

LIBRARY Michigan State University



PLACE IN RETURN BOX to remove this checkout from your record.

TO AVOID FINES return on or before date due.

MAY BE RECALLED with earlier due date if requested.

| DATE DUE | DATE DUE | DATE DUE |
|----------|----------|----------|
|          |          |          |
|          |          |          |
|          |          |          |
|          |          |          |
|          |          |          |
|          |          |          |
|          |          |          |
|          |          |          |
|          |          |          |
|          |          |          |
|          |          |          |

6/01 c:/CIRC/DateDue.p65-p.15

An Analysis of a Reinforced Concrete
Factory Building

A Thesis Submitted to

The Faculty of MICHIGAN AGRICULTURAL COLLEGE

bу

P. R. (Von Sprecken)

J. F. Gibbs

Candidates for the degree of Bachelor of Science

June, 1920

650 T115

# Index.

| Introduction          | pg. 1 - 2 |
|-----------------------|-----------|
| References            | 3         |
| Specifications        | 4 -6      |
| Moments               | 6 - 8     |
| Loading               | 8 - 9     |
| Dead weights          | 10        |
| Loading on roof slab  | 11 - 12   |
| Loading on beams      | 13 - 22   |
| Loading on girders    | 23 - 27   |
| Loading on columns    | 28 - 34   |
| Analysis of roof slab | 35 -37    |
| Analysis of beams     | 38 - 41   |
| Analysis of columns   | 42 - 43   |
| Analysis of saw tooth | 44 - 51   |
| Conciniation          | 50 mg     |



| , |  |  |   |
|---|--|--|---|
|   |  |  |   |
|   |  |  |   |
|   |  |  |   |
|   |  |  | • |
|   |  |  | ! |
|   |  |  |   |

# LIST OF PLATES.

- Plate 1, Location Diagram of Column Footings.
  - 2, Framing Plan of Hanger Beams and Flat Roof.
  - " 3, Plan Showing Saw Tooth Construction.
  - " 4, Typical Section.
  - 5, Plan of Typical Slab.
  - " 6, Bent Rib Bar Diagram.
  - 7, Beam Sizes and Reinforcing.
  - \* 8, \* \* \* \* \*
  - 9, Girder Sizes and Reinforcing.
  - " 10, Column Sizes and Reinforcing.
  - " 11, Roof Slab Stresses.
  - " 12, Beam Analysis.
  - " 13, Girder Analysis.
  - 2 14, Omitted.
  - " 15, Plan of Blower Room.
  - " 16, Column Stresses.

• • • .

#### INTRODUCTION.

The Sheet Metal Building of the Olds Motor Works consists of a one story reinforced concrete structure of the beam and girder type, 180 feet wide by 480 feet long. The roof is entirely of reinforced concrete and is a combination of flat slab and saw tooth construction. The walls are of brick to a height of about three feet. Truscon steel windows are placed above this wall and extend to the roof.

A 1:2:4 mixture of concrete was used.

The building is used as a light machine shop. The beams which run longitudinally are provided with Truscon slotted inserts cast in the concrete to which the shaft hangers are attached. No provision is made for attaching machinery to the girders which are transverse of the building.

The building was designed by the H. G. Christman Co. and erected by them in the summer of 1919. The steel was furnished by the Truscon Steel Co. and consists of Kahn bars and Kahn rib bars.

It was our purpose in choosing this as the subject for a thesis to continue the study of reinforced concrete as applied to a practical design and to study the unusual problems presented in this type of a building.

The writers desire to acknowledge their indebtedness to Prof. C. L. Allen for the valuable assistance
and advice given, and to Mr. Conrad of the H. G. Christman Co. for allowing free access to the building at all

• • • • •

# INTRODUCTION.

times, for furnishing complete plans, data, and information, and for the practical advice so kindly given.

### REFERENCES.

Hool, Reinforced Concrete Construction, Vol. 1 & 2.

Hool and Johnson, Concrete Engineers' Handbook.

Ketchum, Structural Engineers' Handbook.

Malcolm, Graphic Statics

Michigan State Highway Department, General Specifications for Steel and Concrete Highway Bridges.

Taylor and Thompson, Concrete Plain and Reinforced.

# SPECIFICATIONS.

The following working stresses have been recommended by the Special Committee on Concrete and Reinforced Concrete of the American Society of Civil Engineers presented before the society Jan. 17, 1917. Hool and Johnson, Concrete Engineers' Handbook, page 845-6.

Per cent of Lbs. per compressive sq. inch.

1.Structural steel in tension

16,000

2. Concrete in compression
where the surface is at
least twice the loaded area

35.0

700

3. Concrete for concentric compression on a plain concrete column or pier, the length of which does not exceed 4 diameters

22.5

450

450

5.

Per cent of Lbs. per compressive sq. inch. strength.

5. Compression on columns reinforced with not less than 1 % and not more than 4 % of longitudinal bars and with circular hoops or spirals not less than 1 % of the volume of the concrete, the clear spacing of the hooping to be not greater than one- sixth of the diameter of the encased column and preferably not greater than one-tenth, and in no case more than 2-1 inches, where the ratio of unsupported length of column to diameter of the hooped core is not more 34.875 than 10 -----

697.5

6. Compression on extreme fibre
of a beam, calculated for
constant modulus of elasticity
(stresses adjacent of the support of continuous beams may
be 15 % higher) ----- 32.5

650

Per cent of Lbs. per compressive sq. inch.

| 7. Shear in beams with horizontal | ı       |     |
|-----------------------------------|---------|-----|
| reinforcement or without          |         |     |
| reinforcement                     | 2       | 40  |
| 8. Shear in beams thoroughly rein | nforced |     |
| with web reinforcement (the       |         |     |
| web reinforcement exclusive of    | •       |     |
| bent-up bars to be designed to    |         |     |
| resist two-thirds the external    | L       |     |
| shear)                            | 6       | 120 |
| 9. Punching shear, only           | 6       | 120 |
| 10. Bond stress between concrete  |         |     |
| and plain reinforcing bars        | 4       | 80  |
| 11. Bond stress between concrete  |         |     |
| and drawn wire                    | 2       | 40  |

For the above a 1:2:4 mixture (Portland Cement Concrete) was used as a basis, having a strength of 2000 lbs. per square inch. (Compressive).

## MOMENTS.

All steel to be allowed a working stress of 16,000 lbs. per sq. inch.

General Specifications for Steel and Concrete Highway Bridges, - Fourth Edition 1920, - Michigan State High-way Dep't., - Spec. 179& 180, - page 14.

12. When the beam or slab is continuous over its supports, reinforcement shall be fully provided at points of negative moment, and the following stresses shall not

be exceeded; (See Spec. 237 & 238, page 17) for a 1:2:4 mixture with ultimate compressive strength per square inch of 2000 lbs. an extreme fiber stress of 650lbs. per square inch will be allowed, and adjacent to the support of continuous beams, stresses 15 % (or 747.5) higher may be used. (Agrees with Spec. 6 above).

In computing the positive and negative moments in beams and slabs continuous over several supports due to uniformly distributed loads the following rules shall be followed.

- (a). That for floor slabs the bending moments at center and at supports shall be taken as  $\frac{\text{wl}^2}{12}$  for both dead and live loads, where w represents the load per lineal foot and 1 the span.
- (b) That for beams the bending moment at the center and at supports for interior spans shall be taken as  $\frac{\mathbf{wl}^2}{12}$ , and for end spans  $\frac{\mathbf{wl}^2}{10}$  for center and adjourning supports, for both dead and live loads.
- (c). In case of beams and slabs continuous for two spans only, the bending moment at the center support shall be taken as  $\frac{wl^2}{8}$  and near the middle of the span as  $\frac{wl^2}{10}$ .
- (d). At the ends of continuous beams the amount of negative bending moment will be left to the judgement of the designer, but it must be provided for.
- (e). Continuous beams and slabs designed for concentrated loads shall have their moments calculated as if they were simply supported and the resulting moment shall then be multiplied by the factor eight-twelfths or eight-tenths to give the designing moment; the factor eight-twelfths shall be used where the co-

efficient of wl2for uniform loading is one-twelfth, and the factor eight-tenths shall be used where the coefficient of wl2 for uniform loading is one-tenth.

### LOADING.

- 13. Live load on floors. Hool Vol. 2 page 144.

  Toilet room (same as public buildings) 100 lbs. per sq.fin.

  Live load on beams. 500 lbs. per lineal foot of beam.

  Note: Mr. Conrad of H. G. Chrisman Company advised us

  that this was the load assumed in designing the building. It includes the weight of the shaft hangers, shafting, pull of the machinry, and impact.
- 14. Live load on columns. Schneider's Spec. S. H. B. pg. 74.

  Use specified uniform live load per square foot with

  minimum of 20,000 lbs. per column.
- 15. Loads on foundations. Schneider's Spec. S.H.B. pg. 75.

  Live loads on columns shall be assumed to be the same as for the footings of columns. The areas of the bases of columns shall be proportioned for the dead load only. That foundation which receives the largest ratio of live to dead load shall be selected and proportioned for the combined live and dead loads. The dead load on the foundation shall be divided by the area thus found and this reduced pressure per square foot shall be permissable working pressure to be used for the dead load for all foundations.

Permissable pressure on foundations. S.H.B. pg. 75. 2 tons per square foot. • • • • • • •

•

- 16. Wind load. Malcolm's Graphic Statics, pg. 73.

  30 lbs. per square foot of vertical surface, the normal pressure to be the largest as determined by Duchemin's, Hutton's, or the Straight Line formula.
- 17. Snow on roof. Hool and Johnson, Concrete Engineers' Handbook pg. 512.
  - 30 lbs. per square foot of horizontal surface.

### DIMENSIONS.

18. The minimum width of web in beams and girders shall not be less than 1/24 of the span. Spec. 189 - pg.15 S. & C. H. Bridges.

# DEAD WEIGHTS.

The following weights were used in figuring the dead loads.

| Concrete                         | lbs./cu. | ft. |
|----------------------------------|----------|-----|
| Brick 120                        | lbs./cu. | ft. |
| Plaster 5                        | lbs./sq. | ft  |
| Roofing, (3 or 4 ply) 5          | lbs./sq. | ft. |
| Windows (Estimated) 15           | lbs./sq. | ft. |
| Hollow tile Hool, Vol. 2, pg. 69 |          |     |
| 6-12-12 22                       | lbs. eac | h.  |
| 4-12-12                          | lbs. eac | h.  |

# LIVE and DEAD LOADS ON ROOF SLABS.

### Flat Roof.

Snow load ---- 30.0 lbs. per sq.ft.

Roofing, 4 ply tar and gravel - - - - 5.0

Weight of slab  $\frac{12x12x3x150}{144x12} = \frac{37.5}{144x12}$ 

Total load 72.5 lbs. per sq.ft.

# Roof over saw tooth.

The roof slab as scaled from the blue print makes an angle of 28° 35' with the horizontal.

