THESIS

TRIANGULATION OF THE MICHIGAN AGRICULTURAL COLLEGE CAMPUS

E. S. Anderson W. E. Frazier

Ok June 10,1920

cop.1

SUPPLEMENTARY MATERIAL IN BACK OF BOOK

TRIANGULATION OF THE MICHIGAN AGRICULTURAL COLLEGE CAMPUS

A Thesis Submitted to

The Faculty of
MICHIGAN AGRICULTURAL COLLEGE

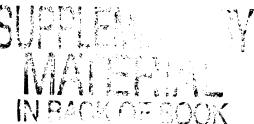
Ву

E. S. Anderson

W. E. Frazier

Candidates for the Degree of

Bachelor of Science


June, 1920

THESIS

204.1

TABLE OF CONTENTS.

Introductionpage 2
Apparatus Used3
Instruments4
Principles of the Triangulation5
Base Line Measurements7
Measurement of Angles9
Resultsll
Appendix
Computation of Quad No. 112
Computation of Quad No. 213
Computation of Quad No. 314
Tabulation of Reults15
Description of Stations16 - 17
Rigorous Adjustment of Quad No.1.18
Rigorous Adjustment of Quad No.2.19
Rigorous Adjustment of Quad No.3.20
Map No. 121
Map No. 222

INTRODUCTION.

Geodesy is that branch of science which treats of making extended measurements on the surface of the earth. Primarily the object of this work is to locate controlling points for extensive surveys.

This thesis deals with the extension of the triangulation of the M. A. C. Campus and the connection of this triangulation system on the campus to the system which covers the M. A. C. Farm (as shown in map*).

All measurements are subject to more or less unknown and unavoidable sources of error. Repeated measurements of the same quantity can not be made to agree precisely. Some method of adjustment was therefore necessary which assigned the most probable values to the unknown quantities in view of all the measurements that had been taken and the conditions which were to be satisfied.

Such adjustments were made by the Rigorous Method, which is explained under the head of Triangulation Adjustments and Computation on a later page.

^{*}See blue prints in Appendix.

^{1.} Inlarged triangulation system. Scale 1" = 200'.

^{2.} Sketch showing location of triangulation system.

.

APPARATUS USED.

A. Instruments:

- a. Transit (repeating instrument reading to 30").
- b. Theodolite (repeating transit).
- c. Direction instrument.
- d. Dumpy level; (used in preliminary survey of base line).
- B. Flags.
- C. Stakes, etc.
- D. Stations.
- E. Tapes: 200' and standard.

(See next page for pictures of Instruments.)

1. Flag.

2. Theodolite Repeating Instrument.

3. Theodolite Direction Instrument.

4. Repeating Transit.

PRINCIPLES OF THE TRIANGULATION.

The word "Triangulation" as used in Geodeic surveying includes all those operations required to determine either the relative or the absolute positions of different points on the surface of the earth, and such operations are based on the properties of plane and spherical triangles. (Correction for spherical excess was not necessary in this case.)

For the triangulation suitable points, called stations, were selected and marked throughout the area to be covered, the selection of these stations depended upon the character of the landscape and also the object of the survey. The stations thus selected were regarded as forming the vertices of a set of mutually connected triangles, the complete figure being called a triangulation system. At least one side and all the angles in the system were measured, using utmost care. All the remaining sides were obtained by computations of the successive triangles.

The stations forming the triangulation system are called triangulation stations, and are namely: 4, 8, 24, 25, Ag. Bldg., Engin. Bldg., N. Base, and For.

A map of the system is shown on Plate II. The system is made up of the quadrilateral 4, 8, 24, and 25, quadrilateral 24, 25, Ag. Bldg., and Engin. Bldg., and quadrilateral Engin. Bldg., Ag. Bldg., N. Base and For., making three quadrilaterals in all.

The preliminary work of examining the campus for the proposed survey was the reconnaissance. As much information as

possible was obtained from existing map, and then an examination of the campus helped to locate the relative positions of the probable station points.

This part of the work called for the greatest care and judgement, as it practically controlled the accuracy of the survey. Every effort was therefore made to secure the best arrangement of the stations. The base line is usually much smaller than the principal lines of the triangulation system, and therefore required a specially favorable location in order that its length might be accurately determined. A gently sloping ground, not over four per cent, is suitable for a base line. The line from stations 4 to 8 was used as a base line.

