.5" Considering a one foot section at the end of floor slab, where difference of upward pres- sure and load are at nmaxinua, ” P at end = 59,94 lbs. upward 4 P at 12" from end = 483,42 lbs, _ Wo _ Upward pressure A8S.42_2 22.24 = 271.68 lbs. Wgt. one foot of footing 1*2,375*150 = 356.25 lbs, Wet. of one foot earth 1%*32,625*1@0 = 3262.5 lbs. Uniform load on end foot of slab, 3262,5+356,25-271.68 = 3347.07 lbs. Slab is partially continuous M = S857 ,U"S"_= 21420.8 ft. lbs. From Table . cr a Total force B® = HATA = suki, Geo?x8 | = 106439 lbs. 2 “a M = 1064385 «x 10,41 = 1108 ihickness of counterfort Allowance <" for steel, A 1 9 C23.99 lbs. ft. 1' y = lever arm of maximum stress about .A, y+2:16.625 ## 27.625 : ¥ 16.626? + 27,6252 y + f® = 14, 24' y = i4,¢4 = U,1" = 14,C7!' 39 y= ML 41108029,99x12 * bd? 9 16x14,072 “122 K = 27.6 go! 20” Release From Table 3, p = 0.0018 Ags. 14,07*12*16x0,0018 = 8,86 sq. in. “ use t = 14" rods spaced 2,4" c-c at <0°' feet below top of wall = £2°%9 = 62500 lbs. My wf 4262S \ 766’ nN H $ 4 | = 6.2600x¢, 66 = 478750 ft. ods, . eae #12:0 n: 20 : Y2024122 y+2" = 10,50 y = 10.30 - 0.17 = 10,13! 16x10 ,1321]y2= 24.5 + i = 478790*12 ISP rom Tabke 3 p = 0,00161 Ba. 10,13%12«160,00161 = 2,12 sq. in. use 4 — 1g" rods, or drop one at tnis voint, ft 10 feet from the ton, P - ZOKT OR XY asv0UG lbs, 1 = 2200%4. 16 = S3Bac0 ft, ods, yte" : 6 :: 10 : Y1O2 + Be yt<2 = 35,11 y = 09,14 —- CU,17 = 4,97' = 2360012 B = 19,7 16x4,982-122 p= — 19,7 = 0.0014 "83°" 16000 x0 .876 as= 4,.97*12*x16*0 0014 = 1,24 sqY in. Use 2 — 1~" rods, droo two at tnus point. HORI ZONDAL COUNTSRFO a7 CANS, Shear at footing too, au XG, 640*3,87 = 5440.2 los, Use 3" rods No. rods re ulrei, 23302. = 1.7, q GO. 196x 16000 olace in Oairs and hook aroun: outside reinforcing bars Soacing, dens = 14,1" af Jse this spacing up to 2' from too of wall, At 40" from too of wall, shear, 20% 28x64, 67 = 4167.8 lbs. NO. 2" roas oer ft. 4157.8 ~ —_ 1.3 . . as. 0,196x16000 **"s Place in pairs 40, Spacing lexeg = 18,4", 1,3 Use 18" up to 19' from top, the use 22" to oo VERTICAL RODS. At end of footing the downward tension caused by shear on both sides, due @o floor slab is, from heel 3347*6.67 = 22324,5 lbs. on 12" length, The 1g" diagonal rods take the tension in first strip. The tension decreases by 427*6,67 = 2848 for each foot to toe. Tension in 2nd foot is 22324,5 = 2848 = 19476.5 lbs, a" 19476,9 == 6.2 , use 6 ver ft, Use 3 rods at 0.196x16000 ~*~ ’ Place 3 each side at 4" cec, Tension in Srd foot, 19476.5 — 2848 ise Q" rods , 28028.5 = 3g vse 4° rods » o"i96x16000, °° Use 3 each side at 4" cac, +ension on 4th foot, 16628.5 -—22848 166.28.5 lbs, use 6 per ft, 18780.5 lbs, " | 780,95. = . User 4" rods, CCS 4,4 needed Place in vairs at 5" cmc, Tension in Sth foot, 13780.5 — 2848 = 10932.5 lbs. Use Re rods, 2003375 = 3.4, use 4 Q,196x16000 Place in pairs at 6" coc, sension in 6th foop 1C934.5 — 2843 = 8084.0 lbs. c Cc ROQW1 - Yse @" rods -CG2d.2 ¢ O,126x16C00 tension in 7th foot, 6064.5 — Use " rois ai wQai = 3,6 3 ” ©0.,196*16CCO , Al i we Yi oO pe Ssoace at lo" cac, Tension in Stn foot, §236,5 — 2342 Use #" rods e3€8.0 = C.7, space 2 3 7 0.196 x 16CCC 7 Carey this space thru to the vertical sten, sxtend the diagonal rods oO diameters into footing, hook vertical rods arouni norizontal footing rods, 41, ie a .- en Meee bebe ~S [oe , nn - - = 4 3 | ye a _ en f— —|8 * | | | ‘a | | rt = TOT RT 0. Wen fo 2 7RF saya Spat yj) a a | ( | PEAR VIEW. — | b - _ | wo” an | . “ R 0 AS ~ wes F | | | | \o, : R | | , 4 frenets 9 5° 3°93” a | | — e¢ -- --— ~ _ 7 OL \ \ 2 ix | o. aT. ae eg ce %° 9 Shortreds\_. Es oe — ac anaes r | | 202": SECTION BETWEEN ” 3% ¢€ Long reds %6° rods #8'Ct-c 84° 49 Short @ — G@/z”"=9'9 S£@20 N fuUor+f— SH I4/0O3 P220ISS YI0GD t19 GPO 4ACYS? Dd, xy 4 e e e _- . ee ee ee §. Le okt HE eee wee eos cere » eee —" : e é —_ Scale @° =I" COUNTEFORTS .. es ai Ae $ OAM I 2" (4 FO" | 66/7" ‘Oo po oY y. ¥| “es <4 > N © ~.--d--__s4___.. —— ee nee 42 Prods P |. +S trod ¢ Section at AR. _—_—aeenenetame@ a @ @ avr ew @ = =e _j.! ibe H+ |, ss 2 @29"=6'0" masa ze Wey Ve" & 2e6" Buttress reinforcing Scale K's I hd er deem a2’o~ | “ev s Cy Section atBB& No, LOCATION POSITION Steer Scneoure FABRICATION. 44, On page 79 of Volume 2 is stated the equation for the most economical depth of cross beam. Thixzx squation follows d= / mM +t " £55" 2 Consiler the ierivation of this equation. Let c = cost of concretx par unit of volume, r = ratio of cost of steel to cost of concrete, a@ = depth of beam belov: slab, C = cost of beam per unit length. now ay .=. Mf fz(a- £ ) M = bending moment, f.= working str3ss of steel, = area of steel, = depth of beam ani s:lab, = depth of slab, b'= breadth of stem —IM__. = ry ratio of cost of stzsel per unit f.(d'+%) f,.(d-3) length of beam to cost of concrete, b'd* = volume of concrete ver unit length, c[b'd' + rth 73) = C, the cost of beam per unit length, Considering b’ as fixei the minimum cost will be found by placing the first derivative of the equation for C = 0 and solve for d Ib'q' + rv = cl (a's ¥j C b'd’ + 7g = ° fate ty b' d' + —2rcM" = Y " aa! te tf, id Gat + tf;. = b? weC2a * t)® = 4reMfy= oa Ale BE (zd' +t) = 2 DTE.. Za' = 2 f TM _ ¢ b' fg a! = / TM ~: b'f, 3, uN fu + et but d - we = r t a= eta S “ Problem &., [Tesizgn an int Sranolithic finish , Columns spaced 18' span 6‘ center to center, x 2£0' center Assumptions, plain rouni r ratio of unit in place 1" finish not thickness, 45. the most economical depth of T saction. érior floor bay with a l-inch Live load sto than loaa to be carried As © New ach panel to prevent Load per ft of lensth 3*xzcG = 1500 lbs, Assumed load of stem L o < 3 | ne 7 | TT ~ It _y CTistance to point mh3sre wébd reinforcing is not needed = £0 _ 40*I0x0,924%2< = 5.3' or 62.6" — 2 — 17 <0 Tensile value of 1 — 5/3" cou, 0,507 Or 6156.7 los, «16000= 4312 lbs. allowable distance between bent up rods, 3/éd = 1 = 16,5" 70—c2 = 47" | s 2e4Ud = 3,4%80% <2 0.264 i $- 16500 ,264d, max, use 6/16" round rods, Sa,f.jda s = moan alo , minimum soacin - 3x0 .0767%2*16000%0 85x22 | 3 gn 2x 17300 ™ at 1/8, s = 4/3*3.0 = 5.2" at 1/4, s = 2x2.9 = 7,5" place lst at 2" fron edze of girder, 7 cmc, 1 at l'O", Z at 1'8", The bars over supvoort shauld extend to the span or 6'5" past center of support. naeona te stress in cotoressive rods, lv.5", use ZO" CC ~ — ntrated lo 450 Los, C= CONTE é e] sten, W X loaas x3 eaction of conc entrat eg Uniforn load on cean at + Ju% 3 less 10 over votal V cross sectipn of / s4-— + S Co ye . . ~ 7” oe j wt “oe FS w/t OUYU tyoX% assy sten qd ra ict t q b! 1." 13". “ we iz 13". fo te we) & CL ® » Ine DH | » fh wf )B co se mnDnn om We as D — If o is © ct oct a CD If o is Q) U ais O71 Oo CC. «© CL x © fr Co CA 2 oD te ctr Do WN & Oc Ce Ce C0 C)> we: -— Cis at linear toot, L75SU » spacing to great. dia, stirrups g.for stirrups the 5 at 4" cec, 4 at One-third point of *2 tas rd x2 ft. ror econorical deotn, Using d = 23,2" flange width = (4*%2)+i6.,0 = oc,5" M2 2812873, = ga bat 58,5%(25,0)? for ais = 44,1 and 4 = —4- = C151 Diagram S snows f,= 425 per dq, in. and j = 0,93 Ss 16000xC,93"26.5 7 ae te 8 = 7/8" roas total area #,31 sq. in. will be used. Bond stress at top of bean = 3282 = - 8x2, 743x085 26,0 FE EL _j 24. > % x ! fe ey | t ov wescaes al +. _ _ 2-e¢ &-o Sie le—_}4-_gf sa%e2tto8 =572,1 lbs. per linear foot, assumed value safe siac. dos 4429 = C.Cal d z7,d Ah be 1 _. . wn 7} _ " : p = -#s24-- = 90,0124 o' = C,ay 14x 27,0 , ° . Table 11 gives L = 0.245 and KE = 00,0110 f.= 1812573_____ Le(27,2)'*0, 243 fs = Lede i7s_ = 15(27,0)40, G11 607,6 lets, per sa, fheoh, 14030 lbs, per sq. incn, 58 Maximum shear = 38650 lbs, On opposite side at one-third point shear = 38650 — 6450 = 25950 lbs. On side toward center, shear = 35950 — 34600 = 1350 lbs, vy = -4220__= 3,6 lbs, sq. inch. 14x26,5 °°. ye ear Use web reinforcing from s@pport out to beam Vs 38690 _ = i i At Supporti 0. 85x27. 1654 los. linear inch, 4t one-third point 32250". = 1459 los. linear inch the total diazopal tension (468441452 )xgx12 = 112,068 lbs. #* 112,068 = 74,712 lbs to be taken by web reinforcing, Bend 6 rods, 8x0, 6U 13% 16000" = 02,178 lbd.which is in excess of U.7 that ‘to be proviaed for, Assume a 16" coiumn, l= 738" deg! 2xleqgn = 3.3 4 — = 124", bend 4 tog up Allow 4" and bend up at 16" from center of cross bean Bend next two up at 37" from beam, Bend next two uo at 538" from bean. Use 1/2 ing stirrups, The value of each in tension is 2*x0,196*16000 = 6270 lbs. Tne shear to be vrovided for between beam and lst bent rod is 14529 lbs per linear inch, 627 Space stirrups S270 = 4,3", use #" 1453 ol, Tension rods will extend over 14930*0,875= 39.69", use 40" Compression rods will extend thru Sof. 8-44 = 20,7°, use 29" Reinforce top of slab over girder with traverse rods 3/8" round rods at 12" c-c. Slab Plan far VGranolthne Finis Gross Section at x-x Yer 52 12,7 2/e2s 1S sporg 2-8 ,08X,6/ een a, Payeou Sdnsaigs paysasoul oe ea Ee oe ¥, Be -2s2%.0/ 7 PT PoeT. Beam and Girder Rods er GY Seam Ne B th Girder for Total ends Size | length | | 3 3 Mie | No, | cach Wonted es 5s" B, | 2 z bay 5 a” | = 33'S @ OY | af Bo | | 2 pa ge - 5° . 8, a 4 =—@ | 3235 3 S B. | » ! _ 3% | evo-| 212 | 3 | g - a ee Bs| / 3 wt gs D ey | 8 ? 23'7" | G, | | 4+ | + $0 °O ge FO de RY 4 a — | 2 .| g, Le | 6% less0"| 6, | 1 | + | F Ne Pa . —-—-- YY / ee _ 7 , _ §° ov ABS gee Slab steel for one Bay as J EY | sto" | 6,}4 | se] 70 QT ee >" K% | azvo"l| S| 1] 8&1 e " 22'2’ Ss / 56 | 56 Stirrups No , B, | &| te ‘Ly a 29 | 63 42 oe B | tl 14 7 Ly s° 6,|&@\ Ww " a” 4 je? 53" 42 ad _ OS Be | st. I} i Se Ly "one pepe 12° o 2 é7"!| 6 | p | os | as T M 2? | 62" G,| # | to] 40 Cy) > On page 106, Volume 4, Fool, "gpears this equatipn for the economical dept of tile floor beams. 4 = / CorM - . t f(b 'c,+144c,) Z Let all letters have same values as previously states, c;= cost of tile per 1" depth. C= c,b'a' + Seth» 144d'e, f (a'+t g(a" +8) Place first aifferential of C with respect to d' = O ana solgge for d, OF q ()! ‘ DG = opto itiga *Est) OnecerMi2ts) . aase, = 0 Bd (2f.d'+f,t)? eob (af d' thet) ® -4eqrMigtlddcy (etd i +f .t)* = 0 (c,b'+144ce,h(2f.oa'+f.t) = 4c.rhkf, 4cn,rMf (2fa'+f.t)? = -—Sios__ c,b'+144c, » J Stig c,b'+144c, Va: - f(c,b'+144¢, j' = J ae _ f(egb'+144c,) 2f d'+t.t " Qo 2a' +t WPict cut dad = di + t load of 120 lbs per square foot. r = 70, On page 112 the following desizn is desired. OD. Design an interior panel of a one way floor to carry a live WORKING STRESSES Bearings 32.8 percent compression, Shear 6 per cent compression. Pond 4 per cent comoression. Steel, 16000 lbs per inch, Concrete, <000 lb. 1:2:4, 650 lbs. n= 15 Girders soaced 19 feet on centers, 4" ribs for small beams, 2$ oppinzg, 36". flange for girder, r = Co = 20 cents. Finished floor 7/28" maple nailed on 2"x3" sleepers. Speepers rest on concrete slab, 1:3:6, cinder concrete between then, Neights per sq. ft. floor area: Wooden floor, 5 lbs. concrete, ilo lbs. Cinder, Sleepers, <4 lbs. Plaster, oles, 4ssume a 9" tile, Total koad per line foot of beam: Live loaa = 12x 48= 150 los. 15J lbs, Nood floor, Ox f- 7 lbs, 7 lbs, Sleepers, axes < lbs 3 lbs, Sonerete filling 5x$= <0 lbs Concrete toppings lo 50x-2%18 _= 42. lcs, eee zx 12x 12 * 3 ten, 2-2-x 150 = 35 lbs, 2 144 _ tile o3. lbs, Plaster, ox = 7 lbs, total load per linear foot ~~ 310 lbs. Bendins moment; y = WA2 31Cxi9*19*12_ - 4 M 13 TD 111,71C in, los, d for economical deoth , when cg= 1% cents a= J ook . t 2 /20%20*11171C_ .D = 2 ~ 4 f(b'c,t+liic,) 16060(4%20 + 144*1l.zo YZ ' Try d at 7,5"., use z" concrete below steel, this will use of @" tile. heckin. Mo = 2212710 = qua] Checking, _ Tay s3)® L allow the b= 34 {| 7 DiagBam & shows concrete stress = 7zolts, tnis is to hizn, If d is taken at 9", use 14". concrete below steel, 8". tile. py¥e= 241710 = 26,2 Its. 18x92 Ls S42 = 0,277 Diagram S shows concrete stress = 075 los, allowable, J = O.t9 r ; as aE = spe ATS ogg 08717 sq. in. use 2 =~ 3/4" round rods in each rib, lay one straight, bend one at each enc, thus navinz as much steel over support as at center of span. Bend uo at, 42 (1 - f -Ssh } 12 = 12" Project thru at top one third soan, 6,5' x 7 = 8lOxde CoA S Shear at sSuopvort, VY = ==¥-=+ = zd40 lvs. u = Y_ = S238 = 73 los . . , - ; ‘ ’ Bo JA S%B,55%U tox The aistance to ovoint wnere stirruos are necessary ro ACGxKx4AxXxl Pax fe . xX = dz ~ =u z Sate = _ Soa! = O88 inches SL oll r ° : : #0 4 3 . ~ Using J/4a" stirrups, ent ends, soacing is Ss = = b 2x idusseXoX1SCUUxu ceux = g gn . , 3 x moo. =< use 6,45 6 gvdo Seam moment at ease of girder flange "470x772 «K Tax LY yon x = SAUX LEXEXIS- Gaseo in, los, 1s - ' oN ” a = 1,5. C187 , a c ae . ' — —_ Ww & 17 = * ( “py o =- 90 = —+s—-=— UL, Vets - - 4x2 faole li shows L = U.seu, © = O,Us04 a ae aoa . f= —-45+~%-- = @ico lbs, oer sc. inch. + 1xyexy 38 | f = feeSviw = ]Jscczc los, oer so, in. AXY EX UYUS rT , ve ° 3 Vx 4 . . Load on floor is siuxia = 222,05 los. ver so. ft, Sirder load 2382,5*1c= 4417.59 los. oer linear foot. Glirder weiznt 875 los, osr foot. + lotal weient 4427.5 + c75 = 472z2..c, use 4700 Its, Sd. 4 ROOK 1S 4x] 7 men ccm | vg Limiting deotn of girder is 36", etfective aenoth 32>5" b assumed at 36" j Q9a4 coe pat” Saxszea 4° Table 3 shows p = 0.0031, j = O.21 ao= 0,00381%cExe2,5 = 3,627 sq. in, use 8 — 18/16" round ré@ds, total area 4,15 Bending moment of girder 1762300 less 10 per cent = 1é&2520 lod. ins, Shear 4&0Cx8.5 = 42,600 lbs. . yo. san . Cross section of web, b = + = —SnckN_ = 11.7", use 12" av o4,0*1z20 u = 2290 = 530.8 lbs, sq. in. EXZ, 505% ,F8*% 52,5 . ox O9x7 5 ne ~ weight of stem 14*z7x15E0 — c37,0 Bobs, safe. . 144 4! Z.5 - -_ = += = 0,075 d o3.0 9 = -2e42.-= 09,0103 p' = 0.&p 1z*53,0 Table 11 shows L = 0.4246, K = C.COv1 , mHHYUAY() a : 12% G5 ,0**XU, 242 t .= q--ADazee¥_____s= 12725 los, so, in, 12%c3,573x0 ,0U0al 7 a “2x: wey “ . \ tend rods up at 42 (1-7 -582) 12 = 65,4", tent 2 at b'y" 4 x . oXC from supoort., Kena down at iz = 3S,ce' or 42" 2x3 HBenaing at too will control, Jistance to were web reinforcing is not needed dz _ auXierysedse.® = 6 54' or 75,45" ” . _ o™ ‘- A - oc A Bena other rods goed = 44,4" . x x *2 Py (— vs, re a3 X80%22,0 = 9.32, use 7/18"round ro iS Soacing ot strrruos at suvoort . > 3 Z.X%4Z56U0 a Axa . . es n at 4 s = Snead = 5,7" at 4 s = 2x4,3 = §,5" a Place first stirruo at 2" from eige of column, at center of soan svace at 15", cena 4 rods, 4 go straignt thru, “wo Cc ‘ ' ' : ' 4 1 = L) —— I reat concrete | 8" tile, 23° 16" c-e ' ' g v ~ t > ‘< = x v > 9 v Fe <2) 1:3:6 CurderConcrete ” + y Sect» 16" n2h¢ concrete Ie 2752 £ { Bea oa a! Section ot A-F. BB ona with ‘ j hed Floor nis Fi 8 Fy PDS gfe SUa sas papsr0ur SP-p, &- e - 27& x ,,2/ 4ap4ia re i 49,69 -$-Ats S34 A | C SBT asl ‘spoug, Se -2 | iS 7 att xX ye bag sSsozD << wit > ale = 1 : - = _ ae be] wef wel . o0,€+,909| |e a AE 2,709 “Sl nb@e ~*~ 22,8 10 6, / “Lk 01Gb % 49D? 28 0,8 +,9@9 « Fl> ee 4 |! oe SC lode kobe > eye oes ancl lhe ne BEAM end GIRDER RODS Beam| No, | Tetol Bends Se leng th or each | Ae 424) s24"| 6 | # | *# PP soe" | go | | 4 xP 32°6" 7 ttIe Z¥*\e2re- | Bl 7 | 4 ST/IRRUPS Size | Length ial No j ’ 3” =7| 1'vd"| B] 20 7’ 409 4 7e| 77 G | 28 Cvy- On Page 149, Volume <, tne followins design is aesirea, 6U Design an interior bay for a flat slat floor carryins a live load of 180 lbs. per sq. ft. Column spacing 18' cec, Working stresses, Esaring ¢z.5 per cent compression Shear, 6 percent compression, Bona, 4 per cent compression, Steel, 16000 lbs. sq. in. Concrete, c MM, and My, will be in F476, a Per feet orin sh. perinch S \ - > \ u ’ , / ‘ ‘ ‘ 4 & , tr 7. “ » ; LL o I f f # ' i : IN te N23 "5 ° , a 3 y Ss Values of = Values of t Fig. |. Fig: 2. nen Be = Ryorge “aha Me = Hor, Nig-= Cqore -and B.S SOR, Assume dzaneter of column capitol at 0.2L, 0.2*19=2.6 B A t GA Yr. G,6% 45 _ = Jd r =: Meee aS eet a 4 fo) 2 2c “ a Yotal loading cov les op SiG Es Area slab, lexis = 324 so, ft. Area cir. oblate ¢,4%n.= 22,6 s6,. ft. trea OutSsSiis of AsSstimes vibate 242.4 say. ft, ow it £065,4 circunferencial unit loading per foot. nw n> OH in- e | in om » > | te 1x joo Ic> jC IO bs UL. ® Value ra of constants X, and &, dpasea on Poisson's ratio of 0,1 and with l 9 Values of 3.2 3.G 40)'45)| 5.0 # 20122 | 24) 26/28) 3.0 3. 38 0.72 408 1S2 2.04- 2.66 3.37 $07 5.06 6.05 71S 83S M77 18.93 Ra 1.66 21/0 255 5.083 3.St 402 4.54 5.07 S.60 6.47 6.73 8.l2 272 4,U2 léis7,7 in, ani it, >,0*%1,5 from this table 2, = 3,37 M4> 3,37*3C00*1,5% + 4 CZxz 2085 Place 2 overcent steel in two layers = los. per in, ci: at too, diasonal, Place 1 percent steel in two layers at bottoa, A's i U,187 3 = 4242 “oy o rectangular, Using an assuned value — ny) — f Le we 162.7,7 ¢ ToUxO.275*1~ From table ll, a take d at o", total avcotn at 1lU,o" «2 aeaa loaq s¥+ +44 lss les, oer sa. foot. a zat too one J,oxX 1 ZX: XU ,U2 slat over colunn, = 42 sco/f in, —_ — oS vo = _— a on four slis oft 3.11 to, column, in, in roid area, fe, 4 1 YY) : “Loe, = WG. to Vv 7,06! Surtficlent, an Q-c 742% 1b = ed at +" slab at column soace #1iath ot cfs" 4t pottom or Cand, round rois sodac cc Jiazonal distance cetwesen centers of intlection, 60,24 = luvs = lio ft, ¥oo= wl? = evvxie cf de sl,~74 in les. ver ft, 4, — 1?" collerete celow stcel, effective tnicxness slac 3% . 7 Dqaonr4 . 4 = E42 = 12 deduct 10 percent, ™ = 1,244,160 in lbs. = l,cosz,400 in, los, Maximun shear , 33200 + 6x500 = 432C0 lbs. Cross section of web, 46200 = 47, SO, ltr in. d= ete + s b! d o'd S 16" 24,1" 241,0 sq. in. 11" 23.0" 469,3 =" " 1c" 22,3" 267.6 " ™ 12". o1.4" £78,2 " * Use 10 rods, 5 in a row girder 14” x 50.0", total d = ©3,6" mo “) —— _—~— ———— CN Ou Width of flange (8xo)+14 = o4” = 1244169_ £0.6 b4:-xiZ0 2 Neight of stem ddneg. 25100 = 433.5 lbs. ‘ = 337 = 0.16686 Diagram 8 shows f,= «00 j = 0.96 a= 1244160. =z yp a4 S 160000, 96x30 .C Use 10 = 9/8" round rods, 3.07 total area. Bond at top of support, 43200 = 75 lbs. " ~ JO"1,964*0, 96x30 d‘= _% 2 = O82 G2." = 3207 = 9.0072 ' 20.5 P " Ja*x3075 po = 9.0p trom Table 11, L = 0.186 K = 0,00644 eee Se ee ee '|-——_—_ & = a ee me a - = 1244120 = o fo Tix 52297134 O14 los sq. fh. f= 1244160 -— ee = 142335 lbs S in © 7ix30,52x0,00644 SS 3 At support Y= 23490. = 1666 lbs Linear inch ja QO,8Ex30,5 Agcexerle = 79963 lbs. ‘ [woethirds taken by web reinforcement, c33l1z lbs, diazonal tension 8 rods are bent uo. 3x9 296 e)) a. _ Sasasies ZAdEIZ0 = 55100.5 lbs taken by rods 7 Assume an 18" column Zero moment occurs at 4 of 4 = 4' from center of column Bend rods at ~ 16, )- J 22.5460] = 4,45', from support, bend z 2 a 42 (1 - saguSsy = £,26', bend 2 a5 lL 1l- 7 S*8as33s = 1,¢4', pend 2 45 Lle-/v7 Sas asush— |= O,82', bend 2 aw Bend down two rods at £x0,2063x16 - 1,.05' trom support 3.07x3 “ meee Bending up will control spacinz. uxtend rods for bond, 526100 .. 8x4xB0 — en" Stirrups will be used near column, 0O.012x%0.5 = 0.366", max, dia., use 3/8" round rods, g = Sagi? . 3x0, 11% £x16000%0,55%20,5 = 3.497 :nenes 2V 4% 43200 place first stirrup 2" from edge of column. x ., . at i gs = 4%3,17 = 4,23 inches 8 3. at i, s = 6%*3,17 = 6,54 inches G, Ts —_— = as TT eee ! _ | ' a. oe bh 4 -+ _ . ' : eo gee LF Enel F IE IF IF IE, A A « — S rod so e : Q | | | © ‘ | ‘“ . 4-$-veds a ! f- 2’ reds , : S 704° 26", 36/6, 20:20", 2013" 26", Leiz- 210 IO/6", 70-426 : 160" ” eae ¢- 3g"brods —/0°RKU2E Te ef +- Fores Z stirrups . Scale £'= 1'0" a> oe >. 8’'o” | | a Cj 4 Sg (TTT. tf | ae ; > | } / | PNT Pe daa eg 4+ AA HEN} ] \ NX 5 ¥ : I IN a tN] }—4-} _} i i eI +h (| | + +—{-} : +--+ | $ t ¢ t—+ he iq Tt N44 Tal la Czgre Wt. sesi2¢,. #010" ~ Fo” 18) 10", 8, 4ei2' Se " =<} se > | <—_|_ 54" > ede I Gy - JF X35" — 10-£°9 rods = stirraps ae Scale £": 1'o" Steel Schedule. 71 taends . B.or G. Ne. Size | length Mik. | Ne.| each Total Straight % | 20° |Si2| 4/184 % 1' a” 612 |s2 |S2 "| e972 |8B)3 | #& | /2 oly 2 26°9F I Bis | e /r2 3") 28'93"|6,,2| 2 |¢ 8 2 |°¢, =" | as'23"| 6) 2) 2 | + = | 20° 16,| 2] 2 |4+ Straight % | Roo" 16121 4/8 Stirrups. Bends. ; ) \ Sy 3" *, te ' N@ 0 6” gv os SD S'0” 21/8 |2 et js 6 B2 é a Roa “ Xe 3" +g + wr 4 8 4+ |77° |6,] 2] zc | 2 bee LL ty 82 In Chapter 6, there appears a typographical error and a mathematical error at the bottom of Page 190 in the sample design, under cross beams, The equation is given v= Jos0241__- 16,900 lbs. but should solve out V = abugned = 16,100 lbs. Bt thx bottom of the page is stated 264200 = 153 sqv’ in, There should be inserted before this statement the letter A =, to show~ what the 153 sq. in. referstoo. DESIGN NO. 9d. Interior roof bay, 5 oly felt and gravel roof. Live load SO lbs per sq. ft. 14' cinder fill, 2" concrete surface. . Columns 18' x 20' cc. Girder span 18', cross beams 6' cc, Working stresses; Bearing, $2.5 percent compression, Shear, 6 percent compression, Bond, 4 percent compression. Steel, 16000 lbs. sq. in. Soncrete 6c0 Los compression n = lo r = 60 Slab, Loads, So ply felt and gravel @ its, 1#' cinders 67,0 los, <" concrets surfacing 7 = 457, F- Fe Uafeespjoasy 725!" fs" pppoe S28I" (76000) 0.937) 20) ” - 416000 w us Oe. role. 937Ne 0s) 88+ At right Suppert Same as left. 10.4" Web reinforce ment. xe SF [o- Vers 36” , bend up. = 29° _ Zo 7e 93 J = , se ® x 2 1Is& %2, Os (0.01)(8)= 0.198, & Pbent 0.4) IND 600 0/)/o. (2) C 748 0) tt, a=($)7.8) =: sos- at. £, er(Z/zs) : 48-0 b* (SS) (18) [0.878-) E94) Cap) S= ae. Jf} © 7.9” > 22.6” 2°’ tte = FF ae FOS" sri” en 2 ee ea 13" > 76 Roof Girder. 46" 2 *580: 23/60 =e ees loss = a FT GETS %® *K Z £ sou \ . \ 3 7" 1 ec Sa Ria EE a ' St ef | 48 — ae eee eee | tor, Pe a wie. Var i, vet, rar] 3° 22" J z rae jet oN 8-349 lead per foot. 3.539 Slab Cress Oection Wal/ V: 23/60+(9)(y00) = 25860 Stem 300 M= C#160)(18)%{12) fos) = £27,056 inp ‘ a fe =4 5 77h f> s Total Suse +300 =4/60 Atta far Shéar-= 25860 29g Se re ee teofstem = Co Left Support: ae / ie Catgpgeee) “eee es jee Se a. 4s =O.) pz er eOre, p':0-S bd** Cs9)(2aye = 79-7 ss = 634 J=°.9¢8 eee K=0.0'13!, Ms, 213,056 ~ 423,05 - 213,056 _ ‘ (/6o00)(0.9¥8Y25) 3-2 Fe CYAS)* (0-261) See ** Ceooonoavayiss $2 fer 2/3.956 _ ya gg9* Web Reinforcement (12)(28)? (0,213!) Ve 25860 * (O2,356)(0.984)(25) eae s) iil oe na : O —(300)/6)_ DL . Right Same as Same as /eft. fet (0.948 C25) 101 EZ pen’ 18 [eae tota/ diag. tension taken by 6 reds. 7 tze 64,8" bend 2 1217 #07 “ep C2 3.53) S17 ELOMS (EN i2)(2)= S3S68” - C4) = 57.2" bend2 2 Voce 7 Go. mvelt 46 000) | 60.6/7* gel © 5) 36" bead down Ce. iid 0.328") uses "“Stirrups. bending up will eortro/. s- 2)190)(16 000) -¢)" x,: 4g - Go)(10)(0.94 825) , » os “a = SEE =6.72'er 80.6 C= (623)01S)(0 1878) _ 25.5" C4#)C80) atte £61.31" ot £: baNes)> 12.2" , BB CGO”m . _. €'e" | €’e" ? « 2¢'O" 29” | __ 18°o°* . Girder 10° 28” B-36'6 , 5" Stirrups. Beams & Girders 3 . Bere We. erds bge Lenght | er —| xe Tote! * iV / ot dae &) 2) 4 ge , er “ > or \ = |286")6,) 1] 2 | 2 ae 8' 13” |, 21g rie 21g" O'S" : 277" ‘ | 3° 7" . 3 $F 26 6'| G, / 2 2 zits" 2ig- a2" 24 n't" "277" “= 7° . ‘>, ~ “| oo. Zr le,| a] 2] 2 nud, 2:9" ak —a7ee 1 ew LY— te |'52"\Seb] 1 | 75] 75 $8-at! Strarght x” | e2'* 1 c, | 2 2 " S| 2¢'o"|Sabl » | 9 | 9 " Ye | 40" | slab| 1 | 37 | 17 Stirrup s. 4 c Bilel2¢ 3 ‘9 a |+° 72 Sl 2) 2¢ 1" ime 2|°° /6,)7] 23] 23 Chapter 7, This chapter could be maae stronger by the introduction of somd explanatory xquations having to do with ths finding of the effective areas of various tyoes of columns; equations showing use of reduction psarcentages; equations showing computations for weights; and som steps in arriving at proportions of steel to be used. -:st pregwent the reader finds very little of explanation, he then refers to Volume 2 and finds still less, of the basic work on column design. Unless the reader has access to other works, or Can reason to conclusions logically; he has nothing on which to dé¥sic develope his design. Design No. 10, Page <16. Make @ complete design of a typical interior column for a three story building using the floor and roof load determined for Problem 5p Page 45, and Problem ¥, Page 74, Joint Committee rec- ommendations used throughouto height floor to floor, 13'; base— ment 11 feet. Concrete 1:14:33. 810 lbs compressive strength when effectively hooped. Hoof load «6/1z2)'*x16*0,4142*11x150 = 72983 lbs. Area 525,22 sq. in. 1 per cent steel O.25%< sq. in. Use 16 — 11/16." rods gives 5,94 sa. in. l per cent vol, feSse0, O1 = 0,634 sc. in. Effective area col. c Use G/&" hooos spaced £,4¢5" cc Column Schedule Story|King of|:smount of| Snape of |Vertical Steel |Spiral(Core Load Load Jolumn (Rounds) S" less than - dia, c Roof 74258 1é" Oct] 8-1/2" at Olumn, | srd | Column; _«zvg azonal 1,57 so.in. 1/4" at 12" Total 777 5£ Floor 1119C0 Z21* oc=]| 10-9>16" at 5/16" rods «nd | Column| __4247 tagonal| «,42 sq. in. 2.5" spacing Total 194568 lao z7"+ Floor 111300 25" oc—| 16-2/16" at &/16" at <” lst Column] __7012 tagonal| €.73 sq. in, pitch, Total ©1610 lap <7" + Floor 1119C0 22" oc-}] 16-11/16" at SS" at £,.25" Base] Column| __7z2&3 tagonal| 5.94 sq. in, ditch Total Aes e93 lao <7" + Column ¢ Hoof 5 Aly felt gravel 4 9e iL Cinders [_ t — F"Concrete : wv : | ie 2, Pang 39 Floor aa) ers B- Le vert. eek SS L” # spiral N «l"Granitoid + - Ne 4""Concrete ‘© im) to. % Ny K s s 2% Floor fo 8 10- Z, P bert. z4 Spiral . | | wl"Granitord —— _- te "Concrete J . 5 16 Sa —- 9g _ 9° F yert, 1S Floor : Tt SS 16 AN " N N 3 spiral ae a _l'Graniteid E E ; —fe #'Concrete 5 3 4 = 3 ye : . oe Basement y 2" spiral y < F/oor Line Saale é xs’ CL: IN Chapter 38, This chapter deals with founttations and soil pressures. For the design of fundation footings it is neceszary to derive a formula for the distance to the center of gravity of a trap¢r izoidal section. Let the dimensions of the travizoidal figure be as given. Taking moments about tne shorter side aa + cc zc c , Meee cx = xk + £ES xo'* 4 ac xt ™ . - a - j & ce £ " ‘2 (atc)x = 2c™ 4 ac- | v 3 Z eg o ‘3 ‘ -2 (a:t+ce)x = £5— + £5— 3 Zz ____)- te ac , 4o'? . Xs a3" rere | atc |_¢ J _. €ac + 4c# E* —-OtaFtey- ~~ Problem 11, Using 1." round bars, design a single square footin2 to carry a load as determined in Problem 10, pvaze 80. <:éllowable soil pressure ¢ tons ver square foot. Working stresses as recom¢ mended by the Joint Committee for 2000 lb. concrete and medium steel. Design by cantilever method. Total load 433,393 lbs, 20" octagonal column. Let footing too nave 6" ledse, thus too of footing will be 41" square. Area necessary to carry column 4c3293= 108,25 sa. ft 8x2000 pei \ ar, Increased by 10 percent, 112.135 sq. ft. Use a base 11" x 11' souare. érea of column 601 sq. inches | 7 = 4,17 sq. feet. | ClixJ1) - 4,17 = 115.83 sq¥ ft, net a:rea footing. 