$$
\begin{gathered}
\text { LIBRARY } \\
\text { Hichige ytate } \\
\text { University }
\end{gathered}
$$

PLACE IN RETURN BOX to remove this checkout from your record.
TO AVOID FINES return on or before date due.
MAY BE RECALLED with earlier due date if requested.

A Complete analysis of the problem involved in the Heating and Ventilating of the R.E.OLDS HALL OF FNGINFFRING
at
the
MIUHIGAN AGRICULTURAL COLLFGE

A Thesis submitted to
The Faculty of
ZIEHIGAN AGRICULTURAL COLLEGE

$$
\begin{gathered}
\text { RY } \\
\text { R.D. } / / / T I E .
\end{gathered}
$$

Candidate for the Degree of

Bachelor of Science

June, 1916.

THESIS
137
62.

「H:

The reairnont for roror vontilation in flilic blilein~3 of todiy hos led to varicus methois of comEined reatiry and Yentilatinis instillaticns.

The cominind syster uad in tho foilowinj rag i 3 kncon as tho Attic atear: "ain - Flonum Warm Air, tho Attic Steam : $:$ ain doliv \quad ring th heat fo direct radiation
 mhe two fundarontil yoints in view ar , iirst; to sujuly tho entirs rudiation loss from th ouilding with roat del iverod oy exhubs stoam unuor fivo rounis yre iurc to each indivialal rocm oy Americen Cast Iron Fadiators, secondy; tc ou:. ly th entir vontilsticn lcss som th cuildin
 to cohested fron the cutside teryoreturs to the temerature realirea for alivery to the varjclis rocms uy mans cf rlenum coils of such ijw?nsicns that the air gaul ontor tho Kain ミir luct ?rcmt tro Firs -t a constant volccity and a constont tomerature.

The rotrci usel in iotormi in the heat los; by raijntion wa to cotain from stanuard rractice constunts fon the rate of transrission of the heat in F.T. Y. Der hour for graarerfoct cfexosed area yer dexree differeace in tomr ratur air. To cotain tho heat lon 0 rugiation from tho rooms rer hour the proc elure was as follows:-

Notormine tho numir of square foet of exposed suast area. The constart for sinzle fane चlass as taken from several authorities namoly Hoffmen, Zaus: and Kolff who azree very closely, is one E.T.U. for hour wor dozree dieforenco in tempruture betwoon the inside and the autsido air ror gonere foct of emesed area. This constant times the total nxesel alunsa area in suare feet jivos tho rumun of P.T.T. radiates frori tho rocm throu-h tho zlass rox hour yor inzr üsforence on tencoretute.

The n-xt sten was to deterniro the total exposed wall area in square fob, deducting the flass area as cund in tho first step. Whe constants for differert thicknerses of well, as recommoncied uy tho authorities befor tated are;tabulatod on a following pace in the comrutations. Th total wall area in square feet tires the constant for the rats of tranmassion trecuzh that thickness cf wall, eives the total heat loss throurh the wills of the rocm in F.T.T.per hour per decroe diffcrence in temr raturo between the inside air and the cutsice air.

The next stof in tho intomination of the hoat loss ffom the rooms is to find the exposed ceiling area in equare feet. This area tires tre constant for the rate of transmission thecurh the coilingowich is .lC?. T. U. fer hour fer souare foct of aposed area for de, roe diefersnco in termerature botreen the inside and the outside air

Eives the heat loss for the rocm through the ceiling
in R.T.U. por hour for doree ifferonco in terooratire. Tho total volure of the rocm was noxt compton. This volume timos the ocnstent for tho rute of loakiano and transmisiion cf heat from the rocn in B. F.T. Fer cubi foot rer hour ror dearee difforence in temporature fives the heat loss from the rocm in F.T. f . Fer hour fer degre difference in tore rature.

The total wall area es comuto has to have arded t
to it a certain rercent cf tho exposo aroa, which dopends on the di:rection of exposure. The percontaces allowed "or exposure for th? jifererent rocris are eiven on a Sollcwing faze cf constants for the building.

The final step is the cormitations for the total heat loss in R.T.T. por hour from tho rooms is tomiltiply the sum cf the heat lcsses thrcuith the windows, walls, coiling and ky convoction from tho rooms by tho dearoe difference in temprature votween tho inside and tho outside air, which for he asse under consideration was 70°. Thn fcroing frinciples follow very closely the formulae recomonict by Trofessor Camentor for cetainir: tho heat losses,from a room, die tc radiation,

To determin the net radiation surface requirod to surly tho radiation losees from tho wiferent rocms tho fomulac recomnended $\begin{gathered}\text { frofes sor He?fman in his }\end{gathered}$ Heatinr and Fentilating Hundoook from data used in standend practice is

Rs—— H/I. 7 (t_{E-})
Fis--- Tctal radjation surface, in square feet, required for the room.
1.7--m is the number of $\mathrm{B} . \mathrm{T} . \mathrm{V}$. aiven off by one suare foot of raciating urface \mathfrak{c} er hour.

H--- Total Heat lose from the room. in A. T. U.
ror hour.
t----tempratur of tho room.
ts---temperature of the stean.
After d申termining the total net runiation surface requirod to surly tho radiation loss facm tae rooms, it was nocessary to α termia the size of radiator to install in the rocms. The computed net area in square feet cf tho radiation sureace, dividod $\begin{gathered}\text { ey the ralation sur- }\end{gathered}$ face rer stack as Jiven kiv therican Fadiator catalogue determines the number of stacks required for the room. These stacks were then wilt uy into the proper size of radiators for the rocm under considoration.

In the determination of the size of radiator for the rocm, the height depended on the distance from the flocr to the window cill an was first considered in finding the number of stacks for the room under con-siceretion. Ir order that the rediator would not be exce dingly long the width of the stacks and the number of columns per stack were so proportioned as to be best suited for the room in which they were to be placed.

For the ventilation of public buildings each individual requires a definite amount of Ventilating air per hour. Expressed in cubif feet per hour this value is a constant fortthe case under consideration being about 1800 cubic feet, which is considered cy authorities as eufficient fo r good ventilation where the occupants 6 of the room are not doing physical exercize.After determining the amount of air necessary for the building the total heat loss by Vertilation is found by arplying the formulae:-
H^{\prime} equars** $Q\left(t-t^{\prime}\right) / 55$
H' *****Heat loss by Ventilation from the building Q *****Total number of cubic feet of ventilating air required per hour for the building.
t ***** Temperature of the air entering the room from the register.
t^{\prime} ***** Temperature of the air in the room.
55 ***** the number of degrees through which one
curic foot of air is heated by one B.T.U.
This formulae reduces to :-
H^{\prime} - --- -. 3122 x Q
for $t--87.20$
$t^{\prime}-770.0^{0}$
The Plenum Fans must deliver the total ventilating air required for the building. Knowing the number of cubic fett of air to be delivered to the rooms per hour the number of cubic feet delivered per minute is found. From the American Blower Companies Fah catalogue on Bteel plate type of Fans the capacity of their different sizes is given in Cubic feet of air per minute. The back pressure or static preseure agairst which the fan delivers this air is one inch, and size Number 180 is necessary to completely ventilate the building properly.

The Plenum Coils through which the fan takes its Ventilating, air to deliver it to the rooms has to be of such a depth with the air passing over the coils ataa specified velocity as to raise the air from outside temperature to the temperature of delivery to the rooms. The limiting velocity of the adr, acting against a stati pressure in theemain air duct, ard possing over the coils such that upon leaving the fan it will have attained the proper amount of heat and be most edonomical in the numb ber of stacks in the heater are given in the Buffalo Forge Companies Fan an Haater Catalogue. From this data the depth of heater is obtained which will raise the ventilating air from autside to delivery temperature each section of the heater being four pipes deep.

The total number of square feet of surface required forthe heater to raise the volume of air to be delivered by the fan to the building to that degree of temperature necessary to supply the ventilation loss.
The formulae used in the calculation of the heating surface is:-

Rs equals $H^{\prime} / 7.8\left(t s-\frac{t \text { plus } t a}{\zeta}\right)$
Rs***** Heat surface.
H'***** Heat Loss by ventilation from the building.
7.8 ***rate of transmission of heat to the air passing through the coils.
t****** temperature of air entering the room at the register.
ts **** temperature of the steam is the heater.
t's *** temperature of the room.
This total radiating surface required in the heater divided by the number of coils de p the heater must be to obtein the croper temperature of delivery, gives the number of scuare feet of surface per stack in the heater. The Buffalo Forge cetalogue value for the depth of heater reouired to obtain the proper temperature for the ventilating air, 87.20 in thes case checks the velue for the depth of heater $2 . \sin$ tan from the J.D.Hoffman Handbook on Heatigegand Fentilating and the requirement is a depth of tyenty pipes or fare sections of four pipes to a section The size of heater is then obtained by refering to the table on the sizes of Ruffalo Standawd Heaters.

For the quantity of air to be delivered by the fan per minute the free air space is determined by dividing the number of cubic feet supplied by the velocity of the air over the coils in feet per mingte. This value should check the value found for the free air space in the heater determined upon and does within seventy one hundredths of a square foot. which is as close a value as can be obtained.

The size of air ducts required for the delivery of the ventilating air to tie various rooms is found by :-

A------144Q/60V
A ***** Area of the duct.
Q ***** Quantity of air to be supplied by the duct, in cubic feet per hour.

V ***** Velocity of the air in the duct at the point c.t which the section is to be determined, Telocity in feet per minute.

144/60 a factor whiche reduces the area of the duct to square-fnches of cross-sectional area.

The above formulae applies to any portion of the ventilating air duct anc gives a result in square inches fron which the dimensions of the duct are determined.

All radiators are to be of cast Iron and of the American Fadiator Companies make.

Radiator connections and piping including the steam main and return equipment are to be of the Crane Companies make and to be of standard Cast Iron material threaded and reamed and ready for assembly.

Heater connections and pipin to be of the Ruffalo Forge make and of the kind specified in the Heater equipment aecesary for the heater determined upon.

Window Scheduel and sizes for:-
Basement:-

West side:-(54-42)	$2(26-34)$	***-------28.03	squa
East side:-(54-42)	$2(26-34)$		square
North side-(58-42)	$2(28-34)$		Square
South side-(48-42)	$2(28-34)$		squa

First floor:-

West side:-(54-50)	2(26-42)	33.90	-
East side:- (54-50)	$2(26-42)$		square
North side- $58-50$)	$2(28-42)$		square
South side-(58-50)	$2(28-42)$		quare

Second floor:-

Third floor:-

West side:-(54-46)	$2(26-36)$	30.25	
East side:- $54-46$)	2 (26-36)	30.25	square
North side- $58-46$	2 (28-36)		
South side-(58-46)	$2(28-36)$		

Foueth floor:-

West side:-(2) $26-34$)	-12.30	square f
Fa.et side:-2 $26-34$)	I2.30	square feet.
North side-2 (28-34	I3.22	square feet.
South side-2 (28-34)		square

South side center windows above Mechanical Laboratory.
Second floor:-(40-40) I(40-48)--24.44 square feet. Third floor :-(40-36) I(40-46) -....--22.77 square feet.
Fourth floor:-(2(20-34) --.-.-.-.-. 9.44 square feet.
West windows in East wing above Mechanical Laboratory.
Second Floor:-(58-48) 2(28-40) --.-.--34.90 square feet. Third floor : (58-46) $2(28-36)$-....-. 32.53 square feet.
Fourth floor:-(2(28-34) …-..............I3.22 square feet.
Fest windows West wing above Mechanicl Labcratory.
Second floor:-(none)
Third floor:-(58-40) 2(28-36) -....--32.53 square feet. Fourth floor:-(2(28-34) _-....--I3.22 square feet.

Heating and Vertilating Calculations for the Basement of the New R.E.Olds Mechanical Ruilding.

Basement.
Window scheduel:-

West side	$1(54 \times 42)$	$2(26 \times 34)$	28.03	square feet
East side	$1(54 \times 42)$	$2(26 \times 344$	28.03	square feet
North side	$1(58 \times 42)$	$2(28 \times 34)$	30.13	square feet
South side	$1(48 \times 42)$	$2(28 \times 34)$	27.22	square feet

Vall and window constants:-
Heat transmission
Heat transmiseion

.222	for 20 n wall
1.000 for glass	
5	percent
15	percent
25	percent
25	percent

Eeight of ceiling
Height of window cill from floor

13 feet 6 inches
2 feet 10 inches

Radiator heights except for corridprs 32inch.
American Radiators used of Cast Iron, two colmm, eight inches wide three inches thick with a total radiating surfaceof 3.33 square feet per stack.

Formulae:-

Total Heat lose by radiation:- H: (Gplus ktimes W plus.02nC) tx H …-Total Heat loss in B.T.U.per hour.
G \ldots. Total Glass area in room.
k---constant on heat transmission through the walls.
F .-. Total wall area exposed minus the glass area.
n-...number of air changes per hour in the room for ventilation C mandibic contents of the room.
tx --difference in temperature between the inside air and the outside air.

Quantity of air required per hour for ventilation Q:1800 n 1800 cubic feet required per person per hour. n - n the number of person requiring air.

