

Mathematical State
University

PLACE IN RETURN BOX to remove this checkout from your record.

TO AVOID FINES return on or before date due.

MAY BE RECALLED with earlier due date if requested.

	The De New York College and the College and th						
DATE DUE	DATE DUE	DATE DUE					
	•						

2/05 p:/CIRC/DateDue.indd-p.1

SUGAR BEET CULTURE

Thesis

Submitted to Michigan Agricultural College for the degree of Master of Agriculture

Ву

Elton Brainard Hill 1923

The farmer upholds the sugar beet because the sugar beet upholds the farmer

Except where otherwise noted, the material presented in this bulletin is the result of five years personal observation and work with the sugar beet industry, - first as County Agricultural Agent and later as Agriculturist for the Menominee River Sugar Company at Menominee, Michigan.

SUGAR BEET CULTURE

A New Industry

Sugar beet culture is a relatively new industry. The first sugar factory to be established in Michigan was built in Bay City in 1898, just twenty-four years ago. During the next seven years, twenty-three other factories were built in the state. Seven of these have been moved away, leaving Michigan with seventeen active sugar factories. It is a noticeable fact, however, that no new factories have been built in Michigan during the past seventeen years.

Fig. 1. A satisfied beet grower. The sugar beet is one of Michigan's most important cash crops.

The First Aid

Politics as well as scientific agriculture and chemistry have been a very important factor in the development of this industry. The Dingley Tariff Act of 1897, providing for a tariff of \$1.95 per hundred on refined sugar was the first important favorable legislation to benefit this phase of American agriculture. The financial provisions of this Act were reduced twenty-five per cent on March 1, 1914. The tariff which is being considered at the present session of Congress provides for a still greater protection for this great American industry.

An Important Cash Crop

Although the sugar beet is a relatively new crop in Michigan, it is already established as one of our stable industries. It returns to the growers, in actual cash returns from \$7,000,000 to \$11,000,000 per year. Table I, taken from the 1921 Annual Summary of the Crop Report for Michigan gives some valuable information relative to the extent of the sugar beet crop in this state for the past twelve years. It gives only the cash returns from this crop, however. With all farm crops there are certain other advantages as well as disadvantages which should be taken into consideration. The other benefits, which have long been recognized, derived from sugar beet culture are likewise very important, but will be discussed in other parts of this paper.

Table I. A twelve-year report on the acres harvested, yield and total value of Michigan's sugar beet crop.

YEAR.	Acreage harvested.	Average yield per acre.	Total production, (000 omitted.)	Average price December 1.	Total value, (000 omitted.)	Average value per acre.
1900 1910 1911 1912 1913 1914 1915 1916 1917 1918 *1919 *1919	Acres. 78, 779 117, 500 145, 837 124, 241 107, 965 101, 263 122, 000 99, 610 82, 151 114, 976 123, 000 150, 000 125, 000	Tons. 9 0 10 3 9 9 6 8 9 0 8 5 8 2 5 5 6 4 7 9 9 8 8 8 8 3	Tons. 708 1,208 1,444 839 955 857 998 544 462 890 1,205 1,320 1,038	Dollars. 5 22 6 00 5 74 5 69 5 93 5 23 5 91 6 14 8 04 10 08 12 52 10 08	Dollars. 3,696 7,248 8,289 4,774 5,663 4,482 5,888 3,337 3,714 8,971 15,087 13,306 6,228	Dollars. 64 9 61.8 560.8 38.6 53.3 44.4 48.4 33.7 51.4 79.6 122.7 88.7 49.8
Average	114,795	8.8	959	7 12	6,976	61 1

^{*}Final revisions not completed.

A further important factor to be presented in the preliminary economic discussion of this crop is its relation in acreage and value to certain other stable cash crops of this state. A presentation of this table (Table II) is necessary to fully understand Michigan's need for this crop and its importance to the agriculture of the state as a whole. In other words, how much richer financially is the agriculture of Michigan on account of the beet crop than is the agriculture of Iowa, Illinois or some similar state without it?

farm crop that has a larger ratio of total acres to total value than has the sugar beet. The ratio of the potato crop is 1 to 4.39, while that of the sugar beet is 1 to 3.07, followed by beans with 1 to 1.69, corn with 1 to 1.16, wheat with 1 to 1.00 and by rye with 1 to 0.56.

Table II. A summary of the acreage, yield and valuation of the farm crops of Michigan for the year 1921.

CROP.	Acres, (000 omitted.)	Yield per sore.	Production, (000 omitted.)	Price Dec. 1.	Total value (000 omitted.)	Value per acre.
Winter wheat Spring wheat Corn Sate Barley Beans Rye Buckwheat Potatoes Tame hay Wild hay Sugar beets Clover seed Apples (agricultural) Apples (commercial) Peaches Pears	1, 703 1, 544 235 263 642 30 240 2, 928 60 125 111	busbus	1,208	\$1.04 1.04 0.48 0.86 0.67 2.40 0.70 0.78 0.95 13.00 9.20 6.00 19.75 1.96	\$14,260 374,380 10,116 2,344 7,133 5,842 487 25,840 38,064 6007 6,228 1,618 12,318	\$16.6 9:36 18.77 6.55 9.99 27.11 9.11 12.4 76.0 13.0 10.1 49.8 14.6
Total	8,887				\$159,080	

Table III. Relation of the acreage and value of various farm crops to the total acreage and total value of all crops given in Table II.

! ! C	Per cent of total rop acreage	Per cent of total crop value	Ratio, acreage to value
Corn	19.1	22.0	1 to 1.16
Wheat '	10.1	10.1	1 to 1.00
Rye	7.8	4.4	1 to .56
Potatoes	3.8	17.8	1 to 4.39
Beans	3.9	4.9	1 to 1.69
Sugar Beets	1.4	4.3	1 to 3.07

Promotes Diversified Farming

Thus Michigan is indeed favored by having soil and climatic conditions which are ideal to the production of another crop. In other words it offers a still greater opportunity for diversified farming. It adds from \$7,000,000 to \$11,000,000 to the farmers' pocketbook and at the same time 125,000 acres of land produce a crop which is not in direct competition with our other cash crops.

One of our greatest agricultural problems is not necessarily reduced acreage and production, but a readjusting and redistributing of our farming enterprises. We find, therefore, that as a general rule the states with a highly developed type of diversified farming, or in other words, a better distribution of farm enterprises, have not so keenly suffered from the present serious agricultural depression as have the one crop states.

The sugar beet industry, a highly specialized form of agriculture, has helped Michigan in this proper distribution of farm crop enterprises. It is "just a real good cash crop" which, when properly handled, can always be depended upon to return a cash balance at harvest time.

It is one of the few crops handled on a contract basis. When he plants his crop in the spring, the farmer knows the minimum price per ton he will receive in the fall. Present contracts also contain a provision which enables the grower to receive a higher return for his crop should the price of sugar be higher than the minimum stated in the contract.

Professor J. F. Cox, head of the Farm Crops Department of the Michigan Agricultural College, stated recently: "There is a special need for a few 'contract crops' to help lend stability to our farming enterprises." The sugar beet crop helps to fill that need.

Fig. 2. The sugar beet is "Just a Real Good Cash Crop."

Although, as stated in the beginning, politics played a very important part in establishing the sugar beet industry, the fact remains that scientific agriculture has also performed an important service for this crop. There is, however, much more that scientific agriculture can do for the sugar beet industry along the lines of improved breeding, improved cultural methods and disease and insect control.

Extent and Location of Michigan's Eest Areas
All but one of Michigan's seventeen factories are located

in the lower peninsula. The upper peninsula has one 1200 ton plant at Menominee. These factories are located in the best farming areas of the state, in fact sugar beet culture and fertile, well kept farms seem to go hand in hand. Michigan now ranks third in the United States in importance as a sugar beet producing state. It is the leading state in beet sugar production east of the Rocky Mountains.

B SUMAR FACTORY

- 1,000 ACRES SUCAR BEETS.

Map showing location of Michigan beet sugar factories and leading production areas.

The accompanying map, from Michigan's Special Bulletin No. 106, shows the location of Michigan beet sugar factories and the leading production areas.

This map shows that the "thumb area" in eastern Michi-gan produces the bulk of the crop. Other areas are distributed over the southern portion of the lower peninsula and in Menominee County of the upper peninsula.

The following list gives the names of the various sugar factories now in operation in the state:

Columbia Sugar Company,

Bay City, Michigan Mt. Pleasant, Michigan

Continental Sugar Company,

Blissfield, Michigan

Holland-St.Louis Sugar Company,

Holland, Michigan St. Louis, Michigan

Independent Sugar Company,

Marine City, Michigan

Menominee River Sugar Company,

Menominee, Michigan

Michigan Sugar Company,

Bay City, Michigan Alma, Michigan Caro, Michigan Carrolton, Michigan Croswell, Michigan Sebewaing, Michigan

