

PLACE IN RETURN BOX to remove this checkout from your record. TO AVOID FINES return on or before date due.
MAY BE RECALLED with earlier due date if requested.

DAIE DUE	DAIE DUE	DAIE DUE

This thesis was contributed by

> Mr. S. L. Hall
under the date indicated by the department stamp, to roplace the original which was destroyed in the fire of March 5, 1916.

Sumnerlihfll. 1OE/2.

THESIS

--0000\$0000--

EFFICIENCY OF A GAS FNGINE AS DETERMINEDby
FUEL MEIXTURE AND COMPRESSION

$$
--\infty 0 \$ 00--
$$

S. L. Hall
--00\$00--

MICHIGAI STATE COLLEGE

Spring Term

$- 0 0 \longdiv { 1 9 1 2 / 0 0 - }$
thesis
137
617
THS

END SECTION

OBJECT

The cbject of this thesis is to determine the fuol mixture and degree of compression at which the Elyria Gas Engine operates the most economically and efficiently, as determined by Thermal and Mechanical means.

DISCUSSION

Comparatively little has been known of the exact relationship between fuel mixture and degree of compression as affecting the efficiency and economy of the modern gas engine. With the latter coming into prominence as a compact reliable and accessible powar unit, the importance of the object of a test of this kind cannot be exaggerated.

Nearly all test reports upon this subject have been to a more or less degree inacclirate due mainly to the difficulty of a suitable means of measuring the amount of air, used for combustion. The apparatus used in this thesis was a system of low pressure orifices, the exact details to be explained later. Th s method is extremely accurate for difference of pressure under $5^{\prime \prime}$ of water as is the case in our use of it. A Ventrui Meter was at first intended to be used, but on account of the fact that the pressure ratios change with each load and condition of operation,. and that it would have to be calibrated with a low pressure orifice anyway, this method
was abandoned. The effect of the incurred resistance to the air of the addition of the extra piping was not noticable In the suction cards or in the ability of the engine to carry the loads and therefore not taken into account.

Due to the lack of time to cover sufficient ground, the angle of ienition was not clanged curing tre teste ard Wus set at approximately the lead for ordinary operation. It was set at 15° lead. No doubt this is not the most officiert angle under all conditions of compression, but we lacked time to investigate: further.

In order to keep down the heat losses as much as possible the cooling water was maintained as near 180° as was permissable by the engines conditions at the beginning of the test, lubricating difficulties kept the cooling water as low as 140°. No attempt was made to determine the heat distribution. As long as the heat losses are kept as low as possible this does not effect the efficiency of the engine and the latter was the factior upon which we tasec our comparisons of efficiency of mixture and compression.

After the beginning of each test, under its conditions of mixture and compression, the largest load was determined, by experiment that the engine would carry safely. This divided up into five increments to be successively applied, in order to get a sufficient number of points to plot curves The loadwas kept constant thruout the different tests by individual attention.

All tests were run for 30 minutes with 10 minute intervals between tests to obtain average operating conditiore. Readings on the gas meter, low pressure orifices, pressure of gas and R. P. M. were taken every five minutes. Indicator cards were taken every 10 minutes with a compression card taken at the end of the test. The latter was taken by cutting out the spark at the time of taking the cerd, on the cilnder under consideration. This was not done during the test as it would cut out a number of explosions and the fly wheel inertia would be decreased.

Samples of gas were pumped from the meter into a $12^{\prime \prime}$ x 30" tank fitted with gauge and needle valve. In order to drive out all air the tank was first filled with water and there displaced with gas. Samples were:pumped into the tank from several tests and tested when convenient. The samples were for calorimetry and ultimate analysis of the gas. The analysis was made twice during the test and the calorimeter test run once. The exact details of this test will be given later.

The amount of compression was changed by lengthening out the connecting rod by putting in shims, thus chang ing the volume of the clearancespace. The amount of change made in clearance volume was determined by measuring the projection of the front end piston from the finished end of the cylinder when the engine was on dead ceter as determined by a tramel bar.

Before running any tests all thermometers used were calibrated with a standard and correction curves plotted for use with each one. Likewise the scales were tested and found to be correct. The tare of the brake was determined by mounting the frame on a pullej balanced and mounted on knife edges and measured by the weight of the free end on a pan of scales.

GAS AINALYSIS

In order to check the amourt of air used by the engine as measured bri the low pressure orifices it wes thought advisable to make chemical analysis of the gas before it entered and after it left the engine. By determining the percentage of combustible constitutents in tre gas and the amount of air required for combustion, with the excess of oxygen going thru the engine, as measured in the exhelist gas, we could compute the amount of alr used.

The apparatus used was of the Hempel type on account cf its simplicity and accuracy in the hands of inexperienced men.. In this process the different constitutents are absorbed by some special reagent. The gases to be determined were $\mathrm{CO}_{2}, \mathrm{Olifinis}, ~^{0}, \mathrm{CO}, \mathrm{H}$, and CH_{4}. The reagents for the same were $\mathrm{KOH}, \mathrm{H} 2 \mathrm{~S} 207$, Pyrogallic acid and Cu2Cl2, respectively. H was taken out by the copper oxide method, while CH_{4} was determined by explosion. The method was as follows;

100 cc of the gas was collected in a blirette tube. The burette tube was attached to the KOH pipette by means of capillary tube in order to keep the amount of air admitted as small es possible. The gas was fassed over the KOH until tre reading on the burette was constant, showing that all the CO_{2} had been taken out. The diminution in volume read and the process repeated over disulphuric acid. Before using the pyrogallic pipette the fumes of the former acid had to be taken out by means of KOH . After the process had been repeated over the pyrogaliic cuprus chloride and the hot coper, 10 cc of the residue was taken and placed in the explosion bulb with 70 cc of air and burned. The following reaction took place:
$\mathrm{CH}_{4}+40-\mathrm{CO}_{2}+2 \mathrm{H}_{2} \mathrm{O}$
The diminution in volume due to the $2 \mathrm{H}_{2} \mathrm{O}$ is so small as to be negligible and we can measure the amount of CH_{4} in the 10 cc by measuring the CO_{2} by passing over KOH. Now by determining the amount of CH_{4} in 100 cc from the proportion in 10 ce we have the exact fercentage of the constitutents since we started with 100 cc.

