Inheritance of Size and Shape in Beans

THESIS FOR DEGREE OF M. S.

PAUL. KWONG FU.

1916

THESIS

-

$$
\begin{aligned}
& \left\lvert\, \begin{array}{lll}
a & 2 & \\
\therefore & \ddots & \ddots
\end{array}\right.
\end{aligned}
$$

THESIS

INHERITANCE OF SIZE AND SHAPE IN BEANS.

Thesis for Degree of M.S.

Paul Kwong Fu.

1916.

ACKNOWLEDGMENT.

I wish to thank Mr. Frank A. Spragg, Expert in Plant Breeding of the Experiment Station of the Michigan Agricultural College, under whose careful supervision the investigation was carried on, for kindly advice and assistance during the course of the work.

CONT EMTS.

Page 1Introduction
Previous Works On Beans 2
Sources of Materials 5
Method of Work 8
Datas and Discussions 16
Conclusions 28

INTRODUCTION.

Many farmers like to grow small pea beans, but it has been their opinion that these pea beans tend to beoome larger and longer as years go by. It is said that many kinds of small pea beans of a decade ago have now become navies of larger types, and in many instances have lengthened into kidneys. There is no data to support these contentions, yet the opinion of men who for many years have handled beans should not be lightly laid aside. Bor this reason, Mr. F. A. Spragg saw the need of a fuller knowledge regarding the inheritance of size and shape, and suggested that I investigate the reason why beans have become longer and larger thru the years, if this be true.

This paper is the result of observations and statistical studies on the inheritance of size and shape obtainable in one year (part of two season) from crosses between common commercial varieties possessed by the 8tation. The early work had been done in the Plant Breeding Division of this Station.

Beaause of the great value of bean crop as food, it has great economic importance. Consummers of beans usually object to colors and certain size and shape in beans (not that the y have any correlation with quality, but that it is a mere fashion demanded by them). Thus, colored beans and certain sizes and shapes do not generally find as ready a market nor as good a price as white ones having the sizes and shapes con-
sidered desirable. In order that the plant breeder may obviate such troubles and produce the varieties most generally desired by consumers, he needs a better knowledge of bean heredity. It is because of this fact that this work is attempted.

PRPVIOUS WORK ON BEANS.

Professor E. A. Emerson did much work on the inheritance of color in the seed coat of beans when he was connected with the Nebraska Experiment station. In his work with bean crosees, he found that all the racial crosses of beans praduced, show ifttie variation in the first generation, but pronounced variation in the second and third generations. Under selection, they appeared fairly well fixed in the fourth and fifth generations. The characters of the two parents (atavistic tendencies) were usually reproduced among the offapring of the second or third generation tho often the new tendencies were noticable. Characters different from the parent forms were usually blends in the crosses or united unchanged in mosaics of small or large pattern.

In the study of size and shape in beans, he made numerOus crosses between Fillbasket Wax having long flat seeds, Longfellow having long slender seeds, and Snowfake Navy having small round seeds. He then determined the mean, the coefficient of variability for each of their lengths, weights, breadths and thicknesses. He observed that in the first gen-
eration, the mean and the coefficient of variability were not materially greater than for parente, but in the second generation, individuals exhibited marked segregation of size and shape. From this, he concluded that "Shape may be definitely inherited. Observations of the second generation bean seeds where the parents differ in size but not in shape indicate that length and breadth are probably not inherited indeyendently of each other. Large round beans crossed with small round ones do not give any long slender beans in the second generation, but only large medium and small round ones. on the other hand, when the parents differ in shape as well as in size, intermediate and parental shape as well as intermediate and parental dimensions occur in the second generation"

Mr. J. Belling, Assistant Botanist of the Floride Experiment station in an attempt to secure a hybrid that would combine the thin unopening hull of the Velvet bean with the Lyon Beans' smooth pods which do not have the objectional irritating bristies, has also studied the standard deviation and coefficient of variability of the length, breadth, thickness and weight, also the correlation of length and breadth and thickness of the F_{2} crosses between the Lyon and Velvet beans. He measured from 50 to 200 seeds of each of this 118 plants and found that they varied between 10.5 and 20.05 mm . in length, and from 8.3 to 13.55 mm . in breadth. In his study of theweights of these seeds, he found that they varied from .5 to 1.9 gm . He then concluded that, "The close agreement of the length and breadth of the hybrid seeds with those of
-
the Lyon beans and of the thickness that of the Velvet may possibly be genetic or may be due to special conditions of growth". However, he did not investigate the size and shape of beans in general.
I. Johannsen worked with the weights of beans and found his pure line theory. He weighod the seeds of a single variety of beans and planted them soparately. They arranged themselves in a normal curve round the weight of greatest frequency Where the seeds from the individual flants were harvested separately. The crop from each individual again could be grouped according to their weights in normal curve around the most frequent weight characteristic of each individual. Thus, there was a rough correspondence between the modes for the individual plants and the weights of the individual seeds from which they sprang. The heavier strains on the whole come from the heavier seeds and the lighter from the lighter seeds. But when he selected the heavier and lighter seeds from a single strain and planted thom separately, he found that the modal weights were approximately the same for the produce of both the hearier and the lighter seeds. This indicates that selection inside the strain raised from a single seed does not alter the modal weight, 1 . e., the product of the two selections are the same genetically.