Mt. Clemens Sugar Company,

Mt. Clemens, Michigan

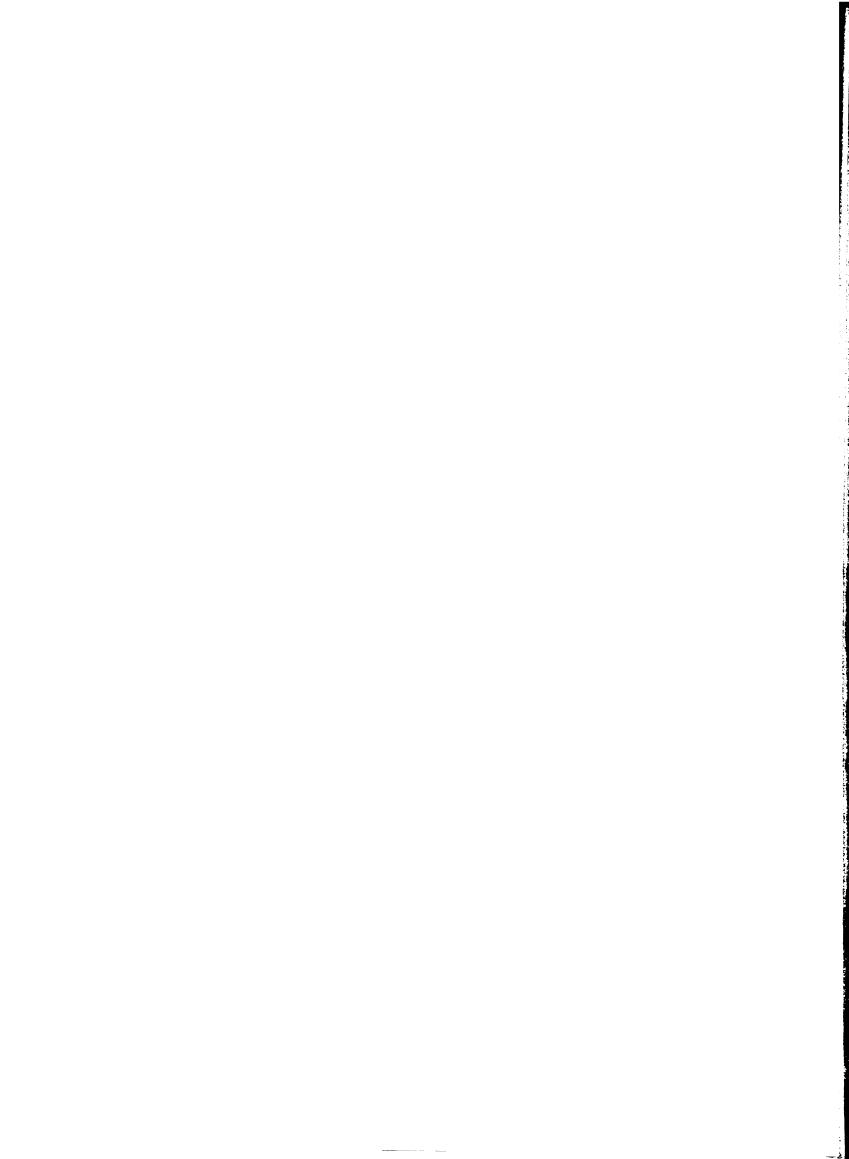
Owosso Sugar Company,

Lansing, Michigan Owosso, Michigan

West Bay City Sugar Company,

West Bay City, Michigan

CULTURAL METHODS


Soil Selection

The types of soil best adapted to grow good crops of beets are the loams, silt loams, clay loams and fertile sandy loams. The fact is though, any fertile, well drained soil that will grow a good crop of grain, corn, potatoes or clover will, when handled properly, produce a good crop of sugar beets; however, the crop seems to grow best on the heavier types of soil. On these soils we secure a combination of a good tonnage and sugar yield. The lighter types of soil will usually produce beets of fairly high sugar content, but unless this land is very fertile and well supplied with organic matter the yield is not sufficient to make the crop a success.

Certain types of muck soils will, when properly fertilized and cared for, produce a good yield of beets of acceptable quality. Other types of muck will, however, give a good yield of beets but they are of a comparatively low sugar content.

Further investigations regarding this type of soil is necessary before it can be classed as a sugar beet soil.

Hilly land that washes badly or very stoney land is not well adapted to the production of this crop.

Drainage

The sugar beet is a deep rooted plant and it is quite evident that any soil that is to be used for this crop should be well drained. Poor drainage is sometimes indicated by a very spotted field, because standing water drowns out the young plants. Sugar beets will stand as much, if not more flooding than any other farm crop, but long standing water will, in time, smother the young plants (Figs. 3 and 4, from Michigan Special Bulletin No. 106). In many cases the field, by observation at least, is apparently well drained, but at times the water table rises to within from five to ten inches of the surface. This causes a very short rooted, prongy beet of a low tonnage and sugar content (Fig. 5 from Michigan Special Bulletin No. 106).

In either of the foregoing cases the yield of the crop and thus the resultant profit is greatly reduced.

The field should also be drained well enough to enable the grower to properly prepare the seed bed in the spring, to plant on time and to cultivate, hoe and harvest without any serious handicap. There are now thousands of acres of land of a texture suitable to sugar beet production in the state, but which cannot be so used on account of poor drainage.

•	

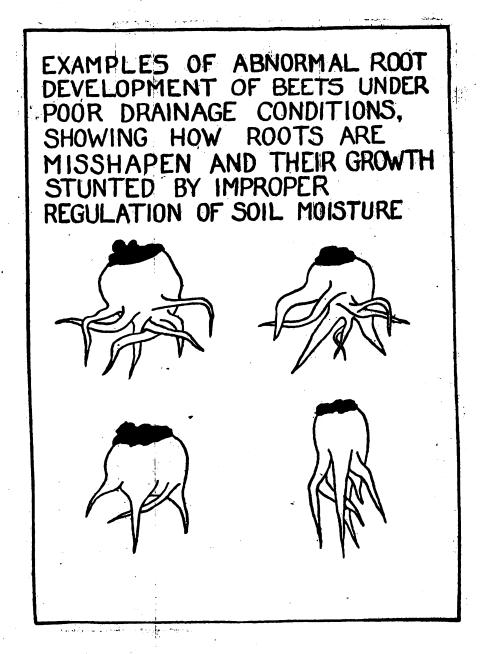


Fig. 5. Poor shaped beets are also caused by plowing under a tough sod or large amounts of barn yard manure, the spring of planting. They may also be formed by improper fitting of seed bed or by a hardpan at the bottom of furrow slice.

Soil Preparation

The proper preparation of the soil is one of the important phases of sugar beet culture. The choicest field, well fertilized but poorly prepared, will give poor results. A large amount of hand labor is connected with the production of this crop and the time spent in thorough soil preparation is highly profitable.

Fall plowing is usually recommended for most Michigan soils. Many farmers follow the practice of plowing twice for beets. The first plowing, about four inches deep, is made early in the fall. The land is then worked with a disc and drag. Later in the fall a second deeper plowing is made; the deeper plowing going about three-quarters to one inch deeper than the field had been plowed in former years. Seven to ten inches is usually sufficient on most soils. At no time should the land be plowed more than three-quarters to one inch deeper than the former plowings. To plow deeper than this would turn up too large a quantity of rather inert, unfertile sub-soil, which would be very unfavorable to the young beet seedlings. Increase the depth of plowing gradually, not all in the same year. No more work should be done to the field after plowing in the fall. The ground should be worked, however, the next spring, as soon as it is in proper condition.

The fall plowing provides for a thorough settling of the soil and makes it easier to secure the compact seed bed which is necessary with this crop. Although a compact seed bed is desirable, there should be no hardpan or hard furrow bottom

to prevent the tap root of the beet from following its natural course. In some soils, sub-soiling has given good results.

A Deep Firm Seed Bed Required

The sugar beet needs a deep seed bed so as to give the root a chance to grow longer and to secure the moisture stored at that depth (Fig. 6). The larger beets grown on soil prepared as described in the foregoing paragraphs will yield a larger tonnage per acre.

Anston, Wisconsin, on a clay loam soil, following corn. This field had been plowed about six inches deep with a two-bottom plow pulled by a "reconstructed Ford roadster." The field was well fertilized and apparently well worked except for the plowing. From all appearances of the leaf growth an excellent tonnage was to be secured. At harvest time it was discovered that about seventy-five per cent of the roots were crooked, with a right angle bend about four to five inches below the crown. In fact it was found upon further investigation that a large number of the beets could be kicked out of the ground with the foot. The resulting yield was, of course, low and was no doubt due to the hard furrow bottom encountered by the tap root at five to six inches from the surface.

When the field is to be spring plowed, it should be

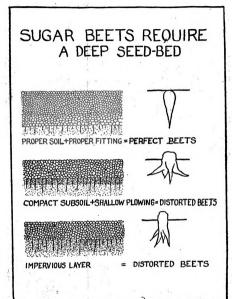


Fig. 6. Land for sugar beets should be plowed deeper than for most crops,— from seven to ten inches is considered sufficient. It is not best to plow more than three-quarters of an inch to one inch deeper than the usual depth, at one plowing. This deeper plowing should be done in the fall.

Spring plowing should be done at the usual depth.

done so as early as possible. Some soils give surprisingly better results when plowed in the spring. This is especially true on some types of clay soil that would be apt to puddle and become too compact over winter. The ground should be disced before plowing in the spring. Then when the ground is plowed, the loose disced soil on the surface helps to fill up the furrow bottom with fine material and thus immediately establishes direct contact between the furrow slice and furrow bottom.

Spring plowing should never be deeper than the deepest former plowing as it is not advisable to mix the sub-soil with the furrow slice in the spring.

Surface Preparation

With both the spring and fall plowing it is necessary to give the soil good surface preparation with the drag, disc and roller or culti-packer. Sugar beets require a deep, firm seed bed, one that is readily penetrated and yet not in a loose condition. The surface must be worked down in good shape, smooth and reasonably free from lumps.

Spring plowed land should be gone over with a roller or culti-packer and a harrow immediately after plowing. The rolling, harrowing and dragging should be continued at intervals until planting time, Fall plowed land should be gone over with the disc, harrow and drag at intervals until conditions are ready for seeding. Thorough work in preparing the seed bed properly will be repaid by a better stand of

beets and by lessening the work of weed control after the crop is planted.

Beet planters do not work successfully unless the land is well prepared. Thus a good stand and a resulting good yield depend quite largely upon thorough preparation of the soil.

In all cases the ground should be gone over with a light drag or weeder immediately preceding the drill. This kills any weeds that may have started and gives the beets an even chance with the weeds which may come later on. If this dragging is not performed, we find that the weeds will have a great initial advantage over the young beet seedlings.

Fertilizers

Although additional fertilizer is not always necessary, it does, however, when properly used, increase the profits secured from the sugar beet crop in the majority of cases. The two forms of fertilizers which are most often used with this crop are barnyard manure and the commercial preparations. There is quite an overhead labor charge for beets, regardless of the yield per acre, thus any practice which materially increases the resulting tonnage would lower the cost of production and increase the total profit. On account of this high labor overhead, a proper application of fertilizer for the beet crop will in most cases pay as well, if not better, than for many other crops.

Barnyard Manure

Barnyard manure is the most common fertilizer used on the farm today. It fills a need which practically no other single form of fertilizer can replace. It is very valuable in the production of a good crop. Not only are the fertilizing elements furnished by this material, but also the humus and innumerable very valuable bacteria. It also furnishes a large amount of food for the bacteria with the result that the plant food is made available for the beets.

The best kind to use depends largely upon the time of application. Well rotted manure may be safely and profitably applied in the spring of planting. Fresh manure should be applied in the spring or fall previous to planting beets to give the best results. Spring application of fresh manure the year the beets are to be planted is not to be recommended for several reasons: (1) The beet plant is not able to make the best use of this manure as all its fertilizing elements are not immediately available. (2) Heavy applications of fresh manure may cause short, prongy, low yielding beets.

(3) The spring top-dressing of fresh manure, in many cases, is also a top-dressing of weed seeds. This greatly increases the amount of labor necessary to care for the crop and in some cases makes such a discouraging proposition out of it that the whole crop is plowed under.

The writer has observed many fields where the owner has made a spring or late winter application of fresh manure for

beets and has been very much discouraged with the results. The failure to get beneficial results was largely due to the foregoing three reasons. In many cases twenty to twenty-five loads were applied per acre, and the grower cursed the sugar beet crop because it took all his manure and did not yield a very high tonnage. In this case one of the causes for a low yield was the heavy application of manure lying between the furrow slice and the furrow bottom. In most instances the manure was not properly mixed with the soil and it inhibited the flow of capillary moisture to the furrow slice. When the beet tap roct came in contact with large lumps of this material it went no further and instead of developing into a good shapely beet it grew into a prongy, rooty affair of light weight.