Sample analysis.

Before	KOH	100 cc
After	*	97.55 cc
	CO_{2}	2.45 cc
Before	$\mathrm{H}_{2} \mathrm{~S}_{2} \mathrm{O}_{7}$	97.55 ccr
After	n	91.1 cc
	Olffinis	6.45 cc

Air reciuired for combustion per cu; ft. gas.

H	$2.4 \mathrm{cu}^{2}$ ft.	
CH_{4}	9.61	n
$\mathrm{C}_{2} \mathrm{H}_{4}$	14.3	n
$\mathrm{C}_{6} \mathrm{H}_{6}$	36.	n
CO	2.4	n

Heating value per cu. ft. gas.
H 275 B. T. U.
$\mathrm{CH}_{4} 910$

$\mathrm{C}_{2} \mathrm{H}_{4}$	1512	n
$\mathrm{C}_{6} \mathrm{H}_{6}$	3560	n
CO	324	n

The amount of air required for combustion of 1 cu . ft. of gas is folnd by multiplying the amount of air necessary to burn cine cu. ft. of each constitutent by its percentage in the gas and taking the total.

The heating value is likewise found by multiplying the heating value of one cu. ft. of each constitutent by its percentage in the gas.

All results are worked out for standard conditions of $62^{\circ} \mathrm{F}$ and $30^{\prime \prime}$ of mercury and the heating values are given as the low heating values.

CALORIMFTRY

Abstract

The arparatus used for determining the heating value of the gas was the one most generally used, namely Junkers Calorimeter which is shown in one of the cuts. In connection with the appuratus there is used a gas meter and pressure regulator. The flow of the gas is from the source of supply thru the gas meter, thru the pressure regulator and thru the burner.

The temperature of the cooling water is measured, by thermometers placed in the pockets provided at the inlet and discharge of the apparatus. The amount of cooling water can be regulated by means of graduated valve, thus regulating the existing temperature difference of the cooling water, which should be about 150 to 200 C . A thermometer is placed et the exhaust gas exit and this should be maintained at the room temperature in order not to lose any heat from the aparatus. The condensation which will result from the combustion of H is drained at the bottom into a graduated beaker.

The gas meter is fitted with apparatus to measure existing temperature and pressure in order to be able to reduce the meter reading in liters to standard conditions of $62^{\circ} \mathrm{F}$ and $30^{\prime \prime} \mathrm{Hg}$.

Preliminary to the test the apparatus must be in operation for some tire, until the condensation is flowing
at a normel rate, and the temperatire difference is constant. The test mar now be started by reading the meter and shifting cooling water and condensetion to graduated beakers and observing the temperaturec. The test can be run for any iength of time taking readines frequently in order to get average conditions.

The measuring vessels lised with this apparatus are graduated in liters and the thermometers in centigrade. The result; the weight of cooling water in kilograms times the increase in temperature in centigrade will therefore be expressed in calories which are equivalent to 3.965 B. T. U. If V is the volume of gas consumed in cu. ft. reduced to standerd conditions at 620 F and $30^{\prime \prime} \mathrm{Hg}$.

W the weight of cooling water in kilograms.
t_{2} centigrade, the mean discharge temperature of the cooling water, than the calorific powar of the gas per cuble foot will be.
$H=3.988 \frac{W\left(t_{2}-t_{1}\right)}{\nabla}$ for its high value.
To obtain the low value we have to correct for the condansation in the following manner.

If V is the volume of the gas used as above, C the amount of condensation in cubic centimeters then
$h=\frac{2.381 \times C}{V}$
and
$H-h=H^{\prime}$ low calorific value.

MEASURIUG THF GAS

The amolint of ges passing into the engine was measured by a gas meter accurate within 2%. Pressure and temperature were both meacured on the inlet and outlet side of the meter. These readings weie necessary in oider to obtain the amount of gas used under stanciard conditions of 820 F and $30^{\prime \prime} \mathrm{Hg}$. if $P_{1}=$ Pressure of standard gas (30" Hg.)
$V_{1}=$ Volume of standard gas.
$T_{1}=$ Absolute temperature of standard gas (521. 20 F)
$P=$ Pressure of gas under meter conditions.
$V=$ Volume of gas under meter conditions.
$T=$ Absolute temperature of gas under meter conditions.
Then

$$
\begin{aligned}
& \frac{P_{1} V_{1}}{T_{1}}=\frac{P V}{T} \quad V_{1}=\frac{P V_{1} 1}{T_{1}} \\
& \frac{T_{1}}{P_{1}}=\frac{521.2}{30}=17.373 \\
& V_{1}=17373 \frac{P V}{T}
\end{aligned}
$$

EFFICIFNCY AIND COMPRFSSION

Besicia playing an important part in gas engino design with reference to piston speed and weight of reciprocating parts, compressicn is one of the fundamental factions of efficiency. The equation of the theoretical efficiency of the gas engine cycle is

$$
\begin{aligned}
E & =1-\frac{\left(V_{b}\right)^{n-1}}{\left(V_{a}\right)^{n}} \\
& =1-\frac{1}{r^{n-1}}
\end{aligned}
$$

Where $V_{a}=$ total volume of cylinder
$V_{b}=$ volume of compression space.
$r=$ the ratio of V_{a} to V_{b} (ratio of compression)
$N=$ the ratio between the specific heat of the gas at constant pressure and that at constant volume and has the average valite in gas engine practice of 1.35.

As shown in the formula the theoretical efficiency increases with the intensity with which the charge is compressed before ignition. H wever, there is a limit to this efficiency due to the fact of pre-ignition of some fuels, under high compression. Lucke of Columbia University makes a statement that the amount of compression is limited by the amount of hydrogen present in the gas and states that. one atmosphere must be deducted from the compression for every 5% of hydrogen present.