In this system of triangulation four of the old stations were used, namely, For., North Base, 4 and 8. To connect up the two systems, stations 24, 25, Engin., and Ag. Bldg., were used as intermediate stations.

For a matter of formality we will call the system on the campus System No. 1, and the system of triangulation on the farm System No. 2.

Two of the stations, namely, Engin. Bldg., and Ag. Bldg. could be seen from System No. 2, but not from System No. 1, so stations 24 and 25 were placed as intermediates, so that stations Ag. Bldg., and Engin. Bldg., and also 4 and 8 could be seen from stations 24 and 25. Stations 4, 8, 24, and 25 form Quadrilateral No. 1; 24, 25, Engin. Bldg., and Ag. Bldg. form Quadrilateral No. 2; and Ag. Bldg., Engin. Bldg., For., and N. Base form Quadrilateral No. 3. The intervisibility of any two stations was finally determined by observations from

each station. Also each station angle was measured with a small compass mounted on a tripod to see if angles were of a reasonable magnitude.

The triangulation system required permanent stations so at stations 24 and 25 concrete posts 6" x 6" x 36" with an iron center were placed six inches under the sod. A brass plate was screwed in the roof of the Agricultural Building and was used as station Ag. Bldg. A brass plug was cemented in the roof of the Engineering Building and was used as station Engin. Building.

BASE LINE MEASUREMENT.

The line between stations 4 and 8 was used as the base line. A preliminary survey was made of the line and it was found that the ground was quite level. Starting at station 8 we computed the elevation so that no part of the tape when used would touch the ground. Four foot 2" x 2" stations were driven firmly in the ground at every fifty feet and a nail placed at right elevations. Every 200' a 2" x 4" was driven down flush with the right elevation and a brass strip was nailed on top, one of its edges on line between 4 and 8. These stations were made in this way to record the length while measuring the base line. Over station 8, it was necessary to build a station which would be directly over the original station but also at the same elevation as that of the rest of the line. This was accomplished by driving a couple of 2" x 4" pieces

·

. .

,

in on each side of the station, and placing another across the tops of the two vertical ones. A hole was bored in the cross-piece over the station, a strip of brass nailed over one-half of the hole, and then by means of a plumb the station was plumbed up and a notch made on the edge of the brase directly over the original station. The tape used was a 200' wire tape. Corrections were made for absolute length, sag and temperature.

The amount of sag was taken care of by standardizing the tape at the time of measuring and on the same ground. In order to do this a comparator was built, which consisted of a stretch of boards on a level piece of ground and two points, at a permanent and well determined distance of 100' apart, were fixed. Each of these points were raised as was station 8, and a stake similar to the stakes in the course was set at the midway point. Thus the tape could be compared with the 100' length on the ground (which was laid off with a standard tape) in the same supported way in which the base line was measured. The difference was noted so that the correction could afterwards be applied.

For measuring the base line the same tape was used. The tape was stretched along the course, the rear end was fastened to a straining stake a few feet back of the rear station. The front end was connected with a spring balance for giving the desired pull of 15 lbs. The strain at this end was also resisted by a suitable stake beyond the forward stake. In this way no strain was allowed to come on any of the stakes. The two-by-fours at the 200' marks being set with sufficient care,

the end of the tape came on the strip of brass. The strip of brass had been placed on top of the two-by-four. A scratch had been made on the strip of brass and the distance between this scratch and the end of the tape was measured with a pair of dividers, note being made of the distance and whether plus or minus. Four measurements were made of the base line and the average taken. For each reading of the tape the temperature was also read.

In measuring the base line the temperature varied more or less during the progress of the work but as a rule it has been found satisfactory to apply a correction due to the average temperature. The length was corrected to a temperature of 62° F.

The accuracy possible in the determination of the length of the base line depends upon the precision with which the various constants of the measuring apparatus have been obtained and the precision with which the field work is done. The precision of the measurement was judged by making four measurements and then the arithmetic mean was used.

MEASUREMENT OF ANGLES.

