! ! ! ! ! INVASIVE'PLANT'SPECIES'IMPACTS'ON'CARBON'AND'NITROGEN'CYCLING'IN'INLAND' MICHIGAN'WETLANDS' ' By' ' Jason'Philip'Martina' ! ! ! ! ! ! ! ! ! ! ! ! ! ! A'DISSERTATION' ' Submitted'to' Michigan'State'University' in'partial'fulfillment'of'the'requirements' for'the'degree'of' ' DOCTOR'OF'PHILOSOPHY' ' Plant'Biology' Ecology,'Evolutionary'Biology'and'Behavior' ' 2012' ! ! ! ! ABSTRACT' ' ' INVASIVE'PLANT'SPECIES'IMPACTS'ON'CARBON'AND'NITROGEN'CYCLING'IN'INLAND' MICHIGAN'WETLANDS' ' By' ' Jason'Philip'Martina' ' Plant'traits'are'often'the'central'focus'of'ecological'investigations'into'ecosystem' structure'and'function'because'of'the'need'to'simplify'complex'plant'communities'to'a'few' traits'of'importance.''Invasions'by'invasive'species'can'have'major'impacts'on'ecosystem' function'by'altering'the'presence'and/or'dominance'of'plant'traits'that'influence' ecosystem'energy'flow'and'nutrient'cycling.''The'broad'goal'of'this'dissertation'was'to' investigate'the'ecosystem'consequences'of'invasive'plant'species'in'temperate'wetlands,' which'are'important'ecosystems'for'the'cycling'of'carbon'(C)'and'nitrogen'(N),'focusing'on' Phragmites+australis+(Cav)'Trin.'Ex'Steud,+Phalaris+arundinacea'L.'and'Typha+ × glauca'Godr.' X.''I'hypothesized'that'within'inland'Michigan'wetlands,'the'degree'of'invasion'would'be' € correlated'with'increased'C'and'N'stocks'due'to'the'high'production'of'low'quality'litter' from'these'invasive'plants.''I'found'evidence'that'both'soil'and'ecosystem'C'stocks' increased'due'to'the'presence'of'these'invasive'species.''Additionally,'I'found'significant' differences'for'C'and'N'mineralization'among'species'linked'to'the'quality'of'their'litter' (C:N'ratios),'with'P.+australis'soil'having'the'lowest'C'and'N'mineralization'and'P.+ arundinacea'soil'the'highest.' Phragmites+australis'is'a'tall,'high'biomass'invasive'species'that'is'a'relatively'recent' invader'into'the'wetlands'of'the'Great'Lakes'states.''To'investigate'the'effects'of'living' biomass'and'litter'on'C'and'N'cycling,'I'manipulated'P.+australis'litter'and'biomass'within' plots'at'three'wetland'sites'and'then'monitored'abiotic'conditions'and'performed'a' number'of'biogeochemical'assays.''Removing'P.+australis'litter'and'biomass'had'the' hypothesized'effects'of'increasing'light'levels'at'the'soil'surface'and'increasing'soil' temperature,'though'these'effects'did'not'influence'litter'bag'decomposition,'in+situ'N' mineralization,'or'potential'denitrification'rates.''Biomass'removal'did'affect'porewater'ion' concentrations'by'decreasing'Na+,'Cl]'and'Ca2+'concentrations'and'increasing'NO3]' concentration.''Though'not'initially'hypothesized,'all'C'and'N'cycling'rates'showed'strong' site'effects'caused'by'different'hydrologic'conditions'among'sites.''' To'separate'litter'quality,'litter'diversity,'and'soil'origin'from'other'controls'of' decomposition,'I'performed'two'laboratory'incubations'using'litter'and'soil'collected'from' monospecific'stands'of'the'three'focal'invasive'species'plus'Carex+lacustris,'a'native'sedge.'I' found'support'for'my'prediction'that'the'four'species'differed'in'litter'quality'and'that'litter' C:N'ratio'was'negatively'related'to'C'and'N'mineralization'rates.''I'also'found'strong'soil' origin'effects'related'to'soil'nutrient'availability,'which'have'not'been'found'before'within'a' similar'experimental'framework.''The'second'incubation'showed'that'while'litter'diversity' significantly'affected'litter'decomposition'rates,'the'effects'were'more'dependent'of'the' identity'of'the'species'than'just'the'number'of'species.''' Taken'together,'these'results'suggest'that'invasive'species'can'influence'C'and'N' cycling'in'inland'Michigan'wetlands,'and'that'some'of'the'biogeochemical'effects,'like' increased'C'storage,'could'be'a'positive'outcome'of'invasion.''These'effects'can'also'be' linked'to'key'plant'traits,'such'as'litter'quality'and'biomass'production,'and'supports'the' conjecture'that'invasive'species'alter'ecosystem'function'by'changing'the'composition'or' dominance'of'plant'traits'within'the'community.' ' ' ' ' ' ' ' ' ' ' ' ' This'work'is'dedicated'to'my'grandmother,'Helen'Dombrowski.''' Thank'you'for'believing'in'me.' ' ' ' ' ' ' ' ' ' ' ' iv' ACKNOWLEDGEMENTS' ' I'would'like'to'thank'my'advisors,'Dr.'Stephen'K.'Hamilton'and'Dr.'Merritt'Turetsky,' for'their'guidance'throughout'this'project.''They'both'showed'great'patience'with'me' throughout'the'entire'process,'especially'when'I'was'writing.''Without'their'help'and' support'I'wouldn’t'have'been'able'to'complete'this'task