Thus the thermal efficiency of the heat transformation is first dependent on the compression that can be allowed, but it is also determined by the amount of heat that passes
to the cooling water. Again the thermal efficiency will vary mathematically, dependent upon whether the resilits were derived from output taken as I. H. P. or B. H. P. and the input derived from high or low heating valie of the gas. In working up all our results we used B. H. P. for output and the low heating value as the input.

The use of thermal efficiency in referring to gas engine test is made more distinct by referring to economy. By economy is meant the expenditure: In heat units that is necessary in order to get the necessary transformation, under a certain efficiency, to do the work in the cylinder. Thus (1) I. H. P. is qual to 2.545 heat units per hour and if the thermal efficiency of transformation is 24%, $\frac{2545}{.24}$ or 10,600 B. T. U. would need to be expanded to do I'. H. P. The latter is the economy, the thermal efficiency being determined from the I. H. P.

MEASUFEMENT OF AIR USED FOR COMBUSTION

The epparatus we used to measure the air, consisted of a ste日l tank, two manometers with tubes to connect, two 2-in orifices with conneoting pipes, thermometers and pipe leading to intake valve of engine. (See blue print on page)

The $3^{\prime \prime}$ pipe leading from the tank to the engine was made as short as possible to do away with friction of the uir passing thri it. This pipe projected into the middie of the tank in order to avoid the eddy currents and so that about the same amount of air would be supplied by each of the two orifices, thus doing away with excessive suction in this csese, on either orifice. The suction was always less than 5" of water to facilitate the use of the correct constant.

The tank was cylinderical in shape being 30" in diameter and $40^{\prime \prime}$ high, and was used as a receiver for the aif to keep the pressuie nearly constant. This made it much easier to obtain correct readings on the manometers.

The orifices were two in number and fastened to the ends of two $3^{\prime \prime}$ pipes which were screwed into the tank about 12" apart. These pipes were made $16^{\prime \prime}$ long to get rid of all oddy currents and yet not long enough to cause undue friction losses in the pipes. These orifices were of standard thickness (.057") being plates with a $2^{\prime \prime}$ circular orifice bored straight thru. The edges were not beveled.

It has been found from experiment that with an orifice
of this size and thickness the coefficient remains practically constant with pressures up to $5^{\prime \prime}$ of water and does not chanse appreciably for temperatures of air between 40° and 1000 F , or for the size of recoiving tank if the ratio of the area of the tank to the orifice is greater than 20 to 1.

We measured the degree of suction by boring holes in the pipes leading from the orifices to the tank and inserting small brass tubes in holes thru rubber stoppers in thess holes. These brass tubes were placed into the pipes far enough to get an averane reading on the manometers. Small rubber tubes lead from these brass tubes to the manometers which were of the suction type and read in hundredths of an inch of water.

The temperature of the ais was taken by a thermometer hung in front of the two orifices to get an average temperatuine.

Thus by taking the temperature of the entening ais and the pressure in inches of water we mey by the formula $W=.8298 \mathrm{Cd}^{2} \sqrt{\bar{I}+T}$ find the weight of air entering the engine in pounds per second. In this case the constant (C) $18,6, d=2^{n}, 1=$ inches of water, $T=$ absolute temperature of entering air.

This method of measuring air was taken from R. J. Durley's discussion in the Transactions of the A. S. M. E. Vo1..27, 1906.

The test was run under mixtures of $5 . \theta$ to 10 cu. ft. of air per 1 cu. ft. of gas and under compression of 105 to l90\# per sq. in. The limit was reached under which the largest load that could be carried under a mixture of 11 to 1. No tests were run of light loads as it was not deemed profitable if the largest load could not be carried. The limit of test was elso reached at 190\# per sq. in. of compression. At this point preignition was established to such an extent as was apt to damage the ergine and the test was stopped. However, preignition was never found on the indicator card or on the compression card when the spark was cut out. The only evidence of pieignition was the pounding of the engine. This pounding could probably be done away with by giving the spark less angle of advance, however, this was not done.

By using the same loads under the several tests we Weire able to determine the effect of fll mixture on B. H. P., I. H. P. and mechanical efficiency under different compressions, as can be seen from the curves plottied; they remain nearly constant. Thus all the change that was made by the testwas thrown into the thermal efficiency and all conclusions were drawn from the latter. The exhaust gas analysis was discarded after the first compression test was run as the two methods of measuring the air checked.

From this fact we ferl sure that our method of measuring air was extremely accurate and can be recomended for anj such work as it is far less complicated to work up than is the chemical analysis.

From the results of the tests the most noticable changes were made by varying the fuel mixture, all of which would give about the same mechanical efficiency. From the curves on page the mixtiure that give the maximum thermal efficiency was a proportion of 10.5 volumes of air to 1 volume of gas. The curve would probably drop if continued, on account of the fact that a ratio of 10.5 was the weakest mixture that. would maintain the same conditions of load and mechanical efficiency.

These curves also show the effect of changing the compiession. This is also shown on page A compression of about l50 to l60" gave the greatest thermal efficiency and also the greatest economy as shown by the tabulations. The corresponding ratio of compression ran from 6 to 3.5. A higher compression than stated would not be advisable on account of the falling off in economy of $\%$ from a ratio of 6 to 7.5. This is somewhat contrary to What might be expected from an inspection of the theoretical efficiency curve, but is probably due to the excessive loss of heat given to the cooling water at the time of preignition. From the curves showing the effect of compression and from results of other tests, it would be
reasonable to assume that if preignition could be prevented a hisher economy could be reached. This preignition could be pievented by the sdmission of a spray of water in with the incoming charge, which would tend to cool off the cylinder. Regarding the cause of preignition, we cannot say, but from Other experiments made by authorities who have layed it to the amount of hydrogen in the gas, we reached a great deal higher compression per volume of hydrogen present then did either C. E. Lucke of Columbia University in his "Gas Engine Design" or H. E. Wimperis in his "Internal Combustion encine". Again it might be caused by carbon particles In the hieh heat of ignition and compiession.

Again a higher efficiency and economy could have been reached by changing the angle of ignition. Cerds No. 10 , 11 and 12 were taken of the 65\# load under the respective tests and show a slow burning mixture thet could be cemedied by increasing the angle of ignition. For the other tests the angle of ignition was about right.

