D O C T O R A L D I S S E R T A T I O N SERIES H tftfp tzM ia fc fy *Aihiled Triphm u 1 £ j if if ^ -v./ b // j®i| U A L AA? .A L JkJkJkJk MeHmne Dyes U N IV E R S IT Y Michigan Sidle Mege ^ 19^ 7 DEGREE J IL VL/+ PUBLICATION NO. ' I ' l ' l 1 ; !| : ! ' P I 1!' J 1 P' i P M ' ; 1I 1I 1I 1 1 21 1 18 - ^ UNIVERSITY MICROFILMS NM ANN ARBOR - MICHIGAN ABSTRACT OF THESIS FOR DEGREE OF PH .D . "The F l o t a t i o n o f Copper S i l i c a t e A llry l-su b stitu ted T rip h en y l by M ethane Dyes R a n d a ll W hite Ludt C erta in dyes a re alk y 1 - s u b s t i t u t e d shown t o act as c o lle c to rs a tio n of ch ry so co lla, copper silic ate pro p erty t r i p h e n y l m ethane a h y d rated , m in eral. (1 ) o f combining; s e l e c t i v e l y c ry sta llin e m in erals T his a f f o r d s sep arated the c o llo id al, w i t h b a s i c dyeo The a t t r a c t i o n of f o r t h e s e d y e s I s much l e s s . b a s i s by w h i c h c h r y s o c o l l a c a n be from a q u a r t z g a n g u e . Two t y p e s o f s u b s t i t u t e d and u s e d , nam ely: green ty p e; considered dyes a re an a l k y 1 - s u b s t I t u t e d and an a l k y l - s u b s t i t u t e d The e x a c t secondary is syn th esized m alach ite ro sa n ilin e ch em ical s t r u c t u r e o f t h e s e dyes in of causing th e f l o t a t i o n as dyes, p artly flo t­ C o llo id a l m in e ra ls have th e o f t h e t r i p h e n y l m ethane t y p e . stru c tu re in th e Im portance to th eir of ch ry so co lla. a ssu m e d on t h e b a s i s o f t n e i r t h e i r m ethod o f p r e p a r a t i o n , ty p e. is property T heir p ro p erties an d t h e in te r­ med i a t e s u s e d • The m a l a c h i t e g r e e n t y p e i n c l u d e s a h o m o lo g o u s 2 Randall White Ludt alk y 1 -b en zen es (2) (3) th rough th e f o r m a tio n o f a p- alk y 1 -p h e n y l-a ld e h y d e (4). w ith dim eth y l a n il i n e In a r e a c t i o n , t y p i c a l to a tio n of th e m a la c h ite g re e n dye o rd in ary The d y e c a l l e d its type used. o c ty l-ro sa n ilin e benzene (6) am ine A n ilin e is in a t y p ic a l lln e is th e form ­ (5)* is th e only one o f form ed and re d u c e d to othe then re a c te d w ith o -o c ty l a n ilin e d ve-form lng p ro c e ss , to form o c t y l - r o s a n i - (8). The a l k y 1 - s u b s t i t u t e d in t e s t s m ix tu re are then reacted W ith o c t y l b e n z e n e a s a r e a c t a n t , n itro -o c ty l (7)- The a l d e h y d e I s dyes a re used as on a 100-gram f l o t a t i o n c e ll. co llec to rs A sy n th e tic o f 1 g ram o f c h r y s o c o l l a a n d 99 g ra m s o f g a n g u e co n sid ered .235 p e r c e n t as stan dard copper. fo r th e t e s t s . P ine o i l It co n tain s i s used as a fro th in g ag en t. R e su lts ilitie s sin g le show t h a t o cty l-m a lac h ite f o r u se a s a com m ercial f l o t a t i o n flo ta tio n , a 64 p e r c e n t r e c o v e r y o b t a i n e d when t h e a s s a y in creased eig h t to e ry , or th e but a t th e te sts are gangue. green has p o ssib ­ assay in They out at of copper is E ith e r th e c o n ce n tra te expense o f th e o th e r . carried is p e rc en t recov c a n be i n c r e a s e d , T he m o s t s u c c e s s f u l a pH o f a b o u t 8 , show t h a t t h e On a copper o f th e c o n c e n tra te n in e tim e s . of th e ag en t. flo ta tio n is w ith a s i l ic a p o ssib le . Randall White Ludt B ecause o f facto ry T ests than c l a y m ixed w i t h t h e se p ara tio n on t h e th o se o th er su b stitu ted S a tisfac to ry in v estig atio n , need for only a te fu rth er th e c o llo id al fu rth er ch ain ; th e and less process are m ateria ls. fav o rab le te sts, m in erals, rate such as d e te r­ by many f s . c t o r s . does p o in t out th e Among t h e s e im portant d ep ressan ts fo r not clay , but a lso carbon­ pH r e g u l a t i o n w i t h a l k a l i n e of a d d itio n in th e in crease su itab le not p la c e betw een in flu en ced in v estig atio n . need o f Increase is by c e r t a i n m in e ra ls and q u a rtz ; m ateria ls; fo r the flo ta tio n tak es l i m i t s and T h is are dyes a re sa tis­ on o c t y l m a l a c h i t e g r e e n . r a t h e r narrow facto rs carbonate gangue, c a n n o t b e made f r o m t h e s e Optimum c o n d i t i o n s m ined. 3 of th e len g th of th e in th e c o llec to r; su b stitu ted assay of th e a a lk y l feed m a te ria l. Randall White Ludt 4 B lb llo g rap h y D ittle r, Thom as, Von E . , C .A ., Z. Chem. 5, C h a p t . 6 , New Y o r k 93* in (1941) 204. M artin , E .L ., Adams, R . , (1942) p. "O rg a n ic R e a c tio n s " V ol. e d . , New Y o r k , 17, 363 J.C . I.J., R ., C ain , J.C . soc. and T h o rp e, C. G r i f f i n W est, W iley &Sons ch im ., 15* 1017 (1896), (1897). D y e s tu f f s and R inkeB , John 1, 167- B o u v eau lt, L ., B u ll. C ain , K o llo id e , " A n h y d r o u s A lum inum C h l o r i d e O rg an ic C hem istry" p. Ind. J. J.F ., "The S y n t h e t i c In term ed iate (1920) P ro d u cts" London, p. 270. Rec. T rav . Chem. and T horpe, c h im ., S o c ., J.F ., 63, 127, 3, 53 (1944). 494(1 9 2 5 ). ib id . p. 271. A p p r o v e d by y \_ M ajor P r o f e s s o r D ept. C h.E . ■f!7 TJV THE FLOTATION OF COPPER SILICATE BY ALKYL-SUBSTITUTED TRIPHENYL METHANE DYES By RANDALL WHITE LUDT A THESIS Submitted t o the School o f Graduate S tu d ie s of Michigan S t a t e College of A g r i c u l t u r e and Applied Science i n p a r t i a l f u l f i l l m e n t o f the requirements f o r t h e degree of DOCTOR o f PHILOSOPHY i n CHEMICAL ENGINEERING Department of Chemical and M e t a l l u r g i c a l Engineering Year 1947 ACKNOWLEDGMENT To Dr. Clyde C. DeY/'itt, acknowledgment i s made f o r h i s conception of the p o s s i b i l i t y of u sing a l k y l s u b s t i t u t e d t r i p h e n y l methane dyes as c o l l e c t o r s f o r the f l o t a t i o n of copper s i l i c a t e , and f o r h i s a c t i v e i n t e r e s t i n t h i s work, which i s P r o j e c t No. 85 of the Engineering Experiment S t a t i o n . Supplies and equipment f o r the work were provided by the Engineering Experiment S t a t i o n . IV TABLE OF CONTENTS INTRODUCTION Purpose and Scope 1 The F l o t a t i o n Proces s 2 F l o t a t i o n of Copper S i l i c a t e 13 PROCEDURE 20 TABULATED RESULTS 28 CHARTS 36 DISCUSSION o f RESULTS 40 CONCLUSIONS 54 APPENDIX ORGANIC PREPARATIONS General Discussion 57 P r e p a r a t io n of Alky 1-benzene 62 P r e p a r a t io n of A l k y l - s u b s t i t u t e d Malachite Green Dyes 69 P r e p a r a t io n of A l k y l - s u b s t i t u t e d Ro sa n ilin e Dye 78 FLOTATION DATA 86 BIBLIOGRAPHY 93 INTRODUCTION Froth f l o ta ti o n i s u sed f o r th e s e p a r a t i o n and r e c o v e r y o f many m i n e r a l s . The m e t h o d i s p a r t i c u l a r l y w e ll adapted to th e recovery of th e in s o lu b le sulphides o f m e ta ls , b u t i s a ls o extended t o t h e s e p a r a tio n o f numerous o t h e r compounds. resist these Some m i n e r a l s , h o w e v e r , e f f o r t s tow ard s a t i s f a c t o r y is chry so co lla, flo ta tio n . Among a h y d rated copper s i l i c a t e . T he f l o t a t i o n o p e r a t i o n r e q u i r e s t h e u s e o f s u i t ­ ab le re a g e n ts . In c o n s id e ra tio n of b o th experim ental i n v e s t i g a t i o n and com m ercial o re d r e s s i n g p r a c t i c e , i s e v i d e n t t h a t a new f l o t a t i o n a g e n t , ap p lica b le to it p articu larly c h r y s o c o l l a , would have w id e s p r e a d a p p licatio n . PURPOSE AND SCOPE The p u r p o s e o f t h i B I n v e s t i g a t i o n i s t o c ertain a lk y l-su b stitu te d show t h a t trip h en y lm eth an e dyes a c t as c o lle c to rs in th e f lo ta tio n of chrysocolla. S u b s t i t u t e d d y e s o f b o t h t h e m a l a c h i t e g r e e n and r o a a n i l i n e t y p e s a r e u sed in t h e work. Three dyes o f a m a l a c h i t e g r e e n hom ologous s e r i e s a r e u s e d . For i d e n t i ­ f ic a tio n , th ey a re c a lle d b u ty 1 -m alach ite g reen , m alach ite green, and o c ty 1 - m a l a c h i te g r e e n . dye o f t h e o t h e r t y p e w hich i s u se d i s ro san ilin e. h exyl- The s i n g l e called o c ty l- N e ith e r th e p re p a ra tio n nor th e use of th e se dyes i s apparent in th e l i t e r a t u r e . a ra tio n is necessary. T heir prep­ An o u t l i n e o f t h e p r o c e d u r e u s e d fo r th e p r e p a r a tio n o f th e s e dyes i s giv en in th e appendix. C e r ta in c o n d itio n s w hich in f lu e n c e th e f l o t a t i o n r e s u lts are in v estig ate d . The r e l a t i v e v a l u e o f t h e s e s u b s t i t u t e d dyes a s f l o t a t i o n a g e n ts i s th e n d eterm ined on s e l e c t e d sy n th e tic m ix tu res. Since c h r y s o c o lla i s a s s o c i a t e d w i t h com m ercial m in e r a l s o f b o t h a c i d i c and b a s i c n a t u r e , t h e t e s t s a r e made w i t h s y n t h e t i c m i x ­ tu r e s co n tain in g e ith e r s i l i c a or carb o n ates. THE FLOTATION PROCESS From t h e s t a n d p o i n t o f t h e t o n n a g e o f o r e t r e a t e d , f l o t a t i o n i s one o f th e most im p o r ta n t o f o r e d r e s s i n g processes. R e l a t i v e l y lo w g r a d e o r e s c a n b e e c o n o m i ­ cally tr e a te d . It i s t o be e x p e c te d t h a t t h e im por­ tan ce of f l o t a t i o n p ro ce sses w ill In c re a se w ith th e decrease in th e a v a ila b ility F r o t h f l o t a t i o n had i t s Sulman, P i c a r d and B a l l o t of ric h ore. b e g i n n i n g i n 1 9 0 6 w hen ( 4 3 ) a n d l i k e w i s e Chapman (8) a p p l i e d v i o l e n t a g i t a t i o n t o a n a q u eo u s s u s p e n s io n o f o re and caused a s e p a r a t i o n o f m i n e r a l s . t h a t tim e developm ent h a s b e en r a p i d . tio n s, Many p u b l i c a ­ among w h i c h a r e t h o s e by T a g g e r t ( 2 8 ) , Wark ( 4 9 ) , ly se t P etersen Since (4 5 ) > G a u d i n ( 3 6 ) , and DeW itt (17) c l e a r ­ f o r t h b o th th e p r i n c i p l e s and p r a c t ic e o f f r o t h flo ta tio n . It is c a r r ie d out in an aqueous susp en sio n o f f i n e l y ground m in e r a l s i n t o w hich a i r b u b b le s a r e in trodu ced . tio n C e r ta in m in e ra ls have a g r e a t e r a t t r a c ­ f o r t h e a i r b u b b l e s t h a n f o r t h e w a t e r a n d b ecom e a tta c h e d to th e bubbles. then r i s e to th e fro th . The m i n e r a l c l a d b u b b l e s s u r f a c e a n d a r e skimmed o f f a s a An a d d i t i o n a g e n t m u s t b e a d d e d t o t h e c e ll to f o r m a m ore p e r m a n e n t f r o t h . O ther r e a g e n ts a r e u su ­ a lly s e p a r a t i o n o f o r e and added t o a id gangue. in a b e tt e r These r e a g e n ts have t h e s p e c i f i c purpose of r e n d e r i n g t h e o r e m ore, and t h e gangue l e s s flo ta b le . F rothers The p u r p o s e o f a f r o t h e r i s t o stab le f r o t h on t h e cle s attach ed to form a more o r l e s s su rfa ce of th e p ulp. Ore p a r t i ­ t h e b u b b l e s a r e t h u s d r a i n e d from t h e c e ll w ith th e fro th . They f u n c t i o n by d e c r e a s i n g t h e DeW itt (17) s t a t e s t h a t t h e surface ten sio n . fro th in g agent w ith th e most n e g a t i v e s l o p e o f s u r f a c e t e n s i o n - m o l a l c o n ce n ­ t r a t i o n curve, in g en eral, sh o w s t h e g r e a t e s t fro th in g power. S tru ctu rally ed o f a n o i l f r o t h e r s a r e p o l a r c o m po u nd s com p o s­ s o l u b l e h y d ro c a rb o n gro u p and a w a te r so lu b le group. The o i l s o l u b l e g r o u p may b e a n a l k y l c h a in c o n ta in in g about t e n carb o n atom s. T he w a t e r s o l u b l e g r o u p may b e o n e s u c h a s t h e h y d r o x y l - , b oxyl-, ald eh y d e-, Some o f t h e e ucalyptus o i l , creso l, car­ c a r b o n y l- , am id o -, o r am lno-group. f r o t h e r s commonly u s e d a r e p i n e o i l , c re sy lic acid , te rp in e o l, and so a p s. amyl a l c o h o l , The f r o t h e r s h o u l d n o t a c t a s a c o llec to r. It tendency to coat th e ore p a r t i c l e s to th e e x c lu sio n o f the should not be used i n e x c e s s . c o l l e c t o r and t h u s d e c r e a s e f l o t a t i o n amount u s e d a s m e n t i o n e d by T a g g e r t .0 5 and I t has a (24). The (45) l i e s betw een .20 pounds p e r t o n . C o llecto rs Some m i n e r a l s , fur, among w h i c h a r e g r a p h i t e a n d s u l ­ i n h e r e n t l y p o s s e s s a s u r f a c e w hich h a s an a t t r a c ­ t i o n f o r an a i r - w a t e r i n t e r f a c e . These m a t e r i a ls a re c o l l e c t e d by t h e r i s i n g a i r b u b b l e s i n a f l o t a t i o n c e ll. W ith t h e a i d o f a f r o t h e r , from t h e they a re c a rrie d surface as a co n cen trate. M o s t m i n e r a l s do n o t h a v e t h i s surface pro p erty . They a r e more e a s i l y w e t t e d by w a t e r t h a n by a i r . If, how ever, a h y d ro c a rb o n s u r f a c e o r f ilm can be form ed on t h e m i n e r a l , t h e p a r t i c l e t h e n t e n d s t o h e c o l l e c t ­ ed by t h e b u b b l e s . The f u n c t i o n o f a c o l l e c t o r i s t o a t t a c h i t s e l f t o t h e m in e r a l and p r e s e n t an outw ard o i l y a i r bubble. film to th e One e n d o f t h e c o l l e c t o r m o l e c u l e c o n t a i n s an a c t i v e p o l a r g ro u p ; t h e o t h e r end c o n t a i n s a h y d ro ­ carbon c h a in . The c h e m i c a l s t r u c t u r e o f c o l l e c t o r s i s sim ila r to th a t o f fro th e rs . The l e n g t h o f t h e h y d r o ­ c a r b o n g ro u p on a c o l l e c t o r w h ich p e r m i t s f l o t a t i o n , depends upon b o th th e m in e r a l t o be r e c o v e r e d and upon th e a c t i v e p o l a r group i n th e c o l l e c t o r m o le c u le . A x a n t h a t e c o l l e c t o r may b e e f f e c t i v e w i t h a m e t h y l s u b ­ stitu e n t; s o a p o r a n a m i n o - c o l l e c t o r may r e q u i r e a laury1 -g ro u p . T h e r e a r e a g r e a t n u m b e r o f com pounds t h a t w o u l d serve a s c o l l e c t o r s but only r e l a t i v e l y co m m ercially . few a r e u s e d The two g e n e r a l t y p e s o f c o l l e c t o r s used a re n e g a tiv e o r a n io n ic re a g e n ts , and p o s i t i v e o r catio n ic reag en ts. The a n i o n i c r e a g e n t s i o n i z e i n t o n e g a t i v e o r g a n i c io n s and p o s i t i v e m e ta l o r h y d ro g en i o n s . an io n can be c o n sid ered to of th e m in eral. The o r g a n i c c o m b i n e w i t h t h e m e t a l a to m When t h e compound, a s s u m e d t o b e f o r m ­ e d by t h e o r g a n i c a n i o n a n d t h e m e t a l i s in so lu b le, f l o t a t i o n can be e x p e c te d . If th is b le, i f any, ta k e s p la c e . poor c o lle c to r a c tio n , compound i s solu­ T aggert (46) a d v a n c e s t h e i d e a t h a t a com pound i s fo rm ed , and t h a t a d s o r p t i o n o f t h e c o l l e c t o r on t h e m in e r a l i s o f m inor im p o r ta n c e . Under t h e s e condi­ t i o n s , t h e m i n e r a l must h e s o l u b l e enough t o r e a c t w i t h t h e c o l l e c t o r b u t t h e p r o d u c t form ed must s t i l l be In so lu b le. Common a n i o n i c c o l l e c t o r s a r e x a n t h a t e s , tan s, th io p h o sp h ates, a lip h a tic acid alk y l s u lfa te s, m ercap- alk y l su lfo n ates, soaps, and f a t t y a c id s . The c a t i o n i c r e a g e n t s form p o s i t i v e o r g a n i c i o n s . T his p o s itiv e ion i s f o r m e d e i t h e r by t h e l o s s o f a n e g a t i v e i o n s u c h a s a b r o m i d e , o r by t h e a d d i t i o n o f a hydrogen io n , as in th e case o f am ines. The p o s i t i v e o rg an ic ion th e n r e a c t s w ith a n e g a tiv e io n o f th e m in eral. re su lts T h is, as in th e case of an io n ic re a g e n ts , i n a h y d ro c a rb o n f i l m on t h e m in e r a l s u r f a c e . C a tio n ic r e a g e n ts have an a t t r a c t i o n f o r m in e ra ls o f an a c id ic n a tu r e . i c a t e s and s i l i c a . T hey c a n b e u s e d t o R alsto n co llec t sil­ ( 3 9 ) sh o w s t h a t a b u t y l amine w i l l c a u s e t h e f l o t a t i o n o f t a l c , w h i l e a l a u r y l o r s t e a r y l am ine i s n e c e s s a r y Among t h e h a lid es, am ines. for qu artz. c a tio n ic r e a g e n ts a r e a lk y l py rid in iu m q u a r t e r n a r y ammonium c o m p o u n d s , a n d a l k y l 7 A c tiv a to rs Heavy m e t a l s u l f i d e s a r e q u i t e r e a d i l y f l o a t by t h e u s e o f a x a n t h a t e c o llec to r. e d m i n e r a l s do n o t h a v e t h i s p r o p e r t y . caused to The o x i d i z ­ The s u r f a c e o f many o f t h e s e m i n e r a l s c a n , h o w e v e r , b e a c t i v a t e d b y th e use of a su ita b le reag en t, b le to th e so t h a t su scep ti­ (38) o u t l i n e s t h e p ro c e d u re f o r s u l f i d - iz in g o x id ized o res w ith a l k a l i su lfid e co atin g i s su lfid es. such a s z in c , The s u l f i d e o f s o m e - a re them selves to o respond to t h i s tr e a tm e n t. When a f o r m e d , t h e m i n e r a l may b e r e c o v e r e d by x a n t h a t e f l o t a t i o n . m etals, is c o lle c to r actio n . P etersen su itab le it Z inc b le n d e , hand, t r e a t e d w ith copper s u l f a t e , soluble to on t h e o t h e r form s a s u r f a c e o f c opper s u l f i d e w hich i s t h e n am enable t o x a n t h a t e f l o ­ tatio n . The c r i t e r i o n f o r a c t i v a t i o n i s t h e a b i l i t y of the fresh ly form ed s u r f a c e t o form a n i n s o l u b l e compound w i t h t h e c o l l e c t o r . D ep ressan ts When tw o m i n e r a l s o f a m i x t u r e a r e n o r m a l l y c o n ­ c e n t r a t e d i n t h e f r o t h t o g e t h e r , d e p r e s s a n t s c a n some­ tim es be used to r e s t r i c t th e f l o t a t i o n o f one o f them . T he a c t i o n o f t h e d e p r e s s a n t s s h o u l d b e s p e c i f i c . T h e i r c o n c e n t r a t i o n i n t h e p u l p must be c l o s e l y g o v e rn ­ e d b e c a u s e a n e x c e s s may c a u s e c o m p l e t e d e p r e s s i o n o f th e m in erals. T aggert (45) h a s c l a s s i f i e d t h e t y p e s o f d e p r e s ­ sant a c tio n as fo llo w s: 1. F o rm a tio n o f an I n s o l u b l e s a l t w hich i s to th e c o lle c to r. d roxide, T h e h e a v y m e t a l s may f o r m t h e h y ­ carbonate or s ilic a te * m e t a l s may f o r m t h e p h o s p h a t e s , 2. is too 3. tiv e 4. The a l k a l i n e earth s ilic a te s or flu o rid es. C losure o f th e su rfa c e a g a in s t The u s e o f a l k a l i in activ e c o lle c to r a ctio n . s u l f i d e s may p r o d u c e a s u r f a c e w h i c h in so lu b le. N u llific a tio n of th e c o lle c to r co atin g . c o l l o i d may c o v e r t h e D isp ersion A pro tec­ surface. Gangue a n d s l i m e p a r t i c l e s may b e d i s ­ p e r s e d by t h e p r e s e n c e o f i o n s o f h i g h e r v a l e n c e . 