Msi sake et Pin tices _ LIBRARY Michigan State | University —~ toe PLACE IN RETURN BOX to remove this checkout from your record. TO AVOID FINES return on or before date due. MAY BE RECALLED with earlier due date if requested. DATE DUE DATE DUE DATE DUE 6/01 c/CIRC/DateDue.p65-p. 15 , 4 of ° sy oa EN 5 5 fol Lf, LW te a lidar Log a dead? . - —7 Ly H/ er Says VA BE. - L, L. Veaver ‘ ~ te ba we Ow 1-4 or “ee -4ESIS |27 Lal THS co “Q Prec: ‘2 In pravaring this report, the authors Raves attsipted to present the wethods used, citing the aut nor it cy Yr wetneds, for arriving at thsis conclusicns as to tne safety of the bulidins undsr consitjeration, Ths authors have in Sjeneral procsaded alons lines as is given in varicus texté cOCrs, but at tines have resorted to rethods which wey prove unigue, but owing to their livitel experience ware not abdle to devise better weans, For the conveniance cf any person perusing this report, the authors have dividel the work into sections nundsred with Roman minerals, paragraphs lettered with capital letters, end sudeparazsraphs nu.dered with the Arabic notation, Ths authors exoress grataful acknowledszement cf their 99 § suc an tes to v) a indebtedness to Professors I, i. Vedder, and %. A. Jelick of tng «alchigan Asricultural Coilesa for.any heisful soles Lons and criticisis ducing the inception and progress cf this works, They desirs to extend their thanis to Arohitect EA. So for the olueeurints which he so kindly furnished then. Thair indeotedness to thas authors and co-authors of the Toliowing cooxs is acnnowledsed; Ble rican Sivil Engineers! Pockat Tocx, ‘ansfield Jerriwan Structural Engineers Fandoech, | ilo = metemun, “echanics of 7 storlels, ‘ensfieid Merriman, Canbris Steal Hansdoox Cyclopedia of Archite cture and Carpantry Buliidin., réesicn ef Steel “ill Buildings, “ilo 8, vetchu, A Treatise on “‘asonry Construction, Ira 0, Pucer, Roofs and Eridses, ‘ierriuan end Jacopy. £64060 Table of Contents. Part I, Int roduct ion A. B. General discussion of theses, Discussion of thés thesis, Part II.Procedure, Part III, A. B. C. F. G. H. I, Loads 1. Dead a. Weight of structure, bo. Weight of fixtures. 2. Live. a. Movable b. Machinery 3. Wind, 4. Snow. Roof 1. Weight. ©. Sheathing, moments and shears. 3. Rafters, moments and shears. Trusses 1. Weights 2. Max. Bending moment. 3, Max. shearg 4. Resisting stresses. 5. Stresses in members, Girders, lL. Weight ©. Max. bending moment, 5. Max. shear, 4, Resisting moment, 5. Resisting shear, Colwans, 1. Weight. &. Stress. Column bases and bearing plates. 1. Weight, 2. Required and actual thicknesses. Floor including floor joists and covering, lL, Weight Re Bending monsant. 3. Shear 4. Stress, 5. Resisting Stress, Foundations including walls and partitions. 1. Weight #. Bearing stress. 3. Resisting stress, 4, Bearing on earth, Fire resisting properties. Conclusion, A. B. Remarks on this thesis. Remarks on theses in general, Part I. Introduction, A, General discussion of theses, Many papers and reports of the various designs and invest- igations of the works ofman are classed under the head of thesis. A thesis may be the advancing of a theegy and its proof by mathematical fomulae, again it may be an essay upon sane subject which the author desires to give all the inform- ation that can be found, in fact indications show that any idea which is put forth in the character of a report, may be Classed as a thesis, B. Discussion of this thesis. In thks thesis the authors have investigated a newly cons- tructed building and have set forth their theories as to the safety of the Lansing Auditorium from the stand-point of a student engineer. Altho the investigators have had no practical experience along this line, they have set forth their views and ideag,as to the strength of the various parts of the structure, from the ideas which they have acquired during their course as civil engineering students. The investigators are not desirous of being quoted as to their canments, but where they have noticed defects in work- manship and material they have felt justified in setting forth that knowledge. In those places where the authors!’ work has shown that the member is not safe, thay bow down to the experienced architect's knowledge. In the mumerous cases where the members are found to be too large, the authors have decided that their assump tions are incorrect or else the design govern rather than strength. The Lansing Auditorium is located on Walnut street, south of Allegan street, being to the south and west of the State Capitol. The building plan has a diamond shape, the points facing to the north and south, and the entrance being on the east side of the building. The walls are constructed of brick with a terra-cotta ledge around near the top and a sand stone course about one third the distance up the wall fra the ground. The roof is nearly flat, enough slope being provided for the running of water into the conductors, The roof is cons= tructed of tar paper on 7/8" sheathing. This is supported by several steel trusses and I beams, All the trusses are sup- ported on columas that carry the weight of the roof direct to the piers and foundations. The ends of a few I beams rest on plates that are laid in the walls, The ceiling underneath the roof is carried by the roof rafters, thru boards nailed to the rafters and to the ceiling joist. The balconies are supported on wooden trusses which extend from the walls out to and overhanging plate girders. The plate girders being connected to the columns supporting the roof trusses. In the =: =o re ee blue=-print, the design of these trusses calls for anchor bolts into the wall and that the parts of the trusses be bolted together with 1/2" bolts, Altho the authors looked this part over closely, they were unable to fing any bolts of any kind. The first or main fiocor is supporéed on rafters resting on I beams, the I beams being supported by concrete piers. Ali floors are constructed of 1" hemlock base with 1* Maple covering. The ventilating fan with its motor is between the ceiling and roof over the entrance. The fan was constructed by the American Blower Co. The motor is a 5 H.PlL; 60 cycle, Western Electric Motor of the induction type, taking 4 to 8 amps. at 440 volts and running at 900 R.P.M, The leads from the motor were held dowm by nails driven into a board and then bentover, thus pressing the exposed metal against a wood board. The blue-prints call for ventilators in the roof to provide for the ventilation of the dead space between the roof and ceil- ing, observation failed to show them. The fresh air heating system is located in the basement under the stage. Radiators are provided in those parts of the bui;ding where they are needed. The auditorium has a seating capacity of about 2400 people. The balconies and part of the main floor have fixed seats amounting to 1400. The rest of the main floor has mov~ able seats and will seat approximately 1000. Lighting of the auditorium proper is by the indirect method, rs — “a Pe later ier nd Demet Pa fn TE - rs Entrance and portion of North-east s de Part II Procedure. A Loads. : 1. Dead The dead weight of the structure is taken from the sun mation of the approximate weights of the various parts, The following assumptions and their authority quoted, were used inarriving at the values given thruout the work, Tar paper roof covering, 8.H.B. pg 4 2t/sq., Ywllow pine " " 69 407 /£t? Structural steel " * 69 490g /ft° Plaster ceiling " * 69 /8Q.t Common brick work " " 69 ae Maple A.C.E.P.B. pg. 367 /£t° Hemlock S.H.B. pg. 69 ab / ft? Stone concreter " * 69 150¢/£t Weight of structure Weight of roof -:140, 400¥ or 70.2 tons * ceiling 278, OO0# or 139,0 * " * roof trusses 68, 436% or 34.2 " " * girders 99. 