The crop following the beets receiving this heavy application of fertilizer, was really the one to receive the most benefit of the manure. Thus in many cases the spring application of fresh manure is of little value to the beet crop, but in many instances is the direct cause of a poor crop.

The manure is best applied by means of a spreader at the rate of eight to twelve loads per acre. If it is applied in the spring it should be applied before plowing and disced in the ground thoroughly. Light top dressings of weed-seed-free manure may be applied after plowing and worked in thoroughly.

Commercial Fertilizers

In many beet growing areas farmers would not plant sugar

beets unless they were able to procure commercial fertilizerto use with the crop. The reverse, however, is also true in
some areas where the soil is of the fertile, heavy type and
where large numbers of stock are kept. In no case should it
be understood that commercial fertilizers take the place of
barnyard manure, but that it reinforces it. A combination
of the two usually gives the best results.

The best analysis of fertilizer to use depends quite largely upon (1) the kind of soil, (2) the crop rotation followed and (3) the amount and quality of barnyard manure used.

The area covered by the writer while in the employ of the Menominee River Sugar Company comprised Menominee and portions of Delta and Dickinson Counties of the Upper Peninsula of Michigan, and Marinette, Oconto, Brown, Kewaunee, Ontagamie, Calumet, Winnebago and Manitowoc Counties of Wisconsin. For the purpose of discussion in this article, the three main groups of soils in this area were the sand loams, loams and clay loams.

The Michigan counties and Marinette, Oconto and parts of Brown, Ontagamie, Winnebago counties of Wisconsin contained the sand loam soils. Brown, Ontagamie and Winnebago, Kewaunee and Fon Du Lac counties contained the loams. Calumet, Fon Du Lac, Manitowoc, Winnebago and Ontagamie counties contained the clay loams and clays.

In the year 1930 the writer put on about fifty fertilizer demonstrations distributed over the entire area. In a general

	-

way it was a noticeable fact, as observed from one year's results, that the sand loam areas responded best, the loam areas were next and the clay loams and clays, in the majority of cases, responded very little.

production of the production o

Fertilizers on Sand Loams

In the sand loam area, Arthur DeCamp, of Stephenson, Menominee County, secured an increased yield of five tons 211 pounds per acre through the use of 300 pounds of 2-12-2 fertilizer applied in the rows. The effects of the fertilizer on the beets is clearly shown in Figure 7. The residuary effect of this fertilizer the year following on barley is well shown in Figure 8. On the same farm in 1921 one-half the field was given an application of 250 pounds of 2-12-2 and the other half was dressed with fresh barnyard manure. The result is shown in Figure 9. The commercial fertilizer, being quickly available, gave the beet plant a quicker start in the spring and this advantage was maintained throughout the season.

George Bell, Oconto, Oconto County, Wisconsin, on the sand loam type of soil, applied broadcast a 2-12-2 fertilizer at the rate of 400 pounds per acre and increased the resulting yield four tons per acre. Twelve tons per acre were secured on the fertilized and about eight tons on the unfertilized land (Figs. 10 and 11.).

Chas. Knutson, Underhill, Oconto County, Wisconsin, applied a 2-12-2 fertilizer broadcast at the rate of 400

Fig. 7. A fertilizer test on sandy loam soil. No fertilizer was applied on the right, while on the left 200 pounds of 3-12-3 fertilizer was applied per acre.

Figure 8 shows the same field one year later, in barley.

Farm of Arthur DeCamp, Stephenson, Menominee County, Michigan. Picture taken July 28, 1919.

Fig. 8. This picture shows the residuary effect of a 3-12-2 fertilizer applied the year previous on beets. No fertilizer was applied on the right, while on the left 300 pounds of 2-12-2 per acre were applied. This is a picture of the same field shown in Figure 7. Picture taken July 9, 1930.

Fig. 9. Fertilizer demonstration on sandy loam soil.

Fresh barnyard manure applied in the spring on the immediate foreground, 250 pounds of 2-12-2 fertilizer applied on the background. Farm of Arthur DeCamp, Menominee County.

Picture taken July 9, 1930.

Fig. 10. Fertilizer demonstration on a sandy loam soil. No fertilizer on the left, while on the right 400 pounds of 2-12-2 fertilizer was broadcasted before seeding. Farm of Geo. Bell, Oconto, Wisconsin. Picture taken July 11, 1919. Note the quicker start made by the fertilized beets.

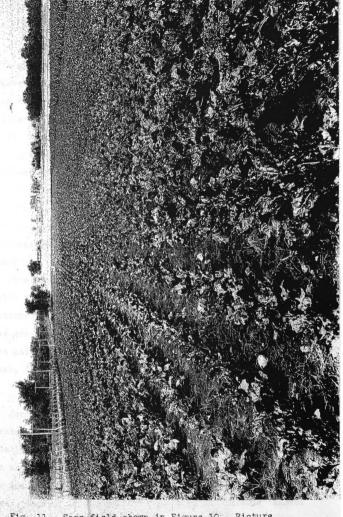
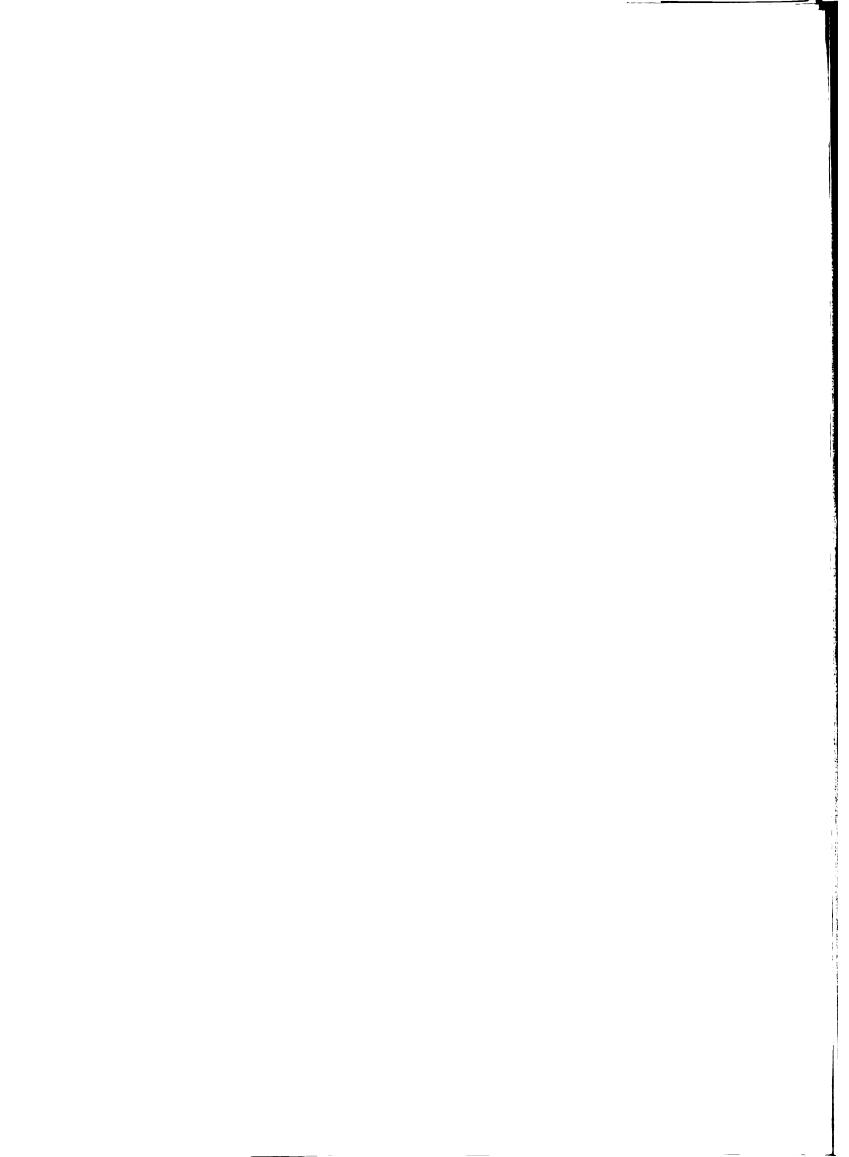



Fig. 11. Same field shown in Figure 10. Picture, taken 17 days later, shows the leaves on the unfertilized beets starting to catch up to the leaf growth on the fertilized beets.

pounds per acre and secured a yield of 11 tons 752 pounds per acre. On the other half of the field fresh barnyard manuré was the only fertilizer used, the resulting yield was six tons 24 pounds per acre. A picture of this field taken July 11, is shown as Figure 12.

Figure 13 shows another illustration of the effect of fertilizer on this same area. The soil in this case was in a very poor, run-down condition before the treatment was made. This accounts to some extent for the very small, stunted growth on the unfertilized area. Yield figures on this field are not given, as the writer left the employ of the Sugar Company before the harvest was complete.

Other similar demonstrations on this type of soil gave results very comparable with the foregoing figures. The indications resulting from these tests are that the sandy loam soils are benefited by a complete fertilizer containing all three main fertilizing elements: nitrogen, phosphorus and potash, in the ratio of 2-12-2 or 3-10-4.

Fertilizers on the Heavy Loams

Jerome Briese, Greenleaf, Brown County, Wisconsin, cooperated with a very complete demonstration on a soil representative of the loam area. The results of this demonstration are given in table 4. The results on some of the plots
were not very consistant, the checks, however, ran rather
close. It will be noticed that there is an increase factor
entering in from the first check on one side to the 0-16-0

Fig. 12. The foreground received an application of fresh barnyard manure, while the beets on the back-ground received an application of 400 pounds of 2-12-2 fertilizer per acre. Farm of Chas. Knutson, Underhill, Wisconsin. Picture taken July 11, 1919.

Fig. 13. Picture taken August 10, 1920. No fertilizer on lower left hand corner, 400 pounds of 3-10-4 fertilizer on the right, 400 pounds of 3-10-4 fertilizer and barnyard manure on the upper left side of the picture. Farm of William Hayes, Oconto, Wisconsin.

on the other side. The conclusion one would draw from this demonstration is that phosphorus was the most essential fertilizer ingredient concerned in increased production. The average yield per acre on this ten acre field was 16 tons 1740 pounds per acre. The price per ton for beets that year, 1930, was \$12.50, the average return per acre was \$210.88. Figures 14 and 15 show views of this field. The following table, No.4, gives in detail the result of the demonstration.

Table 4. A graphic illustration of the fertilizer demonstration on the farm of Jerome Briese, Greenleaf, Brown County, Tisconsin, in 1920:

Check	13	tons	1480	pounds	per	acre	7
3-8-7	16	π	460	11	71	11"	1
2-8-0	16	• 11	568	*1	11	Ħ	
1-8-3	16	11	1748	11	11	17	}
Check	15	91	648	11	11	11	1
2-10-4	18	11	524	**	17	11	:
3-10-0	18	? T	508	11	11	11	
0-10-4	19	Ħ	1800	11	11	11	:
Check	15	11	306	11	n	11	
0-16-0	18	- 11	362	11	11	11	

One acre plots, average yield 13 tons 1740 pounds.