Wind Load. Malcolm's Graphic Statics, page 73.

P=pressure per sq. ft. on a vertical surface.

P<sub>n</sub>= pressure per sq. ft. normal to the roof surface.

A = angle the roof makes with the horizontal in degrees. Duchemin's formula.

 $P = p \frac{2\sin^2 A}{1 + \sin^2 A} = \frac{30x 2x.47844}{1 + (.47844)^2} = 23.4 \text{ lbs. per sq. ft.}$ 

Hutton's formula, -

 $P_n = P \sin A^{1.842\cos A-1} = 30x(.47844)^{1.842x.87812-1}$ 

P<sub>n=</sub> 21 lbs. per sq. ft.

Straight Line formula, -

 $P_n = \frac{PA}{45} = \frac{30}{45}(28.58) = 19.1 \text{ lbs. per sq. Tb.}$ 

Use the largest of these or 23.4 lbs. per sq. ft. Dead Load + Maximum Snow Load.

Max. snow load,  $30 \times \cos 28^{\circ} 35^{\circ} = 26.34 \text{ lbs./ sq. ft.}$ 

Roofing, 3 ply tar and gravel = 5.00

Weight of slab,  $2 \times 12 \times 12 \times 150 = 25.00$ 12 x 144

Total vertical load = 56.34 lbs./ sq.ft.

Total load normal to roof = 49.47 lbs./ sq.ft.

Dead Load + Min. Snow + Wind.

Min. snow,  $15 \times \cos 28^{\circ} 35^{\circ} = 13.17 \text{ lbs./ sq. ft.}$ 

Roofing, 3 ply tar and gravel, = 5.00

Weight of slab  $2 \times 12 \times 12 \times 150$  = 25.00

Total vertical load = 43.17 lbs./sq.ft.

Normal to roof, -

43.17 x cos 28° 35' = 37.89 lbs./sq.ft.

= 23.40

Total load normal to roof = 61.29 lbs./sq.ft.

Use the larger of these two or 61.29 lbs. per sq. ft. as the normal load on the roof over the saw tooth.

# LOADING ON BRAMS.

### Beam A.

Roof (live + dead) 0.0 Weight of beam 8x16x150 133.3 Live load ( machinery) 500.0 Total 633.3 lbs./lin. ft. Beam B Roof (live + dead) 0.0 Weight of beam 8 x 16 x 150 133.3 Live load ( machinery) 500.0 633.3 lbs./lin. ft. Total Beam C. Roof (live + dead)  $7.5 \times 72.5 =$ 543.75 Weight of stem  $19.5 \times 8 \times 150$ 162,50 Live load (machinery) 500.00 Total 1206.25 lbs./lin. ft. Beam D. Roof (live + dead) 7.5 x 72.5 = 543.75 8 x 22 x 150 Weight of stem 183.33 Live load (machinery) 500.00 1227.08 lbs./lin. ft. Total

### LOADING ON BEAMS.

### Beam B.

Roof (live + dead) 7.5 x 72.5 = 543.75

Weight of stem 24.5 x 8x150 204.00

Live load (machinery) = 500.00

Total 1247.75 lbs./lin. ft.

### Beam J.

Roof (live + dead) 3.5 x 72.5 = 254.00

Weight of beam 12 x 30 x 150 = 375.00

Live load (machinery) = 500.00

Total 1129.00 lbs./lin. ft.

## Beam G.

The amount of load on this beam from the slab in the saw tooth is indeterminate. We have assumed that one-fourth of a slab load will cover this load.

Roof (live + dead), flat roof, 3.75x 72.5 = 271.9

Roof, saw tooth, \(\frac{1}{2}\) x 3.75 x 72.5 = 135.9

Weight of stem \(\frac{12\) x 27\) x 150 = 338.0

Live load (machinery) = 500.0

Total 1245.8 lbs/lin.ft.

### LOADING ON BRAMS.

Beam H.

Roof (live + dead)  $7.5 \times 72.5 = 543.75$ 

Weight of stem  $8 \times 19.5 \times 150$  = 162.50

Live lead (machinery) = 500.00

Total 1206.25 lbs./ lin. ft.

Beam I.

Roof (live + dead)  $7.5 \times 72.5 = 543.75$ 

Weight of stem  $8 \times 22 \times 150$  = 183.33

Live load (machinery) = 500.00

Total 1227,08 lbs./ lin. ft.

Beam J.

Roof(live + dead)  $7.5 \times 72.5 = 543.75$ 

Weight of stem  $24.5 \times 8 \times 150$  = 204.00

Live load (machinery) = 500.00

Total 1247.75 lbs./lin. ft.

Beam K.

Under the flat roof at the east end of the building.

Roof (live + dead )  $7.5 \times 72.5 = 543.75$ 

Weight of stem  $12 \times 27 \times 150$  = 337.00

Live load (machinery) = 500.00

Total 1380.75

•

•

•

•

•

...•...

•

•

•

# LOADING ON BEAMS.

### Beam K.

Under the saw tooth. Assume & slab load from the slab on the saw tooth.

Roof (live + dead)  $\frac{1}{4}$  x 7.5 x 72.5 = 407.81

Weight of stem  $12 \times 27 \times 150 = 324.00$ 

Live load (machinery) = 500.00

Total 1231.81 lbs./lin. ft.

# Beam L.

Roof (live + dead)  $\frac{3}{4}$  x 7.5 x 72.5 = 407.81

Weight of stem  $11.5 \times 27 \times 150 + 324.00$ 

Live load (machinery) = 500 .00

Total 12.31.81 lbs./lin. ft.

In the above a slab load was assumed to cover the load which might come on the beam from the slab over the saw tooth.

#### Beam M.

Roof (live + dead)  $7.5 \times 72.5 = 543.78$ 

Weight of stem  $8 \times 24.5 \times 150$  = 204.00

Live load (machinery) = 500.00

Total 1247.75 lbs./lin. ft.

•

•

•

•

# LOADING ON BRAMS.

Beam N.

Roof (live + dead)  $7.5 \times 72.5 = 543.75$ 

8 tem  $8 \times 22 \times 150$  = 183.33

Live load (machinery) = 500.00

Total 1227.08 lbs./lin. ft.

Beam O.

Roof (live + dead)  $\frac{1}{2}$  x 7.5 x 72.5 =271.87

Weight of 3 inch slab on the monitor

 $\frac{2.75 \times 1 \times 3 \times 150}{12} = 103.10$ 

Weight of sash 5 x 15

= 75.00

Estimated weight of slab extending under

the monitor  $2.5 \times 3 \times 150$  = 94.00

Weight of stem  $8 \times 19.5 \times 150$  = 162.70

Live load (machinery) = 500.00

Total 1206.67 lbs./ lin. ft.

Beam P.

Roof (live + dead)  $\frac{1}{4}$  x 7.5 x 72.5 = 408.00

Weight of stem  $12 \times 27 \times 150$  = 338.00

Live load (machinery) = 500.00

Total 1246.00 lbs./lin.ft.

The above is on the assumption that the load on the beam from the saw tooth slab is equal to one-half a slab load.

### LOADING ON BEAMS.

#### Beam Q.

Beam supporting the toilet room located next to the stairs.

6 in. tile wall  $3.5 \times 20 \times 22$  = 77.0

Weight of plaster both sides

 $\frac{3.5 \times 20 \times 2 \times 5}{20} = 35.0$ 

5 in. floor slab + 2 in. granolithic

surface  $\frac{7.5 \times 7.5 \times 150}{12}$  =704. 0

Live load (fixtures + people) 7.5x100= 750.0

Live load (machinery) = 500.0

Weight of stem  $8 \times 16 \times 150$  = 132.0

Total 2198.0 lbs./lin. ft.

# Beam Q.

Beam at center of the toilet room span.

Weight of cuttain wall located 2 \( \frac{1}{2} \) feet from center line o of the beam. (4 inch tile, plastered both sides).

Weight of wall  $7 \times 20 \times 18 = 2520$ 

Weight of plaster 10x7x20 = 1400

3920 lbs.

Weight of wall on beam  $\frac{5 \times 3920}{7.5}$  = 2610.0 Weight of slab  $\frac{7.5 \times 20 \times 7.5 \times 150}{12}$  = 14080.0

Live load on floor 7.5 x 20 x 100 =15000.0

Live load (machinery) 20 x 500 =10000.0

Weight of beam  $8 \times 16 \times 20 \times 150$  = 2670.0

44360.0 lbs.

 $\frac{44.360.0}{20}$  = 2218.0 lbs. /lin. ft.

# LOADING ON HEAMS.

#### Beam Q.

Located at the back of the toilet room floor.

= 655.0Curtain wall Floor slab  $10 \times 3.75 \times 7.5 \times 150$ = 3520.0Live load 3.75 x 10 x 100 = 3750.0Live load (machinery) 10 x 500 Weight of beam 8 x 16 x 150 x 20 14260.0 lbs. Total

 $\frac{14.260.0}{10}$  = 1426.0 lbs. per lin ft.

# Beam Q.

Supporting heating coils ( See plate 15 ).

= 1500.0Weight of motor \(\frac{1}{2}\) x 1500 Weight of fan \frac{1}{2} x 3000 =1500.0

Floor slab  $5 \times 7.5 \times 20 \times 150 \times 12$  = 9300.0 144 Weight of beam  $22 \times 8 \times 20 \times 150$  = 3670.0

Weight of beam 22 x 8 x 20 x 150 144

20 x 500 ø =<u>10000.0</u> Live load

Total 25220.0 lbs./

= 1261.0 lbs. per lin. ft.

# Beam(Qx)' (See plate 15)

= 16,344.0Weight of heater \frac{1}{2} x 32688

Floor slab  $6.5 \times 3.75 \times 20 \times 150$  = 6,090.0

Weight of beam  $12 \times 22 \times 20 \times 150$  = 5,280.0

Live load (machinery)  $20 \times 500 = 10.000.0$ 

> Total 37,714.0 lbs.

 $\frac{37.714.0}{20}$  = 1885.0 lbs. per lin. ft.

# LOADING ON BRAMS.

# Beam Qx. (See plate 15)

Fan **★** x 3000 = 1500.0Weight of heater \(\frac{1}{2}\) x 32688 = 16344.06  $\frac{1}{8}$ \*floor slab  $\frac{6.5 \times 3.75 \times 20 \times 150}{12}$  = 6090.0  $\frac{5 \times 3.75 \times 20 \times 150}{12} = 4800.0$ 5" floor slab Live load (machinery) 20 x 500 Weight of beam 12 x 22 x 150 x 20 = <u>5280.0</u> Total 44014,0 1bs.

= 2201 lbs. per lin. ft.

Beam R. (See plate 15)

Located under slab supporting heaters.