Total heat loss by ventilation $H^{\prime}: Q \frac{\left(t-t^{\prime}\right)}{55}$
Q---ventilating air required.

$55-$ a constant denoting that one cubic foot can be heated through 55 degrees by one B.T.U. (of air)
With t at B74 and ty at 70 this formulae develops into H^{\prime} equals D. 2 Laztimes Q the air required
for ventilating purposes.

equals. 004 H
I. 7 --represent the rate at which the radiator surface gives off heat in B.T.U. per square foot per degred difference between the temperature of the air surrounding the radiator and the a average temperature of the heating medium which is taken at 220° for exhaust steam at five pounds gage at which this system receives it. The temperature of the surrounding air being room temperature 70 degrees.

In calculating the radiation surface the actual amount as found by the preceeding formulae is increased by twenty five percent to take care of ventilating losses.

This formulae reduces to . 005 H .
With a given quantity of air passing through the main air duct, the calculations for which are shown under the Plenum and Ventilating side of the problem for the size of main duct required and the branch ducts, the velocities of air entering the different rooms for ventilating purposes was taken depending on the use of the room and the number of occupants between the limits of One hundred and Five hundred feet per minute holding close to standard fractice.

Assuming an air velocity for the register with a known amount of air to be furnished to the room per hour the formulae for the area of the gedss register is :A equals Q^{\prime} the ventilating air times 144/60V The fraction 144/60 converts the Quantity of air per hour to the quantity per-minute for the use of V in feet per minute, while the term 604 makes the final answer in square inches of groes area of register. This formulae takes the form of

A equals 2.4 times Q^{\prime} / V which is applicable for any part of the ventilating ducts in-determining its sectional area.

From the gross area of the register the size of the opening is determined, the width of the opening being recorded first and the depth second in my tabulations.

The temperature of the steam under five pounds pressure as supplied to the heating system hasa temperature of 220°

The temperature of the ventilating air leaving the registersis 87. ${ }^{2}$.

The tenperature of the rooms is to be kept at 70 degrees with an outside temperature of zero degrees thus allowing for the worst possible condition.

The preceeding formulae apply to each room individually in determining the several items enumerated. These apply through out the building and are used for each room separately in the ealculations.

Radiation losses plus twenty five percent of the se losses are supplied by direct radiation, while the Plenum Fan furnishes all Ventilation loss in the building.

Constants for Heat Transmission through the Walls, Windows and Doors, in B.T.U. per square foot per hour per degree differewe of Temperature.

Glass surface:- -m. 1.00
Ceilings, Joist with single flocr and roofing--........IO For :-

Basement with 20 inch wall -....-.-----.................... 222
First flocr with20 and I6 inch walls2こ2 and.272

Third floor with I6 and I4 inch walls -......-....26 and. 27

Fourth flocr with ceiling as above stated - - -....IO
Percentages allowed for exposures :-

South	exposure	OE
Fast	exposure	- 15
West	exposure	. 25
North	exposures	. 25

In the use of these constents the percentages of exposure were used in deterdiningthat amount of area of exposed surface sufficient to transmit from each room as calculated a greater number of B.T.U. than would adtually be radiated by the wall exposure which the room actually has. In this way sufficient heat isfound by the formulae for total radiation loss to overcome twenty five percent more radiation area, in the case off north or west exposure, than it would seem necessary but due to the high velocity of the wind over exposed surfaces, it literally wipes off that excess twenty five percent of heat which these constants supply in the total heat loss.

Ry the constants of heat transmission the actual rate of passage of the heat Brom the room to the exposed surface in B.T.U. per square foot per hour per degree of difference of Temperature is allowed for in the total heat lose formulae.

The formulae used in determhning the total heat loss from each room by radiation is:-in B.T.U. per hour.

Heat $108 s$ equals-fGlass area (plus) the constant of Heat transmiseion for that thichness of wall exposed, times the wall area exposedwith the percentageof expossure added (plus) . 02 times the number of changes of air required in the room times the total volume of the room in cubic feet) all multiplied by thedifference in temperature between the inside and outside air which was taken as seventy degrees for this locallity.

All area in this formulae is in square feet and all volums in cubic feet. For fourth floor losses there has to be added to this formulac, before multiplying by the temperature, the constant for Heat transmission through the ceding times the number of square feet of exposed roof area, also I.2times the total square areaof exposed roofing has to be usedinstead of the actual roof area in order to take eare of the exposure.losses

Calculations for the Heat Losses in R.T.U. per hour per degree difference in Temperature, Square inches of net register area for ventilating the rooms, Square feet : of net radiator supface required to supply the radiation loss, The amount of Ventilating air required for each room in Cubic feet per hour.

BASEMENT.

Constants for the basement:-
Height of windows from the floor-... 2'ion $^{\prime \prime}$
Helght of Radiator used

Number of column to each radiator section--2
ROOM (I).

Findows -Two north @ 30;13 square feet--60.26 TOTAL
Walls (17×13.5) plus. $25(17 \times 13.5$) minus 60.26--227. 20 TOTAL
Volume ($22.5 \times 17 \times 13.5$) plus $(6.5 \times 3,5 \times 13.5$) -----4721.62 TOTAL
Heat Loss--(60.26 plus. 222 (227.2) plus.02x1×4722)70Radiation Loss-14,357 B.T.U. per hour.
Number of people to be accomodated_- 5
Number of cubic feet per person
1800
Cubic feet of alr required per hour 5×1800 - $-\ldots-9000$
Heat Loss by ventilation 9000x.3122 --.-- 2810 B.T.U.
Radiator surface required for the room 14357x.005------- $731 / 3$ square feet
Number of sections to a raddator --..--11
Number of radiators -..-.
ROOM (2)
DIMENSIONS of ROON--(1116"x22'6"x1316")
Dimensions of stack-(2'x7'sl3'6")
Findows- One north ©30.13 square feet 30.13 TOTAL

Volume--11.5x22.5x13.5)-(2x7x13.5) -..-. 3304.00 TOTAL
Heat Loss--(30.13 plus.222 (163.9) plus.02xlx3304)70
Radiation Loss--9280 B.T.U. per hour.
Number of people to be accomodated ---.------ 4
Number of Cubic feet per person ----.- 1800
Number of Cubic feet of air per hour $4 \times 1800-1 .-27200$
Heat Loss by Ventilation 7200x.3122-- 2252 B.T.U.
Radiator surface required for the room
9280x.C05-------46 2/3square feet
Number of radiators --..-.-. 1
Number of sections to a radiator -- 14

The constant used in determining the Ventilation loss.3122 is the temperature of the air entering the room from the fan(87.2) minus the room temperature (70) divided by the number of degress through whish one cubic foot of air can be raised by one B.T.U. This constant times the number of cubic feet of air supplied to the room for ventilating purposes gives the number of B.T.U. lost by the ventilating air

ROOM（3）
DIMENSIONS of $\mathrm{room}\left(22^{\prime} 6^{\prime \prime} \times 29^{\prime} \times 13^{\prime} 6^{\prime \prime}\right)$
Dimensions of stack（28＇xa＇x13＇6＂）
Windows－ 5 wo North 93013
60.26 square feet

Walls（22．5x13．5）plus（22．5x13．5）．25－60．26－319．43 n
Volume（ $22.5 \times 29 \times 13.5$ ）－Cubic feet
Heat Loss $----(60.26$ plus．222（319．4）plus．02xlx8053）70
Radiation loss－20454 B．T．U．per r
Number of people to be accomodated 15
Number of Cubic feet per person 1800
Cubic feet of air required per thour－－－－－27000
Heat $108 s$ by Ventilation $27000 x \cdot 3 \$ 22-8450$
Radiator surface required for the room－

$$
20454 \times .005
$$

Number of Sections to a Radiator－－－ 15 －－－16
Number of radiators installed 2

ROOM（4）
DIMENSIONS of room（22＇6＂x40＇x13＇6＂）

Two North ©30．13－＿－－m 60.36 Total－172． 38
Walls（ $(22.5$ ius 40）13．5 plus．4（22．5plus40）－172．38－705．00
Volume22． $5 \times 40 \times 13.5$ ）－－－－－－ 12150
Heat Loss－－－（172．38 plus．2ん2（705）plus．02xlx12150）70
Heat Loss by radiation－w 40033 B．T．U．
Number of people to be accomodated－－－ 10
Number of cubic feet of air per person－－ 1800
Number of Cubic feet to be supplied par hr－ 18000
Heat Loss by Ventilation－－18000x．312？－ 5630
Radiator Surface required for the room－

$$
40033 x .005-2031 / 3
$$

Number of Radiators installed
Number of stacks per radiator
$3(30)^{-} \quad 1(21)$
ROOM（5）
DIMENSIONS of Room（29x26＇6＂x13＇6＂）
Dimensions of stack（16x1＇6＂x13＇6＂）
Windows－－－Three Southe 27．22－－
Three East ©28．03－－
81.66 square feet

Total
84.09 ＂

Walls（（29plus 26．5） 13.5 plus．（29plus26．5）13．5－165275－598．5
Volume（29x26．5x13．5）－（16x1．5x13．5）－－
100570
Heat Loss（165．75 plus．222（598．5）plus．02xlx10057）70－m
Heat Loss by radiation－－35112 B．T．U．per hr．
Number of people to be accomodated－－ 10
Number of Cubic feet to be supplied per persor 31800
Number of Cubic feet of air per Hour－－－－10x180U－－18し心
Heat Loss by Ventilation 18000x．3122－－ 5630
Radiation surface required per room－a 35112x．005——— $1762 / 3$
Number of Radiators installed
Number of Sections per Radiator l（26）I（27）

Room (6)
DIMENSIONS of Room(10x29x13.5)
Windows - One South e27.22-mon 27.22 square fat
Walls (10x13.5)plus.05(10×13.5)-27.22-114.83
Volume $---(10 \times 29 x 13.5)$
Heat Loss- 27.22 plus.222(114.53) plus.02xix3915)70
Heat Loss by Radiation
9170 B.T.U.
Number of peoplle to be accomodated 3
Number of cubic feet to be supplied per person 1800 per hous
Number of Cubic feet to nbe supplied per hour 5400
Heat Loss by Vemtilation (5400x.3122)-- 1690
Radiator surface required for the room-9170x.005-

46 2/3
Number of padiators installed 1
Number of Stacks per Radiator 14
ROOM (B)
Dimensions of Room($36^{\prime} 6^{\prime \prime} \times 38^{\prime} 6^{\prime \prime} \times 13^{\prime} 6^{\prime \prime}$)
Dimensions of stack(15'x1'6"xi3' $6^{\prime \prime}$)
Windows- Three Southoll. B2-- 82.66 square feet
Walls-a- (26.5 xl3.5) plus.05(26.5x13.5)-81.66-294 n n
Volume of the Room($26.5 \times 38.5 \times 13.5$)-15x1.5xi3,5)--13472 Cu. Ft
Heat Loss --(81.66plus.222(294) plus.02x1x13472)70
Heat Loss by Radiation--29848
Number of people accomodated
10
Number of cubic feet of air per person 1800
Number of Cubic feet of air per hour (10x1800)--18000
Heat Loss by Ventilation--(18000x.3122)-- 5630
Radiator surface required for the room:-
29848x.005 --150
Number of Radiarors installed
Number of stacks per Radiator I(23) I(22)
ROOM (8)
DIMFNSIONS of Room(This Room is the Mechanical Laboratory and has sufficient Heat developed in it to mupply its heat loss so does not have to be considered in the calculations.