82 or 49.9 " " * columns 19, 52 or 9.8 * ® ® column bases 3, 7938 or 19 * . . floors 478, a or 573826 " foundat ions, walls6, 423, 10 or Spe 55 tons a EO! ¢ ls 187620 Add 50°. for details 1,878.00 Total weight of structure 5,604.00 Tons Weight of fixtures. Weight of the fixtures was approximated, after estimating the weight of one fixture, from knowing the Weight of such articles, by multiplying the weight of one fixture by the number of such fixtures and then taking the nearest round number, Weight of radiators 5, OOOF or 2.5 tons ® piping 1, OOO# or 0.5 " * lighting system 80 or 0.4 * " * Seating system 2,4 or 1.2 * " * Miscellaneous articles. of , Lo. 2, 00 or Total weight of fixtures II, 200¢ or : " 2. Live, Movable The minimum live load for movable and fixed seat auditoriums given by the Chicago Building Laws 1911 and the Schneider specification is 100$/ sq. ft. (see S.H.B. pgs. 71 & 72) All live loads on the floors were figured with this assumption. Machinery. The only machinery im thig building is the fans and their accessories which are used in the ventilating system. Since One portion of this system is in the basement,the action of the fam has no great effect on the structure. The other portion of the system is supported on two channels which rest one end on the wall and the other end on truss 2. This load was used in the checking, and was assumed as 1900#, 5. Wind The Wind load was taken as 20¢/ eq.ft. of vertical projection (sec S.H.B. pgs. 71 & 78) Since the roof was nearly flat and the walls of the building projected above the roof, there was not any wind load calculation for the roof, 4, Snow. The snow load was assumed as 25¢/ sq.ft. of horizontal pro- jection for flat roofs as is required by the Chicago Build ing haws 1911 and the Schneider Specifications (see 8.H.B. pes. 71 & 72) B. Roof In arriving at the Weight of the roof, the weight per sq. ft. of surface was found and this value was then multiplied by the area Of the roof in sq. ft. In figuring the strength of the sheathing, the outline of 6, A, Melick given in Fail Term Graphics was followed, using the value for the bending moment as W1°/10 where W equals the weight per sq. ft. andl, the span in ft. The strength of the rafters was figured along Similiar lines as laid down by C.A. Melick. 1. Weight. Area of roof over balconies. 2(18.6 x 73.66) ------------------- 1860 aq. ft. 2(26.66 x 47.00) wee —- 2510 " * 2(12.70 x 14.00) Or eer Ce oo ee re we 256 * " 2(12.70 x 12.70) pee lel " * 18x18 x 54.4 ne 980 ' Total boo, Ci KC OR ee Ne ate Enea A sa i icteh WAIZO! SE a ti Abe (ee ic.(0),) ea ir eae EE Gay Ye reese hina inhale poi Speak ehh Se meas a ee eee ee ee a POT errs Tae Yong? ey ORES s MI iy i bf 5 i La! FI +4 § meee ee ee ee oe ee oe pee, we a prem Area of roof over main floor 54.4 x 66.4 on--~--.---- wewrene- 35610 sq.ft. 2(66.4 x 33.2)/ 2 -~--- rn ~-- 2220 " * Total BB30 * 8 Area of roof over stage 9x73.67 -— - we ee 663 sq.ft. 731.48 x 54.4/ 2 ---~--~~------+- 630 * &® Total 12593 " *® Area of roof aver lobby _ 71.48 x 4.19 —--—- ~ 300 sq.ft. 71.48 x 54.4/2 ——---~------------ 630 " * Total 93o * Weight of roof over balconies and stage in #/ sq.ft. Weight of tar paper roofing --— - sq.ft. f " 7/8" matched Y.P. sheathing —-- 3.5 #/eq.tt. fn "Y.P. rafters 1.625 x 40 / 12 -— 5.4 * Total 10.9 ® " Weight of roof over main floor Weight of tar paper roofing -—~—~----~---- 2.0 t/sq.£t. * © 7/8" matched Y.P. sheathing --~ 3.5 " " Y.P. rafters 1625 x 40 x 8/144 3.6 " * Total 51 " Weight of roof over lobby Weight of tar paper roofing _— 2.0 #/9q. ft. * 7/8" matched Y.P. sheathing —-— 3.5 * * © YP. rafters 1.625 x40 x 10/144 4.5 " * Total Io-o~ " " Total webght of roof Weight of root over balconies and stage 7160 x 10,9--— 78, 100% * main floor 56830 x 9.1 -- 53, 000# . _ * # — lobdby 930 x 10.0 -—- 9,300 Total 2 Since the ceiling immediately under the roof is supported by the roof rafters, the weight of the entire ceiling is figured below, Ceiling weight, Lath and plaster - ae 10¢/ yf ft. Y.P. joists, 1.625 x 8 16*® 0.c,--—-=-— Total gest, Use ceiling weight as 15¢/sq.ft. Area of ceiling under roof. Area over main floor -------~------=— 5, 830 aq. it. * "© palconies ------~----~----- 5, 867 fn * under " annua 4,571 * 8 * over stage - wa-o------- 1,302 " * * 8 — lobby wee ene eee eee =D i " " Total area 9 eee Weight of ceiling 18,500 x 16 qe-~~--—- + ee ee eee eee 278, OOOF 2. Sheathing moments and shears. Loads Min, snow load --—-----—-.. -..--------+-+---- 25,0¢/sq.ft. Tar paper roofing ----—---—---- s+ eee eee 2.0 * " 7/8" Y.P. sheathing —~~~~--~--------------~ 3,5 " " 2 Total 30.5 " * Bending mament--~ W1°/10 M- 30.5 x 1.33 x 1.33 x 12 / 10 = 64.6%§ S = Mc/I = 64.6 x 6/128 x .875 x.875 = 42.2 #/sq. in. Shear V = 30.5 x 1.33/2 = 20.2 $ = 20.2/.875 x 12 = 1.9;'/aaq. in. Allowed value for i is given as 1, 300¢/sc. in. (S.H.B. pg. 58) Deflecticn=5xWxl1°/ 384 xzExI qa - 2x 50.5 x16 x 16 x 16 x12 _ 384 x 805,000 x 12 x .875 x .875 x .875 d= ,000302 * loading deflection d= 16/360 = .00415 " max, deflection permissable From the above values it is shown that strength does not govern, 5. Rafter moments and shears. Over balconies Loads Nin, snow load ----—-.—--------~—----~—-----=-— 35,.0¢/sq.ft. Tar paper roofing ---------—~--—----------- 2,0 * n 7/8" Y.P, sheathing -----------~----------- 3.5 " " Ceiling weight ---~-~—----.---—-~----- meee 15.0 * fn Rafters,Y.P. 1.@85 x 40/12 -~-------------- 65.4 " "* Total 2 BOO Of" " Bending manent -----~ W1"/8 Ms (16 x 50.9 x 23.5 x 23.5)/ (12 x 8) = 4,680'F S =(4680 x 12 x 6)/(1.625 x 12 x 12) - 1,440#/sq.in. Shear Vv = (60.9 x 23.5 x 16)/(3 x 12) = 796 S = 796/1.685 x 13 = 40.8#/sq. in. Allowed value as given in table pg. 298 8.H.B. for Y.P. is 1,300¢/sq.in. On the same page the following information is given: "For buildings and similiar structures, in which the timber is protected from tke weatherand practically free from impact, the unit stress may be incyeased fifty (50) per cent." Therefore 8 = 1,300 x 1.5 = 1, 950#/sq. in. Over Main floor, Loads Min, snow load -~--.----~~-~------- ~----- 25,0#/sq. £8. Tar paper roofing —~----~----~-.---—-------+-- 2,0 " * 7/8 Y.P. sheathing ub eee cnn es OF as ore Oe Ons OH Oe oe es oe Os OO om z.5 e Ceiling weight —-------------~----.------- 16.0 " * Y.P. rafters (1.625 x 8 x 40)/144 —------ 3.6 . . Total 495.1 -— i . 1 Sa ae SD "eee — 2 eg wave 7 a oe Bending moment --~-- w13/g a = +28 x 49.1 x 16.61 x 16.61)/(12 x 8) = 2,260'# S = (2260 x 12 x 6)/(1.625 x 8 x 8) = 1,560 #/saq. in. Allowed value for 8 is 1,950 ¢/sq. in. Shear V = 49.1 x 16.68 x 16/24 = 5350# Over stage. Since the construction above the stage can be treated as beams or as trusses, values were found by both mathods, the method of beams given here, and the method of trusses given under trusses. Area of roof --~----------- ------.-+-~+---+-- 765.8 sq.ft. Loads . Snow --— 765.8 x 25 —~-----------+-- ee 19, 1604 Tar paper roofing=—--~ 765.8 x 2 -<------++ ~— 1,531¢ Sheathing Y.P. —----- 765.8 x 3.5 w~vowee 2,6857 Y.P. rafters -—--- 35x40xl,625x12x17.5/1788- 3, 385# Total | » 6 26,762/765.8 — meee ee cene eee = =—6 35H /sq. ft. Load per rafter 26, 782/85 weenie meee (7632! Bending moment --~---— w1°-/8 M-~--—- (35 x 17.5 x 17.5/8) (16/12) ---- 1,790°¢ & ----- 1790 x i2 x 6/(1.625 x 18 x 12)--- 550#/sq.in. Allowed value for 8 is 1950#/so.in. Shear V ---~ 7763/2 -------------~---+-------+----- 381. S# Over lcbby Loads Min, snow load ----~-~-~-----~----------- 25. 