Weight of motor \(\frac{1}{2}\) x 1500 **=** 750.0 Weight of floor slab  $\frac{1}{2} \times 5 \times 7.5 \times 20 = 4650.0$ Weight of 8" wall (8x15x20x1500) -(5x15x150x8)
12 12 =22500.0

Weight of windows 5 x 15 x 15 = 1125.0

Weight of stem <u>12 x 28 x 20 x 150</u> = 7000.0

Live load (machinery). 20 x 500 = 10000.0

> Total 46025.0 lbs.

= 2301.2 lbs. per lin. ft.

### Beam R.

Same as beam G - -- - 1245.8 lbs. per lin. ft.

### LOADING ON BEAMS.

Beam T.

Roof (live + dead)  $7.5 \times 72.5 = 543.75$ 

Weight of stem  $8 \times 27 \times 150 = 225.00$ 

Live load (machinery) = 500.00

Total 1268.75 lbs./lin. ft.

Beam U.

Roof (live + dead)  $7.5 \times 72,5 = 543.75$ 

Weight of stem  $8 \times 24.5 \times 150$  = 204.00

Live load (machinery) = 500.00

Total 1247.75 lbs./lin. ft.

Beam V.

Roof (live + dead)  $7.5 \times 72.5 = 543.75$ 

Weight of stem  $8 \times 22 \times 150$  =183.33

144

)

Live load (machinery) =500.00

Total 1227.08 lbs./lin. ft.

Beam W.

Roof (live + dead )  $7.5 \times 72.5 = 543.75$ 

Weight of stem  $19.5 \times 8 \times 150$  = 163.00

Live load (machinery) = 500.00

Total 1206.75 lbs./lin. ft.

# LOADINGS ON BEAMS.

# Beam X.

Roof (live + dead)  $7.5 \times 72.5 = 543.75$ 

Weight of stem  $12 \times 27 \times 150$  = 337.50

Live load (machinery) = 500.00

Total 1381.25 lbs./lin.ft.

# Beam Z.

Roof (live + dead)  $3.5 \times 72.5 = 254.0$ 

Weight of beam  $12 \times 30 \times 150$  = 375.0

Live load = 500.0

Total 1129.0 lbs./lin.ft.

### LOADING ON GIRDERS.

### Girder A A.

Roof (live + dead) 7.5 x 72.5 = 0.0

Weight of girder 11.5 x 20 x 150 = 240.0

Live load (machinery) = 500.0

Total 740.0 lbs./lin.ft.

### Girder B B.

Roof (live + dead ) = 0.0

Weight of girder 11.5 x 20 x 150 = 240.0

Live load (machinery) = 500.0

Total 740.0 lbs./lin.ft.

Total

108,035.7 lbs.

# Girder C C.

Load from beam F (20 x 1129.0) = 11290.0

" " C 20 x 1206.25 = 24135.0

" " D 20 x 1227.08 = 24541.6

" " E 20 x 1247.08 = 24955.0

" " G (20 X 1245.81) = 12458.1

Weight of girdet (1 x 17 x 27 x 15.5 x 30x 150) = 144 = 10656.0

108.035.7 = 3601.2 lbs. per lin. ft.

### Girder D D.

Load from beam G \(\frac{1}{2}(20x1245.810)\) = 12,458.1

3 beam A 3x20x633.3 = 37,998.0

beam L \(\frac{1}{2}x20x1231.81\) = 12,381.1

Weight of girder \(\frac{1}{2}x13x27x15.5x30x150\) = 9.700.0

144

Total 72,537.2 lbs.

 $\frac{72.537.2}{30}$  = 2417.9 lbs. per lin. ft.

2352 1bs.

## LOADING ON GIRDERS.

## Girder E. E.

| Load from | beam L  | x20x1231.81           | 3   | 12,318.1  |      |
|-----------|---------|-----------------------|-----|-----------|------|
|           | beam M  | 20x1247.75            | =   | 24,955.0  |      |
|           | beam N  | 20x1227.08            | =   | 24,541.6  |      |
|           | beam 0  | 20x1206.75            | =   | 241 35.0  |      |
|           | beam AA | ±x20x1283.75          | =   | 12,837.5  |      |
| Weight of | girder  | \$x17x27x15,5x30x150  | -   | 10,656.0  |      |
|           |         | Total                 |     | 109,443.2 | lbs. |
| 109,443,2 | _ = 36  | 548.1 lbd. per lin. 1 | ľt. |           |      |

## Girder F F.

Due to the unusual loading the moment was figured on the basis of concentrated loads.

Load at 1/4 point,

| Beam Q       | 10x2198.0                   | 21960.0              |   |               |
|--------------|-----------------------------|----------------------|---|---------------|
| Beam A       | 10x638.0                    | 63 <b>8</b> 0.0      |   | 28,310.0 lbs. |
| Load at 1/2  | point,                      |                      |   |               |
| Beam Q       | 10x2218.0                   | 22,180.0             |   |               |
| Beam A       | 10x633.3                    | 6,333.0              |   | 28,513.0 lbs. |
| Load at 3/4  | point,                      |                      |   |               |
| Beam Q       | 10x 1426.0                  | 14,260.0             |   |               |
| Beam A       | 10x633.3                    | 6.333.0              |   | 20,593.0 lbs. |
| Weight of be | eam <u>16 x 30 :</u><br>144 | <u>x 15</u> 0        | * | 500#/lin.ft.  |
| Weight of wa | all 6x10.5x4x1              | $0.5x_2^2x18 = tile$ | = | 1512          |

 $6x10.5x4x10.5x\frac{1}{2}x10 = plaster =$ 

•

•

•

•

• • • •

#### LOADING ON GIRDERS.

Girder G G.

Load at 1/4 point,-

Beam (Qx)' = 18,857.0

Beam A 10 x 633.3 = 6.333.0 25,190.0 lbs.

Load at 1/2 point,-

Beam (Qx)  $\frac{44.014}{2}$  = 22,007.0

Beam A 10 x 633.3 = 6.333.0 28,340.0 lbs.

Load at 3/4 point,-

Beam Q  $\frac{25.220}{2}$  = 12,610.0

Beam A 10 x 633.3 = 6.333.0 18,943.0 lbs.

Weight of wall  $26.5 \times 11.5 \times (22+10)$  = 4,873.5 lbs.

Weight of girder  $16 \times 30 \times 30 \times 150$  = 15,000,0 lbs.

Total uniform load  $4.873 \pm 15.000 = 662.4 \text{ lbs./ lin. ft.}$ 

Girder H H.

Load from Beam G  $\frac{1}{2}$  x 20 x 1245.8 = 12,458.0

Beam A 3 x  $\frac{1}{2}$  x 20 x 633.3 = 18,999.0

Beam L  $\frac{1}{2}$  x 20 x 1231.81 = 12,318.1

Beam K 1 x 20 x 1380.75 = 27,615.0

Beam T 3 x  $\frac{1}{2}$  x 20 x 1268.75 = 38,062.5

Weight of girder  $\frac{27}{2}$  x 15.5 x 30 x 150 = 13,100.0

12

138,302.6 1bs.

 $\frac{138.302.6}{30}$  = 4610.9 lbs. per lin. ft.

#### LOADING ON GIRDERS.

Girder I I.

Loading from Beam  $Z + x = 20 \times 1129 = 5645.0$ 

Beam H  $\frac{1}{2}$  x 20 x 1206.25 = 12662.5

Beam I  $\frac{1}{2}$  x 20 x 12270.8 = 12270.8

Beam J  $\frac{1}{2}$  x 20 x 1247.75 = 12477.5

Beam K  $\frac{1}{4}$  x 20 x 1380.75 = 6903.7

Weight of girder  $27 \times 15.5 \times 150 \times 30$  = 13100.00 62,459.5 lbs.

62.459.5 = 2081.99 lbs. per lin. ft.

Girder J J.

Loading from Beam K 2 x 20 x 1380.75 = 6903.75

Beam T  $3 \times \frac{1}{2} \times 20 \times 1268.75 = 27615.00$ 

Beam K  $\frac{1}{4}$  x 20 x 1380.75 = 6903.75

Weight of girder  $27 \times 15.5 \times 30 \times 150 = 13100.00$ 144 54,522.50 lbs.

 $\frac{54.522.50}{30}$  = 1817.4 lbs. per lin. ft.

Girder K K.

Loading from Beam Z  $\frac{1}{4}$  x 20 x 1129 = 5,645.0

Beam H  $\frac{1}{2}$  x 20 x 1206.25 =12,062.5

Beam I  $\frac{1}{2}$  x 20 x 1227.08 = 12,270.8

Load from the Enameling Building, -

Floor slab 10x20x8.5 x150

Live load 10x20x150 = 51,200.0

## LOADING ON GIRDERS.

## Girder K K Cont'd.

Vall load 7.0x20x3.75x120 = 12,250.8 12 Sash 5x15x20 = 1,500.0

Total 94,928.3 lbs.

94.928.3 = 4746.4 lbs. per lin. ft.

### Girder L L.

Load from Beam J 1x20x1247.75 = 12,477.5Load from Beam K + x20x1380.75 = 13,807.5Load from Beam B 1x20x633.3 **=** 6,333.0 Loads from the enameling building, -Floor slab ( See girder K K) = 51,200.0Wall load 7x160x120 = 11,200.0 Sash 15 x 120 = 1.800.0 Total 96,818.0 1bs.

96.818.0 = 4840.9 lbs. per lin. ft.

## LOADING ON COLUMNS.

## Columns T 6 - 28 and Z 6 - 28.

| Beam F | Beam F     |  |
|--------|------------|--|
|        | Girder C C |  |

Beam F 20 x 1129.0

= 22,580

Girder C C

Beam C

24,135

Beam D 12,270

weight of girder 5.328

= 41,733

Weight of column  $12 \times 16 \times 14 \times 150$ 

= 2,800

67,113 lbs. Total

Columns U 17 - 18 and Y 17 - 18

|      | Girder<br>CC |      |
|------|--------------|------|
| Beam |              | Beam |
| R    | • •          | G    |
|      | Girder<br>GG |      |

Beam G  $10 \times 1246.8$  = 12,468

Beam R

 $10 \times 1246.8$ 

= 12,468

Girder C C (See page 29)

= 42,553

Girder G G (See page 25)  $\frac{1}{2}$ x92346. = 46,173

Strut 136,800 cos 30

= 31,869

Weight of column 3.1416x64x14x150

= 2.916

Total 145,964 lbs.

## LOADING ON COLUMNS.

Columns U 9 - 16 & 19 - 25

Y 9 - 16 & 19 - 25

Beam G 20 x 1246.8 = 24,936 Girder C C Beam E 20x1247.75 = 24,955Beam D = 12,270 $\frac{1}{2}$  weight of girder = 5.328= 42,553Girder D D Beam A 20x633.3 = 12,666 $\frac{1}{2}$  Beam A 10x633.3 = 63333  $\frac{1}{2}$  weight of girder = 4.850 = 23,849Strut I 36,800 cos 30 = 31,869Weight of column 3.1416x64x14x150= 2.916 144

Total 166,123 lbs.