To sum up, it may be said that none of these investigetors have told us what sizes are soparately inherited, nor the number of inperited factors involved.

Johannsen has shown that there are such factors, because
the progeny of homozygous beans belonging to slightly different sizes maintain separate means, and do not regress to the mean of all sizes of beans.

Emerson has shown that length and width are not inherited separately, but togehter as inheritance of sizes of the same shape. Variations in the inheritance of shape, he finds occur only when the parents differ in shape.

It remains for me to lay some foundation in an investigation of the factors involved.

SOURGRS OF MATERIALS.

The Michigan Experiment Station had gathered varieties of beans from different sections of the state and country. These had been selected to eliminate impurities and then tested in variety series where the plats were long amd narrow strips side by side. Thus, these varietios had been brought close together in the variety series and exposed to general crossing if beans are so inclined. Beans are normally autogamous (close fertile) yet a very few natural crosses resultod (perhaps not one in ten million). Altho 106 different lots of beans have been given accession numbers by the yichigan Experiment station and only four of these (viz.:-Nos. $2,4,36$, and 40) have become the mothers of colored crosses, there seems to have been other natural crosses of which accession numbers $61,87,88$, and 89 have become mothers because segregations are obtained. The following are all that
have in any way entered in this investigation:-

MATERIAL FROM WHICH THE MATERIAL FOR THE STUDY OF SIZR AND SHAPE ARE SELRCTED.

Accession Numbers.
Accession Kind of beans. There from. Year obtained. numbers.

2	Modium red Eidney	Michigan	1907
4	White kidney	-	-
13	White navy	"	"
36	"	"	1910
40	"	*	"
61	\cdots	" 1	1913
62	"	\cdots	-
65	Large white navy	Portland, Oregon	1914.
67	Pink navy	* \quad	"
71	Navy	Stockt on, Calif.	n
75	Large wiite navy	" "	"
76	" "	"	*
78	" \quad "	San Francisco, Cal.	.
83	Red kidney	- \quad	"
87	Tellow Sweedish navy	Idaho	"
88	White pea	Michigan	"
89	White kidney	*	"
91	Pea bean	"	1913.

Natural Crosses.

Kid of Crosges.

F_{1}

F_{2}

Navy - White navy Black and brown kidney Acc. \#T Red Kidiney
$\frac{\text { Navy }}{\text { IcC. } 4}$ - White navy Black kidney
$\frac{\text { Navy }}{\text { Acc. }{ }^{\text {\# }} 36}$ White navy Black navy
Navy - White navy Black navy

White and colored navy and kidney

Thite and colored navy and kidney

Colored navy

Thite and colored navy.

Out of the plats representing accession numbers $2,4,36$ and 40, the station had obtained some black and brown seeds. The result of crosses between these varieties and some navy pean that grew alongside. The source of polion was slightly uncertain but must have come at least partly from white navy beans in every cross. The first generation of the crosses (F_{1}) (grown in 1913) gave in all cases either a deep purple (almost black) or brown offspring. The crosses between navy and kidney forms were kidney beans in F_{1}. The crosses between two navy beans have given navies in all cases. Unfortunately, the F_{1} croy was threshed each plat as a whole, and for this reason, we do not know but what there may have been some purple kidney of F_{1} having a kidney sire producing all kidneys in crop. The beans grown in 1913 were sorted according to color and shape and the classes counted. Then each such lot was planted separately in 1914.

Growing thus in rows with classes recorded, and stakes attached to each, I harvested the 1914 beans, gathering the

Beods of each individual plant separately. The seed from oach plant was placed in an envelope and given a selection number in accordance with the system used by the Michigan Experiment Station. This system consists usually of five figures, the first of which stands for the year in which the crop is grown, the second and third of which atand for the number of plat in which the plant belongs, and the fourth and fifth, for the selection number, the only exception to this being, that when the plat number exceeds 99, an extra figure is inserted.