3X4 ,42%4,28 + 44,25 xX = ae 6(2,.4E=+4., 23) xX = 2.6 ft. oM = 116,83 *2«2000*z,6*x12 = 14, £80,554 in.lbs., f= 16000 f,= 660 n= 165 from table 2, p = 0.0077 K = 107.4 33 4 = Kbdt d= h- = fddtsvesd. 2 ayige Kb 107.4 *ze¢2 *+ in? 11828322000 __- Sg QO j- 03 DE es LES12LZN AO. Lee Lresien a wall coluan footine to sustain a rectanzulér column 24 incnes oy occ incnes, carrying 4.0,UUN pounas, f&Allowacle pressure on soil «< tons oer souare toot. xéintorce witn 1" rouna aetormed roas, Joint Committee stresses tor zvUCG pdouna concrete, With mild steel? Volpae 2, oate Zev, footing tor column ~-4vvuly = 100 sc. ft. area ZXZCIO aad 1lU ver cent, areé useéa ilv so. ft. rectaneuler fcotine lv’ * il.wc' ¥3) a 36°’ ¢ 18 Fs | 2 * Ie cg a 4" je LL 4 hn , t + eae et o Bréo 4 = (4dab pts) 4 = £o7,U sca, ft. | + +£ . £rea «& = (AV 412 a ce = £0,6 so, ft, « al . : —=s--= + zc 4) 2 a KS ee nn ww an aw www er = Hos ft/ a ot 4 £%32£68_ + “/ (bf ,20)% x £ z.04i tt. a ‘r= li ~~ N\ CC Ne o nN: nN r~ nN oo C Cc nN “ n° (y i C) goede, 774 In. OUSs, i ¢ ‘e a Ch itt ,74U Inf ods. dy si 1U7 aX ca at¢otn tor ounchinge sheer, (ecdled less) 2 culy" (cc) Cauc) hecstd le) (ecoy) = yy em aa (24)Cduc) punching shear on ay will rule, Ay Vf olace roas lLenztnnliseée at 4.ce", cresswise roas on too of lonzituairnals, z.c" concrete celow rods. Jlotal aegoth Ge", Lonzituainal roas; ao = (¥,Gu77) (ce) (4u,25) = 7,65 sc. in, sieel use 1] = is/ic" rouna rous, 7.c¢ so. in. area. K = esacred = go ,7c" ae (dev) ive llalteude) = eocu Los, 144 coUUY i.s le | ee = £1,525 /S. Oo€r sq, inch, (107.5) (0.672) (16.74) deze) (e00u) = ivl.U los. oer sa. in. (11) (6.245) (0.876)(40.¢c) Bas ’ 7 . a emg ft - 2 & SM ae ee ¥ -— ~l22RE"_ _ 8 te e 4° > t 6° ! ' &, { > *, ats % . ‘ See { ~ { | | t ' = asd soso = fe,x7 0 = U, UVoe (c€) (cg .&) ? = (U,U0c2) (SE) (ez, ce) = &.646 sa, in. /& in round tars, aréa u,Gz so. in. = (dec) (IU, oe) lerby) “ ot | rea C ‘e nr ¢r © — oO Ww s in, i wn nN C1 -— oY n wn OO cet. of column on vases, (ia.e)(i0) Cleu)= 17, 2cu sifilo + lz + f(iz) ac) 3160 = 21,1288 -_ ol coluan loed 409, GIU total load on earth 435,445 soll wild carry (al.c) (40) (4500) = 4€5,C0C vw qc c). cC~ bD kb + | yg er Ht a I} *| | | .| | ls ‘| = «| | *| Ay [| a lo ptt r For 3 , a % te o. 8 9 ye 28 Q “5? s. ~ | 1 Q PN + & = /‘O” 4, Scale x fesizen nutcer le, Consiacr koaa of cuv,ecu Los on colurn ao. 1, zu" * zl" ana aloai of cUU,vuvu dos on colunn 1.9. 4, 24a" * 22", Coluins ls' c= cc. &Allowacvle soil oressuré, « tons oer so, tt. VWorx- ing stressé€s as recoumenasd Cy tne vOint Comittee tor «cuuvv lcs, concrete, medium steel, _—f ks ©... 18 'Q" _ ah ! | | . 4 *~ - 7 i —— “, ‘ . | ro Cal. / . ¢ f "7 —_. = oy bal _ - - te a | - - - Ot - {Coh2 | . = _ 20 w| z . £9°a * j wy W . 6 Siva gt { °. j “| * o | —_ ~ Po lg: 9% Fe"? -_ —____-& ~ Loau on column l, £0, UUU boaia on colurn <«, clus uy total, CUI, UYU ---~---- = i¢, = (eer ess) (| aas4e-—--= if u is taken at lov numcer roads reculreéa ——------=££2e4_-__--___---- = 1¢c.l (i.,074) (o.ct1) (42) (icv) use 1% = c/=" roos insbeaa of lo (feeoaze rz) Colymo lL. wax. Su (segues ) (Sed 252 sl) = cclou les. 4.0) if u = lev a, number pois neeasg —-----#Ss¥¥-—~---------- = 7,£ . (ic use t —= l/z" rous insteaa ot sc, (Se 42 crv ct Oo O° rR (* e Place 7/-" roos at <4" centers cetheen en Stirruos Lonzituainal in cear, Colutn <«, £t section wnnere snesr is 45 Los, ae oF iP ost tg ’ ; Y z +6 nN z. a: ° 3 x i if Sl oe] u + _# eel p26’, 6:06’ | 249), 269°) 2.27) 2.5", e————- -40:¢' ____gy __@?z* _ (ro, 44) (a) Ceece)= (er ,co) (5.456) (de) Ce) (ulcer) sesvvv = (l.eci! zezxl = -7c,e 1o, sc, in. (iL, ced lev ec} de) lo .z7e) total Srear tO te wveven CY Stirruodos, o. ". L aa ou t ~~ 4 vo . (£545 -=e ) (+45) (a¥4St-2-fue5 } (za, cc) ( dean )Secser le S, ce Z L / f£efee awe - = .{- ~ 72 GQ oes Tres oss terete & ust ic Ss tor tT Q my At if ( it ct e¢ - ® C_ C_.. C> I -— f e CY e( NS “ nN - ry: ~~ _— iL. C: C Cc. on Avrvev rss relies rit heey = Jil.c los. sc, in, (4,07) (2e7,e) (12) Col. vs) total snear to te taken Cy stirruos, 141>6 — 4a0,,111.&.,4.4%2 + &.c8 a ny L (S222 G2 88) (Altes) (SaSSo 2 S4ES) (2 0E (44s) = leacce les, P) o~ } —-iisiis = 42,4, use cU (1E00U) (OG, 1lee) negative moment at suooorts, Colugn «4. (iG.de) (12) (e7,2)8 tnis is less tran tensile strenetr of concrete. olace €, 7%et" roads, 4' long in cottom at colutn <, round rods. olace c, 7/e" roas, 4' long unser colurn 1. ronond rods. deotn tor oucnhinzs sheér at colugn l., e t oe ————_p . gered rt a .! tet TE eee oe “to ata nal ; | eT Aco ‘4 as { — _ ‘ ~ wr ent 4 ae _— | --T _ — _ ~ bo fam oo ° - 1k ~ ‘ . aot wel ! e Frode —— — | . lees a ‘ \ ty ertet en Oem . &S * . (oe “mY oT ’ _ ~ rT, t -_ . c ao ' ~~ J - - aL aa type ee 7 eee ; 1 _ 7 . _ t vai ) 3a ene t \ red ro ‘ Db og¢t',* Veer “tT _-@ . ; . x S ' 4 | WS fee stis ee Re la. CV OP bay gee bets ! 2 —o— + . , ° 4 - 1 d t or: ‘oe -- t ! ‘ ha tf + on e ft 1 o ‘ if : t +——> atm ~~ 4 — to" t _ , - Ta cape 8 ~ anche - wh. _ r s — Corer T * ' 1 1 y rt 12 ioe a Triage erp a r++ - . - ee ba "hel [tg wert + - y , opt tee . WA Ir foe “War ‘ 11 tad | we . gl I &~ Fd regs —__- - TrY rete tet ko ge . + 4 a + ¢ a yO 4 7 ' 35'3” ‘ Assumed destributis 2, fe gle jp @@2g°=m'6" $22" o . 17'/0 7 ee 3 asooce * : oe 200 e00™ él ese e 0-4" Single Stir. 1§-4"*s L soe mt a —— tof ' : ¥ ‘ £7 Boreds 20.5 -eweaesnoe -— 7c ew wo og w _53-g@eoks tel S7-B T0k (eee © 8S Oe e e e e 6 e eo Ot OCG es ; @2'e” ele L 9°. 9’ ye ‘ur e ” Scale & = "oe tN ec Cesign to. 14. Cantilever toundation. = ec «Gf ~Ad py --a-b = - 22 2. To. =. Phos pt22 ora ges 2 =- -— =~ ew = ~ _ = --- --=— aaa ow o eam weewen owe @ =ytplacecy SERS wRewmanenanwoesvnece wee a ben ww we ww meme ow oe oe Wem cwaevces wcaerwe @ co ae P4eder ms eer e@2ewae 26 & oc --7—f preqo meet ett ee eee tee ee —_—___-—- £0'0”" Scale 4: 1'O" i --- T-rariisntss ssrip ssc === = = 1 . ——f ne ww --—-------- - -F-- --4-}- ~p i-4+-J a w.0..””~C*CdWm ee wwe wwe eee meeewep eee = hbeo dno wv eh ee ” a MGR eet ve & Fartition Wall , * 2 Scale <": r'o" Section at A-A 7 Beam 10"x26 e ° Ff *reds 4*e-c¢ Yeds (2°°C-c ePEX bl Aap4ia a ee ee ee ee ed ” meee 2"c-¢ P| wv” C-c Section at B-B Seale ¥= 10" i een ailbi ss snes A are 8 x tet < s “, x8 : > afte “Ss < Wisy Yy wl & i]. A ih WA 19 : S10 i& x Ys ; ° gt | 8 faa ® } &| >. * dla c's 1 8 WT Nf ~~) ‘ 4 ‘ov S). XN = 42°70" Ss 6'2 : xf 4 STH] | ' 5 <| oY, e x ie Sa) ; +i = <8 a : . s 4 —_— Chitra |e Section at C-C OY) | none cece eee ce teen eeeee 4 I eae hase eeces cnenceces bs cvescosqncd ny Scale e7/'0 : errtse @nd sla oo a er handing Sus U Lendin Cléeoeryon's Jceersi of iri toecre: 18 fe ~ _ S S le TOLLOWS; Consiaer Cnaoter a o- a Sinz-lé Ve Statea [orse .OLlezntus, in cdusatlonr tor, on oa.e€ +M 1 = sdan (. | 24 L=2%) ~dral mio ai a tirst x -= 4 2 . : lake nozrent at section [cr oart + Vox 3 to Left. tT) a j . — N x x~ vo . uA > z 6 when x =v y = vu therétiors ve, = vu jake Wwonent at section for oart to rilznt., 7 —_ ay -N CD . Y= v9 + a aX ~—— o\X -1 o) 149 _ ty Pa i[=-2 - "9 + \y o% —-,(x-il ow Y a AX 2 ~ 4x * ‘ j — \y ’ —_ oe ek ee oe . : ’ . » TAL = Vor +t tei . or oatetroa 1X . L &, Y I 2 ~- ,¢ _ . xz | = ({2-— + J2S"> ~~ feat + aauigh*= + Oo. x& + 4 “L 6 CG S wren FY = Y xX = lg z < < - ae . ‘ 1 \ ot - od © ~ 4 a . 9t9 7-2? rd ? 7 - aD «a> 4D aa» + ap a ap oil § Pet "ls 4, Ca — ee ——ore rr ———o—ror—e—v——o— ror —o—c——o—oooe (is) ZL C C “L C SULSTItute Ecustion (i+) In ecuation (ez) -_— > y S ., t. o L 1g rm iv ¢ _ Vs g r ~ - 2 “1s , els \) oi ¥ L cis - oils ~ 9.5 1é + Gg FS omeprr st trees cm cerctesss so strc ss seaccn (a2) x x C C kK tl 0 S are ecuel wren x od UatLlon ° boy SUCSt1itue ECcuation ste) in eGe ation (1) | Vox* 2 ei*1$ | Voda Velo Fold oF Le ~ Kr FLé rient secrlion, Substitute ecuaticon (14) in eEcuation (¢c) ny V_x* + ox? Velde Veolf Pole t.vlé ret tlé ~" 4X : o* pe . z z LZ O c. Zz C In & continuous CéE€a4t the LerseeMmts are corvrten ltrearetely Over thé Suoucrt unuer corslutration, ttle 1B Kl R he Ms M4. . . ror @ oclnt over vy, olece Sseuetion (is) = Ecuction (act), uSin2 Une orover notation ot tre Seen IN Which the ecuation 15 oiecea, Louation (a/,) ris notation of Soer vo,%, EPA SOust1IcN (47) nas notetion of Sdon va,ry. X = Lb, ln E€Cuetion (ivy), xX = Po iM ecuation Cac), f is the COLLon senomlnator. Cy gh toevgl$ - 6 rel F + Cr, LE - ev ele — Vel = + vole - crg-l,* — PontlZ = crelflk - ceula -— valk + reolt - crelli - Fenkl§ (ac) COLLectine ters; CMels, + BSB al, t £1 el ¥E + Vale = -ery le + er,le + Fes8le + Gr ot*l2 — cr evlé +t reli - rp Slé Cae] ax a) a) AS AS i! an WJ — i Nh NO f— a) 4+ q me -— nN | AN ry N <— t) — &—& Fe i £ a ° J | 3 + t aS ) | ry ~ ‘> ao N\ MN ~X ena (se) Tn scuaticn (ar) “sh “oO \ & t- ‘” = ‘0 e ry) my 3 ON a ts Cc re oD) co —_) c ¢ C € c C. c ct b: © — oo t LL NL . 4 c. . . . . . . 2 — cued ptSralatevoal goss gl eter gl gres pl lets darsv al at gla-r agi l§ ob ph Ste gh Face gh ete i Od Boe gL Ete HL eRe BLE (x - slwolityins: Molotergl ater gleotrglg = erat leteesth Beer asl eter ei rl FP en Fl 2 (Ze vrogolns Lerrs= Moloteugllotlait\:41, = -Fel EUS -h 87-2 al Flere n tt KF) inis 1s in tne tora as statea, I[t tore tran one concentratca loaa occurs in a@ soan, use the sign 2 cetore tre tno teras in tie last oart ot tne equality. UN pate cde 1S zliven tne equetion tor trree worents for unitorn Iicaas, Valeting (lotla) ty gle = — Qwol3 - dwal3 Lerivetion as follons: (i) on N° “s Ce) (4) 7 ay Vax ® Waks vals vale Wal ax , L c x A za [nese tho taneents ere comion over suogort at vv, mere x = 1, ior €cuation (4), %» = @ ter Ecuation (:) a c@ Bay ~ cy s “ eesSSe ass Cee og Yee TT i Ponce | | rT TTA rT seEtEES > 4&4 > m D 8 Intermediate : 7 2.2 2s. 3 i $8 5 6 ec 8 ‘Reactions. + ee eer Shear, end ® = mn 5 © & ™ gspana memes Pp S$ $$ & 8 © Tertermediate Support. Shear in Center spen Seuss at jater. S$ § 6 ¢$ 8G mediate ” Suppert. Leslen gu, A continuous Céau of trres ic' soans wW1tn Sus.norteda enas 1s sSuoject to two wovine 1Loaas of cevUv ooUuNIS Each, Soacea c' apart. Hind waxinum moments ana maxirun snear wnicn may occur, See alaezrams on paze ivi. Loaas movinys fron lett to riint, paxinum worent Ena span, lst doaa &.7c' trom lett support, Lowent at 6.75' from ena, ZOUIU*e,U4e x) 5 = j re ~ tO> > Id IC, ™ LEVGI KG, 466% 1 Cc ak cxzcu.y ft. los, lst loaa at miaale of span, monent at eenter, 2cUI0%%Z,Uxlle = 7rGdGd 20UGUXU,E2*1.E= foe grecu tt. ics, gst load «' from suooort, zronent at center. ZouTsGx*%i, Gexllo = tecyevy 2ousUxXllexlic= evzevu.d cece“c,uU ft. oas., lst Loaa 5s' trow suooort, monent at center, £0UUGX Ll, couxl.e = €2625.,u ZOVIUGXI,7490*%1,0 = efgelgt sctc“.c tt. los. “¥axifnun wmonent with Ist Loaa at wisaals ot sogn Voments in midale span, ist load at niazale of scan, noment at cénier, ZouTcuxa, ox) = cechowe SussuX%u,4eex*a,c0 = deri se cidzvy,2 it, Ics, dst loaa atv 7.5' trot Ltéerucilats suooort, monent et center Kou Xa, Dee *L,0 F Corel ,t coe xX eae = 42209,U /oecerv,e It, los, Woo eb Ovey lntericalate suoooct, lst Loaa Trou Leit sucoort, eouUUxX ad Cede e = Claw Souur®y, Coax], © = baat ke se ceoce,o Tt. Ices. fst togeu at 10.c' Troe Litt suovort. LOUCKS rhe Xa, 2 FF CL yu LL LEC GKO, TEKL YS = ear cyvyguu.s ft. Iles. lst Lloau at iz' tren Lett sucsoort, Lovee Xe KG 7 F 42rcuwy,’r LeuveK%U SOe 44.0 = Sten ,b Soacvy,c tt, oas, wWAKLTEUL TOLrsHt nitn Lst Loaa et ive tren Lett suooort, WGX1LLUL €haA SLESr, lst Lo&d EL SUudvOdrt, ZOOL LL . “~ sc UF ( . - : wit a —_— 7 o my . as : 7 : . £nu 1l.ai at oOo pou *%yY tou = 147 aN Lc l/ouusy les, luv, Interneaiatéeé rsaction, ist loaa at 1lv.e tror ¢na suococort, U.,cl4exeuuul = Zerivu UetTTO*XZOUGY = BHT &a72o0) los, lst loaa at 1.5' pas sudoort. O.,e60xe5U00 = “evuTe UV,veoexezcooUU = Z£e5Kee 47200 les. lst loaa at le’ trom ena supoort OU.,e7execuuy = ze4ece O,¢41lxzgeueUu = geecge a7-cu les, lst joaa at le.c' tron ena suooort Oe re/X2oUlu = “2éeze J,5GSXecuJU = g]e&sy &Sco70 Les, shear in €na soen at intertediatse suooort. lst load at suooort Z£OUUYU cna loaa zcouuuxg.7c4 = dZdyuy e4]uu ics, Shear in center soan at intertealiate suooortu. ist loaa c' trom suooort U.e¢]1 * gauuT L727eE end loaa at suosort Lowey azc<7o Ics, VaxXituL moment in ena soand co“eU tt, its, WaxX1lDugd monent in midale soan tlazo tt. Ios, MaXlmun motent over interteaiate sSuooort c7evu ft. ls. M@axX1lMuL ena shear cou lcs. Vaxlimun intertealate reaction a7700 Ics, Shear in end soana at intermealiate suooort 4«4luvu Ics, Shear in center soan at interzeaiate suovort 4zxz7c its. Lesien «zl, Constunct motent ana sheer dlagrar for a ceaz ot three Soans Loaaed on oily one ot tne outer soans. Consider cotn fixed ana suvoortsa enas, w= cuu los, 1 = ds’ — jf 2 Me ms enas fixed, £iqg(l4"lii + [ol = - gwol® ~w3w,15 £v o( ltl) + Vigl = = 4w,18 — 4w,18 + Wool Ngai Mol + evgliltl) + vl = -— 4wol? = gril + + Mel + cv,g(itl) + wl = - 4wal® - 4wil? let ena étd 1 Oo = U , Ww oO = ov 6, t+ \wy = Vy; 2 + 4 y, 3 wt / Ys 7 M 9 oy, «Ft wu % mV 1 + (N. 4 aM 1 + c ZN, 4 . - ¥V. V = 42 bd Vo = Ve ~ V2 = soOan, lig > ia = vg = ‘a7 a 4 = Ma Mg = Map gsoan, Vy = {4 = la = Vv —4/ou M 9 + V —lviyu => / oe VU re - — fou a \; Mi 2 + Y 2 At wry + wy “ eu + = cUJ + ; Wo = Vy Wa = C, Wa - 40,1? Vg = - gw,l? Mag FY ivy, = YU Vg = -SM, Vg = OU 12 = TM — 24 = - w,l? = - 3w,1? = —- 4w,1? fevy = - $ w,l? 45M, = = $(20l) (le)? Mig F eeu io = —17tu Vig = tV9 mq = edlecu + 17s Vig = - 47e0 B(ccu)(le) = cUVUU = —lous oUY — ; awe SM = mi, ¥44 — nla}? + (ivcud 4s) = Secu) (4) # —i7nu + (avocud (rt) — lel) Cz) * Wmugou + (ivGL) (id) = Bleue) Cal)< + (aou) (4) = —1454 + (bleu) Cz) = -f5U A cuG LU =1LU (-cu) (2) = (—cuU)r = (—-cu) (1s) = p—' (Y C “nas freely suooortea, —- 4gwi? vi 2 + 4 W, a + Aa 4 = U 1) ceing freely suoogorted i, =F v4 =U Avg + Ma - $wl? Mo + 4¥,= U Mig = -4Mq —-lévig + Mg = — $(20U)(1a0)8 lakins moments at Hy, lok, -— (2422) ( 15) (7.0) = -coee 1 | ny = dee Ss at Fa, cK, = EU — ESV Ny = -e0cU Taking woments at ky, lene + (ezcoU)(eou) + (Lcel0) (4s) = e lin, = IcCuV KB. = 1ev¥ taking morsnts at K, for , dek, = Vey mg = cu lst span Vg = ¥q + ¥44 - ne)? Wg =U + (LECE) (4S) = lev) (1s) = sce Vg = VU + (heuer) (eo) — leur) (6s) = eur Maem O + (Lesbo) (12) - level) (ie)? = Lee Mag = Ut (Leos) (14) + $leur) (1s)? = -14e0 £na soan, _ ' | Vo = 4g—= Ls = Ley t_ievylY S=S RU | ic de \ = Wg Vo + V5.4 Wg = ccuvl + (4ec50)(4) = -e00¥ Wg = cul + (eeu) (e) = lel Nae = reuvy + (zecu)( le) = Mig = 720 -Ccu) ta) = cer 7oU = (euU)(s) = CF = 700 = (2)(1ze) = 1tU \ A div 200” fA LS" 1’ se . 13’ e 2. fs Teg o pans « Loads % 3 “ Lo) he TAN (idl: 8 9 || i i ! \ Y CH ! ‘ | as f- g' gq J’ #', o J’ ’ ee g.’ gq.’ 2g J Mom. Diagram Simply Supperted. 4- Jooo"* TROTTER ew Cem erat | Let Cem ws Core er eae: coert seieaes & + Fee Semeur erere reve % » | Shear Simplq Supported, fe = soo* on AL eter or?. Diagram Fixed Brds 4": se00"* | i [! | | e Shear NU HL! © Fixed Ends NUH R jz? /e0” j! a os LESl2ZN <é4, It tre center of a soan of a continuous Céar with oractically tixeu enas is reéeintorceda tor a torent of Ai, what is the least amount of steel tnat can ce safely olvces over tne top of tne teat at tne supnoorts. . ;] 2 oo. y.Ooment at center for aA- = U,Ulce wl ? U 01S \ 3 are t ” E : Fe 0.08 g e < °e o 0.S oe 48 Values of Js " —Me¢ denotes Max. Mem, at Suppert: MM ~ between Supports. TE = Mom. of inertra at Suppert. T: es -» conter Spon. from tne curves we tind tne intereection of ULES With —Vt tor cotn €nas tixed, iInls intersects at 9.2 tor tne vaélue ot T *t ] woment at center = U,Uce nl? vorent at suooort = U.Uce wl? : . . ' “ye an “ - . for a 0,4 steel, or tne steel is stressed ¥4¥= = Luo tines YUeVUu"d tne assured working stress. Lesiin ) = cozau lcs. irow ist floor, 5,, (22) (arcu) (es) = «tress aue to cenalne. \.X ara 4x , Rye e wo3i = 222353 = dalhleicj Car) = tuzc.2 les. So. in, I 1 (e) Cte) " KkOuUlvalent concrete area tes.,/7 sec. in, it 46,0, = 4,40, Q a ; TY a ° an Coes . Stress aué to cororession, il 2% = zil.e ics. sc. in, / M@X1imuw stress c0z,4 + glive = ti4d,]i Les. sc, in, Aporoximate wmetnoa, = WL = Cezculler) = gotcuvs LOS, Zz x lotal Load on ¢ colurn (4) (Cercuu) = lizauy ics A = G, AW = lece nets Stress aue to cenaine, SaSa*a 2 dojhsaedlis) = 2250] 1 (z)\4e) Y ©) e ee? > ® - oO i" ~ 2ooro«lrete ritrou slves ri-cer values tor stresses atu tf lad cP q) — 18 theretore On thre Eeéesien ze, fas (4) bem o feoCcteneular colutr af icet Lons to neve fixea en: and suoocrt a aivvers ic. 10g2 On &@ Cracret olacea at tno tniras tn, nelent ot toe colurn irontne case, i tne face of colud ., ESES1LON Stren: tr, 2 focco* 12*ac = dee SG. 1M. Cad .ce SO, ln, steel orm Ww » an 10°O” ' — -~ x “t [= a faved e hae) = £6,424 1C8, 4 . . € Lo | (Uv, deg) (lc) Cz < ~-€S1in <¢¢, COLoULE Monents ana all alrect stresses ln all weicers ip traze viven celon. dz‘ coilines, | 40, 29-'O” a soc | yto, Tao, #40, /a0co ,, gts. EER £08 Sid» 2000» des. RSS £0, taeete ise Hass | 16°D"’ J "0°" J oOo” 1S 0475 RTELE/E J I07§ 4 StPloce = Stresees in ses hundreds of pounds. fA Floor FRE IRGE2S| FO1S 3 be u wot 7X Ce stress in c aig CF coluans, coluins. Nw fe x< C CO Cf) c rs Cc” f u ) ’ Q 4 by t Lirect stress 1! ~~ q. c XN C — vo ry jw it i3 [. "3 . Ne >» NO. 3 or a r ‘ i + 41 ts { “oe nN ( + v wT e { “x%yUr tr) Loeesy = tka +ic) 2k = ate Lots Stress Llaorce, tT. 2X = — its, Stress in tf, re LlrectU stress ln vey Ve, fy Fey, Cece ese dc Ft Liege de F Leen Lenten) Ft Cow) etc, hn a NS I NN ¢ -— cm ws ti) cv “3 qn rt ty a ™~ “se t Lirect stress (eceu yer) *® Crocco} lactic, = Chev) Cee *ee) tlre) etc) ec0eclbu = Lrxylacr) A U j~ 5 we ‘ br ) 5 ‘eo ' t eekK = sete Lis, Stress 10 scUL tt. dics, Mg = Vg = C7 O0U He eeretsveu)d iT] > Ve = Mg = crideeu + c7 UN cth floor pirders. Ma = Mg = (ecvu)s + (FUUG)E = TEUse tiv les. Mo = Mg = Vtuyy -(14ctuercezt) ie = -letvve ft. les. Vag = My = edousy + 7oeuyu = BOUL tt. Ics. 4th floor sliruers. My = vg = C7VOUU)E * (Etuy) Vg = Mg = vevlU —(2)rcé-ldesu)le = -iseue Mg = Mg = —l-€Uu + ak cra floor z1raers, Ma = Mg = (obuudEe + ChlUvoTJEe = Aldver tt. ics. io = wg = L1ivvy -(coleveziczc)1e = -~20600 ft. Ics. Meg = Vg = eee evu + Alivuy = ev4auy tt. Ics. i — \ oC wv! 1 = Vv: @ Mp = Vg = Levu -Certcteculiujic = ezcovs tt. les. Fo = wg = -eocve + Texluu = lvecuy Tt. Los, Compression in floor cirders. EUGG = LlouU = 4200 Ics, £ to 5 40uu — 1levuu = clu los, & to C cUGU = lruU = icseyv lcs. C to L koof eliraers, “ooy = abue = etl lets. 4 to = cuvl — 19@0U = zucu los. 2 toe ct O t geuy - duvul = los los, C 118. DESIGN 26. Develope all data on beams, girders, columns and footings exclusive of those at stair and elevator shafts. Working stressés; Axial compression on columns reinforced with langitudinal steel and bands, §00 lbs. per sq. in. Concrete in compression in slabs, beams, and girders, 650 lts. per sq. in. Concrete in compression over supports of continuous slabs, beams and girders, 750 lbs. per sq. in. — Shearing of concrete as measured by diagonal shear, 40 lbs. per sq. in. Shear of concrete with proper reinforcement, 120 lbs. sq. in. Bond strees between concrete and plain rods, 80 lbs. sq. in. Tensile stress in reinforcing steel, 16000 lbs. sq. in. BUILDING; 3 story and basement concrete building. Width c-c wall columns, 147" 0” Length c-—c end columns, 147° 0” Span of slabs, 7° 0" Span of beams, 21' 0" Span of girders, 21° 0" Floor to floor, 13° 0" Basement, 11° ©” Live load on roof, 30 lbs. sq. ft. Live load on floor, 250 lbs. sq. ft. Ratio of unit cost of steel in place to unit cost of concrete in place, r = 60 n= @5 ROOF SLAB: Loads, Five ply felt and gravel, 9 lbs. 2 ft. cinder fill 90 lbs. 2" concrete surfacing 85 lbs. Snow load _-2C_lbs._ Total 151 lbs. sq. ft. Assume a 39” slat with d = 2g" This will carry (16&)(1.2) = 198 lbs. per sq. ft. Slab load, 151 + 44 = 195 lbs. per sq. ft. 128 M = n+ = (age) ez) =(1Z) = 9555 in. pds. bending. p = 0.0077, k = 0.378, j = 0.874, K = 107.4 d= / Coe IS) = 2.69", use &}" 107, 4) (12 add §" for insulation, 29" + 3" = 3" = 9595 - =z 0,248 sq. in., use 3/8" round rod “8 (16000) (0.874) (2.76) 4 , . = 5a5" * 12 = 5,36", use 5" cec spacing. bend each alternate rod up at the quarter point over support to provide for negative bending; extend thru to quarter point of next span. (0.0024)(3.5)(12) = 0.105 sq. in. traverse reinforcing. use 3/8" rods spaced p1h 208 x 12 = 10.5" cc on TT nF 1 i , _7'o" 7'o” 7'0" 4 Ld | t n . 3 S A ~ “ 2' Cinders he Freys sec +L + reds | . ‘reds leng- > m 4 vieal rop’ok ! . . : % yh J 24'6” CO UE Ia 2S" te a2" jp P'S” tr P'S” ee 8S” gre Se ET Le" even ned Clternate Keds AaB, S’c-c 120, ROOF BEAMS. Azgsumed load per ft. of length, 175 lbs. for stem Total load (195)(7) + 175 = 1540 lbs. per ft. length. y = {4540)(21)_ = 16170 lbs. = (1540)(21)2(32) = @79 in. M 3 679,140 in. lbs. a = 48120 = 153 sq. in. for shear. 105 Economical depth, dad = vw oil + : = b’ 4 b*xd Depth for shear 8 19.6 156.8 19.1 9 18.6 167.4 17.0 10 17.7 177.0 15.3 11 16.9 185.9 13.9 Use b = 10", d= 18", total depth 20" Weight of stem $101 46. 52(120) = 171.8 lbs. per ft, B= 10 + (8)(3.5) = 38 inches. = 679140 . 55 ble Tey Cie) » ss $= £42 = 0.194 f.= 650 lbs. p = 0.002 + 624580 .602) = 0.0037 j = 0.9186 = 679140 = 2 56 | “s” (i6000)(0.9186)(18) ~" 2° 7M use 5 , 13/162 round rods. = aan 18176 = 76.4 1b 4 * (5) (2.553) (0.98) (18) mee ‘2 1. 2,56 . = -£ = 0,1111 = nS 88 = 00142 is ~ ° P * Gioytiey ~ °°° L = 0,318 K = 0.0133 - 679140 = 659 1b fe" TiOy(1s)*(O,aie) Pr PPS: f.= $72140 = 15756 lbs. S (19) (18) #(0 .0133) x2? = 2311 7 Ee) J12 = 60.4", bend up two. (0.0142)(18) = 0.2886, use 3/8" stirrups s = (3)(0, Quad dP LL ASOCOO £2218) = 4.0", use 49" spacing (4/3) (4.5) = (2)(4.5) = for stirrups. # 9) ct c+ er w il w ” il 121. Bonding length S689) 9) (0.876). = 18" embedment. AN H ° ; ote tt Ltt ttt ttt \ as oe & ++ the: 4 4 saa 4 4 -i- | —> +< + -i- } - +-y} } 4 } $ ; ; } } : i - -re | coe ca = . | T " t ; | | ea": et! 6ec": 3'o" “” om | a teat igh fZ r wy — : 6'‘o” f\ {\ 5-12 orods BasameasB, ” Bg sameas Bs 2" ay ) — ff Foes 24g" yes" 1a6" "At a2 is, 24g! 70" 274" | rag. wot BS 2-2" yok, 2'74" Zio" aro” 7'oe” Length A@éB, 31'3" r Bip. Co" Pe 7'o°" Length C, Jol" 122. Assumed load per ft. of length 100 lbs. for stem Total load, (195)(3.5) + 100 = 782.5 lbs. per ft. y = &782.8)(21) = g216.25 ibs. Mo razr §) (21)*(12) = 345,982.5 in. lbs. A= Bets 29 = 78.25 sq. in. for shear b= 10", dz 12", total d = 13,5" weight sten, 10 a9 6) 4120) = 103.0 lbs. per &t. b' = 10 + (8)(3.5) = 38" uy bas ~ [3e)(iz)2 i= S42 =z 0,29 fo = 650 lbs, p = 0.004 + se+2(0.002) = 0.0045 j = 0.900 K = 0,35 a,” ECOUIOR IEE = 1.98, use @ — 13/16" round rods. y Cay (a bed) tS) CS) ~ 74.0 Ibs. a’ 38 = 0.125 p = at.) 0.0173 L = 0.332 K = 0.0151 ce often 7 ere aes, fe" Taoytaz}etecgaay” ~ 7% Ibe. Xo = 41() _~ ¥ -§8l(2)_ = 53", 4' 5" (12)(4) ) use 3/8" stirrups spaced 44" to 4, 6" to q? 9" at center (722) (10) (0.9) = 20,3" embedment for bond. (4) (80) ——= ee = 123. Bg, same dimensions as B,. B,, Be, By» Bay are at stairway and elevator shaft. GIRDERS® Gy lol on Assumed load of girder, 350 lbs. per linear foot. Reactien of beam loads (2)(16170) = 32340 lbs. Eguivalent uniform @oading on girder 32340) (3 soe + 350 = 4970 lbs. per ft. x = Me = Sae70) (21) 2432) = 2,191,770 in lbs. less 10 per cent 449,472 acting moment 1,972,523 in lbs. V = (32340) + 00.5)(350) = 836015 lbs. A = sG012 = 043 sq. in. for shear bd = 343 sq. in., let b = 5/8d then 22° = 343 and d = 23,4" use d # 24", total d = Zé", then b = Be b' = 43.0 > = oD oat a 79 .6 ba? (43) (24) # t 3 : - € ° =—_ — 4 = e f = _ i) 0.146 Cc 720 j = 0.933 124 a,= an 19 $2593 = 5,6 sq. in. (16000) (0.983) (24) use 6 — 14" rods, area 5.96 sq. in. _" (6) (3.834) (0.933) (24) = 74.9 lbs. . gi 4) (22,5) (150) wet. girder, (j ay = 329 lbs. ® 3 g 0 es t g = 4 = She ya 0.0833 Pp 24 * 774 (24) = 0.0177 pi = B= —O.0177_ = 0.0088 24” ----- ---4---;---b--b aa L = 0.291 K = 0.0155 fe, Gly 2"ce = 972893. sigs . woe eet ‘ce TTay(24)2(0.801) — 747°8 1PS-8q.in. qn lig f= 1972893 (14) (24) 2(0.0155) tis Ce oS yCEdy = 1765.4 lb jd (0.86)(24) o.4 lbs. per linear inch. at the one third point Y= 26015 = (36007) = 347z.1 les. 11 a ja (0.95) (24) 2.1 1ts. linear inch. diagonal tension taken by four bent rods (4289.4 Aq 4472.4) (7) (14) (0.666) = 105755 lbs. tensile value of four rods 44160 994) (16000) = 90880 lbs.- 105755 = 90880 = 14875 lbs taken by stirrups se - $40) (94160 29) 424) = 7,0°, use 96" stirrups needed a1 - fe 22 )12 = 66.8 inches, bend two rods ad om 22 . ; 5 (1 fie) (g))3 41.6 inches, bend two more rods. = 14040 lbs.sq.in 66.8 — 41.6 = 25.2", to large, must not be over 18", bend two at 49". a, of stirrups, (0.012)(24) = 0.288, use 7/16 inch rods. gs = —~(32(0,15) (2) (16000) (0.85) (24,5) = 2.78 (2) (26015) at 1/8, s = (4/3)(2.7) = 3.6" at 1/4, s = (2)(2.7) = 5.4" (748) (15)(0,875) = 31" length for bond (4) (80) 31 Girder, §&? ‘fe Stirrups same as G, Girder, G® Assume load of girder at 300 lbs. per ft. Reaction from beam loads 16170 lbs. Equivalent uniform loading £36470}(3), 200 = 1830 . el = Wl® ; 2) = j 410 M 12 fags0) fel *(d2 786030 in.lbs. less 10 per cent 78603 in.lbs. acting moment 707427 in. lbs. V = 16170 + §10.5)(300) = 19320 lbs. = 193<0 «= in. Ag 108 184 sq. in. ag = 184, d= 1721", use 18", total d = 20" b = 264 =z 10"+ use 11" e = Hg wgt. girder, S211(20)(150) 230 lbs. b' = 11 + (8)(3.5) = 39" = _/07427__ = 9 b'd2 (39)(18)2 oe. ta 3.52 0,194 f, = 625 lbs. j = 0.915 Be= 7a tlhe! = 8838 2.72 sq. in. (16000) (0,915) (18) use 8 = 11/16" round rods, area 2.97 sq. in. o* certerdbittcerercrey = 67-0 Iba. a‘. _2 = : ‘= 2 = = a7 ig Ott pi = B= cypHs8i cy = 0.0078 L = 0.258 K = 0,0131 . 