The measurement of angles was done mostly on afternoons and in cloudy weather. Due to some disadvantages, and to the location of two of our stations it was impossible to use the larger instruments; however, a high grade transit was used and great care was used in placing flags and setting up of the

. • • • •

instrument and in reading of angles. The angles where possible were checked with the larger instrument.

Two theodolites were used in checking the angles; the readings of the direction instrument were not used. These types are used for fine angle work and are considered the best. The readings which were used in the computations were made with a surveyor's transit reading to 30°. Each angle was measured six times direct and six times inverted. The angles were also measured with B. and L. Theodolite S. T. T. 3.

(See next page for Sample of Nates.)

After the angles had been measured a horizontal correction was necessary which was the dividing up of the error, and adding or subtracting to each angle the allotted amount, the addition being made when the angles failed to make 360° and the subtraction when over 360° (see sample of notes).

The three angles of a triangle, in like manner, should add up to 180°, and the interior angles of a quad should add up to 360°. It was necessary, therefore, to satisfy these geometrical conditions. This was done by means of the "Rigorous Method", which is a system worked out and which satisfies all of these conditions. (See any text on Geodeic Surveying.)

After the system was satisfactorily adjusted, the distance between the various stations were computed. This consisted in solving each triangle in order, as a plane triangle, by the ordinary sine ratio. In case of the quadrilaterals the two diagonals and the sides adjacent to the known side were computed from the triangles involving the base; the side opposite the base was then computed from both the triangles in which it

	Correction for H.	17 ⁰ 4'52"5 17 4 52.5 17 4 52.5 17 4 52.5	66 019 57 5 66 20 9 0 66 19 58 8 66 20 0 3	276 ⁰ 34 ¹ 57.5 ⁿ 276 35 10.0 276 35 3.8 276 35 5.4
Right Hand Page.	Reptd Angle	102 ⁰ 29'15 "0 102 29 15.0	37 ⁰ 59 ¹ 45 ⁸ 0 38 0 0.0	219 ⁰ 29'45 " 0 219 31 9.0
•	Mean Angle.	000,00000 102 29 15.0 0 00 00.0	0 ⁰ 00°00°0 37 59 45.0 359 59 45.0	0 ⁰ 00'00"0 219 29 45.0 359 58 45.0
SAMPLE OF NOTES	. Ver. B.	29 00 29 00 29 00	37°59'30" 359 59 30	29 30
Page.	Ver. A.	00" 17 ⁰ 4 '30" 102 29 30 0 00 00	66 ⁰ 19 ³⁰ 1 38 0 0 0 0 0	00" 276 34 30 219 30 0
Left Hand	rel. D.or R.	DDDK	AAAK	999
н	Sta. Time For. & No.	Eng. 1 to Ag. 6	Ag. to 1 N. Base 6	N.Base 1 to Eng. 6

Eng. to Ag. 17004'54" Ag. to N.Base66 20 00. N.Base to Eng.

occurred. These two values were exactly the same showing what no mistek e was evident.

$$c = \underbrace{a \sin (A + B)}_{sin A}$$

$$b = \frac{a \sin B}{\sin A}$$

SINE RATIO used in solving of triangles.

RESULTS.

In checking up our results with that of a previous survey we found that we were three-tenths of a foot off on line For. and N. Base. Our result was 1511. and the previous survey result was 1511.871. In order to come as close as possible to the average result of the two surveys we added one-fourth of the difference for Quad. No. 1; the average of the two results was taken for Quad. No. 2, and three-fourths of the difference was added for Quad. No. 3, using lines 4 to 8 the same as measured and N. Base to For. the same as previous result.

APPENDIX.

Computations.

```
QUAD. NO. 1.
```

```
log sin 555.096 (4 to 8)
 2.7443681
 9.7161248
12.4604929
 9.9996921
 2.4608008 \mp 208 (1/4 \text{ diff.}) = 2.4608216
 9.7949653
               (line 4 to 24 = 288'.949)
12.2557661
 9.6437957
 2.6119704 log of 24 to 25.
 2.7443681
 9.5778567
12.3222248
 9.9709621
 2.3512627 + 208 = \log \text{ of } 8 \text{ to } 25 = 2.3512835
 9.9243176
                             8 \text{ to } 25 = 224!534
12.2755803
 9.6636105
 2.6119698 log of 24 to 25.
```

2.6119704 one way
2.6119698 other way
2.6119701 average log
417 average difference
2.6120118 log 24 to 25

24 to 25 = 409.279 ft.