One peculiar feature was noticed in the experiment and, thet was the ratio of air to gas was not constant thruout a certain mixture under different loads. As can be seen from some of the curves the ratio curve is not always a straight line. This probably is due to some defect in the pressure regulator of the gas main.

The conditions under which the engine gave the best
results are: ratio of air to gas $=10$; compiression $=150 \#$ per sq. 1n; cu. ft. of gas per B. H. P. per hour = 2l; mechanical efficienc $\bar{J}=-80 \%$; thermal efficiency $=23 \%$; load l70\# and developes 40 I. H. P.

The exponent (n) as used in the formula for the theoretical efficiency of the Otto gas engine cycle was determined from the compression cards by means of the following formula:

$$
\begin{aligned}
& \frac{P_{1}}{P_{2}}=\frac{\left(V_{2}\right)^{n}}{\left(V_{1}\right)^{n}} \\
& P_{1}=\text { initial pressure } \\
& V_{1}=\text { total culinder volume } \\
& P_{2}=\text { pressure at an point of curve } \\
& V_{2}=\text { volume corresponding to pressure } P_{2} . \\
& n=\text { ratio of sfecific heat of the gas at constant }
\end{aligned}
$$ pressure and at constant volume.

From compression No. 1 rear cylinder.
$P_{1}=14.7-10=4.7$
$P_{2}=14.7+38=52.7$
$V_{2}=141$ cu. in. $=$ clearance space.
$V_{1}=141+603.18=744.8=$ total volume of cylinder.
$\frac{4.7}{52.7}=\frac{(141)^{n}}{(744.8)}$
$\log 4.7-\log 52.7=n(\log 141-\log 744.18)$
.872098
2.149219
$-1.721811-\frac{2.871645}{.250287-2}$

$$
n=\frac{1.049713}{.722435}=1.45
$$

Carà Nos. $1,3,4$, and 5 give the following vilue of
(n).

$$
\text { No. } \begin{aligned}
1 & =1.45 \\
\text { " } 3 & =1.345 \\
\text { " } 4 & =1.25 \\
\text { " } 5 & =\frac{1.49}{1.386}=\text { average. }
\end{aligned}
$$

Ratio*Compression R.Cyl 5.28. FCyl. 4.97

Gas

Test No.l. Comp. No.l. Mix. No.l.

165	30	312	117	106	29.25	2.84	69.
130		318	107	92		3.15	66
95		321	97	82		3.49	66.
60		326	80	54		3.86	64.
25		326	49	38	29.24	4.00	7.2

Test No.2. Comp Nol. Mix.No.2.

Test No. 4. Comp.No.1 Mix No. 4.

170	30	311	119	103	28.94	2.9	65
135		317	99	87		3.19	66
100		321	88.5	71	28.93	3.45	66
65		323	70	57.5		3.65	67.
30		327	52	44	28.94	3.8	68.

Test No.5. Comp. No.1. Mix No. 5 .

170	30	300	126	116	29.04	3.37	58
135		312	108.5	98		3.57	60
100		318	02.5	78	29.04	3.7	61.
65		323	83.25	63.5		3.81	62
30		325	63	51.25	29.04	3.87	63

Ratio of Compression R.Cyl. 5.28 F. Cyl. 4.97

Test No. 3 Comp. No. 1 Mix. No. 3.

170	437	420	.77	.9	85.5	2755	6.1
135	379	364	.594	.7	86.7	2405	6.2
100	300	286	.455	.525	85.1	2144	7.3
65	234	222	.305	.37	85.5	1773	7.8
30	177	163	.205	.24	82.57	1449	8.6

Test No. 4 Comp. No. 1 Mix. No. 4

170	379	364	.765	.902	75.4	2825	7.3
135	332	320	.618	.728	77.4	2529	7.64
100	277	267	.411	.561	71.57	2228	7.8
65	225	217	.345	.41	71.57	1895	8.16
30	178	171	.225	.232	73	1482	8.35
Test No.5. Comp. No.1.Mix. No. 5.							
170	336	330	1.01	1.2	63.14	3284	8.2
135	303	296	.827	.967	67.2	2934	8.3
100	263	257	.6	.711	67.85	2518	8.15
65	215	209	.408	.494	68.7	2090	8.4
30	171	166.5	.269	.339	67.7	1716	8.5

Ratio of Compression R.Cyl.5.28. F. Cyl. 4.97.

Test No.1. Comp. Noil Mix. No. 1

165	7.1	24.4	40.28	31.8	79.0	19.6.
130	7.3	27.0	35.44	24.88	70.2	17.7
95	7.6	29.0	26.04	18.38	10.6	16.4
60	8.3	36.0	20.45	11.81	57.6	13.3
25	9.2	64.0	14.53	4.968	34.14	7.49

Test No.2. Comp.No.1 Mix. No. 2

170	5.9	29.7	38.22	31.41	82.2	16.0
135	6.35	30.0	32.72	25.4	77.7	15.9
100	6.9	31.8	26.94	18.72	72.1	14.9
65	8.0	35.0	19.69	12.64	64.2	13.1
30	8.1	56.6	14.18	5.87	41.85	6.09

170	6.55	26.4	39.9	31.7	79.9	18.0			
135	6.6	28.5	33.05	25.5	77.0	16.8			
100	7.5	29.8	26.88	19.2	71.5	16.1			
65	8.0	35.2	21.4	12.6	59.0	12.9			
30	8.9	56.0	14.07	5.85	41.7	8.6			
Test									No.4. Comp. No.1. Mix. No.4.
170	7.75	23.0	39.44	31.7	76.5	20.7			
135	7.9	25.0	33.7	25.7	71.7	19.3			
100	8.35	27.6	26.89	19.3	89.1	17.2			
65	8.74	34.6	21.33	12.6	42.6	13.85			
30	8.7	58.0	13.84	5.9	20.7	8.25			

Test No. 5. Comp. No.l Mix. No. 5

170	9.9	21.4	42.47	30.8	72.9	22.2
135	9.9	23.5	34.79	26.2	73.0	20.3
100	9.8	26.7	28.16	19.2	69.0	17.8
65	10.0	33.2	20.52	12.6	61.5	14.4
30	10.3	57.0	12.76	5.84	45.7	8.36

Ratio of Compressiom R.Cyl. 6.04 F. Cyl 5.65

Test No. 7 Comp. No.2. Mix. No. 2.