.''I'am'also'grateful'to'my' committee'members,'Dr.'Kay'Gross'and'Dr.'Jay'Lennon'for'their'direction'on'experimental' design'and'comments'on'early'drafts'of'this'dissertation.''Assistance'from'multiple'people' made'this'research'possible.''I'had'a'great'group'of'undergraduates'help'with'this'project' including'Colin'Phillippo,'Spencer'Rubin,'Ryan'O’Connor,'Matt'Chansler,'Matt'Kolp,'and' Claire'Moore.''I'am'so'proud'of'all'of'them.''Special'thanks'goes'to'all'members'of'the' Hamilton'and'Turetsky'Labs,'especially'Dave'Weed'for'all'of'his'laboratory'assistance.'' Leila'Siciliano'provided'additional'field'and'laboratory'assistance.''Thanks'to'all'the'faculty,' graduate'students,'and'staff'at'MSU'and'KBS'who'have'helped'me'get'through'my'classes,' thesis'writing,'and'experimentation.''The'list'would'be'too'long'to'write,'but'you'know'who' you'are.''Thank'you.' I'would'also'like'to'thank'Dr.'David'Rothstein'and'his'lab'members,'Ellen'Holste,' Mike'Cook,'and'Tom'Baribault,'for'the'guidance'they'gave'on'chemical'analysis'and'for' allowing'me'to'routinely'use'their'laboratory.'''Dr.'Stuart'Grandy'and'Cynthia'Kallenbach' also'allowed'me'to'use'their'laboratory'and'equipment.''Thanks'to'Dr.'Jen'Tank'at'the' University'of'Notre'Dame'and'her'graduate'student,'Sarah'Roley,'for'guiding'me'through' the'denitrification'assays.''I'am'indebted'to'Dr.'Carl'von'Ende'at'Northern'Illinois' University'for'the'training'he'gave'me'before'entering'the'doctoral'program'at'MSU'and'for' v' statistical'guidance.''A'huge'thank'you'goes'to'Dr.'Andy'Jarosz'and'his'lab,'specifically'Josh' Springer,'for'taking'me'in'and'allowing'me'to'use'their'lab'and'resources'when'I'had'no' where'else'to'go.''I'will'always'value'our'lab'meetings'together'and'friendship.''' Funding'for'this'research'was'provided'by'an'Environmental'Protection'Agency' STAR'Fellowship,'a'Society'of'Wetland'Scientists'Research'Grant,'a'LTER'Small'Grant,'a' Biogeochemistry'Environmental'Research'Initiative'Grant,'a'College'of'Natural'Science' Continuation'and'Completion'Fellowship,'the'MSU'Graduate'School,'the'Paul'Taylor' Endowment'Fund,'the'Department'of'Plant'Biology,'the'Kellogg'Biological'Station,'and'the' Ecology,'Evolutionary'Biology'and'Behavior'Program.'' I'am'very'grateful'for'the'support'I'received'from'my'parents,'Joseph'and'Judi' Martina,'and'my'brother,'Eric'Martina.''You'are'an'amazing'group'of'people'who'I'strive'to' be'more'like'everyday.''Most'importantly,'I'would'like'to'thank'Leila'Siciliano.'Without' your'help,'support,'love,'and'infinite'patience'none'of'this'would'have'been'possible.'' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' vi' TABLE'OF'CONTENTS' ' LIST'OF'TABLES.....................................................................................................................................................ix' LIST'OF'FIGURES................................................................................................................................................. xii' CHAPTER'1' INTRODUCTION......................................................................................................................................................1' 1. Carbon'and'Nitrogen'Cycling'in'Wetlands....................................................................................1' 2. Invasive'Species'and'Plant'Functional'Traits..............................................................................8' 3. Decomposition:'Abiotic'and'Biotic'Determinants.................................................................. 15'''' 4. Research'Objectives ............................................................................................................................ 20' ' CHAPTER'2' ORGANIC'MATTER'ACCUMULATION'AND'QUALITY'IN'MICHIGAN'WETLANDS:' CONSEQUENCES'OF'INVASIVE'PLANTS ................................................................................................... 24' 1. Brief'Rationale ....................................................................................................................................... 24' 2. Objectives,'Hypotheses,'and'Predictions ................................................................................... 26' 3. Methods .................................................................................................................................................... 28' a. Study'sites'and'sampling'for'wetland'survey............................................................ 