.

•

•

• •

• •

• **t** . .

• •

### LOADING ON COLUMNS.

#### Columns U 28 and Y 28.

For typical columns seepages 28 and 29.

Beam G = 12,468

Beam K = 13,808

Girder C C = 42,553

Girder H H = 40,331

Strut I = 18,153

Weight of column = 2.916

Total 130,229 lbs.

Columns U 7 - 8 and 26 - 27

Y 7 - 8 and 26 - 27

Beam G = 12,468

Beam P = 12,460

Girder C C = 42,553

Girder F F = 47,907

Strut I = 31,869

Weight of column = 2.916

Total 150,173 lbs.

Columns U 8 -16 and 19 -25

Y 8 - 16 and 19 - 25.

Assuming maximum load from girder CC. No machinery load from girder DD.

Beam 0 = 24,936

Girder C C = 42,553

Girder D D = 8,849

Strut I = 31,869

Weight of column = 2.916

Total 111,123 lbs.

r.

t · · · ·

•

•

.

•

## LOADING ON COLUMNS.

## Columns V 7 - 8 and 26 - 27.

I 7 - 8 and 26 -27.

| Beam L                         | = 12,318         |
|--------------------------------|------------------|
| Beam P                         | = 12,460         |
| Girder E E                     | = 42,554         |
| Girder F F                     | = 37,279         |
| Beam H (Saw tooth) 52707 cos 3 | 0 = 45,644       |
| Weight of column               | = 2,916          |
| To                             | tal 153,171 lbs. |

Columns V 9 - 16 and 19 - 25.

X 9 - 16 and 19 - 25.

| Beam L             |       | <b>= 24,</b> 636 |
|--------------------|-------|------------------|
| Girder E E         |       | = 42,554         |
| Girder D D         |       | = 23,849         |
| Beam H (Saw tooth) |       | = 45,644         |
| Weight of column   |       | <b>=</b> 2.916   |
|                    | Total | 139,599 lbs.     |

Columns V 17 - 18

X 17 - 18

| Beam L             |       | = 12,318      |
|--------------------|-------|---------------|
| Beam R             |       | = 28,512      |
| Girder E E         |       | = 42,554      |
| Girder G G         |       | = 45,739      |
| Beam H (Saw tooth) |       | = 45,644      |
| Weight of column   |       | <b>2.91</b> 6 |
|                    | Total | 177,683 lbs.  |
|                    |       |               |

• • • **t** . . ŧ . • . . t

•

## LOADING ON COLUMNS.

# Columns V 28 and X 28.

|                    | Total | 152,320 lbs.   |
|--------------------|-------|----------------|
| Weight of Column   |       | = <u>2.916</u> |
| Beam H (Saw tooth) |       | = 45,644       |
| Girder H H         |       | = 35,080       |
| Girder E E         |       | = 42,554       |
| Beam K             |       | = 13,808       |
| Beam L             |       | = 12,318       |

Columns V 9 - 16 and 19 - 25.

X 9 - 16 and 19 - 25.

Assuming maximum load on girder E E and no machinery load on girder D D.

| Beam L             |       | = 24,636         |
|--------------------|-------|------------------|
| Girder EE          |       | = 42,554         |
| Girder D D         |       | = 8,849          |
| Beam H (Saw tooth) |       | = <u>45</u> ,644 |
| Weight of column   |       | <u> 2.916</u>    |
|                    | Total | 124,599 lbs.     |

Columns W 7 - 27.

| Girder A A       |       | = 14,800     |
|------------------|-------|--------------|
| Girder E E       |       | = 85,108     |
| Weight of column |       | = 2.916      |
|                  | Total | 102.824 lbs. |

•

t

•

•

· ·

· C

t

•

• •

•

.

### LOADING ON COLUMNS.

### Columns ₩ 7 - 27.

Assume a maximum load on one girder E E and no machinery load on the other girder E E.

Girder A A = 14,800

Girder E E = 42,554

Girder E E = 27.554

Weight of column Total = 2.916

Total 87,814 lbs.

## Columns T 29 and Z 29.

### Columns U 29 and Y 29.

Beam K = 13,807.5

Girder I I = 25,162.9

Girder J J = 25,581.2

Weight of column = 2.916.0

Total 67,467.6 lbs.

## Columns V 29 and X 29.

Beam K = 13,807.5

Girder J J = 54,522.5

Weight of column = 2.916.0

Total 71,246.0 lbs.

•

•

- e e
- \* \* \* · e · · · · ·
- •

- . . . . . . the state of the s
- - •
  - •
  - •
    - ( )
- - •
- • •
- . •
- •

## LOADING ON COLUMNS.

## Column W 29.

Beam X = 13,812.5

Girder J J = 54,522.5

Weight of column = 2.916.0

Total 71,251.0 lbs.

#### ANALYSIS OF ROOF SLAB.

In the analysis of the roof slab the formulas for rectangular beams given in Hool's Reinforced Concrete Construction
Vol. 1, pages 112 and 113 were used. The entire load was
assumed to be carried the short way of the slab. This is
in accordance with the recommendation of Hool (Vol. 1, pg.140)
that when the ratio of the length to breadth is more than
1.5, the load is carried entirely by the reinforcement the
short way of the span.

#### NOTATION.

- f = unit compressive stress in outside fiber of concrete.
- fg = unit tensile stress in steel.
- n = ratio of modulus of elasticity of steel in tension to modulus of elasticity of concrete in compression.
- as = area of cross-section of steel.
- b = breadth of beam.
- d = distance from compression surface to axis of reinforcement.
- M = bending moment.
- p = steel ratio.
- k = ratio of depth of neutral axis to depth of steel.
- j = ratio of lever arm of resisting couple to depth of steel.
- V = total shear.
- v = unit shear.
- v' = unit working shear.
- u = unit bond.
- o = circumference of one bar.
- w = uniform load in pounds per foot.
- 1 = span of beam in feet.

### ANALYSIS OF ROOF SLAB.

Reinforcing = 7/32 inch bars spaced 5" c. to c.

Span = 1 = 7.5 ft.

Loading = w = 72.5 lbs.

d = 2.5

 $M = w1^2/12 = 72.5 \times 7.5 \times 7.5 \times 12/12 = 4080 \text{ in, lbs.}$ 

$$p = \frac{a_s}{bd} = \frac{.03758}{5 \times 2.5} = .003$$

$$k = \sqrt{2pn + (pn)^2} - pn = \sqrt{2 \times .003 \times 15 + (.003 \times 15)^2}$$
  
- .003 x 15

k = .2583

$$j = 1 - \frac{k}{3} = 1 - .2583 = .9139$$

$$a_s = \frac{44}{20} \times .03758 = .08267$$

$$f_8 = \frac{M}{a_8 jd} = \frac{4080}{.08267 \times .9139 \times 2.5} = 21,600 \text{ lbs. per sq. in}$$

$$f_c = \frac{2M}{jkbd^2} = \frac{2 \times 4080}{.9139 \times .2583 \times 12 \times (2.5)^2} = 461 \text{ lbs./sq. in.}$$

$$v = V$$
 =  $\frac{3.75 \times 72.5}{12 \times .9139 \times 2.5}$  = 9.9 lbs. per sq. in.

$$u = V = \frac{3.75 \times 72.5}{\text{jdsumo}} = 5.76 \text{ lbs. per sq. in.}$$

sum o =  $3.1416 \times 7/32 \times 2.2 = 1.515$ 

Over the Support.

Reinforceing consists of alternate bars bent up over the support, or 7/32 in bars spaced 10° c to c.

$$p = a_8 = .03758 = .0015$$

$$k = \sqrt{2pn + (pn)^2} - pn = \sqrt{2x.0015x15 + (.0015x15)^2} -.0015x15$$

$$j = 1 - k/3 = 1 - .179/3 = .9403$$

$$f_s = \frac{M}{a_s jd} = \frac{4080}{.0414 \times .9403 \times 2.5} = 42,000 \text{ lbs. per sq. in}$$

#### ANALYSIS OF ROOF SLAB.

$$f_c = \frac{2 \text{ M}}{\text{jkbd}^2} + \frac{2 \text{ x } 4080}{.9403 \text{ x.}179 \text{ x} (2.5)^2 \text{ x } 12}$$

 $f_c = 646$  lbs. per sq. in.

$$u = V = 3.75 \times 72.5$$
  
j d sum of o .9403 x 2.5 x 3.1416 x 2.2 x 7/32

u = 78.2 lbs. per sq in.

### End panels.

Reinforceing, - 7/32 in. bars spaced 5" c to c.

12 - 7/32 in. bars spaced equally.

$$M = w1^2/10 = 72.5 \times 7.5 \times 7.5 \times 12/10 = 4890 \text{ in. lbs.}$$

$$a_{g} = \frac{52}{20} \times .03758 = .0977$$

$$p = \frac{a_0}{bd} = \frac{.0977}{12 \times 2.5} = .00327$$

k = .267

j =.911

$$f = \frac{K}{a_g j d} = \frac{4890}{.0977 \times .911 \times 2.5} = 21,950 \text{ lbs. per sq. in.}$$

$$f_c = 2 \frac{y}{jkbd^2} = \frac{2 \times 4890}{.911 \times .267 \times 12 \times (2.5)^2} = 536 \text{ lbs./sq/in.}$$

$$v = V = 3.75 \times 72.5 = 9.94$$
 lbs. per sq. in. bjd  $0.0911 \times 12 \times 2.5$ 

$$u = V = 3.75 \times 72.5 = 66.5$$
 lbs. per sq. in.

#### ANALYSIS OF BEAMS.

Beam C - Typical Tee-beam.

Reinforcing,  $-1 - 3/4 \times 2 3/16$  kahn bar 0.79 sq. in.

1 - 5/8 rib bar

0.3906 \*

Total area

1.1806 sq. in.

Loading = 1206.25 lbs. per lin. ft.

span = 20 ft.

According to the recommendations of the joint committee; -

- (1).  $b = \frac{1}{2}$  span of beam =  $\frac{1}{2}$  x 20 = 5 ft.
- (2). b = six times the thickness of the slab on each side of the stem =  $2 \times (3 \times 6) + 7\frac{1}{2} = 43\frac{1}{2}$  inches.
- (3). b = distance between beams =  $7 \frac{1}{2}$  ft.