Test No. 10 Comp. No.2. Mix No. 5

135	30	310	144	126	29.13	3.03	57.6
100		317	122	112		3.28	64.2
65		323	98	75		3.45	66.7
35		326	81	65		3.5	68.7

Ratio of Compression R.Cyl. 6.04 F. Cyl. 5.65
 Test No. 6 Comp.No.2. Mix. No. 1

170	405	386	.693	.82	78	2685	5.1
135	338	322	.562	.649	88.5	2376	
100	279	265.5	.425	.51	86.85	2093	
65	224	213	.317	.38	87.5	1803	
30	169	160.5	.2	.25	84	1453	

Test No. 7 Comp. No. 2 . Mix. No. 2.

170	446	430	.653	.78	74.28	2618	5.1
135	377	362	.537	.625	75	2367	
100	292	279	.4	.47	78.54	2035	
65	227	217	.28	.344	73.85	1730	
30	168	161	.18	.22	71.1	1387	

Test No.8. Comp No. 2 Mix. No. 3.

170	378	366	.678	.82	69.4	2687	5.1
135	334	323	.581	.677	77.18	2432	
100	284	263	.458	.543	86.18	2164	
65	228	216	.35	.4	84.01	1855	
30	173	165	.22	.26	78.14	1401	
Test No.9 Comp. No. 2							
170	370	356	.758	.869	89	2755	5.19
135	328	313	.6	.691	96.28	2441	
100	281	266	.47	.547	96.4	2162	
65	227	214	.331	.391	87.85	1838	
30	171	162	.201	.268	62.	1517	

Test No.10. Comp. No. 3 Mix No. 5

170		
135	298	294
100	255	248
65	210	202
35	174	168

Test No. 6. Gomp.No.2. Mix.No.l.

170	6.95	24.25	41.8	31.8	76.1	20.6
135	7.37	25.0	36.9	25.1	69.6	18.8
100	7.9	27.6	29.2	18.25	66.0	17.25
65	8.4	33.8	20.3	12.6	62.0	14.09
30	9.05	64.7	14.3	6.86	41.0	8.7

Test No.T. Comp.No.2. Mix. No. 2 .

170	6.1	27.02	41.4	31.8	76.9	17.5
135	6.54	28.02	35.79	25.7	71.9	16.8
100	7.3	29.9	27.66	19.3	69.8	16.4
65	8.0	34.3	20.51	12.65	61.75	13.8
30	8.3	54.6	13.28	5.9	44.4	8.75

Test No.8. Comp. No.2. Mix. No. 3 .

170	7.34	22.95	39.05	31.92	81.75	20.7
135	7.62	25.15	33.3	25.68	77.1	18.7
100	8.56	27.3	27.58	19.26	69.9	17.3
65	8.69	34.3	20.86	12.6	60.5	13.8
30	8.5	56.4	14.68	5.86	40.0	8.55

170	1.8	22.21	39.41	31.75	80.5	21.2
135	7.8	24.5	32.12	25.6	79.7	19.4
100	8.13	27.7	26.65	19.2	72.0	17.2
65	8.6	33.9	20.53	12.63	61.6	14.0
30	9.35	55.2	14.38	5.87	40.8	8.75
Test No.1O. Comp. No.2. Mix. No. S.						

170						
135	10.8	23.7	32.67	25.12	76.9	20.3
100	10.6	26.1	25.23	19.03	75.5	17.95
65	10.7	32.0	20.54	12.6	61.4	14.85
35	11.6	49.0	14.77	6.85	46.4	9.7

Ratio of Compression R Cyl. 7.4 F.CYI 7.115

TestNo. 11 CompNo. 3 Mix.No.l.

170	30	313	190.5	166	29.16	2.55	58.75
135		317	168	146		2.8	60.3
100		322	129	116		3.1	62.1
65		325	122	87		3.3	62.86
30		327	94	70		3.45	64.28

Test No.12.Comp.No. 3 Mix.No.2.

170	30	312	182	160	29.2	2.01	67.5
135		317	164	140		2.34	68.2
100		322	136	109		2.6	68.5
65		325	110	87		2.73	68.6
30		329	88	66		2.87	67.7

Test No.ll. CompNo.3. Mix.No.l.

170	416	409	.715	.84	75.14	2723	5.15
135	371	364	.604	.704	78.71	2490	
100	290	284	.43	.514	77.28	2124	
65	230	225	.317	.39	75.28	1838	
30	175	171	.213	.263	74.4	1505	
Test No.12.Comp No.3. M1x.No.2.							
170	452	436	.667	.817	81.1	2650	5.15
135	379	366	.522	.654	78.85	2375	
100	297	287	.385	.488	73.7	2041	
65	233	226	.258	.354	69.48	1712	
30	178	173	.165	.233	72.1	1376	

Ratio of Compression. R. Cyl. 7.4 F. Cyl. 7.115

Load

Cu.ft.air
per Cu. Ft.
Gas.
Gu.Ft.Gas
per B.H.P.
per Hour.

 Test No. II. Comp. No. 3. Mix. NoIl.

170	6.67	25.6	40.0	31.9	79.8	18.7
135	6.85	28.7	34.76	25.68	73.9	16.8
100	7.5	29.4	28.9	19.33	66.9	16.3
65	8.17	35.5	21.11	12.68	60.1	13.3
30	8.83	57.8	15.1	5.9	39.0	8.2

170	5.73	27.4	43.31	31.8	73.6	17.4
135	6.48	28.4	33.28	25.7	77.2	16.6
100	7.06	29.7	28.31	19.32	68.3	16.05
65	7.56	35.6	21.07	12.7	60.25	13.4
30	7.95	58.5	14.46	5.92	41.0	8.12

Curves showing the relationship of I. H. P., mechanical efficiency, thermal efficiency, ratio of air to ges and Cu. ft. of gas used per B. H. P. with B. H. P.

$$
40-80
$$

TESTNO. 1

35

30
25
20

كَ

TEAT No, 2.