0#/sq.Zs. Tar paper roofing ~-----~--~-------------- 2.0 " * &/8" Y.P. sheathing --------— ----------+- 3.5 ° Y,?P. rafters 1.625 x 10 SO OO Oe oe 3.4 " " Ceiling weight ------------------------- 15.0 . . Total 48.9 Bending moment M ---- 48,9 x 17 x 17x 16/(8 x 18) wn —2, 350! F 8 ---- 2,350 x 6 x 12/(1.625 x 100) —-——1, 040#/sq. in. Allowed value 1, 950¢/sq. in. . Shear V ---~ 48.9 x 17/2 ---------~------~------- 5534 C. Trusses The weights of the trusses was figured by multiplying the lengths of the various members by the weight per foot and then adding 50% for details such as rivets and gussett plates. The max. bending moment was found by finding the reactions due to the loads and then multiplying this reaction by the length and then dividing by 4, The max, shear was taken as the reaction of the truss. The resisting stresses was found by multiplyirs the aiicwed unit by tre area cf the tiece, The allowed unit for tension in steel was taken asl16000#/sa. in. (see 8.H.B. pg 57) and for compression 16000- 70 1/r ( see S.H.B. pg. 80, table 9, A.R.E.A., Chicago, and Ketchum §pec,) with a max. of 14000#/sq. in. The determination of the stresses in the members of the trusses was found by the use of the three fundamental equations of equilibrium Summation of horizontal components of forces equals 0 © vertical 0 * " moments of forces pre any point " 0 The stresses for each member of each truss @sing the max. loads are tabulated ubder the force diagram of the truss. 1. Weights. Truss 1A and 1B fhalf-trues s) 4 angles 6 6xg _33.23' @ 28, 7#/ft. ~——— 3, a0 2 eet 7? @ 4,1 ta 574 2 9'@ 3.62 8 ennnn na 65¢ aes 5.5! e 3.68 © ----------- ot 2 Quxexb/1l6 9 4,5 % eevee 8 4 * ake $'@ 4,1 " o------ 2 8 5x5x9/16 8.5' @ 14,5 "% anean--—-- 2 2 " 2x2 4. 5! @ 3.62 ® SS ee 334 a 6x6xz 9' @ 19.6 os o-------——- —_ 3 1 Plate 14xz 13' @490%/ft. = 31 Gussett plates aes & 6x2xe @ " 4904/£t 47 otal Weight of truss 5 556 RS a8 ms, 700F Truss 2(half-truss) 2 angles 6x4x3/8 27.5' @ 12,.30f#/' ------ 675¢ eae 37,2 @ 8.20 8 a-—-—-— 4 ; " 6.5! @ 5.62% =<—— 165 8 7.8 + 5.60 8 amen 21 2 " Sieice/a , Ot 7.60. 8 ete ” Gussett plates 35 Total i Weight of truss -- 1,885 x 1.5 x 2 -------5, 660# Truss 3A, 3B, & 4 (half-truss) 2 angles Sebzs/s 27.8' @ 18.30¢/' ----—- 6 66# 2 27.2' @ 8.20 & = 444+ 6 " 8.3'@ 3.62 " -—-- 180¢ ; 2 ® 16 8.3! @ 4,50 ® Sn 7 oe 2 . 8.3' @ 4.90 ® ----- S1l¢ 4 ® 6.7'@ 3.62 % ----= o7¢ & " 6.3'@ 4,50 © ----- 113¢ 3 ® 7,0! @ Total Weight of truss -- 1,681 x 155 x 3 —-~-— 2, 520¢ i indi Clare TI IMDi 1 = YONI YOR | an a Sob hori EEE Bot). Role ae fies) | | | Pairk 5 camer Ce odie een Mie) ao: spe wie colar ates COnOep re Ey clot Mie geile eric cles ea Eta) os a oe Ee “ a Deen v j : } . : : i — « - J . - — - . = : ‘ ‘ + ‘ ‘ 1 1 » . + 1 ; : - ° : - oo _ ; 1 wo . 1 7 : : . ; - mee . - -% - - - - = = ow - . : i 9 : ~ f) d : a 7 yy Lo ye -- 4 . he 4 : b . a ee ta a ee et Oe et -cpphea - 4 stowiee. ar rps nt ae a we Le ee rem e : “4 Tbe an - - - NE a: ee i et rte ene oe e. -_- - a an 951 AWS 9141 £9 AWM "MAAKIM “1 ‘a DS ‘YSONIdS ‘HD SISSHL IHW. ge “WE SsgnuL mot OG =m porebz =a ao’ = $8023S pitn pemouwy y af [ Yt eos = ped oO £(B Loy o/ 9 &. & € ’ a “ ere x eee a a a. — | =| rf oS —__—f & ' I J Ne x et | $n in * 191 191 d «e ames - - L - “ +. se a . oo ect " - TB ses 6 wpe et os meld so + , 0 ee ee i Oe foe _ le | wore : aa . . . : _ : * : -o. pee 7 4 ‘ i - a - - : : . . rm wy . . 4 f ' ! y ‘ * 4 r - cd * 1 Lc L ‘ 2 comin tee i i : , y h ‘ . ; ! ' : . | : f ' : ' ‘ Z ‘ f ' : ' 1 1 : ‘ o ‘ 1 : ~ 4 ‘ - : ‘ : ‘ ‘ : . : ” . a ‘ + , r { , 7 & , . ’ . * 4 : ; i . 2 : , t . . . WO ee o poem ee te ene nee eee : so. ane me eee eee oe pee ae Lee a we , tee oo ~~. . ‘ : . ‘ ‘ 1 " 4 ~~ { . 4 -, ‘+ . . | ‘ . . ' Po , oy - ve , - oon , . .. . 1 . in . ' i \ 4 ~” moo. oe — - — 7 © . -~ > wre - — 8 as . . - . one ~ —_ . at a: ee ue - - o~ _— - - - - m~ ~ - - - i , ' 4 oR ee ee (1091 ee 9h we at Oh. She ew Rem en ne tae ee Vs Dea le ee ary, ot ” wi: ae ' Sok te See a 4 wee oe eas: . - - : : . é ' i - t . - ’ oy - ‘ . - 3 r f - oy! , \ 4 , i , 4 1 . oy™ . . t : i ; { - - - s meee ee = ~ - ome oe - - - ~ ae - * 2d ' bos a - : ~~ . . 4 : ml a . ' ce a) . 4 . _ : a so aes + toe - : : - 4 * ; ‘ . - 1 ' . " , ‘ i . : A _ L : : ae fo eee . . : - ~ as a 1 . . . . - : . ; . te a co . 4 woe - y : i - . 4 - ae - ms - - . . : 1 oo : J . _ : - ae ~~ -_ —_ : - wee “ ~ oe. -- race ae - Fe wet - -. oT. . - Moe - -- . oe - _ ‘ - - co - : - -.- ee - — : . , , 4 . - , - - . a * ~ , - - - ~ : - io of - , 1 ” - a . - * oi a ~ e ' y \ 7 ae -_— . ~~ - . - von j ‘ ® ! . i 1 ‘ . -- . ree : tr: ~ ~ of - + : * - 5 . es u : vs .~ mee - “ - ow . _ . . é . _ . oe - ~ . f . . ° - 7 >. - oy ' : - 8. : = - - = - 2 e : ‘ oo. . | - -—a> 2 = . ra oe ~e J. ote - r x - . - a . _ : : , a - - aes ~ tom ~ rn - — ae —s - + -t oe : . - = . - cor ‘ - * ‘ bo - noe \ 1 ~~ - . , ‘ rns - mo _ . . awe ee ee te a . . a : ' c a . ft ' ‘ _> 2 .- \ = . a =. - - - mee, + w- Lih - ee eee ° See 7 . we ene -¢ ¢ 3 =! 3799s 9'bt §9 “7WeaY ‘M3AKH3M~'I°9 ‘YU SINIdS‘'H'S WW SISJHL ‘3'9 b SSNUL | s(auoy o/ te 6S = ses @ In f5 f* ac att + 3 et eo - mor eo ae Ae she arvese re em em ee I Re wT ee o . ! . t i “ - { + @ : a 1 : . 1 a f 4 | | , { : a , . : : : . : t - , q * i v } : ’ ; : , » es 7 + I 4 . ” ‘ - 1 r , a . i r 1 . ia . ‘ - t : ‘ t ir . ‘ x , : : t t t ‘ : ¢ . . eet oo i ont oe . e eM --- wae - . te tae ce . b as , « , : » secu eo ~ . eee wl irae won ae on : - co Le ? . Set : , ; . - po t os . ' ‘ - 7 re - : Poa . j t : . , : . _ . $ " | wee - 9161 “9 2IWdy 9 =f 3TH9s ‘M39N3d8 ‘HS “MaAHaM “9 “OW W ec gISaHt = °3°9 Qo 6" HS. sons 4 alle € = ™M gezo be 2% a&9S S90 ~ ay 260L%) =u y y » .b = 8S @ fleuey g y - a i. Boe oe a J \ z= =) ‘lo b b= ) ‘n ~ € n hh 9 vt d Qn : ~ - a & coe? wee eee to 1 re . ee , , ; oat a. Le : ae we . . wen : . - os . ae oases Fm mow ‘ ‘ , : : ~ : . Ca - : . ; . i - ‘ : on : . a 5 : : . - , : ‘ : . : x ' + r ~ a : a a . 1 2 “ . ' , # ' J , i . se + ‘ f ” . ( . f t ‘ : . “ s ~ , ‘ - | 2 2 a : - _ ! i : . . . 3 ) : ' 4 w ‘ ' 1 z « ‘ "y, yu Cc aetna s, 1 t * . ‘ - - es sa an = ~ - ee - : os ° . melt ny re =. rie sew . ama. to ame te Pe ME eg - femeices sit we, Dee ee Weegee ae ee ve wo mmt ne ogee : - we vee f . . ‘ . ° 7 . est a cal - ve bh we, tft 5 3 a 2 * . “ qs i* . i \ f t . oy . . . . €. t be 1 \ : . bE , . to. - - _ woe - *. ’ - Bo +t ‘ : 5 78d Bot 5 Q ‘ 4 co FI - = - a ote 7 Ra eS ow ae ot wat 2 ena re EP. Fe I FBS Tet z ‘ : 5 TZ. Pe, DR abeng TS ae . Nae. t : . = : bea - - . % ' ; i : - 4 . - . 5 ! eer . too wo . aa net wo qaae ae _ 3 o r o : ; ‘ ‘ q + 2 . . ¢ . . Vis od - ‘ i ; - , : ‘ i re . = ~ =. ~~ 3 . “ - . - © ~ t 3 ? 3 ~ - whee . . . , ’ ‘ ‘ . i 7 ~ de wens _ . a so *: - i ‘ 1 7 oF toe os : : . \ 4 . : : - i | : j t . oo. + . : - mod . —_ pave §. : cs { | - , to | be , 4 ‘ b > - - _ i ! “! : : 4 - : Ly 2. : . : a _. Jf : : 4 t ~ a 4 . + ~ , en soe . _ . a . ~ . eo , any 2 k ~ * - —- Sel we 2. Le - . : ‘ + 1 > & poe + lL, a on 7 t ‘ 4 wt on ' ; . a ee . L hoo i 1 a _ : -- - - . a © -t — - . o . oe 5 . ~ a : ' ¢ sod 7 1 RS cs , -? ‘- 3 - - . : ! n ido. ' * ‘ wh wt . : ” 4 , oe . we RL Gs _ ¥ _, WI a - ae ee : c : i” . : . mv ? ' ' : tm 1 - 3 : ‘ . ‘ . - ~ _ 7 wh & i 3 ? a ns Sa 7 ‘" . nos _ my i : 4, : ae a we ee ~ wae ae Ae at - 1 : be . . ba a : : be. . Lo ae os Lt ' ee : : - i - = eee . aot ae - Srl lm . rm . n - . . Y ~ : vee se - ae. . t a? : ‘ ‘ 7 - a3 . : _. . ; et TA . . " Qo ® re f wt : + . , ~ - wee te ' : . ~~ . : “ _ “ 7 re \ we . meee o d ‘ ™ - ' wae Ts ete ~ * ° . : : . = bee moe :- ~ - ant . I _ - - 1 . . - . wa DON eet - wee : + — roy : ¥ : ack " % L . . + 8 . t . yt ~ Toy ste . eo. _ _ . _ PL . — si 1 SL th . ce : : 7 Ne. em - . woh. - - + : oat i _ ; ae - . . et : . Te e! : * . > - y . : . . . . «. ae ‘ y * . ; - : o ~ om Ske oe, _ a : ‘. ‘ oo, 2 4 3 - wee “ , F , - J . ke: : x ” , = 1’ . . : - ‘ - wT < ae ny - ho, { ‘ o - moog ji : . : - . oo - ce wo. : a 4 A e _ w I we ! + ; , ° . : oy e " ro - - - - eo tel FBT ae . ty 3 . . was + Lam - i - I ho a ' 1 . -—— os ~: _ - Cad 7 . i 1 a - -- oe ef - 2 ane ee ~ . 