QUAD. NO. 2.

```
2.6119701
 9.6823680
12.2943381
 9.3950854
2.8992527 + 417 = log 25 to Ag. = 2.8992944
 9.8475813
                   dist.25 to Ag. = 793.039
12.7468340
9.9744135
 2.7724205 = log Ag. to Eng.
+ 417 = 2.7724623
 2.6119701
 9.9997075
12.6116776
 9.6687791
2.9428985 + 417 = \log 24 \text{ to Eng.} = 2.9429402
 9.7159534
                   dist.24 to Eng. = 876.880
12.6588519
 9.8864315
 2.7724204 checks log Ag. to Eng.
            +417 = 2.7724622
```

Dist. = 592.192 Ag. to Eng.

```
QUAD. No. 3.
```

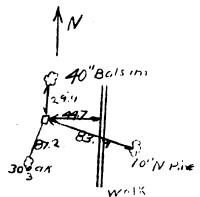
```
2.7724205
 9.9729875
12.7454080
9.5028001
 3.2426079 + 625 (3/4 \text{ of Diff.}) = 3.2426704
 9.8986549
              (Ag. to N. Base Dist.) = 1748.559
13.1412628
 9.9618499
3.1794129
 2.7724203
 9.7996196
15.5720401
 9.4679719
 3.1050682 + 625 = \log \text{ Eng. to For.} = 2.1050707
 9.9070570
                        Distance = 1273.715
13.0111252
 9.8317125
3.1794127 Use average = 3.1794128
                         834 Whole diff. 3.1794962
```

Dist. = 1511.871 The same as in previous survey.

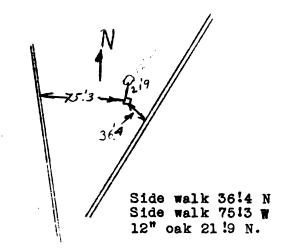
TABULATION OF RESULTS

Point	H	Þ	Azm to	Azimuth	Distance	Log
Sta. 1.	0	•	4	284°49'22.7"	445.235	2.6485864
4.	+430.415	-114.168	ω	281 56 40.0	555.096	2.7443681
			24	342 45 35.80	288.949	2.4608216
å	+973.500	-229.052	25	13 27 16.20	224.534	2.3512835
24.	+515.053	-447.424	22	278 02 53.40	409.279	2.6120118
		••	Engin.	338. 08 35.77	876.880	2.9429402
25.	302*026+	-390.135	A.B.	321 11 44.33	793 .039	2.8992944
Engin.	Engin. +841.511	-1203.984	Ag.	256 28 13.92	592.192	2.7724622
			For.	20 18 29.09	1273.715	3.1050707
Ag.	+1417.169	-1065.431	N.Base.	345 01 47.12	1748.559	3.2426704
For.	+399.547	-2398.512	# . Base.	283 43 29.55	1511.871	3.1794962
N · Bess	N.Base. +1868.123	-2754.619				

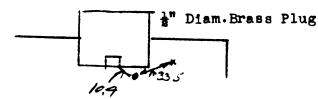
0.0 point is taken at Station 1 as shown on Plate II


DESCRIPTION OF STATIONS.

Sta. 25


Center of iron rod.

Stored


Center of iron rod

Walk 44.7E 30° oak 87'8 S 15° W 10° N.Pine 83'2 E. 40° Balsam 29'9 N.

Sta. Eng.

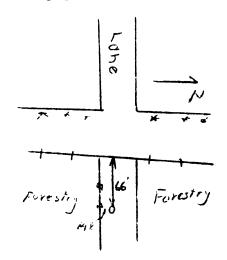
Engineering Bldg.

Star Hg.

Brass Plate 4" x 4" x 3/8

S.W. Cupula

of A9 8Hg.


N N

10 4 N.W. of Elevator Cupula to brass plug 33:5 guy pole for wireless.