TESTNo, 9 .

TEST No. G:

TESTNo. 12.

TEST No.II.

TESTNo.lo.

END -- H
Test No.A.
50\%spring.

swo - . H,
Test $\mathrm{M}_{0} .6$.

OUTLINE OF TEST

> Efficienci of a Gas Engine as Determined by Fuel Mixture and Coms ression.

The test will be run under different conditions of fuel mixture with different loads and difierent conditions of compression.

1. The loads are to be applied by means of a water. cooled Prony brake and applied in this order; determine the largest load the engine will carry undar operating conditions and divide it up into five increments, the loads to be applied successively. This will give five points on all curves plotted with loads.
2. The length of tests are to be from 30 to 40 minutes, taking readings every five minutes.
3. Readings necessary.

Gas meter.
Temperature on both sides of the meter, the inlet side and outlet side.

Pressure on cofresponding sides of the meter.
R. P. M. of engine.

Venturi-meter manometer readinge.
Air temperature at venturi-meter.
Barometer reading, beginning and end of test.
Loads.
Time.
4. The gas is to be measured by a standard gas meter. Sampes are to be pumped into a tank during the test and the calorific calue determined at the end of each test if possible. An ultimate analysis is to be run at the same time in order to check all work.
5. The air is to be measliced by means of a suitable low pressure orifice arranged with a by-pass for starting.
6. The compression is chanced by putting in or taking out shims in the connecting rod.

The amount of compression is measured by use of an indicator and reducing motion cutting out spark at the timo of taking card.
7. An ultimate analysis will be made of the exhaust gases, thus giving a check on the anount of air passing through the engine.
8. The I. H. P. is measured by means of indicator cards, taken evary five minutes, and the engine constant.
8. The B. H. P. is measured bir means of brake load, which must be kept constant thruout the test, and the B. II. P. constant.

In refard to the different mixtures, the limits will bo found by trial and work will be carried on within those limits.

The outlet temperature of the cooling water should be maintained as near as possible at 180 degrees F.

The angle of ignition is to be set at 15 deg. and is to be maintained constent thruout the test.

BIBLIOGRAPHY

1. The gas, Petrol and Oil Engines, By D. Clark, Member of the Institution of Mechanical Engineers. Published by John Wiley and Sons, 1909 edition. Combustion and explosion Chap. 5. Treats on the true explosive mixtures and heat of combustion. Efficiency of Gas in Explosive mixtures, p. 140, Oldham gas gives maximum with air to gas ratio of 12 to 1. A treatment of the thermal and mechanical efficiency of the different types of gas engines is given in Chap. 9.
2. Gas Fneina Design. By. C. E. Lucke of Columbia University. Published by D. Van Nostrand Co. 1805 edition. Air required for combustion,. p 25. Ratio of air to corl gas 5.05-3.38 to 1. Effect of fuel mixtures on compression, p. 33. 1 atmosphere should be deducted, from amount of compression, for each 5% of hydrogen present. Clty gas allows a compression of 60 to 100\# per sq. in..
3. Guldners Internal Combustion Engines. A translation by H. Diederichs of Cornell. Published by D. Van Nostrend Co., 1910 edition.

Ratio of air to gas p. 534 Illuminatinc gas 11.7 to L, water gas 7.l to 1 . Air required for true explosive mixture p. 538. A method for calclating the theoretical amount of air required for combustion is given on pp. 514 to 534.
4. Applied Thermodynamics for Engineers. By W. D. Ennis of Brooklyn. Published by D. Van Nostrand Co., 1910 edition. Limitations to compression F. l69. For coal gas it is BD to 100 // $8 q$. in. The range of compression decends upon the pressure existing in the cylinder at the beginning of compression.
5. The Gas Engine. By F. R. Hutton, Columbia University. Published by John W tiey and Sons, 1906 edition.

A method of calculating the thooretical amount of air required for combustion pp. 19 to 24.

Description and operation of Junkers Calorimeter pp.
31 to 34. Proportioning of mixtures, Chap. 9.
6. A practical Treatis on Modern Gas and 011 Engines. By F. Grover, Leeds, England. Published by Technical Publishing Co., 1897 edition:

Method of calculating heat value of a gas by means of Junkers calorimeter pp. 120 to 123. The Hempel method of analyzing coal gas, Chap. 3.
7.. The Internal Combustion Engine. By H. E. Wimperis. A text book on Gas, 011 and Petrol Engines. Published by D. Van Nostrand Co. 1909 edition.

Allowable compression, f. 208. For producer ges 150\# sq. in. Combustion and explosion, Chap. 3. A maximum pressure is obtained by a ratio of gas to air of 1 to 6.
8. Modern Gas Engine and the Gas Producer. By A. M. Levin, member of A. S. M. E., Published by John Wiley and Sons, 1910 edition.

Calculation of theoretical amountof air for combustion, pp. 80 to 87. Calorific value of Puels, pp. 94 to 97. Takle of amount of air for combustion, pp. 108 to 109. 9. The Flow of Fluids in a Venturi Tube. By E. P. Colemen, Buffalc, N. Y. Published in the Transactions of the A. S. M. E. 1807, pp. 483 to 507.

A paper on the use of the venturi triba for the measurement of fluids and gases, description of apparatus and derivation of formula. Discussion by Prof. Chas. E. Lucke. 10. Air supply to Gas Engines. By W. E. Dalby, a member of the Ifstitute of Mechanical Fingineers. Published in Engineerjng, Sept. 9, 1810.

A treatment on the direct measurement of air supply to
gas engires by means of a standard orifice, and the calibration of the lattor.
11. Practical Testing of Gas and Gasmeters. By C. H. Stone, inspector of gas service, New York. Published by John Wiley and Sons, 1909 edition.