History:

1915 Oats, seeded down, seeding top-dressed, 6 to 8 loads per acre.

1916-17 Hay.

1918 Spring plowed 6 inches for corn.

1919 Fall plowed 8 inches for beets.

Silt loam soil.

Fig. 14. Fertilizer demonstration on a loam soil. Check plot on the right, 400 pounds of 2-8-7 fertilizer on left. Farm of Jerome Briese, Greenleaf, Wisconsin. Picture taken August 6, 1919.

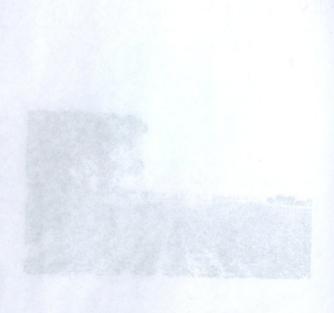


Fig. 14. Fertilier demonstration on a loss soll.

Check plot on the right, 400 pounts of 8-8-7 fertilitiza
on left. Farm of Jerone Briese, Breenloof, Flagorsin.

Pioture taken Anguet 6, 1919.

Fig. 15. Check plot on right, 400 pounds of 3-10-4 fertilizer on the left. Farm of Jerome Briese. Picture taken August 6, 1919.

Fig. 15, Check plot on right, 400 pounds of 2-10-16 fortiliteer on the left. Fare of Jerums Sriess. Pirture taken August 5, 1919. Another demonstration on the farm of Jule Van Colster, Green Bay, Brown County, Wisconsin, on the same type of soil as in the foregoing discussion gave very comparable results, as indicated by the following table, No.5.

Table 5. Fertilizer demonstration on the farm of Jule Van Colster, R.F.D. No.9, Green Bay, Wisconsin.

Check	9	tons	328	pounds	per	acre	
0-16-0	10	11	1200	11	11	11	
2-13-2	_10	71	1860	11	11	11	
Check	6	11	570	11	11	11	
2-8-7	11	11	172	11	11	Ħ	
3-10-4	11	11	254	11	11	11	

One-half acre plots.

The one distinguishing feature of this demonstration was the perfect stand secured on adjoining rows both sides of the middle check plot, while on the check plot the rows contained a rather poor stand. In this case, therefore, the fertilizer not only furnished more plant food but furnished it at the proper time to insure a better stand of beets. This is a very important consideration in sugar beet growing.

Other demonstrations on this same type of soil gave very similar results and showed that phosphorus was the element most needed. If a complete fertilizer was to be used, a 2-12-2 or 3-10-4 would be preferred to a higher potash fertilizer, in so far as the yield was concerned. Sugar tests of the beets from these plots were not made and so all ob-

Another demonstration on the lear of Jule Van Celebra, or the Say, Erown County, Wisconsin, on the same type of Boil as in the foregoing discussion gave very comparable reculty. Sai indicated by the Following table, Vo.S.

Table 5. Pertilaser descriptions on the farm of Jule Van Coleter, R.F.D. Mo.S. Green Pay, "decomment.

One-half were clode.

The one distinguishing feature of this demonstration was the perfect etant depoint on adjusting toys both addes of the what perfect etant demonstrates on the electroficture of the section of the fertilitation only fermioned more plant food but furnished it at the proper time to insure a better stand of costs. This is a very important demonstration in anger best a country.

Other demonstrations on this same type of soil gave vert similar results and showed that phosphorus was the classift most needed. If a complete fartilizer was to be used a 8-12-3 or 3-10-4 would be preferred to a higher potentiar. Thissel, in so far as the yield was demonstrat. These lease of the peaks from these plots were net made and so all ob-

Fig. 16. Demonstration on the farm of Gregory Bast,
Appleton, Wisconsin. No fertilizer on the right, 400 pounds
of 2-13-3 fertilizer per acre on the left. Picture taken
August 3, 1920.

servations and conclusions were drawn from the farmer's viewpoint or the tonnage yield per acre.

Fertilizers on the Clay Loams and Silt Loams

These soils found in the most fertile and richest farming sections of Wisconsin are farmed by the best farmers in the state. Livestock farming predominates as the principal farm enterprise.

As a general rule the soils in this area responded less to commercial fertilizer applications than did the soils of

Fig. 18. Desconstration on the face of Gregory Peets
Appleton, Visconsin. So fartilizes on the higher 400 pounts
of 8-18-2 fartilizes per some on the left. Ploture taken
August S. 1080.

servations and conclusions were drawn from the faller's view viewpoint or the tonnege yield per core.

Fretilizers on the Clay Loads and Stratilities

These estic found in the most fermile and cionist interior ing santions of Visconsin are famed by the best farmers in the estre, three-con farming predominates as the principal farm enterorises.

to alice and but needs annotabilities togistical legitronment of

the other areas. In many of the demonstrations no increase in yield was secured, regardless of rate and method of application and analysis. Acid phosphate seemed to be most in favor. Results secured in other years may, however, show up differently than they did in 1920.

The recommendations to be made on these soils is an application of about 150 pounds to the acre in the row at the time of planting. The analysis of fertilizer to use would, of course, vary under different conditions, but would be either 0-16-0, 2-12-2 or 3-10-4.

Fertilizers on Muck Soils.

Mr. J. I. Ethridge of the Oconto Lumber Company, Oconto, Oconto County, Wisconsin, cooperated in putting on the only fertilizer demonstration on muck that was put on by the Sugar Company that year. Due to weather and labor conditions this field was planted late and thus blocked and thinned late, especially was this noticeable on the end of the field containing the O-16-O plot. So the decrease in yield factor must be taken into consideration in connection with this demonstration.

The detailed results are given in Table No.6. The effect of the potash is readily observed from this table. In fact, potash seemed to be the controlling element on this type of soil, in so far as tonnage was concerned. The fertilizer giving the most economical results was the 0-8-7.

the other ereas. In many of the demonstrations no incasese in yield was secured, regardless of rate and nethod of explication and analysis. Acts phosphate second to be apartin favor. Pessite secured in other years may, horsest, show up differently then they did in 1830.

The recommendations to to and an itematical as an application of about 150 nomine to the sore in the some at the case of planting. The analysis of forbilitar of the world, of course, very under different consistent, but grain to at the course. S-12-8 or 3-10-4.

Fertilizers on Muon Soller

ir. J. I. Ethildge of the Doct to Lunder Company, Openio, Country, Visconsin, Cooperatus in Justing on the Colf fertiliser demonstration on muck that was put on by the Sugar Company that year. Due to venther Sant labor conditions this field was planted late and thus blocker and chimnel late, especially was this noticeable on the end of the Cield sontaining the C-16-O plot. So the decrease in yield factor must be taken into consideration in connection with this demonstration.

The detailed results are given in Table Mais. In feat of the potash is readily observed from this table. In fact, potash seemed to be the contraditing element on table type of soil, in so far as tonnage was concerned. The far far fairtists giving the most economists results was the O-S-Ti

Table 6. The fertilizer demonstration put on by J. I. Etheridge, Oconto Lumber Company, Oconto, Wisconsin.

Check	9	tons	96	pounds	per	acre	1
2-8-7	9	11	1382	11	11	11	
2-8-0	6	11	1362	11	11	11	
0-8-7	8	Ħ	546	11	11	11	
Check	6	11	632	11	11	11	
3-10-4	6	11	866	11	11	11	
3-10-0	5	11	1420	11	11	11	
0-10-4	4	11	740	†1	11	11	
Check	4	11	344	11	11	11	
0-16-0	<u> </u>	_ 11	164	11	11	11	

One-half acre plots. Muck Soil .

Method of Application

In all of the foregoing demonstrations, except where otherwise stated, the commercial fertilizer was applied broadcast at the rate of 400 pounds per acre and well worked into the soil a few days previous to seeding. It was originally planned to do some follow-up work on residuary effects of beets and fertilizers, but for various reasons this phase of the work was not carried through to completion.

It was thought, in planning these demonstrations, that under average conditions better results would be secured from the broadcast applications, both from the standpoint of the best crop and the following crops; and I believe that this assumption was correct on all the soils but the heavy clay

Table 6. The fertiliser demonstration put on by J. I. Etheridge, Oconto humber Company, Oconto, "Isomein.

. If ob would worden eves Wisd-one

no Stantingal to Dogston

otherwise attack. The connectation of the police was applied of the miles attack of the connectation of the connectation of the set of the connectation of the set of the connectation of the connectation of the contract of

It mas thought, in planetar tree demonstrations, they while arches another arches another arches another arches another arches another arches and the broadcast arches arches and the following erope, and I believe that this abstract arches are selected as a beautiful arches are all the solls but the beauty olay.

and silt loams, where the row application seemed best.

Broadcast vs Row Applications

With the broadcast applications the main advantages are:

(1) Gives better residuary results; (2) mixes the fertilizer with the soil, thus avoiding danger of burning the root; and (3) it tends toward a better, more normal root development.

In many dry years, where the fertilizer is applied in the row, it does not fully go into solution and thus be in a form to be used by the roots. Many times I have noticed farmers, when plowing out their beets in the fall, plow out the fertilizer in about the same condition it was in when applied. The broadcast application tends to help the beet develop a normal extensive root system (Fig. 33) which is invaluable, especially in dry weather. The roots keep on developing in search of food, while in the row application the food is right next to the root and it does not have to develop as large a root system as in the former case.

The main point in favor of the row method is that quicker and better results may be gained with proportionally smaller quantities of fertilizer. A relatively light application, 100 to 150 pounds per acre, depending upon the analysis, may be applied at planting time, to aid in germination and to give the young plant a quick start. Many soils that are apt to be cold and slow in the spring, i.e. the clay and silt loams, require only enough fertilizer to aid in starting the plant, supplying such other plant food as the crop may need from its own reserve.

and silt loads, where the now application seemed here.

Another for Non av Jascheor H

With the broadcast applications that main divinities are:

(1) Howe bester remiduary results; (3) mires the familiant

with the soil, take avoiding danger of burning the root; and

(3) It tends sowerd a bester, were normal root development.

In many dry years, where the familiant is applied to the now,

to does not full; go into solution and some so in a fork to

be used by the roots. Many class I have noticed farmers,

when plosing out their bests in the fall, plow out the far
tillies in about the same condition it was in when applied.

The broadcast application rands to help the best develop a

nomel extensive root system (Fig. 33) which is invaluable,

sepecially in dry weather. The roots keep on developing in

right next to the root and it does not keys to develop os

large a root system as in the former dash.

The main point in layer of the ron method to that qualified and better results may be gained with proportionally small or quantities of fertiliser. A relatively light application, of quantities of fertiliser. A relatively light application, but 100 to 180 pounds per edre, depending upon the emalysis, car be applied as planting time, to aid in germination and to give the young plant aquion start. Many solls that are applied to be cold and alow invite spring, i.e. the clay and all the printing only emorgh fertilizer to aid in absolute the plant food as the oney may meed in a list own reserve.