707427. = 769 1b «707427 « fo* Tiay(as)#(O.a58) 7°? 18-9 *s"(TT)(48)*(0.0131) PS 126 At support, aa" west = 1173 lbs. linear inch at the one third point qj. 1s 19320 = 2100 = 1045.4 lbs. ; jd (0.915) (18) lbs. linear inch diagonal tension to be taken by rods. 1173+ 1048.4 (7)(12)(0.666) = 62116.2 lbs. bend up four rods (4) (0,36) (46000) = 33828 lbs taken by rocs ys 62115.2 = 33828 = 28287 lbs taken by stirrups (0.012)(18) = 0.216, use 3/8" stirrups with 0.2208 sq.in.area spacing, £2 )60, 2608 (16000 )(0 928) 26) = 4,5" at 1/8, s = (2.333)(4.5) = 6", at 1/4, s = 9" bend up two rods at 4iqj -vY & ) = 3.75" from support Z 8 bend two more at = Cs v4 ) = 2.25" from support s = 3.75 =—= 2.25 = 12#5' allowable s, 0.75d = (0.75)(18) = 13.5" length for bond, 4769} 423)0.878) = 23.3" (4) (80) i ee | td a + | a |: TN 2 aT || A Ha an aie! Sy ’ . t —t—, t ay Ht ++ 4} = Lind to4 | cevize || cox: 26. _3, Iz Ges" = /0°E" eae SF see p'6" pe ab ee Lf ] | i 2'7¢ J | 2°74 39" 22° } —__7"e" _ = ror = Spas. a 2/'°oO _ at ie eS Ft ‘| Girder G* same as girder G* but rods have hooks at one end Girder G& same as girder G® Girders G*, G?, G8, G®, G2° at sgairway and elevator. ROOF. BEAM & GIRDER DATA. REINFORCEMENT SIZE | OePrn-osreet OVER SUPPORTS ‘ Strarght D’ |cerer| supports CENTER BEND iT Stroight on Notes. UP e *), Rods Bottom 10"| 20} 18"| 18%” 5 ~ '4¢¢ reds 2 |i 2 "l20") 18"| 185" 5) = @ | /3 3 yo" | 20°) 78” 183" 5 «<« ” 4 1% ries o hooks (o"| 20| /8"| 18h" 5 - " 4 |i 5100 'r | hooks yo | 13g") va") 72" 4+ - ” 2 [1s 2 10") 136) 12") 72" + - ' 211 2 |heoks 19"| 26"| 24"| 2a" 6 - 14" Greds ae 2 I#"| 26") 24") 24" c - in Flo 2 hooks N"\20"/ 18] 18" 8 - VY Preds 4/2 g "| 20"| 18" | 18” & - " ole F | heoks "| 20") 18") 18" & - . le + STIRRUP SCHEDULE Bor G | NO.EAGH TOTAL » B, ! 32 2310 ' a” Ny x +'10" BS , 33 290 aa Bz; ’ 3z3 792 Bo] FF 396 ” Bs , 33 a2, % 3°45." Be | 22 66 4 G, / SE 1680 4s 6’2" Ge ! S56 S60 3 5 , ” : 4 + 3 S3 / IS IIS 4 | 73 Go|’ | as 70 ROOF 128 BEAM & GIRDER Fer Bean BENDS SIZE Lenerid_27 order Nember Te ta | Mk. | Ne. | pove Warrted Ls Se q o : 3 3013" 8 ’ 2 14 10°74", 9 te ‘gn %” 12° We" | Be é 2 GO Zi’o”. 43° 8, / 3 2/0 0 moe —— BR 30 = 6’R A 48 (C ” ¥ \ ia” ta pt By ( h =] - we 72 at, | a2 | ef 775" 9s low reg" 074” + 260" a 2 7 ? iW Gas ¥ v 43" 22" 135 } 2 F 8 | aE 2 hel Shp 12g ° Bel | 2 | 2¢ 28' 0” & Ce 13” vem R; } p 2 + " 76 | 9o'l = eso" Re} ry fp | 72 ae . 2" | 36'9'| B ) 2 20 "eth te . tp te 46 2 &§ 10 63 fos”. (ater ate 105", (0'e 35'0 te" laso"| Bo| t | 2 | 20 “4 & én 2 . 3” e ® ee | er | ae we} Bl 6 | 2] + 10 65 sos". j2'2”" Wk 264 2E'O* : cn “ =] 3. Jor | Bg} ) 2 4- < 280" 109” a |e] 6, | s | 2 60 129 For bea Neorbe tol W, ends or_ girder vmber | Total Ne. end Oye engi Mk. Ne. Aen Wanted 3 & a ys” °4 04 ~ lil spe | pat tye lg | 266 G, a z EO YO gs'o" ui 9 ger > 5 35'o' Gy / 2 EO s a 4 <2 wv y” copes , . |. a7ee | wel yero” le | 37"! 62 / 2 20 mT aw le 280 G a 2 ” 4 ™ go" ‘og 09 a 2°2" si pee” in| 93" '"g 317 62 2 2 20 *” 0" a d _ - ~( (Ter — yee /— or" 2] eo *e ¢ a ’ 19°29" J 16 Lo'to”" J/6") 7059" . 4s 3S 6° Gs / 2 48 sro TF > : - , 275" 1") LB 6° 9'7£° 4 TSE" 693 2 . 2 4& 2.5'oO” ae 97 IL) Setar . = 7% | 280") Ge | 3 | F Fé Gig p 7 'D" el sever er e'g* 4 id 6¢ 4 2 4- 28‘o” X Cre ; , A Ie" | ores ere" Jie] yg wl 9°72" 421973") 6 | 2 2 4 220° MY en stot e ip" 2 eo" | Hs $Ol"| Ge| 3 F- é I —a Live load 260 lbs. 130 lst, 2nd and ord floor members. Bending moment |" Sq. wl? 12 granolithic top finish, nm r = 60 included in 250 lb. load i Table 6 shows 44" slab, d = 34” roAs per panel, ——+ = span 7' will carry a live plus dead load of (269)(1.2)=#323 lb.sq.! slab weight 561b. " | Prak 70" 5 c total 250 + 56 = 306 lbs. | a,= 0.323 sq. in, Table 6. : 3/8" rods, 4" c-c, crosswise, Tbh.4. 9, &, B, a, use 4 =~ 3/8" rods transversely : ‘ for shrinkage. | pie a \ ~ Ps Z — SS SS a = ~ 2 JL] * L LL Li 76 — oO eT | pe ee alo” “en _. a) 70" —_ ee Pp Wye 20 17' 0" long rgds per panel, 24° 0" long. 46 pwanels each floor, 3 floors. Load per ft of bean, assumed load stem total load per ft. Maximum shear 7 * 306 = £142 lbs. 240 lbs, per ft. 2082 l.s. Sees2 424) = 25011 lbs. Maximum moment festa yigds(ia) = 1,050,462 in . lbs. 131 Area web for shear a = 238.2 sq. in. b = 12", d= 20.5", total d = 22.5" wet. stem (12)(48)(150). 237.5 lbs. per ft. = Tapes = 52.06 & = 4:8 = 0,219 bd® (48)(20.5)® ad 20.5 from Table 9, p = 0.002 + 4.37(0, 002) = 0.0035 j = 0.9159 a= (48)(20,5)(0.0035) = 3.444 sq. in. use 8 - 3/4" rods in two rows, area steel 3.53 sq. in. 7s = 4 . band for one rod (37356) (0.0159) (20.5 565.4lbs number to carry straight, an +50 = 4+, run 6 thru web tae Pee needed out to — $40)(12)(0,916) (20,5) = 6, 72", 6' 9" = 2380 bend two rods at 23 (l- / G10,4418)) 5.25", 5° 3" fron < support. 2 d') —S— _ = 3.5 = ' -_ = =e e 93 = = e = b gag ORS RU aataeeey ee from table ll, L = 0.254, K = 0.012 f= 40504 = 746 lbs. c Ga ee f 15372 lbs. ‘ 1050462 x ce (12)(21.6)#) (0.0125) (0.012)(20) = 0.24, use 7/16" stirrups space (3)40.18)(2)(16000)(04878)(20,5)- 3.5" at 1/8, s = (@.333)(2.5) = 3.33" at 1/4, s = (2)(4.5) = 12 at. 235", 7 at 3", -6 at, 5") rest at 9* length of bond for compression rods, (746) (15)(0.875) = 30,6" (4) (80) : Bo 90” "BA so" | 1 ze-_|_ 4 ! Ln ru tat ———— a ee NA SS + Bg same dimensions as B, but with hooks at one end of steel. stirrups, 2 at 9", 3 st 12", 8 at 1°6* B, and By, at stair and elevator shaft. FLOOR SLAB FOR LOADING PLATFORM. Panel 10' x 7', same as floor in building. Baa Load per ft. of beam 7x306 = 2182 lbs. assumed load of stem 150 lbs. Total £292 lbs linear foot. M@x. shear Se24)(00) = 11460 lbs. Mom. (ewe2 (49) 103) = 343600 in. lbs. 11460 = area for shear 105 199.1 in. § 3.8", d= 14.5", de 17" use 4 rods weight of stem S60 627 24180) = 1534.3 lbs b' = 8 + 8x4,6 = 44" v = ay tia) = 98.8 lbd@, use web reinforeement. 343800... = (18000) (0. 875) (14. “By 1.69 sq. in. needed use #@ . 3/4" rods, 1.77 sq. in. ~ 11460 ‘ | U = TUy(ETaEe) (OTB7E) (A475) C7 tbs. must gse more rods, say 8 136 = __.11480_ = 63.9 lb " ” CB) (2.356) (0. 678) (14. 5) ois. g's 2.5203 1,77 = 2 a T4257 OCT % ” Tay tars) 8°92 FS 4 at top, 8 at bottom. L = 0.339 K = 0.0248 = ~42800 = f= 24 - = 603 , © 6(&) (14.5) #(0.339) o0e ibs f = oan a sE00 = 8243 lbs. © (6)(14.5)2(0.0248) bend 2 10( 1 ~ ¥ §82(2) ) = z,65' end Z rods at 5 1 az) (6)’ .65' from support web reinforcement needed for 3 _ (40)(8)(0,975)004.8) 3.8! (0.012)(14,£) = C.174", use yee stirrup Ss = (=) (0 04271) (2)(1ECCC) (C, O7s d( 14, 5) = y. e" (2) (1il4ec) td, (4/2) (2.4) = 5.2" oY (2)(%.€) = 5.2" B rypth tor tond, (CO oo) (1: z) = $1] 2" ( a ) se ( iC [hs vie C Cao Same aS By, put hooks on steel at both ends Py, Same aS Uy, nm “as floors | Reaction of concentrated loads, «*z5011 = 50022 lbs. Assumed dead load of stem | 600 lbs. Equivalent loading per ft. length 420 a6 32 + 600 = 7746 lbs V = 50022 + (10.5)(600) = 56822 lbs. y = 4272746)(21)2(12) = 3 415.988 12 , less 10 per cent 341,599 active moment 3,074, 387 in lbs. Boece = 536.4 sq. in. area needed t = 4,5" r = 60 b= 18", d = 30” bd = 540 sq. in. d' = Sz wét. of stem 418)(34)(150) = E00 lbs. b' = 18 + (8)(4.5) = 54" M = $074387 = 65.2 tL = 4.9 = ba? (54) (30) ® Cee e d <0 0.2 G3 f.= 626 j = 0.928 ®s" TEBGGC (e SaaT TSO) ~ CC*E 8a in. use 16 — 1&/16" round rods, 6.8 sq. in. we rags ssytovsrercacy 7 Ow ate f= gg? = 0-081 Tas Gey 7 0-087 = L = 0.28CS m= 0.0116 fo" TES Cao }e(OTscay ~ 16-2 Lbs. cor ages RRaconnay + 2000 He at support vo = C - = 2001.4 lbs linear inch ~ebsgs ja (0.988) (30) $ t 3 int. VY = GSRs —_ (600) (7) = 1852.2 , a td poin id (07558) (30) 854.2 lbs. diagonal tensikn to be taken by rods, (AQ01.4-* 1886.4) (17) (12) (0.666) = 107900.8 Ins. value of 4 rods Ss 2(o, 62216000) = 65C&8&5,7 lbs. 156 107900.6 — 63085.7 = 448315.1 lbs to be taken by stirrups. (0.012)(30) = 0.36, use 3/8" rods bent. pacing Seihar fo diito.8 80)(16000) = use double loops at b ; 4 x 5.2 = 6.0" and at 1 , (2)(5.2) = 10.4" bend up two rods at a - (Be = 6.72", 6'8g" bend two more at 441 - YAR) S210, 3° 2" rods must not be bent at a greater distance that sd or 225" web ene needed to - 1 - (40) (16) (0 2ee) (20) = 7.9' from support z length of compression rods for bond (616.1) (15) (0,875) = 25.2", use, 26" = (4) (80) ? : f Pre ‘ hey . A rs . ¢ } | Li ats SEES att TSS SS —e TT bi? t ! t tt l jest, s$©7": 2/1" SOs0¢3 ¥’2" _ yh zeny” 2%") SO@so”~ Yen go?" <2 ses yl ave ,_#*ro» be TASS — > ——__—_ 6" £2,” _ Pa 710" ae = Brio” kein. G, Same as G,-but long rods have hooks at one end. Bquivalent loading per ft. length Gz 7746lbs. V = £6822 q = 47746}021)?(z) 9.0 = 3,689,245 in lbs. area for shear 5c6.4 sq. in. be 16", Gs SOS, a= 2a", ‘bd = 640 s.gi.7 28 weignt ot stem 600 lbs o " = 64" yo REA = 75.8 bd? (54) (50) 2 ; = 4.2 = 0.13 £2 Fee j = 0.937 CBEQE4E ee ee ig ag= GION CRCCA NE = §.203 sq. in. use 12 = 15/16" round rods at €.2& sq. in. u = 26322 = 56.7 lbs (12) (2.945) (0.937) (30) d's 1.8 = 0,050 = 8.26 - 5 “so Pp” (1g) (30) 7 0.0153 = p' L = 0.348 K = 0.0141 = 3689245 = 654.4 lbs. fe [1g)(30)#(0.548) f = 16151 lbs a ce OBI 245 S (18)(30)'2(0.0141) at support = = 2000 lbs linear inch at one third point V = 1850 lbs linear inch diagonal tension to be taken by rods (2000 ‘ 1850) (7)(12)(0.666) = 107800 lbs. (epee gl. = 5.7 oods, run 6 rods straight to end tensile value of 8 rods —C6).(0_62). (16000) = 94630 lbs. 107800 — 94630 = 13170 lbs to be taken by stirrups (0.12)(80) = 0.36, use 3/8" rods bent, double loop Spacing of stirrups same as G? bend t ds at 21 a DIED) = 6.72! " end two rods at 42 ae ERIET 6.72', 6(84 Spacing must not be greater than three fourths d or 224" bend next < ag 6'64" — 1'10" = 4'104" from support Bend next < at 4'104" — 1'10" = 3' 4" from support wet reinforcing needea to 7.9' from support. Lap for bond <6" rt ch RT th a | =o 7 J } . } | } 2 5 | 1 } 5 t A 5 se | 1 CHE Eg SE Hf fey d pageeseaspeed eer | feeder s|¥’2 Berti as 1 s@rors 92 |. gore: 210 _jgecwry, a he a vse | |} —_____s"az bee 20" See a OE 5 le as re ee SEO ee SS a 138, Girder, G,. Reaction from concentrated loads 20011 lbs. assumed load of stem 400 lbs, wall board on side 283 lbs. 10 percent added for window 28 lbs. equivalent load per linear foot fzociiits) + 711 = 4284 lbs. (25032) + K10.5)(711) = 32477 lbs. S4284)(21)4(12) 0.9 = 1700320 in. lbs. V M Area, saail = 309.3 sq. in. for shear, testing out for economical d b= 138", @® = 25" d' = 27" b' = 13 + (8)(4.5) = 49" wet of beam, £181(22)(150) = 265.6 lbs, 144 MAL = 6 = 55.3 L= 4.8 = 0,18 t'd® (49)(25)2 d 25 , f,= 475 j = 0.923 a= - 1700320 = 4,805 S (16000) (0,225) (Ze) use 6, 15/16" round rods at 4.14 so. in. u = s2377 - = 72,6 lks, (6) (2.845) (C, 922) (Zé) d’ = 2.0 = 0 ce o' = -4.8Ce__ = 6 014 = 2 7 25 = C. (12) (28) g a rO € . STD) = <, run straidgrt thru, bend oa ree vere: er Il lawl oar ae Lum), ase ib 702 910" Paella, si" | L Svs" Ba _ Pbe _ | 7'o"V _ | 7a" r a Bio" GIRDER, Gas Concentrated loads 11460 lbs. Assumed load of stem 200 lbs Bqhévalent load per ft. V = 11460 + (10.5) (250) = 14085 1 i 4eeC te) + 250 = bs. yw 41887 (eu) *(12) = 809,067 in lbs. ages = 134.1 sq. in. area for bie 88, de a7, b' = 44", d' = shear ooo" wet. stem, SECS e)t7e0) = 155 lbs. y. = -809067__ = 63.6 4 b*d? ~ Taaycay)® sade {<= 475 J = 0.905 a = £02067 = 3,269 sq. in. s (16000)(0.91)(17) | use 4 — 1#" round rods at 3.98 sq "" C4Y(3.534) (0.91) (17) 3 d 5 ' 3.98 ae) = 0. = . (9) (66,8) 2.2, bend two rods (4.5) (80) . in. area lbs. = 0.029 = 1887 lbs. L = 6.514 K = 0.0267 = Og067 coe e687 Lb, ve CIE LCHATS ane f.= g Z S §(8)(17)2#(0.0267) ¥Y = _14085 _ at support, ja (0. To.91) (17) at one third, Aa Si Cae (7) = 797.4 lbs. diagonal tension to be taken by rods. 1 2+ 297.44(7)(12)(0.66) = 47824 lbs. value 2 rods, £2) (0 gee) 16000) = 45440 = 13107 lbs. = 910.5 lbd. (0.012)(17) = 0.204", use one quarter inch stirrups t i stirrup spacing 0,91)(17) (16000) . 2.8" coc co tatess at one eighth, 4(2.6) = 3.4" at one fourth (2)(2.6) = 5.3" bend 2 rods, 22(1 - / A<8itz) ») = 4,.5' from support. (12) (4) web rein. needed , 2 - MeO) (E) CC ,2I007) = 7.9' from support. (681 8 = n length for bond, t148) (9.875) 28 s y TS heh peo a RAT HH 1 {| rE oe ee at TENT itt ] z i} | 1§ | } | a | 4 | | f Hth4 L : | pepe $+} $e EH HI ul ==<3== ri 2he* nto", 3" 70") e@s0": v 2% | vod Fe" e| e@h= 26" | o@2i e's" lag” Sy te ee’ i ate 2 ae | ee tl 4) OX ue GIRDER, Gq, Same as Gy, but with hooks on reinforcement. 144 FLOORS Beam & Girder Data. SIZE | DEPTH STEL No. DISTRIBUTION OVER SUPPORT MK | W | © |cemeRioPRT) ATCENTER |BEND| X-—-—;, exTRA| SrR.| NOTES UP ae Str. | ot a RODS] END B, | 2” | 23" | 208] 21¢"| 8-% "reds | &” | 2° 6 By | (2" | 223"| eof] anf") 8- ” ~ 2 | 2” é Bs | /2” | 224"| 20f'| 2f"| B- ” * 2 | 2” 6 | hooks Bg | 12" | £28") 203") ayy? | 6- * 2 | 2" é 0 B,| 8” | 228") 20j'| 203"| 4-4 reds | 2 | 2” 2 Be | 8"| 225 | 203] 206'| +- + * 2 |e" 2 | hooks B,,| 8" | 17"| 193 | a8*| €-%'Oreds | 2 | 23" a4| - Byo| 8") 17" | /4s"| 198"| O- 2 | 23” 4 " By3| 8° | 17 | p92"| 48°] €- * * 2 | 23” ¢- . G, | 18"| 32"| 30°| 303] 10-7Z Prods| 4 | 13" é Go| 18'| 33") 30°] sos] s2- - » | © | 2B” é | socks Gs | 13") 27"| 25 | 25"| 6-" ” 2 | 2” 4 Gq} 13" | 27"| 28 | 25"| 6-1 Greds| 2 | 2” 4 hooks Gs | 15"| 29"| 271 27"| 6- > - 2 | 2° 4. Gin} & (85, IT") 178") Fen A | 5" 2 Giq| 8" | 183") 17 | a] Fe 2 | 13" 2| hocks Gg Dean & Girder Rods. / aud 3H fleors, 146 Bore | pro. Total Be rds Sige | engl ak | We. | Sora) Wanted. oT Bisrile2 3-16 ‘ 29 362” | forty, 165") soe j 14%" 82/7 2 180 je PED ” , | & | 2] € | 422¢ le ace || P| tee s,| 2| ¢| sto AERO | | @l,]2} 6 S Ze 33” roy | 1ee"l votes b&* | 100%. 72. ba ue Te &| 7 | 2 ; . | & 68 “58 a aga Xf 25'8 3 2 6 F- 23 Beleltle}] 2/6 “ Ww y | ne \# 571 Ib3 [35- L 2. éO im 183.) Jee 18K ONE | whS" O” _ _ ol te 25's" sl aA 25'5" lag 2 2 S$ O Bi Gi : n” 39! 3/'¢."| B 42 17h" 18%" u ~ ote 184° VIR 16 é / A 280" 36) 25'9"| @| 2 | 2 12 23'3” sy 76 Ly . \2 | 4's Bile AF ae ae lt” g'° 3S” q 1910 17'O” Bs 4 2 F- % % & 7 Ze mee fn | 2 | 4 4 i , Bri 2 | 4 8 Beam « Girder, ft, end, 3724 Floors. 146 , BeorG | ne |Tetel S, °. Hmends ize | Length me No oe A ee . ot ‘ > % ' ie = =p) 4*| au" | al 1 fel 4 a" 1 we +'8" ) oe gr, al 10'!o" arcs 6*R Z4 #2 1 Bp] eo | #1 8 12 @" = ‘ f . ley ry - 7° | 370 6,14 |2 | 194 NB" ize " " tS-O- ¥ y Be 39’'o” 6, / 2 199 2s ae’ o* ‘ “ ——q ‘Ss ’ ” PP J Eb) 25'+’ 1o6,| 7 | 6 1482 & ' - fe%| o'er lo} s | |eok ) x —_ ISO! aye" rc I ¢.| / | 2 [60 i e_ 5 ” SHA % =( Ce : 2 we) 72" lel 7 | 2 [60 * h274 paiye fang) 79", it &( Ce oe LS") 26'3" 0 27'2" __] sé G2 / a a a SO) 37" 1 6,| 7 12 | 46 189 gs’s° eo Ty |e 455" 16,| 2| 4 | 92 Beam & Girder it 20d 3d Floor. 147 BeorG | wo | tTatal th 2 eTra Bends Size |ferq AK | we. |Meded] (Vo. 8 c*2. ° | \ a Gor| wel a,|,| 2 42. ’ yet mr . 79g + 254 _/o"//’ | A 7 a. 1s" ‘on a 23'2s" Ge 25€ Ga, 2 + 2 > . Y/ ¥ /0'10e” "On “ 70°76" 15e 36'83° Ge / 4 8 _5'O” ‘a a 7 Lt ta" /0'3" (Ss 4, (2'o” 4 16" /0°3" 'g ¥| 30 Gs / ] 6 zs'O” 25’ 8" _ 1501 25'8" 16] 2| 2 é q cv 45 a wo ~ yx, 4,” 73" Lis" [2'0" s° 2° a? an S19 / é F ____ 280" 676% L 1 @ cr 294" 1g9| 26'6°| 6&,| 2) 2] + h. 148 Otirrup Schedule set pad sted Floors. ; Bier G | Ne | Totol d th eTQq Dends ois e Mk No. | Lach | Namber tT My B, ’ S5S8& | 1/832 | , _» | B / S58 | S220 “a | o Z p 5F ° “| a - 10" Me P3 | 1 58 | 4524 } D+ ‘ S38 2085 | wn 46é F8O ry ORS oleae || 5! 7 , 4,9 B'S ~| 6 <——* Bo | s 46 IS - B,, ( 24> 286 . Ty NY V9 | ze” | = = 6” v2 } 24 4S Bis / 24 + 74 . Ry . . Sg } 29 20 E8 © 7 ae” Ze N'le Ge | 7 29 870 v7 Ss . 4 3 / ye 5? Si’ 3 4 F-6 3920 +, ay , ; , _¥ | __ 4” toy tt Se 167"! ol 1s | eel s04 , Giz| / é/ 185 & ¢d F' 2" Gig] / é/ 122 4- COLUMNS. All interior columns, Srd story columns. Live load on roof, (21) (21) (30) 13230 lbs. Dead load on slab, (21)(21)(121)= 53361 lbs. Dead load of salb, (21)(21)(44) = 19404 lbs. Bead coad, 3 beams, (3)(21)(172) = 10836 lbs. Dead load, 1 girder, (21)(329) = 6909 lbs. Total on column 103740 lbs. Concrete 1 2 14 2 3 f£,.= 560 lbs allowable, f. = 800 lbs allowable with hoops, Eo* z+ Bg n= 26 Compute column for 2' less than story height, use octagon shape. short diameter of column d 2 yo ef ,tana \ = 103 = 12.3" d = 12,6" 1 = " a 7 qpyi0s740 1 , use 2.6", total d = 15.5 A= 2d*%tana = (2)(12.5)2(0.414) = 129.375 sq. in. area use 1 per cent of steel, 1.29 sq. in. 8 — #" rods give 1257 sq. in. weight of column, S2)ids,5)°(0,414) (112)(150) = 1139.65 lbs. use one guarter inch spiral hoops at 2" c—c 2nd story columns. live load on floor, (21)(21)(Z50) = 110250 lbs. dead load of slab, (21)(21)(56) = 24696 lbs, dead load, 3 beams, (2)(21)(238) = 14994 lbs. dead load one girder, (21)(500) = 12600 lbs. Column head load 162540 lbs. Load from Srd floor, : 104880 lbs. Total on column 267420 lbs. d = J £67420 = 20.0" (Z) (800) (0.414) use 21", make total d = 24" = (2)(21)2(0.414) = 365148 sq. in. use 1 per cent steel, 3.65 sq. in. steel, 8 = 13/16" round rods. wet. of column, 2) (24) *60, 414) (11) (150) = 5466 lbs. 144 use one quarter inch hoops at 2" c—c lst Floor columns. Floor load Load from above Load on column 162540 lbs. 272886 lbs 435426 lbs. ? 435426 cL = 25 6" short diameter /y TZy(800) (0.414) | * use 26", total d = 29" A = (2)(26)2(0.414) 559.728 sq. in. use 1 per cent steel 5.0597 sq. in. , 6 =~ 1" rods. wet. of column (2)(29)#(0,414)(11)(150) = 7979 ibs 144 use one quarter inch hoopig at 24" spacing Basement Coluspns. Floor load Load from above Load on column 162540 lbs. 443405 lbs. 605945 lbs. 600945 = 30. short diameter, / - ae" or iameter, (ZY (800) (07414) é use 30.6", total d = 33.5" R= (2)(30.5)2(0.414) = 770.25 sq. in. use 1 per cent steel, 7.70 sq. mn., use 8 — 14" rods 2(6.414) (2) (450) = g7415 lbs. 144 use one quarter hooping at 2$" spacing. COLUMN SCEELULE, Interior 22 wit. of column (2) (se. Story Kind of Load Dia. Vert. Spiral 3"less te-ad col. rods than diameter Third koog 103740 16,5" 8— 4" 4" hooping Col. =-114Q0 octa. spaced #" Total 1O4E8EC second Floor 162540 24" 5 — 9%" 4" hooping Column __£46€ octa. Spaced <4" | | Total YA Astola Frist Floor 162540 zo" S—- 1" 4" hooping Col. _.7972 octa. Spaced 24" total 442405 Basement Floor 16264C = 33.5" GE — 19" 4" hoopong Column 8732. # octa. Spaced 24" Total 614657 on fbdting. 151 ixterior Colunna,, C*, C*, C*, C*,. 0%. Cc? Third Story. Live load from roof Mei hel ies) = 6615 lbs. Dead load on slab, Zi a3 121) = 26681 lbs. Dead load of slab, Sel )ted) tas) = 9702 lbs. Dead load, one Bg, (21)(172) = 3612 lbs. Dead load, one B, (21) (103) = 2163 lbs. Dead load, of c, (21)(388) =~ 3455 lbs Wall load, (219 (283) = ___5846_l1bs. Total load on column 58074 lbs. Total load on one roof beam, (1537)(21) = 32277 lbs. Eccentric moment due to girder Aoeeti tr) (te) te) = 560734 in.lbs. Eccentric moment in the column taken at one fourth of moment produced by eccentric load in girder framing into column. Eccentric moment in column 140183 in lbs EKecentricity, 220188 = 2,5" Lead sn theusands of pounds, Column size 14" x 14", use 14" fire protection 17"x172 a= (17)2(1 per cent) = 2.89 sq. in., use 8 — 4$" rods use one guarter inch bands spaced at 12" c—c wet. of column S472(17)(150)(11) = 3212 its, 144 second floor, C#, C%, C4, C8, C%, C7’, Live load, 4212421) 4250) = 55105 lbs. Dead load floor slab, fal £21 t6o) 215215 lbs. Lrad load, one B, (21)(238) = 4998 lbs. Dead load, one B, (Z1)(137) = 2877 lbs. Dead load, 4 pf G, {21 feco) = 6300 lbs. Walls and windows, (21)(311) = __683]_lbs. Total load on floor 91026 lbs. Load from third floor _vgs86_lbs. Load on column 150412 lbs. Tota] load on one floor team, (2405)(2) = 5C595 lbs. Moment in girder, {g0nCs Z)(12)(2) = 6484548 in. lbs. Kecentricity in colunzn 212121 in. lbs. Eccentricity ei eies = 1,4" Column size, 19"x19", overall Ze" x 22" a,= (19)#(1 per cent) = 3.61 sq. in steel use 8 — —~#" rods, with ane quarter inch bands at 12" cc weight of column, fe2)?(150) 11) = co46 Ins. 144 Same columns thru first floor. Load on floor 91026 lbs. Load from second floor 180958 lbs. Load on column 246984 lbs. eccentric moment £1Z1z1 in. lbd. - 4 212121 _ n eccentricity, cA60nL 0,89" column size 22"x22", over all 26" @ 26" a,= (<3) ?(1 per cent) = 5.29 sq. in. use & — $$" rods, one quarter inch hoops at 12" c-c weight of column, £26) (150) (11) = 7886 lbs. lie Same columns thru basement. Load on floor 91026 lbs. Load on first floor, 2064730 lbs. Load on column, 345756 lbs. Eccenttic moment in column 21zlzl1 iin. lbs. Becentricity, 22414) = 0,62" 345756 From diagram on page 151 column size, 26"x26"p ovetrall 29" x 29" weight of column, S£2)2(150)(9) = 7Eg5 lbs. 144 Exterior Columns Cy4.4, Cog, Cas Third floor, Live load from roof, {22 )(21) te) = 6615 lbs. Dead load of slab, Mei) fe 1444) = 9702 lbs. Dead load on sdab, £2 Et del) = 26681 lbs. Dead load one B, and 4 B,, (21)(172)($) = 5408 lbs. Dead load, one G, (21)(230) = 4830 lbs. Wall load, (21)(263) = __0846_ lbs. Total load, oGQ82 lbs. Load on one roof beam 32277 lbs. eccentric moment in girder, (22277) (5) (12) (10,5) = i01e722 in. lbs., in col. 254181 in.l: oXZ ° . o b. - eccentricity £24281 = 4,3" ceC&s fron table page 151 column size 1&"x1lcé", overall 18"x18" ao= (15) *hee@ehaaed(] per cent) = %.25 sq. in., & — $" rods weight of column, (98)? (2e0) C1) = s7x¢ lEs. 144 Same columns, second floor. Live load, 55106 lts. Dead load floor . l5z1é lbs. 1—~P, and 4 ©, (241) (258) (1.2) 7497 lbs, l1-G, (21) (E66) 76€6 lbs. Walls and windows 6561 lbs. lotal on floor, Y¥50) = 8.91" = _ 2 awea efcd aoe net (8.91)? 25.71 sq. ft. upward soil pressure (25.71)(4000) = 102840 lbs. 102840 = 35.9 shear on ef TIO7) (31, 25)(0 875) o.4 lbs, total weight 6f footing (13,5) (13,5)(2.48)(150) = 67797.0 lbs. (4) (4,87) (2,1) (3,83) (150). 11633.1 lbs. Zz fed) C2.62) 69. 0S) (120) = 9777.9 lbs. (3.83)(3.83)(2.1)(150) = 4620.0 lbs. | Total 93828.7 lbs. Total load on soil 708485.7 lts. Sustaining power of soil, (182.26)(4C00) = 729000 lbs.: Wall Footings. Exclusive of corner, stair and elevator. Fer Far Fas Fo, Fe, Fr, Load on footing 39386@41 lbs. 15 pet’Fhr footing 53046 lbs. Soil pressure 406787 lbs. Area fpr pressure a067e2 = 101.67 sq. ft. use 10.5'x10.5' footing, giving 110.25 sq. ft. L0'6* | Lh dV ° 4 | 204) 206) ‘ - J ¢ 1 4 3 { I “}s rere Nau | 13" da es | e | .2'% | Area of column base fee)? = 0.052 sq. ft. Area trapazoid abcd siftze — cose = 26.202 sq. ft. Upward pressure of soil (26.292)(4000) = 105168 lbs. distance c.g. of trapazoid from edge of column 4g 2 ( 29 _+ (2) (126) ) = 26.7% 29 + 126 bedding oment at edge of column (105168) (25.7) = 2,702,817.6 in. lbs.: £702617,6 = ¥g " ; f t _é s = 29.7 epth needed for momen J AILS. depth requieed for punching shear 105168 = 34 5” betel deotn 49" (29) (105) .5" , make total depth a= 2702817 .6 - 56 a, (16000) (0.875( (34.5) sq. in = ___105168 = 45.5" 2 ° (80) (0.875) (34.5) space reinforcing over 29 + (2)(S4.5) + se = 112" -_ = A rods needed 3,142 ? 14, 1" roas give 43.9t8 ins. perimeter 14, 1" rods give 11.00 sq. in. area | top of footing 4 " souare depth 2 = 84,5 = 17.28" z depth of footing at 34.05" from side of colunn 17225 + (-L—)(17.Z5) = 20.09" (F575? ) distance ef , 126 — (2)(14) = g&", 8! 2" drea efda, 420.28 = (5.38 E16) = 10.91 sq. ft. upward pressure (10.91)(4000) = 42640 lbs. f Sof 4C 25.3 lbs. shear on ef 4 T3Sy(S0.05) (0.676) ibs weight of footing, (10.5)(10.5)(1.8 )(18G) = 29252 9 lbs. (4) (2,54) (1, 44) (3,41) (150) = £214.8 lbs : Z (1,44) (7,1)(7,1) (220) = 5659.5 lbs (3,41)(3.41) (1.44) (180) = 611.6 les. total 412&8.8 lts. 160 WALL FOOTINGS, Fag, Foar Fao Load on footing e6zEE2 lbs. 15 per cent for footing 64835 lbs. soil pressure 417354 lbs. area reouired, 4i7cc4 = 104.33 sq. ft. 4000 use 10.5'x 10.5' footing, area 110.25 Make these footings same as Fy, Fg, Fy, Fg, Fe, Fy WALL FOOTINGS, F,, Fay Load on footing ogs0O00 lbs. 15 pesir cent for footing ofECO lbs soil pressure 45€8SC lbs. : . 4ceSESO = da - = - 114.7 e ft. area reouired , 4000 SQ use 10.75 x 10.75' footing, area 115,56 sowW ft. ° wn” d area column base , fet.51" = 6,80 sav ft. area abcd, 122.58 =~ 6,89 = 27.17 sq. ft. Uoward soil pressure (27.17)(4C0O0O) = 10868C lks. Distance c.g. trapazoid from edge of footing head Q $1.5 + 129 tending moment at edge of column, (1CEES0)(2E.8)=c005944 in. lbs. deoth for moment J ecveyae = ~£&.e" (167,4) (21.2) depth for punching shear casa ss¥te3 oé.8", make total depth 3@" _ ZECBOGA _ , , . a.= = -——— = 6.07 so. in. steel S (16C0C)(C.572) (28) ~ 1C*6&C _ " 29= = 47 ° (80) (0.875) (33) space reinforein3 over — eG a . 81.5 + (2)(58) + S622 = 113.75" L “ay ——+—-—— = 14+, 1" rods needed, use le 2.142 113,75 = 2" ee 14 15 rods give 47,13" perimeter, 11.78 sq. in area. top of footing 42" square, depth 33/2 = 16.6 depth at SS" from side of column 16.5 + (E422) (16.6) = 19,66" o distance ef , 129 — 32.5 = 9€.5", or €.04' area efca dis-2é—= (604) = 12.75 sq. ft. a upward soil pressure, (12.73)(40CC) = <0 lbs. shear on ef, oC = o0.4¥bs sa. in. (26,6)(19.F6)(C.E75) PCOTINGS UNDER PLATHOERM Load on footing o72¢z6 lets. c ver cent for footing oové.& lbs. Soil pressure agc0e4,© les, . ~ Ava Q ee area reculired a 10.8 so. ft use ca! f so. ft. r 2 area column base Ahi): = ¢£.Cl so, ft. C ~~ QO —_ , ; co: Cr . area atcd, iv.c9 - 2,01 = 4,22 80a, tt. 1 upward soil oressure, (4C0C)(z.22) = e500 lts. distance c.g. travazoia tfom edze of tootin:e head, cif (hi + fz) ts: ze6)) = tending moment, (fECC)CG.1ic) = 2780c in. lbs. déoth for rotent wo cise e 1U7 4 16] deoth for ounchin2 snear oo IIo we {CO oN lO) it YS CO make total deoth ©" 7 “wn Lecce ‘ 4 w ~ .