1 “ a” J. . - _ i we - a 1 _ . oo - oe _ = late we naee ‘ _ . ' ‘ . 8 woe eee . - = - _ at oe : : 3 - . . a - ~ -- - | ne 1 . ‘ ' : , at, —. — aoe ~ . ae - \ , 4 . _. . 4 -- tee ' = = ate - ean, ~ o£, oe or ae 7 1 + - . a - - ” x Bento St. tw eee ~ ot oper + ” i cal - ! * - oe hoe Me ee Le eR ab wD ewe ae _ eo . , ° *. $e, . . ; a PIbt °S WISH 7 2! JWI WAIN3dS “H'3 YAIAVAM “1°71 Do HW SISSHL 4°) SSny¥l _ ANOJ 71d 5 a7 EZ 62 Jar | par | £2 bel [¥en $to4L4¢ O%E S'OS Shi o%e o'4¢ SOs S'3f | ,59'8S “warp zexG/ W2] gr xGs CE] zexees ay / | vixGey Cass [ze Sor Az fer ads Sag Cfuxhes cy € zi Mr tyel dn — syoy PP? g » 4 ?P oH? Tq 4 P 4° gy ADT Kt ay,/ Ae 9 oles | ,2 | ft 4. p22 e N , 4 ” & q | ro’ Pst 9 q I | A d ~o q BALCONY TRUSS AR C.E. THESIS M.A. ©, L, L. WEAVER E,H, SPENCER SCALE 1"> 4° APRIL ®, 19/6 fa 1 , ‘ ~ q * 7 $ rua! A ~~ A, 4 sore ee ee ree me PO we « een OP eee ate A Od dee ee pate ee te Pere renee sees epee te oO AER ge omy = ermine mo a ~ & : “ 7 ores we wee pte ahi ee eee ve ere oat ep ee ph | - ee ee ee ee -- vote agt ar fh - 3 wate fee ne a were ee = mie ~ . 2 LAE en be” wh, Ay iad a a . | | : | du. 2. deer deere ood wo Pe OI Ey ee ey PUTS. 2 23 we i$o- oR eth | oe { ce vhowe, Bat tb8 a . ember (a) length 8' make up 1 5/8" x 8" wood. 35 x 8 x 13/96 x 8/12 x 40 --~-.---- 10, 150¢ wt. of rafters 9x 10 x 1l5---~----- - 2+ nae een 4, 358 n 6") eeeiling Total IT,500 =" on rafters P .j-—-—— 11,500/70 —----.---~ -~+.-----— 164,5¢rafter @eeaction ----~ -~ 8 x 164,5/4 ----------------.-- 32916 Moim----- 369 x 12 --~---~~--~--~-~-.-~------— 3,957 "Ff g --..~- 3957 x 4/69,4 —------------- 328 #/sq. in, Member (b) length 6! make up 1 5/8" x 8" wood 6 x 13/96 x 8/12 x 40 ---~~-~-.- ---~------=-21, 74 wt. of member 62.3 & 21,7 -------~-~~-------~------- ---=- -~- 104 # load 104/5, RQ ew eres eres eee eee G+ - 19.8#/sq.in. ‘ember $9) length 19' make up 1 5/8" 2 10° 19 x 10/12 x 13/9S x 40 -~-~~--~~-..--~ --- 86 # wt. of one rafter 10.5 x 32 x 15/24 ---~-~----~----~~~-~- ~~ 26.2 " ©" ceiling Load on (c) fron (a) ---- 82.3 applied 3 los! from rt. end 13,5/15,5 ----~---~--~-----~~--~-~~-~---~~-~- 82 ~82 x 19 ------~--~ 26,86- horizontal distance between supports 082 x 9,5 -------— 7,77 " to force 86? ©8282 x 5.25 --~--=--- 4.3! " " " " 25,.0F 682 x 10,5 ------- 8.6 " " e 8 82.37 Summat ion moments about rt, support equals 0 2000 X 4.3 —--~---~-~-- a a me ee es eee 118.5 '#% 86.0 x 7.77 ----- ott 20 mee ee es eee 668.5 'F 82.3 X 8,6 mH 3 oe 2 ee 709.0 '# Total 1450.0 '# L490/15.5 --~-~-~-~--~--~~-—--- Reaction ------- 96,0 Mo ame (98.0 x 7.77) - (26.3 x .8) -----~~---- 8700 "¢ S ---— 8700 x 5/135, 4 a n-.--e nn 321 #/aq, in. ldember (d) R ---- (38.4 x 16) & (14,5 x 82.3) _ 103¢ M---- 103 £3x12 wane 3708 GF S ---- 3708 x 6/234 wen 2 HH He ++ 95 #/sq.in, Max, § ---~~- 95 @ 515 ~----~-~~~~----~ ~~~ --~~-~+- 610 #/sq.in,. D. Girgers The weight of all I beams was assumed as the weight per foot times the span. The weights of the plate girders was found by figuring tne weight of the web plate , the cover plates, flange angles and joist support angles and then adding 50% to this value. The 50% takes care of the details such as rivets and stiffner angles. The max. bending moments wewe figured frau the assumption that the reaction caused by the loads was a single concentrated load applied at the center of the span. This doeg not hold true for all cases but after several trials the authors came to the condlusion that the results by this method were as accurate as by the other methods, The max, shear on the girders was taken as the reaction. fhe resisting manent was taken fran §.H.B. Table 7, pg. 23 for all I beams, and the resistang shear fron Pable 11, pg. 28 8.H.B. The resisting moment for the plate girders was found by the methods as explained in table 87, pg.204 S.H.B. For all beams acting as lintels, the wall load was assumed as a triangle whose bass and altitude equaled the span. Where the span was great the full load on the beam was taken. The authority for this action is given on pgs. 90 = 100 of the Cyclopedia of Arghitecture and Carpentry Building, Vol. $. 1. Weights, Al ecawcnesus §5 = 182 1000# AZ ~~~ 55 x 18,1 1000# 2 See 55 x 18.1 1000# Cl---~-- 1 wed plate 42x8/8x47 -~~ om 2 cov. * A? xl4x3 --~--~ 2236 4 angles 6x6x7/16 47 --— 3240# 8 4x5x2 x 3.4 ---— 302 a ® x 47 ---- 52 Tt) eaaclnceone 1045 Add 50% for details52@5_ Total waewan——= 157555 C2 --- same as C1 157354 i ap G@® =e Max, moment -----—695 x9,3 = (400 x 5.2) ---~-—-—— 4, 320!# Girdera Li, L2, L3, & LA. P -+----~-~~--- --- ~~~ ~~~ + 194 74 Reaction (1947 x 14) & 788/8 -----~-~ ~ -~-14, 000 Moment 14,000 x 18.79/4 -~~---------~-~~--------- 65, 800' F Girders Nl & NZ Span 10.55' supporting 8" brickwall 29' high, Weight of wall 10.55 x .665 x 29 x 120 ------~-~ 23, 200# Reaction 190 & 33300/2 ~~ 11, » 7904 Moment 11790 x 10.55/4 ~---~----~--~--~~-—--~----= 31, 100! # Girder N Span 7,5' supports 8" bgickwall 29' high Weight of wall 7.5 x .666 x 29 x 120 -—--------~ —= 16, 500 Reaction 135 & 16, 500/2 ann ~~ = 8, 385 F Moment --8,385 x 2.5/4 -----------~--~--------- --~ 15, 700 'g Gid@der O1 & O28 Span 13' supporting 12" brickwall 7.66! high Weight of wall 7.66 x 1 x 13 x 120 ---~------------— 12, 000# Reaction -—- 834 & 12,000/2 —--~--..---- -.------ +--+ 6, BS4# Woament ---——-----. 6, 234 xX 13/4 -=------~--- +--+ ------ 80, 200'# Girders Pl & PZ Span £26' supporting rafters 12" o.c, Loads 1104 @ (105.41 & 54) x 13,5/2 -----.----+---- 2,170 Reaction 2170 x 26/8 nee eo me ne me ee eee a8 Z00# Moment ~-------- 28,500 x 28/4 ------- . - nee nee eee 183, OOO! F This exceeds the allowed value by nearly 30, 000'¢ therefore the aswumption as te the live icad on the stage floor mist be wromg. Girders under main floor Po wee ne ee ner eee GBB KX QB em me nn nme eee eee ee = 19108 14' span of girder$ 16" spacing of rafters 14 x 12/16 ---~-~-~~.--------.- 10,5 rafters supported 1910 x 10.5/2 ----------- 10,000 & 220 ---~ 10220 -- Reaction Moment 10220 x 14/4 ----------- 9-1 eee womene--— 36,000!2 3 kax. shears taken as greatest react ion ember Max. Shear Ba mena te eno ie ete ee eee eee. 24, GOOF BZ mannan nee nee 24, 600F Bo ween eneen ne mre me eee D4, 600 C1 man... nie noe ee ee ee eee 65, 800 CR mm nn ren ere ee ee ee re me 65, 800 DD mre ee ee ee ee ee eee 68, 9008: BL mere en een ee em ets ee ree 12, 886¢ EG rete ee oe ren ne 12, 886¢ EG enn en me er es 16,736 Bmw mn ee ee cies me: 16, 736 E65 ann ere eee eee eee eee §=©=—6-18,) 580F E6 —-~--- ----------~--- woe 15, 5804 Fl --~---~--—--- pie oe ee 3, 02 FQ emer nnn mie ee 3, 0244 BS --—-——- oe ne ere 3, 0244 F4 --~---- we ee me meme 5,02 GI mm nn eee oe ee ete ee ee 14, 1754 GQ nae eeeee = 140175¢ Hl me ee te ee 7, 588¢ FG ww ns ee eee ee ee ae 7; 3882 TL een me ie ee en 3, 024F LQ mmm mnie ie em mre ere cre ttere 3, O24 Ki] mene nn. ee ee ee te ee ee 6954 U2 mena ne nee eee eee 695¢ Ll 2--..