Use the least of these three conditions, or  $b = 43 \frac{1}{2}$  in.

$$kd = \frac{2nda}{2na} + bt^2 = \frac{2 \times 15 \times 21 \times 1.1806 + 43.5 \times 9}{2 \times 15 \times 1.1806 + 2 \times 43.5 \times 3}$$

kd = 3.83

Therefore the neutral axis falls in the stem, and the formulas for case 2 apply.

$$p = \underbrace{a_8}_{bd} = \underbrace{\frac{1.1806}{43.5 \times 21}}_{(t)} .001293$$

$$j = \underbrace{6 - 6(d) + 2(d) + (d)}_{(t)} (\underbrace{\frac{1}{2pn}}_{(t)})$$

$$6 - 3 (d)$$

j = .945

$$M = w1^2/12 = 1206.25 \times 20 \times 20 \times 12/12 = 482,500 in. lbs.$$

$$f_s = \frac{M}{a_s jd} = \frac{482.500}{1.1806 \times .945 \times 21} = 20,600 lbs./sq. in.$$

. . . • . . • , • · • • •

## ANALYSIS OF BEAMS.

Beam C - Tee-beam.

$$f = \frac{M}{(1-t)btjd} = \frac{482,500}{(1-\frac{3}{2x3,83}) \cdot 43,5x3x,945x21}$$

 $f_c = 306$  lbs. per sq. in.

$$v = V$$
 = 10 x 1206.25 = 80.9 lbs./sq. in.  $7.5 \times .945 \times 21$ 

$$u = V = 10 \times 1206.25 = 78.8 lbs./sq. in.$$
 $\frac{10 \times 1206.25}{.945 \times 21 \times 7.7} = 78.8 lbs./sq. in.$ 

$$u = \frac{a_s f_s}{01!} = \frac{.126 \times 16000}{2 \times .81 \times 12.05} = 103 \text{ lbs. per sq. in.} = bond$$

in the web reinforcing.

$$1' = \frac{.6d}{.707} - \frac{d}{(.707)} - 24) = 12.05 = effective length of$$

web reinforcing when inclined at an angle of 45.

$$x = \frac{1}{2} - \frac{v \cdot b \cdot d}{w} = \frac{20}{2} - \frac{40 \times 7.5 \times .945 \times 21}{1206.25} = 5.07 \text{ ft.}$$

= distance from support to where web reinforcement is needed.

spacing of the web reinforcement.

$$f_s = 2/3 \times 0.77s$$
 =  $2x0.7x10x1206.25x12$   
 $3x.126x.945x21$ 

 $f_s = 27,000$  lbs. per sq. in. = stress on the web bars from diagonal tension.

## ANALYSIS OF BRAMS.

Beam A- Rectangular beam.

Reinforcement, -

 $1 - 3/4 \times 2 3/16$  kahn bar

1 - 1/2 rib bar

Span 20 ft.

Loading - 633 lbs. per lin. ft.

 $a_{\rm s} = 1.04 \, {\rm sq. in.}$ 

$$p = \frac{a_s}{bd} = \frac{1.04}{7.5 \times 14.5} = .00956$$

$$k = \sqrt{2pn + (pn)^2} - pn$$

$$k = (2x.00956x15 + (.00956x15)^2 - .00956x15$$

k = .4112

$$j = 1 - k/3 = 1 - .4112/3 = .863$$

$$M = W1^2/12 = 633.3 \times 20 \times 20 \times 12/12 = 253,320$$
 lbs./ sq

$$f_s = \frac{M}{pjbd^2} = \frac{M}{a_gjd} = \frac{253.320}{1.04 \times .863 \times 14.5}$$

 $f_{a} = 19,400$  lbs. per sq. in.

$$f_{c} = 2M = 2 \times 253.320$$

$$863 \times .411 \times 7.5 \times 14.5^{2}$$

 $f_c = 907$  lbs. per sq. in.

$$V = V$$
 = 10 x 633.3 = 67 lbs. sq. in.

$$u = V$$
 = 10 x 633.3 = 70 lbs. per sq. in.  
jd sum 0 .863 x 14.5 x 7.2

1' = 15.8 in. = effective lenght of the web reinforceing.

$$u = \frac{a_8 f_8}{0 \ 1!} = \frac{.126 \times 16000}{1.62 \times 15.8} = 77.2 \text{ lbs per sq. in.}$$

$$x = \frac{1}{2} - \frac{y'bjd}{w} = \frac{20}{2} - \frac{40 \times 7.5 \times .863 \times 14.5}{633.3}$$

x = 4.05 ft. = distance from the support to the point where web reinforcement is needed.

#### ANALYSIS OF BRAMS.

## Beam A continued.

$$s = \frac{38s^{2}s_{1}d}{1.4 \text{ V}} = \frac{3x.126x16000x.863x14.5}{1.4x10x633.3} = 8.6 \text{ in.} = \text{required}$$

spacing of the wing bars.

$$f_s = 2/3 \frac{0.7 \times Vs}{a_s jd} = \frac{2x0.7x10x633.3x12}{.126x.863x14.5} = 23,020 lbs. per$$

sq. in. = tensile stress in the web reinforcement.

The negative moments for both the beams and girders were computed as above for a rectangular beam.

#### ANALYSIS OF COLUMNS.

Columns U and Y 17 and 18.

Reinforceing, - 4 - 5/8 in. square bars.

Length - 14 ft.

Gross diameter - 16 inches.

Diameter inside reinforceing - 13 inches.

Total load - 145,964 lbs.

$$p = \frac{1.5624}{132.7} = .01178$$

$$f_{c} = \frac{P}{A(1 + (15 - 1)P)} = \frac{145.964}{132.7(1 + (15 - 1) \times .01178)}$$

 $f_a = 945$  lbs. per sq. in.

 $f_{g} = 15 \times 945 = 14200 \text{ lbs. per sq. in.}$ 

Considering Eccentricity.

Columns **W** 7 - 27.

The method of analysis outlined in Hool's Reinforced Concrete Construction, pages 395-413, of Vol. 2 was used. The formulas for beams continuous over three spans were used. This is not exactly correct but Hool states that this method may be used in the case of beams continuous over four or more spans without any great error.

B = ratio of moment of inertia to length for a beam.

C= ratio of moment of inertia to lenght for a column.

E = modulus of elasticity.

K = constant in equation  $M + KCE \propto$ 

I<sub>b</sub> = moment of inertia of beam.

I = moment of inertia of column.

### ANALYSIS OF COLUMNS.

Column V 7 - 27.

$$B = 11 \times (28)^3 \times 15.5 = 73.5$$
 (See Fig. 317, pg 405 Vol.2 of Hool.)

$$C = 4125 = 24.5$$

$$\approx \frac{1^2}{12E} \frac{1.5 \text{ w}_1 - \text{w}_2}{\text{KC} + 5B} + \frac{(30)^2 (12)^2}{12 \text{ x}} \frac{1.5 \text{ x} 3468 - 2135}{4 \text{ x}24.5 + 5 \text{ x} 73.5}$$

$$M = 4EC \propto = 4E \frac{I_C}{12x14} \frac{7100}{E} = 169I_C$$

stress = 
$$\frac{\text{Mx}}{\text{Ic}}$$
 =  $169^{\text{I}}$ c x 4.5 = 760 lbs. per sq. in.

• • . 

## ANALYSIS OF THE SAW TOOTH.

2 inch roof slab.

Reinforceing - none.

Span - 12 inches.

Load - 61.29 lbs. per sq. ft.

Shear =  $\frac{1}{2} \times 61.29$  = 1.28 lbs. per sq. in.

 $M = wl^2 / 12 = 61.29 \times 1 \times 12 = 61.29 \text{ in. 1bs.}$   $f_c = \frac{My}{I} = \frac{61.29 \times 1}{.667 \times 12} = 7.65 \text{ lbs per sq. in.}$ 

ANALYSIS OF THE JOIST.

Reinforceing - 1 - 3/8" rib bar

1 - 1/2" rib bar

Span - 20 ft. Size 4" x 8"

Loading normal to the joist -

Roof slab(live + dead load) 16/12x61.29 = 81.72

Tile - 12x12x6 = 22.0

Plaster = 5.0

Weight of joist = 25.0

 $52.0 \cos 28 \ 35 = 45.66$ 

Total . 127.38 lbs.

 $b = (2 \times 6)2 + 4 = 16$ 

١

 $kd = \frac{2nd^2s + bt^2}{2na_s + 2bt} = \frac{2x15x7x.3906 + 16 x4}{2x15x.3906 + 2x16x4} = 1.93$ 

Therefore the neutral axis is in the flange and the formulas for rectangular beams apply.

#### ANALYSIS OF SAW TOOTH.

$$p = 8s = .3906 = .003495$$

$$k = \sqrt{2pn + (pn)^2} - pn = \sqrt{2x.003495x15 + (.003495x15)^2} - .00349x15$$

k = .2755

$$j = 1 - k/3 = 1 - .2755/3 = .908$$

$$M = w1^2/12 = 127.38 \times 20 \times 20 \times 12/12 = 50.952 \text{ in. lbs.}$$

$$f_s = \frac{H}{a_s \, \text{jd}} = \frac{50.952}{.3906 \, \text{x} .9082 \, \text{x} \, 7} = 20,500 \, \text{Ah}. \, 1\text{bs./ sq. in.}$$

$$f_c = 2M$$
 = 2 x 50952 = 520 lbs. per sq. in. .2755 x .908 x 16 x 49

$$v = V = 10 \times 127.38 = 50.1$$
 lbs. per sq. in.  $7 \times .908 \times 4$ 

Stresses in joist due to tangential force of the load.

Reinforceing - for tension 1 - 1/2 rib bar

for compression 1 - 3/82 rib bar

Loading, - snow + roofing + slab =  $\frac{16}{12}$  43.17 = 57.56

Tile - 1 - 6x12x12 = 22.00

Plaster  $16/12 \times 5.00$  = 5.00

Weight of joist  $4x6 \times 150$  = 25.00

111.56

111.56 x cos 28 35 53.37 lbs./ lin. ft.

$$M = w1^2/12 = 53.37 \times 400 \times 12/12 = 21,348 in. lbs.$$

$$p = \frac{a_g}{bd} = .25 = .01$$

$$p' = .1406 = .00585$$

#### ANALYSIS OF SAW TOOTH.

$$k = \sqrt{2n(p + p' \underline{d'}) + n^2(p + p')} - n(p + p')$$

$$k = \sqrt{2x15(.01 + .00585x1/3) + 225 x.00159} - 15x.01585$$

k = .3872

$$z = \frac{1/3k^{3}d + 2p'nd' (k - d'/d)}{k^{2} + 2p'n(k - d'/d)}$$

$$z = \frac{1/3(.2378)^3 \times 3 + 30 \times .00585(.3872 - 1/3)}{(.2378)^2 + 2 \times 15(.3872 - 1/3)} = .0095$$

$$jd = d - z = 3 - .0095 = 2.99$$

$$f = \frac{6M}{bd^2(3k - k^2 + \frac{6p'n}{k} (k - d'/d)(1 - d'/d)}$$

 $f_c = 640$  lbs. per sq. in.

$$f_s = \frac{M}{p j b d^2}$$
 = 39,600 lbs. per sq. in.

 $f' = \inf_{k} \frac{k - d'/d}{k}$  =1345 lbs. per sq in. = compression in steel.