5- R e su rfa c in g t o produce w a t e r - a v l d i t y . H yd ro ph ilic c o l l o i d s may c o a t t h e m i n e r a l p a r t i c l e . F acto rs In flu en cin g C atio n ic F lo ta tio n The a l k y l - s u b s t i t u t e d t r i p h e n y l m e t h a n e d y e s w hich a r e u sed i n t h i s i n v e s t i g a t i o n b elo n g i n th e c la s s ific a tio n of c atio n ic c o lle c to rs. son, f a c t o r s w hich i n f l u e n c e c a t i o n i c stressed . a ll For t h i s r e a ­ flo ta tio n are I n many c a s e s , t h e o b s e r v a t i o n s a p p l y t o flo ta tio n . P a r t i c l e S ize In th e first p lace, t h e o r e must be ground t o such a fin e n e ss th a t p a r t i c l e s of th e v a lu a b le m in eral are s e p a r a t e d from t h e g a n g u e . In th e second p l a c e , p a r t i c l e s must be o f s u f f i c i e n t f i n e n e s s b u b b le c an r a i s e them t h r o u g h t h e th e m in eral. so t h a t t h e su spension. depends t o a g r e a t e x te n t upon t h e th e T h is sp ecific g rav ity of T h i r d l y , t h e p a r t i c l e s must b e s m a ll e- n o u g h so t h a t t h e h y d r o c a r b o n c h a i n s o f t h e c o l l e c t o r f u r n i s h s u f f i c i e n t bond w ith t h e a i r b u b b le . I n a s u rv e y o f A m erican f l o t a t i o n p r a c t i c e , P etersen (37) sho w s t h a t t h e u s u a l p a r t i c l e i e s b e t w e e n 50 a n d 1 0 0 m i c r o n s . about 150 - to 300 T his co rrespo nds to -m esh. When t h e p a r t i c l e m icro n s, a slim e i s flo ta tio n a ctio n . size v ar­ size I s d e c r e a s e d t o below 5 form ed, w hich does n o t re s p o n d to T he s l i m e may go t o t h e I n t e r f a c e and i n c r e a s e b u b b le to u g h n e s s o r b e c a u s e o f I t s surface area, to r. larg e i t may u s e u p a n u n d u e a m o u n t o f c o l l e c ­ In f l o t a t i o n p r a c t i c e , rem oval o f th e slim e i s a d v isab le. Pulp D e n sity An i n c r e a s e in th e a p p a re n t d e n s ity o f th e pulp causes p a r t i c l e s to r i s e to th e s u r f a c e more e a s i l y . Thus a h i g h e r c o n c e n t r a t i o n o f m i n e r a l s i n t h e suspen- slon ten d s to a id f l o ta ti o n but i t harm ful e f f e c t s o f slim e . present also In cre ases the The u s u a l a m o u n t o f s o l i d s i n t h e p u l p v a r i e s from 20 t o 30 percent for o ptim um c o n d i t i o n s . A d d itio n o f R eagents R eag en ts a r e u s u a l ly added t o der: co n d itio n in g ag en ts; th e pulp in th e o r­ co llec to r; and f i n a l l y , fro th er. Fahrenw ald (24) show s t h a t t h e n a te s th e m in eral su rfa c e , lecto r. For t h i s r e a s o n , f r o t h e r co ntam i­ te n d in g t o exclude th e c o l­ it should o r d i n a r i l y be add­ ed l a s t and i n s m a ll a m o u n ts. For c a t i o n i c c o l l e c t o r s , t h e tim e and r a t e d i t i o n o f t h e re a g e n t has an Im portant flo ta tio n re su lts. o f ad­ i n f l u e n c e on t h e An e x c e s s c o n c e n t r a t i o n o f c a t i o n i c c o l l e c t o r in th e p u lp a t any tim e must be a v o id e d . Wark a n d Wark ( 4 8 ) e x p l a i n t h i s phenominum b y t h e for­ m ation o f c o l l e c t o r m ic e lle s a t a c e r t a i n c r i t i c a l (11) cen tratio n . D e an a n d Am b ro se a ll c atio n ic c o l l e c t o r s a r e good e m u ls if y in g a g e n t s , an e x c e s s rem oves t h e w a t e r - r e p e l l a n t suggest th a t con­ since c o a t i n g from t h e p articles. D e an a n d Am brose ( 1 1 ) a l s o o f f e r d a t a t o show t h a t a c o n d i t i o n i n g p e r i o d f o r c e r t a i n c a t i o n i c a g e n t s may se rio u sly decrease th e ex ten t o f f lo ta tio n . The r e a - 11 g e n t I s more e f f e c t i v e I m m e d ia te ly a f t e r a d d i t i o n t h a n any t im e l a t e r . T h e i r d a t a show t h a t a 9 0 p e r c e n t y i e l d may h e d e c r e a s e d t o 10 p e r c e n t b y a n 8 m i n u t e c o n ­ d itio n in g p eriod b efo re f lo ta tio n . S m a l l c h a n g e s i n pH may h a v e p r o f o u n d i n f l u e n c e o n th e flo ta b ility Am b ro se ( 1 3 ) o f many m i n e r a l s . Bhow t h a t C h a r t s by D e an a n d s i l i c a t e m in e r a l s and s i l i c a a r e g e n e r a l l y r e c o v e r e d w i t h c a t i o n i c a g e n t s w i t h i n a pH range o f 6 to 8. depressed. At a pH o f a b o u t 4 , t h e y a r e u s u a l l y H ydrofluoric a c id has th e s p e c if ic property o f d e p r e s s i n g q u a r t z a t a pH o f 3 w h i l e a l l o w i n g t h e flo ta tio n of feld sp ar. F l o t a t i o n o f Gangue M a t e r i a l s Since c a r b o n a te s , silic a te s, c o u n tered a s gangue m a t e r i a l , and s i l i c a a re en­ t h e i r a c t i o n tow ard f l o ­ t a t i o n p r o c e d u r e may b e I m p o r t a n t i n t h e u s e o f t h e a lk y l- s u b s titu te d dyes as c o lle c to r s . Most o f t h e s e m i n e r a l s can be rem oved from c e r t a i n m i x t u r e s by p r e s ­ ent f lo ta tio n procedure. The c a r b o n a t e s a r e b a s i c m a t e r i a l s w h i c h q u i t e read ily combine w i t h a n i o n i c o r n e g a t i v e c o l l e c t o r s . The B r e e r w o o d p r o c e s s (22) f o r a d j u s t i n g t h e com posi­ t i o n o f cement r o c k i s a n exam ple o f t h e f l o t a t i o n o f calcite from s i l i c a t e s and c l a y w i t h a f a t t y c o llec to r. acid as 12 D a t a o n t h e d e p r e s s i o n o f l i m e s t o n e whe n u s i n g t h e c atio n ic co llecto r, l a u r y l p yridlnium b y Clemmer a n d A m b rose cate, (9). sodium h y d r o x i d e , shown t o io d id e, L actic a cid , a re given sodium s i l i ­ and co p p er s u l f a t e a l l a r e serve as d ep ressin g a g en ts. Q u artz and s i l i c a t e s , on t h e o t h e r h a n d , a r e a c i d ­ i c m a t e r i a l s w h ic h c a n n o t b e e x p e c t e d t o combine d i ­ r e c tly w ith an io n ic c o lle c to rs. They d o , h o w e v e r , com­ bine d ir e c tly w ith th e c a tio n ic p o s itiv e - io n c o lle c to r s . Ease o f f l o t a t i o n d epends upon t h e m in e r a l b u t most o f th e s i l i c a t e s a r e more e a s i l y Even w i t h c a t i o n i c r e a g e n t s , o f t h e m ost d i f f i c u l t t o t h a t whe n s i l i c a t e s e r a l m ix tu re, they c o lle c te d than is quartz is co llect. It silic a . fo u n d t o b e one seems e v i d e n t s u c h a s c l a y s a r e p r e s e n t i n a m in­ sh o u ld be removed b e f o r e rea g en ts are ap p lied to o th e r m in e rals. c atio n ic T h i s may b e a c c o m p l i s h e d by f l o t a t i o n w i t h s h o r t c h a i n a m i n e s . These gangue m a t e r i a l s a r e a l l c o n s i d e r e d more f l o t a b l e t h a n c h r y s o c o l l a by p r e s e n t p r a c t i c e . would n o t b e e c o n o m i c a l l y f e a s i b l e t o It s e p a r a t e them fr o m t h e o r e m i x t u r e s a n d l e a v e t h e c h r y s o c o l l a i n t h e ta i l in g s because the sm a ll am ounts. c h ry s o c o lla i s p r e s e n t in such T he s e l e c t i o n o f a c o l l e c t o r t o r e m o v e a c e r t a i n c o n s t i t u e n t i s an econom ic p r o b le m . th in g s b ein g eq u al, it i s a d v isab le to tio n o f th e m a te ria l p resen t in th e O ther cause th e flo ta ­ s m a l l e r am ount. 13 FLOTATION OF COPPER SILICATE The m o a t common c o p p e r s i l i c a t e ch ry so co lla. D o elter (20) s t a t e s t h a t a n a g e d g e l w h i c h h a s b e co m e p a r t l y f o r m u l a i s C u S i 0 2 , 2 H2 O. are: l a known a a chry so co lla is c ry stallin e . Its Compounds a d s o r b e d o n i t CaO; MgO; ZnO; PbO; CuCl2J a n d CO2 . It is o ften a c c o m p a n ie d by m a l a c h i t e . The a m o r p h o u s o r c o l l o i d a l p o r t i o n o f t h e m i n e r ­ a l, as i s ty p ic a l fo r c o llo id a l m in erals, co n tain s a v a r i a b l e amount o f w a t e r w h ic h i s assum ed t o be a d ­ s o r b e d by t h e co llo id al stru ctu re. When t h e c h r y s o c o l l a o c c u r s w i t h m a l a c h i t e , the m a l a c h i t e w h i c h i s a c o p p e r c a r b o n a t e may b e r e c o v e r ­ ed by f l o t a t i o n m e th o d s . l o s t w ith th e gangue. The c h r y s o c o l l a , B arthelem y how ever, i s (3) g i v e s a n exam ple o f t h i s ty p e o f p r o c e s s in w hich t h e gangue i s a c a r ­ b o n ate. Many o f t h e o r e s c o n t a i n a s i l i c a g a n g u e . A ttem pts t o c a r r y o u t t h e com m ercial f l o t a t i o n o f ch ry so co lla a re u n su c ce ssfu l because th e o rd in ary f lo ­ t a t i o n a g e n t s do n o t s e l e c t i v e l y combine w i t h i t . I s by n a t u r e v e ry h y d r o p h i l i c and i n s o l u b l e , It and b e ­ cause o f i t s w ater o f h y d ra tio n very n o n - f l o t a b l e . P r e v i o u s Work o n C h r y s o c o l l a F l o t a t i o n Work o n t h e f r o th f l o t a t i o n o f c h ry so c o lla has b e e n c a r r i e d o u t i n t h e U n ite d S t a t e s B u r e a u o f M ines 14 L a b o ra to ry w ork. th ate co llec to r in the o th e r, I n one o f t h e s e p r o c e s s e s , a x a n ­ (1 5 ) i s u s e d on t h e a c t i v a t e d m i n e r a l ; soap f l o t a t i o n (16) i s u s e d . narrow ra n g e s o f a p p l i c a t i o n , th e use o f e it h e r o f th ese p rocesses is se rio u sly r e s t r i c t e d use. Because o f f o r com m ercial No r e f e r e n c e s t o t h e c o m m e r c i a l f l o t a t i o n o f c h r y s o c o l l a have b e en found i n t h e l i t e r a t u r e . X anthate F l o ta tio n o f C hry so co lla I n t h e x a n t h a t e m ethod ( 1 5 ) a s d e v e l o p e d by t h e B u reau o f M ines, a s y n t h e t i c m ix tu r e o f c h r y s o c o l l a and p eg m atite (quartz, o rth o c la se w ith a l i t t l e ground to p a s s a 100-mesh s c r e e n . k ao lin ) is A c tiv atio n is car­ r i e d o u t w i t h e i t h e r sodium s u l f i d e o r h y d r o g e n s u l ­ f i d e i n a n a q u e o u s s o l u t i o n a t a pH o f 4 . The s u l p h i d - i z i n g m ust be c a r r i e d o u t w i t h i n v e ry narrow l i m i t s . An e x c e s s o f s u l p h i d e a c t s a s a d e p r e s s i n g a g e n t w h i l e too l i t t l e sulp h id e causes poor re c o v e ry . gen su lp h id e i s u sed , it V/hen h y d r o ­ i s n e c e s s a ry to add th e c o l­ le c to r before the su lp h ld lz in g ag en t. The f o l l o w i n g c h a rg e g i v e s a r e c o v e r y o f o v e r 95 p e r c e n t o f t h e chrysocolla. Head s a m p l e »6% copper Amyl x a n t h a t e .2# per ton Hydrogen s u l p h i d e Pine o i l .2# p e r to n a s needed 15 Soap F l o t a t i o n o f C h r y s o c o l l a The s o a p f l o t a t i o n o f c h r y s o c o l l a (16) i s a l s o a c ­ c o m p a n i e d by d i f f i c u l t i e s . The a c t i o n o f s o a p a s a co llecto r Is not sp ecific. The p r e s e n c e o f h e a v y m e t ­ a l o r a l k a l i n e e a r t h Ions causes th e s o lu b le soaps w hich a re u s e l e s s ch rysocolla. form ation o f in ­ fo r the f l o t a t i o n o f The p u l p m u s t b e r e g u l a t e d t o a pH o f 8 to 9 b e ca u se f r e e a c i d w hich i s n o t a c o l l e c t o r f o r c h r y s o c o l l a form s i n t h e a c i d r a n g e . The s a m p l e i s p r e p a r e d fr o m c h r y s o c o l l a a n d p e g ­ m atite so t h a t i t p a s s e s t h r o u g h a 100-m esh s c r e e n . B e st r e s u l t s a r e o b ta in e d w i t h soap a s t h e only reagen t. I t a c t s a s b o th a f r o t h e r and a c o l l e c t o r . The am o u n t u s e d v a r i e s w i t h t h e c o m p o s i t i o n o f t h e p u l p a n d r a n g e s b e t w e e n 3 p o u n d s p e r t o n a n d 12 p o u n d s p e r ton. Soaps o f a n im a l o r i g i n a r e more e f f e c t i v e t h a n o f v eg etab le. A l k y l - s u b s t i t u t e d T r l p h e n y l M ethane Dyes a s C o l l e c t o r s The s t r u c t u r e o f t h e a l k y l - s u b s t i t u t e d t r i p h e n y l m eth an e d y e s seems t o b e v e r y w e l l s u i t e d t o c o l l e c t o r a c t i o n on c h r y s o c o l l a . C ertain dyes, among w h i c h a r e m a l a c h i t e g r e e n and r o s a n i l i n e , have a s p e c i f i c a d s o r p ­ tio n a c tio n for c o llo id a l m in erals. The p r i n c i p l e is w e l l known a n d u s e d i n many f i e l d s . E ndell ( 2 1 ) g i v e s i n f o r m a t i o n on a m e t h o d f o r t h e 16 d e t e r m i n a t i o n o f t h e amount o f c o l l o i d a l m a t e r i a l i n c l a y by i t s s e le c tiv e ad so rp tio n o f fu ch sin . The u s e o f c h r o m a t r o g r a p h i c a d s o r p t i o n a n a l y s i s i s b a s e d on t h e g e st the They l i s t same p r i n c i p l e . C ain and Thorpe (7) sug­ s e p a r a t i o n o f d y e s by a d s o r p t i o n o n k a o l i n . th e dyes in th e o rd e r o f t h e i r p r e f e r e n t i a l a t t r a c t i o n to k a o lin . Of t h e b a s i c d y e s , m a g e n t a , m a l ­ a c h i t e g re e n , m ethylene b lu e , and c r y s t a l v i o l e t a r e e a s i l y ad sorbed, w hile th e a cid dyes in g e n e ra l, are n o t adsorbed. A d so rp tio n p ro c e ss e s for the rem oval o f c o lo re d c o m p o u n d s f r o m a q u e o u s s o l u t i o n a r e w e l l knov/n. The r e m o v a l o f p o l a r com p o u n d s f r o m p e t r o l e u m o i l s a n d o f c o l o r e d m a t e r i a l fr o m s y r u p b y a d s o r p t i o n p r o c e s s e s , is a w e ll developed s c ie n c e . The r e s u l t s o f some i n v e s t i g a t i o n s o n t h e a d s o r p ­ t i o n o f d y e s by s p e c i f i c m i n e r a l s a r e a v a i l a b l e . (42) dyes. Suida s t a t e s th a t h y d rated s i l i c a t e s a re co lo red b a s ic D ittle r ( 1 9 ) sh o w s t h a t m i n e r a l s w i t h a n a c i d reactio n p re fe re n tia lly B; m e t h a n e b l u e ; ta k e up th e b a s i c d y e s : and m e t h y l g r e e n . o f these acid m in erals. C h r y s o c o l l a i s o ne Acid v i o l e t i s shown t o b e a d ­ s o r b e d by c h r y s o c o l l a , b u t t o a l e s s e r d e g r e e . c o llo id al stru ctu re i s th e d eterm in in g f a c to r ; b a sic re a c tio n o f th e m in eral i s fuchsin secondary. a l s o r e l a t e s t h a t a c a l c i n e d dye l o s e s t h i s The acid or D ittle r ch aracter- 17 Istic for adsorbing dyes. C ry stallin e m aterial, Buch a s q u a r t z , is also co l­ o r e d by t h e s e d y e s , b u t r e l a t i v e l y m o re s l o w l y a n d t o a le s s e r degree. T his i s e a s i l y i l l u s t r a t e d by p l a c i n g b o t h sand and c h r y s o c o l l a i n a d i l u t e ta l v io le t. France so lu tio n of crys­ ( 2 6 ) r e p o r t s t e s t s t o show t h a t c r y s t a l s do a d s o r b d y e s a n d t h a t d i f f e r e n t f a c e s o f t h e same c r y s t a l may