-- weenie eee ene ees 14,0008 LZ ww eer nw er re 14, 0007 LB me nnn we mn Hee ee ee 14, C00# L4 wee enn ee re ee ee 14, O00# FLA TE GIROER Cue. THESIS AAC LL. WEAVER E,H. SPENCER SCALE I's 2' APRIL 7, 1716 L ' i t aS { \ 3 t ; } awh. ) — » t ! — { ‘ S 4 { ‘ + { yoe { , , | ‘ \ ‘ 1 ‘ TO ae ey gee f “ : ‘ ; ‘ ' , f ‘ ! , \ ( Pod; | en ee | . 1 L t - 1 {| | / 4 . oe pe TY an Popo a | : ' 1 : i { 3 | Hot | 4 ' f | ( ‘ . . | 5 : : : ! j : | 1 ' | | f jG | | : 1 ' t ‘ f r [ ! ' | ! | > a i fo 4 | | \ i { ! i . : ‘ ‘ t : i i : i ‘ , | f ‘ ‘ i . : | 1 ' i t ‘ ' ! : 1 i i a i : ‘ u 1 { t 4 i ' . t : * - ’ | 3 ee ee i ! i ‘ : ‘ ; j | . : t i : i { ; | | i i y | ii | ; Pare dee | tee = camber m Se a {= ; : - ' r! i : ' ’ | i t t zor ' | ‘ i 4 1 ; | ar: : oo oy Fok Poy ot i oe EE PE EG EG : : pod j \ ' ; | f ; { ' | be i | ; : 4 , t ‘ t . ‘ 4 ‘ ’ bos 4 ' \ { i \ t , : ; : : ‘ : 4 t | Ho to! roy 1 + . q t , ‘ : ‘ ' | ' . 4 : ‘ i ’ ; : : i ! ! oF Lo 4 wb weet aes om i : + feb bm, | | | | j { { } ‘ ; ‘ ' , | : hot | i bof yf i ' ' } ' t j t , 1 ‘ \ { | : . ‘ ‘ : 4 ! i ' ‘ t : PE ty | Pid. . bee . bot foot ~~ ~ ntl . i ' | { f ' $ 1 f , _$ i i | ' . : , | * i 4 : : } i " : i, , : 5 iJ ‘ ! J f 1 \ . YY | : ! ’ 4 . a Pb, por . ' ‘ 1 . 2 . t i, ! | t { \ s d i : ‘ - 1 4 ‘ t ' t ' $ ! ' f { ‘ : : t ( | i | ' i | ' { : t t : : ‘he . : . . | * . ee i : , ( ; ‘ i i | : teas j ~ ob ok _ 1 Fe oe ote b-- megane ee le ome ado yrs ar! : i fh Y . . : ry : ‘ | ° ) ‘ : te tgs . ) . 4 } a } ' j ' . i 4 ry F ; ’ ‘ « , ' : i : ' { : ! ’ : i ' 4 t ‘ & . b } : 7 \ : to 4 : / t I ' : . | j Bo : : . i ! ! fo oP Po : : : : oa . i! : . \ ’ : ' - 1 4 ' . : | i | ' ‘ i i . | ; i ! 4 ook bee fee eek ce eeentces eg ane: t- we eer ww ee bw tees ~ 4 a ‘ 1 ay i : | i roy , i i t ‘ . 5 i wo 4 | { { 4 : : ‘ ! " ‘ ‘ . ' ' ’ t ' : t 1 oS ’ , ‘ 7 \ fot oo yy ! a j ' ' i i . t “> t j | : i : i | : ' I * \ d : q : : : j ; : - ‘ { ‘ i : » . t ‘ . : f ’ " , ; ‘ ' i ! ‘ : : i ; 1 t 1 t ‘ : . : ! 4 d . i . 2 Lower de oe ote * 4 ~ 3 ae Boe . - - j boy, a 4 ‘ . ‘ 4 ! , : 4 é : i 1 : \ : i | , | a | . tO , ly i - i , . f+ bo - 2 ? ) 4 ' . "och lr ° ' . . 4 DO ne eae ve 4 . . , ! : : . | ; . Ae 1 5 ‘ ic: I ( i ¢ i 3 ‘ ' 5 ‘ : - : i hoe! - i : 1 3 : ~ a : 4 ' 4 : q 4 ' some - aiid mors ‘ a ae 5 : } ' : ; : \ ' ‘ { : i ‘ : t : ‘ t44 a ‘ \ - A ‘ . ft 3 i ! ' . ‘ ” = \ } ; | : ‘ 1 i , - : a te eet ee eM 4 ' — ———s = —~-—uy Member wax. shear MI] mame ere ere een eee 11, 7907 MQ mena nee cee eee eee ee = 11) 7908 No eee nee nn ee ee ee eee ee 8, 3852 QL sence rereeeeee cere eee | QB B4d OB momen ne ie ee te ee eee eee ee 6, RS44 Pi] aman ec ee eee 28, 2002! PQ Qeenn ene ence eee 88, 5002! Under main floor -~----~--~------- 10,220 4, Resisting moments as taken from §.H.B. pa. 83 ember Resisting moment A] amen nner ee eee fe eee eee eee 118, 000'F AB mmm nnn Heme eee ene eee oe ee eee 118, 000 tg Bo ete ene ee ee ee ee erm ere 118, O00! # Cl back to back of angles 42,5" ------ d dist. to extreme fibre 21. 758 ---——- c Honent of inertia 4 angles 6x6x7/16-------- 7838 R 1 web pl, 42x5/8 ----~~ 2858, 8 " * " 2 cover pl. 14x ------ ~6472.2 Total I iiaz.ent of inertis of rivet holes (¢ rivets, 7/8 holes) location number 1229 area dis.to M@ of hole I web 3 1ix7/8°S.63 19,50 flange 4 15/le6x7/8 3.28 21.365 1480 Total ” £00 - 18,169 - 2,455 ---~-~------ eee «15,714 int t/5 = 16, 714/21, 95 —_————— = anne | 784 in? § -------=- 16, 000¢/ sqJ/én. M anemone 16,000 x 784/12 ---------~ 965, 000! # C2 Slee les ees OO wm 0-1 ION OC a GEO Oe Ome &-e oe o-oo er J) 965, 000 ig Do mene eeeeeeee- game as Cl ---- 968, »oooN BE] enw nn nee eee eee = 1187000! EQ cmee cee eee een 1187000! | ee 118, 000! E4 enon. oe eee pe ee ee ee ee 118, 000 '¢ E5 wenn eee ea eee eee eee ee eee 118, 000 '¢ EG anna nee e meee cence ees amen: 1187000 4 BP weer ee ee nee ee ee eee eee ee 33, 000! FQ mennn eee eee 33, 000! ¢ FF ceeenen ree ere tee eee ee ee ee ee ee. 33, O0O'# F4 Hane ene ee ee ere eee 33, 000 ! ¢: Ql] ---..... -- ee eee mee 118, 000 t# GQ —----- ee eee ene eee Cee ee ee 118, C00 't# H] sp ane ee 2 ee eee He re 50, 000 t HQ ------ ane Hen eee ee ee eee eee ee 60, OOOt TI] nnn w wn nee Cerne ee ee 38, 000! # Ile a an ee Oe © © ae em ene1O1 6 awe o-% © aoe. 38, OOO! #: Member Resisting moment 6 eee Sinieie ~-- 18, 00014 KZ walsictcnae o1ek 000 '¢ L1 -a-- nnn nn nn ene =: 79,000 | LB qa na rae nee enn ee eee 79, 000 "¥ PS. RKO Riot eaee ese 79, OO - L4 qon- — ~~ + 2a ee ee eee eee 79, "0Q@ 12! El Serer weiecmeinaten cen seaneees, BBLOOOUE UZ emma ee ne eee BB, 000 is 38, 0001 Ol -----~~ ~~~ ee enn --— 28, 00018 2 28, 000! Pl . ~186,000'¢ PQ ----~ a — + - -----~------- 156, 000 IF Under main floor -----—-~—--~---~--— 48, 000'# 5 Resisting Shear.(see pg. 28, table 1], S.H.B.) Member Resisting shear Al 82, 8007 Az : - 82, 800# Bo wwe 82, 800% Cl Area of web--~ (42,5 - 6)5/8 --~-------- 22.8s8q.in. hears< 2268 £-10) 000 amsaceeren ces 228, 000# c2 tices meme PR, 00 D 228, 00 BD ese sav ee eee ae nook EZ -----~ 88, 800 ES o- 82, 800¢ E6 ’ 8B, SOOF Pp Se ninmnrseecee Senceasasa, ‘S51, 000¢ To ees aeaonena———= 81,0008 F4 -~ 31, 0004 Gd marten sum echaatiser et seces 16a. 8008 H] ane Henne eee eee eee 826, 1007 WS = othe 26, 100# id -- -----~ £1, 600# IQ meme nn eee et eee eee 621, 600F Kl wee ee eee ~ 24, 000F Ke ~ 24, OOO# ae ae 61, 500# LS él, 500# itmeneeos a 61, 500¢ M1 el, 600# Nae ecesetwe ee daaa eames) ed BOOP N -—--— 21,6004 O ii wees ccs 21, 600F# Member Resisting shear 02 orton oress porns seer re se £1, GOOF Pl worm ne-.- een He ee Pee ee oe Re ee ee ti 100, Ooo} PQ mmm nw on ee oe ne ee oe re ee. 100, OOO# Under main floor ------.-.----+--------- 42. O007 Comparison table for girders Member Depth wt/ft span wt. Bend.w Bs. Shear Res. 8 Al 18" 55# 18,1!1000¢ 112.0 118.0 24.6 88.8 AZ 18 55 18,1 1000 112.0 118.0 24.6 82.8 B 18 55 18.1 1000 112.0 118.0 24.6 82.8 Cl 43 47.0 18.7K 775.0 965.0 65.8 228, 5 C2 43 47 15.7 775.0 965.0 65.8 228.0 D 43 54.4 14.9 920.0 965.0 68.9 £28.90 El 18 55 86.6 1,473 88.5 118.0 12.9 82.8 Es 18 55 26.6 1,473 88.5 118.0 12.9 82.8 E3 18 55 26.6 1.473 111.5 118.0 16.7 82.8 E4 18 55 2646 1.473 111.5 118,0 16.7 8.8 E5 18 55 26.6 1,473 96.93 118.0 13.5 82.8 E6 18 55 26.6 1,473 96.9 118,0 1325 82.8 Fl 10 25 16.6 .416 10.3 335.0 3.0 31.0 F2 10 25 16.6 .416 10.3 33.0 3.0 31,0 F3 10 25 16.6 2416 10.3 33.0 3.0 31.0 F4 LO 25 16.6 .416 10.3 35.0 3.9 31,0 Gl 18 55 33.2 1,83 109.0 1328,0 14.2 82.8 G2 18 55 $33.2 1.83 109.0 118,0 14.2 84.8 Hl 2- 9 21 12.5 .263 260i 5 85.0 7.4 26.4 HZ z- Q ai 12.5 .263 23.1 25.0 7.4 26.1 Ii e- 8 18 6.53 114 4.7 19.0 $3.0 22.6 I2 g- 8 18 6.3 .114 4.7 18,0 3.0 21.6 Kl 10 15 18.0 .2a7 4.3 18.0 o? «684.0 KZ 10 15 18.0 .27 4.3 18.0 otf 24,0 Li 15 42 18.8 .788 65.8 79,0 14.0 61.5 Le 15 42 18.8 .788 65.8 79,0 144.0 61.5 L3 : 15 42 18.8 .788 65.8 79,0 14.0 61,5 L4 18 42 18.8 .788 65.8 79,0 24.0 61.5 Ml mca |= 8 18 10.5 .19 31.1 38.0 11.8 821.6 MZ o- 8 18 10.6 .19 $1.1 38.0 11.8 21.6 N o> 8 18 7.5 ~ 135 15.7 38.0 8.4 2106 Oi a- 8 18 13.0 .234 20.2 38.0 6.6 £1.46 02 2- 68 18 13.0 .254 20.2 38.0 6.8 21.6 Pl 20 65 26.0 1.69 188.0 156.0 28.2 100/0 Under main flcor 24— 12 $24.5 14.0 .441 36.0 48.0 10.8 42.0 South Balcony during constwuction E. Columns The weight of the Bethlehem H columns was figured by multiply- ing the weight per foot by the length, The weisht_of the cast iron columns was figured by first finding the area oi the Metal and then multiplying this value by 1 foot and then by the weight of cast iron per cu. ft., this gave the weight per lineal foot. This last value was multiplied by the length thus giving the weight of the columns, In analyzing the stresses in the columns there was two class- es of loading to be considered. Some of the columns were just centrally loaded, hence the stress was computed by the colum formula given in the Cyclopedia of Architecture and Carpentry Building, other columns had loads applied centrally at the top with eccebtric loads applied on the sides. The jlatter loads not only increased the compression stress, as diid the centrally applied loads, but also produced a stress in the column that resisted the the moment produced by the eccentric- ally applied loads. From the formula, 8 = M c/I the fibre stress due to the moment was determined and added to the stress produced by the direct compression of the loads. In the case where two eccentric loads were placed on opposite sides of the column, their respective moments are of opposite sign and the fibre stress developed depends on the resultant moment. 