The residual effects of the fertilizer application is clearly shown in Figure 8.

Liming

Soils that are acid should be given an application of sugar beet refuse lime at the rate of one to three tons per acre or one to two tons of finely ground limestone per acre. This will not only increase the yield of sugar beets but will also increase the yield of following crops of clover and alfalfa, thus providing a greater residue of organic matter and nitrogen, improving both the fertility and structure of the soil.

Perfuse lime may be secured from the various sugar companies in most cases free of cost. The cost of loading is usually the only charge made for car-load lots of 40 to 50 tons. This lime is as good as can be secured for use in correcting soil acidity. On account of its physical condition, being somewhat moist and occasionally lumpy, it will not work through a lime distributer. Distribution is usually made from the wagon or piles by means of a fork or shovel, or with a manure spreader. The best time to make the application is in the fall, or winter when the snow is not too deep.

Many inquiries are often made relative to the analysis of sugar beet factory refuse lime, and the following table, No. 7, is a report by Professor A. J. Patten of the Michigan Agricultural Experiment Station.

The residual effects of the tartilizer application is clearly shown in Figure E.

notmid

To destinate the series of and to give a spiral series and applicable to sugar series of one to serie at a series and the series to sugar series and the series and the series of the series and this series are the present that one can be series and also increases the yield of following crops of orders and series and the series that the series of orders and the series of orders and the series of orders and the series of the series of

Estuate the most cases free of cost. The cost of leading is near in only charge made for car-load lets of 40 to 50 tons. This lime is an good as can be recurse for all 10 tons. This lime is an good as can be recurse for all 10 tons in the lime is an good as can be recurse for all allier. On account at its physical condition, being somewhat moist and cocasionally lumpy, it will not work through a lime distributer. Distribution is usually made from the wagen or piles by means of a fork or ended, or site a secure appealar. The best time to make the agolfoation is in the fail, or winter when the same is not ton deep.

Many inquirios dre often mede relative to the enalysis of sugar best increry reluse line, and the inflaving indust. No. 7, is a report by Frifeseor A. J. Patten of the Michieles Agricultural Experiment Station.

Table 7. Analysis of Sugar Beet Factory Refuse Lime.

Contents.	Sample No. 1.	Sample No. 2.
Moisture. Calcium and Magnesium Carbonate. Nitrogen. Phosphoric Acid (P2O5). Potash (K2O).	.39 per cent	79.84 per cent .29 per cent .65 per cent .09 per cent

The wide variance in analysis is due mainly to the difference in moisture content. Sample No.1 contained over 37 per cent water, while Sample No.2 contained practically no moisture.

After the lime has served its purpose in the beet factory, in purifying the beet juices, it is washed out of the filter presses with large quantities of water. This thin mixture of lime and water is then run into a settling pond. Refuse lime taken directly from the settling pond is in rather poor physical condition with a great deal of moisture. A few factories have used their power shovel and transferred large amounts of this lime from the settling basin to piles on high ground. After remaining in these piles for two to five years, the lime has changed from a pasty condition to a drier mealy state, which is then in good shape for distribution on the soil with a manure spreader, fork or shovel.

In Europe, where the sugar beet industry has thrived for about 115 years, the sugar beet growers are allotted refuse lime in proportion to the tons of beets delivered. There is a clause in their beet contract providing for their allowance

Table 7. Analysis of Sugar Fest Factory Refuse Sire.

The vide variance is analysis is due mainly to the difference in moisture content, Sumple Worl contained over 27, yer bent water, while Sample Worl conveined practically no moisture.

After the line has seawed its purpose in the best factory, in purifying the best juless, it is washed out of the filter presess with large quentities of water. This thin mixture of last and water is then run into a setting pend. As a relusable taken directly from the settling pend is in mather provided to local condition with a great deal of motobure. A few lauteries have used their power showel and transferred large amounts of this lime from the settling basin to piles on high ground. After remaining in these piles for two to five reasts, the line has changed from a pasty condition to a drier meal; state, which is then in good shape for distribution on the soil with a manure surewist, fork or showel.

In Turepe, where the sugar best industry has buried for about 115 years, the sugar best gromers are allosted notice to the in proportion to the year of beens delivered. There is a cleave in their best contract providing for their allowance

of lime. All this refuse lime, at the European factory, is usually cleaned up by three weeks after harvest.

Sugar beet refuse lime is a practical and cheap source of agricultural lime. Most sugar companies in Michigan make no charge for this lime in carload lots. The only cost to the beet grower is the actual loading charge at the factory and the freight to his station. The lime capacity of cars varies from 30 to 45 tons. Farmers may group together in the purchase of carloads.

There are great piles of this material, valuable for the correction of our sour soils, that are standing, unused, at the various sugar factories in the state. This waste material if properly used would add greatly to our agricultural prosperity.

Sugar companies also have each year a few carloads of fine dry air-slaked lime, which was not used in the purifying process. This lime accumulates from the lime burners. It is usually in excellent physical condition. Its analysis would be about the same as the hydrated lime purchased from commercial lime concerns.

In ordering carloads, it is first best to send for a sample, and thus avoid any misunderstanding.

Planting

The seeding of sugar beets needs to be carefully done by one who thoroughly understands all the requirements of the beet seed and the planter. Proper seeding is the first step of lime. All this refuse lise, at the Daronson Lating, is usually cleaned up by three whole after harvest.

Sugar best refuse line is a practical and chesp source of agricultural line. Nost sugar componies in Nicolica make no charge for this line in cariona losaling charge at the factor; the best grewer is the nothal losaling charge at the factor; and the freight to his etation. The line deposits of care varies from 10 to 45 tens. Variance may group together in the purchase of carloade.

There are great piles of this accesse, valuable for the correction of our sour sold, that are standing, valuable at the various sugar factories in the state. Into vante accessed if properly used would add greatly to our agricultural properties.

Sugar companies also have sach jam: a for carloads of fine dry air-elaked lime, which are not used in abs purifying process. This lime accountlates from the lime builders. It is deally in excellent physical condition. Its abelysis would be about the same as the hydrated lime purchased from orderoial lime occounts.

In ordering carloads, it is first best to seed for a sample, and brus evoit any misunderstanding.

Planting

The esecting of edger beats needs to be carefully done by one who thoroughly understands all the requirements of the DV one who the plants. Proper seeding is the first also

toward securing a good stand, without which a profitable tonnage cannot be grown. A comparatively level, well prepared soil is, of course, the first requisite to proper planting.

There are three machines which may be used in this work: the 4-row, the 3-row, and the 1-row seeder. The particular one to use depends upon the condition of the seed bed and the acreage to be planted. Many farmers use the ordinary grain drill, equipped with packer wheels, to plant the beets.

Enough of the cups are plugged to give the proper spacing of rows and the packer wheels pack the soil next to the seed and insures its being planted at the proper depth. The machines may be purchased, either with or without the fertilizer attachment. The width of rows recommended are from 23 to 34 inches.

The quantity of seed planted should never be less than 15 pounds per acre. It cannot be too strongly emphasized that plenty of seed should be used to insure a good even stand of beets and to reduce the cost of thinning. Great care should be taken to plant at the proper uniform depth, which is not deeper than one-half to three-quarters inches. The depth depends somewhat upon the character of the soil, the deeper plantings are made on the lighter types. Deeper planting than is recommended above is apt to smother the young beet plants.

Planting should begin as early in May as the seed bed can be brought into condition and is warm enough to cause germination. The usual planting period ranges from May 5 to May 20,

teneral securing a good brand, without which a prolitable tonmage cannot be grown: A compensitively level, well properly less that is, of course, the first regulation to proper planning.

the deror, the derinder upon the ornitation of the self-invitation on to use depends upon the condition of the self-und the annales to use depends upon the condition of the self-und the annales to be planted. Here immers and the best property of the cups are plumped to give the proper specific of the self-under the self-under the self-under the self-under the self-under the self-under the plumped to the proper depth. The self-under the self-under the plumped of the property of the self-under the self-under the plumped of the property of the self-under the

The quantity of seed planted should never as less than that plants per acre. It cannot be too etrongily embasised that plants of seed should be used to insure a good even missed of beets and to reduce the cost of thinging. Treat one should be taken to plant at the proper uniform depth, which is not deeper than one-half to three-quarters inches. The depth pends somethat upon the character of the soil, the despet plantings are made on the lighter types. Despet planting that is recommended above is apt to smother the roung best ofants.

Planting should begin as early in May as the should be brought to be condition and is wear anough to cause grand of the store of the st

but plantings may be made as late as early June where the early plantings were impossible or failed.

On soil which has a tendency to bake or crust over, the use of a culti-packer after planting and before the beets are up is recommended. In some cases this is the only means of saving the crop. Then the soil crust becomes too hard, it is practically impossible for the beet seedlings to break through and as a result are smothered out or come up later after a warm rain. In either instance, if an uneven stand results, the culti-packer helps to remedy the situation.

The sugar beet seed is supplied to the contracting grower at cost, by the sugar company. Special effort is made by these companies to secure seed of high germination from high yielding strains which will produce beets of high sugar content.

Transplanting

One somewhat objectionable feature of sugar beet culture, to some growers, is the extra amount of hand labor necessary to properly care for the crop. Several means of avoiding this difficulty have been suggested. One method was to plant the seed in a bed and then transplant the young plants at about the four to six leaf stage. The young plants would, of course, be spaced at the proper interval and thus do away with blocking and thinning.

Figure 17 is a picture of a field of beets grown in this manner. The beets were planted by means of a cabbage planter, but no water was used. The young beet plants stood the transplanting as well, if not better than did the cabbage trans-

but plantings may be wade as late as early dime where the early plantings were impossible or falled.

On soil which has a tendency to bake or other over, the use of a culti-packer after planting and beinte the basic arm up is recommended. In some cases this is the only seems of saving the crop. "Non the soil crust becomes too horse, it is practically impossible for the best acadilage to break canount and as a result are empirered out or ooms in later after a name rain. In sither instance, if an impress aimstance, the oulti-packer below to regar, the situation.

The sugar best used is supplied to the contracting frown at cost, by the sugar company. Special offert is made to there companies to secure seed of high gendination from high stelling strains which will produce beers of high sugar content.

anithal genera

One somewhat objectionable feature of sugar restreety to some growers, is the extra adount of hand large restreety to properly care for the excp. Neveral rease of avoiding this difficulty have been suggested. One herical was to plant the seed in a sed and then transplant the young plants at acoust the four to also less etage. The young plants would, of course, be spaced at the proper interval and this die easy with block-ing and thinning.

Figure 17 is a placture of a field of bests grown in this.

memoar. The verte were planted by means of a contemplation, but no water was used. The young best plants about the citamer planting go well, if not better than did the cobbact times.

planted on an adjoining area. A very good stand was secured and the crop looked fine throughout the entire growing season.