When I took over the material, most of these crosses were in their second generation and were rich in color of rarious combinations and also sizes and shapes. After they were fully classified it was decided to make selections with a Fiew of studying the size and shape in beans, as the inheritance of color had been well covered by others.

MEIHOD OF WORK.

In selecting the material, preference was given to white beans because those are the types preferred by the market. I also saved an extra quantity of small white navy and pea beans that the Michigan Experiment station might have material from which to develop the new varieties most desired by the farmers and the trade. 411 other $81 z e s$ and shapes were included in so far as they could be found among the white beans. When a type of size and shape was not represented among the whites, colored beans were selected to
represent that type. Also when the data indicated that certain lots were especially apt to furnish the segregations desired, these were included.

From among the 1914 individual plant selections, about 200 were chosen to become mothers of individual progeny plats in 1915. These lots totalled 14280 seeds. Each of the plant sslectiors was given a plat number and a record of this and pedigree numbers was written on a small card using waterproof ink. These cards were afterwaras faraffined and tacked to small stakes located at the end of the row in field. PlantIng was done on June 18 and 14. The plants from 50500 to 59500 were planted on sandy soil near the poultry flant, while the remainder were planted on loamy soil in field $\$ 9$. The season was extremely unfavorablefor beans but most seeds fushed their cotyledons above ground within one week's time. The same kind of culture was given to all, and in ono month's time, the stand was beginning to thicken. The number of plants was then taken and found to total 10787 plants. The growth in leaves and stalks was very profuse in some plats and very little in others, and sometimes there was great contrast among plants of the same progeny (i. e. from the same mother plant). As to uniformity of stand among the plats, there was also marked difference.

While they were in the bloom, notes were taken on the color of flowers. There were only a few plats that had ontireIy white flowers. In the rajority of cases, cream colored flowers were also present in the same plat. The fresence of
light red flowers in red flowered plats was also very common. In some plats flowers were sonetines found of the following colors: crear, light red, and red, and purple.

In general bush beans began to develop pods earlier than the vine tyces, but they matured about the sane time with a few exceptions. The bush bea:s seemed to be more susceptable to blight and rust, and as a general rule produced fewer pods and se eds per plant.

The cold rainy weather in the latter part of dugust bogan to tell heavily on the plants which were soon chilled by light frosts. Diseases got the upper hand and the abundance of moisture supplied by the rain stimulated vegetative growth and the setting of new flowers too late in the season to ripen in time for harvest.

Harvesting began on September 12th and contimed daily or nearly so as long as there were ripe plants. They were pulled, tied in bundles, properly labeled and taken to the laboratory between showers. When dry enough, each plant was given a mamber to indicate the year the plat from which it came and its selection mumber. Growth had stopped by October 15th and the remainder of the crop was then harvested in so far as it was of any value to this investigation. Notes were taken on such characters as the number of stalks; the weight; whether bush or vine; the manner that the pods were carried; the number of shrunken pods; and the kind of disease with percent of the same. The reason for taking notes along so many lines was to be sure of a thesis in case raterial for
size and shape proved to be insufficient.
Threshing was done by a small. home made machine run by a $\frac{1}{2}$ horse power electric motor. \& total of 4592 plants were threshed. The seeds of different individuals were then cleaned and counted. Bample types thot to represent all the beans on hand were sorted out and the mean, standard deviation and coefficient of variability were determined for width, length and shape of each type sample the shape being the ratio between length and width. These sample types were arranged in a table according to their mean width. The narrowest was numbered 1 and the widest was numbered 24. There was, however, one exception to this in that $\# 6$ type was found impractical. Two new ones that were somewhat narrower than the original $\$ 6$ took its place. These were called \#6 and \#6a falling in order of width between \#4 and *5. As colors often make the seeds look longer than their true dimensions, white beans are preferable as types to colored ones and were chosen Whenever suitable ones could be found, yet types number 9, $14,16,17,18,19,20,21,22$, and 23 had to be colored beans as no wiftes of these sizes and shapes were found in the collection. The remainder of the individual plants was then given type mumers referred to these types samples, the number being that of the type most nearly approached. The following tables contain the mean, standard deviation, and coefficient of variability of the length, width, and shape of the type samples:-

TABLE A．
Width of Type Samules in Millimeters．
（Giving also plant number and number of seeds．）