28' b. Carbon'and'nitrogen'analysis........................................................................................... 30' c. Estimation'of'plant'abundance' ....................................................................................... 31' d. Soil'carbon'quality'assay .................................................................................................... 32' e. N'mineralization'and'nitrification'assay ..................................................................... 35' f. Statistical'analyses ................................................................................................................ 37' i. Wetland'survey ........................................................................................................ 37' ii. Assays'of'C'quality'and'N'transformations .................................................. 39' 4. Results....................................................................................................................................................... 41' a. Wetland'survey....................................................................................................................... 41' b. Soil'carbon'quality'assay .................................................................................................... 44' c. N'mineralization'and'nitrification'assay ..................................................................... 46' 5. Discussion................................................................................................................................................ 62' ' CHAPTER'3' EFFECTS'OF'ABOVEGROUND'BIOMASS'AND'LITTER'ON'BIOGEOCHEMICAL'CYCLING'IN' PHRAGMITES+AUSTRALIS'STANDS .............................................................................................................. 70' 1. Brief'Rationale ....................................................................................................................................... 70' 2. Objectives,'Hypotheses,'and'Predictions ................................................................................... 72' 3. Methods .................................................................................................................................................... 74' a. Site'description'and'experimental'treatment'design............................................. 74' b. Abiotic'and'biotic'measurements ................................................................................... 77' c. Litter'bag'decomposition'assay....................................................................................... 79' d. Porewater'equilibrators ..................................................................................................... 80' e. N'mineralization'and'nitrification'assays ................................................................... 81' vii' f. Denitrification'assay............................................................................................................. 82' g. Statistical'analyses ................................................................................................................ 84'''''' 4. Results....................................................................................................................................................... 90' a. Site'characteristics ................................................................................................................ 90'''' b. Litter'and'AGB'effects'on'soil'and'porewater'chemistry,'light'levels,'and' temperature ............................................................................................................................. 92' c. Carbon'and'nitrogen'cycling ............................................................................................. 94' 5. Discussion............................................................................................................................................. 123' ' CHAPTER'4' EFFECTS'OF'LITTER'QUALITY,'SOIL'ORIGIN,'AND'PLANT'SPECIES'DIVERSITY'ON' DECOMPOSITION'IN'TEMPERATE'WETLANDS ................................................................................. 132' 1. Brief'Rationale .................................................................................................................................... 132' 2. Objectives,'Hypotheses,'and'Predictions ................................................................................ 134' 3. Methods ................................................................................................................................................. 