ROOM (9)
DIMENSIONS of Room(17'x10'6"x13'68)
Dimensions of the Stack(10'6"x1'6"x13'6")
Windows ---none
Walls exposed none
Volume (17x10.5x13.5)-(10.5x1.5x 13.5)
Heat Loss -- (VOLUME)x.02xlx70-m-m 3076 B.T.U.
Number of people accomodated
Number of cubic feet of air per person
3
Number of Cubic feet of ait per hour 5400
Heat Loss by Ventilation (5400x 3122) 1690
Radiator surface required for the room 3076x. 005
Number of Radiators installed
Number of stacks per Radiator

ROOM(10)
DIMENSIONS of Room(28x27x1316")
Dimensions of stack None

Volune ($28 \times 27 \times 13.6$) $10206 \mathrm{Cu} . \mathrm{Ft}$
Heat Loss by Radiation:-
(81.66 plus. $2 こ 2$ (315.2) plus. $02 \times 1 \times 10206$) 70
Heat Loss----24976 B.T.U. per Hour.
Number of people to be accomodated 20
Number of Cubic feet of alr per person 1800
Number of Cubic feet of air per hour (20c1800) ---36000
Heat Loss by Ventilation(3600․ 3122) --.- 11270
Radiator surface required for the room:24976x.005 ------126 2/3
Number of Radiators installed - 2 Number of Stacks per Radiator

2 (19)
ROOM(11)
DIMENSIONS of Roam (3616"x38'6"x1316")
Dimensions of Stack(21'6"xl'6"x1316")
Windows- Four West e $28.03 \quad 112.12$
Four South e $27.22 \quad 108.88 \quad 221$ Total.
Walls (36.5plus38.5) 13.5 plus.25(75x13.5)-221---- 1044.6
Volume ($36.5 \times 38.5 \times 13.5$) - (21.5x1.5x13.5)--- 18535.4
Heat Loss by padiation
(221 plus.222(1044.6) plus.02x1x18535.4)70
Heat Loss ------57653 B.T.U.per hoyre
Number of people to be accomodated
Number of Cubic feet of air per person 1800
Number of Cubic feet of ait per hour 54000
Heat foss by Ventilation (54000x.3122) 16900
Radiatior surface required for the Room 57653x.005--
Number of radiators to be installed Number of stacks per Radiator

Three West 8 28.03-_- 84.09
276 2/3
4 3 (20)

Walls-- (34 plus 39) 13.5 plue25\% (63×13.5)-174.48--888.60 Volume- ($34 \times 29 \times 13.5$) - ($23 \times 1.5 \times 13.5$) 12793.50
Heat Loss by Radiation:-
(174.48 plus.222 (888.6) plus . $02 \times 1 \times 12793.5$) 70
Heat foss ------ 43,960 B. T.U. per howr
Number of people to be accomodated 30
Number of cubic feet of alr per person 1800
Number of cubic feet of air per hour 54000
Heat Loss by Ventilation 54000x. 312216900
Radiator surface required for the room

$$
43,960 \times 1005-
$$

230
Number of Radiators installed
Number of stacks per radiator

ROOM (13)
DIMENSIONS OF Room ($12 \times 29 \times 13^{\prime \prime} 6^{\prime \prime}$) plus $5^{\prime \prime} 6^{\prime \prime} \times 5^{\prime} \times 13^{\prime \prime} 6^{\prime \prime}$)
Dimensions of stack (6x8x13'6") Outer dimensions of a closet
Windews---One North ©30.13--
Walls(12x13.5) plus. 25 (12×13.5) minus30.13--172.3 $\mathrm{sq}_{\mathrm{n}} . \mathrm{Ft}$
Volume - (12x29x13.5) plus $6 \times 8 \times 13.5$) $-5.5 \times 5 \times 13.5-4422 \mathrm{cu} . F \mathrm{Ft}$.
Heat Loss by Radiation:-
(30.13 plus.22 $2(172.3$) plus. $02 \times 1 \times 4422$) 70

Heat Loss---10976 B.T.U. per hour
Number of people to be accomodated
Number of Cubic feet of air per person 1800 Number of Cubis feet of air per hour 9000 Heat Loss bt Ventilation (9000x.3122)-- 2815 Radiator Surface required for the room 10976x. 005
Number of Radiators installed Number of Stacks per radiator

ROOM (14)
DIMENSIONS OFRoom(2316"x20'x1316")
Dimensions of stack(11x2x13'6")
Windors----(Two North ©30.13 60.26 square feet
Wails $-(20 \times 13.5)$ plus. $25(20 \times 13.5)-60.26-277.200^{\prime \prime}$ Volume --22.5x20x13.5)-11x2.13.5)--...- 5778.00
Heat Loss by Radiation:-
(60,26plus . $222(277.8)$ plue . $02 \times 1 \times 5778$)70
Heat Loss-m--16618 B. T.U. per hour
Number of people accomodated
10
Number of Cubid feet of air per person 1800
Number of cubic feet of air per hour 18000
Heat Loss by Ventilatmon (18000x.3122) 5630
Radiator surface required for the room 16618x.005) $\quad 831 / 3$
Number of Radiators installed
Number of Stacks per radiator
ROOM (15)
DIMENSIONS OF Room(8'6"x22'6"x13'6")
Dimensions of stack $\$ 4 \times 3 \times 1316^{\prime \prime}$)
Windows -One North $030.13 \quad 30.13 \mathrm{Sq} . \mathrm{Ft}$
Walle $-(8.5 \times 13.5)$ plus . $35(8.5 \times 13.5)-30.13-113.3 \mathrm{sq.Ft}$.

Heat lose by inadiaition r.
(30.13 plus.222(113.3) plus $.02 \times 1 \times 8473.9$) 70 Heat Loss---7 7334 B.T.U. per hour
Number of people to be accomodated Number of Cubic feet of air per person 1800 Number of Cublc feet of air per hour 10800
Heat Loss by Ventilation (10800x.3122)-- 3380
Radiation Surface required for the roon 7334x.005---
$362 / 3$
Number of Radiators installed Number of stacks per Radiator

FIRST FLOOR.
Room air to be heated to 700 by direct radiation, the Ventilating air to be supplied to the rooms as a separate unite at a temperature of 87.2°.

The Constants for the first floor are :-
For Heat Transmisston through 20" wall:- . 222
For Heat Transmiseionnthrough single Glass--1.00
Window Scheduel :-

Room heat Losses figured individually as numbered on the Floor design.

Height of windowe from the floor--- $3^{\prime \prime} 6^{\prime \prime}$
Height of Radiators installed 26"
Number of column fer stack 3
Square feet of heating surface per stack-- 3.75 sq.ft
Cast Iron Radiators (pRERLESS) installed.
ROOM (101)
DIMENSIONS of Room (9x20'6nx13! $6^{\prime \prime}$) mitur ($2 \times 4.5 \times 13^{16 n}$) Dimension of stack (2x4x13'6")
Windows -One North ©36.5 $36.5 \mathrm{sq} . \mathrm{ft}$.

Heat まoss br radiation:-
(36.5plus.222 (115.Jplus.02 (1x2613))70-

Heat Loss----8008 B.T.U. per hoxr.
Number of people accomodated
Number of Cubic feet of alr per person 1800
Number of Cubic feet of air per hour 3600
Heat Loss by Ventilation 3600x. 31221125
Radiator surface required for the room:8008x. 005 --
Number of Radiators ingalled
Number of Stacke per Radiator
ROOM (102)
Dimensions of Room(20x20168xxi3' 6^{n}) plus ($4 x^{7} 7^{\prime} 6^{\prime \prime} x 13^{\prime} 6^{\prime \prime}$)
Dimensions of Stacks(2he4'6"x13'6")

Walls $-(20 \times 13.5)$ plue. $25(20 \times 13.5)-75.0$ - $210.5^{n}{ }^{n}$
Volume (20c20.5×13.5) plue ($4 \times 7^{1} 6^{\prime \prime} \times 13.5$) $-(2 \times 14.5 \times 13.5)-6051.5$ cuft
Heat Loss by Radiation:-
(73 plus. $222(210.5$) plus . $02(1 \times 6051.5)$) 70
Heat Loss …...-16282 B. F. U. per Hour.
Number of people to be accomodated
Number of cubic feet of air to be supplied per person 1800
Number of Cubic feet of air to be supplied per hour 5400
For Toilet
Number of persons to-be-accomodated with air 3
Number of cubic feet per hour
5400
Radiation Surface required for the Two roomsl6849x.005-86 1/4
Number of Radiators installed
Number of stacks rer radiator
1(11) 1(12)
Heat Loss by Ventilation--.--(5400x.3122)--- 1690 B.T.U.

RCOM (103)
DIMENSIONS OF Room(12x15'3"x13'6n)plus (5'9"x3'6"x13'6n)
Dimensions of the Stacks None.

Walls (12x13.5)plus . $25\left(12 \times 13.5\right.$)-36.5---- $166.0{ }^{\prime \prime}$
Volume ($12 \times 15.25 \times 13.5$) plus 5.75x3.5x13.5) plus Toilet ($4.5 \times 6.5 \times 13.5$)
3136 Cubic feet.
Heat Loss Ry Radiation:-
(36.5 plus.222(166) plue.02x1x3136)70

Heat LOse-
Number of people to be accomodated
Number of cubic feet of air per person 1800
Number of cubic feet per hour 3600
Heat Loss by Ventilation (3600x.3122) 1125
Radiator surface required for the rooms 9536x. 005
Number of Radiators installed
Number of stacks per radiator

13
ROOM (104)

DIMENSIONS OF Room:-(10x21×1316")
Dimensions of stack time ($9 \times 2.5 \times 13.5$)

Volume - ($21 \times 10 \times 13.5$) $-(9 \times 2.5 x i 3.5) \quad 2519.0 \mathrm{Cu} . \mathrm{Ft}$.
Heat foes by Radiations
(36.5plus.222(105.3) plus.02х1x2519)70

Number of people to be accomodated 3
Number of cubic Feet of air per person 1800
Number of cubic feet of air per hour 5400
Heat loss by Ventilation (5400x.3122) 1690
Radiator surface required for the room
7714x.005--
Number of radiators installed
Number of stacks per radiator
ROOM (105)
DIMENSIONS OF Room (40x22'6"x13'6")
Windows --Four East © 33.9——— 135.6
Two North 36.5 73.0
Walls40plus 22.5)13.5plus .4(859.4)-208.6---- 1034.6 squareft.
Volume ($22.5 \times 40 \times 13.5$) 12377 ctabicm
Heat Loss by radiation--
(208.6 plus . 222 (1034.6) plus. $02 \times 1 \times 12377$) 70

Heat Loss ---...-48013B.T.U. per hour.
Number of people accomodated-...-
15
Number of cubic feet of air per person
1800
Number of cubic feet of air per hour 27000
Radiator surface required for the room 48013x. 005
Heat loss by Ventilation (27000c.3122) -
Number of radiators installed
Number of stacks per radiator
4
4(16)

DIMENSICNOf Room (22'6"x9'6"x13'6")
Windows lEast 33.9 33.9Sq ft
Walls (0.5×13.5) plus $(9.5 \times 13.5) \times 15 \%-33.9 \ldots-\ldots-\ldots 113.6 \mathrm{sq} \mathrm{ft}$
Volume - (22.5x9.5x13.5) 2942.0 Cu ft
Heat Loss by radiation
(33.9plus. $222(113.6)$ plus. $02 \times 1 \times 2942$) . 70

Heat fose -------8267 B.T.TI per hour
Number of people to be accomodated
Number of cubic ftet of air per person 1800
Number of Cubic feet of air per hour 5400
Heat Loss by Ventilation (5400x.3122)-... 1690
Radiator surface required for the room
($8267 \times .005$) --…-.
41 1/4
Number of radiators installed
Number of stacks per radiator
11
ROOM (207)
DIMENSIONS of the Room ($29^{\prime} \times 27^{\prime} 3^{\prime \prime} \times 13^{\prime} 6^{\prime \prime}$)
Windows-Three South e36.5—n 109.5 sq.ft
Three East 033.9 101.7 sq.ft.
Total-211. 2 Sqft
Walls (29plus 27.25)13.5 plus .20(759)-211.2--690.4 Sq. Ft
Volume - (29x27.25x13.5) 10665 Cubic Ft
Heat Loss by radiation---
(211.2plus.222(690.4) plus.02xlx10665)70

Heat Loss $-\infty--40446$ B.T. \mathbb{C}. per hour
Number of people to be accomodated- 15
Number of cubic feet of air per person 1800
Number of cubic fet of air per hour 27000
Heat Loss by Ventilation (27000x.3122l--- 8450 B.T.U.
Radiator surface required for the roan
(40446x.005)-.......
Number of Radiators installed
Number of stacks per radiator
$2021 / 2$
3 (18)
ROOM (108)
DIMFNSIONS of Room (11x22'6"x13'6")
Findows One S Suth 36.5 - 36.5 square feet

Volume (11x22'6nx 13.\$) - 2005 cubsc
Heat Loss by Radiation
(36.5plus.226(119.4) plus .02x1x2005)70

Heat Loss -----7217 B.T.U. per hour.
Number of people to be accomodated 2
Number of Cubic feet of air per person. 1800
Number of cubic feet of air per hour 3600
Heat Loss by Ventilation -----($3600 x$.3122) -1125
Radiator surface required for the room

$$
(7217 x .005)---p
$$

37 1/2
Number of radiators installed
Number of stacks per radiator 10

DIMENSIONS of Room ($38^{\prime} 6^{\prime \prime} x 26^{\prime} 6^{n x} \times 3^{\prime} 6^{n}$)
Dimensions of Stack ($15^{\prime} \times 1.5^{\prime} \times 13^{\prime} 68$)
Windows- Three South e 36.8 ********** $109.5 \mathrm{sq} . \mathrm{ft}$
Walls - (26.5x13.5) plus 05(26.5x13.5)-109.5*266.0 n n
Volume --(38.5x26.5x13.5)-(15c1.5x13.5) ******13390 n n
Heat Loss by radiation
(109.5 plus .222(266) plus $.02 \times 1 \times 13390$) 70
Heat Loss ****** 30562 B.T.U. loss per hour
Number of people to be accomodated 25
Number of cuble feet of air per hour 45000
Number of cubic feet per person 1800
Heat Loss by ventilation (45000x .3122) 14050
Radiation surface required for the room (30562x.005) $\quad 1533 / 4$ square feet
Number of radiators installed - 3
Number of stacks per radiator
ROOM (110)
DIMENSIONS of Room (44x27x13'6n)
Ceiling exposure (44x 27×13.5) ********** 1425 Sq. ft . Volume of Room ($44 \times 27 \times 13.5$) **********16050 Cubic Ft. Heat Loss by Radiation (1425 XI plusl6050x2x.02) $85-50992$
Number of people to be accomodated -----..-- 20
Number of Cubic feet of alr per person 1800
Number of cubic feet of air per hour 36000
Heat Loss by Ventilation (36000x.3122) --.-- 11250
Radiation sosface required for the room (50992x .005) ---- 258 3/4
Number of Radiators to be installed Number of stacks per radiator