1. Weight Bet hlehem Column Wt./ftf/ height weight 1 71# 43.23! 3.07 Kips 2 71 43.23 5.07 3 54 43.27 Re ot 4 54 43.27 Reot 5 82.5 40.20 5,42 6 82.5 40.20 5.48 Cast iron Area of column, « 785 (36 - 20.2) SM * OO ae eee 12.3 84. in. Weight per foot 12.3 x 12 x 4650/1788 —-----~ 38,4¢/lin.ft. 7 58.4 14, 87 57 8 38.4 14,87 » 57 9 58.4 9.5 056 10 38,4 9.5 o 56 Total weight 19.528 Kips, The following formulas as given in Vol. 8 of the Cyclopedia Of Architecture and Carpentry Building pgs. 87 —- 105 were used in the calculat lop of the stresses in the columns, 8 = P/A (1 plus k L*/r*) Where P is the ultimate load, 8 the unit stress, L the length and r the least radius of gyration. k has the following values 1/18,000 for columns with two pin ends 1/24,000 * " " one flat and one pin end 1/36,000 * " " two flat ends. For cast iron columns= hollow —- with comparative thin walls Tne following a modification of Rankine's formule is often used 2 2 P/A — 80,000/(1 plus L /800a”) Where § is the load L the length and d the outside diameter. &. Stresses Columns 1 & @, Ly We 43! Be" moo ee ee ee 528.75" L® —~-.-— + ee ee eee ee eee See ee 280, 000 P eee ae He rn en ee ne Hee 2.56" Ge ------ nee ne ne ie eee 6,55 T/C anne nes nnn ne ne eee 700 Area -----~-~--------- ee eee ree 20.91 sq.m. k ---------- flat endg —~--~~--~--~----------L--1/36, 000 Direct ceditral applied loads From truss § -----~----~-------~-----— 26, 135¢ i" # 6D ~~. ee 14, rae f * 1B - ~—- Serer ee -~— 55,541 " girder E6 --~-----~-------~---~ see Total 2 Eccrentric loads From girder Cl ---- ~--~----~-—--—=-~ 65, 800 RO AL ae ne 24, 600 Total direct compression loads > S§ ---- 198,901(1 plus 280, 000/ (36,000 x 6.55)) _ 2 se5¢/aq. in edd = Resultant moment set up in column due to eccentric lcads (65,000 - 24,600) x 5 3/16 —------~----- 213, 7408# 8 from eccentric loads -—-- 213, 740/87 ------ 7,930 Total strees ---- 7,930 plus 2,525 -~------- 10, 455#/sq.in. Columns 3 & 4 Top load ( 12,886 & 9,115 & 15,075) -----~-- 37,076 ¢ Eccentric load ———---~+--~——---~—-.--+--+~-+-+- === 65, 500¢ Eccentricity of load - - et eee ee 5" Length of column 43! 34" ---------.---------~ 499,25" Make up 10" 64/ Bethelhem H column ATCO wwe ee er ne ree 15. 91eq,in,. least Y ----------——~- ~~ - ~~ --- 2,518 S --- 37,076 (1 plus(1/36000(499.26/2.51)*)) — 5,010¢/sqsin. I/c went —— Or Om Os Gat a Ome Ome in OF" Oot NE ORR O88 nt Oe et 20.2 Mo anmn—————— 65,3500 x 5 ------- === women —= 326, 500%F § --—-- 326, 560/20,1 -~--------------~-~---+---- 16, 100#/sq. in. Total Ss eo On an ae 16, 100 & D, O10 RS en ee Or es OF" OF" ame ne er Bee Be” Dae ad, 1104/sa. in, Columns 5 & 6 LOads eq-—-—- 2 ee eee ee ~- 68, 900# Length of column --------- 40! 25" + ~— 482.5" Make up -~---~ 10" 82.5¢ Bethlehem H column Least Y q-<------——-— nn ern nn ee ne ee 2.68 AYX@Q mmm. + ee rn een 24.29 sq.in g--------~-------- 68,900(1 plus 1/36000(488. 5/2, 58) @ B4.29 — § -~---~---~-------~-.--------- +++ ---------------- 51600#/sq. in Columns 7 & 8 Load Rok, OOO# 1 Length of column -=----—--~-~-- --- eee eee eee 14! 10s" =—- 178.5 Make up ---~----==--~ Cast iron 6" dia. ¢*" metal. Area me en en - 2 een 12.3 s@. in. Pp —~---- 12.3 x 80,000/ (1 plus 178.5°/800x36) -- 474, 000 $74, 000/224,000 —-—---—- 2,1 factor of safety Columns 9 & 10 Load ---~----- =n maneneneen—--—— 28, 0008 Length of column -------— Qt 6® -——..----- 114* Make up -------------- Cast iron 6" dia. ¢" metal Area Re ae ON OR Re me me SE Cont me on One ON ae Oe re 5 ee me en ee One on me ae Om Oe ee Om 12.3 sq.in, P ----— 12.3 x 80,000/(1 plus 114°/800x36) =--—-- 680, 000# 680, 000/28, 000 -—- ~- 24.6 factor of aafety . F, Column bases and bearing plates. The weights of the bases and bearing plates was figures from table 2 pg 12 8.H.B. The resisting stress was not figured out directly but the required thickness for the plate was found and compared with the thickness used, For the above Calculation the following formula, taken from the Cyclopedia of Architecture and Carpentry Building wol. 5, pg. 96, Was used. t = .866(L — b) (R/b'L£)® where t is the required thickness L the length of the plate perpendicular to the bean. b'the width of the plate parallel to the beap b the width of the beam resting on the plate. R the end reaction of the bean, f is a Bonstant 16,000 for steel and 2,500 foe cast iron 1. Weight of bearing plates. Main floor -----= ~=-~ 32x1, 33x34 ----------~~-.- 1, 540% Girders I & 0 - 8xlx17 - He nee st Girders L m----e-— 4x1, 33x40.8 —ee-a---------- 318 Girders P -------------<-= 4x1,33x54.4 -- w------ 291¢ Girders M & N mwwwneeeeee Gxlx]] -— ~~ ee eee 1028 Girders E —-—---------- — 6x1x40.8 a -- 94 Girders K a--e— 2xlxl7 - -- ~ 344 Girders H ~-------------- 4x1,.33x17, -= -~ Sag Columnss 7&8 -----~~---~--~ 2x1. 3x76.5 - -~- 198¢ Columns 9 & 10 —----~----— 2x1,2x59.5 - 1434 Columns 1 & 3 ------~---= 2x8.33x58 -~------------- 27 Ort Columns 3& 4 ~~ 2X1,83x58 -—~-—---- 212# Columns 5 & 6 -—--------— 23x8x79 -—-~~------+------+ — 3) Total 3, Sree nnn manor ens =~ 68, 900 2 plus 1/36000(482.5/2,58)* )- Go meer eee een - aaa == ------- 5316008 /sq. in Columns 7 & 8 Load 224, OOO# ; Length of column -<-----~~-----~----- - eee 14¢ 105" = 178.5 Make up -~--~----=--~ Cast iron 6" dia. 2" metal. Area ~- Oe Se ET OF” ON A Oe at Oe Oe Oe OO NN OL OH ee we | Om ee ES oe 12.3 88. in, P —---- 18.3 x 80,000/ (1 plus 178.5°/800x36) -- 474, 000¢ 474,000/224,000 ——----- 8,1 factor of safety Columns 9 & 10 L0ad ---~—---- ne anaenne—e §=—28, OO0F Length of column -~-----— Qt Gf -——.—---~-—- 114* Make up -~-~---------- Cast iron 6" dia, ¢" metal Area SO OR” OO ae UN Cr OO OE” OF amr an aN Ome ome ome GRD my OT cane, Se Ge OS ae OP re 5 SO OP SS OE Oe 12.3 sq.in, P ——--~ 12,3 x 80,000/(1 plus 114°/800x36) --—- 680, 000# 680, 000/28, 000 --------—- 24.6 factor of aafety . F. Column bases and bearing plates. The weights of the bases and bearing plates was figures from table 2 pg. 12 8.H.B. The resisting stress was not figured out directly but the required thickness for the plate was found and compared with the thickness used. For the above calculatbon the following formula, taken from the Cyclopedia of Architecture and Carpentry Building wol. 5, pga. 96, Was used. t = .866(L — b) (R/b'L£)® where t is the required thickness L the length of the plate perpendicular to the bean. b'the width of the plate parallel to the beap b the width of the beam resting on the plate. R the end reaction of the bean, f is a fonstant 16,000 for steel and 2,500 fow cast iron 1. Weight of bearing plates, Main floor ---- -~-~ 32x1.33x34 -------- ~~ 1, 540# Girders I& 0 women 8xlxl7 --~——-----------—~ 13 Girders L meena 421, 33x40,.8 —ene---------- 3218 Girders P --~-~----------— 4x1, 33x54,4 ------------- 291 Girders M& N —--~----- Bxlxl] aman n nee ee =: 1028 Girders E -~--—------+--- —= 6x1x40,.8 mee mee ~ 24 Girders K mene 2xlx17 a ~ 34d! Girders H --~~-~—~-+—--—~~- 4x1.33x17. <= omen 88¢ Columnss 7&8 ---—-~-~-~-~-- 2x1. 