h a v e d i f f e r e n t a d s o r p t i v e p o w e r f o r t h e same d y e . Dean ( 1 6 ) shows t h a t t h e d y e s , v i o l e t and t o l u i d i n e b l u e , a r e cry stal t a k e n up by q u a r t z . The a b s tr a c tio n curves a re o f th e a d s o rp tio n ty p e. The a d s o r p t i o n o f d y e s b y d i f f e r e n t t y p e s o f ma­ t e r i a l i s one o f d e g r e e . The m i n e r a l g e l s , h o w e v e r , have a g r e a t e r a t t r a c t i o n fo r dyes than c r y s t a l l i n e so lid s. The t a k l n g - u p o f d y e s by s o l i d s m i g h t b e a n a d s o r p tiv e p ro c e s s o r a chem ical a c t i o n . F reu n d lich a n d Neumann ( 2 7 ) r e g a r d t h e a t t a c h m e n t o f a d y e t o a c ­ tiv a te d c h a r c o a l and c e r t a i n m i n e r a l g e l s a s b e i n g chem ical i n n a t u r e . In t h a t c a se , th e c a t io n o f the dye r e p l a c e s a c a t i o n o f t h e m i n e r a l g e l , assumed to be t h e h y d ro g e n i o n . w hich can be Thus, t h e i n t e r c h a n g e o f c a t i o n s i s t h e same a s o r d i n a r i l y tak es place in dyeing c lo t h w ith a b a s ic dye. R e g a r d l e s s o f t h e m anner i n w hich t h e d y e becomes a tta c h e d to th e m in e ral, by c h r y s o c o l l a . It it is p referen tially t a k e n up should be p o s s ib le to use th e ac- 18 t l v e p o r t i o n o f t h e dye m o le c u le a s t h e a c t i v e p o l a r p o rtio n o f a c o l l e c t o r m olecu le. su b stitu ted A long a l k y l c h ain in to dye m o lecu le should a c t a s th e non­ p o l a r end o f th e c o l l e c t o r m o le c u le . The n e c e s s a r y l e n g t h f o r s u c h a n a l k y l c h a i n i s n o t known. As i s p r e v i o u s l y n o t e d , a m e t h y l g r o u p may be o f s u f f i c i e n t l e n g t h on a x a n t h a t e c o llec to r, w hile a l a u r y l g r o u p may b e n e c e s s a r y o n a n a m i n e c o l l e c t o r . I t i s known t h a t t h e m e t h y l g r o u p i n t h e o r d i n a r y r o s a n i l i n e dye d o e s n o t e f f e c t t h e f l o t a t i o n . a lk y l chain i s re q u ire d . A lo n g er The a l k y l - s u b s t i t u t e d th e m a la c h ite g re e n ty p e w hich a r e u se d i n t h i s v estig atio n , hex y l-, co nseq uen tly , in clu d e the b u ty l- , dyes of in ­ the and t h e o c t y l - s u b s t i t u e n t • Dyes o f t h e a l k y l - s u b s t i t u t e d t r i p h e n y l m ethane t y p e may b e e x p e c t e d t o b r i n g a b o u t f l o t a t i o n o f n o t only c h r y s o c o l l a b u t a l s o o f o t h e r c o l l o i d a l o r g e l m in erals. T h i s may b e a n a d v a n t a g e i n some c a s e s b u t a d isad v an tag e In o th e r s . The a d v a n t a g e l i e s in b ein g ab le to c o n c e n tr a te o t h e r v a lu a b le g e l m in e r a ls con­ tain in g f o r exam ple: nium ; a l s o t o lie s copper; co b alt; n ic k e l; co n cen trate b a u x ite . in a lack o f s e l e c t i v i t y . silic a te The d i s a d v a n t a g e Many o f t h e c o p p e r o r e s c o n t a i n amorphous s i l i c a t e s in the gangue. These m a t e r i a l s , moved b y a p r e l i m i n a r y and u r a ­ such a s clay how ever, m ight be r e ­ flo ta tio n process. Previous use o f dyes as f l o t a t i o n re a g e n ts i s r e ­ p o r t e d by T a g g e r t 2,095*967* (45) f ro m U n i t e d S t a t e s P a t e n t C e r ta in a c id and b a s i c dyes a r e s p e c i f i e d as dep ressan ts f o r m o l y b d e n i t e fro m c o p p e r s u l p h i d e s . Among t h e s e d y e s a r e m e t h y l e n e b l u e , go r e d , p ic ric acid , a n ilin e blue, a c i d g r e e n and a c i d b l u e . Con­ 20 PROCEDURE S y n t h e t i c o r e m i x t u r e s o f c h r y s o c o l l a and gangue are Is su b je c te d to flo ta tio n te s ts . The c o l l e c t o r a c t i o n found by a d e t e r m i n a t i o n o f t h e c o p p e r c o n t e n t o f t h e c o n c e n t r a t e a s compared t o t h a t o f t h e h e ad m i x t u r e . The r e s p e c t i v e o r e m i x t u r e s u s e d a r e c o m p o s e d o f c h r y s ­ o c o l l a and san d , and c h r y s o c o l l a and d o l o m i t e . lim esto n e used in p re lim in a ry t e s t s im p u rities th a t it The c o n t a i n s so many i s n o t used in th e standard t e s t procedure. P rep aratio n o f th e A rela tiv e ly p ieces, up t o S a m p le p u re c h r y s o c o l l a sam ple i n m a s s iv e s ix inches in le n g th , i s broken up i n an i r o n m o rto r to s i z e s w hich p a s s a 20-m esh s c r e e n . sam ple w h ic h d o e s n o t p a s s t h e b ro k en up in th e m o rto r. screen i s c la ssified standard sc re e n s. 100-m esh, 20 -m esli s c r e e n i s 100 fu rth er The s a m p l e w h i c h p a s s e s t h e acco rd in g to s i z e by a n e s t o f The s c r e e n s i z e s u s e d a r e 6 0 - m e s h , 150-m esh, and 2 0 0 -m esh . through th e The -m esh, 150 -m esh , and Sam ples p a s s i n g 20 0 -mesh s c re e n s a re d e slim ed and used f o r p r e lim in a r y t e s t s . 21 The c h r y s o c o l l a r e m a i n i n g on t h e 2 0 - m e s h , mesh, and t h e m ill. 100 th e 60- -m esh s c r e e n s i s g round wet i n a p e b b le I t i s then d rie d , sc re e n e d , and d e slim ed f o r use in th e standard t e s t s . C o n sid erab le clay i s a s s o c ia te d w ith th e o co lla. chrys­ I t b r e a k s up i n t o v e ry s m a ll p a r t i c l e s and a d ­ h e re s to t h e c h ry s o c o lla p a r t i c l e s . These c la y p a r t i ­ c l e s would t e n d to form a s lim e d u r i n g . f l o t a t i o n . a r e w a s h e d fr o m t h e r e s p e c t i v e They s a m p l e s by r e p e a t e d l y d e ­ c a n tin g th e cloudy w a te r su s p e n s io n above th e o r e . T his c o n s t it u t e s the d esiim ing o p e ra tio n . S izes prepared flo ta tio n te s ts are: - 2 0 0 -m esh; m inus- 2 100 - 150 -m esh; 150 for OO-mesh. Sam ples o f l a r g e r p a r t i c l e lnary flo ta tio n te s ts recovery. siz e prepared show r e l a t i v e l y fo r prelim no t e n d e n c y t o w a r d C onsequently th e y a r e o m itte d from t h e s t a n d ­ ard p ro ced u re. A c o p p er a n a l y s i s o f t h e c h r y s o c o l l a sam ples g iv e s an average o f .2 2 3 .5 p e rc en t copper. V a ria tio n Is w ith in p ercent. D olom ite sam ples a r e p r e p a r e d i n a s i m i l a r m anner. The d o l o m i t e w h i c h i s o n h a n d i n t h e l a b o r a t o r y i n m as­ s i v e p i e c e s i s c r u s h e d f i r B t i n a s m a l l jaw c r u s h e r , th e n s u b je c te d to wet p e b b le m i l l g r i n d i n g , screening, and d e s i i m i n g . D e s iim in g o f t h e minus-2OO-mesh d o l o ­ m ite i s fu rth er. carried A b o u t 130 g r a m s a r e p l a c e d i n 22 the f l o t a t i o n c e l l w i t h w a t e r and a f r o t h i n g a g e n t . The s l i m e i t s e l f f o r m s a c o p i o u s f r o t h a n d a b o u t 30 grams p a s s o u t w i t h t h e f r o t h . The d o l o m i t e s a m p l e i s t h e n d r a i n e d from t h e c e l l , w a s h e d , a n d u s e d i n t h e test. The w e i g h t i s d e t e r m i n e d by s u b t r a c t i n g t h e d r i ­ ed w e ig h t o f t h e slim e. The s a n d u s e d i s a l s o on h a n d i n t h e l a b o r a t o r y . It is rela tiv e ly tiv ely sm all s i z e , crushing. m ill, c l e a n and w h i t e . It is screened, Because o f i t s r e l a ­ i t does not r e q u ir e p re lim in a ry im m ediately ground wet i n th e pebble an d d e s l i m e d . The s y n t h e t i c o r e m i x t u r e s f o r t h e r e s p e c t i v e t e s t s a r e compounded from t h e d e s l i m e d m a t e r i a l a s n e e d ­ ed. The s t a n d a r d t e s t s a m p l e c o n s i s t s o f 99 g r a m s o f g a n g u e a n d one gram o f c h r y s o c o l l a . m ix tu re c o n ta in s The s t a n d a r d o r e .235 p e r c e n t c o p p e r . Ore m i x t u r e s o f d i f f e r e n t copper c o n te n t a re used a s n o te d . Dean a n d Ambrose (41) s u g g e s t t h a t t h e m ethod o f p r e p a r i n g t h e sam ple h a s an e f f e c t on f l o t a t i o n r e s u l t s . The s u r f a c e o f a s a m p l e from w e t p e b b l e m i l l g r i n d i n g sh o u ld be c l e a n e r t h a n t h e s u r f a c e o f d r y - g r o u n d m ate­ rial. B eing c l e a n e r , i t h a s a g r e a t e r t e n d e n c y t o com­ b in e w i t h t h e r e a g e n t s and t h u s a g r e a t e r te n d e n c y to be c o llected . In t h i s in v e s tig a tio n , s a m p l e s f ro m d r y g r i n d in g have been used f o r th e p r e l i m i n a r y t e s t s . 23 The F l o t a t i o n C e l l The f l o t a t i o n v id ed w ith an a i r c e l l i s a 1 0 0 - gram b a t c h u n i t , i n l e t a t th e bottom , w hich i s a v a r i a b l e speed a g i t a t o r . s h a f t a r e made o f s t e e l , (See F i g . pro­ im m e d ia te ly above The a g i t a t o r a n d the c e ll i t s e l f of L u cite . 1 .) F r o t h d i s c h a r g e s i n t o a B uchner f u n n e l where th e co n cen trate is c o l l e c t e d on a f i l t e r p a p e r . i s drawn t h r o u g h t h e vacuum. The l i q u i d f u n n e l a n d i n t o a g l a s s b o t t l e by I t i s d r a i n e d i n t o a second b o t t l e and fed con­ tin u o u s ly back to th e c e l l a t a r a t e F ig. 1. of a l i t t l e F lo ta tio n C ell over 24 one d r o p p e r s e c o n d . T h is r e g u l a t e s t h e r a t e a t w hich the f r o th lea v es th e c e l l . The t o t a l p u l p c h a r g e t o t h e c e l l c o n s i s t s o f 100 grams o f o r e m i x t u r e and 300 gram s o f w a t e r . A v aria­ b l e amount o f t h i s w a t e r , d e p e n d i n g upon f r o t h d e p t h i n the c e l l , i s in the b o t t l e s o u tsid e th e c e l l . C o lle cto r Solution The a l k y l - s u b s t i t u t e d t r i p h e n y l m e t h a n e d y e s a r e used fo r c o l l e c t o r s . They a r e d i s s o l v e d i n e t h a n o l - w ater m ix tu res in a c o n c e n tra tio n o f The p e r c e n t a g e o f o f the d y e. .1 gram p e r 100 cc. a lc o h o l used v a r i e s w ith s o l u b i l i t y A 50 p e r c e n t a l c o h o l s o l u t i o n i s b u t y l - and h e x y l - d y e s ; a m a l a c h l t e g r e e n ; and 93 70 used for percent so lu tio n fo r o c ty l- p e rc en t alco h o l for o c ty l-ro s - a n ilin e . O peration o f th e C e ll The a g i t a t o r a n d a i r pump a r e sta rte d . grams o f w a t e r , t h e n t h e gangue and t h e put in to the c e l l . chrysocolla are A b o u t 50 g r a m s o f w a t e r a r e d r a w n in to th e w a te r supply b o t t l e . The r e s t o f t h e 3 0 0 grams o f w a t e r i s r u n i n t o t h e c e l l . M odifying a g e n ts , i f a n y , a r e a d d ed , and t h e p u lp i s a llo w e d 15 m i n u t e s . Pine o i l , o f a fin e w ire. A b o u t 150 as needed, to m ix f o r I s a d d ed on t h e end An e x c e s s m u s t b e a v o i d e d . The c o l - 25 lec to r I s t h e n ad d ed by s t a g e a d d i t i o n o v e r t h e o f th e run. The c o l l e c t o r from a p i p e t t e w h i c h i s pulp, in q u a n titie s th e pulp, it th e of o b t a i n more d e t a i l e d -5 c c . F ilter added slow ly When a d d e d t o t h e th e to p o f c o l l e c t o r and c a r r i e s p a p e r s may b e c h a n g e d t o i n f o r m a t i o n on a r u n . At t h e e n d o f t h e r u n , c e l l and a sam ple i s B e ck m an m e t e r . is i n s e r t e d w e l l down i n t o f r o t h p ic k s up th e over im m ed iately . th e so lu tio n p eriod taken The f i l t e r i s d r i e d and w eighed t o th e drained from f o r pH m e a s u r e m e n t o n a paper h o ld in g th e o b tain The p e r c e n t a g e o f c o p p e r i s pulp i s c o n cen trate th e w eight o f c o n c e n tra te . th en d eterm in ed in th e con­ cen trate . F lo ta tio n R esu lts In t h i s in v estig atio n a r e r u n on a g i v e n q u a n t i t y m ig h t be of ore. In com m ercial p r a c t i c e , o f o p e ra tio n s. e r c e l l w here th e ings flo ta tio n first sep aratio n in a scavenger c e l l . te sts T he c o n c e n t r a t e th e flo ta tio n ore i s The p u l p g o e s from t h e r o u g h e r c e l l a r e tatio n sin g le f u r t h e r e n r i c h e d by a n a d d i t i o n a l era tio n . a series only first i s made. su b jected to The c o n c e n t r a t e trea te d to o f th e d e s ire d m in eral i s a series of flo ta tio n a ctio n s, in a rough­ The t a i l ­ fu rth er flo ­ from t h e ro u g h e r c e l l goes to a c l e a n e r c e l l w here a h i g h e r c en tratio n op­ o b tain ed . con­ Thus i n b o th th e p e rcen tag e r e ­ 26 c o v e ry and t h e en richm ent o f th e ed o v e r w hat m ig h t be o b t a i n e d p r o d u c t may b e i n c r e a s ­ in a s in g le flo ta tio n process. C o m p o s i t e r u n s a r e m ade i n many o f t h e m a i n t e s t s when d e t a i l e d in fo rm a tio n is d e s ire d . added a t a g iv en r a t e filte r d u rin g the e n t i r e paper h o ld in g th e desig n ated in te rv a ls. co n cen trate In c a l c u l a t i n g te st, is b u t the is rep laced a t I n t h i s way d a t a on t h e e f f e c t o f t h e a d d i t i o n c o llec to r. The c o l l e c t o r can be o b ta in e d o f v a r i o u s am ounts o f th e t o ta l a- mount o f c o n c e n tr a te w h ich h a s been f l o a t e d from t h e b e g in n in g o f th e o f a given test is th e r e s u l t s , in clu d ed w ith t h a t p erio d . D e te rm in a tio n o f Copper Copper i s d e t e r m i n e d by t h e m eth o d o f P a r k sam ple c o n t a i n i n g n o t more t h a n d isso lv ed It is in n i t r i c then d ilu te d acid .2 so lu tio n n itric When d a r k c o l o r e d r e s i d u e is f i l t e r e d and acid . b u t an e x c e s s flu o rid e about and b o i l e d to e x p e l th e o x id e s o f n i t r o g e n and i n s u r e m aterial. A gram s o f c o p p e r i s a n d b o i l e d down t o t o a b o u t 30 c c . (35) • is 5 cc. in order so lu tio n of p resen t, the th e r e s i d u e washed w i t h d i l u t e The s o l u t i o n i s n e u t r a l i z e d w i t h amm onia, i s av o id ed . Two g r a m s o f ammonium b l - a r e added and shaken w ith t h e gram o f p o t a s s i u m b i p h t h a l a t e is so lu tio n . One l i k e w i s e added and th e n 27 3 gram s o f p o ta s s iu m io d id e . The s o l u t i o n t r a t e d w i t h N /10 sodium t h i o s u l p h a t e is used as an in d ic a to r . is so lu tio n . then t i ­ S tarch 28 TABULATED RESULTS TABLE 1 . F l o ta tio n A ctio n M in eral m ix tu re : P a rtic le size: pH: 7 - 7 - •*o 8 .3 C o ncentrate H e a d s T im e /0° % ft!Dve J L % R e c o v e r y ft!C o p p e r C o p p e r M i n . to n Copper Dye ----— T r l san d -ch ry so co lla m inus-200-m esh. C o llecto r Exp. No. 1 0 0 gm. .0 4 — —— ✓ ^ 4 1 .1 7 1 4 .5 .0 5 9 ro sa n ilin e A lk y 1 -m alach ite g reen 32 B u ty l- .0 4 .235 8 • 59 1 7 .0 .072 31 H exyl- .03 .235 6 1 .0 1 4 1 .1 • 01 6 36 O ctyl - .1 2 .235 10 2 .0 6 4 .0 .040 46 O cty l - .28 .7 0 5 21 2 .9 6 2 .1 .0 3 2 TABLE 2 . E ffect of P a rtic le C o lle cto r: .0 3 # / t o n h e x y 1 - m a la c h i te g r e e n M ineral m ix tu re : Exp. No. Mesh 4 5 1 5 0 -2 0 0 -200 S ize 1 0 0 gm. s a n d - c h r y s o c o l l a , .2 3 5 $ copper C oncentrate $ $ G ra m a C o p p e r R e c o v e r y Min pH 2 7 .8 1 .4 0 .6 3 3 .7 3 3 7 .8 2 .4 9 1 .0 7 1 1 .2 5 TABLE 3* Effect of Rate of Collector Addition C oncentrate R ate Gra ms % $ M in. Copper R ecovery C o llecto r Exp. No. # T im e t o n M in. Dve H ex y 1 -m alach ite .03 3 .0 0 0 5 0 1 .0 7 1 1.25 H ex y l-m alach ite .0 3 6 .00025 1 .0 1 4 1 .1 36-A O c t y 1 - m a l a c h i t e .0 3 2 .00075 2 .2 5 1 7 .4 34-C O c t y 1 - m a l a c h l t e .0 3 6 .0 0 0 2 5 1 .43 2 8 .5 36-B O c t y 1 - m a l a c h i t e .0 6 4 .00075 2 .4 3 4 .8 34-F O c ty 1 -m a la c h ite .0 6 12 .00025 1 .46 5 3 .0 H 1 O 5 TABLE 4 . Action of Buty1-malachite Green Collector: buty1-malachite green Mineral mixture: 100 gm. sand-chrysocolla, .235$ copper Frother: pine oil Exp. M esh N o. C o ncentrate Dye tr % % t o n Min.. pH G ram s C o p p e r R e c o v e r ? — Ap.ent 15 1 5 0 -2 0 0 HF .03 7 4 .3 16 15 0 -2— HF .024 8 4 .1 2 .3 4 n il trace 32-A -2 0 0 .0 1 2 8 .3 2 .2 3 .74 6 .9 32-B -2 0 0 .0 2 4 8 .3 3 .7 9 .7 0 1 1 .1 32-C -2 0 0 .0 3 6 8 .3 5 .6 1 .60 1 4 .3 3 2 -D -2 0 0 .0 4 8 8 .3 6 .8 5 • 59 1 7 .0 32-E -2 0 0 .0 5 10 8 .3 8 .5 5 • 54 19*6 30 M in eral m ix tu re: 1 0 0 gm. d o l o m i t e - c h r y s o c o l l a , •2 3 5 Exp. Mesh No. % copper ;oncenx, ..... % ' T . t o n M i n . pH G ra m s C o p p e r Agent •054 3 7 .8 3 .5 2 trace .0 1 2 7 .9 2 .0 8 trace A l p ( S04 ) -x . 0 8 » 4 # /to n 18 7 .9 11.63 trace 12 -2 0 0 33-A -2 0 0 A l p ( SO4 ) -2 •4 $ /to n 33-0 -2 0 0 7° TABLE 5 A c tio n o f H e x y 1 -m a lac h ite G reen C o lle cto r: h ex y 1 -m alach ite g reen M ineral m ix tu re: F ro th er: san d -ch ry so co lla, .2 3 5 $ c o p p er pine o i l Exp. No. Mesh 4 1 0 0 gm. Agent 1 5 0 -2 0 0 ... Dye C o n cen trate j E ...................