4
3(15) 1 (24)

ROOM (111)
DIMENSIONS of Roam ($48 \times 38^{1} 6^{n \prime} \times 13.5$) Dimensions of Stack (20×1.5×13.5)
Windows Two South (c 36.5 ****** $73 \mathrm{sq} . \mathrm{ft}^{\text {t. }}$
Walls (48 sin .5) plus .05 (13.5×48) -73 **** 607.4 sq. ft
Volume ($48 \times 38.5 \times 13.5$)-(20x1.5x13.5) ****24249 cu ft
Heat Loss by Hadiation--
(73 plus.222 (607.4) plus . $02 \times 1 \mathrm{x} 24249$) 70
Heat Loss --48496 B.T:U.per hour
Number of people accomodated 150
Number of Cubic feet of air per person 1800
Number of cubic feet of air per hour $\quad 370,000$
Heat Loss by Ventilation (270,000x.3122) 84500
Radiation surface required for the Room
(48496x. 005) --243 $3 / 4$ square feet
Number of Radiators installed
Number of stacks per Radiator
3
$2(22) 1$ (21)

ROOM (112)
DIVENSIONS of Zoom ($36^{\prime} 6^{\prime \prime} \times 17^{\prime} \times 13^{\prime \prime \prime}$)
Dimensions of Stack(716"xl'6"x13'6") One south ©36.5 **36.5
Findows **Frar woatie 33.9 square feet ****** 135.6
Walls (38 plus 17) x13.5 plus .25(842.5)-172.1*** 881.0
Volume ($36.5 \times 17 \times 13.5$) - (7.5x1.5x13.5) -..........- 8528.7 cubicft
Heat Loss by radiation
(173.1plus .222(881) plus . $02 \times 1 \times 8528.7$) 70

Heat Loss ****** 37680 B.T.U. per hour
Number of people to be accomodated
Number of cubic feet per person 5
1800
Number of cubic feet per hour 9000
Heat Loss by Ventilation (9000x.3122) 2810
Radiation surface required for the rocm
(37680x.005) ****** 187.5 squart feet
Number of radiators installed
Number of stacks per radiator
ROOM (113)
DIMENSIONS of Room ($\left.34 \times 27^{16 \prime x}\right)^{\prime \prime} 6^{\prime \prime}$)
Dimensions of Stack($5^{\prime} 6^{\prime \prime} x$ 2'xil $^{\prime} 6^{n}$) 2
Windows** Three North © $36.5 \quad 109.5$ square ft
Three West (e) 33.9
Walls(34 plus 29.5)13.5 plus.4(857.2)-211.2** 989.0 " "
Volume (34x 37.5×13.5) $-2(5.5 \times 3 \times 13.5) \quad 12652$ Cubic ft.
Heat Loss by padiation
(211.2 plus .222(989) plus . $02 \times 1 \times 12652$) 70
Heat Loss ***** Per hour 47866 B.T.U.
Number of people to be accomodatdd 30
Number of Cubic feet of air per person 1800
Number of cubic feet of air per hour 54000
Heat Loss by Ventilation (54000x.3122) 16900
Radiation surdece required for the room (47866x.005)

240
Number of Radiators installed
Number of stacks per Radiator
3
2(21)1(22)
ROOM (114)
DIMENSIONS OF ROOM (12x21'4"x13'6")
Dimensions of closets ($8 \times 6 \times 13^{\prime} 6^{\prime \prime}$) plus ($5^{\prime} 6^{\prime \prime} \times 5^{\prime} \times 13^{\prime} 6^{n}$)
Windows *****One North © 36.5 36.5sqdare ft
walls (12x13.5) plus.25(162)-36.5 166.0 n n
Volume (12x13.5x21.3) plus (8x6x13.5) plus ($5.5 \times 5 \times 13.5$)
VOLUME-****** 4590 cubic ft.
Heat Loss by Radiation

> (36.5plus .222(166) plus.02x1×4590)70
> Heat loss***** per hour 11557 B.T.U.

Number of people to be accomodated 3
Number of cubic feet per person 1800
Number of cubic feet of air per hour 5400
Heat Loss by Ventilation (5400x.3122) 1690
Radiation surface required forrthe room
11557x.005**(60)
60
Number of Radiators installed 1
Number of stacks per Radiator 16

DIMENSIONS of Room(3013"x20'6"x1316")
Dimensions of Stacks (2x5x13.5)2-- (2x4.5x13.5)
Windows-----Three North ©36.5---- $\quad 109.5 \mathrm{Sq} . \mathrm{Ft}$
Walls (30.25×13.5) plus.25(378.4) -109.5 364.0 n n
Volume ($30.25 \times 20.5 \times 13.5$)-2 ($2 \times 5 \times 13.59-(2 \times 4.5 \times 13.5$)

$$
\text { VOLUME******* } 8149 \mathrm{Cu} . \mathrm{Ft} \text {. }
$$

Heat Loss by Radiation
(109.5plus.222 (364) plus.02x1x8149)70

Heat boss per hour 24731 B.T.U.
Number of people to be accomodated 25
Number of cubic feet of air per person 1800
Number of cubic feet of air per hour 45000
Heat Loss by Ventilation (45000x.3122) 14050
Radiation surface required for the Room (24731x.005)
Number of Radiators installed
Number of Radiators, sections to a radiator

SECOND FLOOR.
Room tar to beheated to 700 by direct radiation, the Ventllating air to be supplied to the rooms as a separate unite at a Temperature of 87.20 .

The Constants for the second floor are:-
For Heat Transmission through 14 n wall- . 272
For Heat Transmiseion through single glass 1.000
Window Schedual:-

West Side-m-	33.8 square feet	
East Side---	33.8 square feet	
North Side-m-	34.9 square feet	
South Side---	34.9 sqdare feet	
Centre of main	or South--	24.44 Sq.Ft
East Side of w	wing	none
West Side of Ea	Wing	34.9 Sq.Ft

Allowances for exposure:-
South North Eert East 5%
35%
35%
15%
Constants for the Rooms on the Second Floor
Height of Windows from the floor- 215"
Height of Radiator used $26 "$
Number of Colymns per stack- 3
Square feet of Heating surface per stack--3.75
Cast Iron PEERLESS installed.
Number of Cubic feet of Ventilating air per person per hour

Calculations for the separate rooms taken as follows according to Floor Plans.

Seconds Floor
ROMM(201)
DIMENSIONS of Room:-10x23x13'6")
Dimensions of stack ($5 \times 2 \times 13^{\prime \prime} 6^{\prime \prime}$)
Windows One North 034.9 sq.ft.
Walls (10x13.5) plus .25(135)-34.9--
$\begin{array}{ll}34.9 & \text { Sq. Ft. } \\ 134.1 \\ n\end{array}$
Volume ($10 \times 23 \times 13.4$)-5x2x23.5)
2970.0 Cu. Ft

Heat Loss by padiation
(34.9plus.272(134.1) plus .02x1.5x2970)70

Heat Loss -..- per hour
Number of people to be accomodated
10297 B.T.U.
Number of cubic feet of air per hour 4

Heat Less by Ventilation (7200x.3122) 2250
Radiation Surface required for the room 10397x.005-...- square feet
Number of Radiators installed
Number of stacks per radiator
$521 / 2$
1
14
RCOM (202)

DIMENSIONS of Room:-19'6"x23'x1316")
Dimensions of stack(10' 6"x2'x13'6")
Windots ----Two North 34.9 square feet 69.8 SQ.FT.
Walls (19.5xi3.5) plus.25(19.5x13.5)-69.8 259.3 n "
Volume ($19.3 \times 33 \times 13.5$)-10.5x2x13.5) $5772.4 \mathrm{Cu} . \mathrm{Ft}$
Heat Loss by Radiation
(69.8plus . $272(259.3$) plue.02x1.5x5772.4)70

Heat Loss per hour
21945 R.T.U.
Number of people to be accomodated
20
Number of Cubic feet of air per hous 36000
Radiation surface required for the Romm 21945x.005--.-- square feet

108 3/4
Heat Loss by Ventilation(36000x.3122) 11250-
Number of padiators installed
2
Number of Stacke per radiator
ROOM (203)
DIMENSIONS of Room(23x29a13'6n)
Dimensions of stack(31'6"x2x1316")
Findows ---Two North © 34.9
Walls (23xl3.5Lplus .25才23x13.5)-69.8 69.8
318.9
Sq.
nt

Volume $23 \times 29 \times 13.5)-31.5 \times 2 \times 23,5) \quad 8168.5 \mathrm{Cu} . \mathrm{Ft}$
Heat Loss by padiation
(69.8plus . $272(318.9)$ plus . $02 \times 1.5 \times 8168.5$) 70

Heat Loss----- per hour 28112B.T.U.
Number of people to be accomodated 25
Number of cubic feet of air per hour 45000
Heat Loss by Ventilation (45000x.3122) 14050
Number of square feet of radiation required for the Room (28112x.005)

146 1/4
Number of Fadiators instadled
Number 66 of Stacks per radiator
2
(19) (20)

ROOM (204)
DIMENSIONS of Room (40'x22'6nxi3'6")
Windows Four East ©33.8
Two North @34.9

Walls (22.5xplus 40) 13.5 plus . $40(62.5 \times 13.5)-205 \quad 976.3$
Volume (40x22.5x13.5)
Heat Loss by Radiation
(205plus . $272(976.3)$ plhs . 02x $2 x$ 12150)70
Heat Loss per hour
Number of people to be accomodated
Number of cubic feet of alr per hour 45000
Heat Loss by Ventilation(45000x . 3122) 14050
Number of square feet of radiation surface for the Room (66962x.005)
Number of radiators installed
Number of stacke per radiator
3(22)1 (23)
ROOM (205)
DIMENSIONS of Roam ($26^{\prime} 6^{\prime \prime} \times 40^{\prime} 6^{\prime \prime} \times 13^{\prime \prime} 6^{\prime \prime}$)
Dimensions of stacks(16x1.5x. $3^{\prime \prime} 6^{\prime \prime}$) ($9^{\prime} 5^{\prime \prime} \times 3^{\prime} 6^{\prime \prime} x .3^{\prime} 6^{\prime \prime}$)

Volume ($26.5 \times 40.5 \times 13.5$)-16x1.5x13.5)-(9.5x3.5x13.5)

> TOLUME---

Wals (26.5 plus 40 5) 18.51 $13685,4 \mathrm{Cu} . \mathrm{Ft}$
Walls (26.5plus 40.5) Fl8.5plus .2(67x13.5-239.9)
Walls----
Heat Loss by padiation
(239.9plus . $272(846.1)$ plus .02x2x13685.4)70

Heat Loss per hour
Number of people to be accomodated
Number of cubic feet of air per hour
Heat Ios by Nentilation(45000x 3122) 14050
Radiation surface reduired for the Roam (65028x.005)-~ sqyare feet
Number of Radiators installed
Number of etacks per raidator
ROOM (206)
DIMFASIONS of Room(11x22 $6^{\prime \prime} \times 13^{\prime} 6^{\prime \prime}$)
Vindows one south ©34.9
Walls(11x13..5)plus,05xilx13.5)-34.9
Volume (11x22.5x13.5)
Heat Loss by Radiation
(34.9 Flus.272(121)plus .02x2x 3341. 25)70

Heat Loss----per hour
14102R.T.U.
Number of people to be accomodated
Number of cubic feet of air per hour
Heat Loss by Ventilation
Radiation surface required for the room

$$
=(14102 \times .005)
$$

Number of Radiators installed
Number of stacks per radiator
$3261 / 4$
4 3 (21) ${ }^{-1}$
3 (21) 1 (24)

3
5400
1690
71 1/4
1
34.9square feet 121 3341.25 cu.Ft.