TyEe nos．	Flat nos．	No．of seeds．	M．	σ.	C．

1	53006	94	5． $521 \pm .0265$	．3804土 0187	7．89土 3389
2	520\％s	124	5．629 00238	．39291． 0168	6.98 土 2990
8	59601	73	5．87\％ 5.0300	． 3799 ± 0812	6．46上， 3606
4	52048	184	5.978 土． 0226	． $3871 \pm .0159$	6．48土． 2670
5	59301	47	6．160土． 0899	．4052土．0282	6．58土． 4576
6	56571	77	6.091 ± 0231	．2999士． 0.168	4．92土． 2596
6a	53101	23	6．130士． 0484	．3444土． 0343	5．63土． 5589
7	51373	228	6．425士 0143	．3199土0101	4．98土． 1578
8	58508	70	6．557士．0367：	．4548土．0259	6．94土． 3956
9	53208	36	6．689土 0689	．6049士． 0481	9．11土．7241
10	58208	28	6．696土 0758	．5828土． 0533	8．70土．7842
11	55603	118	6．712上0274	．4405土．0198	6．56土2880
12	52642	68	7.063 ± 0385	．4532土0272	6．42土。2858
13	516014	120	7.100 ± 0241	．3921土．0171	5．52土． 2403
14	53514	164	7．165士．0247	．4682土 0174	6．53土。2432
15	57706	68	7．169士． 0279	． 3257 ± 0197	4．54土． 2750
16	53208	60	7．292土 0668	．6538土． 0402	8．95土 5511
17	59328	111	7．518土． 0311	．4858土0220	6．46土2924
18	53601	105	7．529土． 0379	．5758土 0868	7．64土． 8556
19	518101	55	7．727士．0462	．5075士．0826	6．5\％土4225
20	514780	47	7．915土． 0506	．5142土． 0358	6．60土4522
21	53211	169	8．246士0247	． $4760 \pm .0175$	5．77士．2117

$\begin{aligned} & \text { Type } \\ & \text { nos. } \end{aligned}$	Plat nos．	No． 01 soeds．	$\underline{4}$	σ	C．
38	513408	39	8．256士． 0478	．4424土． 0888	5．36土． 4094
23	517901	85	8．414土．0578	．3318土． 0367	3．94土．8176
24	514904	21	9．905士 0642	．4368土0454	4．41土4646

TABLE B．
Length in Killimeters of Type Samples．

	M．	σ	C．
1	$9.851 \pm .0401$	． $5766 \pm .0284$	$5.85 \pm .2878$
2	$7.488 \pm .0261$	． $4816 \pm .0185$	5． $80 \pm .2484$
8	$9.808 \pm .0460$	． $5824 \pm .0825$	$6.26 \pm .3494$
4	8．112．${ }^{\text {a }} 0847$	． $4232 \pm .0174$	5．22士．71．61
5	10．082 $\pm .0610$	． $6203 \pm .0431$	6． $01 \pm .4181$
6	9．281土．0382	． $4967 \pm .0270$	5.39 士． 2929
6a	10． $545 \pm .0732$	． $5308 \pm .0517$	$4.94 \pm .4912$
7	8．682 $\pm .0177$.3958 土． 0125	4． 59 土． 1450
8	12.079 土．0．512	－6349 土．0362	5．26土． 2999
9	18．611 4.0785	． 6981 土． 0555	$5.18 \pm .4078$
10	18．964土． 1040	．8157＇土．0735	5．84土． 5264
11.	8．885士．0868	－ $5922 \pm .0266$	7．11土．3122
12	10．188 土． 0709	． $8348 \pm .0501$	8.19 士．4921
18	10． 508 士． 0868	$.5976 \pm .0860$	5． 69 土． 2477
14	$11.030 \pm .0887$	． 5446 土．0208	4．94土． 1840
15	9．326土．0291	$.3400 \pm .0208$	3． $65 \pm .2211$
16	$13.908 \pm .1047$	$1.2020 \pm .0740$	$8.46 \pm .6221$
17	12．144土．0417	．6521 土． 0295	8．64士．3911

	M．	σ	c．
18	$10.705 \pm .0430$	． 6580 士．0304	6． 10 士 3988
19	11．745 士． 0567	． $6227 \pm .0401$	5． $30 \pm .3409$
20	12． 670 土． 1340	． $7160 \pm .0947$	5． $66 \pm .8988$
21	18．678 土． 0443	． $9140 \pm .0818$	8．84土．3738
22	11．526土． 6558	． $5123 \pm .0391$	4．45士． 8899
28	15．700 土． 0590	$.5174 \pm .0417$	$3.30 \pm .8661$
24	13． 619 土． 0499	$.3388 \pm .0318$	$2.49 \pm .2688$