Fig. 17. A five acre field of transplanted beets on the farm of Wm. Lauer, Shiocton, Wisconsin. These beets were transplanted on June 25 with a cabbage planter. A very good stand was secured.

It was in the fall when the harvest commenced, that the real test began. At that time the disappointment of having a poor crop was evident. A very heavy percentage (about 75 per cent) of the beet roots were very short and prongy and the resulting yield was low. The first four or five inches of the beet root was of the normal size, but below this was nothing more than a mass of small, sprangling roots. This was caused, no doubt, by breaking the tap root of the young

planted on an adjoining area. A very good stand was required and one or looked line throughout the ordine growing measons.

Fig. 17. A five acre itseld of transplanted best on the far of acres of the farm of a hard, shipping, decorate. These bests the test transplanted on June 25 with a payloge plinter. Avery good shand was secured.

It was in the fall when the intrest contained, that the real test began. At shat time the disappointment of having a poor crop was evident. A very heavy jorcentege (about to yer cent) of the best roots were very intert and prongs and the resulting yield was low. The first four of five inobse of the best root was of the normal size, but below this was bothing note than a mess of small, spranging roots. This bothing note than a mess of small, spranging roots. This

was taken, the chances were fairly good for a more normal root development. Three different fields of transplanted beets were studied by the writer, and each gave very similar results.

Cultivation

amount of hand labor later on. A great deal of trouble with the beet labor is caused by poor cultivation by the grower. The cultivation is best accomplished by use of the regular two or four row beet cultivator. Discs or knife weeders and deer tongues should be used for the first two cultivations. After that remove the disc weeders and use knife weeders and deer tongues, or deer tongues alone. Duck feet should be used with care, as they are apt to cover up the beets and weeds in the beet row, thus making it very difficult to do the hand work.

The first cultivation should come immediately before blocking and thinning, which should be done when the seedling has developed four leaves. At this time the cultivator should be run as close to the row as is possible without cutting cut the beets. Rollers or culti-packers are often used with good results after blocking and thinning to smooth over and level off the dirt hoed into the middle of the row in blocking. In many cases it would be nearly impossible to cultivate immediately after blocking and thinning, if the roller or culti-packer were not used.

The beets should be cultivated at least five or six times

seedling on the time of transplanting. There the entire root was taken, the chances were fairly good the a more hornel root development. These different fields of transplanted brain wars et. Lied by the writer, and each gove very similar results.

mateautelm

Careful work with the quitteress will seve an exchous amount of hand labor later on. A great deal of croudle with the best labor is saveed by your delivering by the groups. The cultivation is continuously labor of the sevent wood four for best cultivator. Other or has of the results were tongues should be used for the ideas the delivering and for the ideas the delivering and dear the temperature of deer tongues, or deer tongues alone. Thus into acidera and dear tongues, or deer tongues alone. Thus is that along delivering the sevent up the period of the making it very difficult to do for mand core.

The first outtivation should come incitation, out the blocking and thinning, which should be done when the coulingator should has developed four leaves. At this time the cultivator should be run as glose to the row as to possible michous supplies out the beets. Reliefs or sulti-packers are often used with good results after blocking and thinning to smooth over and loval of the dire head into the middle of the row in blocking. In many cases it would be pearly impossible to sultivite basediated by after blocking and thinning. If the wolfer or sultivite basediated were not keet.

sents wie to avil years to batavirius ad blyons agent any

for the best results. These cultivations not only aid in clean culture but help to retain the soil moisture. Growers should not be afraid of cultivating too many times. In fact many farmers owe their good beet yields and thus good profits to liberal and careful cultivation. The first and second hoeings should be close to the rows and may be fairly deep, but later cultivations should be shallow, not more than two or three inches deep. If deep cultivations are made at these later dates, many feeding roots of the best root will be cut off. These roots interlace near the surface between the rows after about a month's growth.

Fig.18. A four-row beet cultivator on the farm of Henry Bergman, Van Dyne, Tisconsin. This picture also shows the proper time for second hoeing.

for the best results. These cultivations not enly aid in clean culture but help to retain the ect acteurs. Crosses should not be afraid of cultivating too many times. To fact many larvers one their good heet gibles and time good prolite to liberal and careful cultivation. The first and Sucand hostings should be close to the rose and set be littly drep, but larer cultivations should be enables, not age be littly drep, but larer cultivations should be enables, not ages than one or three income deep. If deep outtivations are nade of those of the cultivations are not strong and feature and the cultivations are not after a cout a conth's greens.

Fig.18. A four-row best cultivator on the favo of devil Bergman, Fun Dyne, Tisconeis. This ficture size short the proper time for second hosing.

The ground around the beets should not be hilled up; throw up just enough soil at the last cultivation to keep the top of the beet from being greened by the sun. A last cultivation should be made when the tops practically cover the row. Do not cultivate too deep or too close to the row at this time. A few leaves may be broken off, but this slight damage will be more than offset by the increased yield due to the tillage operation. The careful grower cultivates close to the rows early in the season and gets all the weeds possible by means of machinery. Weeds should be thoroughly cleaned out.

Blocking and Thinning

Bests should be blocked and thinned at about the four leaf stage. Block out the rows with a six or seven inch hoe, leaving bunches of about an inch, every eight to ten inches, and then thin out to one plant in a place, leaving the healthiest plant. The best yields of both best roots and sugar are secured when the plants are spaced about ten to twelve inches in the row. Sixteen beets to the rod make a good stand.

It is especially important that the blocking and thinning be started and completed as soon as possible after the beet plants are large enough to work. Yields are greatly reduced when this work is delayed. A bonus is oftentimes paid the laborer by the grower for an increase in yield over a certain tonnage per acre. This is often an incentive to the laborer to do better work and to do it at the right time.

Usually a second and third hoeing are all that are necessary to keep the beet rows free from weeds for the rest of The ground around the sents should not be hilled up;

the top of the nest from being greened (; the aum: A land

outstration excells so made alon the tops practically sower

the row. I new outstrand so made alon the tops practically sower

the row. I new outstrand so made alon the tops practically sower

at this take. A for leaves and or top close to the row

damage will us more than offers by the increased yield the top

the rillings operation. The caseful prover outstrates alone

to the rows saily in the season and dear all the resum jecable

by means of machinery. The should be thereoughly observed by

Theoling and Thematon

sees alook out the Misch and thinsel at about the fold leak stage. Plock out the Mose with a fix or seven ince too; leaven bunches of about an inch, every sight to ten inches, and then thin out to one plant in a plane, leaving the healthingst plant. The best yields of both best mores and sight, are anough the the plants are speced whose ten to indiversance in the xox.

Sixteen bests to the rod man a good stath.

to is especially important that the obtained of best be started and completed as soon as pure this are preside reduced plants are large enough to work. Yields are president end when when this work is delayed. A some is of centered paid she laborer by the grower for an increase in yield over a certain tennage per acrs. This is often an immediate to the laborer to do bester work and to do it at the right than

To your end tot sheem mort serk grow and that the crown of

the season. The second hoeing should be made about ten to fourteen days after thinning.

Fig. 19. Vost of the hard labor on sugar beets is done on a contract by regular beet workers. This picture shows a group of such workers on a ten acre beet field at Carney, Michigan.

Harvesting

The maturity of beets is indicated by a browning of the lower leaves. The date of harvesting is set by the factory as a result of a series of sugar tests on the beets taken at intervals in the fall. The process of sugar manufacture is closely associated with the ripening of the beet. A difference of a week or ten days in harvesting may mean a very great difference in the sugar content. Harvesting usually

the season. The second breing should be made about ton to.

wig. 10. Year of the band labor on augar rates is done on a contract by regular best vorkages. It is incline shows a group of such workers on a rec wors best field to Guthary. Michigan.

Harves bing

The majurity of Seers is indicated on a control of the most leaves. The date of nurseries is set by the indicatory as a result of a series of sugar funts on the Series interest in the fall. The process of sugar mentioning in the fall. The process of sugar mentioning is a seed with the important of the best is a seed or ten days in harvesting mentions a vest of the content. Harvesting mention usually areast all the sugar options.

Fig. 20. Boys are sometimes employed to do the hand labor on beets. This shows a bunch of boys on the farm of John O'Brien, Fden, Wisconsin.

begins in late September and continues through the month of October.

A special machine, called the "beet-lifter" is used in harvesting to locsen the beets in the row. The beets are then pulled by hand, knocked together to remove the dirt and thrown into convenient piles for topping. Beets from sixteen to eighteen rows are thrown into one row of piles. A regular beet topping knife is used for removing the leaves and crowns. The crownsare cut off at the base of the lowest leaf. The topped beets are then thrown in piles and covered with the tops to prevent excessive losses of moisture.

Fig. 30. Boys are sometimes amployed to do the hand labor on beets. This shows a bunch of hows on the farm of John O'Brien, Eden, Tisconsin.

begins in lars September and continues through the worth of October.

A special machine, called the "per-latter" to teste in harvesting to loosen the beste in the row. The deste are then pulled by hand, knooked together to remove the dirt and thrown into convenient piles for topping. Beste from eighten to sighteen rows are thrown into one row of piles. A regular best topping knife is used for removing the leaves and growns. The property out off at the best of the lowest last. The ropped beste are then thrown is piles and covered with the tops to provent excessive losses of colster.

Fig. 21. A characteristic group in the beet field. The company field man, the farmer and the beet laborers. A man and wife can care for twelve to sixteen acres of beets during the season.

The following paragraph, taken from Michigan Special Bulletin No. 106, explains the reasons for careful topping:

"It is important both to the grower and manufacturer that beets be carefully topped. The crown and leaves of the sugar beet are relatively high in potash and phosphoric acid, and by retaining them on the land or feeding them on the farm, much of the mineral fertility contained in the beet crop is returned. The salts contained in the crown prevent the proper crystalization in the process of sugar manufacture. Consider-

Pig. 21. A characteristic group in the best iteles.
The company field man, the farmer and the best laborate.
A men and wife can care for twelve to eligen eares of bests during the season.

The following paragraph, taken incom Michigan Special Bulletin No. 108, explains the remease for careful typhic:

"It is important both to the grower and manufactures that that beets be carefully topped. The aroun and leaves of the sugar beet are relatively high in potash and phosphoric and, and by retaining them on the land or feeding them on the proper returned. The salte constained is the crown prevent the proper returned in the proper manufacture. Consider

ing this, and the fact that the sugar content of that portion of the beet above ground is low, it is apparent that careful topping must be insisted upon by the manufacturer, and he is fully justified in deducting the amount of tare due to poor topping.

Average yields per acre range from eight to ten tons, but good growers frequently secure twelve to fourteen tons and exceptional fields yield from sixteen to eighteen tons per acre."

Fig. 22. A fairly typical sugar beet worker's house.

Many of the workers move to the large cities in the winter
for employment. Others remain in the community, purchase
land and become settled inhabitants.

ing this, and the feet that the sugar dentent of that portion of the best above ground is low, it is apparent that careful topping must be insisted upon by the manufacturer, and he is fully justified in defacting the amount of three due to poor topping.