136' a. Litter'quality'and'soil'origin'incubation ................................................................... 136' i. Site'description'and'sample'processing..................................................... 136' ii. Carbon'mineralization'assay........................................................................... 139' iii. N'mineralization/nitrification'assay ........................................................... 140' b. Litter'diversity'incubation .............................................................................................. 141' i. Site'description'and'sample'processing..................................................... 141' ii. Carbon'mineralization'assay........................................................................... 143' iii. N'mineralization/nitrification'assay ........................................................... 144' c. Statistical'analysis .............................................................................................................. 145' 4. 'Results................................................................................................................................................... 147' a. Litter'quality'and'soil'origin'incubation ................................................................... 147' b. Litter'diversity'incubation .............................................................................................. 150' 5. Discussion............................................................................................................................................. 167' a. Litter'quality'and'soil'origin'incubation ................................................................... 167' b. Litter'diversity'incubation .............................................................................................. 172' ' CHAPTER'5' CONCLUSIONS ................................................................................................................................................... 175' ' APPENDICES ...................................................................................................................................................... 185' 1. Appendix'A ........................................................................................................................................... 186' 2. Appendix'B ........................................................................................................................................... 192' ' REFERENCES ..................................................................................................................................................... 194' ' ' ' ' ' ' viii' LIST'OF'TABLES' ' ' Table'2]1.''GPS'coordinates'of'the'24'survey'sites'with'their'hydrological'classification,' which'is'based'on'magnesium'concentrations'(see'methods'for'more'details),'and'the' presence'or'absence'of'the'most'dominant'invasive'species.'Phalaris'='Phalaris+ arundinacea,'Typha'='Typha'xglauca,'Phragmites'='Phragmites+australis. ...................................40' ' Table'2]2.'Summary'of'the'best]fit'model'for'biomass'C'and'N'stocks.''Dominance'refers'to' the'proportion'of'the'total'biomass'from'invasive'or'native'species.''Terms'in'bold'indicate' significant'predictors.''Df'(Den)'indicates'the'denominator'degrees'of'freedom. ....................48' ' Table'2]3.'Summary'of'the'best]fit'model'for'litter'C'and'N'stocks'and'litter'C:N'ratios.'' Terms'in'bold'indicate'significant'predictors.''Df'(Den)'indicates'the'denominator'degrees' of'freedom. ................................................................................................................................................................48' ' Table'2]4.'Summary'of'the'best]fit'model'for'soil'C'and'N'stocks'and'soil'C:N'ratios.''Terms' in'bold'indicate'significant'predictors.''Df'(Den)'indicates'the'denominator'degrees'of' freedom. .....................................................................................................................................................................49' ' Table'2]5.'Summary'of'the'best]fit'model'for'ecosytem'C'and'N'stocks.''Terms'in'bold' indicate'significant'predictors.''Df'(Den)'indicates'the'denominator'degrees'of'freedom....49' ' Table'2]6.'Results'of'repeated'measures'ANOVA'for'the'effect'of'Species,'Temperature'and' Time'on'C'mineralization'throughout'the'36'day'incubation ............................................................50'' ' Table'2]7.'Summary'of'ANOVA'examining'the'effect'of'Species'and'Temperature'on' cumulative'C'mineralization. ............................................................................................................................50'' ' Table'2]8.'Soil'and'litter'%C,'%N,'and'C:N'ratio'of'the'four'species'used'in'the'organic' matter'quality'incubation.''Same'letter'superscript'denotes'nonsignificant'differences' according'to'Tukey'post'hoc'tests.'Values'are'means'±'SE..................................................................51' ' Table'2]9'Soil'%C,'%N,'and'C:N'ratio'of'the'four'species'used'in'the'N' mineralization/nitrification'incubation.''Same'letter'superscript'denotes'nonsignificant' differences'according'to'Tukey'post'hoc'tests.'Values'are'means'±'SE..........................................51' ' Table'3]1.''Variation'among'sites'in'plant'characteristics,'soil'characteristics,'and'water' chemistry.'Variance'expressed'as'standard'error.'AGB'='aboveground'biomass,'DO'=' dissolved'oxygen,'SpC'='specific'conductivity,'ORP'='oxidation'reduction'potential,'OM'=' organic'matter.'*'indicates'data'collected'in'2010. .................................................................................86' ' ix' ' Table'3]2.'Mixed'model'F]values'for'the'effect'of'Site'and'Depth'on'Bulk'Density,' Ammonium,'Nitrate,'Soil'%C,'Soil'%N,'Soil'C:N'ratio,'and'Soil'C'and'N'Stock.''df'indicates' degrees'of'freedom.''Significance'is'denoted'with'asterisk(s)...........................................................97' ' Table'3]3.'Mixed'model'F]values'for'the'effect'of'Treatment'and'Depth'on'Bulk'Density,' Ammonium,'Nitrate,'Soil'%C,'Soil'%N,'Soil'C:N'ratio,'and'Soil'C'and'N'Stock.''df'indicates' degrees'of'freedom.''Significance'is'denoted'with'asterisk(s)...........................................................97' ' Table'3]4.'Summary'of'two]factor'ANOVA'for'the'effect'of'Treatment'and'Depth'on'soil' temperature.'den'df'indicates'the'denominator'degrees'of'freedom'and'num'df'indicates' numerator'degrees'of'freedom. .......................................................................................................................98' ' Table'3]5.'Summary'of'Repeated'Measures'ANOVA'for'the'effect'of'Treatment,'Depth,'and' Time'on'soil'temperature'during'the'2010'growing'season.''den'df'indicates'denominator' degrees'of'freedom'and'num'df'indicates'numerator'degrees'of'freedom. .................................98' ' Table'3]6.'Mixed'model'F]values'for'the'effect'of'Treatment'and'Depth'on'TDP'(total' dissolved'phosphate),'Mg2+,'Ca2+,'Na+,'K+,'SO42],'Cl],'and'NO3]'concentrations'from' porewater'equilibrators.'Significance'is'denoted'with'asterisk(s).'df'indicates'degrees'of' freedom. .....................................................................................................................................................................99' ' Table'3]7.'Summary'of'two]factor'ANOVAs'for'the'effect'of'Treatment'and'Depth'on'stem' and'filter'decomposition'and'Site'and'Depth'on'stem'and'filter'decomposition'(expressed' as'first]order'rate'constants,'k).'den'df'indicates'the'denominator'degrees'of'freedom'and' num'df'indicates'numerator'degrees'of'freedom. ................................................................................ 100' ' Table'4]1.'Average'decomposition'rates'expressed'as'first]order'rate'constants'(k;'day]1)' for'each'litter'x'soil'origin'treatment'combination. ............................................................................. 153' ' Table'4]2.'Summary'of'the'two]factor'ANOVAs'for'the'effect'of'species]specific'litter'and' soil'on'decomposition'constant'(K),'cumulative'C'mineralization,'and'N'mineralization.. 154' ' Table'4]3.'Soil'and'litter'%C,'%N,'and'C:N'mass'ratios'of'the'four'species'used'in'the'litter' quality'and'soil'origin'incubation.''Same'letter'superscript'denotes'nonsignificant' differences'according'to'Tukey'post'hoc'tests.'Values'are'means'±'SE....................................... 155' ' Table'4]4.'Average'decomposition'rates'expressed'as'first]order'rate'constants'(k;'day]1)' for'each'litter'diversity'treatment. .............................................................................................................. 156' ' Table'4]5.'Summary'of'ANOVAs'for'the'effect'of'Treatment'on'decomposition'(K)'constant,' cumulative'C'mineralization,'and'N'mineralization. ........................................................................... 