10 3 from S.W. cor. of cupola 24 2 from N.W. cor. of cupola 4:3 from 1 dist. from cupola

Concrete Post.

Sta. For. 2" iron pipe.

In front of Woman's Bldg. 70' N.W. end of walk in front of building, and is 3 !5 from S.W. line of main drive.

Sta. No. 8

66' E. of C.L.PM. Spur. 5.7 from south fence 14!8 from nearest concrete gate post

Sta. No. 4.

Fur. Plat

Grand posture

Cul.

Sta. No. 4.

Drive

Drive

Sta. No. 4.

N. Base is about 400 ft. south of bridge over Red Cedar.
15' from west fence.
Maple 46!0 N. 0 W.
Maple 20!2 S. 1895 W.
Cor. Post 53.5 W. 72 E.

In front of Taft's House. 13!5 south of main drive 26.4 east of shrubbery 24" Maple 55' S. 70° E. . . .

RIGOROUS ADJUSTMENT OF OUAD NO. 1.

Messured Mayle-equation Adjustment lag sin Gigestin Adjusted Check. Angles Sec. Angles Adjustment lag sin Algustin Angles Angles Angles Angles Sec. Angles Adjusted Veloues A.B., etc., Angles Angles Angles Angles Angles Sec. Angles Angles Angles Angles Angles Angles Angles Angles Angles Angles Angles Angles Angles Angles Angles Angles Angles Angles Angles Angles Angles Angles Angles Angles Angles Angles Angles Angles Angles Angles Angles Angles Angles Angles Angles Angles Angles Angles Angles Angles Angles Angles Angles Angles Angles Angles Angles Angles Angles Angles Angles Angles Angles Angles Angles Angles Angles Angles Angles Angles Angles Angles Angles Angles Angles Angles Angles Angles Angles Angles Angles Angles Angles Angles Angles Angles Angles Angles Angles Angles Angles Angles Angles Angles Angles Angles Angles Angles Angles Angles Angles Angles Angles Angles Angles Angles Angles Angles Angles Angles Angles Angles Angles Angles Angles Angles Angles Angles Angles Angles Angles Angles Angles Angles Angles Angles Angles Angles Angles Angles Angles Angles Angles Angles Angles Angles Angles Angles Angles Angles Angles Angles Angles Angles Angles Angles Angles Angles Angles Angles Angles Angles Angles Angles Angles Angles Angles Angles Angles Angles Angles Angles Angles Angles Angles Angles Angles Angles Angles Angles Angles Angles Angles Angles Angles Angles Angles Angles Angles Angles Angles Angles Angles Angles Angles Angles Angles Angles Angles Angles Angles Angles Angles Angles Angles Angles Angles Angles Angles A
Argk 360- 75.0623 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
Argin () 250.03.2.2.2.2.2.2.2.2.2.2.2.2.2.2.2.2.2.2
Argin () 250.03.2.2.2.2.2.2.2.2.2.2.2.2.2.2.2.2.2.2
Ardik
Ardik
Argh (2000)
Argh (2000)
Ardik
Ardik
Ardik
A79, 200, 200, 200, 200, 200, 200, 200, 20
//www.ed //wy/ws. //ws. //wy/ws. //ws. //ws. //ws. //ws. //ws. //ws. //ws. //ws. //ws. //ws.
//Ressurece/Angles.
17 e
2000000000

C* 39204 + 1	15,983.90
C' 39204 C' 73984 C' 7413.21 G' 46.56 C' 6972.35 C' 7983.90	
d ₀ = 13.6 d ₄ = 8.0 C ₅ = 21.6 d ₆ = 43.0 d ₇ = 40.5 C ₇ = 83.5	
$d_{s} = 0.8$ $d_{s} = 26.4$ $d_{s} = 57.2$ $d_{s} = 57.6$ $d_{s} = 34.5$ $d_{s} = 86.1$	
$d_{0} = 0.8$ $d_{0} = 26.4$ $d_{1} = 34.8$ $d_{1} = 51.6$ $d_{1} = 40.5$ $d_{1} = 8.0$ $d_{1} = 40.5$ $d_{2} = 43.0$ 1.89.9 $-1.89.01.89.6$ 49.9	
$c_0 = 0.8$ $c_0 = 8c_0$ $c_1 = 38.8$ $c_0 = 31.0$ $c_1 = 13.6$ $c_0 = 42.1$ $c_1 = 40.5$ $c_0 = 40.5$ $c_1 = 40.5$ $c_0 = 40.5$	