% .............. * t o n M i n . pH G r a m s C o p p e r R e c o v e r y .0 2 8 2 7-8 1 .4 0 .6 3 3 .7 3 .0 3 3 7-8 2 .4 9 1 .0 7 1 1 .2 5 2 .3 1 2 .2 4 n il 5 -2 0 0 10 -2 0 0 HC1 .03 -2 0 0 HF .0 2 2 4 .1 3 .4 9 .0 2 .3 28-B -2 0 0 HF • 03 3 4 .1 1 0 .0 9 .18 8 .4 30-A -2 0 0 HF .0 1 2 4 .0 1.52 .09 .6 30-B -2 0 0 HF .0 2 4 4 .0 5 .3 1 .2 1 4 .9 30-C -2 0 0 HF .0 3 6 4 .0 9 .6 1 .1 8 7 .5 37 -2 0 0 H2 S 0 4 .1 1 4 4 .7 12 .7 1 .0 5 2 .5 2 8 -A 31 Dye Exp. Concentrate # Meah Agent % "% ton Min. pH Grams Copper Recovery • o H Mo. 2 7-9 2 .5 0 .9 9 1 0 .6 .0 2 4 7-9 4 .9 9 1 .0 8 2 3 .0 -2 0 0 .0 3 6 7 .9 9-51 1 .0 1 4 1 .1 31-D -2 0 0 .04 8 7 -9 15*45 .75 4 9 .5 31-E -2 0 0 .0 5 10 7 .9 2 2 .4 5 .61 5 9 .3 -F -2 0 0 .06 12 7 .9 2 8 .3 5 .5 0 60.9 31-G -2 0 0 . 0 8 14 31-A -2 0 0 31-B -2 0 0 31-C 3 1 M in eral m ix tu re: 7 .9 3 9 .2 5 1 0 0 gm. s a n d - c h r y s o c o l l a , Dve _ JL __ Exp. No. Mesh A17 -2 0 0 A13 -2 0 0 B -200 1 -2 0 0 > H 27 Agent HF .4 7 % copper Concentrate ----------------------------------- --------------------------------- ---- % * j E t o n M i n . pH G ram s C o p p e r R e c o v e r y .0 5 2 4 .1 4 .6 1 .7 7 7 .5 .0 1 6 6 3 .6 2 .0 8 .62 2 .6 HC1 .0 1 5 4 .0 1 .7 5 1 .1 7 4 .4 HCl .0 2 10 4 .0 5 .0 3 .99 1 0 .7 HF c itric acid •5 # /to n M i n e r a l m i x t u r e : 1 0 0 gm. d o l o m i t e - c h r y s o c o l l a , .2 3 5 Exp. N o. Mesh A4 -150 1 -2 0 0 Agent Na^P0 4 •5 ^ /to n % copper Dye C oncentrate 7T% % t o n M i n . pH G r a m s C o p p e r R e c o v e r y .0 2 7 7 .2 .014 6 8 .2 3 0 .2 4 .5 1 (not deslim ed ) .14 2 .7 32 Exp* No. M e s h Agent Dve C o n cen trate JE * "? t o n M i n . pH C r a m s C o p p e r R e c o v e r y 2 -2 0 0 A l p ( SO4 ) . 0 1 4 • 3 2 ^ / t o n -5 7 .0 3 - 2 0 0 sodium silic a te •4 # /to n .014 7 -0 8 -A -200 a ce tic acid 4 .2 # /to n .04 8 -B -200 a c e tic acid 4 .2 # /to n .0 6 2 < S*» i ^c nW - o•«.nS*nW .0 ^ M ineral m ix tu re : 3 7 .4 5*67 * 28 608 n il 11 .9 7 n il 7*4 1 9 .6 1 n il ^ ^ -nil ------------ ■ 1 0 0 gm. d o l o m i t e - c h r y s o c o l l a , .47 $ copper Exp. N o. M esh Agent Dye C o n centrate If t o n M i n . pH G ra m s C o p p e r R e c o v e r y 25-A -200 .0 6 1 25-B -200 .1 2 2 . 5 9 .5 8 1 4 .3 3 .22 4 .5 .2 6 7 .9 TABLE 6 . A c tio n o f O c ty 1 -m a la c h ite G reen C o lle cto r: o c ty l-m a lach lte green M in eral m ix tu re: F ro th er: 100 3 6 -A .2 3 5 % c o p p er pine o i l C o n cen trate Exp. No» gm. s a n d - c h r y s o c o l l a , jgT--------------Mesh -2 0 0 Agent %----- %--- t o n M i n . pH G r a m s C o p p e r R e c o v e r y .0 3 2 8 .1 1 .8 2 2 .2 5 1 7 .4 33 Concentrate % J ------ Min. pH Grams Copper Recovery VO 8 .1 3 .3 8 2 .4 3 4 .8 .09 7 8 .1 5*32 2 .2 5 2 .2 -2 0 0 .1 2 10 8 .1 7 .5 2 2 .0 6 4 .0 36-E -2 0 0 .14 12 8 .1 10.06 1 .7 7 4 .0 36-F -2 0 0 • 17 1 4 8 .1 11.59 1 .5 4 7 6 .5 34-A -2 0 0 .0 1 2 8 .0 1 .1 2 1 .2 7 6 .5 34-B -2 0 0 .0 2 4 8 .0 3.2 4 1 .3 5 18.6 34-C -2 0 0 .03 6 8 .0 4 .6 8 1 .4 3 2 8 .5 34-D -2 0 0 .0 4 8 8 .0 6 .2 0 1 .4 3 3 7 .8 34-E -2 0 0 • 05 10 8 .0 7 .8 0 1 .4 7 4 8 .5 34-F -2 0 0 .0 6 12 8 .0 8 .5 5 1 .4 6 5 3 .0 43-A -2 0 0 HC1 • 03 2 6 .6 2 .0 2 1 .2 10.3 43-B -2 0 0 HC1 .0 6 5 6 .6 4 .1 1 1 .1 1 19.5 4>C -2 0 0 HC1 .0 9 7 6 .6 5 .9 4 1 .1 5 2 9 .1 43-D -2 0 0 HC1 .1 2 10 6 .6 9-36 .9 6 3 8 .3 43-E -2 0 0 HC1 • 15 12 6 .6 12 .4 3 .8 8 4 6 .6 43-F -2 0 0 HC1 . 1 8 15 6 .6 1 4 .8 4 .8 3 5 2 .5 47-A -2 0 0 Nap C0^5 •8 # /to n .04 3 8 .1 .58 47-B -2 0 0 NapCO, . 8 #/3on 6 8 .1 47-C -2 0 0 Nap C0-* . 8 # /to n .1 2 9 47-D -2 0 0 NapCO* •8 # /to n .1 6 12 36-B -2 0 0 36-C -2 0 0 -D 36 CD o . 4 . o Ap;ent SHI Exp. M e sh Mo. 2 .6 6 .4 1 .0 2 3 .1 1 3 .6 8 .1 1 .8 8 3 .1 2 4 .5 8 .1 4 .3 6 2 .5 4 5 .0 34 Dye w Exp. N o. Mesh C o n cen trate Agent t o n M in. pH 7° 7° Grams C o p p e r R e c o v e r y 47-E -200 Na 2 C 0 j . 8 jf/to n . 2 0 15 8 .1 7*48 1 .8 5 8 .0 -F -200 Na 2 C0-* .8 # /to n .2 4 18 8 .1 1 1 .0 1 1 .4 7 7 0 .0 4 7 M ineral m ix tu re: 1 0 0 gm . s a n d - c h r y s o c o l l a , Dye # Exp. No. M esh Agent .7 0 5 % copper Concentrate W J° t o n M i n . pH G r a m s C o p p e r R e c o v e r y 3 7 .7 1 .6 7 3 .8 4 9 .1 CO 6 7 .7 2 .6 2 3 .8 7 1 4.4 CM H 9 7 .7 3 .8 8 4 .1 4 22*7 .1 6 13 7 .7 6 .4 8 3 .9 8 3 6 .6 -2 0 0 .2 0 16 7 .7 8 .3 5 3.7 4 4 4 .4 46-F -2 0 0 . 2 4 19 7 .7 10 .6 1 3 .4 1 5 1 .5 46-G -2 0 0 .2 8 21 7 .7 15.09 2 .9 0 6 2 .1 46-H -2 0 0 .3 2 24 7 .7 2 1 .3 1 2 .4 2 73.2 46-B -2 0 0 46-C -2 0 0 46-D -2 0 0 46-E • -2 0 0 o • .0 4 46-A M ineral m ix tu re : 1 0 0 gm. d o l o m l t e - c h r y s o c o l l a .2 3 5 % copper Dye No. C o ncentrate ff Exp* MeshA g e n t t o n M i n . pH Grams C o p p e r R ecovery 40-A -200 A1 2 ( S 0 4 K •4 # / t o n .0 4 2 8 .0 5 .7 9 .1 6 4 .2 6 40-B -2 0 0 A 1 2 ( S 0 4 )-* •4 # / t o n . 2 8 16 8 .0 1 8.68 .0 5 4 .2 5 TABLE 7* Action of Octyl-rosanlllne Collector: octyl-rosanlline M in eral m ix tu re : F ro th er: 1 0 0 gm. s a n d - c h r y s o c o l l a , p in e o i l Dye w Exp. Agent ton Min. pH Grams Copper Recovery .04 2 8 .0 5 .3 4 1 3.6 3 8 -B -2 0 0 4 8 .0 12 .5 3 • 34 18.2 39-A -2 0 0 .0 2 2 3 .3 1 .8 2 .99 7 .6 39-B -2 0 0 .0 4 4 8 .3 4 .5 0 1 .1 7 1 4 .5 39-C -2 0 0 6 8 .3 7 .2 3 .60 18.3 M ineral m ix tu re : 1 0 0 gm. d o l o m i t e - c h r y s o c o l l a , .2 3 5 Exp. N o. MeBh 42 -2 0 0 Agent A Io(SO a)^ # /to n •38 O -2 0 0 0 VJl -A • 3 8 » On Mesh C o n cen trate "% . 0 00 No. .2 3 5 % c o p p er % copper D ye C o n centrate # % fo t o n M i n . pH G r a m s C o p p e r R e c o v e r y . 1 9 15 8 .0 6 .1 9 .3 7 8 .1 36 COMPARISON OF DYES AS COLLECTORS 80 ih 60 0 1 40 a g o o 20 39 § 0 .02 .0 4 .08 .0 6 COLLECTOR, POUNDS PER TON OF ORE CHART 1 . R e c o v e r y o f C h r y s o c o l l a 2 E-< o Oh 25 ta 1 *o 05 25 M O O hO Oh O 25 O M 31 0 .02 04 .08 .06 COLLECTOR, POUNDS PER TON OF ORE CHART 2 . A s s a y o f C o n c e n t r a t e Feed m i x t u r e : 1 0 0 gm. san d -ch ry so co lla, pH .2 3 5 % copper G ra m s d y e / m i n . E x p . No. C o l l e c t o r ______ 32 B u ty 1 -m alach ite g reen 8 .3 .0 0 0 2 5 31 H ex y l-m alach ite g reen 7*9 .0 0 0 2 5 34 O cty 1 -m alach ite g reen 8 .0 .00025 39 O cty l-ro sa n illn e 8 .3 .0 0 0 4 37 EFFECT OF RATE OF COLLECTOR ADDITION 80 20 0 .04 .12 .08 COLLECTOR, POUNDS PER TON OF ORE CHART 3 - R e c o v e r y o f C h r y s o c o l l a 3 EH eP O <5 2 M Eh CM^ W *>o wo 1 Ph o P-I 0 0 .04 .08 .12 .16 COLLECTOR, POUNDS PER TON OF ORE CHART 4 . A s s a y o f C o n c e n t r a t e C o lle cto r: o c ty l-m a la c h lte green M in eral m ix tu re: E x p . N o. 1 0 0 gm. Grams d y e / m l n . san d -ch ry so co lla, # d y e/# copper 34 .00025 .024 36 .00061 .0 5 .2 3 5 % c o p p er EFFECT OF ENRICHED FEED MATERIAL 80 Eh 60 46 a 40 3 g o o w 20 0 .1 0 .2 0 COLLECTOR, .30 .40 FOUNDS FER TON OF ORE CHART 5* R e c o v e r y o f C h r y s o c o l l a 5 4 a s o -4 3 K K UH Eh Eh 2 *>o wo 1 PH O CH g a 0 0 .10 .2 0 COLLECTOR, .30 .40 POUNDS PER TON OF ORE CHART 6 . A s s a y o f C o n c e n t r a t e C o lle cto r: o c ty l-m a la c h lte green E xp. No. Heads % Copper Grams d y e /m I n . #. d y e / # c o p p e r 36 .235 .0 0 0 6 .0 4 0 46 .705 .0 0 0 6 .032 EFFECT OF ADDITION AGENTS 80 10 .05 0 /-I /-v T T T - t r * m r \ T i O V ijlo lliU T"» r s T T > t v O 1 V > i\ y CHART 7 . .20 .15 J. U U ! . X JU T V D -D X 1 il I rn m T l. W 11 .25 A L 1 W i 30 r> T > T ? N-'A L-U< Recovery o f C h r y s o c o lla 4 o -=ii 47 0 .05 .10 .15 .20 .25 .30 COLLECTOR, POUNDS PER TON OF ORE CHART 8 . A s s a y o f C o n c e n t r a t e C o llecto r: o cty l-m alach ite E x p . No Agent _£H 36 43 HC1 47 NagCO-j, green .8 # / t o n Grams d y e / m l n . 8.1 .00061 6 .6 .00061 8 .1 .00067 40 DISCUSSION OF RESULTS As p r e v i o u s l y in v estig atio n is sta te d , to th e prim ary show t h a t a l k y l - s u b s t i t u t e d p h e n y l m ethane dyes cau se t h e The r e s u l t s , they do t h i s , c h ite green, c ia l purpose o f t h i s flo ta tio n a s sum m arized i n T a b le 1, o f ch ry so co lla. clearly and t h a t one o f th o s e u s e d , has p o s s ib i l i ti e s tri- show t h a t o cty 1 -m ala­ t o w a r d u s e a s a c o m m er­ f lo ta tio n ag en t. Optimum c o n d i t i o n s m ined. E xtended i n v e s t i g a t i o n m ents f o r tails. flo ta tio n found i n f l u e n c e on t h e p r i m a r y r e q u i r e ­ shows o n l y a l i m i t e d num ber o f d e ­ T he r a n g e o f v a r i a b l e s slig h t v a ria tio n s centage for o p era tio n a re not d e te r­ in is g r e a t and c e r t a i n c o n d i t i o n s a r e shown t o h a v e a p r o ­ on t h e p e r c e n t a g e r e c o v e r y , copper in th e co n cen trate.. The i n v e s t i g a t i o n d o e s of c ertain v a ria b le s and th e p e r ­ show t r e n d s on f l o t a t i o n in th e a c t i o n and i t in flu en ce does o p e n u p many q u e s t i o n s w i t h r e g a r d to c ia l use. c o u ld be a n s w e r e d by Many o f t h e s e ex ten d ed la b o r a to r y q u estio n s w ork. When t h e s e d y e s a r e u s e d a s dye c e r t a i n e c o n o m i c a l commer­ s o l i d m a t e r i a l In t h e c o llec to rs, p u lp . they first The d y e d m a t e r - 41 ial, be i t ore or gangue, D uring th e e a r l y h as th e tendency to p a rt o f th e run, has the g r e a te s t a t t r a c t i o n co llec ted . flo at. t h a t m a t e r i a l w hich fo r th e dye w ill tend Any c o l l o i d a l m a t e r i a l , such as slim e, to be or a c o llo id a l m in eral, such as c h ry s o c o lla o r c la y , has a g reater a ttra c tio n f o r t h e dye th a n does q u a rtz o r lim e­ stone . Successful flo ta tio n o f ch ry so co lla p e c t e d when t h e charge to the cell co n tain s la rg e m ounts o f o t h e r c o l l o i d a l m a t e r i a l . sep aratio n o f ch ry so co lla gangue i s a ttrib u te d Toward t h e be c l a y . more o r l e s s the co n tin u ed c ry stallin e excess o f dye p re s e n t in th e pu lp , in th e t e s t s , U n satisfacto ry presence of th is end o f a r u n , t h e d a l m a t e r i a l to f l o a t . have an alu m i­ from d o l o m i t e o r l i m e s t o n e to th e dye in c o n t a c t w ith th e a- The s a m p l e s o f d o l ­ om ite and o f lim e s to n e u se d i n th e t e s t s num c o n t e n t w h i c h a p p e a r s t o can n o t b e e x ­ clay . presence o f m aterial, and th e cause the n o n - c o llo i- W henever an e x c e s s o f dye i s u se d tailin g s at th e end o f th e ru n a re c o lo red . An i m p o r t a n t p r o b l e m w i t h r e g a r d t o t h e flo ta tio n o f c h ry s o c o lla w ith the a lk y 1 -m a la c h ite green dyes is th e s e le c tio n o f a s p e c ific d ep ressin g agent gangue m a t e r i a l . clay s but a lso sep arate th e for T h is i s silic a . tru e It fo r th e f o r n o t only d o lo m ite and i s undoubtedly p o s s ib le c la y by a p r e l i m i n a r y to f lo ta tio n w ith a c a t­ 42 io n ic co llec to r. ent in If sm all q u a n t i t i e s , w ere p r e s e n t i n facto ry ab le th e larg e c o l l o i d a l m a t e r i a l w ere p r e s ­ t h i s w ould be f e a s i b l e . q u a n titie s, d e p re ssin g agent If it th e use o f a s a t i s ­ seem s t o be t h e o n ly r e a s o n ­ so lu tio n . A ccuracy o f R e s u l ts The c o n c l u s i o n s d r a w n from t h e s e considered as tre n d s and n o t a s C om parisons can be made, general b a sis in w hich i n f lu e n c e The v a l u e s a s approxim ate. s h o u l d be s p e c if ic n u m erical r e ­ latio n sh ip s. sp ite te sts how ever, o f th e g r e a t number o f f a c t o r s flo ta tio n re su lts. f o r pH m e a s u r e m e n t s h o u l d b e c o n s i d e r e d The s a m p l e f o r pH m e a s u r e m e n t i s a t t h e en d o f a c o m p o s ite r u n and i s r e c o r d e d en tire run. D uring th e t e s t , c o lle c to r are on a added, taken for th e i n c r e a s i n g am ounts o f w h ic h c an be e x p e c t e d t o change th e pH v a l u e t o a s l i g h t e x t e n t . P a rtic le S ize T h e m i n e r a l m i x t u r e s o n many o f t h e p r e l i m i n a r y te sts range in size from JO -m esh t o c ally no f l o t a t i o n a c t i o n is 100-m esh. observed u n t i l th e P racti­ size d e c re a s e d to a b o u t 200-m esh. A co m parison o f th e m a l a c h i t e g r e e n on a f l o t a t i o n a c tio n o f h ex y l- san d -o re m ix tu re o f 1 5 0 -m esh to is 200-m esh, 2. 43 from T a b le and o f m in u s -2 0 0 -m e sh I s o b t a i n e d S i z e s s m a l l e r t h a n 2 0 0 - m e s h a r e much m ore e a s i l y co llec ted and t h e age o f c o p p er. m ust be c o n cen trate y ie ld s a h ig h er p e rc e n t­ F o r good r e c o v e r y th e p article sizes s m a lle r th a n 200-m esh. The m i n u s - 2 0 0 - m e s h m i x t u r e is w e ll w ith in the lim its o f common m i l l i n g p r a c t i c e . shows, th e u s u a l com m ercial s i z e s v a ry betw een mesh t o 3 0 0 As P e t e r s e n (37) 150 - -m esh. B u ty 1 -m a la c h ite G reen B uty 1 -m alach ite green has some c o l l e c t o r a c t i o n on c h r y s o c o l l a b u t t h e e x t e n t o f t h i s g reat. D a t a on t h i s T able 4 . Its c o lle c to r a ctio n are re la tiv e a ttra c tio n for W ith o n l y 17 p e r c e n t r e c o v e r y o f t h e cen trate is is not found i n silic a copper, composed o f 9 7 - 5 p e r c e n t s a n d . e q u iv a le n t to an enrichm ent in th e 250 actio n is larg e. th e con­ T his i s c o n c e n tr a te o f only p ercen t. When t h e p u l p i s m ade a c i d w i t h h y d r o f l u o r i c a c i d t o a pH o f a b o u t 4 , very ch ry so co lla o ccu rs. sand i s carried if The c h r y s o c o l l a over in th e The f l o t a t i o n any f l o t a t i o n is of d e p ressed w hile co n cen tra te . a c tio n o f b u ty 1 -m alach ite green i s n o t e v i d e n t when d o l o m i t e w hich a r e little , p resen t in i s used a s th e gangue. the d o lo m ite a re a p p a re n tly C lays sep- 44 arated to th e ex clu sio n o f the c h r y s o c o l l a . d ic a tio n of flo ta tio n of th e when alum inum recovery su lfa te ch ry so co lla is Some i n ­ o b tain ed i s used as a d e p re s s a n t, o f c o p p er am ounts o n ly to a t r a c e . ence o f clay in the co n cen trate is apparent l a r g e am ount o f alum inum h y d r o x i d e b u t th e The p r e s ­ from t h e form ed d u r i n g t h e ch em ical a n a l y s i s . H e x y 1 -m a la c h ite G reen A ppreciable reco v ery o f c h ry s o c o lla is o b tain ed when h e x y 1 - m a l a c h i t e g r e e n i s u s e d a s a c o l l e c t o r . D a ta on t h i s flo ta tio n a c t i o n a r e g i v e n i n T a b l e 5* W ith sand a s t h e g an g u e, per is o b ta in e d w ith an e n ric h m e n t o f th e 430 p e r c e n t . in th e a 40 p e rc e n t rec o v ery T his i s o f cop­ co n cen trate o f e q u iv a le n t to 9 6 .7 p e r c e n t sand c o n c e n t r a t e a s c q m p a r e d t o 99 p e r c e n t i n t h e head sam ple. A recovery c e n t c a n be o b t a i n e d , percen tag e copper in of th e but th is the c o p p e r up to is a t th e 6 0 .9 p e r ­ expense o f th e co n cen trate. When e i t h e r h y d r o c h l o r i c a c i d o r h y d r o f l u o r i c a c i d i s used to low er th e pH t o a b o u t 4 , b o th sand and c h r y s o c o l l a o c c u r s . acid seems t o d e p r e d s t h e t e n t than th e a d ep ressio n o f The h y d r o f l u o r i c ch ry so co lla to a g r e a t e r ex­ sand. The u s e o f s u l f u r i c acid , alm o st co m p letely d e p re s s e s th e d e c re a sin g th e pH t o 4 . 7 , c h ry s o c o lla , w h ile allo w ­ 45 ing flo ta tio n o f the sand. C itric acid w ith h y d ro flu ­ o r i c a c i d a t a pH o f 3 . 