TABLE C．
Shape（Ratio between Length and Width）of Type Samples．

	\underline{M}	σ_{0}	c．
1	1．7890 士． 0080	． $1154 \pm .0057$	$6.451 \pm .8173$
2	1.8239 土．0145	． 2891 土．0824	5． $711 \pm .2446$
3	1．5866士．0087	． 1098 土．0086	6．922土． 2864
4	$1.3590 \pm .0041$	． $0709 \pm .0029$	5． 218 土．2150
5	1． $6300 \pm .0108$	． $1045 \pm .0078$	$6.410 \pm .4459$
6	1． $5170 \pm .0086$	．1118士．0661	7．886土．8987
6 a	1．7374 5.0414	． 2945 士．0898	16．632土1． 6888
7	$1.3457 \pm .0028$	． $0617 \pm .0019$	4．585土． 1448
8	$1.8481 \pm .0108$	． $1275 \pm .0078$	6.899 士． 8935
9	2.0680 士． 0185	$.1646 \pm .0181$	7.979 土．6548
10	$1.9564 \pm .0307$	． 2406 土．0217	12．299土1．1262
11	1．3192土．0058	． $0936 \pm .0041$	7.097 土． 2116
12	1．4827 士． 0102	． $1203 \pm .0072$	8．396士． 5045
13	1．4820 $\pm .0053$	． 0866 土． 0038	5．844土．2544

	\underline{M}	σ_{0}	c．
14	$1.5420 \pm .0047$	． $0889 \pm .0033$	5．761士．2146
15	$1.3040 \pm .0051$	． 0595 土． 0086	4．563士． 2764
16	$1.9160 \pm .0137$	． $1560 \pm .0097$	8．188士．5041
17	1．$¢ 200 \pm .0078$	． $1189 \pm .0052$	$7.033 \pm .3184$
18	1．4285 $\pm .0075$	． 2136 土．0058	$7.955 \pm .3702$
19	1．5245土．0102	． $1118 \pm .0078$	$7.380 \pm .4714$
20	1．6072土．0122	． $1240 \pm .0086$	$7.718 \pm .5866$
21	1．6620 土． 0055	． 1065 士． 0039	6．409士．2351
22	1．3964土．0080	． $0741 \pm .0057$	5． $310 \pm .4055$
23	$1.8660 \pm .0084$	．0738士．0059	$3.957 \pm .3190$
24	$1.3768 \pm .0158$	． 1073 土． 0112	$7.787 \pm .8106$

Bringing together the data of all the plats segregating between the types $\boldsymbol{*}^{7}$ and $\# 11$（Table D）the totals show that one as likely to occur as the other and the probabilities are that these belong to the same genetic class．

TABLE D．

Showing Types $\ddagger 7$ and $\# 11411$ of 0_{0} Type．
（ 111 excopt 55700，56000，510500，belong to Acc．\＃13）Robust
Plat Nos． No．of TYpe 47. No． 91 Type +11.

50500
50600
50700
50800
50900 85 43

15 39 16 48 36 42 26 18

Plat. Nos.	No. of \#8.	No. of \#10.	Total
68200.	4	8	7
58400	11	2	18
58500	18	8	21
Total	28	13	41
Ratio per 4	2.738	1.267	
Fxpected ratio	8.000	1.000	

	4. Segregations of Class \#7 and \#l2.		
Plat Nos.	No. of \#7.	No. of \&l2.	Total.
513100	8	26	84
517600	20	38	58
Total	28	69	87
Ratio per 4	1.296	$\$.704$	
Fxpected ratio	1.000	3.000	

The above listed material comes fyom a natural cross betweon white navy and red kidney. According to the notes of
this 8tation, the F_{1} of this orose was kidnegs, the F_{2} segregated into navies and kidneys, but in F3 the segregatione seem to exist in the absence of dominance, that is, the envelopes containing the seed from individual plants can be classed as navies, intermediates and kidneys. The ratio among these lots 1s approximately 1:3:1. Suoh segregations are found in plats $52600,53800,53900,54800$, and 58300. Also plat 54300 showe something similar. However, in this plat dominance seems to be somewhat active as there are nearly as many kidney envelopes as intermediate with mach fewer navies.