* “TT ‘* 2 oa ks AN { AS A r, == &, 1" rods needed LZ teh b3d t_i¢.6 = 2,4", spacing c—c depth of footing at 5" from side of column, 2" make footing full rectangle weight of footing (3,2)(¢,5)(@,7E)(180) = lecé lbs. COLUMN Cy, Third floor colunn, rectanzular section. Live load from roof, feted ted) = 3207.5 lbs. Dead loaad“slab, Sed) hei) (ied) = 1e640.5 lbs dead loaa of slab cans) 4&51.0 lbs dead load, one nalf 2, , 8 A(122) = 1EC6.0 les ‘deaa load, one hala =, (21) (105 ) = 1C£1.5 lbs dead load, gne half C,, (za)(zs0) = 415.0 lbs wall load, (41) (zcz) ef4e.0 los total load on column, ccR47,0 lbs, Total load on one roof cCeam at wall Atee7) hel) = 161¢2.5 lets. eccentric moment ot girder, (igise, EDA) N94) £4) =271126.8 in.lts. eccentricity in column, €77¢21.7 in. lks. watten wl SS ah oe OF aT LS Column size, trom design on page, lili, i1" « 11", eccentricity, E7zel B= ey" use 14" cover tor tire protection, 14" x 14" a,= (14)#(1 ver cent) = 1.4¥¢ so. in., use & , 2/16" rods. use #" tana at 1z" c—c weignt of colun, At#/00@)42aC)011) = 2245 Lbs. 44 SECOND FLOOR, dead load of slat, 76Cc.05 Llts. live loaa o7eo2..c les, One half, E, £499,0 lbs. One Half, ¢, 4157.0 lts One halt, &, léct.e¢ lbs. 1€3 Wall load, (21)(311) €ce1.0 lbs. Total load on floor, 49765.¢ lbs. From third floor, 64894,0 lbs. Totak load on column 84602.8 lbs, Load on floor beam at wall, £0205 lks. Voment in wall girder, feo2ee) 07) (12) (2) = 424242 in.lbs. eceentricity in column, 106O0E€O in. lbs. eccentricity, AVEQEG = 1,45" G46E9.E from diagram on page 1él1 column size 14.5" «x 14.5", overall size 17.5" x 17,5" ao= (14.5) #(1 per cent) = 2.1 sq. in. use & . 6/8" rods, weight of column, (17,5)2(450) (11) = 3510 lts. 144 PFEXST FLOOR. Load on flook, 49766 lbs. Load from second floor, 66170 lbs. Load @n column 15796 lks. kecentric moment, 1O6CéC in. lbs. - eccentricity, AVELEU = €,77" Levees From diagram @n page tel, Coluan size 17" «17", overall size = a ~~ te ~~ . et . . - . ’. ae : aN roe. ‘ 5 ‘ , t . . a . 7, . >» o- . \ swe ¢ a) » - 7. e sos ~ “7 ° ae | a @ - a ’ e id ie, 4 an) 4 * e « ‘ J . ‘ @ ' a é - v on . f=‘. . « . o - 4 ‘ . ’ . ‘ - "7 #@ om @ ©@ . om |e a . ‘ ‘ ~ ~~ = « @ . a SB ’ ' , oy = 4 > t . ce : ; a . : : e ve : ° t, i. : ‘ ‘ J ¥ - . @ ~ -~ jo - + a = - +— oe 2 we - ee e ee » 4 - ° 4 “ ‘ oe oe _7- . woe . , : % a - . ~ ° e ee « ~ ~ ‘eo y - 1 . ° - Co “ay - vy : : . . . a 1 . cad . . . ore ¢ ~ ~ re r. ‘ ¥ 6 . - vo 1 @ .~ @ ~ | o. 4 a. UF * » od 1, 4 , ° ta 1 # -vo mm , », 1 . > Beas 610. Make of same dimensions as B3 and B4 for ease and econoay in fora erection. | (TARR a TE Pg 43 * TOT Wf \. 4 Sif ane podhepos ase 4 pet Mp — Pp ” fs "16" “10°, mtd de &" #, 2 oe STO _ 3'o* Po Giréer 67 ® ‘k AO" bo] ae pe aes &9 Sa@ load from pent house 1650.0 Load from roof slat 3410.0 Side wall load 13469 .0 Main roof load, (19.5)(4.5)(14.0) 12286 .0 2 B10 concentrations, — 1548.0 Load on G7 32362 .0 Assumed stem G7, (300)(14.5) 4350.0 Total load, 86712.0 Vo 18356 lbs.,: w= 498792) (24.5)(12)_ = 796486 in. lbs. bd? = 7435+ d= 23-, total d = 24.5" b= 14" Me BCT aa)” 7 2-48 sq. in, use 6 = #° rd. rods at 2.65 sqv in. 168 lbs... lbs, lbs. lbs. lbs. lbs. lba, lbd. 7 *& ° { J “ ‘ ° ‘ if . 3 . . —< t b r - t = - ry Y eo. @ r, ‘ ° - . ¢ et. -, 4 ‘ 7 . eo . e e@ e - at ' fees - = . 4 ~s : re om 169 _ (6) (2, Beye. 576) (33) " G4 Ibs. ws de.8 {1 ~ Yo Tax =r —8XZ_] = 3°5", bend up 2 rods use ip stirrups —_—e 2) (18366) : 5.7 use 5° spacing for 2'0°, 8" spacing for rest. ' Girder G6 for roog.: Pent house roof load 1660.0 lbs. Roof slab, 3410.0 lbs, Side wall load, 13469.0 lbs. 2 concentrations, 28640 §7280.0 lbs. Load on G6 76809 .0 lbs. Assune 10 per cent for sten 7680.0 lbs,: Total load 83389.0 lbs.: Shear © 83390 + 4 = 41695 lbs. wy = {83390 = 2,101,428 in. lbs.- bd? = = 19566.3 107.4 assume b= 18" a = / 10566.3 « 33"+, total d= 34.5" 18 “s" (16000)(0.878)(aa) “"°* 9a- in. use 8 = 3” rd. rods at 4.81 sq. in. Bie v a ee + - reer er ae -\ + - . a ‘ 4. . - t e ~omnh ot), 10@G" = 5'0"" 4 ter: we* { Peak PRle2: Ho" fF ® Slen re tOr _ / (8)(2.75) (0.875) (33) x, = 41 [ 1 - / $a | = 6'2", bend 2 a 21 - e 4t ae xi = r C1. J Shy 4° 3", bend 2 aore . use one half inch stirrups e oe *, ! ee ,a se . @ ea, Y > >» @ _— - 2 > . i . e e- .. e-:. s - -: * ® e “a - ~ ~ ° ' ‘ ‘ . - . 7s : . ~ 34 o e e - e ow w 4 . ‘ . ‘ - @ 4 e ° . 4 ' ‘ ‘ » . * . a ~ . 1 o ° . ° "~ - 7 . ’ ad . + - « f e * é e _ » . e . e -“ w- . - i vF eas 170 s = §3)(0,196)(2) (16000) (0,875) (33). = g 5" (3)( 41695) — space 6" for 5', 12° spacing for rest. Bean 69 for floors. Live load from floor 250 lbs per sq. ft. L.L. from floor (250)(1.5)(12)=4500 lbs. Floor slab, )&6)(1.5)(12) = 1008 lbs, on beas 5508 lbs. Assumed sten of bean 65 lbs, eo Total load 6573 lbs. VY = 2788 lbs. M ~ {bb76)(22)(12) = 66900 in. lbs,. assume b at 6" ds ¥ oft. = 10"+, total d= 12 a, = THeDEST OLB TEY TIO) (0.876 (10 = 0.478 3 Qv in. use 2 ~ 4" sq. rods. X, = 44( 3 - v/ yess } = 3.6° , bend 2 rods use 1/2" stirrups gs = S3)(0..396) (2) (16000) (0.87 = £.95", use 3* cu 2 * 2788 | | o- ‘ i: $ - @- 8 , we - ~ ‘ . » 5 . . > @#ea j : | wo Zaz fee ci ! - t * 7 a. _ a ¢ ° e ee ‘ ° - v . “ s 5 ® ’ . - °c e 4 a Vg ~ ® ~~ «4 ‘e oy a e A 2 . ¢° ~@ a * ee oe =e oe » @ - cee ~ we @ . ON . 7 ") al . - ~~ 1 - 8 4 ‘ “a | - eo fb J * “ i ry y* ‘ = & ° ® @ 2 ‘ * “ . . € » e ) ” es e * « « °% =a eo a + - m”~ A ° ? ‘ gan ago of. tat ‘co om ed . . - $ oe e . ' ' -~ Slaw et we ee lt ~ ‘ a a .. es - eo. ‘ fF . . ~ t 4 - «ee m=eo a ~ oe Not. x 2 7 oP MD ow Ce f ~ = : ‘ ot \ ‘ : . e Cel . Se ew - a ‘ . . “s c- ipo we: e . ‘ 3 : . e . a vor « . - 4 ., re . ‘ - mon Dow ‘ - = . on ow 7“, 2») bs ee . , > e oa . ° a $b ¢ ed - , “~ d ~~ fy ‘Le A he oy . ace ee wt OC omm ¥ _? . ral oe % Lan ‘ t ‘ . . rd o : ~ My . “ ‘ ‘ a * - = . - me - @ : € a =e g sr - , ¢ « & - y oo, ab» & 2 @- a te Beas B10 floors. 171 Make B10 same as Ba b = 42° d = 22.6" 38 - 8/4" rd. rods in 2 eous = &t’o" bend 2 rods at 4° 0° from support. carry six straight use 7/16" stirrups sa .pe a space 12" c-c entire length B10 70" = 70" | 70". — —f tt. Girder G7 faoors, Live Load 250 lbs., 100 per cent impact, 500 lbs. 2 concentrations of 9528 lbs each, 19056 lbs. additional live load, 250x412 = 1000 lbs.. equivalent lisear load per foot, 42058 « 1688 lbs, ‘Total load, 2588 per linear foot, Assume stem 400 lbs. Load 2988 lbs, say 3000 lbs per linear ft. Mos Sn 12) = 3g000 in. lbs. assume b = gs” qs (39000) = 6.5", total as 8° (207-4) (6) 2.7) , . macnn &§ 0,396 sg. in. ® (16000) (0.875)(4;5) use 2 = 4" rd. rods a “ « on te CB)(6)(3000) ~ 2.20 space: 2° for 2', 3° for 2", 6° for 2° wa. » . # a 4 < a + 4 é "i . 7 ty ° 4 . « ® we mid dew fe & ope + 172 Girder G6 floors. Concentrated load 2788 lbs..: Sten 400 lbs. Wall and window, 310 lbs.: equivalent load per foot 27B6"3 + 710 = 1108 lbs. - Al V = 2788 + (10.6)(710) = 10248 lbs..: uw = (110 2412). 486628 in. lbs. Make sane Ginension as G3 b= 13", d# 25", total d= 27° x . . *, ” lie (7) (25 = 1.50 sq. in. use 2 ~ 15/16" rd. rods at 1.38 sq. in.: use 3/8° stirrups = 63) (2) (0, - ” .* (2)(10243 = 419". space 11" for 3°, 14" for 3°, 18° for 4° ° o~ « ¢ e _« a e ee " -_ e "5 8 9 » x ne “@ ‘ os @ * ’ e ’ Ws xX o nd % ‘ - - i . “@ , + * hw . - st my nw @ we -e «ee 4 a , + e \, oe t ,# : ao = 7 a ' ¢ 7 8 + & ° . . ¢ * 5 ‘ - t ‘ ow & - ‘ ‘sore : * oe ww TY - a rf e vi) :_ . ae a “4 ‘ » 4 \ sd os x woe z ~— s * . ¢t - " .w ' d ° \ =. a mm ‘ . ' t \ . oe o -«- donde - .* . . 6 w”~ . 3 o OF . a se . , . “= .- - - 7! : ’ _- t ‘ ae ° we t ~~ ; . » a , r *, eos. f * . 4 4 . zw ~w =D eee oe o - as s + 4% ’s C. 173 Problem 28, Make complete details for stair shaft. Beams, girders, etc., Snow load on roof 30 lbs. sq. ft. Slab load on roof, 62 lbs. sq. ft. Wall téads 75 lbs. sq. ft. Snow (7) ()0.5)(30) = 2205 lbs. Slab (7) (3.5) (62) =» 1519 "* Wall (7) (6)(78) = $3150 * Stairs (7) (60) = 3650 * Total 7224 ” VY = 3612 Ibs, a Se Ms {7ezani7)(Z), = 50568 in, lbs. Ga — lesae” re" = paz 20868 = 470.9 107.4 let bh = one haldé a . 470.9 a® = 941.8 d = 9.8" if t = 6", then total d = 12", = 568 (5)_ (160C0)(7) (@. use <4 — 3" round rods at 0.393 sq. in. run straight thru. Make G | same dimensions as b,, rein. same. Make G. same dimensions as Ga, rein. same, Make G, same dimensions as G,, rein. straight b, same dimensions as b, B, floors:. 12" 6 Bfeeft gh a oe as By = 0.362 sqé in. Live load and floor 250 lbs. sq. ft. Slab load $§ ltrs. sq. ft. Sten 50. lbs. sq. ft. rerL.L. and Floor (7)(7)(250) = 7250 lbs. Slab, (7)(7)(56) = 2744". Sten, (7) (56) = .350__% Total 10344 lbs, V = 9172 lbs, Moz Aages47)idg) = 72408 in. lbs. paz . 22408 = 675, 107.4 675.0 © hal¢g , 174 as = 1250 d = 10.9." let b #6." total d = 12". es (16000) (7)(I0-5) "0-474 Bq. ine use 3 — $" rounds at 0.589 sq. in. hook ends, uee 4" stirrups space (3) (2)(0,196) (0.875) (30.9) (16000) = 17.3". (2) (8172) make spacing 12". c-c throughout. Gi, for floor. Load concentrations §172 Slab (7)(3.5) (5) =z 1372 Wall (14) (13) (50) =z 9100 total 15644 lbs. V = 7322 lbs. m = £15644) (14)(12) = 219016 in. lbs. bat = Sh5525 = 204.0 a® = 4080 d= 15.9" total a @ 17" b = 8" = (219016) (8) -— 2 as (16000) (7) (15.9) 0.983 sq. in. Use 4 — $"sq. rods bend 4414 | = 2.05" from end, bend 2 Atl | ‘5 | | q fer ih g "x2" ig ‘\ a | i Lo in & eC . * v_P T SOT nf an { —— FO 40" R22." OP. | ti‘ ROTO zt eZ i ro" L 2z” 7 > fe-—-- 270" re (F& ao Oo” Use $#- stirrups space + 1 = 17.8". (4%) (7322) space stirrups thraughtout at 12" cc Gio for floors, Slab load (2) (21) (56) 2362 lbs, Concentration G,, 7322 ", Wall, (14)(13) (50) 2100. * Total 18684 " add 15 per cent for stem _.g8]6.." Gross total 21590 *. to 175 V = 19795 lbs, =» (21590)(21) (12) = M 1D 453380 in. lbs, bd? s 453390 = d 107-4 4320 dad? = 8460 d = 20.3”. b = 10” total d = zz". = 4 x = 1. *s" T1e000)(7)(a0.5) | Use 4 — 3" romnd roads bend 2 at 42(17 3) = 3.05' from end Use # stirrups space at 12” gp c—c throughout. Make B, same dimensions as B, “ake Gy same dimensions as G, Make G, Same dimensions as G, Make G,, same dumensions as G, Coluans for stair. C, Third floor, rectangular section. Live load from roof Seu tel) iso) = 3307.5 lbs. Dead load of slab ‘S#i\GIUi2]) = = 13340.5 *, Dead load, gp, 4&21{105) = 1081.5 ". " *" 4G,, Agi) ti72) = 1806.9 ” noon pb. &62022) (150)(7) = 525. nn (12)(12) 28.0 Pent house walls and roof, §"wall= 20050.0 * total 40110.5 ". Parapet wall (21) (283) —~-—§ 84640". Gross total 45956.5 "* Load on one roof beam at wall Aisiited) = 14290 lbs. Kkecentric moment of girder Aiageo)t7 (iz) ie) = 240072 in.lts. Eccentricity in column 60018 in. Vos. trici 6C018_ = 4. 3 Eccentricity 45056 ; 176 Column size, see Page 151, chart, 11” x 11”. use 14° cover for fire protection, 14" « 14" out to out. g~ (142)(1 per cent) = 1.96 sq. in. use 8 = 9/16". rods use }' bands at 12" c—c wet. of column 14, £0)()1) = 2245 lbs. 144 Make column same dinmensions as C3 Make footing F, same dimensioh as F, Columns C,, and C,, for stairway and elevator penthouse. 3rd Live load at top {1416141 450) = 1470 lbs, Dead load slab (14) (14) (121) z= §9290 * Walis (14)(0.8)(150)(6.5) = 6825 * 2 $b, load = 2788 *. $6, load 218356_ ". Total load on column 35368 lbs floor.:, short diameter v 35868 = 7.3", (2) (800) (0.414) use 1$" cover for fire protection, 10.5". octagonal A = (2)(7.59) (0.414) = 46.58 sq. in. use 1 per cent steel, 0.4658 sq. in. 4 — $" round rods at 0.78 sq. in. weight of column. (2)(20,5)(04414)(21) (150) = 1125 lbs. use # spirals at 2" c-c floor, 3rd floor column load at roof 35368 lbs. 3rd floor column 1125 " live load at floor iip2be = 13780. ". Dead load of floor <86z8 = 3087 °*. $b, sten 525". 4G, stem 2040 *. total load. 55925 7 | Short diameter / 59945 9.5% 42) (800) (0.414) 13’ cover for fire protection, 12.5". out to out. A = (2)(9.52)(0.414) = 74.73 sq. in. 177 1 per cent steel, 0.74, use 4 — 4" rads weight of column (12,52 414) (11) (15 , C2) 12.57)(0, Q)= 1500.0 lbs. use $° spiral bands at 2* ce Ast floor column, Qoad from second floor 56570 lbs, cond floor column 1500 " Floor loads 19432 " Total load 76502 " Short diameter, v ZEeee = 11.+" 14" for fire protection, 14". out to out A= (2)(11#)(0.414) = 100.184 sq. in. l per cent for steel, 1.00 sq. in. use @ — 1" sq. rods Weight column (2) (140) (0.414) (12) (250,)_ = 1887 lbs, use 2” spirals at 2". c-c Basement column. Load at firet floor, 76500 lts. lst Floor column 1880 ". Floor load 19432 *. Total _ _ 97822 *. ‘ 97822 =12.1" Short diameter / eis Use 14". cover for fire protection, 15" out to oyt A = (2)(128)(0.414) = 119.23 sqv in. 1 per cent for steel, 1.19 sq. in. use 4 — 14" sq. rods meight of column, S@6152}(0.414)(9) (950) = 1772 Ibs. use # spirals at <2". c-c Weight on footing. Load at top of basement column 97822 lbs. Basement column ~-1272_—". total on footing 96594 ". 178 Footings Fy, and F,, zarea of column base, 119.23 sq. in. or 0.83 sq. ft Load at top of footing 98600 lbs, 15 per cent for footing _._214780__”" Soil pressure | 113390 " area required 113390 2. . . 4000 28.4 sq. ft use 6§'4" « 5°4" = 28.4 sq. ft. Area abcd = 28.4 sq. ft. =0.83___ —'#" 4) 27.87 6.89 sq. ft. upward pressure lL, 2a7”_ (4000) (6.89) = 27650 lbs. G.G, distance c.g. from edge of footing, “ we : 48,8 (27+(2) (64) )- 11.78" 0 k M sap + 64 os 6 M = (27560)(11.78) = 324657 in. lbs, d for MY —224657 ~ " eph for (107. 4)(a7) > 29-*. Dept for punching shear, 26 spacing #1*44)(10,5)¢15 = 5 4" _27560___ ag gn (27)(105) "°° total depth 12" = I OU ~ «=m cH (80)(C.875)(10.5) 2 © 37 45_ = 12, 1". rods need 3.142 °° 7 needed weight of footing (5.35)(5.38)(1)(150) = 4260 lbs, Fooring SCHEDULE. Mark | Ize Rests No. Se Toe Total Interion | 3g" xis’e” | 36 | 16 1 7°9 | 13'0"| 57E foFyFaFsg® | 10'6"x10'6" | 12 1 1 1°? | yoro"| /68 Fig, Fag, Fz2 | 10°6" XI0'e” 6 | I? 11°? | yoo’ | 64 Fo, Fi7 10's" xXio's"| Gl Iti rF | jos"| SE P 4"x7#+' | 6 | 8 ['F | z0"| FS F2s5 106"XI0'6" | 2 |Ihe 1 I/F | fo'o”| 28 Fifa | 7'7"x7'7" | 4 | yo | W'4 | 7'0" | 40 Fay Fpqg | SA XS'H’ | 4 112 | I*@ | 5'0"| 48 780 Stair Detai Ils. C7 Section thru Stair House Zo” & Porap et. == —~--~+-+~ ---+----- 4 —_o —_= ~—wer es ew eB Se ee oe l' a 4; ° ( . . ° eo. ‘hk <4 wee e ' re a Ve oe ° sere e e ® ete a e os, © aA o- “cinders: eo 8 to s ad wwe e . ® . e 8 -e “ a4 : se ” 07.0 a e oe ae we e io wme*,e or Oe e e° . f. we tt hk Lin, 77 I! <--— «9,9 * a9 AALS mec ASF. /81 F 34. sv a ~ ‘we : -Y ; Ss ASS} EY fe ro ‘ ae m ™ ‘ & : : Q 0 Sree ees 5 hn ors Rolling Door wee IStho x28 Floor- Sec. Ca StairDetails 182, ¢ w i) s ee UP gG/o “Plan. Re ILing Deer Ro “é r----- Sec. Bsmt te jot Fleer Prob. 29. Build ing Details Frent Elevation. FRoll it G f+ L>PLh re If LI Ti Foo OS) “Rear Elevation. /84- Fr7 — ~ —_ ae | Bliy pea faego pestpainhs Uorpepomag ~~ % é e Q G; ~ we u + | : .0,/2 ~< nOle ~ {AIL = N uw) c ° | | : < e - - joo 3S ! | y : x ; a 1, Nel _. = | S w _ Ce Ole 9 ¢ W c | wi ec ye ~ ———_ i v 8 3 , nm t Ny c /-—— q | : 4 Oe z : . eal 0 wR 0 a S Zz \) = oR Bink cr Elevator, 12' oF Pe Fy Br Fe Re rE Ft JLAg |e RL = : e- 27 | 79" o |! 7'0” UN 70" }) 7'o" 4 70” u 70" | 7 . 1c F san Saal a SEs i fel a ¥ Ma} & Cos d Basement section for Cig, Cra, C72 SEX 34S" 278 4- °* vert 4” Spiral 2"C-c 33" q 4-1"Overt, * ¢" Sprral 2%"c-c 4-14" vert, x Sp ral 2'C- ___} 8- hive rt - ‘heops 12't-¢ 8-£"9 vert. . & “Ver L"hoepsle'c-c = r ¥ Vert. ” 4s h copsle” C-C a-2'Vert, /70 245" | x spiral 2't-c : ’ lr TT :# : £" hoops l2"c-c F ——=¥ ‘2 | i | s “| 0 Ro. . cae Mw lis - al y i Jog cy) Cea * . 7 g t ot TF D oe eh 7" Overt. y . L Gre "spiral 2”C-c oO oc”. 41g" Overt. u _ £'sprra/ ate 19 | 20 LE BLY > | © & S & 8 ‘el WY MT 7 : Y S& A x Sd. x t Heeff PLE "4G _9 - t O08 + J i Shaft. Elevator Page location of Details for the building design of Prob, 29, ROOF. Koof Slab. Slab details cece cree ener wee cccceesccccee Page 119 Slab steeliw. ccc ccc ccc ccc ccccaccccccccccecce .” 119 Roof Beams. Bay Ogg Ba, Dap wesc ccc c ccc crv cccscccccccecca” 121 C ccc ccc ccc ces cence cece ccc ccsscsecccccccccee © 122 O gece cece ccc cece cree ccs sssscccscccccceseceece © 183 Cece c cee ewer c eee cessscscccccccccsscccsces " 1734183 Dg cece ccc c cc cr re ce ccccnsccccccsccccccccccs " 173 Da cece ccc cece cece eee cecesanccecccecceceiee's " 187 a "168 koof Giraers. 5 a my nw 3 — 0 ’ etn 69 a -¢ . . : - - : BQteeersseeeeeseesseeseeeseeeseeeseseeseaseeeeseeees 3 4 ay) Dd Zap Ea, Bhp ceca cece ere e ccc es cece erence cccaes Berar sarc rccccccncecsscssccccssscseccscscseses § 189 Sy acer cncoccccsscccscccsecscccssscscccccsces § 168 Spec ccc c cree cc car ccccccessccccccccsscsccces © 1736125 Cgc ccc crac cc creccescccsccssccsccesccscccesee §— 17356128 Zag rsccaccccccssccscscccsscsccccsccscesesces — 1736121 Steel Schedules. Slab Steel i. .ccccccccccsceacccsccssecsceccecceceaes " 119 Eeam and GITACr cc cc ccc cca nccccccsccaccsacee " 127-128-124 FLOORS $1 ab Vetails....ncscccscccsvccecscscccocesncececces " 13EC Floor teams. acc ec cern ence encase sceseneseeecsecscececsce 130 Rope cence cece ccc ss cer reece cr sceseccssccceseces " 13i Es, Dec ec creer encore cece e asec nccascccsccce " Lez C sp Begs w cc ccc rc nsrcccascenessscccsesesesvsscace . 182 Ry ccc rec ce reece cece cc enc cece ecto escesceccace " 175—17C gece ccc eee a seen cence cece neces sc eetacnecees " 172 Re CRC Cee Comer e eee ene anes eeeeseseeeseeses 7C Coc esc c cw a cece cece nc ces t an eeacecessnscece 171 tT ‘-) 7] Baa ~ 1:9) age cece m cers rece esecerresnsenessecce 134 floor Sirders. Cyeere i aeee . tee wees teen ee race 126 ge ccc ccc cc ccc cree cree eran sees eee esesecescee 137 Pre T Tre TT TTT TTT TTT Tere errr Tree eee 1é9 gence eee net at enter et cre aateeneeserassvsses Lev Cpe ccc ccc cece ete eee scene eres eres esececces 1éz Cop Cyc ccccncccscrscsccccsceacssvesssccssssee 171-129 Gyre cece cece eee ewe ee eee eer sence nseeesseees 175—=187 CS 175-1c¢9 Soc ccc cc ccc reece nese ear ees eee eeeeesesesesee 176 Spc c cr ccc ccc cece rece cece eee aces ecceceee 174 Cage ccc er cece acre ests c eres esse ssceeerescsee 176—157 Daas Crasecessccereccsccccccwcseseccccscssses 143 Steel Schedules. Slat Steel. cccccccvnsncvcccsscsccscesccececoceccee " 15C Feam anda C1IPiueri cc ccccrocsccccevevreceseoesoaes " Ll44—idi— 148~147- 148 COLUMNS. mea i] ee wEvtvaliliS w,.sevvceantierereor:eererevrecaceanrseaeeceeceeece oO a “O fT” C OO ( -— "Y) 80 ' 3 Steel scheduleai with column details. ZOOGTINGS D ccc etc c eae nee tee ee ee tenet ese eeteesee 164 Foy Fay Far 257 16r Hyp ter neraccscvcccssssces 1&2 Ppe cece cece et we een ee neces cess ceesteeseeer 164 Dc eee a ee Cece eee ae erent eseaestaeee 140 Sage Saar Faas “129 “199 “149 Lapercrececsces " 157 Fg ccc cme cece cree ene e east reseerarsoes 1C& Lge cree scence eer scene eee arses ee eeeresesre LAC Paps 109 “vor var Soo Hogerseccvecsrsccees 157 Far DE cere th beeen eet aeenecceseecesese 1&8 Boer fore Hees Foor - nop Lager ececcccecesese " 159 Lag pe seca cecr crac rane eeeser err esececssecesssrae 1E# ee a 178 steel Schedules, “or all colucn footiniS.....ccecarsccceccescsee 172 wlevator house details.......2 cscccccccceseaa” 1éé wlevator shaft details....... cee ccc ecce 1°] Stair details... sccccecccccccssccccecessccssee. 1EC-1é 1- lca, The chapter on Building design and specifications gives a fairly comprehensive idea of the requirements of a building design from the architectural point of view and from the point of view of the man who places or figures on the inside fixtures and equipment of the fruilding. These things, however, are a function of each individual dsigning office, each unit as it works, having its own methods am systems of planing and detailing. There are certain basis things which are needed upon a drawing, beyond this point the amount _of detail which is placed gpon a sheet is determined ty the personal equation of the office. The specifications there stated are Fut general. In every case of a building design, the specifications written must conform to the building code of the locality in which the structure is to te erected. For this reason, no set of specifications presented can claim to te more than a form which way te followed with core or less aegree of success, The chanter on tuildinzg materials is Fut a toiled down repetition of what has teen oresented in zany other works on cement ani concrete. The chapter on forms ana form construction is well written, it lacks in fZiving the necessary equations to Fe used in determining the strength of the various timters used in the force construction. The author evidently assuming that the took would not te used as a reference took -Fy any but those whe would fe farilar with the sathematics necessary for testing tne strentth of 2 oiece of tincter which is to te used in the formin?. The use of the steel form has aivanced at so rapid a rate during the last fen years, in far since the time of the ourlisation of this nork on concrete, that the information here given on steel forming is veyy ceaser, Steel forms are unioulbtealy tne cominzi form for all chasseés of concrete work where the different units can fe standardized, ‘ne use of the Steel form is more enooonical, more satisfactory and turns out a much tretter looking jot. Proposition cC. Pave é€16h,° vetermine the raxinum spacing of 2x6 joists which are to span 6' and support a €" slab having a construction live load of 7& pounds per soaguare foot.’ Vv = wl? & Allowatle fiter stress in joists and sheeting 1200 pounds per square inch. Ceflection limited to )/4 Vos fT2C)4$) 2h z)_ = €1CC per ft. of width. yo = gba? s = Ord? Ags ? 6M -(i 2CO)(2) (€):# = 1.72! l' €4" c - Ss = (B)(E1CC) ~/fé or ra Soacing. _. o wl “© 36a I - 1EC)(1, 72) (VE)ECE). £73.84 . 4S ( ety caeett PSST " “azcog = P+Ce". aeflection, Provosition el. 8 wall fora is filled with concrete at tne rate of five vertical feet per hour. rat is the reouired soacing of studs, assumins 14". sheathins and a ternerature of 70°, Using sane ¥ and same unit stresses as in @C. 70° temperature is equivalent ot SoC ltrs. oressure, (oeO) Ce) Fle) = 201ZF in. lbs. 2 allowatle deflection 3" ~ 2 Bwlt ~ €64 kT Ls 5. (eects) (5)4Ge) e cfd C1eccccc) Cz) (4) * o = Cof4) C1E0CCCC ) (2) (4) 2 = ] 4' er L'F" spacinz C2) C2) a0) Ce) 4012) (12) 2 SS Proposition &2. Find the maximum spacing of 4x4 pests to support the formas for a 10"xzu" tears, 7' c—c with 4" slab, Use 860 ltrs. per sq. in. allowatle stress in posts. re fe Construction load les. E4”" slat weishs » (E48) (7) (1EC) t 10x22 tear, (40) (£84(15C) le 12 Construction load, (7&)(7) load per ft. of bean a 4"x4" pest will carry. Axgx EC ECCC Its, ez SQ. call load per ft. of feam 99st soacins cCCO = e 1! ma ery " ¢ a ac CC Proovosition ve. Letersaine tne maximus supportinz forms for an &" sla ton live loai of 7c lts. se. f z"x&" joists. Assure tnat the oartially continuous. tC + Vis S ft. = d§1l.co lbs. per ft. = col.FR lbs, per ft,F = ezo.CO lbs. ver ft.F 1207.91 ts, cororession,’ 1sCG dts, space &' cc soacing of joists and stringers flat slat. ssure 14" sheathinz and floor, Construct— A de fheathing ani joists are Ellowatle timater stress 1200 Its, se. in. Maxiczug jeflection allowatle 2”. woe RL? - 1C < Welvht &" slat (=-)(16C) = 11°C lbs. so, ft. 1.2 Live loaa oer ft. ce les, "Otal load per ft, lve ltrs, 2"x4" post Bill carry “CCC les. 1722? ¢ FCCC 4* = Te =f,7', soace A'F"Ccre ‘ mn ix . 2 16 c .; : iC 5s = qi elt )Ae bdo 2) = ig ' o-—c (Ff) (Ec7e,é) Soace the joists o's" t6@ center with voosts., 162, The Chapter on Eendins and Placing of teinforcement contains nothing new;: the things there stated have been Stated many times tefore in never every treatise or volune which has been written havinzs to do with reinforced concrete work. for the purpose of the student who is reading the volure, it would have been well to have nere stated in such a way as to make a lastirs iroression, that all congercia] S fede ty a Ss of steel shoulda te tousht in Strailzsnt pieces, in as arse multiple lensthns as are conzercially rolled, to be cut ani tent upon the job. Cnly the larzer sises of steel] ere Ordered to exact lenitnh and tent by the mills, these sizes On Ceins of such stiffness and welent that it woulda te lmpractica] to Fendi them on the jot, ihe Chaoter on “ixine and Placinz of Concrete is What he S 4 as been PEDEALAY OVEr and over in all works on written literature On concrete Construction. 18 Or snoula te cogmoen knowledge to all ho are workin: +43 2 oan Corare I Sgt ot ' = . a . . ~ ps ihe Chapter on inighins C oe voncretr surfaces ig grotatly - aS "ear up *o agate at it could te vaie at the time tne volume . . . ee - ~~ ee a a rs ~ . : ’ amas se ~ . S . . e bein. Uae J WE sep C77: ity arn - J: kee. Ceuaters hat toon pe (Jo wR, . yO, , ee 2. ~ ; . ‘2 ° ° COT ebar ca a ks ut ara. 6S TV eggs Fy the wetre ys of firishins forcrece surtacea, aviecioully [9 the age 9° electrically an? ~ f,. \- ch shes, “oe tosh fleers and walls. 