6 h a s a n e f f e c t i v e d e p r e s s i n g a c t i o n on b o t h s a n d a n d t h e S ep ara tio n o f th e o c o lla m ix tu res the is ch ry so co lla. ch ry so co lla in effectiv e commonly u s e d d e p r e s s a n t s tho u g h th e d o lo m ite used is in te rfere s of ch ry so co lla p ressa n ts are not used, sam ple. presence o f w ith the is The u s e o f a l u m i n u m s u l f a t e , the sodium s i l i c a t e , flo ta tio n c o n d itio n s o f th ese When f l o t a t i o n such as t r i ­ and a c e t i c T he t w o l a t t e r compounds tests. i s attem p ted w ith th e d o lo m ite a b o u t one t h i r d o f th e e n t i r e m in e ra l charge goes over in the shown i n T a b l e 5 , rem oved b e f o r e th e d o lo m ite to acid , o f any c h r y s o c o l l a u n d e r gangue, w ith o u t p rev io u s d e slim in g , easily i s n o t en­ as a reag en t, fo r d o lo m ite, d ep ress th e c h ry s o c o lla . do n o t a l l o w o b t a i n e d when d e ­ some f l o t a t i o n w i t h o u t e n r i c h m e n t . calcium p h o sp h a te , is chrys­ co m p o sitio n o f the head Th e common d e p r e s s a n t s th e Even b u t th e c o n c e n tra te in copper above th e lik e w ise allo w s a ll fo r d olom ite. flo ta tio n . Some f l o t a t i o n rich ed e it h e r w ith or w ithout d eslim ed , th e c o l l o i d a l alum inum m i n e r a l s o c o lla from d o l o m i t e - c h r y s ­ T e s t A -4. flo ta tio n fro th . T his T h i s q u a n t i t y may b e t e s t s by s u b j e c t i n g the a c tio n o f th e flo ta tio n c ell. 46 O c t y l- m a l a c h l te G reen R e s u l t s on th e flo ta tio n w ith o c ty l-m a la c h ite green, of ch ry so co lla shown I n T a b l e 6 , t h a t t h e p r o c e s s may b e c o m m e r c i a l l y 64 p e r c e n t o f t h e ed w i t h an e n r i c h m e n t o f head m a t e r i a l , covery is 850 in d ic ate feasib le- re g u la r t e s t runs w ith 1 p ercen t ch ry so co lla head m a t e r i a l , from sa n d In th e in th e c o p p er can be r e c o v e r ­ p ercen t. 3 p ercen t ch ry so co lla When a r i c h e r is used, th e r e ­ 73 p e r c e n t w i t h a n e n r i c h m e n t o f 4 1 0 p e r c e n t . These v a l u e s v a ry w i t h t h e amount o f c o l l e c t o r u s e d . The p r e s e n c e o f h y d r o c h l o r i c acid , re su ltin g in a d e c r e a s e d pH, d e c r e a s e s b o t h t h e p ercentage recovery and th e e n ric h m e n t. in d icate about 8 is The r e s u l t s d esirab le. When t h e pH i s w ith h y d ro ch lo ric a c id , to th e re la tiv e pass over in th e f r o t h i s Sodium c a r b o n a t e i s pressant for s i l ic a g reatly found to low ered to tendency 6 .6 for silic a in creased . a ct as a stro n g er de­ th an fo r c h ry s o c o lla . l a r g e r am ounts o f c o l l e c t o r , By u s i n g a c o n c e n tra te w ith high­ e r percentage o f c o p p e r may b e o b t a i n e d , m ate y i e l d less. is t h a t a pH o f b u t th e u l t i ­ The u s e o f s o d i u m c a r b o n a t e g i v e s r e s u l t s w hich a p p e a r p ro m is in g . F lo ta tio n o f ch ry so co lla sa tisfac to ry . sant prev en ts from t h e d o l o m i t e The a l u m i n u m s u l f a t e the used is not for a d epres­ flo ta tio n of ch ry so co lla. 47 Octyl-rosanlline D efin ite flo ta tio n o c ty l-ro sa n ilin e o f ch ry so co lla i s used a s a c o l l e c t o r w ith a sand- c h ry s o c o lla ore m ix tu re . T able 6 . the i s o b s e r v e d when The r e s u l t s a r e shown in B oth p e rc e n ta g e re c o v e ry and e n ric h m e n t o f c o n cen trate are enrichm ent i s sm all. about 500 percent. T h is dye i s d i f f e r e n t number o f a m in o - g r o u p s , the lo c a tio n o f th e W ith 1 4 -5 p e r c e n t r e c o v e r y , th an th e o th e rs b o th in th e t h e ty p e o f a m in o -g ro u p , and a l k y l - c h a i n . The s m a l l e r flo ta tio n e f f e c t o b t a i n e d w i t h o c t y l - r o s a n i l i n e may b e d u e t o a n y o r a com bination o f th e s e d i f f e r e n c e s . It Is p o ssib ly due t o t h e p r e s e n c e o f p rim a ry a m in o -g ro u p s a s compar­ ed to t h e t e r t i a r y g r o u p s w h ich a r e p r e s e n t on t h e a lk y 1 -m a la c h ite green type o f dyes. A l th o u g h b o t h r e c o v e r y and e n r i c h m e n t i s v e r y p o o r w he n o c t y l - r o s a n i l i n e pear b e t t e r than i s used as a c o l l e c t o r , they ap­ f o r a n y o f t h e o t h e r s when u s e d w i t h the dolom ite gangue. The t o t a l r e c o v e r y o f c o p p e r i s 8 .1 p e rc e n t w hile th e enrichm ent i s However, a v e ry l a r g e amount o f t h e a b o u t 160 p e r c e n t . co llecto r is used. L ength o f th e A lk y l-C h ain C o m p a r i s o n c a n b e m ade w i t h r e s p e c t t o t h e e f f e c t s of th e a l k y l c h a i n l e n g t h on t h e flo ta tio n p ro p erties o f t h e m a l a c h i t e g r e e n t y p e o f c o m p o u n d by r e f e r e n c e 48 to C h arts 1. and 2 . T h e s e c h a r t s do n o t show t h e b e s t resu lts t h a t have been o b tain ed green. T h e y show a c o m p a r i s o n a t t h e d itio n of c o llec to r fo r o cty 1 -m alach ite same r a t e of ad­ for each reag en t. The d y e s w i t h t h e l o n g e r a l k y l - c h a i n s h a v e r e l a ­ tiv e ly b e tter cen trate c o llec to r p ro p erties. Assay o f t h e shows g r e a t e r e n r i c h m e n t . percen tag e recovery is also The h e x y l - m a l a c h l t e rea ctiv ity green. A g re a te r u ltim ate o b tain ed . g re e n a p p e a rs to have g r e a t e r p er u n i t w eight than th e o cty 1 -m alach ite T h is m ig h t be due to a g r e a t e r m o la l c o n c e n tr a ­ t i o n o r i t m ig h t a l s o be due to t h e r e l a t i v e p e r i o d r e q u i r e d by e a c h . sant for s ilic a , su itab le m alach ite th e h ex y 1 -m alach ite green present flo ta tio n green is th e i c a l com m ercial u s e . the d iffe re n c e compounds. should be a co n d itio n s, c o u ld be e x p e c te d t o a c c e n t u ­ found betw een t h e h e x y l- and o c t y l - As w i t h o t h e r c o l l e c t o r s , t h a n t h e optim um u s u a l l y to th e d ecreased C hain l e n g t h s g r e a t e r decrease in e f f e c t i v e n e s s due so lu b ility f u t u r e w ork. an optimum c h a i n e x ist. o f t h e compound. lo n g e r chain le n g th fo r th e for the o c ty l- T he u s e o f a l o n g e r s u b s t i t u t e d l e n g t h can be e x p e c te d to gested depres­ o n l y d y e w h i c h s u g g e s t s econom­ c h a i n on t h e dye m o l e c u l e a still W ith a s a t i s f a c t o r y in d u ctio n co llec to r. Under th e a te con­ The u s e o f su b stitu en t is sug­ O c t y l- r o s a n i li n e y i e l d s very poor r e s u l t s p a riso n to su itab le the o th e r d y e s. co n d itio n s, u n d o u b ted ly be tio n how ever, im proved. is n o t the its is effectiv en ess The r a t e com pared, should n o t be e x p e c te d to o f c o lle c to r ad d i­ fo r the but th is d ifferen ce ap p reciab ly change th e r e l a ­ C o llecto r A com parison o f th e e f f e c t o f th e r a t e o f the e i t h e r upon f l o t a t i o n to r used, resu lts p er u n i t w eight o f c o lle c ­ o r upon t h e u l t i m a t e y i e l d s . g iv en amount o f c o l l e c t o r u se d . d itio n g ives rich er le s s p ercen tag e reco v ery . allo w ed w ith th e low er r a t e g iv e s t o b e d y e d by t h e c o llec to r. of a d d itio n used, in crease b ased upon a The f a s t e r r a t e g i v e s a c o n c e n t r a t e w hich i s a lso to T able The c o m p a r i s o n may b e b a s e d I n T a b l e 7* a c o m p a r i s o n i s m a d e , rates o f ad d itio n c o l l e c t o r may b e o b t a i n e d b y r e f e r e n c e 3* a n d t o C h a r t s 3* a n d 4 . ty could re su lts. R ate o f A d d itio n o f t h e it in o f more same f o r o c t y l - r o s a n i l i n e a s o t h e r s to w hich i t tiv e By a s e l e c t i o n 49 com­ th e assay the o f ad­ in copper but The l o n g e r t i m e sand an o p p o r t u n i ­ Thus w i t h t h e d i f f e r e n t o f t h e c o n c e n t r a t e may o v e r 6 0 p e r c e n t b u t t h e p e r c e n t a g e r e c o v e r y may d e c r e a s e 35 p e r c e n t . A more s i g n i f i c a n t b a sis of the c o m p a r i s o n c a n b e made o n t h e u ltim a te y ie ld s as In d icated i n C h a r t s 3» 50 and 4 . By u s i n g a h i g h e r r a t e of ad d itio n , assay o f the c o n c e n tr a te and th e recovery are in creased . i s used a t th e faster ra te , in o rd e r to re c o v e r th e The q u e s t i o n o f o p t im u m r a t e i n v o l v e s an econom ic b a l a n c e o f t h e r e c o v e r e d o re and t h e be t a k e n i n t o are in w hich th e v a lu e co st o f th e c o l l e c t o r must ru n a t an a p p ro x im a te ly of c o lle c to r a d d itio n b u ild of co n sid eratio n . A ll t e s t s rate percentage u ltim a te A b o u t t w i c e a s much c o l l e c t o r same a m o u n t o f c o p p e r . a d d itio n b o th the fo r the t e s t . up an e x c e s s o f c o l l e c t o r i n t h e t e r n a t e m ethod o f a d d in g t h e co n stan t T his pu lp . seems t o An a l ­ c o lle c to r a t a v ariab le r a t e m ig h t p ro v e o f a d v a n ta g e and sh o u ld be t h e problem of a fu tu re in v estig atio n . Amount o f C h r y s o c o l l a i n t h e Head C h a r g e The s t a n d a r d t e s t s are c arried o f im pure c h r y s o c o l l a i n th e The c o p p e r c o n t e n t is feed to .235 p e r c e n t . p e rc e n ta g e t h a t m ight be e x p e c te d out w ith 1 percent th e flo ta tio n c e ll. T h is i s below t h e in com m ercial p r a c ­ tic e . R e s u l t s when u s i n g a l a r g e r p e r c e n t a g e o f c o p p e r in th e feed m a te r ia l a re in T able 1. used to shown i n C h a r t s 5* a n d 6 . a n d A h e a d sam ple o f show t h i s effect. .705 p e r c e n t co p p er i s The r a t e s dye c a n n o t be c o n s i d e r e d c o m p a ra b le . o f a d d itio n o f th e C o m p a r i s o n sho w s th at flo ta tio n o f c h ry s o c o lla in th e e a rly 51 p a r t o f the r u n d e p en d s upon t h e amount o f c o l l e c t o r a d d e d . p ro x im ately an e q u a l w eight o f ore first flo ated in the 1 4 m i n u t e s i n e a c h t e s t whe n a b o u t a n e q u a l a - mount o f c o l l e c t o r ried Is Ap­ over in the is added. in itia l p an y in g i t in creases p e r i o d b u t t h e am ount o f sa n d accom­ in g r e a te r p ro p o rtio n . The p e r c e n t a g e r e c o v e r y on b o t h t e s t s The p e r c e n t a g e e n r i c h m e n t o f t h e g r e a t e r when t h e car­ f r o t h a t a somewhat i n c r e a s e d r a t e a fte r th is same. The c h r y s o c o l l a i s is c o n cen trate is f e e d w i t h a low a s s a y v a l u e A djustm ent in r a t e s of c o llec to r about the is used. f e e d c o u l d e a s i l y m ake e i t h e r more o r l e a s d i f f e r e n c e b e tw e e n th em . U se o f c o l l e c t o r p e r p o u n d o f c o p p e r c o m p ou n d flo ated is 25 p e r c e n t l o w e r w hen t h e r i c h e r On t h e b a s i s o f t h e s e o f the fa c to rs alread y assum e t h a t flo ta tio n lim ited d ata, considered, it is feed is used. and t h e e f f e c t Ju stifiab le to p r a c t i c e w i t h an e n ric h e d head m a t e r i a l w ould be m ore s u c c e s s f u l t h a n w i t h a l e a n e r m in eral m ix tu re. A d d itio n A gents The d e p r e s s i n g a g e n t s u s e d i n t h e s e t e s t s So d iu m s i l i c a t e do n o t show s a t i s f a c t o r y re su lts. a c i d b o t h se em t o co m p letely d e p re ss c h ry s o c o lla . so d iu m p h o s p h a t e a n d alum inum B u l p h a t e and a c e t i c T ri- show no i m p r o v e - 52 ment i n t h e a s s a y o f t h e c o n c e n t r a t e . H y d ro flu o ric a c id and h y d r o c h lo r ic a c id d e p re s s c h ry s o c o lla to a g r e a te r e x te n t th an sand b u t a llo w l i m i t e d re c o v e r y . The u s e o f s o d i u m c a r b o n a t e w i t h a s a n d - c h r y s o c o lla m in e ral m ixture o f f e r s some p o s s i b i l i t i e s . It d e p r e s s e s b o t h s a n d a n d c h r y s o c o l l a a n d r e q u i r e s more co llec to r. However, creased percentage i t does perm it c o n sid era b ly copper in the c o n c e n tra te . in ­ Compar­ i s o n o f t h e u s e o f sodium c a r b o n a t e and h y d r o c h l o r i c acid a re sh o v m i n C h a r t s 7 a n d 8 . to r ad d itio n are about equal I f advantage carb o n ate, le s s than is p ercen t, be m a in ta in e d co n d itio n s, for th e th ree t e s t s . t o be t a k e n o f t h e u s e o f sodium a lo w y i e l d 50 T he r a t e s o f c o l l e c ­ is in d icated . th e assay of th e At a r e c o v e r y o f c o n c e n t r a t e can a t about 2 p e rc e n t copper. th e use o f c o lle c to r Under th e s e i s v e r y much I n c r e a s e d . T h e u s e o f h y d r o c h l o r i c a c i d t o l o w e r t h e pH t o 6 .6 , g iv e s an u n s a t i s f a c t o r y assay v alu e fo r the p e r c e n t a g e r e c o v e r y and co n cen trate. Its u s e n e e d n o t be fu rth e r co n sid ered . The d e p r e s s a n t a c t i o n o f h y d r o f l u o r i c a c i d o n b o t h sand and c h r y s o c o l l a pected co n trary to what m ig h t be ex ­ i n c o n s i d e r a t i o n o f r e s u l t s r e p o r t e d by Cl em m er and Ambrose q u artz. is (9) on t h e sep aratio n of feld sp ar They a r e a b l e t o d e p r e s s t h e m ix t u r e by h y d r o f l u o r i c acid . q u artz from in the F e ld s p a r w hich I s a s i l - ica te m a te ria l, 3. When t h e creased 3 , 5 53 c a n t h e n b e s e p a r a t e d a t a pH o f a b o u t c o n ce n tra tio n of h y d ro flu o ric acid in th ese te sts, , copper o f th e is in ­ s o t h a t t h e pH b e c o m e s a b o u t c h ry so c o lla goes in to so lu tio n . T h is d i s s o l v i n g a c t i o n d e c r e a s e s t h e amount o f c h r y s ­ o co lla a v a ila b le w hich r e s u l t s for f lo ta ti o n ; by E i g e l e s , be a d e p r e s s a n t cates o f a t y p e o f c om pound t h a t fo r calcium c a rb o n a te , (such as c la y s ) in is M. A. a n d M o k r o u s o v , V. A. alum inum s u l p h a t e a l s o o co lla in i t s e l f , in an a p p a re n t d e p re s s a n t a c t i o n . A lu m in u m s u l p h a t e rep o rted a co n d itio n , the t e s t s and q u a r t z . (2 3 is ) to alum inum s i l i ­ As m e n t i o n e d b e f o r e , a c ts as a d ep ressan t fo r chrys­ of th is in v estig atio n . 54 CONCLUSION The a l k y l - s u b s t i t u t e d t r i p h e n y l m ethane d y es w hich fo r th e purpose o f t h is d is c u s s io n are c a lle d b u ty lm alach ite green, h ex y l-m alach ite green, g re e n and o c t y l - r o s a n i l i n e , flo ta tio n o f th e m in eral, g r e e n shows b e t t e r a l l te n d to prom ote th e chry so co lla. O cty l-m alach ite c o lle c tin g p r o p e r tie s than the o th e rs and h a s p o s s i b i l i t i e s The f l o t a t i o n o c ty 1 -m alach ite a s a com m ercial f l o t a t i o n o f chrysocolla from a q u a r t z gan g u e can be a c c o m p lish e d w i t h an e n ric h m e n t o f t h e trate of 8 5 a recovery O p e r c e n t a s com pared t o t h e o f 64 p e r c e n t . agent. concen­ f e e d sam ple and H igher r e c o v e r i e s o r g r e a t e r e n r i c h m e n t c a n be o b t a i n e d b u t e a c h i s a t t h e e x p e n se of the o th e r. Optimum c o n d i t i o n s lish ed . for flo ta tio n are not estab ­ T h e s e c o n d i t i o n s d e p e n d u p o n many f a c t o r s . Most i m p o r t a n t o f t h e facto rs seems t o be t h e of e f f i c i e n t d e p re ssin g ag ents fo r s i l i c a , lim e s to n e and c e r t a i n p a rticle size c o lle c to r ad d itio n ; d olom ite, c o ll o i d a l m in e ra ls such a s c la y . O th e r f a c t o r s w hich a r e are: se lec tio n sh o w n t o b e o f m a j o r i m p o r t a n c e o f m in e ra ls in th e p u lp ; len g th of the a lk y l rate of s u b s titu e n t in 55 th e dye; p ercentage o f ch ry so co lla In th e fe e d ; hydrogen io n c o n c e n tra tio n o f th e p u lp . regard to th ese facto rs and T rends w ith a r e shown h u t d e f i n i t e d e t a i l s are n o t d eterm in ed . Because o f th e lack o f s u ita b le d e p re ssa n ts, flo ta tio n of ch ry so co lla lim esto n e i s n o t accom plished. the d e t a i l s o f the from im p u re d o l o m i t e and flo ta tio n may b e w o r k e d o u t by lab o rato ry T h is problem a s w e ll a s o f ch ry so co lla T heir p re sen t dyes a r e n o t a com m ercial s t a t u s o f p r o d u c tio n i s on th e s c a l e by w h i c h t h e y a r e inve s t i g a t i o n . f ro m s i l i c a fu rth er in v estig atio n . The a l k y l - s u b s t i t u t e d p ro d u ct. the sy n thesized for th is APPENDIX 57 ORGANIC PREPARATIONS GENERAL DISCUSSION The a l k y l - s u b s t i t u t e d and r o s a n i l i n e dyes o f th e m alach ite green ty p es are prepared fo r use as flo ta tio n ag en ts. The c h e m i c a l s t r u c t u r e o f i n t e r m e d i a t e s and products is bu t secondary to flo ta tio n o f much i m p o r t a n c e , p r o p e r tie s o f th e a f lo ta ti o n ag en t, sired , f in a l p roduct. For use as a p r e d e t e r m in e d dye s t r u c t u r e but a d ifferen ce the is de­ such as a branched chain is not im p o rtan t. I n t h e f o r m a t i o n o f t h e n - a l k y l - p h e n y 1 - k e t o n e s by th e F r ie d e l- C r a f ts chain te n d s to flo ta tio n , reactio n , tak e p lace th is recovery; pounds th e th e the o u t t h a t dissym m etry the stan d p o in t o f c h a in s should in c r e a s e (44) show s e c o n d a r y compounds g i v e t h e b e s t le a s t recovery. S im ilarly , alk y l a m y l-, and h e x y l- x a n th a t e s iso-com pounds n e x t; co llec to rs re s u lts From t h e Sw ainson and A nderson in th e use o f b u t y l - , as c o lle c to rs , (41). presence o f sid e c o llec to r effic ie n cy . th at branching o f th e a n d t h e n o r m a l com­ D e a n a n d A m b r o se in th e a lk y l s tru c tu re in b e tte r stru c tu re (12) p o in t o f am ine flo ta tio n . o f th e a lk y l- r o s a n ilin e 58 dye i s u n k n o w n a n d may b e a m i x t u r e such as i s th e com m ercial r o s a n i l i n e d y e s t u f f . For th e purpose o f i d e