In the 1915 plats $\$ 129$ to $\$ 135$ the plants are Fa progenies
 later than others. Plats $\$ 129$ and $\# 232$ are navies, while \# 130 , *131 and \# 133 show segregations similar to above, and plats \#134 and +135 are kidneys. As I was only able to save 10 mature kidney plants out of these two plats and they were not ontirely mature, this F_{3} data shows unsatisfactory segregation between navy and kidney.

It is cortain that nothing has been proven in regard to the manner in which navy-kidney orosses segregate. Mr. Wm. I. 8. Sie has become interested in the extension of this investigation to determine this point, and will plant this material as his y. S. thesis.

With regard to sizes, a great many are constants and only a for fall in the segregating olasses, 4 and 11,8 and 10,7 and 12 , and miscellancous. As there are $s 0$ fot of each kind, it is hard to get even reasonably olose approximation to

Mendelian ratios in some of the segregating classes.

TABLT F .

$\frac{\text { Navy }}{\text { KCC. }}$ Cross.

1. Constant Typos.

Plat Nos.	Type NOs.	No. of Plants.
59600	3	18
511000	4	3
55600	11	3
55700	11	7
56000	11	32
510500	11	17
511100	12	5
58700	18	5
88800	18	3
511300	13	11
511900	14	8
512100	14	2
56900	15	8

2. Segregation of Tyfes \# 12 and \#15.

Plat No.	No. of \#11.	No. of \#15.	Total.
57400	4	44	48
57600	25	37	62
57700	10	15	25
58000	21	38	69
58100	$\underline{5}$	$\underline{24}$	$\underline{29}$
Total.	65	2.88	238
Ratio per 4	1.165	3.000	
Expected ratio.	1.000		

3. Segregation of Types \#7 and \$12.

Plat Nos.	No. of 47.	No. of \#12.	Total.
56600	1	8	9
56800	10	26	36
57000	5	22	27
57100	2	7	9
57200	14	62	76
510200	10	32	42
511500	7	12	19
511700	15	27	42
512000	9	71	20
512700	1	214	8
Total	74	2.978	288
Ratio per 4.	1.028	8.000	
Expected Ratio	1.000		

4. Segregation of Types 44 and $\$ 11$.

5. Segregation of Tyfes \#6 and \#ll.

Plat. No.
55500
512200
Total
No. of $\ddagger 6$.
24

28
Ratio per 4
Expected ratio

No. of +11.
11

14

Total. 85

7
42
6. Miscellaneous segregations (too complex to be interpreted)
Plat No. $\# 4, \# 6, \$ 11, \$ 12, \$ 13, \# 14, \# 15, \# 17, \$ 18, \# 19, \# 20$. Total.
58600
12
9
2
23

59300
910
152
27
511200
2146
22
511400
$\begin{array}{lllll}14 & 5 & 1 & 14 & 15\end{array}$
73
59
512300
512400 $8 \quad 7 \quad 9 \quad 1$

2
$\begin{array}{rr}11 & 1 \\ 7 & 9 \\ 1 & 5\end{array}$
512500
512600
42
4
12

The data above are progenies from a navy on navy cross The F_{1}, F_{2} generations gave only navies. The F_{3} generation gave mostly navies. However, plats $\$ 93$ and $\$ 124$ show a navykidney segregation also plats $\# 86, \$ 114, \$ 123$ and $\$ 125$ have a fairly wide range of shapes, from pea beans to approaching kidneys.

As to sizes, classes \#7 and $\$ 12$, 4 and $\$ 11, \$ 11$ and \#l5 show segregation in regard to one pair of characters each. Classes $\ddagger 6$ and $\# 11$ are probably segregations as if more plants belong to these classes are added together, the ratio would come closer to Mendelian ratios.

TABLE G.

1. Progenies of navy $\frac{\text { acc. } 736}{}$ cross.
 54900

9
55300
$55000 \quad 7 \quad 16$
55200
8
55400
8
2
55100
4
$4 \quad 7$
9

The data above comes from a natural cross between white navy and white navy. The F_{1} and F_{2} generations gave only navies. The F_{3} gave mostly navies. However, plat 55100 shows a navy-kidney segregation. As to sizes, besides the two constant plats, they thus segregate along different classes with no two plats alike.
$\frac{\text { Navy }}{\text { acc. Fi }}$ is a cross between white navy and white kidney. The F_{1} was kidney, and the F_{2} was navies and kidneys. One navy plant of tinis cross was selected for planting in 1915. It had 382 seeds and produced 333 plants which were all small
navies; of these 98 plants were selected, 43 of these fall in class ta and 55 in class ${ }^{*} 4$.

TABLE H.