The description of apparatus and method of making the different ultimate analyses of coal gas, pp. 164 to 196.
12. Study of Gases. By M. W. Travers, London. An account of the experimental methods involved in the determination of the properties of gases. Published by MacMillan and Co., 1801 edition.

Absorption of gases by solid and liquid reagents and the principles of manipulation of the arparatus for the determination of $0, \mathrm{H}, \mathrm{CO}, \mathrm{CO}_{2}$ and the Hydrocarbons.
13. The Interpretation of Ges Analysis. By W. H. Birchmoire, Londen. Fxplicit directions for the analysis of an illuminating gas. Published by D. Van Nostrand Co.,. 1906 edition.

Theoretical requirements of combustion, Chap. 3.
Table of the requirements of air to ges constitutients, p 52.
14. Gas Engine Testing and Standard of Comparision. By W. P. Fiint, East Pittsburg, Pa. Published in the trensactions of the A. S. M. E., 1904.

Method and Procedure of conducting gas engine tests together with a profosed basis of comperison.
15. A method of Testing Gas Engines. By E. C'. Olivar, Minneapolis, Minn. Published in the transactions of the A. S. M. E. Vol. 24, No. 889 , 1903 edition.

Teight of air determined by high and low pressure air tanks, F. 1085.
16. Test of a 12 H. P. Gas Engine co cetermine the Effects of changes in Speed, load, point of ignition, ratio of air to Eas and jacket tempereture. B:; C. H. Roberteon, Layfayette, Ind. Published in the Transactions of the A. S. M. E. Vol. 24, 1903 edition.

Facilities of making tests. Concerning air and gas mixture, p. 1097.
17.. On the Measurement of air Flowing into the atmosphere treu circiler orifice in thin plates and under small differences of pressure. By R. J. Durley, Montreal, Canada. Published in the transactions of the A. S. M. E. Vol. 27 , 1806 edition.
13. On Ges Fngines. By T. M. Goodeve, Fngland. Published kj Crceby, Lockwood and Son, l889 edition.

Explosive mixturecf gas and air, p 3. Proportion of 6.3 air to 1 of gas to have completo combustion.
19. Irternal Combustion En-ines. By R. C. Carpenter and H. Diederichs. Professors of Experimental Engineering, Cornell. Published by D. Van Nostrend.

Combusticn - Chap. 6.
Gus. Fngines Fuels - Char. 7.
The Fuel Mixture - Chap. 10.
Methods of Testing - Chaf. 16.
20. Engineering Chemistry. $3: \%$ T. B. Stillman, Prof. of Analytical Chemistry in the Stevens Institute of Technology. Gas Analysis by Hempel's arparatus, p 139-152.

Junkers Calorimeter, p 171 -176.

$$
--00400--
$$

Sample computations for data of teat No. 2 Mixture No. 2, compression No. 1, load 17C\#.

Formila for computing the weisht of air flowing thru an orifice.

Formila for a 2^{n} orifice.
$W=.6299 \times \mathrm{cd}^{2} \frac{(1)^{\frac{1}{2}}}{(\mathrm{~T})}$
$W=$ weight of air in founds fer second.
c = diameter of aischarge (. 6 for $2^{\prime \prime}$ orifice"
$1=$ Pressure in inches of water.
$T=a b s o l u t e$ temperature.
d = diameter of orifice in inches.
$W=.6299 \times .6 \times \frac{4(1)^{\frac{1}{2}}}{(T)^{2}}$
$V_{0}=1.51176 \times \frac{(1)^{\frac{1}{E}}}{(T)^{2}}$

From test No. 2, mixture No. 2, compression No. 1, load 170\%.
$1=.73$
$T=82.5+459.2-.5=514.7$
$W=1.51178 \times \frac{(.73)^{\frac{1}{8}}}{(541.7)}$
$W=.0555$ per sec.
Weight of air per test of 30 minutes each
$60 \times 30 \times .0555=99.9$ air fer 30 min .
1 clu. ft. air at $62^{\circ} \mathrm{F}$ woighs .078081\#.
Cu. ft. air drawn thru orifice No. $1=\frac{99.9}{.078081}=1314 \mathrm{cu}. \mathrm{ft}$.

From orifice No. 2.
$W=1.51176 \frac{(.87)^{\frac{1}{2}}}{(541.7)}=.060$ sth par sec.
Cu. ft. of air drawn trru oinfice No. $2=\frac{.0606 \times 60 \times 30}{.076031}$
$=1437$ cu. ft.
Total air used per test of 30 minutes $1314+1437$
$=2751$ cu. Pt. air.

STAMDARD GAS USFID PJR TFS'I OF 30 kIN.
$\frac{P_{I} V_{1}}{T_{1}}=\frac{P V}{T}$
$\mathbf{P}_{1}=$ Pressure of std. gas (30" Hg.$)$
$V_{1}=$ Volume of std. gas used.
$T_{1}=$ Temperature (Absolute) Std. gas (521.20 F)
$P=$ Pressure (aksolute) of gas lised.
$V=$ Volume $=f$ gas used.
$T=$ Temperature (absolute) of gas feed to engine.
$V_{1}=\frac{P V}{T}\left(\frac{T}{P_{1}}\right)_{1} \quad \frac{T_{1}}{P_{1}}=\frac{521.2}{30}=17.373$
For 170\# load.
Pressure of gas in main equals 2.44 inches water. Absolute pressure equals barometric pressure plus $\frac{2.44}{12}$

$$
\begin{aligned}
& \frac{x}{} \frac{15}{17}=.178 \\
& P=28.84=.178=29.019^{n} \mathrm{Hg} \\
& T=459.2=-72-.4=530.80 \mathrm{~F} \\
& V=492
\end{aligned}
$$

> Standerd ges used fer test of 30 minutes. $V_{1}=\frac{(26.019 \times 482)}{(530.8)} \times 18.373=467$ cu. ft.