RCOM (207)
DIMENSIONS of Room(26'6"x $38^{\prime \prime} 6^{\prime \prime} x 3^{\prime \prime} 6^{\prime \prime}$)
Dimensions of stack ($15 \times 1.5 \times 13,5$)
Windows Four West in Fast Wing e34.9-- 139.6 Sq. Ft.
Three South @34.9—— 104.7 n n
Walls (26.4plus 38.5)13.5Plus.25(64.9)-244.3-852.8 " " Volume (26.5x 38.5x13.5)-(15x1.5×13.5)-- 13459.5 Cu. Ft Heat Loss by radiation
(244.3plus. 272 (852.8) plus. $02 \times 2 \times 13459.8$) 70

Heat Loss--.-per hour
Number of paoble to be accomodated
Number of Cubic feet per hour of air
Heat Lose by Ventilation(54000x.3122)
Radiation surface required for the room (71309x.005)
Number of radiators installed
Number of stacks per radiater
RCOM (208)
DILENSIONSOf Room (34x29x13'6")
Dimensions of stack($22^{\prime} 6^{\prime \prime} x 1^{\prime} 6^{\prime \prime} x 3^{\prime} 6^{\prime \prime}$)
Windows--Three Notth B34.9--
Three West \$33.8
Total Glass
Walls (34plus 29) 13 .5plus.5(63) 13.5-206.1
Volume ($34 \times 29 \times 13.5$)-22.5x1.5x13.5) -
71309 B.T.U. 30
54000
16800
356 1/4
4 $3(23)$ I (26)

Heat Loes by radiation
(206.1plus.272x1069.7plus.03x2x 12856)70

Heat Loss per hour
Number of people to be accomodated
70791R.T.U.
Number of cubic feet of alr per hour
63000
Heat Lose by Ventilation(63000x.3122)
19700
Radiation Surface required for the room
(70791x.005)
356 1/6
Number of radiators installed
4
Number of stacks per radiator
3 (23) I(26)
RCOM(209)
DIMFNSIONS of Room(12x29x13'6")
Cuter dimenstions of closet ($6 \times 8 \times 13^{\prime \prime} 6^{\prime \prime}$)
Inner dinsensions of closet $\left(5 \times 5 \times 13^{\prime \prime} 6^{\prime \prime}\right)$
Windows One North ©34.9 34.9 square feet
walls (12×13.5) plus , $25(12 \times 13.5)-34.9$ Volume (38x29x13.5)-(6x8x13.5) plus ($5 \times 5 \times 13.5$) 5562.5 Cubic feet
Heat Loss by radiation
(34.9plus .272(1626) plus .02×2x5562.6470

Heat Loss per hour 21210 B.T.U.
Number of peoble to be accomodated 4
Number of cubic feet of air per hour
7200
Heat Lose by Ventilation(7200x.3122) 2250
Radiator surface required for the room (21210x.005)
Number of radiators installed
Number of stacks per radiator

THIRD FLOOR .

Rooms to be heated to 700 by direct radiation, the ventilation losaes to be supplied to the rooms as a separate unite at a temperature of 87.2°.

The constants for the Third floor are :-
For Heat Trahsmission through 16" wall- 26
For Heat Transmission through 14" aall. 27
For Heat Transmission through single Glass 1.00
Window schaduel:-
Wast side
East Side
North Side South side
West wisdows East Wing East windows Mest Wing South windows center
30.25 square feet
30.25 square feet
32.53 square feet
32.53 square feet
32.53 square feet
32.53 square feet
22.77 square feet

1
$!$
$1 \quad 1 \quad 1$

THIRD FLOOB CONTINUED:-
Allowances for exposures:-

North	25\%
South	05\%
East	i5\%
Weat	25%

Height of Mindows from the floor 215"
Height of radiators installes 26"
Number of columns per stack
3
$\begin{array}{ll}\text { Square feet of radiation surface per stack } & 3.75\end{array}$
Number of cubic fect of air per person per hour 1800
Cast Iron Radiators PEERLESS installed.
ROOM(301)
DIMENSIONS of Room($30 \times 23 \times 13^{\prime \prime} 6^{\prime \prime}$)
Dimensions of stack($20 \times 2 \times 1316$ ')
Dimensions of closet ($5 \times 6 \times 13.5$)
Windows Three North ©32.53
Walls ($30 \times 13.5 \star$ plus . $25\left(30 \times 13.5\right.$) $-97.59408 .7 n_{n}$
Volume ($30 \times 23 \times 13.5$)-($20 \times 2 \times 13.5$) plus ($5 \times 6 \times 13.5$)--8370 Cubic feet
Heat Loss by Radiation
(97.59 plus.26(408.7) plus . $02 \times 1.5 \times 8370$) 70
Heat Loss per hour
Number of people to be accomodated
31847 B.T.U.
25
Number of cubic feet of air per hour
45000
Heat Loss by ventilation (45000x.3122)
14050
Number of radiators installed
3
Radiation surface required for the room
(31847x.005)
Number of stacks per radiator

DIIIENSIONS OF Room ($23 \times 29 \times 13.5$)
Dimensions of stack (31'6"x2'x13.5)

Volume ($23 \times 129 \times 13, \$$ mphus ($31.5 \times 2 \times 13,5$) 8154 Cubic feet
Heat Loss by radiation

> (65.06plus . $26(323)$ plus . $02 \times 1.5 \times 8154$)70
> Heat Loss per hour
> Number of people to be accomodated
> Number of cubic fett of air per hour
> Heat Loss by Ventilation(45000x.3122)
> Radiation surface required for the room (27556 x .005)
> Number of radiators installed
> Number of stacks per radiator

R $\cap \mathrm{Mm}(303)$
DIMENSIONS $\cap F$ Room(40x2316"x1316")
Tindows Four East ©30.25
Two North @32.53
Total Glass
Walls (40 plus 22.5) 13.5 plus $.40(62.5 \times 18.5)-186.06$
Volume (40x22.5x13.5久
Heat Los: by radiation
(186.1plus.27(995.2) plus . $03 \times 1.5 \times 12150$)70---573518.T.U.

ROCM(303) continued
Number of people to be accomodated
30
Number of Cubic feet of air per hour
54000
Heat Loss by Ventilation (54000x.3122)--16900
Hadiation surface required for the room (57351x.005)

285
Number of radiators installed Number of stacks per radiator

4 4 (19)

> ROOM (304)

DIMENSIONS of Room ($26^{\prime} 6^{\prime \prime} \times 40^{\prime} 6^{\prime \prime} \times 13^{\prime} 6^{\prime \prime}$)
Dimensions of stackl(2xi6xi3'6")
Windows Three South © $32.53 \quad 97.59$
(20. Total Glass 218.59 Square feet

Walls (26.5plus 40.5) 13.5plus .20(67)13.5-218.59
Walls
866.8 n n

Volume (26.5x 40.5x13.5) -(2x16x13.5) 14056 Cubic feet
Heat Loss bt radiation
(218.59plus . 27 (860.8) plus.02x2x14056.)70

Heat Loss per hour
71044R.T.U.
Number of people to be accomodated
30
Number of cublc feet of air rer hour
54000
Heat loss by Ventilation (54000x.8122) 16900
Radiation surface required for the room (71044x.005)
Number of radiators installed
Number of stacks per radiator
Number of radiators installed
Number of stacks per radiator
356 1/4
4(23) 1 (26)
ROOM (305)
DIMENSIONS OF ROCM (11x23x13.5)
Windows One South e $32.53 \quad 32.53$ Square feet
Walls (11x13.5) plus. 05 (11x13.5)-32.53
123.39

Volume (11x23x13.5)
3415.5 Cubic feet

Heat Loss by radiation
(32.53 plus .27 (1234) plus . $02 \times 1.5 \times 3415.5$)70
Heat Loss---- per hour Il782B.T.U.
Number of people to be accomodated
4
Number of cubic feet of air per hour 7200
Heat Loss by Ventilation(r200x.3122) 2250
Number of radiators instailed I
Number of stacks per radiator 16
Radiation surface required for the room
(11782x.005)
60
ROOM (306)
DIMENSIONS OF Room ($26^{\prime} 6^{\prime \prime} \times 38^{\prime \prime} 6^{\prime \prime} \times 13^{\prime} 6^{\prime \prime}$)
Dimensions of stack($15^{\prime} \times 1.5 \times 13^{\prime} 6^{\prime \prime}$)
Windows Three Sめuth @32.53 07.59
Four West ©32.53
130.12

Tołal Glass $\frac{130.12}{227.71}$ Square feet
Walls(26.5 plus 38.5) 13.5 plus .25(65) $13.5-227.71$
Walls
869.8 square feet

Volume (26.5x38.5x13.5)-(15x1.5x13.5) 13470 cubic feet
Heat Loss by radiation
(227.7plus.27(869.8) plus.02x1.5×13470)70

Heat Loss-a--- per hour 60662 R.T.U.
Number of people to be accomodated 30
Number of cubic feet of air per hour 54000

ROOM(306) continued:-
Heat Loss by Ventiaation (54000 x .3122) 16900 R.T.U.
Number of radlatows installed 4
$\begin{aligned} & \text { Radiation surface required for the room } \\ & (60663 x .005)\end{aligned} \quad 3033 / 4$
Number of stacks per radiator $3(20)-1(21)$
ROOM (307)
DIMENSIONS OF Room(19x916"c13.5)
Windows One East of west vinie @ 32.53 32.53 Square fect

Heat Loss by radiation

$$
\begin{gathered}
(32.53 \text { plus } 27(102.13) \text { plus } .02 \times 1.5 \times 2437) 70 \\
\text { Heat Loss per hour }
\end{gathered}
$$

Number of people to be accomodated
4
Number of cubic fee of air per hour 7200
Heat Loss by Ventilation (7200x.3122) 2250
Number of Radiators installed 1
Number of eđacks per radiator 13
Radiation surface required for the room
(9327x.005)
$483 / 4$

DIMENSIONS of Room ($28 \times 28 \times 13.5$)
Windows Three south © 32.53 .59
West winghree East @32.53 97.59
Tolal Glass 195.18 Square fet
Wall (28plus 28) 13.5 plus.2(56)13.5-195.18--713.00
Volume (28x28x13.5) 10584 cubic feet
Heat Loss by radiation (195.18plus . 27 (712) plus . $02 \times 1.5 \times 10584$) 70

Heat Loss per hour 49346ß.T.U.
Number (f people to be accomodated 15
Number of cubic feet of air per hour 27000
Heat Loss by Ventilation(27000x.3122) 8450
Number of radiat ors installed 3
Radiation surface required for the room 49346x. 005
$2471 / 2$
liumber of stacks per radiator
$\operatorname{ROCM}(309)$
DIMFMSIONS of Room(36'6"x38'6" x13! $6^{n \prime}$)
Dimensions of stack(21'6n xl86"x13'6n)
Findows Four West e 30.25 121.00
Four South © 32.53
$\frac{130.12}{251.12}$ Square Ft.
Walls (36.5 plus 38.5) 13.5plus . 3 (75) 13.5-251.12
Walls 1065
Volume (36.5x 38.5x13.5) -(21.5x1.5x13.5) 18536 cu.ft.
Heat Loss by radiation
(251.12plus . $26(712)$ plus . $02 \times 1.5 \times 10584$)70

Heat Loss per hour
Number of people to be accomodated
Number of cubic feet per hour
Heat Loss by Vemtilation (36000x.3122)
Number of radiators installed
75922 R.T.U.

Radiation surface required

$$
75922 x .005
$$

$4121 / 2$
Number of satacks per radiater $3(27)-1(29)$

R $\subset C M(310)$
DIMENSIONS of Room(2316"x10'x1316")
Tindows one West ©30.25 30.25 square feet Walls(10x13.5) plus . $25(135)-30.25$ 138.5 Volume ($22.5 \times 10 \times 13.5$) 3038.00 cubic feet Heat Loss by radiation
(30.25plus . 27 (138.5) plus . $02 \times 1.5 \times 3038$) 70

Heat Loss per hour
11116 B.T.U.
Number of people to be accomodated 4 Number of cubic feet of air per hour 7200
Heat Loss by Ventilation(7200x.3122) 2250
Radiation surface required for the room (11116x.005) 36

56 1/4
Number of radiators installedl Number of stacks per radiator

ROOM (311)
DIMENSIONS of room(47x29x1316n)
Dimensions of stack ($29^{16 n}$ xl'6" x1316")
Windows Four North e $32.53 \quad 130.12$ Three West e 30.25 $\quad 90.75$

Total Glass
$\frac{90.75}{220.87}$ Square Ft_{n}
Walls (47plus 29)x13.5plus.40×76(13.5)-220.87**1215.6
Volumn ($47 \times 29 \mathrm{~m} 13.5$) $-(29,5 \times 1.5 \times 13.5) \quad 17803.0$ Cubic Ft.
Heat Loss by radiation
(220.9 plus . 27 (1215.6) plus.02x2x17803) 20**

Heat Loss per hour
98214 B.T.U.
Number of people to be accomodated
Number of cubic feet of air per hour 30

Hed 16000
Heat Loss by ventilation (54000x.312a). 16900
Radiation surface required for the room (98214x.005)
$4771 / 2$
Number of radiators installed
Number of stacks per radiator
$5(26)$
ROOM *312)
DIMENSIONS of Room($12 \times 23 \times 13^{\prime \prime} 8^{\prime \prime}$)
Dimensions of stack ($7 \times 1.5 \times 13^{16 n)}$
Windows One North © 32.53
Walls (12x13.5) plus . 25 (12x13.5) -32.53--
Volume ($12 \times 83 \times 13.5$)-(7x1.5x13.5) $-\ldots$
32.53 square ${ }_{n}$ Ft. 2

Heat Loss by radiation
(32.53 plus.26(170)plus . $02 \times 1.5 \times 3588$) 70

Heat Loss per hour
Number of people to be accomodated
Number of cubic feet of air per hour
5
Heat Loss by Ventilation (9000x.3122)
3588 cubic feet

Radiation surface required for the room (13649x.005)

67 1/2
Number of radiators installed Number of stacks per radiator

ROCM (313)
DIMFNSIONS of the Room(17'6nx23x13'6"亡
DIMENSIONS of stack ($4^{\prime} 6^{\prime \prime} \times 8^{\prime} 6^{\prime \prime} x 13^{\prime} 6^{\prime \prime}$)
Windows Two North e32.53 6E.66
Walls(17.5x13.5) plus $17.5 \times 13.5) \times .25-68.06 * 230.25$ n n Volume (17.5x23x13.5) plus (4.5x8.5x13.5) 4017.4 cubic Ft.
Heat Loss by radiation
(65.06plus. $26(230.25)$ plus .02x1.5x4917.4)70

Heat Loss per hour 19071B.I.U.
Number of people to be accomodated 8
Number of cubic feet of air per hour 14400
Heat Loss by Vehtilation li4400x₹3122) 4500
Radiation surface required for the room (19071 x.005) *****
Number of radiators installed
Number of stacks perradiator
****** 13 - -12
FCURTH FLOOR.
Room air to be heated to 70 degrees by direct radiation, the Ventilationair to be supplied as a separate unite to the rooms at a temperature of 87.2 degrees.