1. Acceseion Number 13.

All seeds except those from the following two plats belong to type \#ll (see table C), but the following two plaits seem to be segregating between class \boldsymbol{H}_{4} and $\# 11$ probably in two pair of char-
 and also in the summary Table I where a large amount of data has been brought together and the conclusions are quite clear, that there is but one factor present. The sail amount of this data and the fact that the small beans may have been immatures, makes it necessary to plant them again before anything can be proven. Segregation between class \#4 and \#ll.

Plat No.	No. of \$4	Ho. of \#7 and \#ll	Total
51300	6	78	84
51900	$\underline{8}$	$\underline{69}$	$\frac{77}{14}$
Total	14	147	161
Ratio per 16	1.388	14.612	
Expeoted Ratio	1.000	15.000	

$$
\text { 2. Accession Number } 61 .
$$ Segregations between \#11 and \#15.

Plat No. No. of \#ll No. of \#15 Total
$513800 \quad 14 \quad 13 \quad 27$

513900
514000
514100
514200
5
32
37
514300
12
9
21

Plat No.	No. of \#11.	No. of \#ll.	Total
514400	3	11	14
514500	8	14	28
514600	11	7	18
Total	69	145	214
Ratio per 4	1.289	2.711	
Rxpected Ratio	1.000	3.000	

Seeds of plat 137 of this accession number belong to type $\#^{7}$ and is the only one that is constant.
3. Accession Number 877

Only two plats of this number were saved and they fall
in classes $\$ 19$ and $\# 21$ as follows:-

	Segregation Between Types \#19 and $\ddagger 21$.		
Plat No.	No. of \#19	No. of 21.	Total.
518300	7	16	23
518400	$\frac{3}{10}$	$\frac{16}{32}$	-19
Total	10	32	

Ratio per 4
. 953
1.000
mxpected Ratio
4. Accession Number 88.

All the seeds of this accession number fall in class \#4 and $\# 7$ as follows:-

Plat No.	No. of 44.	No. of \#7 and \#ll.	Total.
515000	9	35	44
515300	9	18	27
515400	6	9	15
515500	5	12	17
515600	4	19	23
515700	14	109	30
Total	47	2.795	156
Ratio per 4	1.205	3.000	
Bxpected Ratio	1.000		

The ratio of this segregation does not approach very closely to $1: 3$. Probably it would have come much closer to 1:3 had more data of the same kind been available.
5. Accession Number 89.

Seeds of this number are kidneys and all those chosen for planting in 1915 segregate in classes $\ddagger 8$ and $\ddagger 10$ as follows:-

Segregation Between $\$ 8$ and \#10.
Plat No. No. of \#8. No. of \#10. Total.
$515800 \quad 19 \quad 65$
$515900 \quad 10 \quad 5$
516000 . 10 3 13

516100	33	5
Total	72	19
Ratio per 4	3.165	. 835
mrpected Ratio.	3.000	1.000

The above data are all that gave segregations of size and shape in the 1915 crop. Those that did not segregate are omitted.

CONCLUSIONS.

On Shaper.
In tracing through the breeding reoord of the oroses described above it is clear that kidney and navy orosses give kidneys in F_{1}, navies and kidneys in F_{3}, and that navies produce navies in F_{3}, and There is every indication thet kidney is dominant over navy probably in a monohybrid ratio. Of the small number of klaneys ohosen for the 1915 planting, besides the many deaths, the remaining number was too for to give any proof of the manner of segregation between navies and kidneys. On the other hand, a fow of the plate segregate $\begin{aligned} & \text { Ithout dominance or with little dominance. This }\end{aligned}$ material must be grown another season before the inheritance of shape can be understood. Kr. Wm. K. S. Sie is undertaking this as his thesis.

On Sizes.
A majority of the data on sizes show Yendelian segregations of one pair of characters, large eize being dominant. Two plats of acoession number 13 differ from the others segregating along the same classes in that they indicate a dihybrid
-
segregation. Among those segregations too complex for interpretation probably more than one pair of characters are con cerned in their inheritance. The segregations of classes \$8 and \#10 show the reverse of dominance. It is possible that the high death rate among the large late frozen ones may have reversed the results, but in face of the fact that their parents was nearer to $\# 8$ than it is to $\$ 10$, it is more probable that these results show the reverse of dominance, although they are too few in number to be sure of.

The following tables record tine classes of segregations in sizes more common among the material mentioned in datas above:

A Showing Begregations in On Pair of Characters, large size being the Dominance.

TABLE I.