RIGOROUS ADJUSTMENT OF GUAD, Nº. 2

												204	= +.587	= +,308	3/8.	. 1965				
	Check	Log. Sines.	9.6687791	9.7159534	9.6823680	24997075	9.8475811	9.3950854	9.8864315	9. 9744135	1	0.00788 =	" = +	+ n =	" == "	1,1965			=+.00 188	
	Adjusted	Angles	2748'08,265	11 B. 31-19-42.43 97155 962 346 x-x, -79 31-19-41.625 9.7159534	" 5.325 C. 28-46-0,225 96823660 389 7+1, 1.51 28-48 00,735 9,6823680	" D. 92.06-08.425 9997075 07 x-12 92-06-09.315 99997075	Jeas E. 44-49-59.125 9.847 5799 212 1+12, 162 49-44 59.745 9.8475811	" F. 14-22-51.25 9.3950938 82.14-25 14-22-50.205 9.3950854	73.345 G. 50-20-39.975 9.886 4310 MS X+14 740 50-20-40.175 9.8864315	11 H. 70 31 29875 9.9744135 74 x-12, 30 70-31-29.883 9.9744135	360-00-0.0	7 103.41 0.00788 = -,204	X1 = +74.5 X	42= 39.1x	73= 103.3x	74= 24.91		101	21040 95 = 7.00 788	
	Side	d Ads.	39.9 9+4 7.39	346 x-x -79	38.4 T+x, T.SI	0.7 x-x2 -1	21.2 \$+x3 7.62	82.1 x-x, T.o	17.5 X+xv 740	7.4 x-x -01		de - 21.2	dp = 82.1	63 = 103.3	2116	dh = 07.4	C4=24.9	6		
	409. Sin.	A.B. etc.	9. (687775	9.7155962	9.6823660	9.9997075	9.8475799	9.3950938	9.886 4310	9.9744135	- 166							S= 2672.89	ç~ =5550.25	Cz = 1528.81
שניים יייים איניים איני		3600 angles Adjusted Values	748'07"875	1-19-42.475	3-46-0225	2-06-09.425	4-44-59.115	1-22-51.225	0-20-39.075	0 31 29.875	360-00-00.00 -166	da = 39.9	46 = 34.6	C, = 74.5	de = 38.4	dd = 00.7	6, = 39.1			2
,	ien a	Adjus	A. 2.	B. 3,	C. 28	0	E 4	F. 14	6, 5	H. 7	36									
	equat	for opp.	+.0625	:	5.325		0.625	"	15.32			34.6	de 38.4	1.28	7.5	172.6	3.4			
	Angle	for 360°	+0.15	:	N.	*		:				db 34.6	de	df 82.1	8.21. Gp	11	0-103.4			
,		Measured angles.	a 27-48'-07,1 +0.15 4.043 A. 2748'07,875 9. 6687775 399 ++4,39 2748' 08,265 9.6687791	6 31-19-41.7	c 28-46-054	d 92-06-14.6	6 44-44 - 59.6	f 14-22-51.7	8 50-20-343	h 70-31-24.4	356-236-238-8	d. 39.9	dd 00.7	de 21.2	dh 07.4	5.69			c 41103.4	4 25.85
		<	10			0			-		100	0.00								

C3.10670.89 21042.85

RIGOROUS ADJUSTMENT OF OUAD NO. 3.