The constants for the fourth floor are:-
Heat trassmission through 12" wall . 313 Heat transmission Heat transmission through single gaass 1.00 through joisi with Number of columns per stack 2 single floor-. 10 Window scheduel:-

West side
12. 3 square feet

East Side $\quad 12.3$ square feet
North side
South side
East side west wing
West side East Wing South side center
13.22 square feet 13.22 square feet 13.22 square feet 13.22 square feet 9.44 square feet

Allowances for exposure:-

South	5%
North	25%
East	15%
West	25%

Height of windows from the floormen
Height of radiators installed 32^{n}
Number of columns per stack 2
Width of radiator
8^{17}
Thickness of stack $21 / 2$ n
Number of cubic feet of air per person per hour-w 1800
Square feet of heating surface per stack $31 / 3$
Cast Iron Radiators PEERLESS installedo
POOM (401)
DIMENSIONS OF ROOM ($30 \times 23 \times 11$)
Dimensions of stack $(20 \times 2 \times 11)$
Windows Thres North © 13.32
Skylights Nine Northe 3
Nine south © 3
Total Glass
Walls(30x11)1.35-93.66
Ceiling (30×23)1.3
Volume $30 \times 23 \times 11$) $-(20 \times 2 \times 11)$

13.22	square feet	
27.00	n	n
27.00	n	n
93.66	n	n
351.84	n	n
828.00	n	n
7150.00	nubic feet	

Heat Loss by radiation
(93.66 plus . $313(351.8)$ plus. $10(828)$ plus . $02 \times 2 \times 7150$) 70 Heat Loss per hour

POCM (40)
Room (404) was calculated Fith the heat loss of the Fourth Floor Corridor so is not considerdd in the calculations.

ROOM (405)

ROOM (406)
DIMENSIONS OF Room(11x22x10)
Windows One South ©13.22
Walls (11×160) 1.05 $-13,22$

Volume (11x22x10)
13.22 Sq Ft.

Heat Loss by radiation
(13.22plus . 313 (102.28) plus . $10(290.4$) plus . $02 \times 1.5 \times 2420$) 70 Heat Loss per hour 102816 B.T.U.
Number of people to be accomodated
Number of cubic feet of air per hour 7200
Heat Lose by Ventilation(7200x.3122) 2250
Radiation surface required for room (10282x.005)

53 1/3
Number of Rddiators installed
Number of stacks per radiator
1

ROOM(407)
DIMFINSIONS of Room(27x39x11) Stack(15x1.5x11)

Windows Three Sduth	Q13.22	39.68	square feet
East wing Four West	©13.22	52.88	
Skylightd 15North	(3) 3	45.00	n \quad n
15South		45.00	" ${ }^{\prime}$
	Total Glass	181.54	" n
Walls(27plus39) 11 P1x	es1.3-181.54	762.2	" \quad "
Ceiling (27x39) 1.2		1263.6	" ${ }^{\text {n }}$
Volume (27x39x11)-15x	.5x11)	1133515	cabic

Volume (27×39×11)-15×1.5×11)
1133515 cabic
Heat Loss by Radiation
(181.54plus . 313 (762.2) plus . $10(1263.6$) plus $.02 \times 2 \times 11336$) 70

Heat Loss--per hour 69923 B.T.U.
Number of people to be accomodated ? 30
Number of cubic feet of air per hour 54000
Heat Loss by Ventilation(54000x.3122) 16900
fadiation surface reguired for the room (69923x.005) 366 2/3
Number of radiators installed Number of stacks per radiator
$3(27)^{-} \quad 1(29)$

ROOM (408)
DIUFNEION: of ROom ${ }^{(128} 6^{\prime \prime} \times 9^{\prime} 6^{\prime \prime} \times 10$)

Heat Loss y radiation
(13.22plus . $313(100.8)$ plus $.10(142.5)$ plus . $02 \times 2 \times 1187.5$) 70

Heat Lose per hour 7.56

Number of people to be adcomodated
Number of cubic feet of air per hour

- 4

Heat loss by Ventilation (7200x.3122) 7200

Number of Radiators installed in the room 2250

Radiation surface required for the room (7456x, 005)
Number of stacks per radiator
$362 / 3$ Square ft

ROOM(409)
DIMENSIONS of Room ($19 \times 28 \times 10$)
Findows Two South @ 13.22
25. 是

East of West Wing Three ${ }^{(3)} 13.22$
Total Glass
Walls (19plus28) 10 x1.25 -66.1 \ldots
Ceiling(19x28)1,2
Volume (19x28x10)

Heat Loss by radiation
(66.1plus . $313(521.4)$ plus . $10(638.4)$ plus . $02 \mathrm{c} 2 \times 5320$) 70

Heat Loss per hour
Number of people to be accomodated 35413 R.T.U. 15
Number of cubic feet of air required per hour 27000
Heat Loss by Ventilation (27000x.3122) 8450
Radiation surface required for thr room (35413 x.005)
Number of radiators installed
180 Sq.Ft.
Number of stachs per Radiator

DINFNSIONS of Room- $\left(46 \times 38^{\prime} 6^{\prime \prime} \times 11\right)$
Dimensioms of stack ($21^{\prime} 6^{\prime \prime} \times I^{\prime} 6^{\prime \prime} \times 11$)
Windows--Four West (3) 12.3
Five South © 13.22
Skylights 30 North ${ }^{(} \quad 3.00$
30 South $\quad 3.00$
Tołal Glass
Walls (46 plus 38'6")11x1.3-295.3
Ceiling ($46 \times 38.5 \times 1.2$
Volume (46x38.5x11)-(21.5x1.5x11)
Heat Loss by Radiation
(295.3plus . 313 (913.1) plus . $10(2125.2)$ plus . 02x2x19126.2) 70

Heat Loss per hour 109102.7B.T.U.
Number of people to be accomodated
Number of cubic feet of air per hour
Heat Loer by Ventilation(108000x.3122)

49.2	square	ft.
66.1	"	"
90.0	"	"
90.0	"	"
295.3	"	"
913.3	"	"
2125.2	"	"
19126.2	Cubic	Ft.

ROCM (410) continued:-
Square feet of radiation surface required
(109103x.005)
Number of Radiators installed
Number of stacks per radiator

533 1/3
6
5(26) I (30)

$$
\operatorname{ROCM}(411)
$$

DIMENSIONS of Room($23 \times 10 \times 10$)
Windows Cne west @12.3 12.3 Square $F t_{n}$.
Walls (10x10)1.25-12.3-......
Ceiling (23x10)1.2 -.................
Volume ($23 \times 10 \times 10$)
276.0 "

Heat Loss by radiation
(12.3plus.313(102.9)plus276x.10plus..02x1.5x2300) 70

Heat Loss per hour 9877 B.T.U.
Number of people to be accomodated 4
Number of cubic feet of air pwr hour 7200
Heat Loss by Ventilation (7200x.3122) 2250
Radiation surface required for the rom ($9877 \times .005$)

50
Number of Radiators installed
Number of stacks per radiator

1
15

ROOM (412)

DIMFINSIONS OFROOm (47x29x11)
Dimensions of Stacks (29'6" xl' $6^{\prime \prime}$ xlli
Windows Four @13.22 42.88 square $F t$.
Three Meste l2.3
Skylights $\quad 23$ North © 3
Todal Glass
Walls (11 (47plus 20) 1.4-75.78
Ceiling (47x29)1.2 -138
Volume $47 \times 29 \times 11$) -($29.5 \times 1.5 \times 11$)
Heat Loss by Radiation
(217.78plus . $313(1090.6)$ plus .10(1497.6) plus.02x2x14506.2)70

Heat Lossper hour
90240 B.T.U.
Number of people to be accomodated
Number of cubic feet of air per hour
40
Heat Loss by rentilation (72000x.3122) 22500
Radiation surface required for the room (90240 x.005)

466 2/3
Number of radiators installed
lumber of stacks per radiator'7
5

ROCM (413)
DI:AENSIONS of Room($23 \times 12 \times 10$) Stack ($7 \times 1.5 \times 10$)
WindowsOne North © 13.22
Walls (12x10)1.3013.22
Ceiling (23x12)1.2
Volume ($23 \times 12 \times 10$) $-7 \times 1.5 \times 10$)
Heat Loss by Radiation
(13.22plus . 313 (142.8) plus. $10(331.2)$ plus . $02 \times 2.8 \times 2655$)70

Heat loss per hour ll948.R.T.U.
Number of people to be accomodated
Number of cubic feet pf air per hour
3
Heat Loss by Ventilation (5400x.3122)
Radiation Curface required for the rocm(11948x.005)-63 1/3
Number of radiators installed
1
Number of stacks per radiator

R COM (414)
Dimensions of Rocm(17'6"x23'x10'6n) Stack(12'xa'x10'6")
Windows Two North © 13.22 26. Square $F t_{0}$
Walls (17.5x10.5)1.35-26.44
157.31

Ceiling (17.5x23) 1.2
Volume ($180 \times 23 \times 10$) 5 र- $(12 \times 2 \times 10.5)$
483.00
3974.25
"

Heat Loss by radiation
(36.44 plus.313(157.31) plus.10(483) plus . $02 \times 2 \times 3974.3$)70 Heat Lcse per hour 19779 B.T.U.
Number of people to be accomodated?
15
liumber of cubic feet of air per hour
Heat Lcs = by rentilation (27000 x .3122)
27000
Radiation Surface required for the room (19779x.005)
Number of radiators installed
Number of stacks per Radiator
100 square feet

CCRRIDCRS

RASFMEIT:-
Dimentions to obtain the exposed areas and the
Total volume of the Corridor.
($9^{\prime} \times 37^{\prime} \times 13^{\prime} 6^{n}$) plus ($3 \times 5 \times 13.5$) plus ($140 \times 10 \times 13.5$) plus ($10 \times 10^{\prime} 6$
x13'6") plusl'x7'6nx1316") plus (il'x14'x1316")
Staircase:-(22x21x1316")-(22x5'3"x5')-(9x10x9'6")
Total Volume of Corridor:- --.- 33361.8 fq. Ft. Glass :-

Main entrance $2\left(24^{n} \times 78^{n}\right)$-- $\quad 26$ sq. ft^{2}.
East Entrance2(16"x62")--- $\quad 13.78$ sq. ft.
West Entrance2 (16"x62")--- 13.78 sq.ft.
Transoms East and Vest\$38"x24"ゆ
Total Glass:-
Walls (9료․5)2 plus(22x8)-66.24

Heat Loss by radiation:-
(66.24 plus. $222(271.2$) plus . $02 x 1 \times 33361.8$) 70--

$$
\text { Heat Lose per hour- } 55558 \text { B.T.U. }
$$

First Floor:-
Dimensions to obtain the exposed aress and the
Total Volume of the Corridor.

Stack (10'6"x2'x1316")
Total Volume------ $24800 \mathrm{Cu} . \mathrm{Ft}$.
Windows One West ©33.9 TotalGlass---
Walls (10×13.5) pluc2 (10x13.5)-33.9......... $128.2{ }^{33.9} \underset{n}{ }{ }_{n}$.
Heat Lose by Radiation:-
(33.9plus.222(128.2) plus.02xlx24800)70-- 40088 B.T.U.

Staircase: - ($21 \times 7 \times 619^{\prime \prime}$) Flus (15X2lx6'9n)
Windows One North @36.5 Square Feet 36.5 Square feet
Walls (21x13.5) plus.25(21x13.5)-36.5 -...-- 317.9 " "
Volume ($31 \times 7 \times 6^{\prime} 3^{n}$) plus(15x21x6.75)--- $\quad 3118.5$ Cubic Feet
Heat Loss by radiatioh:-
(36.5plus . 222(318)plus . $02 \times 1 \times 3118.5$)70-- 11865 B.T.т.