Blat No. 52100

52200
62400
52500 No. of Type \$4. 2 2 6 3 16

7
18
56200280
563002 No. of Type \#7 and 12.610
52800 16148

8
56100 8 35
56400 2 12

Plat NO.	No. of TYye \$4.	No. of Type \#7 \& 11.
59100	11	84
69800:	8	9
59400	4	8
59500	6	18
510000	7	19
510300	4	8
510500	7	8
510600	3	3
510700	5	5
510800	10	34
511600	2	8
515000	9	35
515300	9	18
515400	6	9
515500	5	12
515600	4	19
515700	14	16
Total	1㐌4	429
Ratio per 4	1.080	2.979
Expected Ratio.	1.000	3.000
	TABLE II.	
Plat No.	No. of Typo *II.	No. of Type *15.
57400	4	44
57600	25	37
57700	10	15
58000	21	38

Plat No.	No. of Type \#11.	No. of Type \#15.
58100	5	24
513900	4	34
514000	8	11
514100	4	24
514200	5	82
514300	12	9
514400	3	11
514500	8	14
Total	109	288
Ratio per 4	1.112	2.888
Expected Ratio	1.000	3.000
	TABLI III.	
Plat No.	No. of Tyre \#7.	No. of Tyxe \#12.
55000	7	16
56600	1	8
56800	10	26
57000	5	22
57100	2	7
57200	14	62
59200	6	15
59800	2	6
510800	10	82
510400	4	16
511500	7	12
511700	13	27

Plat No.	No. of Type \#7.	No. of Tyfe \#12.
512000	7	11
512700	1	7
513100	8	13
517600	20	33
Total	117	318
Ratio per 4	1.088	2.912
Expected Ratio	1.000	3.000

Showing The Reverse of Dominance.

TABLR IV.

Plat. No.
58200
5840011
5850013
$515800 \quad 19$
10.

5
516000103
516100
Total
Expected
No. of Type \#8.
4

6
515900

33
33
3.0303
3.000 8 2 8

No. of Type *10.

$.9697 i$
1.000

These results do not seem to supyort the contention among farmers that beans become larger and longer thru the years. Instead, they indicate the reverse. It is not probable that the increase in size, if really it has occared, is due to the elevator screens being so coarse as to allow the smaller pea types of $\# 2$ and 44 to get into the
rubbish? This would play an important part in causing the beans to become larger and longer thru the years.

BIBLIQGRAPHY.

1. Belling, J., 1911.

Second Generation of the Cross Between Velvet and Lyon Beans.

Florida Station Report. p. 82.
2. Davenport, C. B., 1910.

The Interpretation of Dominance and Some of Its Consequences.

American Naturalist, p. 128.
3. Rmerson, R. A.,
a. 1902, Preliminary Account of Variation in Bean.

Annual Rept. of Nebraska, $5 \cdot 30$.
b. 1904, Heredity in Bean Hybrids.

Annual Rept. of Nebraska, p. 33.
c. 1909, Inheritance of Color in The

Seeds of Common Bean, Phaseolus Vulgaris. Twenty-second Rept. of Nebraska.
d. 1909, Production of White Bean Lacking the Factor for Total Pigmentation Procedings of American Breeder's Association, Vol. 6, p. 396.
e. 1910, Inheritance of size and Shape in Plants. American Naturalist, p. 738.
4. East, R. M., 1910.

A Mendelian Interpretation of Variation That is Apparently Continuous.

American Naturalist, p. 65.
5. Rast, E. M. and Imerson, R. A. 1913.

The Inheritance of Quantitative Characters in Maize. Nebraska Research Bulletin No. 2.
6. Rast, F. M. and Hayes, H. K.
a. 1911, Ineritance in Maize. Bulletin 167, Connecticut Station.
b. 1915, Furtier Experiments of Inheritance in Maize. Connecticut Bulletin 188.
7. Groth, B. H. Alfred, 1914.

The F_{1} Heredity of Size, Shape and Member in Tomato Leaves.

New Jersey Bulletin No. 238, 239.
8. Johannsen, W., 1909.

Elements of Rxact Study of Heredity. Review in Nature (London).
9. Little, C. C., Dec. 18, 1914.

A Possible Mendelian Explanation for A Type of Inheritance apparently Non-Mendelian in Nature. Science Weekly.
10. Owen, Earle J., 1910.

Inheritance Studies With Beans.
New Jersey Rept. p. 277.
11. Weldon, W. F. R., 1902.

Kendel's Law of Alternative Inheritance. Biometrika, No. 2, p. 228.

ReOR LSE CMY

$$
1
$$