			200	10		157		- 20		
check.	log sines.	61461946	9.9070570	42575 C 69 60 02.725 9.9729879 77-4+4-0.56 70 00 02.165 9.9729875	12.575 D 39 04 47.325 9.7996179 260-2-2,4066 39 04 47.985 9.7996196	+1.775 E 5221 40.30 9.8986573 16.3 +24-1.49 52 21 38.810 9.8986549	9.5028001	-2.575 G 42 44 47.425 9.8317137 227-24-053 42 44 46.895 9.8317125	5648136.6	(= +2
Adjusted	165.	56.50		02.165	47.985	38.810	30.690	46.895	03.955	360 00 00.0000
Adju	Angles	1704	53 50	70 00	8 8	12 25	18 33	42 44	66 20	00 098
Sido -	dajost-	4-1.55	241.45	-0.56	, to 66	b#:1-	36.14	-0.53	10.63	
Sido-	D A CO	(4×+ 5'8)	5.4 +x-x	77-24)	2-2-0.2	6.3 +X+2	X-X+1.Z	Z-1-X+X	22 -x-7.	
log sin	3650 Angles Adjusted Volves. A. B. etc.,	+5528-11.75 A 17 04 58.05 9.4679826 6831x+x-1.55 1704 56.30	-17.75 B 53 50 11.55 9.9070.598 159+1.45 53 50 13.00	6185216	27996179 2	7.8986573	1175 F 18 33 29.30 9.5027913 627+2,4,39 18 33 30.690 9.5028001	2.83/7/37 2	-2.575 H 66 20 03.325 99618494 92-x-x,1063 66 20 03.955 9.9618499	(-+282
Angle-equotion Adjustment Log sin	shes.	58.05	11.55 9	02.725 9	47.325	40.30	29.30	47.425	03,325	360 00 00,000
, Adju.	usted U	17 04.	53 50	03 69	39 04.	5221	18 33	42 44	66 20	360 00
tion	Adj	A	B	U	٥	F	Ų	Ġ	I	
s-eque	Angles	540-	27.61-	125 75	12.675	+1.775	21.775	-2.575	-2.575	
Angli	3600	+55.523		÷	*	*			:	
,		54.3	9.20	547	39.3	33.0	22.0	44.4	6.00	15.8
Measured	Angles.	0 1904 543	53 50 07.8	C 69 59 547	d 39 04 39.3	e 52 21 33.0	f 18 33 22.0	5 42 44 44.4	h 66 20 00.3	359 59 15.8
1	4	0	9	U	d	U	4	0	4	

1 x .0/825= -0.05	C=7709,21 4x, 839 1 .01825=-1.50 C=1/35.69 4x, 397 x .01835=-0.61 C=5-641.00 4x, 970 x .01825=-1.44 C=1017.61 4x, 31.9 x .01825=-1.44	-782 -0.1825.
r= 2.875	1, 33.7 1, 33.7 1, 79.0 1, 31.9	- 782
C= 33.00 +x= 2875 x,0/825=-0.05	C = 7839.21 13 C = 1/35.69 13 C3 = 6291.00 13 C4 = 1017.61	
0, = 16.3	0, 179.0 0, 22.7 0, 39.9 0, 31.9	
$d_0 = 68.5$ $d_1 = 16.3$ $d_2 = 16.3$	C = 63.9 06 7.7 06 26.0 C, 33.7	
0 = 15.4 0 = 7.7	$a_{i} = 6.3$ $a_{i} = 62.7$ $a_{i} = 9.2$ $a_{i} = 82.7$ $a_{i} = 9.2$ $a_{i} = 82.7$ $a_{i} = 9.2$ $a_{i} = 9.2$ $a_{i} = 9.2$ a_{i}	
d= 68.5 d= 26.0	0 = 75.3 0 = 9.2 7.20 0.85 0.85 0.85	

Plates of oched to cover.

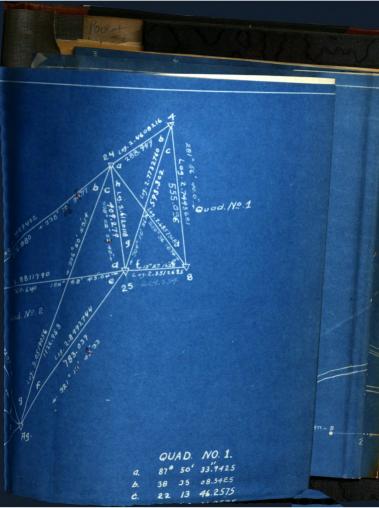
PLote I. Inlarged Triangulation System.
" II. Location of. "