Total Heat Loss in B.T.U. per hour for the floor
51953 R.T.U.
～CEDIDORS：－
SECOND FLOOR：－
Eiminsions to ojtain tho exposed areas and
the volums of the corriler：－

［i，rensicns of staircus ：－

Findews aix routh ？ 34.9 209．4
ons＂est 33.8
T：ro＂iorta 34.9 Tctal Glass 03.8 09.8
313.0 s quare fout

rlus 10×10.5 ）． $25.145(64 \times 13.5) .05$ plus（ 64×10.5 ）ius

Eeat Ics ：radiaticn－－－

Heat los per hour
©えさえ4E．T．U．
MTIRD FLCR：－
Dimensiond to cotain the expossa araa and the
velume of the co ridor：－
 xlox1＂．5）＂cuth excosure：－（44x13．5）
Timnesirns of thentairnase：－

rin’ors：－Six south misz．77 ？\％：Yerth 0．2．5．

Total alass COl．oE suare Ft

rinus $201.69 \quad 63$ 4． 7 suars ft

Heat Los：by radiation：－

Heat Loss per hour 78j41 D．T．U．
roving ylcon：－
Limensions to outain the exposei ara and the
volume on tor coridor：－

Pius（Expovero sout：－－－（34x1 0）
Dimoneicna cf the atsitro：se：－
（ $21 \times 2 \times \mathrm{x} 10$ ）
Yinlcris：－Jix jouth 96.44
T\％o Vorth T1：．2．
Tctal rias．

26.44

85：．085zuare ft．
Vclume：$-(17 \times 11 \times 10)$ plus3． $5 \times 7.5 \times 10)$ pius（ $1.33 .5 \times 10 \times 10$ ）plus
（ $6 \times 1{ }^{\prime \prime} x 10$ ）rius（ $21 x^{\prime \prime} 4 \times 10$ ） 18508 Cubic चt．

Heat Lo ：s by Radiation：－
 Heat Loss rer hour ous79b．t．ij．

Complete tabulation for the square feet of Radiation required for the individual rooms for the R.E.Olds Engineering Hall
with the size of Radiators installed.
Tabulations made by Floors.
Basement.
Height of windows from the floor-m- $2^{\prime \prime} 10^{\prime \prime}$
Height of radiators used --m 32"
Number of columes per stack
Width of Radiators
Thickness of sections
Square feet per section

ROOM	I	QUARE FEET	NUMREROF*	SIZE OF R	DIATORS
NO.	LOSS	RAD.SURFACE	RADIA TORS	NUMPRROF	LENGTH OF
				STACKS	RADIATORS
1	14357	$731 / 3$	2	(11) (11)	
2	9280	$462 / 3$	1	(14)	(35)
3	20544	$1031 / 3$	2	(15) (16)	(372) (40)
4	40033	$2031 / 3$	3	2 (20) (21)	$2(50)\left(52 \frac{1}{2}\right)$
5	35112	$1762 / 3$	2	(26) 1(27)	(65) (67\%
6	9170	$462 / 3$	1	(14)	(35)
7	29848	$150-$	2	(23) (22)	(572) (551
8	******	****	**	*********	********
9	3076	16 2/3	1	(5)	($12 \frac{1}{2}$)
10	24976	$1262 / 3$	2	(19) (19)	(477 ${ }^{\frac{1}{2}}$) (47\% ${ }^{\frac{1}{2}}$
11	57653	276213	4	3 (20)1 (23)	3 (50) 1 ($57 \frac{1}{2}$)
12	43960	$220-$	3	3 (22)	355)
13	10976	56 2/3	1	(17)	(422)
14	16618	$831 / 3$	2	(13) (12)	(32t) (30.)
15	7334	$362 / 3$	1	(11)	(27\%)

TOTAL RADIATION SURFACF.******* 1616 2/3 square feet NJMBER OF RADIATORS ******* 27

FIRST FLOOR.
Height of windows from the floor-m-n $2^{\prime \prime} 6^{\prime \prime}$
Height of radiators used -m-m2"
Number of columes per stack
Width of Radiators
Thickness of section
--سー 3

Square feet per stack 3.75
ROOM**RADIATION**SCUARE FFFTT**NUMBER OF**SIZE OF RADIATORS

NO.	LOSS	RAD.SURFACE	RADIATORS	NUMRER OF STACKS	LENGTH OF RADIA TORS.
101	8008	41 1/4	1	(11)	(272)
102	16849	$861 / 4$	2	(11) (12)	(27t ${ }^{\text {a }}$) (30)
103	9536	$483 / 4$	1	(13)	(325)
104	7714	37t ${ }^{\frac{1}{2}}$	1	(10)	(25)
105	48013	240	4	4 (16)	4 (40)
106	8267	41 1/4	1	(11)	(272)
107	40446	$2021 / 2$	3	3 (18)	(45)
108	7217	37 1f2	1	(10)	(25)
109	30562	153 3/4	3	2(13) 1(15)	$3(32,1 / 3) 1\left(37 \frac{1}{2}\right)$
110	50993	$2583 / 4$	4	3 (15) 1(24)	$3\left(37 \frac{1}{2}\right)-1(60)$
111	48496	243 3/4	3	$2(22) 1$ (21)	$2(55) 1\left(52 \frac{1}{2}\right)$
112	37680	187 1/2	2	$2(25)$	$2\left(67 \frac{1}{2}\right)$
113	47866	240 -	3	2(21) 1 (22)	$2\left(52 \frac{5}{2}\right) 1(55)$
114	11557	60	1	(16)	(40)
115	24731	123 3/4	3	3 (11)	3 (272)

Tabulation of square feet of radiation required for the rocms with the sizes of radiators and heat losses.

SECOND FLOOR
Heaght of windows from the floor-m- $2^{\prime \prime} 5^{\prime \prime}$
Height of radiators used - 26"
Number of columes per stack
Width of Radiators
Thickness of sections
Square feet per stack

ROOM**RADIATION**SQUARE FTFTT**NUMREROF**SIZE OF RADIATORS

| NO. | LOSS | RAD.SURFACE | RADIATORS NUMRER OF | LENGTHOF |
| :---: | :---: | :---: | :---: | :---: | :---: |
| RTACKS | RADIATORS | | | |

Third FLOOR
Height of windows from the floor-m-m-2'5"
Height of radiators used ---m 26"
Number of columes per stack
Width of Radiators
Thickness of radiators sections-m-m $2 \frac{1}{2}{ }^{n}$
Square feet per stack --m 3.75
ROOM**RADIATION**SQUARE FEET**IUMRFR OF**SIZE OF RADIATORS.
NO. LOSS FAD.SURFACE RADIATORS NUMBER OF LENGTH OF

\%91	31847	161	1/4	3	STACKS $2(14) 1(15)$	$\begin{aligned} & \text { RADIATORS } \\ & 2(35) 1\left(37 \frac{1}{2}\right) \end{aligned}$
302	27556	138	$3 / 4$	2	(18) (19)	(45) (472)
303	57351	285	-	4	4(19)	$4\left(47 \frac{1}{2}\right)$
304	71044	356	1/4	4	3 (23) 1 (26)	$3\left(57 \frac{1}{2}\right) 1$ (65)
305	11783	60	-	1	(16)	(40)
3066	60662	303	3/4	4	$3(20) 1$ (21)	3 (50) 1 ($52 \frac{1}{2}$)
307	9337	48	314	1	(13)	(32\%)
308	49346	247	1/2	3	3 (22)	3 (55)
309	75922	412	1/2	4	3 (27) I (29)	3 ($67 \frac{1}{2}$) $1\left(72 \frac{1}{2}\right)$
310	11116	56	$1 / 4$	1	(15)	(372)
311	98214	477	1/2	5	5 (26)	5 (65)
312	13649	67	1/2	1	(15)	($37 \frac{1}{2}$)
313	19071	93	$3 / 4$	2	(13) (12)	(32-1 ${ }^{2}$ (30)

Total radiation surface for FIRST FLOOR***** 2002 square feet

Total radiation surface for SECOND FLOOR**** 2471.25 sq.feet
Total number of radiators installed \quad ***** 31
Total radiation surface for THIRD FLDOR*****2708.75
sq.feet
Total number of radiators installed ***** 35

Complete tabulation for the square feet of radiation required for the individual rooms for the R.E.Olds Engineering Hall with the size of radiators installed.

FOURTH FLOOR
Height of windows from the floor-m-milon
Height of radiators used
-----32"
Number of columes per stack
Width of Radiators
Thickness of one stack

- - -

Square feet per stack 1/3
ROOM**RADIATION**SQUARE FEFT**NUMBER OF*SIZE OF RADIATORS NO. LOSS RAD.SURFACE RADIATORS NUMRFR OF LENGTHOF STACKS

401	40080	203	$1 / 3$
402	34725	176	$2 / 3$
403	47287	240	-
404	$* * * * *$	$* * *$	
405	70179	$3662 / 3$	
406	10282	53	$1 / 3$
407	69923	$3662 / 3$	
408	7456	36	$2 / 3$
409	35413	180	-
410	109103	533	$1 / 3$
411	9877	50	-
412	90240	466	$2 / 3$
413	11948	63	$1 / 3$
414	19779	100	-

$2(20) 1(21)$
$(26)(27)$
$3(24)$
$* * * *$
$3(27) 1(29)$
(16)
$3(27) 1(29)$
(11)
$2(27)$
$5(26) 1(30)$
(15)
$5(28)$
(19)
$2(15)$

RADIATORS

Total radiation surface for FOURTH FLOCR ***** 88*6.666 sq. feet Total number of radiators installed

TOTAL RADIATING SURFACE IN THE BUILDIND *****By floors
BASEMENT:-1616.66 Square feet
FIRST FLOOR: * 2002.00 Square feet
SEGOND FLOOR:- 2471.25 Square feet
THIRD FLOOR:-2708..75 Square feet
FOURTH FLOOR:-2836.66 Square feet
FOR BUILDING *********************** 11635.32 Square feet
TOTAL NUMRFR OF RADIATORS INETALLED ****** BY floors
BASFMENT:- $\quad 27$
FIRST FLOOR:- 33
SECOND FLOOR:- 31
THIRD FLCOR:- 35
FOURTH FLOOR:* 35
FOR BUILDING*************************
CORRIDOR RADIATION LOSSFS WITH SIZE OF RADIATORS INSTALLED BASEMENT***********\$5558B.T.U.
lst floor 51953 "
and floor 92124 n Total----. 199635 B.t.U.
3rd floor taken care of by plenum -- -78347
4 th floor taken care of by plenum----87244 Total--165591 B.T.U. Radiation surface required-a $799635 x .005-998.18$ square feet Two radiators in main entrance and one in each side entrance of (25 stacks each) of C.I. $45^{\prime \prime}--4$ Colume 10 square feet per stack with $3^{\prime \prime}$ width of section and $10 \frac{1}{2} n$ width of radiator.Length of Radiators (75")

STEA: PIPING AND CONNECTIONS for the instalation of Radiators.

No. of Pieces.	BASEMENT.			
	Size of	Kind of	length	Total
	Pieces.	equipment.	per niec	. length.
3	(2x2)	Elbows		
31	(2x2xis)	Tees		
27	(2)	Risers	1317feet	364.5 feet
2	(2)		16 feet	32.0 feet
1	(2)		15 feet	15.0 feet
27	(2)	Riser Arms	1 foot	- 27.0 feet
		Total $3^{\prime \prime}$	piping	438.5 feet
	First Floor.			
1	(2x2)	Elbows.	13 $\frac{1}{2}$	
35	(2x2x2)	Tees		
31	(2)	Risers	1312feet	445.5 feet
1	(2)	Risers	18 feet	18.0 feet
33	(2)	Riser Arms	1 foot	33.0 feet
		Totad ${ }^{\text {n }}$	piping	496.5 feet.

Second Floor.

Elbows.
Tees
Risers, $\quad 13 \frac{1}{2}$ feet $\quad 418.5$ feet.
Riser Arms. 1 foot 31.0 feet. Total 2^{n} piping 466.5 feet.

Third Floor.

38
36

36
$(2 \times 2 \times 2)$
Elbows.
Tees
Risers $\quad 13 \frac{1}{2}$ feet 406.0 feet

Riser Arms 1 foot 36.0 feet Total 2^{n} piping 442.0 feet

Fourth Floor.
(2×2)
$(2 \times 2 \times 2)$
(2)
(2)

Elbows
Tees
Risers $\quad 9$ feet 324 feet
Riser Arms 1 foot 35 feet

Attic Steam Main Piping.
Number of pieces Size of Kind of Length of Total length required. piping. equipment. one piece of piping.