Considering the stresses from both the normal and tangential loads,-

Maximum stress in the concrete = 640 + 520 = 1160 lbs./ sq. in.Maximum stress in the steel = 39,600 + 20500 = 60100 " "

This the worst possible condition that could exist and the loading as assumed probably never would act in this way. The roof slab would take at least a part of the tangential load and it is possible that it would take the entire load. It is believed that it would be necessary to consider only the normal load, in the design of the joist.

ANALYSIS OF THE SAW TOOTH.

Alternate joist.

Reinforceing - 1 - 3/8" rib bar

1 - 3/8" rib bar

The computations are the same as given for the previous case, and the following results were obtained,-

Due the normal load.

 $f_s = 27,950$  lbs. per  $s_4$ . in.

 $f_c = 587$  lbs. per sq. in.

X

1

 $v = \frac{V}{bjd} = 49.4$  lbs. per sq. in.

u = 65.8 lbs. per sq. in.

Due to the tangential load.

 $f_8 = 58,700$  lbs. per sq. in.

 $f_c = 643$  lbs. per sq. in.

BEAM H.

Reinforceing,  $-2 - \frac{1}{2} \times 2 + \frac{1}{2}$  kahn bars

2 - 7/8" rib bars

Span 24.5 ft. Sixe -  $12 \times 20$ 

Loading,-(roof slab + snow + wind)=24.5x20x61.29 =30,032.1

Joist 19x20x25 = 9,500

tile 19 x20x22 = 8,360

plaster24.5x20x5 = 2,450

beam12x18x150x24.5 = 5.512

25,822 x cos 28 35

22,674.8

Total

52,706.9 lbs.

 $\frac{52.706.9}{24.5}$  = 2150 lbs. per  $\frac{44}{4h}$  lin. ft.

Computing as a tee-beam with a 2" concrete slab the following results were obtained,-

· . • · · · · . • • , • .

ANALYSIS OF SAW TOOTH.

Beam H continued.

 $f_g = 20,200$  lbs. per sq. in.

 $f_{\alpha} = 1395$  lbs. per sq. in.

v = 130.5 lbs. per sq. in.

u = 78 lbs. per sq. in.

In the web reinforceing, -

u = 74.8 lbs. per sq. in.

 $f_s = 11,950$  lbs. per sq. in.

1/4

1

Considering beam H as a strut supporting the tangential load.

$$T_c = \frac{P}{A(1+(n-1)p)}$$

P = 25,996 lbs.

$$p = \frac{a_s}{A} = .01812$$

$$f_c = \frac{25.996}{12x20(1 - (15 - 1).01812)}$$
 86.4 lbs. per sq. in.

Considering both the normal and tangential loads, the maximum stress in the concrete is found to be 1481.4 lbs./sq.in.

Beam D.

Considering beam D in the same manner, the following results are obtained,-

Reinforceing,  $-2 - 3/4 \times 2 3/10$  kahn bars

Span - 24.5 ft. Size - 10 x 20

# ANALYSIS OF THE SAW TOOTH.

Beam D.

Loading, - slab + snow + wind

15,016.0

joist 19 x 10 x 25 =4750

tile 19 x 10 x 22 = 4180

plaster 24.5x10x5 = 1225

beam  $\frac{12x18}{144}$ x150x24.5 =  $\frac{2756}{12,911}$  cos 28 35

11,337,4

26,353.4

 $\frac{26.353.4}{24.5}$  = 2330 lbs. per lin .ft.

Computing as a rectangular beam.

p = .0154

k = .484

j = .839

 $M = wl^2/10 = 959,000 in. lbs.$ 

 $f_{\rm g} = 22,850$  lbs. per sq. in.

 $f_c = 1454$  lbs. per sq. in.

v = 110.4 lbs. per sq. in.

u = 93.6 lbs. per sq. in.

Stresses in the wing bars.

u = 92.3 lbs. per sq. in.

f = 70,000 lbs. per sq. in.

Considering beam D as a strut supporting the tangential load.

Loading = 13,871 1bs.

p = .0135

١

 $f_c = 28.6$  lbs. per sq. in.

Maximum stress in the concrete considering both loads

= 1454 + 28.6 = 1482.6 lbs. per sq. in.

# ANALYSIS OF THE SAW TOOTH.

### Strut I.

In the analysis of the struts the maximum stresses were found to exist as a result of the dead weight of the roof and snow load above and at the same time the wind blowing against the sash produceing a bending moment. Hence only these results will be given.

### Loading .-

Roof slab + snow =  $30 \times 20 \times 37.89 = 22,734$ 

Weight of joist, tile, etc = 25.248

Only one-half of the roof load comes on the strut, the balance resting on the girder.

 $1/2 \times (25,248 + 22,734) = 23,982$ 

Weight of strut and bracket = 2,634

Weight of sash = 3,160

Total load = 29,785 lbs.

Reinforceing, - 4 - 1/2" rib bars.

Size, - 12"x 12" within reinforceing bars - 9"x9"

Length, - 11 ft.

$$p = \frac{a_s}{A} = .01235$$

$$f_c = \frac{p}{A(1 + (n-1)p)} = \frac{29.785}{81(1 + 14 \times .01235)} = 313.5 \text{ lbs./sq.in.}$$

 $f_s = 15 \times 313.5 = 3291 \text{ lbs. per sq. in.}$ 

Considering the wind pressure against the sash.

Wind pressure against the upper sash =  $6 \times \frac{20}{2} \times 30 = 1800$ Normal pressure =  $1800 \times \cos 30$  = 1559

Angle of lower sash with horizontal is 60 degrees.

 $P_n = 30 \times 2 \times .866$ 1 + .866<sup>2</sup> = 29.7 lbs. per sq. ft. of surface.

### ANALYSIS OF THE SAW TOOTH.

Strut I.

Pressure on lower sash=  $6 \times 10 \times 29.7 = 1782$  lbs.

 $1/2 \times (1559 + 1782) = pressure at mid point = 1670$ 

Weight of sash at same point = 430

Total load = 2100 lbs.

The reaction =  $6/11 \times 2100$  = 1145

 $H = 10/12 \times 6 \times 1145 \times 12 = 68,700 \text{ in, lbs.}$ 

 $f_c = 6 \times 68.700 = 355$  lbs. per sq in.  $\frac{1160}{}$ 

 $f_s = \frac{68,700}{.00397 \times .91 \times 12 \times (10.5)^2} = 14,400 \text{ lbs. per sq. in.}$ 

Maximum stresses, -

f = 355 + 313.5 = 668.5 lbs. per sq. in.

 $f_a = 14,400 - 15 \times 313,5 = 14,071$  lbs. per sq. in.

Strut J.

Since there is no beam resting on the top of strut J none of the foof load will be considered as coming on it. Reinforceing  $-4 - 1/2^n$  rib bars.

Size - 12" x 12" Size of core 9" x 9".

Length - 12 ft.

Loading due to the wind pressure against the sash, - 2100 lbs. (See strut I).

Reaction =  $1/2 \times 2100 = 1050$  lbs.

 $M = 6 \times 1050 \times 12 \times 10/12 = 63,000 in. lbs.$ 

 $f_a = 326$  lbs. per sq. in.

 $f_s = \frac{63.000}{.00397 \times .91 \times 12 \times (10.5)^2} = 13,200 \text{ lbs. per sq.in.}$ 

At the time the analysis was started very little machinery was placed. Hence it was necessary to adopt the loading for which the building was said to be designed. This live load of 500 lbs. per lineal foot of beam which was adopted is believed to be extremely high. Probably 200 lbs. per lineal foot will cover the total load existing on the beams and provide an impact coefficient of 100 per cent. If the loads are reduced in this ratio practically all the apparent over stresses shown on the stress sheet will disappear.

According to some authorities the snow load of 30 lbs. per square foot of horizontal surface might be reduced to 20 lbs. per square foot. The construction and location of the building makes it possible for a large amount of snow to accumulate and be held on the roof and it is thought best to use this higher load.

In the roof slab the concrete was found to be within the allowable working stress. The steel at the center of the slab is over stressed. Over the support the stress was found to be 42,000 lbs. per sq. in. Only every alternate bar was bent up and hence the stress was nearly doubled.

According to the Joint Committee the span length may be taken as the clear distance between the faces of the support for slabs and beams built monolithic with the supports. (H.& J. pg. 318, Art. 44). If this rule were followed as the designers state was done, the span length would

>

• • 

١

\

be reduced to 6 1/2 feet instead of 7 1/2 feet thus reducing the stresses.

In the beams the compression on the concrete was low except in the beams A. B. R. and W. Beams R and W were analized as rectangular beams due the their irregular shape. It may be permissable as was done in designing the beams. to consider these as tee-beams. If this were done the stresses would be reduced to a considerable extent. However, as the roof slab on one side is at an angle of 30 or 60 degrees, it is not thought advisable to do this. The steel in all the beams shows a slight over stress. This may be accounted for by the fact that the span length used in design was the clear space between faces of the supports and also by the fact that the live load is high. The stresses in the steel due to the negative bending moment at the supports are not correct as additional steel not shown on the steel plans was placed in the beams at these points. This was not known until the analysis was completed and the amount of steel is not known.

In the girders the stresses were found to be higher. In designing the building the live load on the girders was reduced 20 %. In the analysis the full live load was used based on Hool, Vol. 2 page 211 where he states that the full live load should be used on the columns for a factory building.

The stress in the concrete over the supports is high.

The girders may have been designed as doubly reinforced.

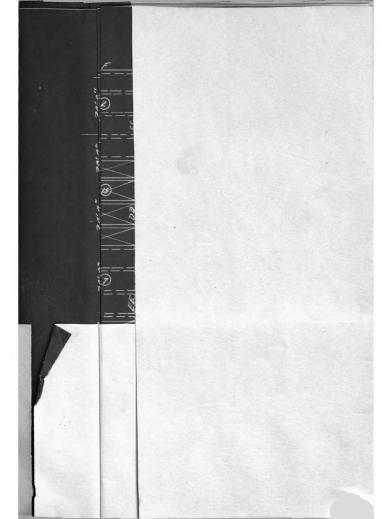
This is not permissable as the steel at the bottom of the girders does not continue through the center of support,

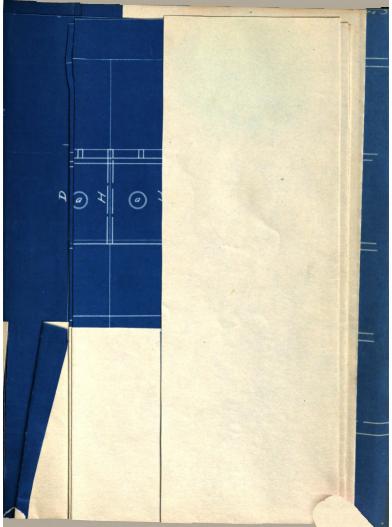
leaving a space of about three inches where there is no steel. The negative moment is a maximum at the center of support and decreases rapidly toward the edge of the column. Hence there will only be a small space which will be under high stress.