n t i f i c a t i o n , su b stitu ted dyes a re c alle d : h ex y l-m alach ite green; th ese a lk y l- b u ty 1 -m alach ite green; o cty 1 -m ala ch ite green; and o c ty l' ro sa n ilin e . Th e f i r s t of th e zenes. step in th e alk y l-b en zen es, sy n th esis th e p re p a ra tio n a ssum ed to be n o rm a l a l k y l - b e n ­ They a r e u s e d t h r o u g h a s e r i e s o f d e r i v a t i v e s to o b ta in th e f in a l p ro d u ct. For th e m a la c h ite green ay es, hyde i s is a p -aik y i-b en zald e- form ed and u s e d a s a r e a c t a n t For th e r o s a n i l i n e dye, and u s e d i n an o r d i n a r y an o - o c t y l - a n i l i n e ro sa n ilin e The s e r i e s o f r e a c t i o n s each in te rm e d iate is for th e fo r th e p re p a ra tio n of i n d i c a t e d below : C6 H5 . C O . R 1 Friedel-Craft s reaction alkyl-phenylketone C6 H5 . R Clemmensen reduction form ed process. Alky 1-benzene g6h6 is f i n a l dye alky 1-benzene 59 p -A lk y 1 - b e nz a I d e hy de C ^ H c .R p*"R*C/rHi, • GO*GO*OCpHc F ried el-C rafts reactio n eth y l-p-alky1-phenyl* g ly o x y late p-R.GgH^*CH*N*CgH^ S c h i f f 's base p —R*CgH^*CHO p -alkyl-benzaldehyde o -A lk y 1 -an ilin e c6 h5 . r o-R.CgH^'NOg n itra tio n o -alk y 1 -n itro b en zen e o-R.CgH^.NHg red u c tio n o -alk y l-an ilin e In g e n e ra l, the lite ra tu re standard are used. processes of rea ctio n V ariatio n s from t h i s from proce­ d u r e m u s t b e m ade i n many c a s e s b e c a u s e o f t h e h i g h m o le c u la r w eight o f th e pounds a re o f resu lts, c u lties compounds. Many o f t h e com­ such h ig h b o i l i n g p o in t t h a t d eco m p o sitio n e v e n w i t h low p r e s s u r e d i s t i l l a t i o n . o f p rep aratio n are le n g th o f th e D iffi­ found t o I n c r e a s e w i t h th e s u b s titu te d hydrocarbon ch a in . The s e ­ l e c t i o n o f t h e m ethods a s o u t l i n e d d epends upon e a se o f 6o p rep aratio n , y i e l d s to be e x p e c te d , upon a r b i t r a r y c h o ice. o r i n some c a s e s A c o n sid eratio n of c e rta in a l ­ t e r n a t e m e t h o d s i s now m a d e . The f o r m a t i o n o f t h e a l k y 1 - b e n z e n e im p o rtan t ste p a ctio n , in th e sy n th esis. is th e first The W u r t z - F i t t l g r e ­ u s i n g b ro m o -b e n z e n e and a n a l k y l - h a l i d e was t r i ­ ed b u t r e j e c t e d in f a v o r o f t h e m ethod o u t l i n e d . a lk y l - p h e n y l - k e t o n e w hich i s The form ed in t h e p r e s e n t syn­ t h e s i s may b e r e d u c e d e i t h e r by h y d r o g e n i n t h e p r e s e n c e o f a c a t a l y s t o r by t h e Clem m ensen r e d u c t i o n . Clemmensen r e d u c t i o n , b ein g r e l a t i v e l y g iv in g a s a tis f a c to r y co n venient, V a rio u s m ethods f o r t h e k eto n es a re p r o d u c t and is used. p r e p a ra tio n o f aro m atic o u t l i n e d by F e r g u s o n only r e l a t i v e l y The (25). Of t h e s e m e th o d s few c a n b e a p p l i e d t o t h e a l k y 1 - b e n ­ zenes w ith o u t d e s tro y in g the a lk y l - s u b s t i t u e n t . m ethod o f B o u v e a l t cause i t (4) is The found to be s a t i s f a c t o r y b e ­ p la c e s th e aldehy de group in a p o s i t i o n to th e a lk y l ch ain . When a k e t o - c a r b o n i c a c i d ed by u s i n g B o u v e a l t ' s m e t h o d , t h e a l d e h y d e by v a r i o u s p a t h s . it para is form­ can be decom posed to H ick in b o tto m (30) says t h a t m a n y < -k e to - c a r b o n ic a c i d s can be decomposed i n t o t h e a l d e h y d e o r a c i d by m e r e l y w a rm in g w i t h c o n c e n t r a t ­ ed s u l f u r i c acid . B ouvealt su g g ests form ing an a r y l - i m i n o - d e r i v a t l v e w h ich can be decom posed i n t o hyde. the a ld e ­ The l a t t e r m e t h o d i s u s e d by f o r m i n g t h e S c h lf f ’s 61 baSG • An o - n i t r o - a l k y 1 - b e n z e n e th esis of th e how ever, is n itra tio n dye. syn­ The p - n i t r o - c o m p o u n d , f o r m e d i n l a r g e r q u a n t i t i e s by t h e d i r e c t o f th e alk y 1 -b en zen e. b lo ck in g th e ortho ro sa n ilin e is req u ire d fo r th e para p o s itio n p o sitio n , no d o u b t , An a l t e r n a t e m e t h o d o f and n i t r a t i n g would g i v e exclu siv ely the in creased y ie ld s . The e x t e n t o f t h i s a p p a r e n t a d v a n t a g e m i g h t b e l o w e r e d by a n i n c r e a s e i n t h e number o f o p e r a t i o n s r e q u i r e d . Only d i r e c t n i t r a t i o n o f th e alk y 1 -b en zen e i s u sed . P h y s ic a l D ata P h y s i c a l d a t a on t h e a l k y l - p h e n y l - k e t o n e s a n d on the a lk y 1 -b e n z e n e s a re r e a d ily sidered a c c u ra te . a v a i l a b l e and t o be con­ S i m i l a r d a t a on t h e d e r i v a t i v e s o f th e a lk y 1 -b e n z e n e s a re to be used w ith c a u tio n . exam ple, R ln k es (40) shows t h a t p h y s i c a l d a t a on t h e n - o cty l-n itro b en zen es, a s o b t a i n e d by A h r e n s clu d ed are in B e ils te in , As a n in e rro r. (l) and i n ­ In fo rm atio n in B e i l s t e l n on o - a m i n o - n - o c t y 1 - b e n z e n e , w h ic h i s d e r i v e d from t h e o c t y 1 - n i t r o b e n z e n e o f A h r e n s , i s l i k e w i s e to be do u b ted . In t h i s w ork, b o i l i n g of re fra c tio n p o i n t s and som etim es i n d i c e s o f t h e m ain r e a c t i o n p r o d u c ts a r e d e s i g ­ n ated in th e p ro ced u re. A greem ent w i t h p u b lis h e d v a lu e s i s n o t a lw a y s o b t a i n e d n o r t o be e x p e c t e d . A com pari­ son o f b o i l i n g p o i n t s t a k e n t h a t th ey a re freq u en tly from t h e in poor agreem ent w ith each o th er. B o ilin g p o in t d a ta taken th at alo n e it 62 sho w s lite ra tu re i n t h i s work a l s o show c a n n o t be u se d a s a means o f i d e n t i f i c a ­ tio n . PREPARATION OF ALKYL-BENZENE A lk y l-A cid -C h lo rid e The m e t h o d f o r p r e p a r i n g a l k y l y l c h l o r i d e s w i t h t h l o n y l c h l o r i d e a s d e s c r i b e d by H e l f e r i c h a n d S c h a e f e r (29) is used. ly . Y i e l d s on t h e due p a r t l y The m e th o d I s to th e s im p le and p r o c e e d s sm ooth­ lo w e r hom ologues a r e r e l a t i v e l y low , sm all d i f f e r e n c e betw een th e b o i l i n g p o in ts o f th e a lk y ly l c h lo rid e and th io n y l c h lo rid e . The u s e o f a l t e r n a t e m e t h o d s w i t h p h o s p h o r u s t r i c h l o ­ rid e, o x y ch lo rid e or p e n ta c h lo rid e e n ta il the same d i f f i c u l t y could be ex p ected to b e c a u s e o f lo w b o i l i n g p o in ts. T h e r e a c t i o n a s g i v e n b y Weyga nd 2 RCOOH + S0C12 (51) i s : ** 2 RC0C1 + S02 + H2 0 On t h e b a s i s o f t h i s e q u a t i o n a n e x c e s s o f t h l o n y l c h l o r i d e m u st be u se d b e c a u s e w a t e r form ed i n t h e r e ­ actio n c a u s e s h y d r o l y s i s o f some t h i o n y l c h l o r i d e . o v erall reactio n RCOOH -H SOCI 2 is th en : -------------------- 2 RC0C1 - f S02 4* HC1 The W ater o r h y d ro x y l g ro u p s , hydroxyl group, In clu d in g th e a r e a t t a c k e d by t h i o n y l c h l o r i d e . the o v e ra ll re a c tio n as c a rrie d th io n y l ch lo rid e are n -b u ty ric a c id , 50 p ercen t excess fo r th e re s p e c tiv e re a c tio n s n-caproyl acid , Each i s d i s t i l l e d Procedure o u t, In is used. S ta rtin g m ateria ls acid . 63 c arb o x y llc and n - c a p r y l i c for p u rific a tio n . fo r P re p a ra tio n o f A lk y ly l C h lo rid es R eactan ts 1 .5 mol th io n y l c h lo rid e 1 . 0 mol n -a lk y l acid The t h l o n y l round bottom dropping is placed in a 2-necked, f la s k p rovided w ith a r e f lu x fu n n el. a lk y l acid late c h lo rid e It c o n d e n s e r and i s b r o u g h t t o a b o i l and t h e n - i s added dropw ise a t such a r a t e the e v o lu tio n of h y d ro ch lo ric acid gas. a lk y l acid has been added, th e tw o h o u r s a n d a l l o w e d t o th lo n y l c h lo rid e is a lk y l a c id -c h lo rid e off A fte r the is b o iled stan d over n ig h t. d istille d is so lu tio n a s to r e g u ­ for The e x c e s s (7 8 .8 ° C .) and th e frac tio n a te d . A lkyl A c id -C h lo rid e _________B . P . ___________ n -c a p ry ly l c h lo rid e 1 6 3 - l 6 5 ° C « ( 1 5 mm») n -cap ro y l c h lo rid e 1 4 7 - 1 5 1 ° C . ( 7 4 0 mm.) n -b u ty ry l ch lo rid e 9 8 -1 0 1 °C .(l a tm .) Y ield % 80 50-59 57 64 A lk y l P h e n y l K etone The f o r m a t i o n o f t h e k e t o n e c h lo r i d e and benzene i s reactio n Shen, from t h e n - a l k y l y l c a r r i e d o u t by a F r i e d e l - C r a f t s i n a m e t h o d s i m i l a r t o t h a t d e s c r i b e d by J u , a n d Wood ( 3 2 ) e x c e p t t h a t c a r b o n d i s u l f i d e used a s a d i l u e n t . said to re g u la te use. The p r e s e n c e o f c a r b o n d i s u l f i d e b u t good r e s u l t s are obtained w ith ­ An e x c e s s o f b e n z e n e a s a d i l u e n t , p resen ts le s s d if f ic u ltie s in p u r if ic a tio n . in the a s used The p r e s ­ ence o f even sm a ll am ounts o f carb o n d i s u l f i d e poor r e s u lts is t h e r e a c t i o n by f o r m i n g a c o m p le x w i t h alum inum c h l o r i d e , out i t s is not gives s u c c e e d i n g Clemmensen r e d u c t i o n . The o v e r a l l r e a c t i o n may b e r e p r e s e n t e d b y t h e e q u atio n : CgH^r + RC0C1 ------------------------------C g H c . C O . R A IC I3 + HC1 The m e c h a n i s m o f t h e p ro cess In clu d es th e an alum inum c h l o r i d e c o m p l e x w h i c h a s n o t e d by S h e n , J u , a n d Wood, a l l o w s t h e fo rm atio n o f branched chain a lk y l groups in th e k e to n e . These iso m e rs, p r o d u c t w ould c o n s t i t u t e form atio n of i f p re se n t in the a n i m p u r i t y b u t would n o t i n ­ t e r f e r e w ith th e u ltim a te u t i l i t y o f succeeding p ro d u c ts B o th b o i l i n g p o i n t s and i n d i c e s o f r e f r a c t i o n a r e used for id e n tific a tio n o f th e p ro d u cts. Wood g i v e v a l u e s o f r e f r a c t i v e in d ic es Ju, Shen, and for a se rie s of n -alk y l-p h e n y 1 -k e to n e s over a range o f tem p era tu re . 65 The v a l u e s fo r the k eto n es prepared n o t in clu d ed in th eir re su lts, i n t h i s work a re h u t by i n t e r p o l a t i o n , a q u i t e a c c u r a t e e s t i m a t e can be made. Three norm al a lk y 1 -p h e n y 1 -k eto n es are p re p a re d , nam ely: n - p r o p y l - p h e n y l - k e t o n e ; n -am y l-p h en y l-k eto n e; and n - h e p t y l - p h e n y 1 - k e t o n e . Procedure f o r P r e p a r a t i o n o f A lk y l- p h e n y l K etone R eactan ts .7 7 m ols a lk y l-a c id -c h lo rid e 2 .1 2 m ols 2 1 .2 a n h y d r o u s alum inum c h l o r i d e m ols benzene The d r i e d b e n z e n e ro un d bottom rer, flask a reflu x flask is placed in a 5 - l i t e r , p ro v id e d w ith a m ercury cooled w ith a s a l t - c r a c k e d - i c e b a th . is added and t h e m ix tu re i s a t w hich te m p e r a tu r e reactio n . it The The a l u ­ co o led to i s addedfrom a d ro p ­ p i n g f u n n e l o v e r a p e r i o d o f tw o h o u r s . c h lo ric stir­ i s m ain tain ed d u rin g the The a l k y l - a c l d - c h l o r i d e the r e a c tio n 3-necked sealed c o n d e n se r and a d ro p p in g f u n n e l. minum c h l o r i d e 10°C., is The p r o g r e s s o can be f o llo w e d by t h e e v o l u t i o n o f h y d ro ­ acid . To s t a r t th e re a c tio n a s lig h tly h ig h er t e m p e r a t u r e may b e u s e d . The r e a c t i o n m i x t u r e i s m ain tain ed a t 10°C. fo r fiv e hours a f t e r th e a d d itio n of th e acid c h lo rid e . is th e n packed w ith ic e and allow ed to T he m i x t u r e i s a g a in cooled It stand over n ig h t and p o u r e d on c r a c k e d i c e w hich h a s b e e n a c i d i f i e d w ith h y d r o c h lo r ic a c i d . 66 It is allow ed to Ben­ stand f o r two h o u r s w i t h o u t zene i s d i s t i l l e d w ith b o ilin g w ater. o f f and th e k e to n e sodium c a r b o n a t e The k e t o n e A lky l-p h en y lk eto n e stirrin g . i s washed tw ic e s o l u t i o n and th e n w ith i s d r i e d and f r a c t i o n a t e d . Index o f R efractio n B . P . ° C. % Y ield n -h ep ty l- 163-164 (15 m m .) I .5 0 5 0 (2 1 °) 90 n-am yl- 1 3 2 -1 3 6 (15 m m.) 1 .5 1 0 6 (2 2 °) 82 n -p ro p y l- 108-110 (1 5 mm.) 1 .5172 (25°) 73 K etone R e d u c tio n The r e d u c t i o n o f t h e k e t o n e t o t h e h y d r o c a r b o n i s carried o u t by m eans o f t h e Clem m ensen r e d u c t i o n w i t h a m algam ated z i n c and h y d r o c h l o r i c a c i d . d e s c r i b e d by M a r t i n (33) and c a r r i e d The m e t h o d a s o u t by J o h n s o n a n d Kohmann ( 3 1 ) i s u s e d . By u s i n g a l a r g e v o l u m e o f a m a l g a m a t e d z i n c t o i n ­ c re ase th e a re a of c o n ta c t w ith the re a c tin g little d iffic u lty c o n d itio n o f th e It is y ield s zin c encountered surface in th e re d u c tio n . i s an e s s e n t i a l The facto r. found t h a t by r e c o n d i t i o n i n g th e u se d am al­ gam ated z i n c , acid , is so lu tio n , th ro u g h h e a tin g w ith d i lu t e h y d ro ch lo ric a sa tisfac to ry surface can be r e s t o r e d . The b e s t o f n -a lk y l-b e n z e n e a re obtained w ith re c o n d itio n ­ ed o r c o n t i n u a l l y u se d z i n c . zin c r e p r e s e n ts a c o n sid e ra b le R eco n d itio n in g o f the sav in g in the c o st of 67 z i n c 'b e ca u se o f t h e larg e q u a n titie s D epending upon th e z in c benzene vary from 20 t o 70 surface, th a t are used. y ie ld s of alk y l- p ercen t. B o th mossy z i n c and z i n c - f o i l r o l l e d proved e f f e c t i v e — ---------------- C 6 H 5 .C H 2 .R ' + ex cessiv ely su b sta n c e form . lig ib le am ount. tio n s, form ula: s u r f a c e o f th e am algam ated z i n c poor c o n d itio n , o ily i s r e p r e s e n t e d by t h e 4 (H) When t h e sp ira ls t o a b o u t t h e sa m e d e g r e e . The r e a c t i o n C6 H5 . C O . R ’ 4- in to H2 0 is in l a r g e am ounts o f a heavy Y i e l d s may b e d e c r e a s e d t o a n e g ­ Even u n d e r th e b e s t o p e r a t i n g c o n d i­ a re la tiv e ly l a r g e amount o f t h e heavy o i l is form ed. Procedure f o r P r e p a r a t i o n o f M os sy Z i n c R eactan ts 1 6 6 8 gm. 1 1 7 gm. m ossy z in c m ercu ric 83 cc. conc. 1 5 0 0 cc. w ater The m e r c u r i c ch lo rid e h y d ro ch lo ric acid c h lo rid e is disso lv ed in w a te r to w hich a sm a ll amount o f h y d r o c h l o r i c a c i d i s a d d ed . The z i n c is p laced a c i d if i e d m ercu ric zin c, shaken fo r in a 2 - l i t e r E rlen m ey er f l a s k . ch lo rid e s o l u t io n i s added to f i v e m i n u t e s and p o u re d o f f . It The the is th en used im m ed iately . An o l d z i n c s u r f a c e c a n be r e g e n e r a t e d by h e a t i n g 68 w ith a d ilu te h y d ro ch lo ric acid so lu tio n f o r a couple of hours. Procedure f o r P r e p a r a t i o n o f A lky1-pheny1-K etone R eactan ts 2 0 0 gm. alk y 1-pheny1-ketone 7 5 0 gni• conc. h y d ro ch lo ric acid 750 gm. xylene The a m a l g a m a t e d z i n c w ith c o n cen trated acid is covered to h a l f i t s h y d ro ch lo ric a c id . xylene a re th e n added. reflu x is The flask is h eig h t The k e t o n e a n d t h e provided w ith a c o n d e n se r and a so u rc e o f g a se o u s h y d r o c h lo r ic to r e p la c e t h a t u se d . re flu x ed co n d itio n s, it fo r seven h o u rs. The r e a c t i o n m i x t u r e sep arated . Under t h e s e is p o u r e d from t h e f l a s k and The x y l e n e l a y e r i s w a s h e d s e v e r a l t i m e s w ith w a te r. The x y l e n e is e v a p o r a te d o f f and t h e a l k y l "benz e n e f r a c t i o n a t e d . For p u r i f ic a t i o n , th e a lk y l benzene i s h e ated for s e v e r a l h o u r s a t 160°C . w i t h sodium m e t a l and t h e n d i s ­ tille d in the p resen ce Alkyl Benzene o f m o lte n sodium . B.P.°C»_____ O cty l-b en zen e 133-139 H exyl-benzene B u ty l-b en zen e Refract.Index ( 1 5 mm.) I %Yield .4 8 5 8 (25°) 30-70 98-99 ( 1 5 mm.) 1 . 4 8 6 9 (27°) 69 70-74 ( 1 5 mm.) 1 . 4 9 3 0 (24°) 70 69 preparation op alkyl- substituted malachite green dyes E th y l-o x aly l-ch lo rid e E th y l-o x aly l-ch lo rid e is to be used f o r th e p rep ­ a r a t i o n o f a l k y l - b e n z a l d e h y d e s by t h e m e t h o d o f B o u v eau lt (4). carried P re p ara tio n o f e th y l-o x a ly l-c h lo rid e o u t a c c o r d i n g t o t h e m e t h o d o f V/eygand ( 5 w ith su g g estio n s from A n s c h u tz is 3 ) (2 ). Upon h e a t i n g d i e t h y 1 - o x a l a t e w i t h p h o s p h o r u s p e n tac h lo rid e a t about 1 25°C ., c h lo ro -o x y a ce ta te . OCoHc C = 0 C = 0 + ^ o c 2 h5 PC lg form s a s POCI 3 E th y l-d lch lo ro x y acetate I f heated to o v e r 1 3 0 °C ., decom poses i n t o sm all d i f f e r e n c e s sep arate e th y l-d i- show n: ^ 0C 2 H5 C = 0 .