3x76.5 oneness 98 Columns 1& 2 weeennm= 2X8, 53x58 —-------------- 2704 Columns 3& 4 — ~~ 2x1,83x58 --~-------- -- 812% Columns 5 & 6 -—~------ — 2x8x79 —-~-------~------+ — 316 Total §------------- ++ 68,900(1 plus 1/36000(482.5/2.58)) BAL O — § ween ne ee te ee ee ee + 5 600#/s8q. in Columns 7 & 8 Load 224, 000f | Length of column ------------~--~-- eee ee ee 14' 105" =- 178.5 Make up ---~----=--~ Cast iron 6" dia. 2" metal. Area wane en en ne eee = 12.3 Qe in. Pp —---.- 18.3 x 80,000/ (1 plus 178.5°/800x36) -- 474, 0004 474, 000/224,000 ~~----- 8,1 factor of safety Columns 9 & 10 LO8d awe ee ee Hee ee ee 28, OOOF Length of column -~-~-~- Qt 69 on -~~-—.-————— 114* Make up --—----------- Cast iron 6" dia. ¢" metal Area SF eS SO I SO ON eT Oe EN met em, RP me Oe wane Go oe 5 Ee ee Oe 12.3 8d. in, P ----—- 12.3 x 80,000/(1 plus 114°/800x36) -~—-- 680, 000# 680, 000/28, 000 -—------—- 24.6 factor of aafety . F, Column bases and bearing plates. The weights of the bases and bearing plates was figures from table 2 pg 12 8.H.B. The resisting stress was not figured out directly but the required thickness for the plate was found and compared with the thickness used. For the above Calculatbon the following formula, taken from the Cyclopedia of Architecture and Carpentry Building wol. 5, pg. 96, Was used, } t = .866(L — b) (R/b'L£)2 where t is the required thickness L the length of the plate perpendicular to the bean. b'the width of the plate parallel to the beap b the width of the beam resting on the plate. R the end reaction of the bean, f is a Bonstant 16,000 for steel and 2,500 foe cast iron 1. Weight of bearing plates. Main floor -----= w——~ 32x1,33x34 ---------- += 1, 5404 Girders I & O - Sxlxl7 ~ en —— 13 Girders L ma---e-— 4x1, 335x40.8 ——---------- 218 Girders P --~----------~= 4x1,33x54,4 --~---------- 291# Girders M& N —----+ Bxlxl] amen en eee ozs Girders E ---—-~-~------- — 6x1x40.8 = meee o 24 Girders K wee 2x1x17 = -——— - 344 Girders H ~--~~------—---—- 4x1, 33x17. -~ 884 Columnss 7&8 -<-~-~------ 2x1. 3x76.5 - -- 198% Columns 9 & 10 -=-~---.--- 3xl,2x59.5 ------ - 143¢ Columns 1 & 2 ------~-~-=-= 2x2.33x58 ----~----------- 27 Oct Columns 3& 4 ~~ 2x1.83x58 --~----- --—- 2124 Columns 5 & 6 ~—~----~- —— 8x8x79 q—-~- ee — 31 Total ’ ® Required and actual thickndsses of plates. Main floor Make up =---- 32--- 16"x16"x5/8" plates Reaction ---~-—---—~--—~—~-. -- awaee-—— 10,220x2 -- 204 OF D ere n eee e- eee nh te i ee —-5" DI men ee eet meneneeeeee IGN L weno ne -----~----- --—eee 168 £m nnn oe nnn cnn gennnnnnnnn=— 16, 000 t ---- .866(16 -5) (20440/16x16x16000) Required thickness is .670" Actual thickness is .625" plate should be .035" thicker, ----------~ .670 Girders Il & 12 Make up ]-—----- 8 -~-+ 8x12x6/ 8 plates Reaction eee ---—— a 5, OB 44} D arene nn ne ee nn en en nee 8.5" b! eee eee a eee eee Bh LL a-~~ ~~ en ee -—— --—— 19" f -----—--—----- Henne -- - 16,000 t--- .866(12 - 8, 5) (3,024/8x12x16000)2 — wawee— , 1335" Required thickness is .133" Actual thickness is 625" plate ia .492" thicker than necessary Girder O1 & O2 Make up -<<----—- eee same as for I1lé& Ie above Reaction —_— --- ~~ 6, 2S4¢G t —-- ,866(18 - 8.5) (6,234/8x12x16000)2 --—--------- , 193" Required thickness is .198" Actual * .625 or an excess of .432°" Girders Ll, L2, L3, & L4, Make up ----- 4 plates 16" x16" x5" Reaction —---———--. ee —— 14, OOOF b - ee rr re ee ene be" b! ------- 8 8 nnn eee 16 [ym nc eee ee ee ee eee ee ee GRR f ---~~~~.—~~. 2.2 ~ 2 2 5 3-~ anes ~ 16,000 t -—- .866(15 ~ 5, 5) (14000/16x16x16000) <----——— Sa Required thickness .538" Actual " e750 or an excess of ,2l7" Girders Pl & B2 Wake up -------~------ 4 Pilates t6xl6x1 React ion=-—-—-~--~-~~-~~~...- wane =. 38, BOOF Deer aren nn ee nen eee waa a=- 6425" DP wee ns ne ee ee ne ee eo en ae ae a ne ee a ne we ee ee ene eee 16" L en ----- ~~ eee ——— - - 16* fo nan nn nn en en eee 16, 000 GF mm e 866616 - 6, 25) (28200416x16x16000) 2 ; ——-s —— e 7* Required thickness 7" Actual 1.0 or an excess of,3" Girders W1 & M2 Make up -----~ a nee ee eee 4 plates 8"x12"x5/8" Reaction ---- = anew eee eee nee 11, 7908 ween een pee ee ee BM Dl anne ne ae ee ce eee ee eee §=—«d1,08 Ly anew ee en ee eee eee one wee — 8.0" fo am nie 16, 000 Required thickness .ac6* Actual " 625 or an excess of .859 Girders N dake up -----.---~~--~-- 8 plates 8%x13"x5/8" Reaction --~--——---~—~.~-- +4 ne 2 eH —- 8385+ b, b' ,L, & £. s@me as above t —-—-~---=-- —- ,866(12 - 8,5] (8385/8x12x16000) -- .324" Required thickness ,224" Actual " ~625 Or an excess of .401" Girders K1 & K2 Make up ----------+--------- —8"x18"x5/8" Derma ee 2 wee ne tee ee a eo a ee me ete ne nee een —~——me 2,6" pt awn s eee. e.. na ecavene eens ean. vena ene eee eee ee =e 1398 To mane a ee ee ne ee eee ee nee Bf Fm mn a a net ne ee en ee ep ee = ----- 16000 t --- .866(123 - 2.6) (695/8x12x16000) #~——-----~- ~172" Required thickness .172 Actual " e625 or an excess of ,453# Girders E5 & E6 Mak UP wernt ee 2 eee (12"x16"x4" Plate ROACt LON — m2 ee oe oe ee see 13, 580¢ b ---------- aes a ee 6* pl --_.~~_.. ne eee ee eee ae eee ee _~———— 13" Yo mm nnn na ee ee ee ee ee ee 16" Fo --3 3 + 2 ee ee ee ees ne ee ee ee — 16,000 t --— .866(16 - 6) (13580/12x16x16000) -_——--—= 575" Required thickness .575* Actual " ~ 750 or an excess of.175* Girders E4 & ES Wake up --------~~~-~---~-- ---— 12x16x¢ plate Reaction —~----~-~~—~-~~-~..+--+~—-- ~~ ~~ - ~~~ 16, 7364 b, b', L, & f are the same as above, t --~ .866(16 ~ 6) (16736/12x16x16000) ------— .640° Required thickness .640* Actual " 750" og an excess of .110" Girders El & EZ Make up s<----~--~---~~- ate eet 12xl6x¢ plate Reaction -~----~--~-------~~~-----~-~-~----~--=- 12, 886 b,b',L,& £ are the same as above t --- 2866(16 - 6)$12886/12x16x16000) #--------- .563" Required thickness .562*" Actual " ~750" or an excess of .188" Girders Hl & HZ Make up ----- vtec aes u-+-= 2 plates 8"%x16"x5/8" Reaction ---~~—-~---~-~~ 3 + ee ee ee ne ee 7, 3884 [LQ ewww a ne ee ee eee ene erent geen ee en f Bp! -------- ++ ee en ee + awe ona 16" Uy -~-- —.-.~.—..~~ ee eee ene eee nee oe eee ne eo eo eo ee ee ee gn GF men a wo eo ee nn ee ee pee ee ee 1B, 000 t --—- ,866(16 - 9. 25) (7388/16x8x16000) 2--------~—- 350" Required thickness ,350" Actual " 625 Or an excess of .275" G, Floors( floer beams and covering) The weight per sq. ft. of floor surface was found and then multiplied by the no. of sq. ft. of floor, thus giving the weight of the floor covering, to this value was added the Weights of the joigts. The bending moment for the floor covering was taken as W1"/10 being the same formula as Was used for the roof sheathing. The #esisting-stress was figured fran the relation 8 = M c/I The resisting stress was taken as 1300¢/sq.in. with an increase of 50% for unexposed building material 1, Weight Weight per sq.ft. 1* hemlock --------—-- cane eae een oe ee meme ine 2.08#/sq.ft. 1*® maple -~-~—~-~-~-~-~-----~--~-~--~--~~- — 3.32¢/sq.ft. Total B.4 #/sq.ft. Balcony section BB, Area of floor --~---~~~-~---~~~~-—~~~-~-~-— --~--~ 4087 sq.ft. Weight 488725, 4 wena ee ——— 36, 4008 | Balcony section AA, Area of floor -~--~-~~-~- wee ee eee ee 96060. ft. Weight 980x5,4 --~----~---=----~ = ~~ = 5, 500¥ Main floor Area of floor ----~-~~~-~--~~~-~~~~-—~~~ 10, 6878q.ft. Weight 10687x5,4 —~--~---—-—----—~~~---~- re 57, 800¢ Joists Number length Total 84 13! 1090! 45 6t 270! 84 13! 1090! 64 13! 834! 42 13! 546! 