Assuming that a kahn bar is a deformed bar the bond stress at the center of the span was found to be safe for both the beams and girders. The values found for bond over the supports apparently shaow over stress. The hook on the end of the bars may be counted on to reduce this to the allowable value.

The Joint Committee recomment an allowable shear value of 120 lbs. per sq. in. when the beam is thoroughly reinforced for diagonal tension. These beams and girders are not fully reinforced since the wing bars are spaced too far apart to take the required 2/3 of the diagonal tension. It can only be said that the shear value is higher than recommended.

The columns were analized first, considering only
the total load, second, considering the possible eccentricty. The over stresses found when the load was considered
as centrally applied are undoubtly due to the high machinery


load and to the fact that the building was designed on the basis of a 20 % reduction of live load in the girders and a 10 % further reduction in this live load to the columns. In a building of this type the effect of eccentricity shoud not be overlooked. The load on the column from girder C C may be double that from D D. This produces large stresses which are equal to if not greater than those due to the dead weight alone.


In the saw tooth the steel, in the joist was found to be over stressed somewhat due to the normal load alone. While it is possible that the joist would be balled on to bear the tangential load it is not at all likely. The roof slab is a part of the flat roof slab and may be depended upon to take considerable of this load in compression.

The steel in the beams D and H in the saw tooth was found to be over stressed. The concrete in the same beams was found to be highly over stressed, beam H having a stress of 1395 lbs. per sq. in. due to the normal component alone.

In the struts the maximum stresses were found to be produced by the wind blowing against the sah which are fastened to the struts near the center and the dead load of the roof and snow above. The stresses in both the steel and concrete were found to be well within the allowable working values.

• • • -. •



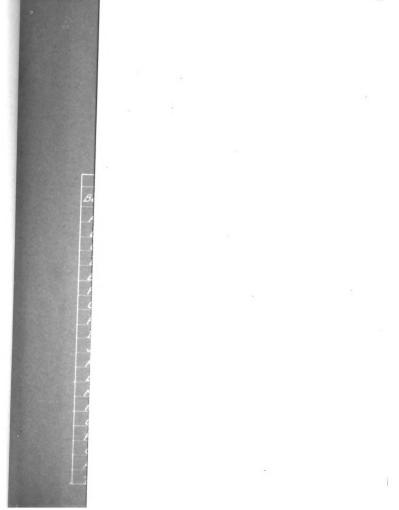


NK 301 E 19:9"19, 3/8"Rib NK 3/8"Rib 1

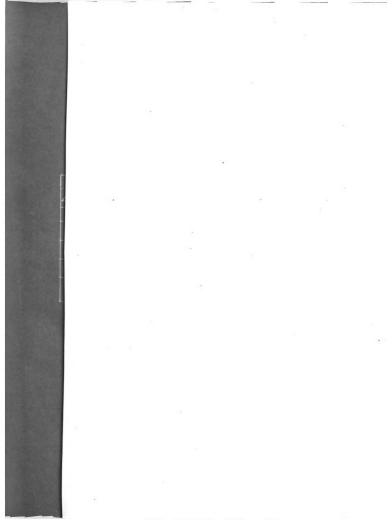
Kahn Bar Bars M Bars M Bars M Is lineach

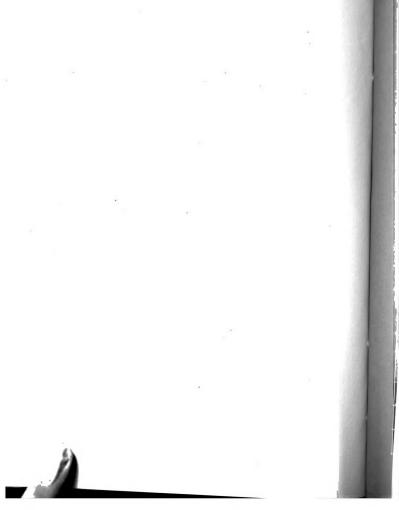
Seon "

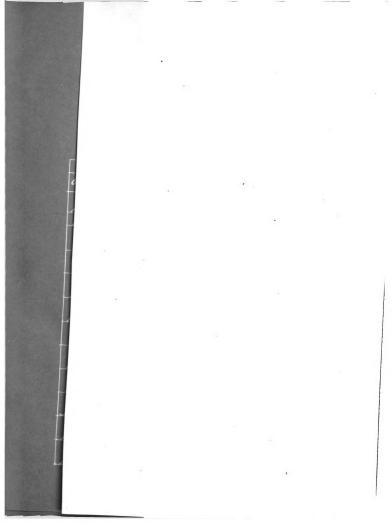
PLAN OF SLAB NO. 2


LAYOUT OF STEEL FOR OTHER SLABS SIMILAR

Scale 1/4"=1-0"


. • . 1


| No.    | 1 M     | C:     | 1 -4 | 1  | P    |      |                                  |
|--------|---------|--------|------|----|------|------|----------------------------------|
|        | M       |        | Lorh | А  | B    |      | D                                |
| 72     | 310     | -10    | 8-8  |    | ، ر  |      | Sker                             |
| 114    | 401     | 1/2"   | 29-6 |    | 7-0  | 1-5  | 120                              |
| 6      | 402     | 12     | 25-0 |    | 2-7  | 1-5  | 12-7                             |
| 88     | 403     |        | 30-3 |    | 7-0  | 2-6  | 11-3                             |
| 88     | 404     |        | 30-3 |    | 7-0  | 2-10 | 10-7                             |
| 22     | 405     |        | 27-0 |    | 4-3  | 3-1  | 12-4                             |
| 4      | 407     |        | 25-9 |    | 7-0  | 2-3  | 11-6                             |
| 44     | 408     |        | 30-0 |    | 7-0  | 2-3  | 11-6                             |
| 2      | 409     |        | 26-3 |    | 7-0  | 3-1  | 10-5                             |
| 22     | 410     |        | 29-9 |    | 7-0  |      | 12-0                             |
| 82     | 414     | 1/2"   | 30-9 |    | 5-6  | 3-1  | 13-7                             |
| 44     | 503     | 5/8"   | 30-0 |    | 7-0  | 2-3  | 11-6                             |
| 8      | 504     | 10     | 26-0 |    | 7-0  | 2-6  | 11-3                             |
| 8      | 505     |        | 26-0 |    | 7-0  | 2-10 | 10-8                             |
| 18     | 506     |        | 26-3 |    | 7-0  | 3-/  | 10-5                             |
| 20     | 507     |        | 30-9 |    | 7-0  | 3-/  | 10-7                             |
| 4      | 508     |        | 25-9 |    | 7-0  | 2-3  | 11-6                             |
|        | 509     |        | 25-9 |    | 3-0  | 1-11 | 12-0                             |
| 46     | 326     | 5/8"   | 30-9 |    | 5-6  |      | 13-7                             |
|        |         | - / // |      |    |      |      |                                  |
| 2      | 611     | 3/4"   | 30-9 |    | 7-0  | 3-/  | 10-7                             |
| 14     | 6/2     |        | 38-3 |    | 4-3  | 3-/  | 23-7                             |
| 2      | 6/3     |        | 36-0 | 6" | 1-3  | 3-/  | 23-10                            |
| 2 2    | 6/4     |        | 27-3 | 6" | 1-9  | 3-/  | 12-0                             |
| 7      |         | 3/11   | 25-0 | 6" | 1.0  | 3-/  | 13-10                            |
| /      | 626     | 3/4"   | 30-9 |    | 5-6  | 3-/  | /3-7                             |
| 2      | 701     | 78"    | 39-0 | 6  | 1-10 | 3-/  | 21-0                             |
| 4      | 702     | 7/8"   | 44-6 |    | 9-6  | 3-/  | 19-4                             |
|        | 10 10 2 | 1      |      |    |      |      |                                  |
| 46     | 800     |        | 38-9 | 6" | 1-9  | 1-11 | 21-10                            |
| 50     | 801     |        | 44-6 |    | 9-6  | 3-1  | 19-4                             |
| 46     | 802     |        | 44-3 |    | 9-6  |      | 20-3                             |
| 46     | 803     |        | 35-9 | 6" | 1-3  |      | 23-9                             |
| 46     | 804     |        | 38-0 |    | 4-3  |      | 24-6                             |
| 4      | 805     |        | 38-3 |    | 4-3  | 3-/  | 23-7                             |
| CAN DE |         |        |      |    |      |      | Name of Street, or other Persons |

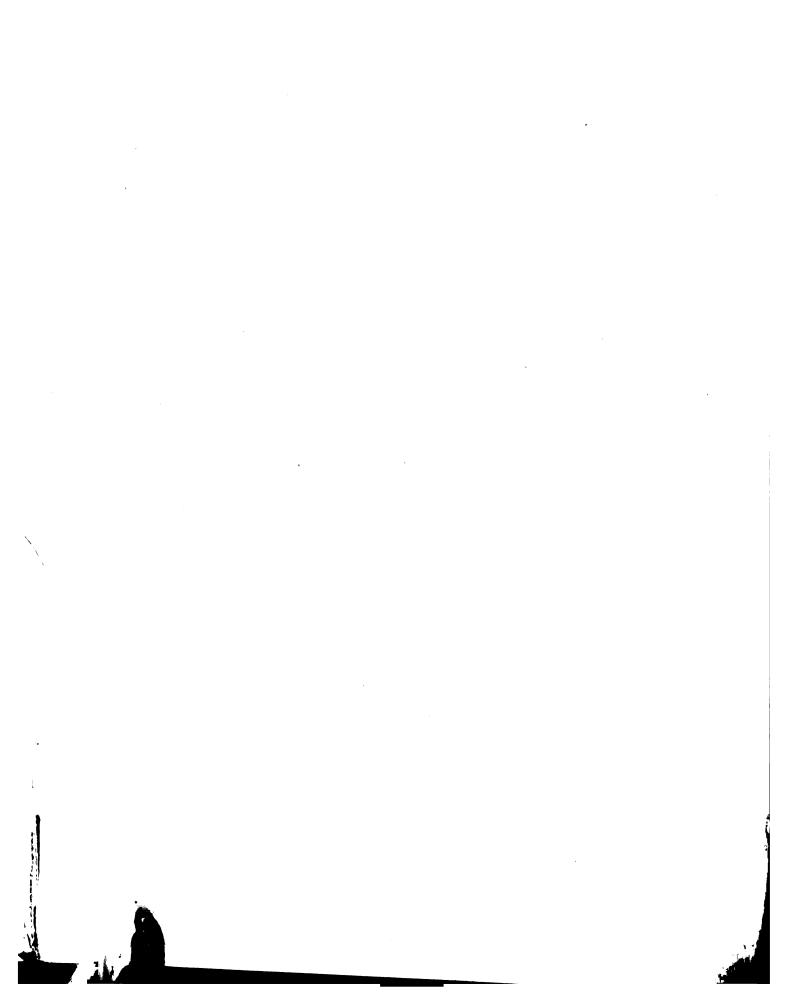

Bent Rib Bor Diagram.