-------------C = C1 2 + oc2 h5 D ieth y lo x a la te a ce ta te an i n t e r m e d i a t e , th e e th y l-d ic h lo ro x y - o x a ly l-c h lo rid e but because of in b o ilin g p o in ts is d i f f i c u lt from p h o s p h o r u s o x y c h l o r l d e . u n d e r vacuum, h ow ever, to A d istilla tio n rem oves th e p h o sp h o ru s o x y c h lo - r id e w ith o u t deco m p o sitio n o f th e o th e r m a t e r i a l. e th y l-d ic h lo ro x y a c e ta te a ra te d w ith r e la tiv e ly can t h e n be decomposed and s e p ­ little d iffic u lty . Upon h e a t i n g e t h y l - d i c h l o r o x y a c e t a t e 1 3 5 °C., W ey gand to about th e deco m p o sitio n ta k e s p lac e q u ite (53) The su g g e sts u sin g a platinum slow ly. c a t a l y s t to speed 70 W ith ou t th e c a t a l y s t th e r e a c t i o n th e d ecom position. does tak e place slow ly b u t w ith s a t i s f a c t o r y The d e c o m p o s i t i o n i s r e p r e s e n t e d by t h e OC2 H1C = 0 p C = C l2 oc2 h 5 OCpHc C = 0 ------------------ C = 0 + ^G1 Ethyl-diehloroxyacetate re su lts. eq u atio n : CpHp-Cl 3 Ethyl-oxalylchloride E th y l c h lo rid e is ev o lv ed a s a g a s. The b o i l i n g p o i n t o f e t h y l - o x a l y l - c h l o r i d e e n b y Weygand (53) a s 1 3 0 . 5 to 13 2°C ., is g iv ­ by A n s c h u t z (2) a s 134-135°C . Procedure for P rep aratio n o f E th y l-o x a ly l-c h lo rid e R eactan ts mol 1 .0 .7 1 mol phosphorus p e n ta c h lo rid e d i- e th y l o x alate The r e a c t a n t s a r e p l a c e d eq u ipped w i t h a r e f l u x 1 3 0 ° C . f o r 15 h o u r s . e d a t 4 0 mm. in a roun d -b o tto m co ndenser and h e a te d a t n o t o v er The m a t e r i a l i s Vacuum i s n e c e s s a r y deco m p o sitio n o f th e low er b o i l i n g frac tio n frac tio n a t­ in o rd er to prevent fractio n , (9 6°C . a t 40 m m .). eth o x y a ce ta te is placed The c o n ta in s phosphorus o x y c h lo rid e eth o x y ace ta te th e e th y l-d ic h lo ro The e t h y l - d i c h l o r o - in a f la s k provided w ith a sh o rt u n p a c k e d colum n a n d a d i s t i l l a t i o n 1 3 5 th en e th y l-d lc h lo ro -eth o x y ac eta te . and t h e h i g h e r b o i l i n g to a b o u t flask °C. u n d e r r e f l u x , head. Upon h e a t i n g some o f t h e e t h y l - d i c h l o - 71 ro -eth o x y acetate I s decom posed I n to e t h y l - o x a l y l - c h lo rid e w ith th e e v o lu tio n o f g as. ch lo rid e form ed i s then d i s t i l l e d h eatin g under re flu x is rep eated . The e t h y l - o x a l y l - o f f a t 136°C . and By m e r e l y and d e c r e a s i n g t h e t e m p e r a t u r e on t h e hour cy cles, the process is c h l o r i d e no l o n g e r seem s t o o x aly l-ch lo rid e flask in creasin g in o n e-h alf c o n tin u ed u n t i l o x a ly lform . The c r u d e e t h y l - is th en fra c tio n a te d . E th y l-o x aly l-ch lo rid e B .P . 129-134°C . 15% Y ield (ap p ro x .) A lkyl-B enzaldehyde B o u v e a u l t ’ s m ethod (4) f o r form ing th e a ld e h y d e i s u s e d . T h e p r o c e d u r e a s o u t l i n e d b y W eygand e ra l, is fo llo w ed . (55)» in gen­ T h e a l k y l - b e n z e n e w hen s u b j e c t e d t o a F r ie d e l- C r a f ts re a c tio n w ith e th y l-o x a ly l-c h lo rid e form s an e t h y l - p - a l k y l - p h e n y l - g l y o x y l a t e . th e su b stitu en t d isu lfid e in the d e s ire d p ara p o s itio n . Carbon and n i tr o b e n z e n e a s s o l v e n t s a r e u se d in th e F rie d e l-C ra fts r e a c tin g m ix tu re. th at b e tte r re s u lts rea ctiv ity T h is p la c e s Thom as ( 4 7 ) m e n t i o n s a r e o b t a i n e d w i t h compounds o f h i g h when a c o m p le x i s form ed, a s w i t h n i t r o ­ benzene . The F r i e d e l r C r a f t s r e a c t i o n fo llo w in g e q u a tio n : i s r e p r e s e n t e d by t h e 72 *Cl E th y l-o x a ly lc h lo rid e C = 0 -fg 6 h4 . r E th y l-p -p h en y l S ly °x y late The e t h y l - p - a l k y l - p h e n y l - g l y o x y l a t e a t 1 0 mm. p r e s s u r e for p u rific a tio n . some d e c o m p o s i t i o n o c c u r s . product i s d ilu te the HC1 E v e n u n d e r va cuum A fter d i s t i l l a t i o n , sa p o n ified w ith c a u stic h y d ro ch lo ric a c id . is d is tille d th e and a c i d i f i e d w ith The s t e p s a r e r e p r e s e n t e d i n f o llo w in g scheme: p —R* CgHif • CO. C0» ONa p - R . C6 H4 . C0 . CO. 0C 2 H5 NaOH S o dium -p-alkylphenyl g ly o x y late E th y l-p -alk y lphenyl g ly o x y late p —R . C^H4 • CO • COOH HC1 p-A lky1 - pheny1 g ly o x y lic acid The p - a l k y l - p h e n y l - g l y o x y l i c a c i d crude p ro d u c t from a n e t h e r e x t r a c t . because co n sid era b le D istilla tio n can be u se d a s a T his i s a d v is a b l e l o s s may o c c u r f r o m p u r i f i c a t i o n . of the h ig h e r g ly o x y lic a c id s a t resu lt mm. pressure is sitio n . T h e c r u d e p - a l k y l - p h e n y l - g l y o x y l l c a c i d when trea te d found to 8 i n s e r i o u s l o s s by d e c o m p o ­ w ith fre s h ly d i s t i l l e d S c h i f f ’s b a s e . d istilla tio n a n ilin e form s th e P u r i f i c a t i o n o f t h e S c h i f f ' s b a s e by g iv es s e r i o u s d e c o m p o s i t i o n w i t h b o t h com­ pounds above th e b u ty l d e r i v a t i v e . S c h i f f ’s b a s e and i t s F orm atio n o f t h e d e c o m p o sitio n i n t o th e ald eh y d e 73 a r e r e p r e a n t e d below : p - R . C 6 H4 .GO.GOOH S c h if f 's base p - R . G ^ H A.CHO heat ------------------------- p - A l k y l - b e n z a l d e h y d e d i l u t e H2 SO4 The i n t e r m e d i a t e s p r e p a r e d a r e t h e p - b u t y l - , y l-, p-hex- and p - o c ty l- b e n z a ld e h y d e s , Procedure fo r P re p a ra tio n o f p-A lk y l-b en zald eh y d e R eactan ts .405 mol a lk y l benzene 73- gm* n itro b en zen e 184. gm. carbon d i s u l f id e mol anhydrous A lC lj .5 2 .486 mol e th y l-o x aly l-ch lo rid e A ll m a te r ia ls except th e o x a ly l-c h lo rid e are put i n ­ to a 500 c c . f l a s k p ro v id e d w ith a m ercury rer, a reflu x condenser, and a d ropping fu n n e l. eth y l-o x aly l-ch lo rid e as to r e g u la te th e r a te p o u re d on c r a c k e d rate stir­ The i s a d d e d f r o m a d r o p p i n g f u n n e l so of reactio n . of h y d ro ch lo ric acid gas has ceased, been added. sealed When t h e e v o l u t i o n th e m ix tu re is i c e to w hich h y d r o c h l o r i c a c id has The n i t r o b e n z e n e i s used to and a llo w c o m p le te r e a c t i o n c o n tro l the o f t h e alum inum c h l o ­ rid e . The o i l y m a t e r i a l i s e x t r a c t e d w i t h e t h e r , ed, washed tw ic e w i t h d i l u t e sodium c a r b o n a t e sep arat­ so lu tio n and tw ic e w ith w a te r . cause i t 74 saved b e­ The c a r b o n a t e w a s h i s c o n t a i n s a c o n s i d e r a b le amount o f t h e s a lt o f g ly o x y lic a c id . sodium T he w a s h i s a c i d i f i e d , ed w i t h e t h e r and l a t e r e x tra c t­ com bined w i t h t h e m ain p o r t i o n of g ly o x y lic a c id . T he w a s h e d m a t e r i a l carbon d i s u l f i d e solved i s d r i e d and th e e t h e r and are d i s t il l e d in n itro b en zen e is off. The g l y o x y l a t e d i s ­ s e p a r a t e d by s i m p le d i s t i l l a ­ tio n . S u b stitu ted n h e n v l g l y o x y l a t e ________ B . P . ° C .____ Index o f R efractio n E th y l-p -n -o cty l- 214-230 (8 mm.) 1.5 0 1 E th y l-p -n -h ex y l- 200-214 (10 mm.) E th y l-p -n -b u ty l- 160-180 ( 1 0 mm.) I . 5 I The d i s t i l l a t e (30) 5 (28) 59 ( .5 m ol) s o d i ­ um h y d r o x i d e u n t i l a h o m o g e n e o u s s o l u t i o n i s e th e r. Free a c id bined w ith t h i s and i s form ed, com­ i s d r i e d o v e r anhydrouB The e t h e r i s v a p o r i z e d a n d t h e is used in th e is e x tra c te d w ith sodium c a r b o n a t e w ash i s s o l u t i o n and i t sodium s u l f a t e . acid from t h e 59 65 i s b o i l e d w i t h 2 0 gm. a c id if ie d w ith h y d ro ch lo ric acid , % Y ield fo llo w in g r e a c tio n s to crude form t h e S c h i f f ’s b a s e . An e x c e s s o f (.3 2 5 flask . fresh ly d i s t i l l e d m ol) i s m ixed w i t h t h e Upon h e a t i n g , fo rm in g th e an ilin e, crude a c id 30 gm. in a C laisen an e v o lu tio n o f gas ta k e s place S c h i f f ’s b a se . D i s t i l l a t i o n o f th e S c h i f f ’s base even u nder reduced p re s s u re , causes co n sid erab le 75 d eco m p o sitio n , esp ecially O n ly t h e b u t y l - c o m p o u n d is d is tille d . S c h i f f ' s Base B .P .°C . B u t y l compound I f th e ■water a r e base acid . o f t h e h i g h e r compounds. 185-199 S c h if f 's base % Y ield (9 m m .) 20 is not d is tille d , r e m o v e d u n d e r va c u u m a n d t h e i s h ydrolyzed w ith The a l d e h y d e ov er anhydrous is cc. of 310 B --. P °—C . - -.- ■ percent su lfu ric M o l s ... — ield ■%' Y...... 175-190 (1 0 m m .) .127 32 p -H ex y l- 155-159 (1 0m m .) .081 30.6 p -B u ty l- 115-140 ( 1 1 mm.) *039 9*6 alk y l-b en zen e as dried and d i s t i l l e d . p -O cty l- O v erall y ie ld s and im pure S c h i f f ' s th en e x tra c te d w ith e th e r , sodium s u l f a t e p -A lkylb—-e -* n*z a- l d ^'*h*-v^d f l 25 a n ilin e a s g i v e n a r e b a s e d on t h e amount o f s ta rtin g m aterial. A l k y l - M a l a c h i t e G r e e n Dye The l e u c o - b a s e d ized to is formed and i t t h e dye w i t h l e a d d i o x i d e . th e leu co -b ase is ss is reacted is th e n o x i­ The f o r m a t i o n o f c a r r i e d o u t a c c o rd in g to th e d u re o f C ain and T horpe a s shown. first (5)* proce­ The p - a l k y l - b e n z a l d e h y d e w ith d im e th y l-a n ilin e to form t h e l e u c o - b a s e 76 p - R . C 5 H4 .CHO + 2 C5 H5 .N(CH 3 ------------------*- ) 2 , c 6 h4 . n ( c h 3 ) p p - R . C 5 H4 .CH x C6 H4 .N(CH 3 ) 2 L euco-base For th e o x id a tio n o f th e leuco b a s e , b e t t e r r e ­ s u l t s a r e o b t a i n e d by u s i n g a m e t h o d o u t l i n e d by W eyga nd (54). The r e c o v e r y o f d y e i s m ore d i f f i c u l t a s th e a lk y 1 -c h ain le n g th in c re a s e s . crease in from t h e so lu b ility . T h is i s When f i l t e r i n g lead peroxide p r e c i p i t a t e , it due t o a d e ­ t h e o x i d i z e d dye is esse n tia l t h a t t h e p r e c i p i t a t e be washed f r e e o f d y e . Procedure f o r P r e p a r a t i o n o f A l k y l - s u b s t i t u t e d Dyes R eactan ts 2 2 .1 mol a l k y l b enzaldehyde . gm. dim ethyl a n ilin e gm. c o n cen trated h y d ro ch lo ric acid 2 5 .5 The r e a c t a n t s a r e p l a c e d i n a s m a l l r o u n d - b o t t o m f l a s k equipped w ith an a i r cooled r e f l u x h e a t e d a t 100 °C . f o r 24 h o u r s . A fter re flu x in g , m i x i s m ade a l k a l i n e a n d s t e a m d i s t i l l e d un reacted m a te ria l. re la tiv e ly the t o rem ove t h e L on g c h a i n a l k y l b e n z a l d e h y d e s a r e d i f f i c u l t to v a p o riz e, rem oved i n a l a t e r o p e r a t i o n , not necessary. co n d en se r and A fter th e b u t sin ce they th eir can be com plete rem oval i s steam d i s t i l l a t i o n , t h e r e ­ a c t i o n p r o d u c t s a r e p o u r e d i n t o a b o u t 6 0 0 c c .o f w a t e r . A th ic k o ily m aterial sep arates, w h i c h may b e r e m o v e d 77 in a sep aratory leuco-base is f u n n e l o r on a f i l t e r o f honey l i k e M a l a c h i t e G r e e n Dye paper. T his c o lo r and c o n s i s t e n c y . M ola % Y ield O cty l-leu co -b ase .09 90 ( e s t . ) H exyl-leuco-base .09 90 B u ty l-leu co -b ase .09 90 The l e u c o - b a s e rem oved i n a l a t e r Procedure co n tain s some i m p u r i t i e s w h i c h a r e p u rific atio n . f o r O x id a tio n o f th e L euco-base R eactan ts .09 363* 2 1 .6 182. m ole A lk y l-leu co -b ase cc. h o t norm al h y d ro c h lo ric a c id gm. le a d peroxide cc. w ater The l e u c o - b a s e d ro ch lo ric acid , to co o l. is disso lv ed d ilu te d in th e h o t norm al hy­ t o a b o u t a l i t e r and a llo w e d The l e a d p e r o x i d e is suspended in th e w ater and t h e n added o v e r a p e r io d o f f i v e m in u te s to t h e so ­ lu tio n It shaking. i s t h e n h e a t e d a t a b o u t 1 0 0 °C . f o r a n o t h e r f i v e m in­ u tes. th e c o n ta in in g th e le u c o -b ase, w ith c o n stan t The s o l i d m a t e r i a l i s so lu tio n . The m a t e r i a l o n t h e e th an o l in o rd er to wash i s p h ate i s added to t h e is filte r i s washed w i t h re c o v e r th e u n d lsso lv ed dye. com bined w i t h t h e l e a d and i t f i l t e r e d w i t h s u c t i o n from filtra te . filtra te filte re d ag ain . The Some s o d i u m s u l ­ to p r e c ip ita te d isso lv ed The f i l t r a t e i s now made 78 s o lu tio n in o rd er to p r e c i p it a te the b a sic w ith c a u s tic c o lo r-b a se. T h is c o lo r - b a s e filte r s h o r t tim e and for a ed i n b e n z e n e . i s t h e n rem oved and d i s s o l v ­ Dry h y d r o c h l o r i c a c i d g a s i s p a s s e d th ro u g h th e benzene s o lu tio n u n t il th e dye ly p r e c i p it a te d as a s o lid stan ce. i s a ll o w e d to d ry on t h e is or a th ic k ta rry The b e n z e n e i s d e c a n t e d o f f , th e co m plete­ lik e sub­ s o l i d allow ed to d r a i n and d ry , and th e p ro d u ct i s re c o v e re d . A lk y 1 -m alach ite G r e e n _________ % Y ield ( b a s is , ald eh y d e) % Y ield (alk y 1 -b e n z e n e ) O cty l- 15 A. 8 H exyl- 50 15*3 B u ty l- 51 5*0 In a l l c a s e s th e p ro d u c t i s a g re e n dye and a s o lid . W ith g r e a t e r a l k y l c h a in l e n g t h t h e dye becomes l e s s so lu b le. PREPARATION OF ALKYL-SUBSTITUTED ROSANILINE DYES N i t r a t i o n o f the A lk yl-B enzenes The u s u a l m e t h o d s o f n i t r a t i o n su b stitu te c a n n o t be u se d to th e n l tr o - g r o u p on th e a r y l - r i n g o f th e alky1-benzenes because o f th e rela tiv e hydrocarbon c h a in . R inkes u sin g acid a t -5 °c. fum ing n i t r i c (40), rea ctiv ity how ever, o f the sh o w s t h a t b y good y i e l d s a r e ob- 79 Of t h e t o t a l y i e l d h e o b t a i n s a b o u t 2 7 p e r c e n t tain ed . of o rth o -n itro b en zen e, n itro b e n ze n e . illn e , th e r e s t b e in g m ainly p a ra - For th e p r e p a r a tio n o f th e a lk y l- r o s a n - only th e o r t h o - s u b s t i t u t e d R inkes a ls o sh o w s t h a t p r e v i o u s w o r k o n t h e o c t y l - n i t r o b e n z e n e by A hrens on t h e com pound i s u s e d . (l) is in e r r o r . P h y sica l d ata compounds i n B e i l s t e i n a r e l i k e w i s e R in k es g iv e s 182-184°C . in e rro r. ( 1 0 mm.) f o r t h e b o i l i n g p o i n t of o -o cty l-n ltro b en zen e. B oth th e h e x y l- n i tr o b e n z e n e and o c t y l - n i t r o b e n z e n e are p re p a re d . Procedure fo r P re p a ra tio n o f o -A lk y l-n itro b en zen e R eactan ts 1 5 0 .615 mol n-alk y l-b en zen e . fum ing n i t r i c cc. The a l k y l - b e n z e n e acid (sp. gr. 150) i s p l a c e d i n a 500 c c . 3 - n e c k e d fla s k provided w ith a dro p p in g fu n n el, s t i r r e r and a r e f l u x co n d en ser. a m echanical The f l a s k i s cooled and m a i n t a i n e d a t -5°C*» w h i l e t h e f u m in g n i t r i c ad d ed d r o p by d r o p from t h e d r o p p i n g f u n n e l . acid is The a d d i ­ t i o n o f t h e a c id r e q u i r e s betw een f o u r and f i v e h o u rs . The r e a c t i o n p r o d u c t i s b e n ze n e and s e p a r a t e d from t h e a c i d w ith benzene allo w s th e o ily w ater. p oured on i c e , d ilu te d w ith so lu tio n . la y e r to D ilu tio n f l o a t on t h e The p r o d u c t i s w a s h e d w i t h w a t e r , w i t h s o d a a s h 80 s o l u t i o n and a g a i n w i t h w ater* A fter d i s t i l l i n g o f f th e benzene, t h e com bined o r th o - and p a r a - n i t r o - o c t y l - b e n z e n e m ix tu re i s ed t o tio n f r a c t i o n a t i o n u n d e r vacuum. is re d is tille d su b ject­ The o r t h o - n i t r o frac­ u n d e r vacuum. o -N ltro -n -a lk y lb e n z e n e _______ Index o f R efractio n B . P . ° C .______ % Y ield O cty l- 174-179 (1 0 m m .) 1 .5 0 7 (29°) 29 H exyl- 155-162 (1 0 m m .) 1.5 1 5 (29°) 20 n e a u c g j - O xi u i W ey gand reactio n s is v j i ' o n o —n i t i O —a (56) sta te s esp ecially lk y l benzene t h a t th e te n d e n cy tow ard sid e p re v a le n t d u rin g th e re d u c tio n o f a r o m a t i c n i t r o - c o m p o u n d s when s t a n n o u s c h l o r i d e o r zin c i s used w ith h y d ro ch lo ric a c id . o u t l i n e d by W e s t c h lo rin e (50) su b stitu ted The u s e o f i r o n a s s u p p r e s s e s t h i s ten d e n cy tow ard products. The m eth o d o f W est h a s been fo llo w ed . Procedure fo r R ed u ctio n o f o -N itro -a lk y 1 -b e n z e n e R eactan ts .2 100. m ol cc. 5*5 c c . 