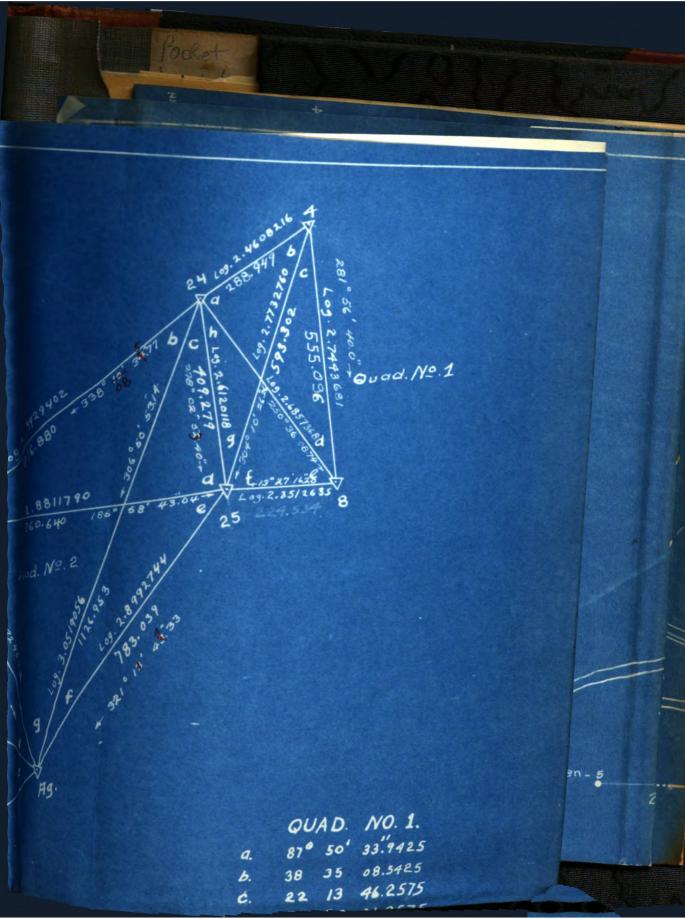
Pocket PLATE I FOR. Log. 3.1794963 1511.876 - Z

PLATE I

- Z

Pocket


FOR.


h

Log. 3.1794963 1511.876

plates offsched to cover. PLote I. Enlarged Triangulation System. " I Location of . " Log. 3.1041307 -20° 20° 28.09 Eng. 1270.957 409.3.2239/3/ 1674.608 ovad Nº.3.

m Hates offiched to cover. PLote I. Inlarged Triangulation System. " II. Location of . " a me Log. 3.1041307 -20°20 28.09 Eng. 1270.957 409.3.2239/3/ 1674.608 ovad Nº.3.

Plates offoched to cover. PLote I. Inlarged Triangulation System. " II . Location of . EO 50 99 66 24 EE 81 86 25 0 14 10 23 9 10 OUAD. 588 18 04 05 1.04 50 4 .05 22 # 2.65 c. EYO 26 1.00 96 58 90 911 61 IE 08,5 184 FS DANQ ON 27 26 9.64 3 . CE

m Plates attached to cover. PLote I. Enlarged Triangulation System. " I Location of. EO 99 50 45 44 33 81 8E 12 25 \$0 BE 14 00 06 05 23 · E/ 05 oLI 10 .ahup 04 588 18 05 40.1 50 # 6. 44 20. 265 c. 90 56 EZO 94 82 L'00 9 914 61 IE 27° 48' 08" DANO 'ON 27 26 9.84 20 9

PLATE II

Pocket

PLATE II

Plates offiched to cover. PLote I. Enlarged Trionaulation System 27 CJ 61 17 .0:1.8 ukimu n 041 041 25 08 6.FO 17.42. IR.1 ZO 8 67

SUPPLEMENTARY

188 Str

Negatives of instruments

Pocket

CONTENTS OF POCKET

Tracing of Plate II Tracing Rigorous Adjustment of Quad. No.I

E Blue Print; Tringulation Bata for Mich. A.C. Survey.

Pocket No. Co. Blue Print; Tringulation Bata for Mich. A.C. Survey. SUPPLEMENTARY Tracing Rigorous Adjustment of Quad. No.I Negatives of instruments Tracing of Plate II CONTENTS OF POCKET 787 托 田田