Steam Main.					
1	$2{ }^{1}{ }^{17}$	24	feet	24	feet
2	$2 \frac{1}{2}$	20	feet	40	feet
3	$2{ }^{\prime \prime}$	8	f3et	24	feet
2	2尔"	14	feet	28	feet
1	$2 \cdot \frac{1}{2} n$	16	feet	16	feet
1	$2{ }^{\frac{1}{2}} 1$	13	feet	13	feet
1	210'	18	feet	18	feet
2	$2{ }^{\prime \prime}$	4	feet	8	feet
36	2\% ${ }^{\text {² }}$	4	fect	144	feet
1	3"	25	feet	25	feet
1	3 "	2	feet	2	feet
2	3 "	19	feet	38	feet
4	3'		feet	16	feet
1	3'	20	feet	20	fett
1	3"	12	feet	12	feet
1	3'	10	feet	10	feet
1	$3{ }^{\prime \prime}$	21	feet	21	feet

4	$4 \prime$	3 feet	12 feet
4	$4^{\prime \prime}$	60 feet	
3	$4^{\prime \prime}$	15 feet	30 feet
2	$4^{\prime \prime}$	4 feet	8 feet
1	$4^{\prime \prime}$	16 feet	16 feet
1	$4^{\prime \prime}$	8 feet	8 feet
1	$4^{\prime \prime}$	9 feet	9 feet
1	$4^{\prime \prime}$	17 feet	17 feet
2	$4^{\prime \prime}$	66 feet	52 feet
1	6 feet	6 feet	

Total 3 inch piping required--.-...- 144 feet
Total 4 inch piping required _-......
Total 6 inch piping required ------
Total 2 inch piping required
Total ($4 \times \approx \frac{1}{2} \times 4$) Ttes revuired
Total ($4 x 4 x=\frac{1}{y}$ Tees required

Total (2×2) 900 Elbows required
Total (2x2x2) Tees required -
Total ($4 x \approx \frac{1}{2} \times 4$) Tees required

```
315 feet
218 feet
125 feet.
2202.5 feet.
.4
169
315 feet
144 feet
218 feet
125 feet.

Attic acd Fadiator Pisers and Connections:-
Total ( 4x4) Flbows required --.-.........-. 6
Total \(4 \times 3 \times 2 \frac{1}{2}\) ) Tees required…-.......... 2

Total ( \(3 \times 2 \cdot \frac{1}{2} \times 2 \frac{1}{2}\) ) Tees required ---m-m-m- 2
Total ( \(2 \frac{1}{2} \times 2 \frac{1}{2} \frac{1}{2}\) ) Tees required --m- 9

Total ( \(2 \frac{1}{2} \times 3 \times 2 \frac{1}{2}\) ) Tees required -m-n 1

Total ( \(2 \frac{1}{2} \times 2 \frac{1}{2}\) ) Elbows required ................. 3
Total number of Radiator Valves --------- 165 Victor Auto type
All Radiator valves to be of the Victor Automatic type No 7. All fiser pipes to be of wrought iron threaded and reamed for assembly.
All Riser Arms to be threaded and reamed for assembly.
All Radiators to be tapped at two thirds(2/3) the distance from the bottom for air valvess and threaded to one quarter ( \(1 / 4\) ) inch for valve connections.
All-fittinge to be threaded for Radiators and Steam line with sufficient pitch to insure tight joints.
All radiator s to be equipped with female connection witha enough pitch to insure good drainaze.
All Tees and Elbows to be of cast iron and threaded for connection.

Steam Headers and branches to top of Risers on the fourth floor and leading to fourth floor mains to be covered with Asbestos Cement Felting recommended by the Crane Co. Number eight grade to be used on all steam headers.

Steam headers to be provided with Fxpansion Pipe Hangers or Ring Hooks as recommended by the Crane Company . Hangers to be placed at TEN foot intervals along the Header with sufficient distance between the hanger and the end of the pipe when making a turn to allow for the free expansion of the pipe --- three feet at least between the end of the pipe and the hanger.

The number of Hangers required of the different sizes of pipe are:-
\(\begin{array}{ll}\text { For } 4 \text { inch pipe } & 26 \\ \text { For } 3 \text { inch pipe } & 10\end{array}\)
For \(2 \frac{3}{2}\) inch pipe 10
Each Hanger to be provided with :-
One Plate, One button, and one ring.
One hundred (100) feet of one half, (1/2) inch pipein ten foot length, for use in hangers.

Twenty4feet (2e) of one half(1/2) inch pipe in twelve foot lengths, for use in hangers.

Pisers are to be provided with Cranes Patent Ceiling Plates for wrought iron pipe. One Hundred and sixty five(165) Ceiling plates required. Also 1 floor plate is required for each riser kaking (165) required for the buildine.

Determination of the size of Plenum fan required for the Ventilation of the New R.E.Olds Mechanical Building and the size of Heater to deliver the ventilating air at the required Temperature of 87.20 .

With a velocity of alr over the coils at 1000 feet per minute the number of sections of four pipes deep required to deliver air with the outside temperature of the air at zero degrees and the temperature of the air leaving the coils at 87. 2 degrees, is four sections making a total depth of the heater sixtten pipes deep.

The total air to be delivered for ventilating purposes in cubic feet per hour is \(2,717,600\).

The heat necessary in B.T.U. per hour to raise this air from zero 0 to 87.2 0 is:-
\(H\) equals \(Q\) times the dmfference between the air from the coils and the room temperature to be kept constant divided by 55( the number of degrees through which theone cubic foot of air can be raised by one B.T.U.)

Total heat loss by ventilation is 850,000 plus
\(25 \%(850,000)\) the excess air required for leakage losses equaks 1,062,500 B.T.U.
Atfour pipes withe four section heater of the Buffalo Heater return bend type of heaterwith a velocity of 1000 feet per minute over the collseach lineal foot of pipe will deliver 661 B.T.U. at 87.20 F. The total lineal feettof pipe required to deliver 1,062,500 R.T.U. per hour are:-

The free air space in a 165 Ineal foot, four sections four pipes deep is 46 square feet.

The free air space required for the delivery of \(2,717,600\) cubic feet of air per hour which is needed for ventilating purpases at a velocity of 1000 feet per minute over the coils at \(87.2^{\circ} \mathrm{F}\) is:-

2,717,600/ \(60 \times 1000\) equals 45.39 square feet.
Heatere
R.B. manufactured by the Burfalo Fan Company With 170 pipes, Length of section
Width of base
Extreme height
Total weight
Plenum Fan.
Fith the fan delivering againsta static pressure of Qne inch and required to deliver \(2,717,600\) cubic feet per hour or 45,290 cubic feet per minute:-

Fan number required to deliver this necessary amr is:-

Number - - \({ }^{\text {N }}\) diblivers 48,900 cubic feet per minute.
Number - \(1 \overline{8} 0\) delivers 60,300 cubic feet per minute both running at full rated capacity.

For acase of necessity Fan number 180 is the best instalation with a full rated capacity of 60,300 cubic feet per monute running at \(185 \mathrm{R} . \mathrm{P} . \mathrm{M}\). with \(27.55 \mathrm{~B} . \mathrm{H} . \mathrm{P}\). required for operation. The Fan speed can be cut down when delivering the required air but in case of necessity can be operated at full rated capacity and deliver air at the necessary velocity and temperature with live steam supplied to the heater at a higher pressure and temperature.

Fan number 180 is manufactured by the American Blower Company And listed in their Steel Plate Fan Catalogue .

The diameter of the wheel is:--------108 inches Cubic Feet per minute -------------60,300


Fan must be placed at least 36 inches from the inner surface of the Heaterto insure good draft and no increase in friction due to short bend onthe air entering the main air duct.

The Heater shall be equipped with the necessary connections for the steam drip and the steam mains or headers with steam at five pounds gage and of sufficient strength to withstand a pressure of 30 pounds of live steam when it is required to. These connections will be as stipulated by the Buffalo Fan Company for the size heater which I have determined, of the Ruffalo Return Bend Type.

DFTFRIMTATOR OF THF ETEF OF AIR DCCTB AND THE
Pegisters for the individual rooms, with a complete tabulation of the cubic feet of air required for the ventilation of the room, the velocity of the air leaving the register, thenet area of the register in square inches, the dimensions of the registers and the size of uptake for each room.

The velocity of the air in the main adr duct after leaving the fan. -1600 feet per minute.

FOFAULAE USED IN THF CNAPUTETION CF THF SIZE OF NET Fegister. Tinis formulae applies to the air ducts or register openings as well as any part of the main air duct.

AREA IN SG.IN.EAUALS**144xQ'/60xT
Q'- the ventilating air supplied per hour.
\(V\) - the velocity of the air leaving the register. \(144 / 60\) puts the area in square inches, NET.
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multicolumn{6}{|r|}{*CU.FT.*YFL.OF**NPT ARTA** SIZE OF ***** SIZF OF} \\
\hline & AIRPFP. & AIP. & \(C F\) & EFGICTFPTH & UPTAKE IN \\
\hline & HCUP & FTAMI. & FFGISTFR & I COFS & INCHFS. \\
\hline 1 & 9000 & 200 & 108 & (10x10) & (10x10) \\
\hline 2 & 7200 & 150 & 115 & (10×10) & (10x10) \\
\hline 3 & 27000 & 350 & 186 & (10x18) & (10x18) \\
\hline 4 & 18000 & 200 & 216 & (16x14) & (16x14) \\
\hline 5 & 18000 & 200 & 216 & (16x14) & (16x14) \\
\hline 6 & 5400 & 150 & 86.5 & ( 8x12) & (8x12) \\
\hline 7 & 18000 & 200 & 216 & (16x14) & (16x14) \\
\hline 8 & **** & *** & *** & ******* & ******* \\
\hline \(\$\) & 5400 & 150 & 86.5 & (8x13) & ( 8x12) \\
\hline 10 & 36000 & 250 & 345 & (18x20) & (18x20) \\
\hline \(11{ }^{\prime}\) & 54000 & 350 & 361 & (18x20) & (18x20) \\
\hline 12 & 54000 & 300 & 432 & (18x24) & (18x24) \\
\hline 13 & 9000 & 200 & 108 & (10x10) & (10x10) \\
\hline 14 & 18000 & 150 & 288 & (12x12)(12x12) & (12x12) (12x12) \\
\hline 15 & 108060 & 250 & 104 & (none) & (10x10) \\
\hline 101 & 3600 & 90 & 96 & (10x10) & (10x10) \\
\hline 102 & 5400 & 150 & 86.5 & ( \(8 \times 12\) ) & ( 8x12) \\
\hline 103 & 3600 & 90 & 96 & (10x10) & (10x10) \\
\hline 104 & 5400 & 150 & 86.5 & (8x12) & ( 8x12 \\
\hline 105 & 27000 & 150 & 432 & (10x12) (16x20) & (16x14)(16x20) \\
\hline 106 & 5400 & 150 & 86.5 & (8x12) & (8x12 \\
\hline 107 & 27000 & 150 & 432 & (18x24) & (16x26) \\
\hline 108 & 3600 & 90 & 96 & (10x10) & ( 8x12) \\
\hline 109 & 45000 & 200 & 538 & (16x34 & (16x34) \\
\hline 110 & \(2 \pi 000\) & 150 & 432 & (12x18) (12x18) & (12x18) (12x18) \\
\hline 111 & 270000 & 450 & 1440 & (24×30) (24×30) & (10x10) (18x74) \\
\hline 112 & 9000 & 200 & 108 & (10x10) & ( \(10 \times 10\) ) \\
\hline 113 & 54000 & 250 & 518 & (20x26) & (18x24) \\
\hline 114 & 5400 & 150 & 86.5 & ( \(8 \times 12\) ) & (8x12) \\
\hline 115 & 45000 & 200 & 538 & (30×18) & (18x30) \\
\hline
\end{tabular}

Calculations and tabulation of the aize of regiaters on the second, Third and Fourth Floors.


CORRIDORS:-
BASEMENT---27000
First floor 36000
Second floor
36000
Third floor
36000
Fourth floor 36000

Total Air required for the Cor idors 171000 cubic feet per h-ur Allow 71000
Adr to be supplied by register on the second floor at west end of corridor "elocity of air leaving register- \(300 \mathrm{ft} / \mathrm{min}\) Area of Pegister NET----- 965 sq.inches Dimensions on reqister ( \(24 \times 40\) ) This air supplies the Ventilating heat loss for the Second, Third ard Foutth Floor Corridors.

DFTFEMINATTOH Of the size of ducts leaving the fan and tiee auxiliary ducts leadinz the air to the rocm stacks.

With a Velocity of 1800 feet fer minute of the air leaving the Fan with the fan delivering \(2,717,600\) cubic fect per hour the sectional area of the duct at the fan is: sq. Area ---144x2,717600/50x1800-....-...-.- 2622 inches The dimensions of the duct at this point are:-60x60" The cross section of the duct under the besement corridat wit: the air at a velocity of 1400 feet per minute is:Area ---144×2,717500/60x1400_-...-.-.-- 4650 sa. inches. The dimensions of the duct at this point are:- 9ex48"

TOTALS FOR THF RUILDING RV FLOCPS. RADIATION LOSS**AIR SUPPLIFD FOF**NFT ARFA OF FLOORS.
\begin{tabular}{llll}
318947 & 316800 & 1616.58 & RASEMFNT \\
397335 & 571400 & 2008.60 & FIRST FLCOR \\
546893 & 847800 & 2475.25 & SFCOND FL OR \\
5.55771 & 444800 & 2708.75 & THIFD FLCOR \\
546415 & 576000 & 2836.66 & FOURTH FLOOR
\end{tabular}

Total radiation loss per hour from the Ruilding-2,335,961 R. TW. Total air supplied for Tentilation per hour -2,717,600 cu.ft Total Net radiator surface required for building- 11635.32 sqft

ONALL PLANS



REEOLDS MECHANICALBVILDING

R.E.OLDSMECHANICAL BUILDING
FIRSTFLOOR PLAN
FOR HERTINGANDVENTILATING
EQVIDMFNT

\section*{.}

R.E.OLDS MECHANICALBUILDING SECOND FLOOR PLAN

R.E.OLDS MECHANICALBVILDING THIRDFLOOR PLAN
FOR HEATING ANDVENTILATING EOVIPMENT

570 0ace 5


REOLDS MECHANICALBVILDING FOURTHFLOOR PLAN FOR HEATING RND VENTILATING

Won ust Cun







```