2 7 CFE Le ocisnt, to thre MPLGCRS Vita, faye ve] l be cn aetate y whe surdeet eng tre methoi: Of Watirorsafine 24 Jlloun, Tae GP SCUSSION ani there sper s “OC Le cane Soa CL Opinion that 4 e?ilir of foreisn sube Stance 44 . seg ra 27 Voby Sela Sor tne rix, unless t+, Sane 7 some htm os, Cog PS eabition ¢f fore rn Sutstances Raving one ter geeny te veahen tee pay 29 use writers idea the Cesboncte. poaatine fa dee, CV st one Poss Joana well pixeg SORCPSL Of salt ala lL ray jo-- ome, -Loroceed ani comoacte |; in te tore LTE CDOT Sh orcs’ action “TL, y OB Teal or, tat Ove ry TN Viviaisl rage of rev yey Cea wloudes gs tte nya Sinay for cone rucbior olani, reeetape f4 sa wel) Chat =e cranser be limite, to but 4 les PON re] re vg ct c ~< Proposition <4, Fhat items shoulda Fe charged up against construction work for the plant involved? First cost of plant. Freight on plant. Cartage and hauling to site. “xection at site. Pioirs for water, Cost of water. hunways, olatforms, etc., Towers, Temporary tuildings, Sins, Canvas, Fuel, Operation costs, ~ailntenance costs, Yoving slant to new locations on site. Tnterest on investment, Tnsurance on pliant. Depreciation, ihe estinated Salvaze value of the plant should te considered when aijustinz the percentages to be used in carrvinge the olant costs into the cestinaite figures. Drovosition Sc. \ 4d — oa ear numerate the various operations involvei in the erection of the reinforced—concrete skeleton of an office building. specifications written, sround, 1. pits, «es bad @ NX utility. toiler rooms, GVxcavation o f tasement, contract let, foundations, etc. footings, All preliminary investigations having been made, contractor upon the elevator “xectign of concreting plant at a position of maximup ‘bere the sreatest amount of concrete can te placed with the least effort 7 TZ. forn material, Should te standaraized licit of forns, si afainoon Pour footing “rection of outside curtain and loss of time. S, wall foras. srection of Fasement colurn forms, Dlace wall reinforcenmert. Pour outside Lay forms to Dlace colunrt ete coluuns walls, r first floor. reinforcing. reinforceinyg. r ‘* A SY SLEL andi tlcoor slats. first floor coluons, ‘lace ferrs, steel ani pour stairways, Olace first floor column forss. Place first floor outside column forms. Place seconi floor floor forms. Plase reirforcin-- steel for Place second floor steel. Pour first fleor columns, floor slats. steel Continue sisilarly for column g2 for the settirg floor slats of and oour stairwags for first to to roof. Toc save the various floor: Then within the prope- f of corcrots, the floor ferms, tear ter forms, apd colunn forges, say te stripped and used ra floors above. oCO. Proposition sA,: Stock piles should te so located that material will te available to the workmen, and to the plant with the least amount of labor. ‘The materials passing from stock pile to mixing olant, carpenter plant, or tending plant; then on to the tuilding always with progressive notion, no retracenments of doubling tFKack. The stock piles should te easy of acce s to the trucks, or other units bringing in the materaals. The proper study for placinz of stock piles with reference to the joe as a whole will result in cutting consideratle from the cost of handling. Proposition ¢7. The consiaerations which should govern the actual laying out of a construction olant snould te; the shave and size of the area over which work is to Fe dons;- the contour and Slope of the Srouna surface; the means of indress ana erress to ani fro: the site for tne hauling units; the distarce from the t receiving points of shiprents;, «he tyne of cons done, whether comoact, gr spreai cut aver a considsratle area; a coroact construction for woula te senved ty aerricks, or ty tower ana shor. chutes, a Spread area, ty tower and chutes, or Ly a catleway unit. ‘Ihe total yaruuze must be considered The time limit for the work, ana the torus or penalty. ‘the time of year rust te considerea, esoecially in the north section, wrere there is very aot to te unfavorarle weatner corvrzitions. i ~ . 4 ~ ~ vy is . , . she sole ouroese of tne o4sisn ans use of the cone + ’ + 5 = + 7 os _Ari woe + 7 . +a - . sy struction olant, is ~conory of co-ration, raximun of Outout at me . wy te £ npn - 7 t , eof 4 £. ° a ae - yt ° tne mingeanm cr costs all trirss attr ctine the wor4 reins con Proposition cv. Economic plant desizn requires that the plant test suited to the work, rezardless of cost, be the one installed. First cost should not te the aecidin2g factor. Cost of instal lation, maintenance, operation, removal, interest on investment, all tnese should he considered for each type of machine and plant layout; these together with the diffeeences in the savin: in labor ani the salvase value of the plant wren the contract is completei. ihe higher priced plant, which under the conditions of operation will deliver nore yardage — though it re at a sore— what higher cost per yara — may due to the greater sblvage value of the units te the more economic plant for use on the contract, Ihe plant should te of a size and capacity which will permit of continuous operation, for enly ty tee maximum of operation can the yardage costs be reduced to a rinizur, Proposition 4C. The essentials of oroper mixing are; cxact measurement of gravel or stone, sani and cecent3 thorough mixture of the mass;- proper amount of water; cure in dunpin, the concrete into place The proper rarming or outdlinzg of the concrete 1s of importance, With hand cixing there srould te @ prover rixirns of the Sani on the cement before the travel or stone and the water are added. Corstant vilizence i: ixins iS mere a necessity. i " Kitr machine mixire, oroper orcoortionina., proper supply of < o c+ 4 se te WO roper numter of turrs cf the arum to insure thorough t €& Mecessit mixing wt ® y Tn rass work cinuts care neta net te taken in tre olacinge, In thin walls, great core aust te exercised not to displace the reinfercins in the vceurinz or by the use of too larse azvregate, In cokuens, care stoula te exercised te keen the coarse agsresate from ledsirs ceinern tre stevl ana face of tre cOlgmn, where it wouls fe expos!’ unoon strinoivrs tm: forre In tleor systems care sould te exercise, that rial te fer i in bears and virsers, eosnec of teams, Ziraéers ara colurr T y on 4 ss . on i w + rr e. te? < we qt x» oe . ~1 Cad weather the nix must re erotected, free rains wren C t + ’ TI) 6 : freshly laid in summer ross action in fall any fu | Winter. but only ina very Cu, Section ©, deals with estinatin light way. Chaoters 15, 16, and 17 give the reader sorte slisht idea of the aethods and ways of estizating unit costs and oreparing the estinate of quantities and costs, The art ef estizating can only be acquired by lons practice, for th the process of taking off the main ouantities 1s relatively a Simple matter, the great danger of underestinzatinz cores, not from thos things which can Pe readily seen to Fe a part ef tne jor, tut from the oversight and non-estization of the many staller miscellaneous itens, which in the asrezate make up an anocuut cf money which under the contract tay te the entire percentase of ae and orofit that the contractor has teen figurirs udo0n, onstruction plant, overhead, continzencies, insurance, taxes, preciues, accidents, protractei runs of -aj Weather, are Some of the things which thre urnexoerlencey oO on ct ~ & oo ct oO “3 ro C "oO °% © 3 om c+ O FR t d Kn Cu oO “S f 3 fu Q "4 f O) c+ J t yw —} 0 The units of cost which will te used in preparing the estimate of the building which is called for in Proposition 41 on the tuildins designed as a part or this tesis, see nase 11E,- are Jiven Fellow. These prices are Fase1 upon caterial prices, n uct labor prices, and co Fion costs as of Llecerber Ist, 120, cn rs Hashinjiton, C.v. Concrete, Cement at tril] , Stl. 40S criegri CO LC Clothe sachs C1 lew ord ¢ & r gor ae Pe awgoto otro att for gecke LE a ca 2) Le c ‘oa J"1Gasire er Teaming: CC# ‘uniling and ticing,tazs 20d Met cost per trl. tia.r. gor 4.4e Cand, Lia oer ton L.%e ger cu. yd. vPusnea stone, Liv: oer ton = 2.28 pur cu. ya. Sandi £¢.CC oer cu. ya. on jo ¢ my f 2 an tt Le UY) ct oO 7 C C "SD Ch ry CO ££ oy bai © | CU. © ‘y Mas Cement, Sand, o Stone, Labor, Plant, Torrs for f Striopi rorgs for ¢r Lumter, Tator r Lartor e Fornirs for c Luctey, lator, Lator, vabtor sg rT Lalor, Lator, Lavor, S corcrete, fo 1.c8 trl, at 4.46 ne-half cu. yd. at & one cu. yd. at 2.50 ls, colucns, floors, loor slats: nails, oil, etc. making oanels, erecti la.jying ey ears and eirdgers. nails and cil, ete akin oluzns: nails, oil makings voane erecting, p tripnind, f. {* Ct rs o C} ~~ b~ rs Www nails, oil, etc., moking, erecting and pluctrin Stripoin, ° 9 C. 26 CCE C1 C.ce CTE C.Ce C.04 C10 ©.CL CL3E per cu, per Sg veP sy, yd. ft. ft. Steel prices, 1/4" to &/16" 2/6" to 7/148" 4 1/e" to 2/1 4 i] - 44 2m By fe to id 4" Unloading, ana up Pendimg ana placing Pending ani placing EFenainge ana placing Placing hauling and steel in nalls, pilin: Cb e e 2 M we mM 2 C4 ey cf ve) “—N ) e 'e "Tc O "cS TT OO Cc DW Average orice steel in place, 4 cu. ft. sand, ot QC r 1CC ] r 1CC ] r 1cC l r 1¢c¢ ] r 1CC 1 steel at jo steel in tldzg.- floor steel in tldz.- teel in blis.— colur oo, der TCC se. ft. 4 Ac v,.4te Clee Stone Oy al . 7 Phaeine, 1,20 Suriacc, l.c bs, rs. CS, rs, rs, ry S ns, Ry cy) na s 1.CO ton iC.CC ton teans,Zirders 1¢6.CC tor 15.CC ton a7 ~ 1¢.CG ton, 14.€C ton, estimate for a three story ana tasement tuildin 147' rea, Cure, x Con “lx 1C, A x 7, &é x 10, A x SYS Tnt c6 x 1, 4% &.¢ Conc 147 « C. 147 * CC, 147 x C, 147 x C, 1427 x ] Conc zx jb. 1 * C,é Onc Fase. <, Ist. oé, 2nd 1> ord 1. Fase 7, lst “, znd z™ era 1, Fase <4, £,O*%Z,E©* 2nd “Xx ord 1, Ease &£x . Factory window. 4x147x*147 = SAPSF sq. ft. 147° 147 * 22,75 = 1,1e2,¢785 cu. ft. crete, exterior footings, (T:G:4 mix) ce xX JO,& x .oe > 71ece cu. ft. Ax 7.8 x 40068 Clue Tex 40,70% S.2 = 14F 4 So *« @,ce x = 37 erior footings. & x 16,5 * 4,8 = cCC 7] a x H.8S *x = 114 4444) = lesee.yl.atis.4c = Loede CC rete foundation walls, (1:2:4) ae 10 apn south cu, ft, CA 1¢ SEC nartn PAE KX TC oC east, RA x & eod west x ] ds7 Cad west wall ccf] = 140 e.y. at 1&.CC ecck oe rete retaining wall (T:E:6) BS «x Tb& £220 cu. £t, x TE6 oo UE £ee7,0 = SF o.y, at LeAc 1445 ,C0C rete, exterior columns, (1:2:4) exe 2xl1]«K12 = FFY EXS>ExXiBxlz = Fg Ex T>exiTgx«iz = §F4 Ax] ax] ax] = ¢12 OXEZ.Ex*11x6 = 475 OX2Z,0X1ExF = AE ZLALTEXKE = 215 Sx] Ex] exe = 1764 exo, @xd1xe = orc 1Ex«2 = 448 £x luxe = “lz CXL ,ex1lexe = 174 £* 11% = i764 forward oles 1217S .CC Cinder ani concrete iY nO a e x =) roof. ) ns ss e bo cw) c “orward free pase lst 1.6*1,Ax1ax4 = . Cc nm 9 Q s > ct tC? p34 tO 4 ~) tO e@ oO? a) p+ pd bo fe KA fr end 1,8*x1,&8«12x4 = 17 ord 1.2*1,2*15*™4 = 71 O&bb cu, ft, cvo C.y. at 14,CO olucns (1:2: 4) Cc a °,4 AN e &> O t.4 OQ Concrefe, interior i Pase 2.765*2,75x11*36 = ~2226 cu. Bt. lst 2.4 *z.4 *10*c6 = eT gS end £xZx1 Exe = 1°72 ord licexlige xloxceé = Tel Stariway cclumns, Base 1l,2éx1,2b*11xe = c& Ist 1,.1¢*1,1¢€*«1lexe = uf éni 1x1*x10xz = ae tlevator coluons, SOTe = els ec.y. at 1A CC ates CC (3) cy rm) eo IN" e 4 XN © flocrs, 147*1]47*0.6*%0 = GCeslt cu.ft. roof Lée7 xSP xO (EC = OPES 1a7x«1é5 °C ce = ESC% =p & Gb ee ap & ae Qeduct covoaings 0 pe Dlatfornn iC *C,i*« xe] = Cake ed7s5 = Leo ely. at 1lAl.cc versed CC Concrete bears, focf. C, O47 ,4*140 xa = Cal's C.OxG.€ x1 aC xe = 14 =. zloors HT 2 p> “Cc oy c) 1x1 ,4*xie0 x20 xe TXLLE*LECxe%o = ia oD ~o4 ~ wn 7 XUXTOGx IA q « il p~--_ cy J » ween Cl c.y. at 1’.Cc Lugee4cce 1E€L909 = Forward COTES CC RY ~} s Conerete Girders (1E2: 4) Root Porward €cC75éE,CC 1.2*1.9%*146C x4 = 1576 cu, ft. C.ox%x1,4*140%*% = “6S 1,2*1,@x14 = Zo Fleors Liexe, GxTaC xe xe = f8kC L.1*x1,&«20%25 = Sve 1, 8% 2x*éC = LEC LIX]. *xn0%S = 1i¢ C.7 xO Ex Lex = ’ O Lex] 4x&xe = zt O.7*XITx1TEXxe = zZ4 Co7*LL xe xe = ri T2dc° = 4€1 c.y. at 14.CC TETRA, CC £,.0%G 0 Moe xen = Jen cu ft, = “O o.y, at 1706 Eic cc Concrete walls, (1:6:.4) wlevator shaft and rouse CE KLE KE OXe = SS Cox Lox‘ KE = Ce Co opxTe Exyaxd = ls Slevutor root 14 Sx] Ext oy, = e WEL = fC e.g. ato is ©! ead, Ceo Stairway, wall ans raises C7 xICxe = re C "7 x ci x «xe = i. au CL6xiT2xicx: = foc CL ExXTCX LOCKE = JCc 14, EK TE2KE x0 @: = t "ioe =F Aa fy ot 26 CC ec® CC Concrets wanuow sills, COP EKTKT4CR 2x. = L270 2 y Fs qeduct. Lo. toe = our CY at 1+ ae Pe Ci Serrnarg Tae" EB CC Concrete st Stair ~orpors? - ti SLEL) pf CY ~ J cy. a cs c> ae ©. ‘ C . ae OG “rT 7 ( ™ a a © a -~ . . @ PER ~~ we! orward from pase ov& Exterior Colurn forms. 12x11*2,4x4 = 276 Lexlexz ex = tte lexlexl 4x4 = 1144 12x1ex1,1%4 = ead Rxi1xZ,0%*+4 = BES Z2X1e*2,0%4 = 1464 1Zx1ex2ex4 = 1248 12x%18*1,8x4 = GoAR Ax11x2,7x*4 = 7C 4 4x ]1xexs = CLL 4x13x1,7%4 = eee £x13x1, 5x4 = £12 4Xx16x1,2x4 = ee Wel? sc. ft. at C.2f oer sg Interior Column foris, cEx1T1x2 7x4 = LEA COXLEXE 2 KeE = fee CBX12xE%4 = o744 CAXT 2x1 ,5%4 = £640 2x11*1.22x4 = 1ic £*1ex1, 2x4 = lil £*1G*1x4 = 1C4 Z*41]4<%],20%4 = 1-20 Z2*1ox1. 2x- = Lit 2£x1lex1,1~' = 11? MMT EXKO SK = ee yeres se ft at C £8 oer so rla*tforr pesis RXEx] 6x4 = iC4 s5 ft. at C 2 ner sce Floor ani reet slat, forzs gCx EC = TEATe 1LOxXEC XS = icc eC” deduct onenirss pres LCL: sy. th. oat & Le ner so Forward + ct rh +t) €1) on » a) cS vod pew os \! a) a) wl * i (4 : S ‘Sy bes : wy ,: 7 3 a) 4? na 43 o4 ad a sy tg . ad hh te ~-4 te a y tow ta! co ry ) —— =m oe an- oe _— avr to Vem kw a - Tee ke. UY ane Tea ta ro) Wd we Cee ~ N +p 2 we 4 ad C2 cr} °C 4 7 tf ~ ¢ a ~ ne # "1 aA ©), “yf c1 ma Newt -N 4 tr) C2 ), e oo “] L o_o ee eee | : ws NL i) — oa oe Oo oe oe ee TI a Vs $4 or) (a (2) heed ) « c* —- soy 4 ap mo, om _ Cr. ~ de t) Oo Ae we rN a 4o- ft od — —_ Oy. iq AN OF & oe c-4t ] wd ra . cS " 40. 4 t/ uw C. seo v «4 ery C3 C1 ome fo ry 4 er? G d alt on | ra. a ‘ myrlann mf RL b> NE we. oUt ca = z c-4 t U rol - -~ “TP ys x ™, “< tN Soe b. C. ee r4a ~ ~ ~ m~A {. Us ry 0% g¢ Cy. Cp t ~ . + ud iN tn © Cds ©) WN CD02 Cc iD ct L~. tC. oc ro ry = » ™~ +> vy om rrp Ry Me 4. {qs Pooks Pea } C * 4 {c- (arn i- YD €) Ou -“- ~ Cy 08 if “T ~ f OUD A -/ a 3 ie | v 1 “8 to ° m4< pe? XY a) ur w vari froi e v9 For Steel. Colurns Colutn nterior Tt lou C-. qc {~ ON} Y ‘ID wN Lo ‘_) e “sf hig ca ro ~ = © “yy ec. e iY) >? ‘ep WY £4 r—t | mt pu by bw eo Pa WN) fc on a oe it = Co res rt x “3 ind WD ~ ~ rt ri a 7p) €) O. I) wu N Go. 7 Aoors, 1/2" ~~ 7 = ts ~ ri.cO a aw “x 1/ ne eiuenwervv C490 eclurns, aterior Y ' aed ty 7. sic 1 1'ic" ra. iT) a, 4 {\ oO \ ¢ wWwew 1F nt <4 C re We vt 2 ry cers: ny eo wo CC O. a) «rf kd) ~ t ( m i 1 Zo AA Qe \Y Te Fr HW aA Cc) Cz tld C~ cit, es a ty e ot sj! Ge C. fo se rt) iN i t! J ©) Cl. C~ GU Os x x x THO OTt or i 6 | = z = . a "J = jf N \ ~‘ N N N c4 rt rr “) "f) (4 ©) © O Oo. . a, wt ot Cb “fos Qs? ct or oe ra foe “z Ly ons - DCS. 1,’ 2" arn i “2 (9 0 < jy Co i ig CW =f: rerward £14 Forward frog ovazée £10 12C1E7,C0 Slevator and stair colurnrns £4 pes, 1/2" rd. « 16'C" = g40 lbs at S.70 cwt Occ 16 pes. 1" sy. x 16°C", = 616 16 pes. 1 1/4". sy. x18'C" = 11CE Ivzi lts at 8.238 cwt 7C CC 4 — 1/4" spfrals O.f" dia. Z"c-c, 128'C™ = 240 4—- 1/6" soirals 11" dia. Z"c-c, LE'C" = 24% 4 —- 1/4" spirals 12" gia. ze"c-c, 11°C" = £211 <—- 1/4" soirals 72&" dia, 2"@-c.1%!0" = 12 ec4 lbs at 4.14 cnt oa.0C steel a.round elevator and stairs. “levator house tean gna Ziriers. £8 pes, 1/2" ra, * ete" = gue lbs, zo pes. 1W/e" ra. * 7S" = GA Fad les at o.7e ewt 21.0 o4+ pes, 2/83" rd, « ercn = C4 18 pes, S/S" rai, x ata" = £9 Zl oes. S/S" ra, *« cote" = Loe 125 ltrs at &.°5% cnt OC 4 oes. 1 1/8" ri, « Tete" = 21C 4pes, 1 1c" ra, « 14'iC" = 1 fF oes. G/d" rd, x TEC" = TEC S pes. C/4" rd, x thon = ive 4onces, 3/4" ri. qe dete" = J14 zpes, O/4" ra, *« ta" = Ee 4 pcs. 7/2" ra KR ZA5E" = Elg aoors. 7/co" ri, x Ot" = lets d2e2 Les at eo fe owt 62.00 Fleor at elevator shaft. e pes. 1/2" se. x Tete" = Oe Fooc3s. 1/2" se. *« ston = OF PR oes, Le" ra. x Ete" = 74 Fogoces T/e™ ra *« 17 te" = oe TS pes. U/e" ri, x et ~ iit yee Lbs at ol7o cwt £8 CC Gors 16/16" ra. xei'e" = ke 2 oes LF/1A™ rd xe tT" = gg 1Z2 pes c/a" rd. * Teton = 27} Cf oes 38/4" rio «x Tater = Tei Tede les ate && ewt oD .C0 Forward LictF1 ce f.. a) ‘oO nN ~J "oO (QU G) ND w.~ AW U1 of Oo O G@ WwW e r. 'C MN oO vd ) 'S cen Cy Op bo oe uy er TT) QO YQ phn ty) oS @) Us ihe Cc) Q G7 > “wv Go OO ‘) ua IK oy oO ua 3 ¢ C: rh "CS © i p “ea © Gi O (9 nh ©) C) UW t/) "oO 2 © ) J UO 0) ©? ‘e) U3 "cS ais, Forward from pase £14 146461 .C0C ) wh © nh a0 Cc? 7/1ée" rd. stirrups * d'e"= 1 cnt oS" ra, Stirrups x 4'a = Cy nh — yy nM w (13 Y) CX CD CO 8 CT cwt Cy ams and girders at Stairway. , Ue" ra, x 12'8" = Zk s. 1/2" rd. x 11's" = €C ~ Ve" rd. * 2°iC" = 46 2 Ye" ray * attr" =orA , fe" ra, *« err" =1C% . Ye", sg. * 1Pten 7 E€2 - Ye" se, x iste" = C6 Eo lbs at 2>72 crt LC ,CC . of 4" ra, * Zale" = £257 . 6/4" ra, x 2e an = 622 see Vrs at C.fFS ent 13.CC Pooting steel. . 1" rd, x Tere = “Bek , 1 ord, x 7'en = TEE 2 it rd. x pets" = aCe . in rd. & Eta" = Zor . 1" rd. x hen = we is ra, x eter = ane CETSC lbs at 2.@2 ewt 1187.06 vowels , 1 Ye" ra « BITCH = 2g 1 i/o" ra x 1c" = LEE / 1 i a r 7 . x ‘ ' C " _ i '~ (~ 2 c/s ae" ra xk OE IC™ = ic “CSSE [rs at €.65 ent 148 .c¢ tee] in stair treads fe" rd «x Stan = 417 L/e" ry x beta" = fr fe" ry x 14'C" = ULF 1/2" r { x 68 “ved = C Woe les at 2 PF cet e6 CC Us qr oN om (f* 8 Ty vy ped ] 4 ! ~f C ; ee ~~! oA | oe 1L= =C€ e AG: Forward from paze General excavation, vork, leveling of site, no earth renxovel, eeelO sc. ft. at O.CE 1120.00 *xcavation cf basement, =OCC cu. yds at C.al Bold CO Footings excavation, (hand work, loan) "“xterior footings, 272 Cu. yds. Intericr footings, 12CG Slatforr footings, c tlevator snaft, Le Foundation wall ench, Ee 1426 cu. yas. at 1.&C £4e7.C0C Fackfill, rehandle and grade, TF Ze cu, yas. at Clic &12.0C Masonry, trick curtain walls, ¢440 cu, ft. at 1.0C 6440 CC Steel sash, ted and pointed, CC pe nt pivot vent South, 7xS'a" xieten = el CIExThanxdo'o™ = 2£a25 wast, LEx7'4"xipto™ = £607 Norton, 21x? a" x1ls'C" = Zane hest, LExt'4"xTe'O" = £AeeA ExTISPxIChO™ = “eve 11277 sa. ft. at GC.4é Ooe Oe GO Glass and glazing, factory rutfhea glass, (121?) set incluiing putty, ©G pur area of sash, WrTee se ft at C cc wen C0 Loors, frames, fharaxarec, etc corl, sing, weos exterior qoors, wood Frace, cransei, cr sill Moan MSO be TU, Bo lL at QYPE Cl ce PEC LOC Single seins, tin clad toers mn Stair talls, azzle aire frazes, « 1 sills, — fo ry T/C, Fo Bat -C OC ea, 490.¢ nolling soos, Sat af CU e¢a a20C0,CC Lisht jror ani steel. 2" oto2 nani rail(é lines at stair) Tie! at 2 oo fh ZEG CC 2" noise Lang reil{l line on tall) 11s’ at 1 clo tt. ace, Ce © 1/2" safety stair treaass, “C at 1. 6C ea. 120 C0 Slotted inserts in ceiling, Li C lrs at ccd lt. TEC LOC Oo. b. S8CuLoe|ers, ig at € CO each OO CC Miscellaneous Lron, scurdrics elo oe oy ZA (scraper and hand "Orewardg clr zt, ti u- 4s 7 - ~ + Sten ” rorwari fron vase 214, LEREI7 CC . 3 3 s 2 YX Cc o eo) ct s C1) moO 0 o>) CY suuare C19 i vers Cc oe Cc) cD CACO sq, ft. at C.40 per so. ft. ph CO ro) Cc) uw) > RA c+ 0) c+ W CO i CH oO TT (T '$ ih Oo t+ c+ Ty €*] o e@ Ty > ( Q jo ro }4. ry © or) Ww fv tote J ce ct 3 So ey oO e cy Cy ©y vy) C7 _ ° ~ a. - ~ 4 . ~ . - Vs r. fe tons of reinforcing stcocl at 14.CC ton C.4 Cw 2 ») A a ans, details, etc. LEC 160 » ol ‘lean up jot at completicn, clean lacs eiG.ce c Cy. - : . . 5 hd - - . ~ Sucerintenaence, jor o ice stationery, 7 -~ -~ <_ , < . ~~ ~ 1 re ™ ~ A ~ ~~ miscellaneous office, Li neces at ZCC.CC per $=CE, CC ~ . o — . -~ Sundries, oll CC Ew? = ge Sew. HS aw ae oe * ane ”~ ~ he t ]: ITP Oo ~ + eT OF, 4 ce . a -y "> 4 ' ~ CONT acrors orcilt, ds oer cent ee POR Oy m-on r TAT Tre re Oo Ome. aw bh Le mw aN ee mil ZN Pe Ce er 4 7 ‘ “ + + 7 =~ . -~ ame ~ - : a . “~ _: : ~ POllowing ivezrs net incluiod in estiaatic, : ~ $s ~ + 2 Fat. vontracts j—+ 2 a Heating and toiler C nh h C. » 3 os Plugting cr Cc G. we va "Ss fv to J ( we) Yb yb o NU!” ed Ne Nw Ne!” Nw” btlheetric wiring Sprinkler syster. 4Llevators. oN O™ rn orn. ¢ to r "mY ~ald id. ™ wT — id J < oT ‘co 3 > 1! “ uy ud tl . 7 rs oJ {3 sy -* wo 4a opel 3 Pe a) yyy 3 . rae4 a ead — --| 2) vu at ©) r] “a .' vyoosS rng, Ai 4 i4 to oY CO -A -— oy fa _ ] a C4 —_ —_ 4 ot ‘ } t 2 74 oe ia ad ud 4 wi r—4 uy vy a 3 + oy ty 4 om GS 2 mt C4 44 4 dd -4 cs "> 4 a -4 Ca ust le bt CL 4 , q) a “ ‘el ie m1. ay bee nee Vleoninsz ~ wv -- = a ") aL ~4 ne a se-! oni Cif. ‘ef foo we qc) ha () bl Lay -4 — "ta a‘ wf : a eh OS “ a“ =~ Zz - = w“~ a (2 b Us Ue “a 4 Cit Cu La ¢4N to es wi Yate rd a Tal 4 {} is a \ 2 mem or’ — wee Nw: . ' 7 ie | €) rt ma “af TABLE 1 E quivalent Fluid Preesure. t h uy 0.50 12.6 0.35 16.6 0.40 al} 0.45 26.1 0.50 5|.6 0.55 31.6 0.60 4. | 0.65 51.28 t= width of base in feet. h= total heiqht in feet. w= pounds per foot. T. Data for d ee Es cata Formu las needed M=]Kbd® or bd*= es aAs= pba Ratio Medult 5 ke j P oO. 0.375 | 0.875 12 0,429 | 0.857 0.852 0.0065 NO i 2 ngular beams. Formulas used for tables. 2. P= = s #5 % (Sh+1 K =Vienecpni™ -pn Je Ketehj or gfeki n=(2 Ratio Kk k Modult WN=IS P Ee 83. 1S.6 Data for reviewing vectangular beams. n= 1S Fermulas needed: Formulas usedin preparing +able; P 3 As he» Vapn+ (pm)* ~pr J<« J=- $k Mm -« C5059. in, 16. b-i2 10. k: 0.378 M-= P§,j bd? = /290d* (safe moment of resistance) as= pbd f5= 16000 /6. SZ.10- = 0.0984¢d (steel area) WEG z= phy bd? or = 074 (safe Joad) n=I5 P=cC.0C0CT7TT z : 8 Tota! safe lead (eo) per Sguare feet socludiog yf Sy ‘ ' ‘ z weight of slab. S16 3 $ : : $ for sofe Ive load deduct weghtof slab. : e834 g : g) 32 Spon om Feet TY Page S|d in| in. | ja. | 4+) & 16) 7 6 9)/0) 1) 12)13 | 44| /5 | 1b. 59. 17. 14| 4%] 24| 208] 132| 21| 67] s1|40 3) | 0.162 2 | 4] 24) 2ea/72 |/z20| 88| 67| 53| 43] 35 34| 0.185 24| | 3 | 339) 217\ 151) ///| 85| 67| 54| 45 38| 0208 23| &| 34| 419] 266/187] /37| 105| 83| 67 | 55| 47 41| 0.23) 2&| 4|34| 507| 325] 226] 165|/z7\/00| 81| 67| 57| 48 44 | 0-254 3 | 4|3%| 605) 387)| 269) 197|/8/| 119| 97| 8 | 67 | 57 | 49 47|\ 0.277 34| 4| 4 | 709] 454| 315] 232|177|/40| 1/3 | 94| 79| 67| 58) 50 |50) 0.300 J} 1 |4h| 822|527| 366| 269|206|/62| 132|/09| 9) | 78| 67| $8) $6) 0323 41) (674) 688|478| 351 |269|2/2|172 |/42)\ 1/9 | 7o2| 88! 7b| 62| 0.770 42| 1 | 56|1360| 871|605| 444| 340) 269] 218 | /80|/51|/29| 1/1 | 97| 69| 0916 4% 1520| 971|675|4.96 | 380 | 300 | 243 |201| 169 | 194| /24| 108) 75| 0438 53 6% |1850| 1190| 825| 606 | 963| 364 | 297 | 245| 206|/75| s57| 132|81| 048S 5B 2220|/420| 990| 726 | S56 | 438| 356 |294| 247| 2/0 | 182| 158) 87| 0.53) 6% % |2620|/680| 1170| 858) 657 | 519 | 420 |347| 292 |248 | 2/4|187| 94| 0.578 6% 3670 | /260 |1360| /000| 766| £05) 490|405| 340 | 290 | 250| 218|/06| 0.624 %y 5 |35A0| 2260|/570|/150| B84| 696| 566 |467 | 392| 935|289| 252|/06| 0470 % 4040|2560| 1800| 1320|/ 010| 798 | 646 | 534| 449/382 | 230| 288 | 113| 0.7/6 8h, 95 |45B0|2930 |2030| 1490) |/40| 904 733) 605| 509 | 434 | 374) 726) /19 | 0.722 8% 1 |$150|3300|2290| /680|1290|/020| 824| 680|572|487|420|3 66 |/25| 0.808 IN TABLE 5. Use for reviewing slab designs. Based on Me wl" Fov supported ends (Me - gl") deduct 20 percent from load fc 2 or< GEO Inspin For Fully continuous (M= = 4a") add 20 percent to lead Ms lessor of {12 Phu ttt Vefememant pron sosacge EC? As: phd. lapd (stec( area) pe owows eon BSEX ° wire) pfabe) Yer debled +: ac08B, w 088% ” wali2 > pekybe ef s1nq ed nprodo, wri « ° fo . Tetal safe load. cf) Per sgeerc Let aclading hd te PA b. | P if £33 iS For eufe ine Led. Leclach eserohh of she b, tat SS : a et & | S25]Fs Spann feet FSHEESa TEE in. \inliale| ole l|7{la{s jro| iia [S| se [ tS | 1b.) spre. | inl. £4) 4] 3] 34) 60] 4/ 38 | 0.054, /800 34| £| 4/7/96] 125] 87| 64| 49 50|0.078| 3760 4 \t |297| 190| /32| 27) 74| $29) 47 62|0.096] $700] 00024 44| /%) «© |420| 268| 186| /37| /08| 83| 67| 55 | 47 75|0-11%| 8060 5%| 14 | 7 | 6/5) 393 |273 | 200|/53|/2/| 98) 81 | 68| &8| SO| 44) 87| 0.138) 11800 ch) (4 | & | 847| 542 | 376| 276 | 202) 67 | 195) 1/2 | 94| BO| 69 | 60 | s00| 0.162 | 16300 \ 7%| 1%| 9 |1120| 71S |996| 364-|279| £20) 199 | 147|124-|/06| 91 | 791 1/3 | 0-186 | 21400 \ 83 | 1% | 10 |1420| 910 | 632|464| 356] 28/| 228| 188) 158 | 135) 116 101 |/25| 0.2/0 | 27300 24| &| 3 | 184| 118| @2| 60| 46 38 | 0.168) 3540 3y| %&| 4| 334] 246] 170| 125| 96] 76| Gl ST 50 | 0.156] 7780 4 |! aS | 582| 972 | 268) /90| 145) 1/S| 93| 77) 65| S5| 47 b2| 192 | //200 0.004 4 4%| '4| 6 | 623|-52b| 264) 268| 206) 62) 131|/09| 91| 78 | 67 | 58] 75| 0.228 | (S800 5% 1% | 7 | 200] 770| 635| 393] 30/ | 238| 193 | /59| 134| 144| 9B) 86) 9919276 | 23/00 6%| 1%| 8 |1660| 1060) 738) 542| 4/5) 328| 267 | 2/9) 184) 157 | s75| 18 | 100| 6.324 | 31800 1%| 1% F |2190| 1400| 972| WH! 547| 432 | 350| £2897 | 243) 207| 178|/SS| (13 | 0-872 | 9200 \9h| 154 | 10 |2790|1790|1240| 970) 697| 551| 4¢4| 368] 3/0| 264| 228| 198| /25| 0.420 | $3500 241 £1 312761 173) /20| 98| 67) 53| 33 38|0./62| S160 34| %| 4| 562| 360| 250| /£3| /40|/// | 90| 74) 62) 53 SQ} 9.239 | 1/0800 4| S| 952| $45| 379| 278) 213| 168| /36|//3 | 25| Bf| 70 6Z | 7288 | 1/6300 1%| © |1200} 77/| §35| 393| 207 | 238| /93| 199) 134| /4| 98| 84] 75 | 0-342 | 23/00 0.006 4 si] iy.| 7 \1760|//30| 7384| 575| 94/| 398| 282| 233| 196 | 167| 144\ 125 | 97| 04/4 | 33800 Lu] 1¥4| & \490|/S5O|/090| 793 | 607| 780| J88| F721 | 270| 230 | 198 | 173 | 100 | 0.486 | 46 600 7%| 1% \ 2% |3200|2050|/420| s090| 200| 63Z| S12 | 423| 356 | 303|26/ | 228) (43 | 9.558) 6/500 \ 9%| 14 | 10 |9080|26 16|1910|/330|/020| 866 | 653| 540! 469 | 776 | 933|290| /25|0.630| 72300 (2h 3 | 344] 220! /S3| //2| 86) 63) 55) 45 | zalo216| 66/0 3q| &| 4 | 718| 459| 3/9| 234 179] 142| //S| 95| Go| 68| $9 5d| 0-212 | 13800 9\1 5 |/090| £96| 983) 255| 272| 218 | (74) 144-| 121 | 103| 89) 77| £2| 0.294 | 20900 44| 1%} 61 1540| 994| bF2| S02| 373| 303 | 2461203 | /7/| /45|125|109| 75) 0486 | 29500 0008 1 6h 1% | 7 1¢250| 1440/1000) 735| 561 |-44F4 | 366 |297| 250| 2/3 | /8F|/60| §9 | 0.552 | 42200 bE\ 1%) GB |2100|1990\1380\1010| 774 612 | F496 | 409 | 344) 293| 253| 220] /00 | 0.648 | 59500 YK) 144) YF |4080\2620\1820| 1330| 1020 | 807 | 654| 540| I1S4| 367| 274 291| 1/7 | 0-743 | 78500 84 134} 10 \§210\ 3746 |2320|/700| 1300 |/030| 834| 683) §79| 493|4261976| (2S) 0.840 |/00 000 24| 4) 3 | 3770) 237) 165| (2!) 973| 73| 59| 49 98 \9-270| 7/00 %| &| 4 | 778| 495] 344| 252] 193|/53| 24| 02| 46| 73| 63|55| 50|0.390| 14800 4a|\i 5 |70| 780\ §20| 393|293 \271 | 189| 1SS|1Z0\111| 96| 83| 62|0480| 22500 G4) 14 | 6 |1650| /060| 734-| 539|9/4|9Z6| 264 | 218 | 184) 157 | 125 | 18| 75 |0.570 | 31800 O010 1 £h\ 14 | 7 |2420|1850|1070| 790| 606| 978| I98 | 320| 269 |229| /98|/72| 87 | 0690 | 46500 {5| 1G | 8 13340|2140|/4 £0 | 1090| 835 | £59 | 34} 94/ |37/ | 3/6 | 272 |237| Joo |0.8/0 | 64/00 Yd) 174 | 9 4400) 2620 |1950} 1430) 100 | 869) 704| SB/| 489 | 417| 360 | 3/3) 1/7 | 0.930| BFS2 fa 14\ 7 0 \SbIO | 3590|2490|1920|/400\/110 | 897| 741 | £23 |53/| 959 | 999) (25 | 1.050 107 609 Use fer comtinueus Rectangular Beans. Sefe loading and reinforcement for beam |"ir coergth. Based on Ma wl na Is _ wi? 2 $52 Iecoo (6b. per Sq. in- re | m m4 ttt (| from safe loads fox GSO /[b. per sq. in. NM. 334% Using Sane Steel area. Total s linear foot for beam one rg LY ea J hte icleding coaig ht “2% ete ° bg b, 3 v Cee foot rotes) & 3-5 v fi by sy Pan wt feet G) ger} rif my) e| 7] 8&1 9 | sojss lie] 13} 14] 15| 16] 17] 18 119 |20| 20 |22 [23/24] spor. | taJb. 60| /07| 79| 6€ol +8] 29] 32| 27) 23) 20 6.0%6| 3370 65| /26| 93| 7/ | 56] 45| 38] 9/| &7| 23) 20 0.080| 4540 7.0| 196] 107| 82| 635) 52143) 36 | 3 | 27| 23) 2) 0.054-| §260 78| 168)}/23| 94| 75| 60| 50] V2) 36) SF! | 27) 24! 