Average violating the work expert store year above the contract of the contrac

Fig. 28. A Tairly typical augus meet morker's notice in the single of the solution in the solution of the seployment. Others remain in the community, purchase land and mocome settled inhabitants.



Fig. 23.

Figures 23 and 24: Hauling sugar beets to the station has been made easier by installation of unloading divices.

These views show two stages in the operation of the Waverly Beet Hoist at Stephenson, Michigan. A two to five ton load of beets is handled in from three to five minutes.

. 68 . SAT

Pigures 33 and Bd: Benling super beets to the pricton has been mens easier by inequination of unloading divises. These views show two prages in the operation of the Favelly Boet Hoter at Stephenson, Michigan. A two to five ten load of beets is handled in from three to five glautes.

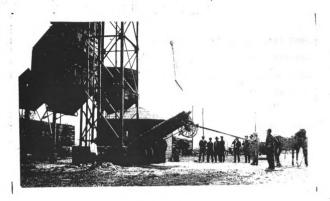


Fig. 34.

Fig. 25. The conveyor type of beet unloader works successfully in the smaller stations.

Fig. 35. The conveyor type of been unloader works

Crop Rotation

Sugar beets, as do other crops, give the best results when they become part of a proper crop rotation system. It is a very valuable crop in the rotation on adapted soils. It has taught many farmers the value and habit of clean culture. It is a real good dependable cash crop.

Proper crop rotation aids in (1) maintaining the soil fertility, (2) eliminating weeds and insects, and (3) controlling plant diseases. Figure 23 shows diseased areas in a beet field caused by Phoma Root Rot. This field was in beets the preceding year and the diseased areas the following year corresponded closely to the piles of tops from the beets of the previous year. Thus it is observed that beets planted two years in succession on this field are sometimes badly infected with disease.

Fig. 36. Grop rotation aids in controlling fungous diseases. The spots showing Phoma Root Rot were the spots where the best leaves and crowns were left the fall before, after the crop was harvested.

model and govern

Sugar beets, as its octer crops, gars the best conflict when they beets a part of a proper trap incation eacher. It is a very valuable drop in the rotation on adapted sofis. It has beight many farmers the value and partit of olders college. It is a real good days taking country.

Party of the control of the control

Pig. 26. Orop rotation aids in controlling funces dispensed from the spots showing Phone in the the ton spots short the case that the fall before after the orop see parvented.

The clean culture given the beets is a great asset on every farm. The writer has observed many bad fields of quack grass that have been cleaned up by one crop of beets. It is very necessary in quack infested fields to give the field very careful and thorough preparation and frequent cultivations. Blocking and thinning, and hoeing must also be done well and at the right time.

Fig. 27. The potato is an excellent crop to precede sugar beets in the rotation. A seven acre field of potatoes on the farm of C. J. Salewsky, Menominee, Michigan.

The following rotations are especially well adapted to Michigan conditions:

(1). First year - clover; 2nd year - corn, beans or potatoes; 3rd year - beets; 4th year - oats, barley or rye, seeded to clover.

The olean oulture given the beste de a greek asset on every farm. The writer has observed sang and fields of quack grass that have been cleaned up by one copy of bears. It is very necessary to quick independ fields so give the field very careful and thorough preparation and frequent cultivations. Blocking and teinning, and hoeing such also as donaweld and at the right time.

Fig. 37. The poteto is an excellent tropy to recode eagur beets in the rotation. A seven sore field of notations on the farm of C. J. Salewaky, menomines, Micrigan.

The following rotations are secretarly well omighed to

(1) First year - clover; 2nd year - corn, deans or potetices; 5rd year - bests; 4th year - cats, barley of fys.

- (2). First year clover; and year corn, beans, potatoes, or beets; 3rd year oats, barley, rye, or wheat, seeded to clover; 4th year clover; 5th year beets, corn, beans, or potatoes; 6th year oats, barley, or rye, seeded to clover.
- (3). First year corn, beans, or potatoes; 3nd year beets; 3rd year oats or barley, seeded to alfalfa; 4th year alfalfa; 5th year alfalfa.

Fig. 28. Clover is a valuable crop in the sugar beet rotation. A field of clover on the farm of the Menominee County Agricultural School, Menominee, Michigan.

Some apparent peculiarities were observed in connection with the crop rotations with beets. While corn is a very good crop to precede beets, still beets following potatoes usually gave a greater yield than when they followed the corn. This may be due in part to the deeper culture given the potato

- (3). First year clover; Snd year com, bears, potations, or bacts; 3rd year cats, barlar tre; or theat, sended to clover; 4th year clover; 5th year cere, corn, bears; or potatoes; 6th year cats, barlay, or res, seeded to clover.
- (3). First year oats, seats, of possess pure year beets; 3rd year oats or barley, seeded to alfalfs; Ath year alfalfs; 5th year alfalfs.

Fig. 28. Clover is a valuable drop in the samelines rotation. A field of clover on the farm of the samelines County Agriculturel School, Menomines, Michigan.

Some apparent populiarities were observed in connection with the crop rotations with casts. While corn is a very good crop to precede usets, still bests following persons usually gave a greater yield then when they followed the corn. This may see due in part to the deeper culture given the potato

crop.

Grains are the ideal crop to follow beets. The clean, deep cultivation required in growing a crop of beets leaves the land in excellent condition for a following crop of small grain: oats, barley, wheat or rye. Lifting and pulling the beets in the fall makes plowing for the following crop unnecessary.

Fig. 29. Small grains: oats, barley, spring wheat and rye are ideal crops to follow the sugar neet in the rotation. A field of Worthy oats on the farm of Wm. Christiansen, Menominee, Michigan.

Beets do very well after clover sod, which has been fall plowed and well prepared. Spring plowed sod, unless especially well prepared is not as well adapted to beet culture.

erop.

Oralization required in growing a apoptof beared leaves the property beared leaves the pend in excellent condition for a religious step of eaching grain: care, carley, whose or was. Lifeting and pulling the beare in the fall makes ploying for the following or the necessary.

Fig. 89, Small grains: oats, basis, epring miest wot are as as ideal oxops to follow the august eat in the relations a field of Worthy oats on the farm of Wa. Cartatlanem, Monopines, Michigan.

Destu do very well after clover sod, which has seen dell plosed and well prepared. Spring ploses sod, unless depositly well prepared is not as well adapted to meet oul-

Another very noticeable feature in connection with the rotation is that corn does very poorly when following beets. Neither the grain nor forage that could reasonably be expected are secured.

The part which the beet crop plays in maintaining soil fertility is discussed in the following paragraphs.

Advantages of Sugar Beet Culture

Not only does the beet crop rank high in acreage value, but there are also other valuable considerations connected with this industry.

The history of the sugar beet in Europe and in the beet growing sections of the United States, shows that the culture of this crop has been very closely associated with improved agriculture. Many good farmers have repeatedly stated: "that they have obtained larger yields of grains after beets than after other crops; that their soil is left in better physical condition; that the beet tops and leaves, when properly cared for and fed to the dairy cow are a wonderful milk producer."

The idea that the beet crop is a "soil robber" is sometimes held by farmers. If the tops and pulp or the resulting manure from feeding them is applied to the land which produced the beets, less fertility is removed by beets than by any other cash crop in Michigan. The following table taken from "The

Another very noticeable feature in opposition fits the rotation is that corm fore warp proving that solioring testa-Helther the grain nor forece that out reasonably be eatpeaced are escured.

The part which the rest ofto, place in mathematics wolf fertility is discussed in one following paragraphs.

STATES OF BANKS IN THE TOTAL

Not only note the work drop rain with in advance villed but their are also other valueble bundledshing denicores, with this findustry.

The history of the augus news in Dirtys and in the costs growing sections of the out the Original States, Shows and the out this original seasons are selected from a state of their other original larger yields of grain after other original that the best other original that the left in better physical condition; that the oset tops and lowest when property oned for and fed to the dairy own are a condition with property or are a condition with the original state.

Effects of Seets on the Productivity of SoilThe idea that the best erop is a "soil robbert is cometimes held by farmers. If the tops end pulp or the resulting
manure from feading them is applied to the land which produced
the bests, lass farmility is removed by bests them by any other
bash orop in Michigan. The following table taken from "The

Sugar Beet in America" by F. S. Harris gives the amount of mineral plant food removed from the soil by beets and by other crops.

Table 8. Data showing the mineral elements removed from the soil by six of Michigan's important crops.

Crop.	Yield.	Nitrogen.	Potash.	Phosphoric Acid.
Sugar beets Potatoes Wheat Barley Oats Corn	10 T. 6 T. 30 bu. 40 bu. 45 bu. 40 bu.	30.0 lbs. 47.0 '' 48.0 '' 48.0 '' 55.0 ''	70.0 lbs. 76.5 '' 28.8 '' 35.7 '' 46.1 ''	14.0 lbs. 21.5 21.1 20.7 19.4 21.0

As stated previously, the small grain crop does especially well after the best crop. Increases in yield of grain following beets have long been recognized in Europe and is now being recognized in the best growing areas of the United States. The following figures are of interest in this connection. The United States Department of Agriculture studied lib farms and found that following sugar bests, the average yield of wheat was increased from 28.8 bushels per acre; oats were increased nearly 30 bushels and barley 20 bushels per acre.

The highest yield of rye ever obtained in Menominee County, Michigan, was a field of Rosen rye by Magnus Toberg of Daggett, which, following beets, yielded 42 bushels per acre. The highest yield of spring wheat recorded in the same county was produced by Nels Swanson, Menominee, with Marquis wheat, following beets, which yielded 43.2 bushels per acre. Increased yields of oats and barley, following beets, were also

Sugar Beet to America" by F. C. Marris gives the except of mineral plant food removed from the soil by beets end by other orops.

Table of Tuta shoung the winters elegants remover from the soil by six of Hostigan's injortant oroge.

As stated previously, the small grain orap does especially rell after the test orap. Increases in yield of guain 151lowing bests have long osen recognised in Jarope and is now
being recognised in the best growing asses of the United
States. The following figures are of interest in this consection. The United States Department of Agriculture statisd
lib farms and found that following sugar reets, one swimesyield of wheat was increased from 28.8 bushals per Acre; cath
were increased nearly 30 bushals and bariar 20 bushals per acre

ty, Michigan, was a field of Resen Mys by Magnus Tobars of Daggett, Which, following Lests, yielded 48 bushels per ante. The nighest yield of spring wheat recorded in the same county was, produced by Nels Swanson, Memorines, with Marquis whest, following neets, which yielded 43.8 bushels per acre. Increased yields of oats and barley, following bests, were also

Fig. 30. Larger yields of grains are usually obtained when following a sugar beet crop. Spring wheat following beets on the farm of Chas. Salewsky, Menominee, Michigan.