80 10! 800! 56 30! 1680! 40 19! 760! Agregate Weight 7170 x(1.625/12)x 40 --~----~--~~--------=---= 389, 000# Tofal weight of floor A%6 , OOOF Test of flooring Loads Live ~---~~- ene aa ea ane a ae eee ee nes ~~~ 100¢/sq.ft. Dead -----~--~--~-=---~~—--- ~~~ ~~ eae 5.4#/sq.ft. Use 306#¢/sq.ft. as the load Mom—~ W1°/10 —-—..---~ ~ 106x9/10 --~~-~---— 95,4 '¢ 8 ---- 95.4 x 12 x 6/(12 x 4) -----~-~-~- 143#/sq. in. Shear 106 x 3 -----------~---~~~~.-------- 4184 The floor is safe for the resisting stress is 1950¢/sq.in. Test of joists lst. floor under balcony, section BB, Load on rafter 106x(16/12)x13.25 --~-~-- — 1,87 Weight of "® (1,.525/18) x 1x13.25x40 --- 7 Total Reaction --- 1,947/2 ---~~--~--~-~------~~~~=-~--—--9 74 M --- 974x13/4 ---~-~---~----~~-~~------~.=--~--=- 3,170 '¢ S --- 3170x12x(6/(1.625x144)) ----~-~--~~~~~----- 975¢/sq.in, Allowed unit is 1950#/sq.in. therefore joist is safe. Joist under main floor Loads on floor 1064 Weight of joist --(1.625/12)xlx40x13 --~--------- 70, 5# " " floor on joist 106(16/12)13 ~---~--~~4, 840¢ Reaction 70.5 & 1,840 divided by 3 -~~----~~~-~ 955# Mem— 956x13/4 ---~-~--~~--~--~~--~~-~~~~----~---- 3,100'¢ § --- 3100x6x13/(1.625x144) ----~~~~--------~----~ 9554/sq. im Alaowed unit is 1950¢/sq.in. therefore floor is safe, Joist under stage floor, Load on joist 1067/sq.ft. Weight of joist —-(1.625£12) x1x40x20 ----- a ~~ 108¢ Weight of floor on joist 105 x 20 ~-~-~-~-----~----— 2120# Reaction 21280 & 108 divided by 2 ------~--- 11144 Mo -—~ 1114%20/4 ---~-~~--~--~~-~--=~---~=- === -- —- 5,570 '# § ——- 5,570 x 6 x 12/(1,625x144) ~--—---—------~-- — 1,700¢g¢eq.in, Therefor the joist is safe since the allowed unit is 1950¢/saqgin H. Foundations (ingluding walls and partitions) The vokugns of the Walls was figured both for the brick and for the concrete, The volumns was multiplied by 120 for the brick walls which gave the weight of the brick walls. For the concrete the volumns was multiplied by 150 and this result was the weight of the concrete walls. The sum of the two results was taken as the waight of the founda&dionm walis and partitions. The bearing stress on the walls was figured by dividing the area of the plates by the load on the plate The resisting stress was taken from 8.H.B. pg.56. The earth bearing was found by dividing the weight of the structure and fixtures by the sq. ft. of Woundation resting ob the earth, This value was compared with the value in 8.H.B.pg56 Entrance during construction, showing forms for doorways, also the steel roof frames in the background. Weight of brick Walls and partitions. Under front part of stage --- 4x1x130x120 ------~ 68, 400#¢ Gutside walls -~-~~---- 320” 44x17£12 x192 ---~-~i, 434, 000#F 44%1x104x120 ------~~-.-~~~~---~-~ 550, 0 $4x1xx9 lad20-——-—~-~----—~-~~--~~- 381, 00 Partitions 18x1x150x120 -~~-~~--~-~ ae = eee 324, 00 44x1x82x120 -~-~--~~--—~~-~---~-~~-~=-~ 433, 00 18x.66 x32x120 ~—~-~-~~~~~-—~~~~—-- = 46, 10 OF 18x6216x120 -------~~--~—-—~~~~--~ — 208, O00¢€ 40x. 66x156x120 -~----~-~-— ----~---- -—— 500, oot Wall over girder D 53,5x1xl6x120 -----~~-~~-~- 103, 5OOF Total weight of brick masonry 45038, 000f or 8,016 tons, Weight of concrete walis and foundatiogs. 2(2x48.66x11.5)150 ~--- -----~~~.--—~--- ~~~ == a 335, OOOF 20/12911.5x274,5x150 ------~~---------~~~ — 788, 00 2(39x11,5x2)150 ~~~~~~-~-~--~~~~-~-~~-~~~~~---- 270, 0 2(4x11,5x1.5)150 ----~--~~~~--~--~~-.~~~~-- Levene ane 20, 700 11, 5x. 66x361, 6) x150 --~-~~~-~~--~---~~~--- — 4165, O00# 11,5x1x261)150 ~-~~----~-~~~-~~-~-—~-~-~--—--== 45, 0004 11,6x2.83x91)150 ~-----~-~-~~.--- = 444,00 24(1.33x1, 33x11, 5) 160 -~-~ ..-~ Total weight of concrete or 1,195,55 tons. oT oor 3 &. Bearing stress Under columns 1 & 2.on concrete LOG, meme een e ene a nee oo ee ee ee 198, 901#¢ Area iD 0 wae tae Onn ae SP age WD ene aed MOD ee ED O00 ORD ae SD ED a a one ED ee em me 30x24 meme one wae pane eae 720 sq. in. Pressure on masonry 198, 901/720 — ---——-—— 276$/eq.in. Allowed value as given in 8.H.B. pg 56 is 280¢/sq.in, Under columns 3 & 4 on concrete LOO wees a ws in eo tne me ne we ee a ee ee ne a ee ee ee ~ 108, , o16F Area --~~~-----~- -e = ~~ —— 20X00 -—--— Pressure on masonry 108, 376/484 ~~- Allowed value 280#/sq.in, in, il. L.st/earin Unde@w columns 5 & 6 on concrete Load ---nn nner nen cneeeeeennna= 68, 9004 Area -—-~- -— ~ 22X28 won 616 sq.in, Pressure on masonry -~ 68, 900/616 -—-------~-~= 112#/sq.in Allowed value 280#/sq.in. Under colums 7 & 8 on concrete Load #-~~~-—-—~~-~ = ~~ - ~~ ee = 224, OOOF ALCO mem = ee ee ee eee 15x15 --~--~-- e258q.in. Pressure on masonry -—- 224,000/225 ---~---~--~-- 99. 5#/sq.in. Allowed value 280/sq,in. Undre colwans 9 & 10 On concrete Load ----~----------~-- -+-~~=--~-—--- 28, 000# ATOQ enn 3 a ee oe 14x14 ~-——= 196sq. in. Pressure on,mMasonry 28,000/196 ---~-~-~---~- 145#/sq.in. Allowed value 280/sq. in. Under girders ES & &6 on brick Load aa ee ee ee ------ ~~~ = 13, 580#¢ Area ---~-~--~-~-----------~-~- — 16xlZ ------~ i828q.in, Pressure on masonry --—- 13,580/1828 --------- 74.5#/sq.in. Allowed value 8.H.B. pg. 56 is 168¢/sq.in. Under girders E4 & E3 on brick Load -~-------~-~ _----- 16, 736% Area ----~--~~-~--~-------~--— 16x12 -------- ° 18298@.in, Pressure on masonry 16736/182 -~-----~ — 91,5#/sq.in. Allowed value 168¢/sq.in. Under girders EZ & El on brick boad — --—— - ~~ ——— 12, 886# Area -—---~----~-~---~—---=---- —- 16x12 ------ 182 sq.in. Pressure on masonry 12,886/182 -—-------—-- —s- 714/sq.in Allowed value 168¢/sq.in, Under girders Hl & HZ on brick Load --~~------~------~~~=-~~=---~---~-~--~= 7, S88F Area -----~-—~-~-~------~-- 16x8 ---~--~-~-~~-~---~ 1288sq.in, Pressure on masonry 7, 388/128 -----~------- 59#/sq.in. Allowed value 168#/sq. in. Lintels in walls composed of 2 angles 33x3ax5/16 Span 8 feet; use load as triangular load of 6ft. base and 6 ft altitude. : Reactions 6'xl17/12 x3x120x5 -~------~--~=-- 1530? Max moment 1530 x 6/4 -—--~-~~~--~~--~~--=-2300 '# Max mOment as taken from 8.H.B. is 2x1310 ~—= 2620'¢ Since these lintels are supported in between the ends the angle irons are more than strong enough. 3 5. Resisting stresses The resisting stress for common brick as taken from &.H.B. Pg. 56 is 12 tons per sq.ft/ or 168¢/sq. in. The regigting stress for concrete as taken from S.H.B. pg. 56 is 20 tone per sq.fj,-or 280¢/sq.in. 4, Earth bearing Area covered by cross section of walls -------- 1,600s¢.ft. weight of structure -~---~-----~~--~---=-----=- —= 5,630 tons Bearing ----~ 5,630/1,600 --~~--~--~----------- 3.5 tons/sq.ft. The earth on which the building is loeated is clay and in 8.H.B.pg.56 the allowed bearing value for clay is 4tons/sq.ft. I. Fire resisting properties The investigators, after inspecting the Lansing Auditoriun, offer as their humble opinion, that little or no attempt has been made to produce a fire= & tte aie Lerew simront te f jon oid peti volte: ois often perAd to ocicaniatie af : gig Molin ,cntts (hese foatim Ic sa pinoy exnints r ree pee BEBO ca wiain ef ,estosmss «© oa tou motts rigol | auhs Efe, utalyg ohed Reisonn gotase paond fis ,sesl Spcl as ayisos clit .no o8 f Beono ghem censsl. eeent cvo Wenn tmebisc- idcze ,oghiistesu hadi goubace of beer ebodt ten : * z Lone Beene ems AD stigetcos ; ms abotives edit aL exsiis Joe o. <8F" ord ever Biuorta Wsow ais L. cud er a ae stehhsk isgotg 2 at Befleirt! oc AM take * etiza e188, Beton tus eft todd Joupe: fi. (+ Breit * —— ia * oe b ad $F Mii LTT ie ee & i ESS GE See eee i a ca ask OTT Sia SUE Same eh 3 eS Ses in a i ‘ae ms - ~ te. \ = q RM i tert MN el EY SE I Ee a ey MICHIGAN STATE LIBRARIES un Ti