2) 0.058 | 6040 80| 191| 140} 107| 85| €7| $7) 8,41 | 25 | $/ (27 | 29/2) 0.062 | 6870 85 | 216) 1S8)\ 121 | 96 | 78 | 6¢| 54\ 46] Fo| F4| 20) 27| 24) 27 0.065| 7760 9.0| 242 | 178) 136 | 107) 87) 72 | 60|51144| 39 | 34 | 30|27\|274/ 22 0.0697 | 3700 95|2697| 198) /5/ | 120| 97 | 80| 67 |57| 491 43! 98| 33| 30|27| 24| 22 0073 | 990 46.0|298|219 | /68 | 133|/97|89| 75 |64| SS | 96 192| 77 | F73| 30) 27| 24 \22 0.077 | 16740 10.5|I29 |242|185|/F6|/18|98| 82 |70 |CO| 53 |\F619 /| 74 |.33|320\ 27!) 24]22 008/ | 1/890 Mo 3b 1|265|203 | /60|/301/07| 90 |77|66! 58 |S/145| fol| 76|32\egl|2e7\2es8\2e2| 0.085! /JZ000 1W9.8| FFF 29 O|222 1/75 |192 |/17'| 98 | 84-72 | €3 |SS | $9] 44-1 37 |FS|32 (27 | 27/25| 4089 | 14200 12.0| 930 | F1b|2Z42| 18) | 1$5\/28\ 107 | 92| 77 | 69 | 60153 | 98193 | 99 | 25 |92|27|27| 6092 | 15970 12.5|F6b b | 342 | 262 |207 | 168 |138\ Nb | 99| 86) 74 | 6S| £8 | 52146 |92| 38/135 | 72127 | 0.096 | (6780 13.0| S04 370 | 28F | 224.| 192 |150\!26|707| 93 | 8/ | 7/ | 63 |S¢ | Sole¢5| 9s | 37 |94|3/) 0/00 | 189/50 13.5 | S44 | 399) 206 | 242| (Vb 1s6/ | 136 |116| 100| 87| 7E|b8 | 60) S81 99 1 44-140|37| 34| 07/04 | 19570 J9.0| 58S |F30| Z29 |260| 210 | 1974196 |125) 107| 93 | 82) 73 (65 | 58153) 48143 \¢0/136| 0/08 | 2/050 145) 628 | 96/ | 53 |27F | 226 | 187|/57 |133| 115 |/00 | 88| 78 | 70 | 62|56| 5/146 193/99 | 0.//Z2 | 27580 1§0| €7/ |\993|378 |298 | 242 |200| /68 \/43|/23|/07| PF| 83) 74-| 67 160 |55|50 l|ggi92| 015 | 24/60 1S.6| 7/6 |526 | 403 | 3/8 |2S8 [2/3 |/79 152 I3/ | 119-\/00| BF | 79 | 71 | bF| S8|S3 |49145\.0-//9 | 25800 16.0) 764 | S61| F30\F39 |27S | 227| 191 |163 | 140|/22 | 107) 9S| 85176 169 (6215715 2\48| 0723 | 27990 163| F/2 |S7b| 457 | Fb 11292 | 241203 |/73 199 |/30\//4-| 101 | 90! 8/ | 77) 66|60|S55|\|S1| 0/27 | 29240 17.0| 8b 3|634|4F85| FEF | 9/0 |257|2/6| (B3| 158|/38\/2/|/07| Go| 24 |78 | 70 | 64 | SI1SA| 0./3/ | 3/080 IZ 5 | G14. |b 72 | S14 | F406 | 3291272228) /95| 168) ME | /Z28| 1/F-|/01|9/ |82| 7H!) 68 162157) 0/385 | 32890 18.0 | 967 | 710 | 544-|430| 948|288|292 |206| 177 |/§5|/26 \/20 |/07|97 |87 | 79172) 66 |60 | 8/39 | 34800 | 28.0|//73| 877 | 677 | $30 | F30\3ES | 278 |254) 209 | /7/ | 168|198 | 122) NF |107| 97 | BF) 8174) O.ISF | FC9EO 22.0) F944! 1060) 7/2 | $42 | $2.0 |470136/ |308| 265 | 23) |203 | 180| 160 149 40| 8 |/07| 99\ Po | A167 | SIIGO 29.0}/718|1262| 768 | 764 | 617 | 512|F30|3bL | F16 | 27S | 242 | 214) 19/17 /|155| 14.0] 127| 117|/07| 2/85 | 61860 Ab. (981 | 1134 | 897 | 726 | 600\S04F |430| 3701323 |284| 257 | 224) 20/| 191|/69-| /50\ (38\126| 9200 | 72600 28.0 9719 | 1319-\1039| 242 |b9b| SEF 4998 | 929 |374-|328|29 1260 |233|210| 190) 173|160|/FL| O26 | $4200 IO.0 ISVI\HF3| 967 | 799 67/1 | SI2\9 94 | FCB | 378| 3391297 |267 1292) 2/9 1/99 | /82|(68| 0-23!) | WbobLO | Vete/ clepthef} bean Ove hee? 7| 8 \F WOVE 112 [03 [140] 6] 7 | 28 [79120] 20 (22 zzlasles 6) 27|23|29/30 Werght ef Learn /” wide per linear foot. |F3EI LF VOF| 512525 UAE] Wb) 1.7 (7271187 /98|208)219 wolese 259 Bg2? 28.) 282 FA? a] ter safe Jead of ony tuo id It, of beaver cnulhphy by width 1929 009ChHeS. For arca of eress-section of stee/ jor ong ews tb of beam pore thiply Cy of stee / 4y width in wnches. The shearing resixfance of tha concrete @/ a2 2v0era ge velse o f- C %)@0) = 35 /b.persg.1p 3 suffrarent for o// leeds 4othe right of the 3/9509 line Xax;, considering She maximum shear Zool. TABLE 7, Part I. we Use fer T Beams. <=! fe=er< 16000 Ib per sain. f= or2< 650 /b. per S9. In. Let k= Foner Ms = foas jd = fs pj bd?, SE ils. $, PJ Pee ’ i : . <— 6+ Gf CH apo) Mes £(rgq)btid. ov fe = £ (1-38) ai Vee f _ n('-k) aq “x kk M, = sefe resisting moment = lesser of [cand Ms Pr e.cee2 P= CO ObW ©. we | Be tyes [gett ele] y fe (bh | iu | ; [Styh Bake < eee sea bt S Hehe [seed o4 Ret.s [Eb SEeSS | Erp Hes (ib Hisathe 010 | 0.269| 0.9754 26500| 392 | 705 0.10 | 0.906 | 0.75F| JFZ0C0| 730 | 543 0.11 |0.257|0950| 28200] 369% | 304+ 0.1! |0-388 | 0.998 | 1/5400 | 675 |5g.2 6.12 |0248 |0996| 29500| 252 | 30.3 0.12 10.373 |0944| 1EFOO | 634 |604 6.13 | 0240 | 0943 | 30800) 377 | 302 0.13 | 0.360 | 0,940 | 1/7300 | Goo |éo2 O14 | 0.23% | 0990 | 3/900 | 326 | 30.) O14 16-349 | 6936 | 1/8200 | S72 1599 O15 |0229 | 0937 | 322800! 7/6 | 700 O15 |0.337 | 0932 | 197000 | SHE | 49,7 6.16 |0.275 |0935 | 33600) 3/0 | 227 0:16 |0.33/ |\0.928 | 19700 | S28 |\594 O17 |a222 | 0.933 | 34200 | JO4 |294.9 ONT |0.323 |0.925 | 20400 | 509 |\£7.2 018 |a220 | 0.73/ | 34600 | 20/ |27.8 018 | 0.317 |0.921 | Zloco | 445 |590 019 |0.21& | 0.929 | 35000| 297 | 29.7 019 | 0.312 |\0.918 | 21500 | 484 |588 020 | 0.217 |0.9Z8 | 35200 | 296 | 29.7 0:20 | 0.308 | 09/5 | 21900 | F¥75 | 586 0.2! |o217 |2928 | 35200 | 276 | 29.7 0.21 | 0304+ | 09/4 | 22300 | 465 |S85 O22 | 49-217 | 0.928 | 35200 | 296 | 29.7 0.22 |0.300 | 09/2 | 22700 | 4S7 |5s84 0:23 |229& | 0.907 | 22900 |'45e |582 0.2% |0296 |0.707 | 23200 | 448 |580 0.25 |029F | 0.906 | 23400 | 444 |58.0 0.Z& |0293 |\6.490F | 23500 | 442 [579 6.27 |6272 |09703 | 22600 | 440 |576 0.28 |0.29/ | 0.903 | 23800 | 438 |578 429 |0.291 | 0903 |\2380C |\4F@3e |$78 Neutral axis in flange| for greater values of a ena: Values below thus Ine correspond te rape Yolucs below this hae correspond te eee. values of p 1 first column. waeafeke | values of pin first column goe23 | a23 | 0.230 | 092F | 32600 | 319 | 29.0] 0.0043 | 0.30 | 0300 10.90; | 227001 g57 |€2.! g.0025 0.24 | 0240 | 0.9/8 | 30800 | 737 | %.8| 0.0046 | 0.3) | OF/0 0.897 | 21700 | #4 | 66) 9.0028 | 0.25 10250 | 0.9/6 | 29300 | 756 | 4p/ | 0.0080 | 6.32 | 0.320 0.893 | 20700 | 50K | 75 9.0039 |G26 | 0.260 | 0913 | 27800 | 3275 |9?8| 20054 | 033|0330/|0.890| 19800 525 | 7.7] 9.0033 |027 |0270 | o91/ | 26500 | 395 |F982| 0.0058 | 0.74-| 0.340] 0.886 18900) 550 |¢2.3 OO08F | 628 |02780 |0.908| 25000 | Fi5 | 523 2.0039 229 | 2290 |0.90F | 23800 | F376 |56.5 TABLE 7, Parté. Use for T beans. N=I5 fs = er < 16000 lb. per Sq. in. fc= ore 650 Ib. per sq.in. P=S.cco S Prtso.cce8 ~~“ ies EES gyre [EES tle | |» Riee legis nn ela | ug Sate 2 BS Tae F Pee aig Eb be a TRL eGR fay fee ess SEES Els Bee AEFE S$ ELE SES PU EL SR 0.10| 9500 |0952@| F750 | 1067 | 55.7 9.10| 0.568) 0952) 7420| (400\564 0.11 |0480| 0.947 | /0600 984 | 59.9 0.11 | 0,547| 0.997| §SO070)| 1227 |40.9 0.12 | 0.462 |0.943 | //300 | +917 | 640 0.12 |0.530| 0.793| B8bSO| (200/65.2 0-13 |0.9447|0939 | /2000 | 762 |é76 6.13 |0.51F | 0.93 §& G230)| 1125 |6F2 O14 |0.434-10,939|/2700 | 9/8 |713 0.14) 0.999| 0.939, 9800| /060\73/ 615 | 0.422 |0.730 | 13400 | 779 | 745 0.1$|\0.9868| 6.930| /0F00| /008)\76.7 O16 logs |0.9726 | (eooo | 745 |775 0.14|6:474| 0.925| /0800| 960 1729 67 |0.402/0,.923 | 1¢500] 776 | 204. 0.17 |0.463| 0.921| /1300| 720 |?7.0 018 | 0.394\0.9/9 | 1S0C00| 6973 [82.0 0,18 |0.953| 0.917| /1800| 24 \ 859 O19 |0.326|0.915 | /S500| 670 |&56 0,19 | 0.495 0.9/4¢| /2100| &55|¢8.2 020 |0.380|0.972 | 1/8 700| ES4-|&7F 0.20|0.977\0.910| /2500| 927 |9/,2 62! | 0,37310907| /EF00| 635 |973 9.2) | WFIF0| 0.706| /29700| 05/935 02% |0.368|0.9706| 16700 | 62! |970 0.2t |0,92F| 0,703| /3200| TEF\9S56 6.23 |0.36¢|0.903| /7000| 6/0 &6.7 0.73 |0.918| 0.999| 13600| 766 \97¢g O24 |0.360|0.900|/7300| 600 | 964 O.2F|\09/3|0.896| /2F60| FSO\F72 62S |0.357|9.897| /7500 | S72 | 3.) 0.25 |\0,909 \0.893| /¥r1o-0| 738 \/007 0-26 | 0.354] 0.29S| (7800 | SEF |859 0.26 |0.F05|9.890| /¥200| 72 6\/02/ 9-27 |6,35)|0.893| /F 00° | 577 |\ 967 6.27 |0.901|0.988| /4500\ 71S |/033 628 |0.349|0.89/| 1/8200) S72 |\%55 228) 0.398| 08€5| 14700) 705 |4¥ 9:29 |0.998|0,8£9| /8200| S69 | 75,3 029 | 0.395) 0.983| 19900| £96 \wss 630 \0.346 |0997 | 1 F400! SES \95.2 030 | 0.393 |\0,88) | 15100|\|690 \f.2 0-3! 10.345 |0.987 | (8S00| S62 |eo.2 6-3/| 0.391 | 0.879| 1§200| 685 \020 032 |0. 344 |0.P°€L| /Fb00 | 557 |F5/ 0.3 2| 0.389| 08977| 15300| 678 ors 0-33 10,3944 |0,886| /f600 | E59 \e6./ 9.33 | 0.38 §| 0876| 1S900\b676 \108.0 o-3F |0,.34F-| 0.885 | 1/&600 | 557 \85.0 9.3F |0:38b|6.897F| ISS500|6706 |orz 9.35 |0.386b |0,893| /S500| S70 \/0n.6 9.36 |\9385|0,893| /$S560 |Lb 2 \067 0.39 | 0.383| 0.873| /§700 |b66 2 |/087 4.38 |0.380|A8973| JSPZ00 |ESF |1079 Neutra/ axrs 17 flange. fer greeter values of = eee Calues below to's liaé correseond ee Lalues be lowsthi's/iae correspond edge Paes. te values ofpera first column. er te values of pun first column. ge of Shab, 97-0063 |0-35| 0.350 | 0.862! 18/00 | 575 |\8%0| 0.0083 |0.39|03%0\0,870 | ss200| eee liar 0.0068 |0.36|0.360/0.777| 17200 | Eos |956| 0.0089 |0.40\0 900 16,847 /¥600| 7/2 \"728 0.0072 |0.37 | 0.2?70|0.878| 16600 | 627 |/012) 0.0095 |\6.41 0.Y/0|0,869 | )¥O0o0o| 7¥2 \16.2 0.0078 |6.38 |0.386 | 0,873) 1S900| E5¥ |1079| 0.0100 |0.92 \0.920\0.34/ | / 3500 749 |n75 TABLE 7, Part 3d. er Use for T Beams. n=/S #5: 0or < /4000 /6, per 89.10. fe: orc 650 /b. per sg .77: cs o.0/’ 2m o./ ONS : soo 0.16 oO 0.1/7 0.720 7/0 0.7/6 180 OF 0.912 &F 70 0. 908 0.21 |0518|0.7 0.511 |0900 0.235 | 0.504 é 00 0.24 oO 5/0770\08 100 0.26|0.7486 | 0.88 402700 Oo. 10700 26 oO. 4/000 965|0.87/ | 11200 JIZ00 eoo Neutral axi1s/17 f/e for ertervalisesrof Values below this liae correspondte values of @ Slab 10 #4 colunin. o/08 IFJ0|0857 | /2900 11S Oo TABLE @. TT eames. Use fer f= 650l(b per SZ.In. f= | 6000 |b. per sg.I0n. n~-tsS t 3k — 2= , hex = 0.379 a < ft ph=ed-z I+ $3 € Zhe _¢ 3 Fc a = o./10 o.}) 0.12 0.43 O.1I% | 0.5 0.16 0.177 | = | 0.478 | 0471 | 0.468 10.465 | 0.462 | 0.458 | 0.451 | 0.748| | 018) 019] a2zol oztlaz2z | az3| 029 025 | = | 0948 |0444 | 0.4401 0.936 |a43/ | 0.927 |a422 | 0417 | S | 026] a27 | 0.28] 029 | 230 | a3) | 032] 0.33 = jose | 0707 | 0,407 |0.396| 0.39! | 0.384 | 23278 |a37/ | S |a34| 035] aze| 037/038 | = 0.364 | 036 |0.3749| 0.34/ | 0.332 Neutral axis |n flange when t — ke =2 0.379 —— TABLE 9. h=IS aN 2n(esp£)-en (ere) —2P +P’) : bd? - Ms. = Kee), ne'f, 2’), dd Nlco= bad fo and Se a jnwhich LL = SO %)+ a (n-£)( -¢ | - = . AL | ie kK = 1-4) - Ke (* d! Mo= baEK and f= LT muhich = elt-Z)-2a(k-4 P'= o.25P P's o-.SP P Pp’ | ok Li«K p re | ke | ELK 0.005 | 0.00125 | 0.307 | 6.163 | 0.00945 6.008 |} 0.0028 1 0.2729619./63 | 0.00F4€ , ©.0cf j¢.0e2S | 6-394 | 6.202 | 0.0088 ' 6 .of 6.008 |6.373 10.225 | 60°90 df 0.05 (0.0'S [0.00375 | oFSl | 0.239 [0.0130 da. 0.05 ©.0718 | 0.0075 | 6-421 | 0.27S | 9.013 F a 0.02 jcoooS 6.4970 |0-269 [e.017z2] 0.02 6.0] C-Y54 | 0-320 | 40178 0.025 |0:00625] 0.S2) | 0-295 [6.0214 ©.028 | 0.0125 | 0-479 1[0.36/ |0.02272 0.03 [0.0075 |0.546|03e! [0.0256 0.03 Goole 10-499 |0.F00 |o-0266 2.005 [0.00/25] 0.307 | 0/50 | 0.0095 3005 lo 062el0 300 lo jsh 10.0088) ; d.o1 |0.0025 | 0-399 | 9:197& | 0.0687 } ao7 0.00S | 0.38/ 10.216 |0.c088 a lo 0.015 10 0037S5| aFSF| 9.232 |9-0/Z2S -0.10 e018 |0.0©75| 0528 | 0.261 16.0/3/ a7 0.02 |2.005 | 0995 |o.zeoleor7o0] 4 ~ 0.02 0.07 0-462 | 0.302 |40174- 0.025 |0-00625| 0.SZ25 | 0.28_5 {0.0205 0.02S | 0.0125| 0 988) 6338 |402IS oes foodg7s[0.557 [oe 308 [6028) 0.03 oo1s |0.509|027¢ laces @.005 |o.00/25 | 6.312 | 0/48 | 0 COtt 0.0 0S [0c °0902S/0.30S 10.153 [0.0044 d ’ 0.07 0.6025 | 0.902 | 0.19 4} | 0.0086 ' ©c.ef °.005 |0.786 |0.207 |0.0087 fF ——:O1S | 0.018 | 000375] 0.758 | 0-226 | 0.0127 J aA 0.15 ©0.01S | 2.00785 |co¢36 |0.249 [00/28 ad 0.02 |o0.0oS | 0-799 | 02535 | 00167 =o, 0.02 oo? 0.471 |0.28S aovial ©.025 |0 00625] 0.5301 90-275 | 0.0707 0.02S |o.orzs [0.4998 | 0319 | 0.0210 0-03 _|9.0075 10 S55 | 0-236 10.0247 0.03 |0.0715 |a518 |0.250|0.025t§ ©-00S [00e;IZS5 | a.31F- ©C.14-G | 0.00F4- ©.cosS 0.0e@25 ro. 302 0.149 0.00494 d ! O.Of 0.0028 | 0704 | 0.190 |0.COo8é d' C.o/ 0.00S |9-392 | 0199 | 0.0086 -O02Ze 0.015 | 0.00375] 0.462 ]o02%2/ [00/eEt Min 20 ©-01S | 0.0075| 6442 [0-238 |0.012é6 a g.02 [0.005 | 0.503 [0.245 [0.0165] g o.0e | 90! | 097910-27/ locke ©.02S | 0.006235] 0. S34} 0: 2EG | 0.020F- G.025 | 0-0128|0.506]|0-307/ | 0.0206 C03 100078 [0360[10.285 [0.0243 6.03 o.0'1S |°52710.329|7.0245 6.065 | 0.00/:7S | 6.316 O.thq | 0.00945 ©.005 | 0.0:o2zs8] 0.21g|0.1¢VE]| a C0oGKe d’ oe” [90025 | 0.4-08 | 0, 187 | 0.0086 ' o.07 ©.005 [0.398|0.194| 20085 ——:0.cD |e-c's 6.00375| 0.465 | 0.276 | 0.0/2S da -025 2.015 | 0.0075 |0.4F%5o0 |0.279|0AC072S A ack [9.005 |o-507 16-239 | 0.01644 4 0.02 o.0o! 0.¢-£ 6 [0.258 | 9-O/64F8 0.02S [6.06625] 0.539 | 0.259 [0.0202 0.025 | 6.0125 | 0.514 | 0.297 | 0.e202 SS lese7s [OSes lo 27S [0 UZFO So} [eers 18 S37 Joss [eoesay P's P’°:t4SP 0.005 | 0.908 | 0.2797 | 0.(83 | 0.0046 ©.608 | 0.0075] 0.256 | 0.26 3 10.0 O¥G | | ; 0.oFr ®.o)}) O-33610.27/ | 0.0092 , 9.e) 0.0185 0.305 |\0316 168.002 d. 0.05 12-9!'5 jo.o'!S | 9-372 | 6.9948 | 0.0638 d cos 00) S 0.0225) 2332 | 0420 | 901F0O ° d 0.02 | 0.02 0.395 | 0.4Z0 | 7.0184] ° 0.02 0-0 3 0-349 | 0.521 |%6/36 0.028 | 0.025 | 0.712 | 0.997/ 14-6230 6.025 | 0.02775) 2361 | 0.619 | 0.0232 0.603 0.03 06.425 |0.86/ |0.0275 c-e3 6.0%5 | 0.369 | 0.74/6|8.0230 0.005] 0-cosS]| 0.28¢. 04/72 D.00F§ | ©-.c0o S&S 0.0078] 8.268 | o. 8&6 0.0045 ! ©.0) ©o.o07 0-349 10.250 |00089 ' ©.er 0.0/5 | 0.322 | 0.284 |0.0090 A. ore LOelS| ¢0'(S10.38%6 | 0-3/8 | 0.0133 d 0.075 | 0.0225| 0.35! | 0374-10.0134- d 9.02 ©0O2 |0.9/0 0.38/ |0.0177 arere 6.02 0.03 0-369 | 0.458| 0.0178 0.025] 0.025| 0.428 | 0.442 |2.022) 0.028 | 0.037S5| 0.392 | 0.54) | 0.0222 0.03 0-05 |9-4F¢2 | 0.503 | 00265 0.0 0.045 | 0-332 | 0 623|% 0267 0.008] 0.0OG| 0.292 | 0./63 |0.0044 o.ceoS 0.0075 | @-280 O./7 / 9004S ’ 0.01 ©.07 0.36019.233 |0.0087 , Oo.o7 0.015 | 9.338 [0.256 | 0.0087 | d. ofS Loos] 00615] 0.399 | 0.292 100/29 d _ Ss 6.e1S @.0225| 9.369 | 0.333 | 9-0/29 d O02 | 002 | 0. F25 | 0.397 | 9.017) qe 0.02 O.03 | 9339 | O404| 70/77 | ©.028| 0025 | 0.444] 0.400 | 0.0213 © o2S5 | 0.0275| 0.403 | 0975 | 0.6273 ©05 | 0-03 | 0.458 | 0.FS/ [0.0255 0.03 ©.06K5 | 0.9/1¢| 6 64941 00256 0.005} 0.005|902979 | o1SF | 0.004} ©.00S | 0.0075 | 0.292 | 0-160 | 0.064 ' 0.0/ 0.07 |0-397/ | 0.248 | 0.0086 d oer; 0.0/§ | 0.353 | 0.234 | A0086| d -0.20 0.01S| o.01S|09// 10.270 |0.026E] © . op 20| 0-075 | 002zz5|0. 386 [0-298 | 0.0/26 dad 0.02 | 0.02 [0.439 | 0.378 joolsct d €02 | 0-03 [0.409 [0.360 | 00/68 ACZ2S| 0.025] 0.9760 | 0.364 | 96206 6:025 @. 0275 | 0.FZH | AF2O | 0.0206 _ 0.03 0.03 0O.FT5 | 0.408 | 0.6246 0.03 0.045 | 0936 10.978 0.0244 6.005 | 0-005 | 0-308 |0./¢4¥9 |0.009%3 2.00 0.0075 | 0.309 10152 10004 d’ e-0/ | OOr 16982 10.206 |G008 , 0.07 0.015 |0-769 [0.216 [0.008 —~—=> D295 0.068 | 0.0/5 | 0.925 | 0.252 |0.0/2F d_ -0.25 Lee! Ss 0.0725] 0.904 1 0.27/ 10.0123 d 0.02 C.02 |0.454 | 0.294 [20/624 0.02 0.03 10.928]0.325 |00/6) 0.025} 9:°26 10.978 |0-333 |0,0200 0.025 0.0375 |0.94¢99 10.373 [0.0199 0.035 | 09.03 [0.99! 1|a.37/ [0.623 0.03 0.045 [9.457 |4 423 |0.0237 — a TABLE [0O. Use Sor Columns. + = l+(n-')p P= total strength of reinforced column, forstress $e. P= tetal strength of plain column, forstress f.. ve fO 77-12 n-(S nN=foO " Values ef 5. ©.ceSs 1.045 1,055 1,070 OWS o.0O6 1.0 54 f,-0O6E4 1. 08F- LUst ©.007 1.063 1,079 4.098 1,433 o.com 1.072 1. 088 AMeé 1.1982 o.coS 1.08/ 4.099 NlZeé 1¢70 ©.0/0 1090 1,010 Ito 1,490 o.07{ 1.099 1.72) ISH 1. 209 0.012 1.408 132 /.1@6 W228 0.013 U7 [143 1.182 1297 0.014 1,426 I. ISF 196 1.266 0.01S 1.435 16S 12/0 4285 ©.016 1, IF 4- 1,176 1.229 1. 30F 0.017 L183 1137 1.232 1.323 6.018 1.462 1,098 1.252 1.542 0.019 ,471 1.209 1.766 1.364 0.020 118O- /.220 1,280 1.380 0.02} 189 /.231} N2U4 4.399 0.022 1.198 1.242 1.3693 1.F#IB 0.023 14.2067 1.753 1.322 1.437 0.024 1.216 1.264 A336 1456 0.025 1.225 1:0975 1.350 LATS a.026 1.234 1-286 N.3bF ILF9F 0.027 1.243 1.297 1.373 1.513 0.028 4252 1.308 A392 1.§32 0.029 12é/ 4.349 1.906 1,551 0.030 1.270 {330 1.F2O 1.570 0.03) 1.279 1.341 1.4-34- 1.589 0.032 1.288 1.352 1.448 1.608 ©.033 1.297 1.363 4.46Z. 1.6207 0.034 1.306 1-394 1476 1.696 0.035 4.315 1.385 1.490 4.665 0036 1.324 L396 1. 50F- 1.684 0.037 4.333 1.407 1.5/8 1.703 0.038 1.342 1FIS 1.532 4722 °.039 1.35) 42G 1.546 4741 °o:0 40 1.360 1.440 1,560 1760 TABLE /1. Heooped Column Reinforcement. Diameter ef Section area | Length of Crete.” | Pitch — | ef heeping. | Aeon ion it inches. inches. Square inches. inches. / © .020 FOZ 8 14 max. 0.025 242 / 9.022. 339 9 1£ max, 0.034- 226 / 0.025 377 fe I= max 0.649) 232 'g 0.031 IbF vs 1d max, 0.0948 257 (6 0.037 762 fz 2 max, 0-060 226 13 1% 0.095 FLL 25 max 0.069 230 1% 0.048 P84: IF 24 max. 0.079 234. 1S Ws 0.056 677 25 max. 0.094- 226 } IZ 6.068 S7/ G 25 max. 6.100 29 / ) 1% 0 .074- FEE 7 225 max. 04/06 256 1% g.034 3462 18 25 max. O12 27/ 1% 0.089 282 19 25 max. o.4F9 237 26 Z _— 0./00 377 3 x. 0/25 ISOS 2B 0.12 IVF eI ZS max, 0431 3/7 25 0.124 F49 2 c 2% Max, C,139 FIZ 23 0.130 394 23 23 max 0.144 IFT 2 ONFZ JSS / 2+ - max. o.4“SO 762 25 23° 0/56 377 26 Zn 0/62. 392 27 25 0./69 967 28 2 ONTS 422 29 250 OS) 437 3O a= 0,187 Isf2 Fl 23. ONG F- FbL7 IZ 253" 0.200 4s 73 23 0-206 I9E Ft 2% 0.292 SI3 35 23 a.219 528 26 23° 0.225 $43 TABLE Kiaximum diameter of reund er l2. Sgvare stirrups. = 2gu + d Values of 2.94 for different values of teassonand bond. alow able Allowable unit tension sa stirrups. unit bond stress s , a. lh. per 3Q-00. Ib. persgin 42000 | /4e00 | sS000 | /6000 | 20CCO BO 0.016 0.0/4 O.0'13 o.012 2.010 Joo ©0620 | 0.017 0.016 0-015 | Oo01n 4/20 | 0024 | 6.020 | 0.619 | 8018 | o.o1g 1fSo ©.030 | 6.026 | C.Oo24G¢ | 2022 | 2.018 TABLE |S. Minimum length of em bednient of Inclined rods. t's Chor A) $s Fu al la meters . Wa lues of for different values of tension and bond. ase bond Mllewable voit stress ininchned reds. stress . LL. $b. per sg. in. 1b. persg.sn.| 42000 | 4000 | JSQ00 | 1G Coo | 2oaag SO 37 4 4- 4.7 5oO é€ 2. /co 30 35 38 F-o 5O /2o 25 29 3! 33 41 | 50 20 23 Z25 27 33 é.. a foe Ge ~T OY ry wad ih vb Seow ws fy > ad O 2 a a) - ts a fe Me cc" oo) od r eons « ioe ee s c o- he ‘J 8E "ON ‘HYOA MIN “OO Y3SS3 ¥ 1344N3m T tt T t we FLEET TTT ceed poereieg=t 4 Se ter) ban I i + 0g Ey t j T a age! S a4 i bt bt + rt ant tt att Ets sn i nt : 8 3 ue ‘ & : Mey dca ee i te ee Shi eos a ee ; fu . 4 - a a a bhai , oe { ; ts. et ese Ww x” Nl ‘QE ON ‘HHOA M3N "OO U3ESR F 13944N3N slabs ' 1 i 4 ‘ in d rods ' ap RE SE ay uae oo ; e Ht abs 2) , \ x : am, Vi er Se She { ge r Sear, le eee te ae eee hs i ‘hy ae ee Pe eee eg * F a Ww - ir e per ft Steel | Area o . Sectiona jabs § nf =?) ‘OPEL "ON 'MHOA MSN “OO 43883 7% 7394599" laks rods squar e mY 1 . sonal area = Sect ns hes Lia G I = Be i 81. es Ny. i . sates ol v aes t i r e4 i Sn TIE ary ‘ ‘ J . \ i ot ed ‘ “DFEE"ON “HYOA MAN “09 Re: Se pee ar pes seem art Ae: pee f Percentage Reimforcement, Tr -- - Pas Rela Ae eee ae Ree. aS 5): PR ree fy ee etS 4.58 oeSas : eer See aet Sao HS RRR SARS (SI) (eaieirieeepesits - ] ae F ‘ i i. ; ; | J oth Here vey rap eae S : £28 i 1 1 1 t \ a a ' ce ’ ' . a fb hes a, te RAT aah sy a EG fea eee Oot nha as ts Mga g teeegeebe ea! owe Meas UT gs =f Ay tte at -* ie : 1 | ! " : i ; t _ ‘ 1 hy \ ms sf oi, | oo? : 1 ‘ ay a ef _ (te on ; 4 Bs. i : : _ i 4 ig i = i Uv) ef i AD $ \ . : a a 1 ' he oa i / by ‘ 7M ; . pote lesa at Sate Ad - wet ht Bl ‘ é Ww \ ' > ; 4 4 Tee at ; ' ie , 4 eae : iat = Fi ; ; “t reas & ; Diag = Bee. aud <8 : wore tet teres | ep cee + ee ee eer rr ee een 2 . 1 Te are : va ae 1 E P 4 uae : . coe’ ie : aja) Oa oe i ' “i . x i . fas = - SS een d 4 bbe : ' ‘ 1 ha S44 - tgcheehan sn Geeseet evan pean wee mag de a ot high ES Beg ot 1 i ant St ‘ u ta! ry ' . . : m4 , ¥ ae . ~ t 7 — - : ww . mes + i ‘ ee = a td , , cat : 4 : 4 fp aggh a ' 7 ja (ee 4 os = tn Sede os w= 3 = Ma a i ‘ ; 1 1 ' —* t yes of stee/, emen rere . ofreim . me ¢ = ~ 7 bow L ed a x : : , z = | : pe ' ne a J = . a vo & : - . £ S a ; Lot : y various m 8. F Pe reento T beams. agra ir = - Dia - Use f jondk f e — balues. neoort ofr Procéeaings of reorusry, idle. engineering lisheéa tnat construction orooerly used, ft make then oeriic Concrete caosole of sust out ruoture,; On its dauracill conoression, olecing, esoeci strengtn Lone Stre ~ ~ ~~ clocl telning 19 out wosre 1s its yenerelly TROON CONCH TS f bEPOAT - NL tne Joint nontitiee —_ Ji JOINT COMMITTEE HIN oN . w + j al! a ly 2S 1% JN CONCHET:. so0cared in the the f£merican Society of Cxvil kngineers, {ntroduction onittead. n 0 u 1. tw) elnins 1ts véelue ty, its a eliy nos s well —_— eve COL 4 ootn tae Cross 008 Lures, Tne wells efCn conocre cok néy de consla USES, Out 0) Q) S ‘ire CE ri relLletively roe $09 reesous easotea tor orsssi Ss, tUD ©) Urn, U Se th | ci Qt te Oo em W) ce qe WHOS semaine Y Of COACH F concret $6r oar y have orovea sat r those ourooses lerly suitceole. é material of very low ts or Bs £XL RALAPURUEL CUR ¢ ena reinforceea concr thereof, 18S now so we ea the récosnizea mete r tinsil ras) Ww streng ta, Structursél méeterial aeosenas resi low oCt Ww1t Ve, reois in L ) ite , - a 3 O rn Ch (2) C1 N4 S190 1K rot C3 CO tn ey rz “- WN t— t oD mn tres Lestions smcll stete tne cuelities of tne pateriels to 0€ usea for nezyine tose concrets, end the wenner ino Whicnr they cre to of orooortionen, (c) toe streneto woilch tere concret= is csxoeceted to ettain etter e ucsfinite gerioa shell os statei in tne soscificetions. (a) tne drenines end soeciflicetions seneil of sisnea oy tne enginser end tre contractor. (¢) rlens ena sotcifticetions tor ell ouolic structures shoulo o€ fo0roved oy 6 Leselly cuthorizea stecis or Ulty Uificiel, and coolies of sucn olens ens soecitficetions olaced on tile in his otfice. (f) 4 m ¢ eoorovel ot olens sna soeciticetions oy over autnorities snall not relieve tne of resoonsibdility. (3) oetent insosctors su Insoectiion durin3s oloyea oy and snall cover the 1. ihe engineer, materials. enoineesr or construction shald os and under tne tne contractor > ~L6Eae OY coOmnmo- suoervision of the Tollowiné:. and erection or tne e Ins correct construction fornus ena ths suooorts. ce Loe eiessy, ere oy are ": Fo oerczenent. 4, ine orooortionins, mixing conerste. ec. ine strsenztn of the Stenierd test oleces sc. thether tne concrets ceéetore the forus ana end olecins of tine conerets, oy tests of maie on the work. 1s sutficiently nardened suooorts @ré renoved. 7. Prevention of injury to any oart of the structur® oy ena efter toe renovel of the torus. >. Conogrison of ainensions of slid oarts of the finished structure witn toe olens, (nh) Loan tests on oortions of tos Tinisnea structure shell 9€ NES WHere there 18S rsesoneole susricion tnet ths work nes not o€en oroosrly virtorved, or thet, tnrouezn influences of sone Kina, tne strenein aes Oth lnoalred. LOSagne shell oe corried to sucn € ooint tnoet one ana toresecuarters tines tne celculatéea worsinz stresses in criticel oerts ars reacneda, ana suco Llogas shall cause no iniurious o¢rranent aetornetions. Loasgy tests sncil not o€ néde until etter su deya of naéraenine. | A, Lestructive Levencles. (sg) Corrosion ot sstel Reintorcerent. lests end sxoerience indicaéts tnet steel sutriciently erosaucu in Yoou conerete ls well orotectéa axseinst corrosion, no noettver wnetoer locagtsda eoove or celow wetver level. Lt is recornenaei that suco orotection oe not Less tnet Ll inecn in tnietness. if the caonerste 1s oorous so és to o8 reeaily oerrecole OV Wweter, eS Aen tne Concrete 1s lala witn &@ gry consistency, the retiel’ pey tcoeroa.r€ on S@ccount of toe oresence OF nolsture éenu ele. (o) shleetrolysis. ine sost recent exnoerineniel aets evail= sole on tnis suoject seen to snow thet woile rsinvorced concrete Structures Tey, under certéln conaitions, of injurea oy the flor of electric current in either direction between the reinforcing materiak and the concrete, such injury is generally to be ex pected only where voltages are considerably higher than those which usually occur in concrete structures in practice, If the iron be positive, trouble may manifest itself by corrosion of the iron accompanied by cracking of the concrete, and, if the iron be negative, there may be a softening of the concrete near the surface of the iron, resulting in a destruction of the bond. The former, or anode effect, decreses much more rapidly than the voltage, and almost if not quite disapeears at voltages that are most likely to be encountered in practice, The cathode effect, on the other hand, takes place even on very low notages, and is therefpre more important from a bractical standpoint than that of the anode. Structures containing salt or calcium chloride, even in very small quantities, are very much more susceptible to the effects of electric currents than normal concrete, both the anode and the cathode effects progressing much more rapidly in the presence of chlorine. there is great weight of evidence to show that normal rein_ forced concrete structures free from salt are in very little danger under most Dractical conditions, while non—-reinforced concrete structures are practically immune from electrolysis troubles, The results of experiments now in Drogress may yeild more conclusive information on this Subject. (c) Sea Water. The date available concerning the €ffect of Sea water on concrete or reinforced concrete are limited and in-— conclusive. Sea walls out of the range of frost action have been Standing for many years without aoparent Injury. In many harbors where the water is brackish, through rivers discharging into then, Sericus disintegration has taken olace, this has occurred chiefly between low and high tide levels, and id due, evliaently, in Dart by frost. Chemical action also ajoeurs to be indicated by the softening of the mortar. To effect the best resistance to seg Water, the concrete must te Droportioned, mixea, to prevent the penetration of sea water in the joints. The cement Should be of such Will best resist the action of sea Water, and olaced so as to the mass or through: Chemical composition as the aggreyates should be es, ~ — carefully selected, graded, and proportioned with the cement so as to secure the maximum possible density;: the concrete should be throughly mixed; the joints between old and new work should be made water tight;- and the concrete should be kept from exposure to sea water until it is thoroughly hard and impervious. (d) Acids. Concrete of first-class quality, thoroughly hardened, is affected appreciably by only strong acids which ser- iously injure other materials. A substance like manure is injur- ious to green concrete, but after the cancrete has hardened thor- oughly it eesists the action of such acid satisfactorjly,. (e) Oils. When concrete is properly made and the surface is carefully finished and hardened, it resists the action of such mineral oils as petroleum and ordinary engine oils. Oils which contain fatty acids produce injurious effects, forming compounds with the lime which result in a disintegration of the concrete in contact with then. (f) Alkalies. The action of alkalies on concrete is orob- lematical. In the reclamation of arid land, where the soil is heavily charged with alkaline salts, it has been found that concrete stone, brick, iron, and other materials are injured under certain conditions. It would seem that at the level of the ground water, in an extrenely dry atmosphere, such stmuctures are disintegrated, through the rapid crystallization of the alkaline salts, resulting from the alternate wetting and drying of the surface. Such dest- ructive action can be prevented by the use of a protective coating, and 1S minimized by securing a dense concrete. Re. Materials. A Knowledge of the properties of the materials entering into concrete and reinforced concrete is the first essential. The in— portance of the quality of the materials used cannot be overes— timated, and not only the cement but also the aggregates should be subject to such definite reoguirements and tests as will insure concrete of the desired quality. 