Fig. 30. Larger yields of grains are usually obcained when following a sugar opet crop. Spring wheat following backs on the farm of Unna. Swieweky, Memogramsz Michigan.

Fig. 31.

Two pictures which call the story of increased yield of grain following dests. These are view of two portions of the same field, one point has an postatous the year previous, the other (Fig. 58) was in cests. Jove increases number of shocks of the grain on the portion following seets. Farm of line, bissis whristensen, during, wounts dumby, is.

Fig. 32.

Fig. 31.

Two pictures which tell the abortoof inconsess which of grain following seets. These was views of two portions of the ease field, one portion has in paint one see the relation to the provide view of the grain of the present make the seets of the grain of the present the forton following seets. The of the grain of th

secured in this territory.

Soil Is left in Better Physical Condition

The following observations relating to the question,—
Why beets improve the soil? - have been made. These are
from "The Soil, Fertilizer and Care Necessary to Grow a
Good Crop of Sugar Beets," by the writer and published by
the Menominee River Sugar Company:

"Grain rocts do not penetrate beyond the depth of plowing, which was three to four inches in Europe before the beginning of Sugar Beet culture and in the United States is but five to six inches where sugar beets are not grown. This thin layer flapped over in pancake fashion, year after year, is all the soil from which crops ordinarily draw nourishment. The unstirred soil beneath is too compact for grain roots to penetrate, it contains little or no humus, is not aerated, and hence is not fertile.

Deep Plowing

The sugar beet is a deep rooted plant, and to secure good results, deep plowing and sub-soiling from eight to ten inches is essential in order to make a deep mellow seed bed so that a good long root can develop, and thus produce a large tonnage. By breaking up the soil to twice the usual depth, the lower soil becomes aired out and fertile and permits the roots of cereals and grasses to obtain plant food from twice the usual depth of soil.

. Violizied th this territory.

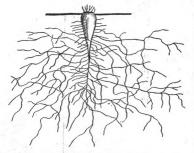
Soil le left in Bester Physical Condition

The following checruations relating to the question.

They been inprove the soil? - mare been mades. These are

from "The Soil, Firtilities and Care "esteement to orthe a

Good drop of Sagar Beers," of the writer and qualished by


the Menomines River Sagar Company:

Ing. which was three to four imphes in Europe before the deginning of Sugar Test outsure and in the United Decise to put five to six inches where event bases are not giorn. This thin layer flapped over in pancels fashion, sent wires rest, to all the soil flow which copys outsinging that noninterment. The unstirred soil beneath is see despace for grein roots to penetrate, it connains little or no humse, is not assertd and

Deep Plesting

The nuger best is a deep rooted plant, and to each possible results, deep plowing and sub-solitan from signification the description of the sensities in order to make a deep selies seed bed so that is specified the good oan develop, and thus produce a large tenness. By breaking up the soil to saide the usual depth, the loner soil basques sired out and fertile and permits are tooks of permits and graphes the usual depth of soil.

ROOT SYSTEM OF MATURE SUGAR BEET

ONE TON OF ROOTS PER ACRE REMAIN IN THE SOIL AFTER THE BEETS HAVE BEEN HARVESTED

THE AIR CHANNELS EXISTING AFTER THE DECOMPOSITION OF ROOTS PERMITS SOIL AERATION-MAKES PLANT FOOD AVAILABLE

BEETS ARE NATURAL SUBSOILERS

ROOT SYSTEM OF MATURE SUGAR BEET

ONE TON OF BOOTS PER ACRE REMAIN IN THE SOIL AFTER THE BEETS HAVE BEEN HARVESTED

THE AIR CHANNELS EXISTING ATTER THE DECOMPOSITION OF ROOTS PERMITS SOIL AFRATION-MAKES PLANT FOOD AVAILABLE

Roots Penetrate Soil

In preparing a field for beets, the deep plowing increases the amount (of soil that can be used by the crops. But this is not all, within three months after the beets are planted, the plant has sent out great quantities of roots which penetrate the lower unstirred hard soil to a depth of several feet.

These roots are from the size of a hair to that of a slate pencil, and when the beets are plowed out in the fall, there is from one to two tons per acre of these fine roots left in the soil. These decay and leave available plant food for the following crops and also leaves the sub-soil honey-combed like a sponge with millions of minute channels. Through these channels first the air and then the surface winter moisture penetrated, and it is this moisture and deeper cultivation that aid in increased yields.

During the growing season of plants the amount of moisture in the soil regulates the yield to be obtained and so whatever adds to the conservation and storage of winter moisture in the soil, adds greatly to the yield of the crop. However rich the soil is in plant food, it is of no use unless there is enough moisture so that the roots can absorb it.

In ordinary plowing and cultivation, the soil beneath the top five to seven inches is so compacted that once the surface is full of water the surplus runs away."

Beet Tops and Leaves

Very few other forms of roughage are as good as beet tops to produce milk. They are especially stimulating to the dairy

Roots Remetuate Soil

In preparing a field for beets, the deep plewing increases the emount of soil that can be used by the order. But this is not all, within this acoust this after the heats are planted, the plant has sent out great quantities of foots which ponetrate the lower unstired hard soil to a depth of several feet.

These roots are from the size of a hair to that of a size pencil, and when the bests are plowed out in the fall, there is from one to two tone par eare of these fine mosts left in the soil. These decay and leave available glant food for the following oropa and also leaves the sub-soil bosev-conord like a sponge with millians of akaste channels. Toucky buter that the air and that the air and the surface winter acidities constant and it is this moisture and desper culcivation that tath in increased yields.

During the growing season of planes the scount of motstare in the soil regulates the yield to be obtained and so whatever adds to the conservation and storage of winter motstare in the soil, adds greatly to the yield of the crop. Nowever rich the soil is in plant food, it is of no use inlies where he snowin motature so that the roots can absorb it.

In ordinary plowing and sultivation, the most beneath the top five to seven imphose is so companied that once the surface last full of water the surplus runs sway."

Best Tops and Leaves

writes and as being as are agaington to sauch ready were greve.

cow. Coming at the time in the fall when pastures are short, they fill an important place for the dairy farmer who is looking for a larger milk yield. In many cases when these tops and leaves are properly cared for and properly fed, they more than pay for the hand labor on the beets.

To secure the most good from this feed, it should not be pastured off in the field but should be piled in bunches about two feet in height and fed out as needed. They may be ensiled by running through an ensilage cutter with an equal amount of straw. They may also be pitted for winter use.

Sugar Reet Seed Production

Previous to the World War practically all the sugar beet seed used in the United States was imported from foreign countries,—Germany supplying the largest amounts. During the war the supply was partially cut off and to insure enough seed to plant the usual acreage, the sugar beet companies started in the seed growing enterprise. The three pictures shown here give some characteristic views of this industry. After the seed beet stalks are cut and cured, they are then threshed with a grain thresher with some of the concaves removed. The seed is then recleaned and bagged for spring shipment.

oow. Ooming at the time in the fall when passures and shorty they fill an important place for the lairy farmer who to low-ing for a larger milk yield. In many desention shows tope and leaves are properly dayed for and properly fed, they some than pay for the hand later on the brate.

To secure the most good from this fred, it should not be passed in cambbes about pastured off in the field out as should be piled in cambbes about two feet in metgar and fed out as needed. They may be enabled outter with at agent decima of strew. They may also be pitted for winter use.

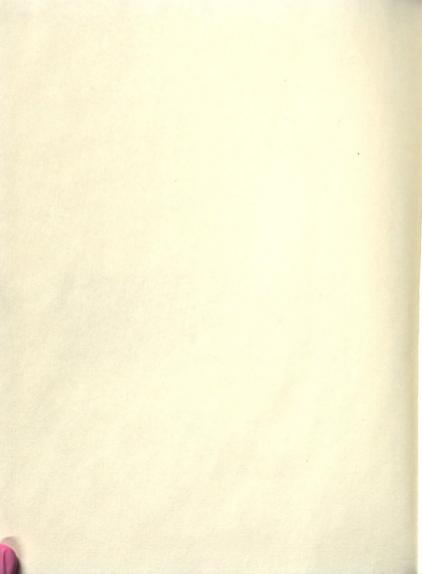
Sugar Rest Seed Production

Previous to the World War practically all the electroness seed used in the United States was imposted from forming countries. - Osrmeny supplying the largest success. Furth, the war the supply was partially out off and to income enough seed the plant the usual acrosse, the sugar best companies attreed in the esed growing enterprise. The three protesse about here give some characteristic views of this industry. Mitsh the seed best stalks are nut and ourse, they are then threshed with a grain thresher with some of the concewes reported. The seed is then recleaned and bagged for sprint address.

Fig. 33. A field of Dipy Stecklings on the farm of Wm. Van Den Heuvel, Seymour, Wisconsin. These beets are cared for the same as the regular sugar beets only they are thinned to a plant every four inches instead of every twelve inches. This secures a smaller beet. These beets will be pitted in the fall and used as mother seed beets the following spring.

Pig. 33. A field of Dipy Stecklings in the ferm of war. Yen Den Seuvel, Seymour, Wisconsin. These weeks also cared for the sees as the regular sugar trute only disy are tablened for plant every four inches instead of every trut inches instead of every trute and the sees a smaller bear. These because will be pisted in the fall and weed as nother seed noother trute in the following apring.

Fig. 34. A fifteen acre field of sugar beet seed on the farm of Henry Housman, Seymour, Wisconsin, nearly ready for harvest. The mother beets are planted very early in the spring in rows 36 inches apart each way.


Fig. 34. A lifteen age lield at sugar beet sood on the farm of Henry Housean, Seymour, Timeomain, mearly ready for hervest. The mother bests are planted work early in the upring in rows 36 inches agent each way.

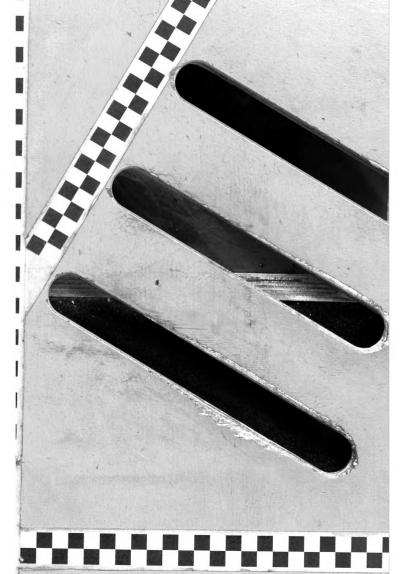

Fig. 35. Cutting sugar beet, seed on the farm of Wm. Van Den Heuvel, Seymour, Wisconsin. A shock may be seen on the right foreground of the picture. Seed beets ripen unevenly and so three or four different cuttings must be made to obtain the best results.

Fig. 35. Cutting eager mest, ered on the fund of Wm. Van Den Feuvei, Seymour, Fisemeein. A shock may 38 area on the right foreground of the pisture. Seel bests riben unevenly and so three or four different outsings must be made to obtain the best results.