| , · |   |  |  |
|-----|---|--|--|
|     |   |  |  |
|     |   |  |  |
|     |   |  |  |
|     |   |  |  |
|     |   |  |  |
|     |   |  |  |
|     | _ |  |  |








### COLUMN SECTIONS & REINFORCING





| Column No | a | 6 | 1 | 7- Ba | rs    | Stays |       |     |  |  |
|-----------|---|---|---|-------|-------|-------|-------|-----|--|--|
|           |   |   |   |       | Lath  |       |       |     |  |  |
| T6-T28    |   |   | 4 | 5/8 # | 15-4" | 15    | 1/4 0 | 4-8 |  |  |
| Z6-T28    |   |   |   |       |       |       |       |     |  |  |
| 16-129    |   |   |   |       |       |       |       | 4-4 |  |  |
| V6-V29    |   |   |   |       |       |       |       | 4-4 |  |  |
| X6-X29    |   |   |   |       | 16-6  | 16    |       | 4-4 |  |  |
| Y6 - Y29  |   |   |   |       | 16-6  |       |       | 4-4 |  |  |
| W6-W29    |   |   |   |       | 15-8  | 15    |       |     |  |  |
| 729       |   |   |   |       | 15-4  | 15    |       | 5-4 |  |  |
| Z29       |   |   |   |       | 15-4  | 15    |       | 5-4 |  |  |
|           |   |   |   |       |       |       |       |     |  |  |



## ROOF SLAB STRESSES

| Span | Lood   | Mox   | Moxt   | Shear |     | 1, C. |     |      |        | Or  | er Sup, | port |       |
|------|--------|-------|--------|-------|-----|-------|-----|------|--------|-----|---------|------|-------|
|      | Sq. fr | Shear | Moment |       |     |       |     | Bond | Moment |     | 6       |      | Bond. |
| 7-6  | 72.5   | 272   | 4080   | 9.9   | 083 | 21600 | 461 | 78   | 1080   | 041 | 42000   | 646  | 78    |

| BEALET.     |         |       |        | Over    | Sugar |      |       |
|-------------|---------|-------|--------|---------|-------|------|-------|
|             | 24      |       |        | Over    | 777   |      |       |
| fs          | 1 310   |       |        | p%      |       |      |       |
| Wing        | Hox - M | Ь     | d      | Pro     |       |      |       |
| 123020      | 253320  |       |        | .0121   |       |      |       |
| 123760      | 303984  | 7 1/2 | 14/2   | .0121   | .448  | .851 | 132   |
| 27000       | 482500  |       |        | .003/5  |       |      |       |
| 124740      |         |       |        | .00285  |       |      |       |
| 12340       |         |       |        | .002565 |       |      |       |
| 142800      |         |       |        | .00153  |       |      |       |
|             | 498324  | 11/2  | 28 /2  | .00153  | 1941  | .935 | 50    |
| 127000      |         | 7%    | 20     | .00428  | .300  | .900 | .6406 |
| 127600      |         | 7/2   | 23 1/2 | .00366  | 262   | 906  | 6406  |
|             | 598000  | 7%    | 26     | .00329  | 269   | .910 | 6406  |
|             | 591264  | 11/2  | 28/2   | .00196  | 215   | 929  | .6406 |
|             | 492724  |       |        | .00238  |       |      |       |
|             | 499100  |       |        | .002365 |       |      |       |
| N'20700     | 490632  | 7/2   | 23 /2  | 002835  | 252   | 9/6  | 50    |
|             | 482500  |       |        | .003/7  |       |      |       |
|             | 494500  | 11/2  | 23 /2  | .00238  | 234   | 922  | 78/2  |
|             | 477502  |       |        |         |       |      |       |
| Q 12680     | 1140000 | 11/3  | 285    | .00272  | 248   | .917 | 8906  |
| E SUBSTRUCT | 7770000 |       |        |         |       |      |       |
| 5           |         |       |        |         |       |      |       |
| 7 20600     |         | 71/2  | 26     | 00329   | .269  | 910  | 6406  |
|             | 598000  | 71/2  | 22%    | .00366  | 282   | 906  | 6406  |
| 55100       | 589000  | 71/2  | 25'2   | .00406  | 293   | 902  | 6406  |
|             | 585000  |       |        |         |       |      |       |
| 27000       | 542000  | 111   | 284    | 00191   | .2/33 | 9299 | 6406  |
| 19900       | 542000  | 11.5  | 202    |         |       |      |       |

| , |  |
|---|--|
|   |  |
|   |  |
|   |  |
|   |  |
|   |  |
|   |  |
|   |  |
|   |  |
|   |  |
|   |  |
|   |  |
|   |  |

15/5

| -     |       |                        |      |         |          |
|-------|-------|------------------------|------|---------|----------|
|       |       | Wel                    |      | Pee     | nfor     |
|       |       | Kah                    | 7 1  | Vins    | E        |
| Vait  | 20    | Wei<br>Kah<br>Size     | 1'   | Actuals | Regidoso |
| 38.6  | 7.4   | .4x14                  | 13.5 | 12      | 4.3      |
| 39.2  | 7.7   | .6 X.21                | 13.5 | 12      | 9.58     |
| 185.5 | 31.78 | .7x25                  | 23.0 | 18      | #2       |
|       |       | 6 x.25                 |      |         | 3.48     |
|       |       | 7x.25                  |      |         | 4.14     |
| 133   | 28.5  | 7x25                   | 20.2 | 18      | 5.8      |
| 120   | 334   | 7x.25<br>6x.25<br>6x25 | 202  | 18      | 92       |
| 185   | 24.74 | 7x.25                  | 20.2 | 18      | 4.39     |
| 83.5  | 18.15 | 7x.25                  | 20.2 | 18      | 463      |
| 72.4  | 20.4  | 6x21                   | 20.2 | 18      | 8.85     |
|       |       | 6121                   |      |         | 457      |
| 24.8  | 13.4  | 6x21                   | 20,2 | 18      | 4.45     |
|       |       |                        |      |         |          |

|   | · |  |  |  |
|---|---|--|--|--|
|   |   |  |  |  |
|   |   |  |  |  |
|   |   |  |  |  |
|   |   |  |  |  |
|   |   |  |  |  |
|   |   |  |  |  |
|   |   |  |  |  |
| • |   |  |  |  |
|   | • |  |  |  |
| , |   |  |  |  |
|   |   |  |  |  |
|   |   |  |  |  |
|   |   |  |  |  |

.

Hea Damper to operate from the

# COLUMN STAESSES

| Column Pord as p A to to Considering excensions Toral | 73.5 322 le 15214 1449 2000 1933             | 200, 0000 | 24.5 467 2771, 13083 1246 344071914 | 8841 843                    |                                     | ,00                                  | WX 9.61.19.25 139.599 " " " 8992 904 To 2 24.5 46.7 1/911, 1915 3000 1710 | 32007 2006 | 1430, 001                      | 18 9 16 1826 1245 12 12 12 12 12 12 12 12 12 12 12 12 12 | 13933 1327 | 7906 753  | 8992 804 | 8704 829  | W 28 71251 " 4040 461 55 245 500 1271, 6016 573 10016 7034 |
|-------------------------------------------------------|----------------------------------------------|-----------|-------------------------------------|-----------------------------|-------------------------------------|--------------------------------------|---------------------------------------------------------------------------|------------|--------------------------------|----------------------------------------------------------|------------|-----------|----------|-----------|------------------------------------------------------------|
|                                                       | 15214 1449                                   |           | 3083 1246                           |                             |                                     |                                      | 3/8 638                                                                   | 256 0000   |                                | 3860 1320                                                | 980 760    | 722 545   | 864 368  | 368       |                                                            |
| eccen                                                 | 5 322 /                                      |           | 7 2771. 1                           |                             |                                     |                                      | 7 1817.                                                                   | 12121.11   |                                | 7 2941.                                                  | 5 1691 7   | 2 591, 5, | 7 821 3. | 7 821, 30 | 1271. 60                                                   |
| Sasidering<br>C B                                     | 7.3                                          |           | 24.5 46.                            |                             |                                     |                                      | 24.5 46                                                                   | 24.5 42.   |                                | 24.5 46.                                                 | 29.5 73.   | 170 61.6  | 24.5 80. | 245 88.   | 24.5 50.0                                                  |
|                                                       | 14 13500                                     |           | 3 1600                              | 23                          | 2                                   | 2                                    | 4 7600                                                                    | 0 8810     | 9                              |                                                          | 0011/2     | 8 E (5%)  | 2440     | 5447      | 5736                                                       |
|                                                       | 5082 40                                      | 9922 94   |                                     | 8851 84                     | 10200 97                            | 10416 99                             | 9482 90                                                                   |            | 10355 98                       | 8473 80                                                  | 5953 56    | 2184 20.  | 4578 43  | 4840 461  | 4840 46                                                    |
| P d                                                   |                                              |           |                                     |                             |                                     |                                      |                                                                           |            |                                |                                                          |            | 90925 169 |          |           |                                                            |
| ) as                                                  | 13 1562                                      |           | (23                                 | 229 " "                     | /73 " "                             | " " 121                              | " 665                                                                     | 33 " "     | " 07.                          | " " 66)                                                  | 67         |           |          | 94        |                                                            |
| Tor<br>Loo                                            | T.Z 6.28 67113 1.562 01336 117 5082 484 1500 | 17-18 145 | U.Y 9161928 166123 "" 1319 1078 E   | U.Y 28 130229 "" " 8851 843 | UNY 7-5-20-27 150173 "" " 10200 972 | VX 7-8+26-27 153171 "" " " 10416 992 | 54/9-25 139                                                               |            | V.X 28 (55320 " " " " 1035 786 | 6+1925/243                                               | -27 878    | 29 347    |          | 29 712.   | 29 712                                                     |
| Colu                                                  |                                              | 10.3      | 4.7                                 |                             |                                     | V.X 7-2                              | V.X 9-16                                                                  |            |                                | V+X 9-10                                                 |            |           |          |           |                                                            |

Presses morked x indiane overoress

# CONTENTS OF POCKET.

- Plate 1, Location Diagram of Column Footings.
  - " 2, Framing Plan of Hanger Beams & Flat Roof.
  - 3, Plan Showing Saw Tooth Construction.
  - " 4, Typical Section.
  - " 5, Plan of Typical Slab.
  - \* . 6, Bent Rib Bar Diagram.
  - \* 7, Beam Sizes and Reinforcing.
  - \*\* 8, \*\* \* \* \*
  - 9, Girder Sizes and Reinforcing.
  - " 10, Column Sizes and Reinforcing.
  - " 11, Roof slab stresses.
  - " 12, Beam Analysis.
  - " 13, Girder Analysis.
  - " 15, Plan of Blower Room.
  - " 16, Column Stresses.

Pocket h SUPPLE 37 650 775 775 775 Roof. ATION DIAGRAM OF FOOTINGS





