1. Uément. Loeré are evalilaole for construction ourooseées: Portland, wai ural, ana Puszolen or tlez cénents. Unly Fortlend cement is suit- able dor reintorced concréte. Cs) POrtbéwl Cresent. Inis is the finely oulverized oroaucé resulting frou the calcination to inciovient tusion of an intineie LN C34 ~’ mixture of orooerly orooortioneda argillaceous ana calcareous naterials. I[t has a defigffite chemical comoosition varying within comoargtive narrow linits. rortléend cement should be uséd in reintorcéd concrete con- struction ana any construction tnat will oe sudject to shocks or vidrations or stresses Other then direct comoression. (b) ANAUURAL Ciw bit. This is the finely oulverizea orouuct resulting from the calcinetion of an argillaceous linestone at a temoerature only sufficient to drive orf tne caroonic acid vas. f£lthnough the linestone must nave a certain comoosition, this comoosition may vary within much wider Limits than in the casé of Portland cement. Natursl cement aoes not develoo its steengin as eulcxly, nor is it as uniform in comoosition, as Portlana censni. Natural cement mey be used DN maSSive Masonry Where welignt ratner tnan strenetn is the essential feature. nhere sconomy 1s tne governing ctor, @ comfoarison aay ce maae opetween ths usé of naturel cement ana a leaner mixture o7 Yortland ceénent that will aeveloo the sane strength. (c) Fudéuuktn.: inis is toe finely oulverizéa oroduct re- sulting fron grinainzs @ necnenical mixture of granulated pdasic olast furnace slays ana nyaretea lime. Fuzzolan cetent 1s not nearly as stronv, uniforn, or relissle as Portléna or naturel cenent, 1S not uséa extensively, and never in imoortant nork;: it snould o¢€ used only tor adundation work underground where it 1s not sxooséea tO air or running water. (d) SPeCel# CATIONS. ine cement snoulad nest tne recuire- ments of the ttandara sethnods of esting ena sascifications tor Cement, or as may o¢ neresfter erendea, tne’ result of tne joint + laoors ot soccial Cotnittéees oi ths Lnerican society of VCivil Engineers, k£nerican rociety tor esting saterials, Anerican riil- A Way inginserings Association, sna otners. , Pt sSetes. Cl Le fvor kxtrens cére snoula of exercised in selecting tne avrresct for mortsr ano concrete, ena céersiul tests age of tne naterizls for the ourogose of aeterninins tngir cuslitiss gna tne Sreaai necessary to secure Léxltun aensity or ¢ nininun oercentsege ot volas. (a) tlayd £LOGntGeLlsse this snoula consist or send G » 2réaca tron Tine to coa -~, 1 stone, or vravel screening Sc S r ing when ary <é reén heving holes $# incen in dléneter;:- it 1s osr- - °: » 7 ‘ — ont feraols tnat it oe of silicious natserial, and should oe cleén, coarse, free from dust, soft oarticles, wezetaole loan, or otinec agletsrious matter; and not more tnan ¢ oer cent should vass a seive naving 1U0U meshes oer linear inch. rine 43 ate shoula always oe tested. Fine agsrezgate snould pe of sucn ouaglity that mortar con- oosed of one oart Fortlanid cement and three oarts fine asszresicis Oy welgnot, wnen tade into oricuettes, will snow a tensile strength at least eoual to tne strenzin of lsc mortar of the sane consist-— ency maae witn tne sans cenent ana standard Jttawa sand. If ins agsregates oe of ooorer ouality, the orooortion of cenent in the rtar should oe increaséa to secure tns desired strength. It the strenzto develoosa oy the aggreszate in tne lio mortar is less than 70 ver cent of tne strength of tne Jttawa sand toriar, toe materia). snoula oe rejected. lo avola the renoval of any coating on tne grains, which ney aittect tne strength, bank sanas snoula not oe aried oefore oeing made into mortar, but shoula contain natural moisture. ine osrcentave of moisture may de ace ternminea on & sedarate satole for correcting welzgnot. From 1 to 40 oér cent tore water Day of recuiréa in Hixines dank or artitize Sands than for stanaard Jviteéwa sana to oroduce tne sane consistency. (o) CUkaS £Geaeshles. Fnis snoula cansist of crushed stone or grevel which 1s rstsinéd on @ sersen hévine holes # inche in QGlaneter, ana gréeuea from ths smellest to the Llarsest oarticles; it snoula oe clean, hard, duraole, and free from all aeleterious Matter. fégeresates containins dust, ana soft, flat, or elonzeticea oarticles, should ve excluaed from inoortant structures. the maximum size of the coarse s¢seersiss 1S governed oy tre character of the constmuction. tor reinforced concrete ana fo. small masses of unreinforcea concrete, the éessrezat]e twust oe small enousn to voroduce with the mortar a@ honogeneous concrete of viscous consistency which will oass readily oétwsen and easily surround the reinforcenent anu fill all oarts of tns fores. For coneretse in large nasse ef » tne size of tne coarse a2 a > 2 re-set may be increased, es &@ large azsresate oroduces a stronger con/- S r it snoula de noted tnat tns sen-eer comes greater as tne sige of the crete than & fine ons, aotnous Ot ssoaration fron tne nortar coarse agzrezate increases. Cinaer concrete snould not be usea for reingorced concréie structures. It may oe allowaole itn maxs for wery light loads or for fire orotection ourooses, ine cinders usea snoula oe core oosed ot nara, clean, vitreous clinxer, tree fron suloniaes, un- oOurnea coal, or ashes. B, ater. Ine water used in mixing concrete snoula oe free tron oi:, acid, alkalies, or organic natter. 4, vetal nsintorcenent. tne Connittee reconnenas, as a suitaole néterial tor rein- forcenent, steel fillings tne reoulirenents for structural steel reinforcement of tne soecifications adsotea oy tne é£nericaén asile way ineineering sAssociation(Section#). Khere little vending or snaoing 1s réouired, ana also for rein-forcenent for shrinkaze and tenoerature stresses, materizl fi'ilins tne réguirenments of tne Soecifications adooteud oy the fr- erican Railway tngineering Association for hisn-caroon steel Section #&) nay oe used, aaooting tne sans unit stress as here Inafter reconnendea for structurél graae tnateriel. for the reintorcenent of slaos, small oceans, Or ninor aevzils, or for reinforcement for snrinka-e ana tenoerature stresses, tire drawn from oars of the grade of rivet stesl may os used, with tiie unit stresses hereinafter recommended. ihe reintorcenent should o¢€ free from excessive rust, sels, or coatings of any character which would tena to reduce or dés= troy tne oond. C. FPaiPAnInG ANG FLACING MOnthn AND CONCHELE. 1. Provortions. the materials to ove usea in concrete snoula be carefully elected, of uniform ouality, and orooortionéed witn a view of securing as nearly as oossiole a maxinun density. (a) UNIT OF MEASURE. ‘ine unit of weasure snoula o¢€ the cubic foot. A bas of cement, containins #4 oounds net, shoula be considered tne eouivalent of 1 cuoic toot. the msasurenent of tne fine and coarss ar-srevates snoula we oy Loose volune. (o) meDATION OF Flew AND COkaew AGGnechtas. Lhe fine anu coarse aggregate snould o€ used in such relative pvrovortions és Will insure maximum aensity. In unimoortant work it is suificicnt to do tnis oy individual judsnent, usin’ corresoondinly higher orooortions of cement; for imoortant work these orooortions should oe carefully determined by oesnsity exoerimenits, ana tne Sizing of the fine and coarse assyresaties snould oe uniformly Maintainea or the oropoetions cnanzged to neet the varying sizes. (c) habAlION OF Cav BNI ANL £GGREGATES. kor reinforced conerete construction, one voart of cement to a total of six oarts of fine and coarse assrezates measured senarately shoula Senerally oe used. For columns, richer mixtures are senerall ver- feraole, ana in massive masonry, or cuddle concrete, a mixture of l:2 or even ltlz nay oe sea. These orooortions snould de determined oy the streneth of the wearing oualities reouired in the construction at the critical oerioa of its usé. bxoerien ed juagment oased on individual ooservation anda tests of similar conditions in similar localities is an excellent guide as to tne orooer orooortions for any oart- lecular case. hor ail important construction, advanced tests should be maae of concrete, of tne materials, orooortions, anda consistency to oe used in tne work. inese tests should be made tri ir Lauseriuc: corcitiors to ootain unifornity in mixing, vrovoortioning, and storage, and in céseé the results do not conform to the reouire— ments of the work, agsresates of a4 oetter ouality snould oe chosen, or richer orovortions uses to odtein the desirea sBesults. - ™\ixing. The ingredients of concrete should be thoroushly mixea, gana the mixing scould os continued until ths cenent is unifornily distributed end the mass is uniform in color and homogeneous. Es the maximur aensity and vyreatest strength of € given mixture aénenas lersely on thorouvh e1:4 comolsete nixins, it is essentisl thet the work of mixin’ should receive soecial inssection. {nesnuch es it is difficult to determine, by visusl insoect— ion, woether the concrets is uniforrly mixes, esoecielly wnere linestone or éegiresetes havins tne color of ce@nent ere used, it is essentiél that the mixine should occuoy a gefirits voeriod of tine. Tone minimun tite will ceoend on wnetner tne mixine is aone oy mechine or heno. Ce) Vaesuslec INCaiLIbNES. uetnods of neasursnent of tne orooortions of tne verious insrei ents snoulsa os used which will CD 1 secure seosrate and uniform meesurersnts of cement, tine eser te, end weter, eb ell times. xoGe then the conditions will voermnit, 4 (o) WNACSI a r yoe wnich will insure uniform vorovoortioning macnine m1x¢s of tne materials throughout the nass shoula oe used, as a more uniform consistency can de thus ootained. Ine mixing snoula continue for 2 minimum time of et least one tinuts after all tne ingredients are assembled in tne mixer. (c) HAND MIXING. hnen it is nécessary to mix by hand, the mix ing should be on a water tight olatform, and esoecial vorecattions should oe taxen to turn all tne ingredients together at least six times and until they ars ho#ozseneous in aooeéeérance and color. (d) CONSISTancY. The naterisls shoulda pe mixed wet enough to oroduce a concrete of such a consistency as will flow into the foras and aoout tne metsc reinforcenent wnen used, and wnicn, at the same time, can be conveyed from the mixer to ths forms witnout seoaration of tne coarse agyresste from tne rorter. (oe) helenPhxI\G. Morter or concrete should not be remixed Witn water after it has oartly sei. So. Placing Concrete. (a) SBLEODS. Concrete, after tne combletion of’ tae nixing, snoula oe handled raovidly, and-in as smell masses as is practicable, fron the olace of mixing to tne olace of final aeoosit, ana under no circumstances should concrete oc used that nes oarily set. & Sslon settin> cenent snoula oe used when a lons tine is likely to occur oetween nixing and olécing. Concrete snould oe devosited in such 4&@ manner as will rermit the most tnorousn comoactins, sucn aS can O0€ OOtEIned OY NOrking With a straight shovel or slicing tool keot noving uo and down until all the ingredients. have settled in their prover vlaces oy gravity, and the surolus water has been forced to the sur&aceé. Svecial care shoula be exercised to orevent the formation of laitance, which hardens very slowly and forms a voor surface on wnich to deposit fresh concrete. Alk laitencs snould os removed. ctefore dacoositine conersis, the reinforcement shoula be care= fully olaced in accordance with tre olsens, and adequate means oro- Vided to nola it in its vorover oosition until the concrete has oeen asvositsd and conoactcd;- care snoula oe taxen to sce that the torms are suostential ana thorousnly wetteakexceot in treezing weather) or oiled, end tnat ths sosce tO oe Occuoisd by the con- crete is free foon acoris. anen the oleciny of concrete is suse ocnded, abl necessery grooves tor joinins tuture work snould de mage oefore tons concréte hes ned tine to Le Ww) CD ¥nen work is resumed, concrete oreviously olaced snould be roughened, tnorousnoly clsanssa of forseisn neterial and laitence, a ee ee thoroughly wetted, and then slushed with a mortar consisting of one oart Portland cement and not moore tnan two parts fine aggregate. The faces of concrete exnosed to oremature drying should be keot wet for a period of at least seven days. (o) FRE&AZING WiHATHER. Concrete should not o¢ nixed or depos- ited at a freezing temoerature, unless soecial orecautions are taken to avoid tne use of materials covered with ice crystals or contain-—- ing frost, and to orovide means to vorevent the concrete from freezing after being olaced in vosition and until it has thoroughly hardened, fs the coarse aggregate forms the greater vortion of the cone crete, it is oarticularly imoorteant that this material oe nested io well above the freezing ooint. (c) KUEBLE CONCKETE. Where the concrete is to be deoosited in massive work, its value may ve imoroved end its cost materiadly reduced py the use of clean stones tnoroughly enbedded in the con- crete as near tosgetner as it is oossible and still entirely sur- rounded witn concrete. (d) UdNDex hKATin. In olacing concrete under water, it is essential to maintéin still water at the olace of devosit. the use of tremies, oroverly designed and operated, is a satisfactory method of olacing concrete tnrough water. The concrete should be mixed very wet ( more than is ordinarily permissiovle) so that it will flow readily througn the trenmie and into the olace with oractically a level surface. ihe coarse asgregate should oe smeller tnén ordinerily used, and never moes tran 1 inch in diémseter. tne use of grevel fscilitet €S nNixings ana assists the flow of concrete througsn tne trenie. tne moutn of the tremie should o¢€ ouriscd in tne concrete so far that it is at all times entirsly scaled and tne currcundinzs water orevented ffon forcing itself into the trenic; tne concrete will then dischare Witnout coming in contact with tne water. tne trenie snould be sus- oended so that it cen be lonered ouicexly when it is necessary either to choke off or orevent too raoia tlow;. the laterial flon should ocrferably oe not wore tnan 15 fest. ihe flon should oe continuous, in orvéer to oroduce @ monoli- thic naéss end orevent tne forretion of Léitence in the interior. In lerze structures it ray oe necessary to divide tne nass oft concrete into several smell conoartnents or units, filling one at a4 time. @ith orooer care, itv is oossiolés in this manner to ootain as Sood results under water as in tne air. “ca er CL. kForas. Forms should pe sudstantial and unysilding, so that the concrete shall conform to the aésisnea aginensions and contours; and they shall be tight in order to orevent leakaze of mortar. The tine for removal ot forms is one of the most imvortant steos in the erection of a structure of concrete or reinforced concrets. Caee should ove taken to insoect the concrete and gs— certain its hardness oefore removin2a tne forns, So many conditions sffect tne hardening of concrete tnat the orooer tine for the removal of the forms snould de deciaed dy some competent and resoonsiole voerson, esoecially wnere the atmosoheric conditions are unfaboraole. It may pe stated in a general way tnat forms snould remain in olace longer for reinforced concrete tnan for oladin or massive con= crete, and that forms for floors, beans, and sinilar horizontal Structures should remain in olace much longer tnan for vertical walls ihhen the concrets gives 4 distinctive ring under tne blow of ahammer, it is senerally en indication that it has nardenea suffice iently to oxrnit the renoval of the forms with safety. Jt, however, the temoerature is sucno tnat tnere 1s any vossibility tnat the con- crete is frozen, this test is not a safe reliance, as frozen concreie may sooecar to oe very hard. 2. LaeléAlls Jb COnSTavocllon. lL. Joints. (a) CONCHKiL#®. kor concrete construction it is desirable to cast tne entire structure at one ooeration, out as this is not al- ways oossiole, esoecially in large structures, it is necessary to stoo the work at some convenient ooint. this ooint snould be ael— ected so that tne resulting joint may have tne least ovossible ef-= fect on the strengtn of the structure. It is tnerefore recommenaea that the joints in colunns de naae flush with the lower side of the Sirders; that the joints in girders oe at &@ 0olnt niaway oetween Suooorts, but should a been intersect a giruer at tnis, the joint snould be otiset 4 distance eoual to twice tne width of the dean; that the joints in tne wenoers of a floor system should in zenereal oe nade at or near the center ot tne soan. Joints in columns should ve osroendicular to tne exis of the column, and in sgiruaers, beats, and tbhoor slaods oerovendicular to the olane of their surteéecss. Girders snould never be constructed over freshly tormeda col-—- umans Witnout pernittins &@ overioa of at lsast « hours to elaose, tnus providing for settlement or snrinkage in the coluans., Ne Cry ‘ Snrinkege and contraction joints nay be necessary in con- crete suoject to great fluctuations in temoerature. The fre- quency of tnese joints will aeoenda, first, on the range of tenro- oerature to whicn the concrete will 0e suojectea, and second, on the guantity ana vosition of tne reinforcenent. Inese joints should oe determinsa, and orovided for in the design. In massive work, such as retaining walls, abutments, etc., ouilt without reinforcenent, contraction joints should oe orowlided at intervels of from 25 to 50 feet and witn reinforcement trom d50 to 30 feet (the smaller the hneizgnt ana thickness, tne closer tne soacing) throughout tos lenstn of the structure. I!0 orovide aeainst the structure oeing thrown out of line oy unequal settlenent, eacn q— ction of tne wall snoulad o€ tOnzued* ana srooved into the 4 joinin2 section, 4a eroove snoula oe forned in tne surface of th Ch, concrete at vertical joints in walls ana aoutrents. Sarinkase and contraction joints snoula oe Luoricatea oy either an aoolication of oetroleun residuun oil or a similar gai- erial so as to oernit 4 fres myvenent at the joint when tne con- crete exoenas or contracts The insertion of a sheet of a sneet of coooer or winc, or even tarred ogoer, will oe founa advantazeous in securing exoansion ena contraction at the joint. (o) AREITNFORCHvanT. wnerever it is necessary to solice tension reintorcenent, tne lengtn of lao snould oe determined on ine Oasis of the sefe vond stress, tne stress in tens oer, ana tne sneer- inz resistence of the concrete et tne ooint of solice; or a con- nection snould ofS 693 OStween toe oars OF sSuLTicient strengta to i carry toe Stress. rolicss &t ooints of nexinun stress snoula ce evoilacsa. In coluras, osrs nore thea # inenes in aAlageter, not suse 2c¢t to tension, snould og oroosrrly souerea Ena OUtLtTEed In € Suit- Gy © bj CD Ww — CL CO CO wee YY mo $) ood }— (| ry > Cc. rs Ua Cc) oe Cb a ry co Oy co C 2 C3 Ww) Keel < m) pe QO Qo ct ef ‘ tor tension reinforcenent, or ths stress ney of Carrera tor oy enoeanent in lerce rins praves snould be oro— ars, or tine oars may oe carriea ints tne¢ er O O ct =) a) ue a) A OF te + ~ O ht Cb — ct « w c os oO Q Co cr O ry QO 3 U _ ct c q wh cr rs a W) Y O ri ca _ C 1 Cc qi C — to tne concrstié oy meens of tons oearing ani oona resistances in no cese snell toe enas of toe oGrs of oernitten terely to rest on N e / - - ke > a) 04 phy Ge ©) a) oO {— Cl ») C4 ry Q) t torinvaze of concrets dus to feriatnin-e ens contrection fron lie of woich deoenas on the tenoeratur? cnsn2es, cause ( Ci i) QO a) O) C2 rN Ch ct LD U UO }. Cr} l¢ extent of the mass. tne resulting stress are imoortant in monolithic construction, and snoula oe considerea carefully by the designer; they cannot oe counteraectea successfully, out tne effects can de Minimized. Large cracks, oroduced oy ouiex naraenins or wias ranges oft temoerature, can os broken uo to s ne extent into snall cracks oy olacing reinforcement in the concretey in longs continuous len-vings of ccnerste, it 1S oetter to oroviae shrinkage joints at ooints in tne structure wnoere they will do little or no nérn. heinforcse-— gent is of a sistance, ana overnits longer distances detween snrinx- age joints than when no reinforcensnt is used. Snabler masses or tnin vodies of concrete snhoulo not ve joinea to larger or thicker masses witnout oroviding for snrinkadve at suc ooints. tillets similar to tnose uséd in metals castings, duit ot larger aiszens ons, for griscaually reducing from the thicker to tne thinner oody, are of coven bees Snrinkege cracks are likely to occur at vooints where fresn concrete is joined to tnat wnicn 1s set, ana hence, in olacing tn¢e concrete, constructdon joints shoula be made on horizontéel ana vertical lines:, and if possiolg, at ovoints where joints would naturally occur in dimension-stone nasonry. OS. Hire-oroofings. the actual fire tests of concrete and reinforcea concrete nieve ocen limited, out sxoérisncs, together witn tne results of tesis made thus far, inaicats thet concrets, on eccount of its low reie Or nééd conuuctivity and tne tact tnat 1t 18 incotoustidle, may os ussa séefely for tiré-orooting ouroosss ins asnyuration of concrste oroosoly osvins at Goout ouves,, ena 1s conoletea at aoout glU°!., but exoerience inaicetes that toe voletilization of tne water aosorcs neat tTror the surrounainz MESS, wnicn, tozethsr vnitn the resistance of tns air cells, tenas to increase tne heat resistence of tne concrete, so thet the oro- cess of aehyarastion is very mucn reteraca. tne concrete that is atfectea oy fire remains in o9osition and artords orotection to the conerste deneain it. the taic«ness of tne orotectivs cogting reouired dsvends on the oroosole auréetion of a tirs wniecn is lixely to occur in tne - & Structurs, ana snoulaw os vased on tne rete of heet conauctivity. tne ouestion of tne conductivity of concrete 1s one which reouires further study ena investiveticn ostore a detinite rate for difier- ent classes of concrete can os tully estéeolisrsa, sowever, for ordinary conditions, it is recommended that the metal in giraers and columns be vrotected by a minimum of « incnes of concrete;- thet the metal in ocans oe protected Oy a nininum of 14 incnes of con- crete; and that tne astal in floor slaos oe orotected by a mininux of l inch of concrete. It is reconmended that, in monolitnic concrete columns, the concrete to & deotn of 1# inches oe considered as vrotective covering, ana not included in the effective section, Tit is recommended that the corners of columns, giraers, ana oceans ove oeveled or rounded, as a sharo corner is more seriously affectead oy fire tnan &@ round one. 4, hater—oroofineg. many exoedients nave oecen wsea to render cancrete imoervicus to water under norgal conditions, and also under oressure conditions that exist in reserviors, déms, and conauits of various kinds. :x- ocrience shows, however, that wnere nortar or concrete is vorooor-— tioned to ootain tne greatest oracticaole aensity and is mixed io arather wet consistency, the resulting mortéer or concrete is u- oervious unacr moderate oressure,. &£ concrete of dary consis:tency is more or less vervious to water, and compounds of varioss kinds have oeen mixed with the concrete, or avolied as a wasn to tne surface for the ourvose oi Making it water tight. Many of these compounas are of Dut teno- Orary value, and in time lose their oower of imoarting imoermea— bility to the concrete. ln the case of suoneys, lone retaining walls, ana reseéerviors oroviaed thé concrets itself 1s lnoervious, cBack¥s nay oO duced Dy norizontal ena vertical réliniorcerent orooerly orooor tionéa and locetes, that tney ars too ninute to oerrit Jeakaegse. or ars soon closed oy infiltration of silt. Coél ter oreoarations, soolisa elther &@8 &@ mastic or as &@ coatinzs on felt or clotn feoric, ars uséa Tor water—orooring, no Snoulad oe oroof avgéeinst injury oy liouias or gase For retaining ani sinilér walls in oirect co s contect with to- b earth, tne goolication of one or tno coatings of hot coal—-teéer szitcn to tne thorouzoly dricd surface of concrets is an efficient méetnoa of oreventing tne o€nstration of moisture tron the eerth. uw. curkacs #inisn. vonerste 1s 4a material ot én indiviauel tyoe, and snould not i+ O F cr om > aD) be used in 1ititation ot r structural meterials. One of the n imoortent oroolers connected nitn its use is the cnaracter of the finish of expvosed surfaces. Ine finish of the surface shoula be determined betore the concrete is olaced, and the work: shoula be conducted so as to make possiole the finish desired. For nany forms of construction the natural surface of the concrete is tunao- jectionable, but frequently the marks of tne doards anda the flat dead surtace are disoleasing, makin some soecial treatment aesir— able. A treatment of the surface, either dy scrubbing it wnile sreen or by tooling it aiter it is nard, which removes the filx of mortar and orings the aggregates gf the concrete Ento relief is frequently used to renove tne form markings, oreak the monotonous aooearance of tne surface, and nake it more oleasings. Ine olas- terins of surfaces, as ordinarily aooliecd, snould pe avoided, tor even, if carefully done, it is likely to veel off unaer the action of frost or temosrature changes. #*, bastan. 