BRAVF FORSE POWFR.
B. H. P. $=\frac{2 \times 3.1 \leq 16 \times w 1 n}{33000}$
$\frac{2 \times 3.1415}{33000} 1=.0006=$ brake constant.
B. H. P. $=.0006 \times 170 \times 308=31.4$

INDICATED HORSE POWER.
I. H. P. $=\frac{\text { Plan }}{33000}$
$\frac{1 a}{3300}=.00086=$ Engine constant rear cylinder.
$\frac{1 a}{33000}=.000812=$ engine constant front cylinder.
I. E. P. rear cyl. $=.00086 \times 73.62 \times 308=19.52$
I. H. P. front cyl. $=.000812 \times 74.75 \times 308=18.7$

Total I. H. P. $=19.52+18.7=38.22$.

MFCYAIICAL FFFICIFNCY
$\frac{\text { B. }_{1} \mathrm{H}_{-}}{\mathrm{I}_{0} \mathrm{H}_{-}} \frac{\mathrm{P}_{\cdot}}{\mathrm{P}_{\cdot}}=\frac{31.41}{38.22}=82.2 \%$

THERMAL EFFICIFRCY
$\frac{\text { B. H. P. in heat units }}{\text { B. }_{\text {H. }}^{\text {P. in gas. }}}$
$\frac{31.41 \times 33000 \times 30}{770 \times 467 \times 532}=16 \%$
Cuble feet of gas fer B. H. P. Fer hour.
$\frac{2 \times 4 \in 7}{31.41}=29.7$ cu. Pt. ges per B. H. P. fer hour.
Heatirg value and air recuired for combustion from chemical analysis.

$$
\begin{aligned}
& \text { Heatirg vulue (low) } \\
& H=275 \times .32=88 \\
& \mathrm{CH}_{4}=810 \times .216=197 \\
& \mathrm{CO}=35 \times .145=47 \\
& \mathrm{C}_{6}{ }^{15_{6}}=3560 \times .05=177 \\
& C_{2} \mathrm{H}_{4}=1512 \times .0145=22 \\
& \mathrm{CO}_{2}=0 \times .0245=0 \\
& 0=0 \times \cdot 245=\quad \theta \\
& \text { Total - - - } 531 \text { B. T. U. } \\
& \text { Air Required. } \\
& H=.282 \times 2.4=\text {. } 71 \\
& \mathrm{CH}_{4}=.216 \times 9.61=2.08 \\
& \mathrm{C}_{2} \mathrm{H}_{4}=.0145 \times 14.3=.20 \\
& C_{6} \mathrm{H}_{6}=.05 \times 36=1.80 \\
& C O=.109 \times 2.4=\ldots \\
& 5.05 \mathrm{cli} . f t . \\
& 8.4 \mathrm{CO}_{2} \text { in exheust: } \\
& \text { 2.45" "gas. } \\
& 5.95 \mathrm{CO}_{2}
\end{aligned}
$$

$321^{1104} 16$ 40516

$$
\begin{aligned}
& \frac{5.95}{3}=1.98 \quad 2 \times 1.88=3.930 \text { in excess. } \\
& 2.450 \text { in gas. } \\
& \frac{1.2}{1.25} 0 \text { in exhaust } \\
& 3.92-1.25=2.710 \text { in extencess. Air is } 21 \% 0 . \\
& \frac{21}{21+2.71}=\frac{5.00}{x} \quad x=5.74 \text { air/ cu. ft. gas. }
\end{aligned}
$$

CALORISETFK TEST.

$$
\begin{aligned}
& \text { Temp. inlet water }=13.50 \mathrm{C} \\
& \text { " outlet } "=44.50^{\circ} \mathrm{C} \\
& \text { Difference } 30.0 \mathrm{C} \\
& \text { Liters of cooling water }=4.81 \\
& \text { Condensation }=21 \mathrm{cc} \\
& \text { Gas pressure }=2.5^{\prime \prime}=.1839 \mathrm{Hg} \text {. } \\
& \text { n Temperature }=21^{\circ} \mathrm{C} \\
& \text { Liters of gas used. } \quad=30 \text { at meter.. } \\
& \frac{P V}{T}=\frac{P_{1} V_{1}}{Y_{1}} \\
& V\left(\text { Std. Gas) }=\frac{\mathrm{P}_{1} V_{1} T}{\mathrm{PT}_{1}}\right. \\
& \text { St. conditions are } 620 \mathrm{~F} \text { and } 30^{\prime \prime} \mathrm{Eg} \text {. } \\
& 620 \mathrm{~F}=16.660 \mathrm{C} \\
& \text { Barometer }=29.04{ }^{\prime \prime} \mathrm{Hg} \text {. }
\end{aligned}
$$

```
\(V=(29.04+.1839)(30 \times .0353)(273.1+16.68)\)
\(V=1 . c l 5 \mathrm{cu} . \mathrm{ft}\).
Heating value \(=\) Liters cooling water times difference
```

in temperature.

1 cu. ft. of gas $=\frac{0 C \times 3}{C u . f t} \cdot \frac{988}{\text { gas burned. }}$
$=4.81 \times 30.8 \times 3.969$
$=5 \Omega 3$ B. T. U. high value.
Heat of condensation $=$

$$
\begin{aligned}
& \frac{2.381}{\text { Cu. }} \cdot \frac{x c c o f}{f t} \frac{c \rho}{\text { gas burned }} \\
= & \frac{2.381}{1.01} \frac{x}{5} 21 \\
= & 49.2 \mathrm{~B} \cdot \mathrm{~T} \cdot \mathrm{U} .
\end{aligned}
$$

$$
583-492=533.8 \text { B. T. U. Low value. }
$$

Ratio of compression.
Disrlacerent Rear Cyl. $=803.18$ cu. in.
" Front ${ }^{n}=550.02$ n n

Clearance rear cyl. $\quad=141 \mathrm{cu} . \operatorname{in}=23.4 \%$
n frost ${ }^{n} \quad=138.5$ cu. in $=-25.2 \%$
Ratio of compression $=\frac{\text { Total volume }}{\text { Clearance. }}$
Front Cyl. $=\frac{550.02}{13} \frac{138.5}{.5}=4.97$
Rear Cyl. $=\frac{603.18+141}{141}=5.28$