33* o -n itro -n -a lk y 1 -b e n z e n e m eth an o l co n cen trated h y d ro ch lo ric acid gm. i r o n filin g s The n i t r o - c o m p o u n d , t h e m e t h a n o l , c h lo ric a cid a re placed in a 250 c c ., and t h e h y d r o ­ 3-necked flask 81 equ ip p ed w ith a h e a t e r , m e c h a n ic a l s t i r r e r and r e f l u x condenser. The m a t e r i a l b o i l and t h e iro n in th e fla s k is brought to a f i l i n g s a r e added in fo u r p o r tio n s over fiv e m in u tes. It is then re flu x e d f o r tw o h o u r s . S i n c e t h e a m i n e f o r m e d h a s v e r y low v o l l t i l i t y , d istilla tio n i s n o t used a c tio n m ix tu re. for i t s re m o v a l from t h e r e ­ T he h y d r o c h l o r i c a c i d i s n e u t r a l i z e d by a c a l c u l a t e d amount o f sodium h y d r o x id e so lu tio n . The r e s i d u e is v aporized. is filtere d is .5 8 gm .) i n o f f and t h e m e th a n o l c o o l e d t o 2 0 UC . p a s ty mass s e p a r a t e s w hich can be filtere d t h e am ines o f lo w e r m o le c u la r w e ig h t, can be made. be k e p t v ery (2 A sm all e x c e s s o f h y d r o c h lo r ic a c id i s a d d ed and t h e m a t e r i a l tio n steam co ld , a liq u id or w ith separa­ The v o l u m e o f a q u e o u s s o l u t i o n s h o u l d sm all b e fo re the s e p a r a tio n because the hydrochloride is q u ite hydro ch lo rid e tr e a te d w ith c a u s tic , is A th ick so lu b le. The a l k y l - a n l l i n e absorbed in e th e r, a nd d r i e d o v e r a n h y d r o u s sodium s u l p h a t e and d i s t i l l e d . Alky 1 - a n i l i n e ____ B . P . ° C « ____ o -O cty 1 -an ilin e 172-177 ( 1 3 mm.) 85 o -H ex y l-an ilin e 151-166 ( 1 3 mm.) 80 The p e r c e n t y i e l d n itro -co m p o u n d . is % Y ield g i v e n on t h e b a s i s o f t h e 82 O c t y l - r o s a n i l i n e Dye The m e t h o d o u t l i n e d for th e p rep aratio n of ro san i- l i n e by C a i n a n d T h o r p e of o c ty l-ro sa n ilin e. ed f o r o - t o l u i d i n e . v a rie ty (6) i s used fo r th e p re p a ra tio n O rth o -o cty l-an ilin e It c a n b e e x p e c t e d t o do so i n t h e p rep aratio n of o c ty l-ro s a n ilin e . procedure product su b stitu t­ The m e t h o d i s known t o p r o d u c e a of p ro d u cts. la of th is is The s t r u c t u r a l form u­ i s n o t d e f i n i t e l y knov/n b u t f r o m t h e fo llo w e d i s assum ed t o b e : C g H A .U H g u J •c6 H4:BH2 01 O c ty 1 -ro san ilin e The m e t h o d p r o c e e d s a c c o r d i n g t o t h e m e t h o d o f C ain and Thorpe to H ere, th e p o in t o f s a l ti n g out th e dye. in place o f c r y s ta ls form s on t h e surface. m ust be s e p a r a te d It form ing, an o ily m a te r ia l c o n t a i n s many i m p u r i t i e s w h i c h in o rd e r to o b ta in th e p u r if ie d o c ty l- ro sa n ilin e . D uring th e p u r i f i c a t i o n , p o u n d s a r e n o t i c e d by t h e i r su b stan ce i s a tiv ely separated. in so lu b le The l a t t e r a n u m b e r o f o t h e r com­ co lo r. A b lack in d i l u t e A brown o i l - s o l u b l e s u b s ta n c e w hich i s r e l ­ alc o h o l is a lso separated. s u b s t a n c e g i v e s a v i o l e t t o brown c o l o r i n stro n g alco h o l so lu tio n . The p e r c e n t a g e y i e l d on t h e o f o c ty l-ro sa n ilin e i s based o c ty l - a n i l in e used in the r e a c tio n m ix tu re. The very low y i e l d rep o rted 83 I s due t o t h r e e m ain f a c t o r s . The o c t y l - a n i l l n e i s u s e d 24 p e r c e n t i n e x c e s s i n th e re a c tio n m ix tu re; sid e -re a c tlo n s are p rev alen t; some o f t h e m a t e r i a l is m ethods o f s e p a r a t i o n . m aking o r d i n a r y Procedure lo st and in attem p tin g d if f e r e n t The y i e l d t o b e e x p e c t e d o n ro san llin e i s on ly a b o u t 40 p e r c e n t . for P rep aratio n of O c ty l-ro sa n ilin e R eactan ts 6 .2 gm. 7 - 1 gm. 1 9 .0 gm. 1 7 . 0 gm. a n ilin e p -to lu id in e conc. h y d ro c h lo ric acid o -o cty l-an illn e These r e a c t a n t s a r e h e a te d to ed 500 c c . flask . 130°C. in a 3-neck­ Then t h e r e s t o f t h e r e a c t a n t s a r e added. 3 . 1 gm. a n ilin e 3 * 6 gm. p -to lu id in e 1 2 . 9 gm. o -o cty l-an illn e 2 0 . 4 gm. n itro b en zen e The f l a s k i s now p r o v i d e d w i t h a m e c h a n i c a l s t i r ­ r e r and a therm om eter, Ir o n pow der, acid and i s h e a te d to 100°C. 1 .1 gm ., d i s s o l v e d in h y d ro ch lo ric i s a d d e d o v e r a p e r i o d o f a few m i n u t e s . L e a v in g one o f t h e v a p o riz a tio n o f w ater, about 180°C. f l a s k o p e n in g s open f o r th e the flask i s g ra d u a lly heated to At a t e m p e r a t u r e below 180 °C . a n a i r 84 co o led r e f l u x flask condenser is o pen in g . connected to t h e . rem ain in g H e a tin g a t 180°C. is co n tin u ed for a- hout 4 hours. D uring th e h e a tin g p e rio d , the r e a c tio n m ix tu re. a red c o lo r develops in When m a t e r i a l m ix t u r e becom es s o l i d on a g l a s s r o d , co nsidered fr o m t h e r e a c t i o n the r e a c tio n i s com plete. A n i l i n e a n d t o l u i d l n e may b e s t e a m d i s t i l l e d fr o m th e r e a c t io n m ixture b u t u n re a c te d o c t y l - a n i l i n e d i s t i l s w ith d i f f i c u l t y . C om plete s e p a r a t i o n i s n o t made. A f t e r steam d i s t i l l a t i o n , stirrin g i n t o 200 c c . th e m e lt i s poured w ith of b o ilin g w ater. 4 .5 c c . o f con­ c e n t r a t e d h y d r o c h l o r ic a c i d a r e added to o b t a i n an a c id r e a c t i o n a n d t h e m i x t u r e i s b o i l e d f o r a few m i n u t e s . Care m ust be e x e r c i s e d d u r i n g b o i l i n g b e cau se o f th e tendency to foam. T he d y e i s A b lack o ily sta n d in g . salted o u t w i t h a b o u t 10 gram s o f s a l t . l a y e r a n d a b l a c k a q u e o u s l a y e r f o r m on They c a n b e s e p a r a t e d b y u s e o f a s e p a r a t o r y f u n n e l by n o t i n g t h e d i f f e r e n c e s e p a r a t i o n t h e fco l l y lay er and a c i d and a g a i n salted in v is c o s ity . i s a g ain t r e a te d w ith w ater o u t. The a q u e o u s l a y e r c o n ­ t a i n s m u ch l e s s b l a c k m a t e r i a l a n d i s e a s i e r t o rate. is A fte r the p laced tarry second s e p a r a t io n o f th e o i ly i n a b e a k e r and h e a te d to a b o u t 6 0 °C . su b stan ce A fter s e p a r a t e s and i s rem oved. sepa­ lay er, it A b lack B e a k e r s and the sep arato ry tarry 85 f u n n e l u s e d become c o a t e d w i t h t h e b l a c k m ateria l. It is d isso lv ed a f te r v ap o rizatio n o f th e alco h o l is m ain body o f m a t e r i a l . r i a l has a red D isso lv ed retu rn ed in a lc o h o l, to th e th e m ate­ co lo r. The t a r r y m a s s i s hot w ater, o f f w i t h a l c o h o l and t r e a t e d w i t h a s m a ll amount o f and a f t e r d r y i n g , w ith benzene. A b lack t a r ­ ry m a t e r i a l re m a in s w hich t u r n s to a h a rd r e s i n o u s stan ce on s t a n d i n g . The s o l i d alco h o l to su b stan ce so lu tio n u n til change tract The t a r r y is th e e x t r a c t e d w i t h a 50 p e r c e n t c o lo r o f the a lc o h o l b eg in s from a r e d t o a p u r p l i s h r e d i s evaporated s u b s ta n c e w hich s e p a r a t e s 7 .8 The p r o d u c t is so lu b ility in c o n c e n tra te d The e x ­ out i s washed w i t h p ro d u ct. G ram s O c ty l-ro sa n ilin e co lo r. down u n t i l a b r o w n s o l u t i o n 1 b l e f t . w a te r and t a k e n a s t h e little sub­ % Y ield , b a s is of: o c ty lo cty lan ilin e benzene 15 a dye o f red c o lo r . 3*7 I t has very in w a te r o r in ben zen e, b u t i s eth an o l. soluble 86 DATA FLOTATION OF CHKYSOCOLLA C o llecto r: b u ty 1 -m alac h ite green M ineral m ix tu re: 1 gm. c h r y s o c o l l a , .2 3 5 F ro th er: 99 gm. s a n d , % copper p in e o i l as needed Exp. \ f Mn X * * Arr 2f /+■nri Min s r\W 15 1 5 0 -2 0 0 HF .03 7 4 .3 16 150-200 HF .024 8 4 .1 .01 2 8 .3 -B .01 -C C oncentrate 1c c . N / 1 0 D ate GrE!5S ]WflnfinCVx 1021*7 2 .34 n il t r a c e 3-26 2 .2 3 2 .6 2 1-55 1 .6 .01 2 1.84 1 .2 -D .01 2 1.23 1 .0 -E .01 2 1 .7 0 1 .0 32-A -200 M i n e r a l m i x t u r e : 1 gm. • Exp. Mesh No. 12 -200 13 -200 235 A^ent no pine o i l ch ry so co lla, 3-26 4-4 99 gm. d o l o m i t e % copper Time Dye . j ^ / t o n Min oH C oncentrate c c .N /1 0 Date Grams NapSpO^ 1947 .054 3 7*8 3-52 t r a c e 3-25 .036 2 7-9 7 .0 5 some 3 copper -2 5 iM 87 Exp. No. M esh 33-A Dye T im e # / t o n M i n . pH Agent 2 -200 7 .9 C oncentrate cc.N /10 Grams Na2S20^ 2 .0 8 trace - 01 -B .0 1 2 1.66 trace -C .0 1 2 1 .79 n il -D .01 2 1.02 trace -E .01 2 1.22 trace -F .01 2 1 .50 trace -G .0 1 2 1.47 trace -H .01 2 .89 A l a r g e am ount o f alum inum h y d r o x i d e i s th e h ex y l-m alach lte green M ineral m ix tu re : 1 gm. c h r y s o c o l l a , 99 gm. s a n d , .2 3 5 F rother: 4 % copper p in e o i l a s needed Exp. M esh No. Agent 1 5 0 -2 0 0 Dye Time _ . # / t o n Min. 2 7 .8 1.40 1 .4 3-22 .03 3 7 .8 2 .49 4.2 3-22 2 .3 12.24 n il -2 0 0 10 -2 0 0 HC1 .03 -2 0 0 HF .0 2 2 .0 1 1 -A pH C oncentrate c c .N /1 0 D ate Grams Na2S20^ 1 9 4 7 .0 2 8 5 -B form ed i n ch em ical a n a l y s i s . C o lle cto r: 2 8 n il 4 .1 3.49 6 .61 .1 3*0 4-1 h 88 Exp. M esh No. C oncentrate ..............- c c l N / W D a t e Dye T im e # / t o n M i n . e h _ Grams NapSpO-* 1 9 4 7 Ap;ent .0 1 2 -B .0 1 -C 30-A -200 HF 4 .0 1 .5 2 .2 2 3-79 1 .6 .0 1 2 4 .3 0 1 .0 .1 1 4 4 .7 12.71 .9 .0 1 2 7 .9 -B .0 1 -C 37 -2 0 0 31-A -2 0 0 H2 SO4 2 .5 0 3 .9 2 2 .4 8 4 .6 .0 1 2 4.52 6 .7 -D .0 1 2 5 .9 4 3 .1 -E .0 1 2 7 .4 0 3 .6 -F .0 1 2 5 .90 .6 -G .0 2 2 1 0 .9 0 M i n e r a l m i x t u r e : 2 gm. c h r y s o c o l l a , 9 8 gm. 4-1 4-2 trace sand, .47 % c o p p e r Exp. Mesh No. A - 11 1 5 0 -2 0 0 27 -2 0 0 A - 17 -2 0 0 A - 13 -2 0 0 -B Apient C oncentrate c c .N /lO D ate Tim e Dye NapSpCh; Grams M i n . pH. iF/ipn 1W HF 3^4 2 .2 0 1 .4 3-13 .05 2 4 .1 4 .61 5 .5 3 -2 8 HF, c itric acid *5 # /to n .016 6 3-6 2 .0 8 2 .0 3-17 HC1 .4 # /to n .0 1 5 4 .0 1.7 5 3.2 3-17 .0 1 5 3 .33 4 .6 HF 89 M ineral m ix tu re: 1 gm* c h r y s o c o l l a , •235 % copper Exp* No. M e sh ...... A g e n t , . A-4 9 9 gm. d o l o m i t e , -1 5 0 C o ncentrate oc.N / 1 6 D a te Grams NapSpCh; 1 9 4 7 Dye T im e # / t o n M in. .0 2 7 7.2 .0 3 3 7 .4 5-16 n il 6 8 .2 4 .5 1 1 .0 7 .0 5 .76 2 .5 2 -2 5 3 0 .2 (not d eslim ed) 3 -2 2 6 1 5 0 -2 0 0 1 -2 0 0 Na-^POA •5 # /to n .014 2 -2 0 0 A1 2 ( S 0 4 ) 3 .3 2 # /to h .014 -200 sodium silic ate .4 # / t o n .014 9 -200 a cetic .0 4 acid 1 4 .7 # /to n 5 7 .1 8.47 n il 3-24 8-A -200 a cetic acid 4 .2 # /to n 3 7 .4 11 .97 n il 3-24 7.64 n il .04 n il .0 22 -B M i n e r a l m i x t u r e : 2 gm. c h r y s o c o l l a , 9 8 gm. d o l o m i t e , • 47 % c o p p e r Exp. No* M e sh 25 -A -B -200 Agent Dye Time i f f /to n M in . pH C oncentrate c c.N /1 0 D ate Grams NapSpCfo l g 4 j . .06 1 9 .5 8 3*3 .06 1 .5 4 .7 5 2*5 3-28 90 C o lle cto r: o cty 1 -m ala ch ite green M ineral m ix tu re: 1 gm* c h r y s o c o l l a , 9 9 gm* s a n d , •235 F ro th er: % copper p i n e o i l aB n e e d e d Ex p* No* M esh A g e n t.... . . ^ o n Tim e M in . nH 8 .0 C o n ce n tr a te c c . N / 1 0 D a te Grams NaoSoOx 1 9 4 7 1.19 2 .4 2 2 .0 5 4 .5 .01 2 1 .44 3 .6 -X) .0 1 2 1.52 3 .5 —E • vmx O a *wv ** -F .01 2 .03 2 -B .0 3 -C .01 2 -B .0 1 -C 34-A -200 *- o * .7 5 1 .7 1.82 6 .5 2 1.5 6 6 .5 .03 3 1.94 6 .5 -D .03 3 2 .2 0 4 .4 -E .02 2 2 .5 4 3*7 -F .03 2 1 .53 .9 -G .024 2 3-37 .8 *03 2 2.0 2 3 .8 -B .03 3 2 .0 9 3 .4 -C .03 2. 5 1 .83 3 .6 -D *03 2. 5 3 .42 3 .3 -E .03 2. 5 3 .07 3 .1 -F .03 2. 5 2 .43 2 .2 36-A 43-A -200 -200 c o n c .H C l • 0 1 cc* 8 .1 6 .6 4-5 4-8 4-12 91 C oncentrate cc.N / 1 0 pH Grams NapSpO^ 1 9 4 7 Exp • Mesh No. Time Dye Af i e n t ____ , # / t o n M i n . 37 -2 0 0 H2 SO4 .1 1 9 4 .7 12.71 .9 47-A -2 0 0 NapC 0 3 . 0 4 gm. .0 4 3 8 .1 • 58 2 .2 -B .04 3 *44 2 .7 -C .0 4 3 .85 4 .1 -D .04 3 2 .4 8 7.6 -E .04 3 3 .1 2 4 .7 -F .04 3 3.53 4 .4 M ineral m ix tu re: 1 gm. .2 3 5 chry so colla, 4-9 4-16 99 gm. d o l o m i t e , % copper C oncentrate Exp. Ho. Me e h 40-A -2 0 0 Agent Dye Time $ / t o n M in. A1 2 ( S 0 4 )x . 0 4 .4 # / t o n c c . N / 1 0 D ate pH Grams NapSpOj; 19 4 7 8 .0 5 .79 1 .5 -B .04 3 1.66 n il -C .04 2 1.11 n il -D .0 4 2 .63 n il -E .12 7 9.07 n il 4-11 92 C o lle cto r: o c ty l-ro sa n ilin e M ineral m ix tu re : 1 gm. c h r y a o c o l l a , •235 F rother: % copper p in e o i l as needed Exp. No. Me a h Agent 5.34 5-0 7 .19 1.8 1.82 2 .8 2 2 .6 8 2 .5 2 ^CL*rrt J*2 1u. • C 2 04 2 02 2 -B 02 -C 01 -200 -B 39-A -200 M ineral m ix tu re: Exp. No. Mesh 8 .0 8 .3 1 gm. c h r y a o c o l l a , .2 3 5 Agent C oncentrate c c .N /1 0 D ate Grama NapSgO^ 1 9 4 7 Dye Time # / t o n M i n . pH 04 38-A 99 gm- s a n d , % copper Time Dye # / t o n M i n . pH C oncentrate c c .N /1 0 D ate Grams NapSpO-* 19 47 1 .0 2 -3 • 03 2 .67 n il -C .03 2 .52 n il -D .06 4 1.9 8 1.5 -E .0 4 4 •50 •5 -200 A12 ( S 0 4 ) , •3 o # /to n 4-11 99 gm. d o l o m i t e -03 42-A 4-10 2 .5 2 4-12 93 BIBLIOGRAPHY (1) Ahrens, P ., B e r ., 19, 2725 (1 8 8 6 ). (2) Anschutz, R ., B e r ., 19, 2158 (1 8 8 6 ). (3) Barthelengr, R. E ., Eng. M in., 135, 401 (1 9 3 4 ). (4) Bouveault, L . , B u ll. Soc. Chim., 15, 1017 (1 8 9 6 ). (5) Gain, J . C. and Thorps, J . F . , *The Syn thetic I>yestuffs and Interm ediate Products11, London, C. G r iffin (1920) p . 270. (6) I b i d ., p . ,271. (7) I b i d ., p. 384. (8) Chapman, G. A.., A ustralian P a t. 6873 (9) Clemmer, J . and Ambrose,P.M ., p . 56. U. (1906). S. Bur. Mines, B ui. 449, (10) Dean, R. S . and Ambrose, P. M., U. S . Bur. Mines, B u i. 449, pe 4X* (11) I b i d ., p . 51. (12) I b i d ., p . 57. (13) I b i d ., p . 59. (14) I b i d ., p. 71. (15) Dean, R. S ., e t . a l . , U. S . Bur. Mines, Rept. In v e stig a tio n 5419. (16) Dean, R. S ., e t . a l . , U, S. Bur. Mines, Rept. In v estig a tio n 3357. (17) DeWitt, C. C ., Ind. Eng. Chera. 32, 652 (1940). (18) Dean, R. S ., e t . a l . , U. S. Bur. Mines, Rept. In v e stig a tio n 5357, p. 28. (19) D i t t l e r , Von E . , Z. Chem. Ind. K o llo id e , 5, 93. (20) D o e lte r, C ., '"Colloid Chemistry" V ol. I l l , Alexander, J . , ed ., New York, The Chemical Catalog C o., (1931) p . £61. 94 (21) E n d e ll, Von K ., Chem. In d . K o llo id e , 5, 244, 5 . (22) E n gelh art, G. K ., In d . Eng. Chera., 32, 645 (1940). (23) E ig e le s , M. A. and Mokrousov, V. A ., TJ. S . S . E. 64500. (24) Fahrenwald, A. W., Eng. Mining J . , 146, 155 (1945), Chem. A b stracts (1 9 4 6 ). (25) Ferguson, L. N ., Chem. R eviews, 38, 227 (1 9 4 6 ). (26) France, ’"C olloid Symposium Annual., V ol. 7 , W eiser, H. B ., e d ., New York, Chemical Catalog Co. (27) F reu n d lich , H. and Neumann, W., Z. Phys. Chem., 67, 538 (1909). (28) Gaudin, A. M., " F lo ta tio n " , New Yoz*k, McGraw-Hill Book C o., (1 9 3 2 ). (29) H e lfe r ic h , B ., and S ch a efer, W., "Organic Synthesis", Conant, J . B ., e d ., New York, John W iley & Sons, 9 , 32 (1 9 2 9 ). (30) Hickenbottom, W. J . , ’"R eactions o f Organic Compound^*, London, Longmans, Green and Co. (1936) p . 216. (31) Johnson, T. B. and Kohmann, E. F ., J . Am. Chem. S o c ., 36, 1259 (1 9 1 4 ). (32) J u . T. Y ., Shen, G ., and Wood, C. E ., I n s t . P etr . 514 (1940). (33) M artin, E. E ., "Organic R eactions", V ol. 1 , Adams, R ., e d ., New York, John W iley & Sons (1942) p. 167. (34) I b i d ., p . 163. (35) Park, B ., In d . Eng. Chem. A nal. E d., 2 , 77 (1931). (36) P ete rse n , W., "Schwimmaufbereitung",Dresden, S tein k o p ff, T. (1 9 3 6 ). (37) I b i d ., p . 137. (38) I b i d ., p . 237. (39) R a lsto n , 0 . C ., U. S . Bui*. Mines, Rept. In v e stig a tio n 3397. (40) R inkes, I . J - , R ec. Trav. Chim., 63, 3 , 53 (1944). (41) Shen, G ., J u ., T. Y. and Wood, C. E ., I n s t . P e t r ., 475(1940). 95 (42) Suida, V/., Monat. Chemie. 25, 1107, (1 9 0 4 ). (43) Sulman, H. L ., P icard , H. F. and B a llo t. J . , A u stralian P at. 5032 (1 9 0 6 ). (44) Svrainson, S . and Anderson, C. 0 . , Trans. Chem. S o c ., 60, 1 (1 9 3 1 ). (45) Taggert, A. F . , "Handbook o f Mineral D ressing", S ec. 12, New York, John W iley and Sons. (46) Taggert, A. F ., ’"Am. S c ie n tis t" , 35, 1, 85 (1947). (47) Thomas, C. A. e t . al.,'"Anhydrous Aluminum Chloride in Organic Chemistry", Chapt. 6, New York, Reinhold Pub. Corp. (1941) p . 204. (48) Wark, E. E. and Wark, I . V/., N ature, 143, 856. (49) Wark, I . W., " P rin cip les o f F lo ta tio n * , Melbourne, A ustralas­ ia n I n s t . Min. Met. (1938). (50) West, R ., J . Chem. S o c ., 127, 494 (1925). (51) Weygand, C ., "Organic Preparation^", New York, In terscien ce P ubl. (1945) ] (52) I b i d ., P. 101. (53) I b i d ., P* 105. (54) I b i d ., P- 133. (55) I b i d ., P» 447. (56) I b i d ., P- ,218.