1. Massive Concrete. In the design of massive or olain concrete, no account snoula oe taken orf tos tensile strength of the material, and sections snoula usually oe oroportioned so as to avoia tensile stresses, exceot in sliznot anounts to resist indirect stresses. this will generally oe acconmrlishes, in tne case of rectanguléer snaoes, if the line of peessure is keot witnin tne midale tnoird of tne section, but, in very Llarss structures, sucn aS nigh masonry dans, a more exact analysis tay of reoulrea. Stmuctures of nassive concreté are aolé to resist unovalancsa Lateral forces oy reason ot tneir WEisnt, hence toe sclenent of weisnt ratner than strength often ac- wv 3 > > ¢ termines tne design. relatively cn¢eo and weak concrete, thers- tore, wiloi often bse suitaole for tassive concrete structures. lt is assiraole, generally, to orovide joints at intervals, to locabize tos stitect of contraction. M&@SSive concrete 1s suitaole for dats, retaining walls, anu olers ani snort columns in which tne ratio or length to least wiatnh is relatively snall. Unaer srainary conditions, this ratio snoula not excecsd six. Iiltis also suitanle for arches or modsrate soen, where tne conditions as to foundations are ftavoraole. 6. néinforcea concrete. oy the uss of metel reintorcerent to resist tne orincinal Seneral use in é > tensile stresses, concrets oecones avalilsole for Zreat variety ot structures é6ni structural forns. Jhis combinzetion of concrete ana metal is ogrticulérly edvantazeous in tne oean, woasre ooti comoression ana tension existy it is also égdvantasesus out toere=— ana columns, con. jressive, f{ oeems nalysis o the tBeory of aésivn, o-~ stresses are © “exist. General Assumotions. nay wnere the méin Se Will relate mainly to the where crosS#w0ending in tne column, fore, The losas or forces to be resisted consist of Cf) c. LOE ) (U ( Go aya) oo Os = © a Po on: won {1.C 0) (Dp Su HH 0 Ovo PaG D | ” bt (SIH -3o at Or O “tha voc che O eDOHY +0 ODD cHeMde ©) aoroownw oOaod VO wOMP NOD} ad DOVOCWAGNHDS + ca 8ePsuordp S Pats OOM « ad AHAOMmAPODGN Geeta 408 1 2) O') DNS O *ZzH0 wocawod Oo Wweon “tH 0) e Nad MSDONORODDDO YP ODADUOD S ket OO ONWO Geeta Pr Oa De ADO JH POY Su UODDOWODAQ YO oO) ODOPaCrY Oo Ds Q>> e ote © ba O AGVNI-RHD MN O, DAORMCG beat Dah Wh dd YP ODOaca GH ABOPYPH Accor qe & |O0onwe ws wy 5 “SOPHO nM NnNONnN FO OF#AovodD as eH O44 orHr uP nos OoOCOnDG MN wvs@ OF YN VBHOOoO VHC 0 FRO OF DHVOUOH WNVDOAD Yor O OVvVOeaoasvand Ga a) C4 Ww cw Oo core DPS DorPODwR OP OT MOOK ROACH Y w= iAH AOD eter tHi Gl ON OD ODN PHO” DOACTDHOP HOW Wo Cesoconohyr oc AMW UP OH OA —-119 — S re ere re am c/ to for oceans soan olus the 7 manimua unsuo= assungtions toe calculations relating S from centér to center of a —-[ne soan len -“ ~~ @ taken oasis tor Lollowing LUA I i; Qistence tne m Ww Cnse c a ~ ANE as tn cracxets snall not oe considered Soa).l ode ctures, O° L oh stén in tne tbh ot columns ea no r — wd n a > =) els out strenetn of stru 3 ths tne len d lenstn. (0) ana slaos shall oe téKen - > suooorts dettn of oesn or slao. to tne aucing oorte ce) WJ comntend fy Ww OcG Opp» cand OMS fu Ww 4) wha “bet 49 VN f4 Oo GAH+ 43 (0 ‘He reer We qd) ‘A+ GO S wa e oO (0 + ib QnMQ) e Gt) n Sign anu ‘eH DHO re {Ds AD 44 AW DD GC 6,43 Om & Hoos aed © oom ote prom OM t+ mo fa om SO Ss Ore HoH was Soca 49 49 0S ae) C) Sus 42 ww wD ous Ons ay oO ' SM Ou “OY I4d O OV) SHH here SO OuN47 © ku Da Sea D GaoNOuUTt () Rv 4-4 Vo e COT ‘PW (OW) ¢) AG 1) 3+ —4 oO Ni aA aD wna Oe ww G11 b&4 40 rea) ~ { @ TAL Sze pay ‘Dos Sat QOS meh O MOO OG —S +h Q) ha te D1) &d = - oot gaw Q caAO $449 3 ef) DPW & SU @) 3 4) Hee Wir + NDO kk worto $149 ©, MO O 44434 DG cco Gow Ow "1 ky ari eo Y WY wD Oooor Con DA DWM YS) WO WD Ure Q) Su G+ qo ad C, (/) OVNL Ww CQ) So a wWYHOvD YD SH =~“ > O Ort aH WMOWUNRO tJ WON 4 +--+ e Oo 89 AO YI 49-4 = oO oO mam Ls pet G49 Oowo +H 61 O TAN OV! LO Ln the. AQOGnS1 It is recognized that some of the assumotions given here- in are not entirely borne out by exoerimental data. They are given in the interest of simglicity and uniformity, and variations from exact conditions are taken into account in the selection of formulas and working steesses, The deflection of beams is affected by the tensile strength developed throughout the @ength of the beam. for calculations of deflections, a value of 3 for the ratio of the moduli will give results corresoonding aovroximately with the actual conditions. 4, ‘T-Beams. In bean ana slapd construction, an effective bond should be orovided at the junction of the beam and slab. then the principal Slab reinforcement is parallel to the beam, transverse reinforce-— ment should be used, extending over the oeam and well into the slab. Where adeguate bond and shearing resistance between sleb and weo of beam is vrovided, the slab may de considered as an integral oart of the dean, but its effective width shall be determined by tne following rules:, (a) It shell not exceed one-fourth of the | soen lLenstn of the oEesn;- (o) its overhansing width on either side of the weo Shall] not exceed tour tines tne thickness of tne slao. In the desijn of it-ocams acting as continuous deans, due con- Sideration should oe given to tne comoressive stresses at tne stooort. Seams in wnich tne tee form is used only for the vouroose of orovidins additional comoression arezof concrete should orefer— aoly have a widtn of flange not nore than three tines the wiath of the sten ana a tnickness of flange not less than one—third of tne deoth of tne oean. coth in this form and in the beam ana slab form, the web stresses and the Limitations in olacing and soacing the longitudinal reintorcetent will orobeoly oe controllinzs ftactors in the design, Oo. floor slaéos. Hloor slaos snould os designed and reinforced as continuous Over the suooorts. If the lensth of tne sleb exceeds one and five tenths times its width, the entire load should oe carried by the transverse reinforcement. Souare slabs may well oe reinforced in both directions. the continuous flat slad with nultiole-—way reinforcement is a type of construction used ouite extensively, and has recognised fy? “ advantages for soecial conditions, as in tne case of ware- housés with large, oven, floor soace. At orssent, a consiaer-= able difference of ooinion exists anong engineers as tho the formulas and constants which should oe used, out exoerience and tests are accumulating data which it is nooead will in the near future vernit the fornulation of the princisles of design for tois forn of construction. Tne loads carriéd to oeans oy slaos which are reinforced in two directions will not oe unitornly distrioutea to the suooortins oeam, and its aistrioution will aeoend on the re- lative stiffness of tne slad and tne suooortinzs veam. the distrioution under ordinary conditions of construction nay oe exoected to oe that in which the load on the veaa varies in accordance with the o dinates of a oaradola having its vertex at tne miaale of tne Sran. For any given aesisgn, the orobaole distribution snould oe ascertained, and tne nwoments in the oeam calculated accordingly. 6. Continuous seams and slabs. wnen the vean or slao is continuous over its suooports, reinforcement snould dpe fully oroviaed at tne ooints of nega tive moment, and th3 stresses Bn concrets recommended in Section [, snoula not be exceeded, (ihese stresses have been increased in sone oarts in a later suoolenent to this reoort). [n conouting the ovositive and negative nonents in veams and Slaos continuous over several suovdrits, due to uniformly dis triouted loads, the tollowing rules are reconanendeda: (a) inat for tlbor slaos, tne oendins zoments og quer ana at suovort = taxen at £ tor ootn aeaea and Live oh 0828: wnere r to ae ‘pears sents toe load ocr linea Ot ena the Lensztn or soan. (o) tnat for ogens, tne osnaines monent at center and at suooort for interior soagns pe taken at peste and for ena soans jt oe taken at wl@/di) for center and aa joining suooort, for dotn deaa anu live ld4aas. (c) In the case of ofans and slaos continuous tor two saans only, tne oenalins nomsnt at. toe center SuODITY snguld o€ taxen at Hh 8/3 and near tne tiadle of tne soan at wl?/ 10g (d) f£% tne ends of continuous ogans, the anount of nezative moment wnica will aevelooe will deoendi on tne condition.of réstraint or. TLXcdness, and tnois will asoena en the form , of construction used. there will usually be soug restraint, and there +8 likely t9 oe con— Slacraolse. Provision snoulad os naas for the nezative o¢naing nonent, out, as 1ts,anount wif deoend on the torn of construction, the coeiticient cannot oe soecified nere, out nust oe left to the Judzment of the agsigner. te si fry for soans of unusual lengths, more exact calculations should be made. Soecial consideration is also reguired in the case of concentrated koads. Even if the center of tne soan is designed for a greater bending moment than is called tor by a or b,. the negative moment at tne suovort should not oe taken as less than the values given. nnere o€ams are reinforced on tne compression side, the steel may be assuned to carry its oroovortion of tne stress, in accordance w th the provisions of Section #®, Part 3, c-—6. In the case ot cantilever and continuous beans, tensile and compressive reinforcement over supoorts must extend suffic-— lently onveyond tne suovort ana peyond the ooint of inflection to develoo tne requisite bond strenzth. 7. Bond Steength, and Soacing of nkeinforcement. Aaequate bond strength snould oe orovided. the formula hereinafter given for ovonad stresses in oO€ams is for straight longitudinal bars. In deans in which a voortion of the rein- forcenent is vent ud near tne end, the dond stress at olaces in both the straignt bars and the oent oars will oe considaeraoly Sreater than for all the oars straignt, and the stress at some ooint may ode several times as much as that found by considerin3 the stress to be uniformly distriduted alongs tne oar. In re- strainea and céentiléever beans, full tensile stress exists in the reinforceing oars at the voint of suonort, and the bers must be anchored in tne suooort suificiently to déeveloo this stress. In tne case of ancnoresse of bars, an additional length of bar must be orovided oveyonad tnat founa on tne assumotion of uniform bond stress, for ths reason tnat, bdbetore the ponu resist—= 0 ance at tne end ot tne oar can de asveloved, the oar may have oezun to slio at anotner ooint, and “running resistance" is less than tne resistances o¢fore slio de-ins. Anere nigh oonad resistancs 15 reouieed, tne acetformned oar is a suitaole means of suoolyins the necessary streneths, but it snould oe récoznized tnat, even witn ¢ aefornea oar, initial slio occurs at eaty loaas, ana inat tne ubtinate loads ootaines in tne usual tests for oond stres ney db& nisleéding. sédegquate bond strength throuznout tne lenstno of a doar is oreferaoke to end anecnorazs, out, aS an aaaitional sateouerd such ancnoraze may orooerly os us€éa in sogecial cases. ‘énchnorage furnished by short oenas at s ] a right ansle i ess effective tnan hooks con-= ING (> (>a Sisting @f turns through 1cO degrees. The lateral soacins of parallel oars should not be less than three diameters, from center to center, nor snould the aistance from the side of the bean to the center of the nearest bar be less than two diameters. the clear soacing petween two layers ot bars should not pe less than one inch. the use of nore than two layers is to be aiscouragea, unless the layers are tied together by adae- quate metal connections, oarticularly at and near voints where bars are bent uo or Dent down. So. Diagonal Tension and Shear. when a reinforced concréte oeam is sudjected to flexural action, diegonal tensile stresses are set uo. If, in a beam not having weo reinforcement, these stresses exceed the tensile strength of the concre'ie, failure of the bean wil ensue. fhen weo reinforcement, mede uo of stirruos, or of diagonal oars secured to the lonsituainal reiniorcement, or of longitudinal reintorcins bars bent uo at several ooints, is used, new condi- tions orevail;: out even in this case, at tne besinning of loade ing, the aiegonal tension aevelooea is taken orincivally by the “concrete, the aeformations wnich are aevelooed in the concrete oermitting but little stress to oe taken by tne weo reinforce-— ment. knen the resistance of the concrete to tne diagonal ten— sion 1s overcome at any voint in the deotn of the bean, greater stress 1s at once set uo in tne web reinforcement. for homogeneoms dears, tine analytical treatnent of dig oonel tension is not very conrolex — tne diagonal tensile stress is & function of tne norizontal end vertical sneserin2e stresses ana of the horizontal tensile stress at tne ooint considered, and as the intensity of these thres stresses varies fron tne neutral axis to tne renotest fiber, tne intensity of the diagonal tension will os different at aitferent ooinis in the section, and will change with different orooortionate aizrensions of lenztn to asoth of bean. Hor tne comoosite structure of reinforced concrete o€emns, an ane= alysis of tne weo stresses, andi oerticularly of the diagonal ten- Sile stresses i8 very comolex; ena wnen the variations due to a change from no norizontal tensile stress at sone ooint delow tre neutral axis Ere consiisred, tne orodlen occanss tore conolex and ina@efinite. unier these circunstances , in desisnins, ré- course 1s naa to tne use ot tos calculatea vertical snearing stress @és a mnéans of comoarins or neasurins tne diszonal tensile stresses aevelooea, it dein unuerstood tnat tne verticel snear- ing stress is not tne numerical equivalent ot tne diszonal ten- Sile stress, gnd even that there is not 4@ constant ratio oeitinen tnem,. Itis nere recommenocd tnat tne maximum vertical shearing stress in a section be used as tne meens of convarison of the resistance to diagonal tensile stress develoved in the concrete in beams not naving weo reinforcement. ven after the concrete nas reached its limit of resistance to diagonal tension, if tne o¢€am has weo reinforcenent, conaitions of oeam action will continue to orevail, at leést thnrousn the comoression éerea, and tns weo reintorcement will oe cailea on to resist only a vart of tne Weo stresses. Fron e€xosgriments wiin oOcams, it is concludeao that it is sate oractice to use only tno- toiras ot tne external verticel snear in makina calculations ol tne stresses that cone on stirruos, diagonal wed pieces, and oent uo Wars, and it is mere recomwenoeda for calculations in designing that two-thirds of tne externel verticsel snear oe taken as oroducins stresses in nso reintorcenusni. &w&XOSTipents oOearing On toe vsslan Oi asteils of weo reinfrorce=- mént are not yet cotolets snourn to a).low nore togn Zenersl ana tentative reconnendetlons to o€ Bea. lt is well estaolisnea, y however, that vertical nenoers attached to or loooed addut horie zontal menoers, inclined nmenoers secured to horisontal nenoers in sucn a way as to insure against slio, and the pendins of a voart of tne longitudinal reinforcement at an angle, will increase the strenzgtn of a besm asyaeinst failure by diagonal tension, and tnat a well—desisnedad ana well-—distriouted wed reintorcenent may, under toe o€st conditions, increase tne vertical snegr carried toa value eS much ss tnores tinss that ootainea wnen tne oars Gre all horizontal and no weo reintforcensnt 1s ussa. hnere vertical stirruos are uscd without ocing secursa to tne lonszsitudinél reinforcement, the force transmitted o¢tween lonsituainal oar ena stirruo aust not oe sreéeter tnen can os tazxen thnrousn the concrete, and care Must o2 taxen to crovias for tns larger oona sitress asvelooea in toe lLongitudingel oars with tnis construction tnan exists in the aosence of stirruos. suitficient oond resisténce ostwesen tne cone crete ana tne stirrugos or alazonals nust oe oroviaea. Anere the longitudinal bars gre oent uo, the points of oendines of the several oars shoula oe distriouted slons a oortion of tne length of tne oeém in such @ way as to 3ive stficient wed retforcenent over toe oortion o1 tne lenstn of the oveénm in whicn it is needed, als toe nigner resistance to Zonal tension failures Siven dy unit (de qgi frames having the stirrups and bent uo bars securely connected together ooth longitudinally and laterally is worthy of recognition. It is nucessary tnit a linit be placed on the amount of shear which may be allowed in a deam3: for when web reinforcement sufficiently efficient to give very high web resistance is used, at the higher stresses the concrete in tne bean becomes ephecked and cracked in such a way as to endanver its durability as well as its strength. The section to be taken as'the critical sectoéon in the cal— culation of shearing stresses will generally be the one having the Maximum vertical shear, though exoerinments show that tne section at wnich diagonal tension failures occur is not just at the support, even though the shear at the latter point be much greater. The longitudinal spaving of stirruos or diagonal memders, or the distribution of the voints of oending of adjacent bent-uo bars, snould not exceed three-folrth tne deotn of the bean. It is imoortant that adeouate bond strength or anchorage be provided to develop fully the assumed strength of all wed rein- forcement. It snould be notea that it is on tne tension side of a beam that diagonal tension develoos in a critical way, and that the orod oer connection must alweys oe nade oetween stirruos or otner web reinforcenegt and the longitudinal tension reinforcement, whether toe latter is on tnhne‘lower side of the dean or on its uvoer sidey There negative nonent exists, as in the case near the suvooorts in a continuous beam, wed reinforcenent, to be effective, must be looved over, or wrapoed around, or be connected with, the longitudinal tension reinforcing bars at the too of the bean, in the saue way it is necessary at tne ootton of the oean at sections where tne bend— ing minent 1s oositive and the tension reinforcing bars are at the bottom og tne ocan. Inasnuch as the snaller tne longitudinal defornations in the horizontal reinforcensent are, tne less the tendency for the forn- ation of diagonal cracxs, a besu will de strengthened against dia— agonal tension failure oy argansins ana orovortionings the horizontal reinforcement so that the unit stresses et vojnis of large snear shall oe relatively low. Where oure shearing stress occurs, or shearing stress conbined Witn but a snail amount of tensile stress in the concrete, as wnen a concentrated load rests on a slad, or other forms of vounching shear are produced, or in the case of comoression vieces, the elsment of tension will not nésd consideration, and the oermissible limit of the shearing stress will be higher than the Bbllowaole Limit when this stress is used as a means of comvaring diagonal tensile stress. The working values recommended are given in Section G, working Stresses. 9. Columns, Sy columns are meant comoression memoers of which the ratio of unsupoorted length to least width exceeds about six, and when these are orovided with reinforcement of one of the forms here after described. It is recommended that the ratio of unsuvoorted length of colunn to its lxast width be limited to 15. The effective area of the column shall be taken as the area Within the protective covering, as definied in Section E, Part 3; or, in the case of hooped columns, or columns reinforced with structural shaves, it sha>l ove ta:en as the aréa within the hoooing or structural snaoés, Columns may de reinforced by longitudinal bars, or bands, hoops, or sjirals, together with longitudinal bars, or by struc#¢é tural forms which in toemselves are sufficiently rigid to act as columns. The general effect of closely spaced hooping is greatly to increase tne tomghness of tne column and its ultimate strength, out hoonving has little effect on its oehavior within the linit of elasticity. It tnus renaers the concrete safer and more reliaole material, and shoulda vernit the use of a samewhat nigher working stress. tJhe beneficial effects of toughening are adequately pro- vided oy a moderate amount of hooving, a larger amount serving mainly to increase the ultimate strength and the possible deforne ation before ultimate failure. Comoosite columns of structural steel and concrete in which the steel forms a column by itself, snould be designed with caution, To classify this tyoe as a concrete column reinforced with struc— tural steel is hardly permissiblr, as thz steel will generally take tne greater oart of tne laod. when this tyove of column is used, the concrete should not oe relied on to tie the steel units together or to transnit stresses ffom one unit to another. Toe units should oe adeaquately tied togetner oy tie-plates, or lattice bars, which, together with other details, such as snvplices, etc., should pe designed in conformity with standard oractice for structural steel. the concrete nay exert a beneficial effect in restraining the steel from lateral deflection, and also in increasing the carrying capacity of the column. fhe provoortion of load to be Carried by the concrete will deoend on the form of the column and N\* oO) the methdd of construction, Generally, for high overcentages of steel, the concrete will develoo relatively low unit stresses, and caution snould be used in placing dependence on the concrete. The followings recommendations are made for the relative work- ing stresses in the concrete for tne several types of columns:. (a) Foluans | with lo gitudjnal reifif rcement cnly tne extent o ess oer cent sha not more Loan 4 ver cent: the ynit,stress Fecganende r axial comoression in Section (b) Coljuans w th reinforcement of bands, hoops, ah soirals pS herélnarter soegified, Stresses al per cent igher thao 3 veh for a, oroviaes the Yatio of thé unsuyported length of the column L0 tng diameter of tne hoooed core is not more than o. (c) Columns reinforced with not l3ss than l ver .. cent and not more than oer cent or lon3itudinal Oars and With bans hooos, QE Soirals, as here- inatter soegitied: &tresseS 45 per cent nicher ~- than 21iveh for 4, provided the ratio of tné un- SUOpOrtEd lengtn of tne column bo tne diameter” or tne hoooeu core 1S not more tnan o. The foregoins recomnendations are based on the Following conditions, In all cases, lonszituainal reinforcement is assumed to carry its orooortion of stress, in accordance with Part Ss. ‘the hnooos or Oands are not to be caunted on airsctly as aading to the strength of tne colunn. Kars comoosing longituaginal reinforcement shall be straight, and shall have sufficient lateral supoort to oe securely held in olace until the concrete nas set. Khere hoooing is used, tne total anount of sucn reinforcement shall not be less than 1 ver cent of the volume of the column enclosed. Ine clear soacing of sucn hooping snall be not greater tnan onewsixtn of the diamter of tne enclosea colunn, énd orefer- aoly not greater than one-tenth, and in no case gore tnén <@ inch. Hooping ig 60 ove circular, and the ends of the oands aust be united in such as way as to daeveloo tneir full strength... Adeouate means must be oroviaed to hold bands or hooos in olace so as to form 4 column, the core of wnich shall oe straight and well centered. The strengitn of hoooed columns deoends very much on the ratio of length to diameter of hoooved corse, and tns strenstn due to noooing de- creases raoidly as this ratio increase déyonu five. ine working stresses recommended are for hoooved colurns with a length of not more than elgnt diameters of tne hoooea core. bending stresses due to eccentric loégas end lateral forces must oe orovided for oy increasing the section until the maxinun stress does not excesa the values aoove sosecified3 ana, where 2.7 tension is possidle in tne longitudinal bars, adeouate connection oetneen the ends of the oars must be oroviasd to take this tension. 10. xeinforcind for Shrinkave and lenoerature Stresses. inen areas of concrete too larse to exoana anda contract freely as a woole are exoosed to atuosoheric conditions, the cnanges of form aue to shrinkage (réesutting from haraening) and to action of temoerature are such tnat cracks may occur in the mass, unless ore— Cautions are taken to distribute the stresses so as to orevent the cracks altogether, or to render them very snall. ‘The distance apart of the cracks, and conseouently tnerr size, will be airectly pro oortionel to tic cfireter of the reinforcenent end to the tensils steength of the concrete, and inversely orovortional to the percen-— age of reinforcezent and also to its oona resistance ver unit of urface area. To be effective, therefore, reinforcezent (in anonant enerajly not less than 1 oer cent) ef a forp xhicn will aeveloo Q) nigh pond resistance should o¢€ olaced near tne exvoosed surface and be well distributed, Tne allowzcole side and soacing af cracks deévends on various conditions, such es the necessity for water tignness, tne inoortance of avoesrance of tne surface, and the atnosoneric cnhagnves. Ty — te -* a if i—- oN 7s Fr ~ ~~ 4 ee if) oN Too. ee Ly we PoadéLNS e Ine workins stresses as reconnenaes oy tne Joint Connittee end made a oart of this revort nill os found in tne introduction rn to this thesis, Paves 5 to B. 451 020s I2eT « wii TTY 3 1293 02217 9448