156' ' Table'4]6.'Litter'C:N'mass'ratios,'%'lignin,'and'lignin:N'mass'ratios'of'the'four'species'used' in'the'litter'diversity'incubation.''Same'letter'superscript'denotes'nonsignificant' differences'according'to'Tukey'post'hoc'tests.'Values'are'means'±'SE....................................... 156' x' ' Table'A]1.'Models'of'Biomass'C'Stock.''Model'in'bold'indicates'the'best]fit'model'based'on' lowest'AIC'value. ................................................................................................................................................. 186' ' Table'A]2.'Models'of'Biomass'N'Stock.''Model'in'bold'indicates'the'best]fit'model'based'on' lowest'AIC'value. ................................................................................................................................................. 186' ' Table'A]3.'Models'of'Litter'C'Stock.''Model'in'bold'indicates'the'best]fit'model'based'on' lowest'AIC'value. ................................................................................................................................................. 186' ' Table'A]4.'Models'of'Litter'N'Stocks.''Model'in'bold'indicates'the'best]fit'model'based'on' lowest'AIC'value. ................................................................................................................................................. 187' ' Table'A]5.'Models'of'Litter'C:N'ratio.''Model'in'bold'indicates'the'best]fit'model'based'on' lowest'AIC'value. ................................................................................................................................................. 187' ' Table'A]6.'Models'of'Soil'C'Stock.''Model'in'bold'indicates'the'best]fit'model'based'on' lowest'AIC'value. ................................................................................................................................................. 188' ' Table'A]7.'Models'of'Soil'N'Stocks.''Model'in'bold'indicates'the'best]fit'model'based'on' lowest'AIC'value. ................................................................................................................................................. 189' ' Table'A]8.''Models'of'Soil'C:N.''Model'in'bold'indicates'the'best]fit'model'based'on'lowest' AIC'value. ................................................................................................................................................................ 190' ' Table'A]9.'Models'of'Ecosystem'C'Stock.''Model'in'bold'indicates'the'best]fit'model'based' on'lowest'AIC'value............................................................................................................................................ 190' ' Table'A]10.'Models'of'Ecosystem'N'Stock.''Model'in'bold'indicates'the'best]fit'model'based' on'lowest'AIC'value............................................................................................................................................ 190' ' Table'A]11.''Best]fit'model'summary'table'for'each'dependent'variable. ................................. 191' ' ' ' ' ' ' ' ' ' ' ' ' ' ' xi' LIST'OF'FIGURES' ' ' Figure'1]1.'Interactions'between'plant'community'composition'(PCC),'plant'traits'and'soil' microenvironment'influence'ecosystem'processes.''Plant'community'composition'effects' on'C'and'N'cycling'are'mediated'though'plant'traits'directly'(plant'N'uptake)'and'indirectly' (substrate'quality'and'soil'microenvironment'alteration).''Invasive'species'introduce'novel' plant'traits'into'a'community'and'potentially'can'alter'ecosystem'function.''Arrows' represent'pathways'of'influence'and'are'addressed'in'the'text........................................................23'' ' Figure'2]1.''Regression'between'invasive'species'dominance'(percent'biomass'of' community)'and'Shannon'Diversity'index'(adjusted'R2'='0.75,'p'<'0.001).................................52' ' Figure'2]2.''Regression'between'invasive'species'biomass'(cumulative'biomass'of' Phragmites'australis,'Phalaris+arundinacea,'and+Typha'spp.)'and'site'nitrogen'use'efficiency' (adjusted'R2'='0.10,'p'='0.08). ..........................................................................................................................53' ' Figure'2]3.'Regression'between'invasive'species'biomass'(cumulative'biomass'of' Phragmites'australis,'Phalaris+arundinacea,'and+Typha'spp.)'and'total'biomass'(adjusted'R2' ='0.61,'p'<'0.001)....................................................................................................................................................54' ' Figure'2]4.'Regression'between'biomass'%'N'and'litter'C:N'ratio'(adjusted'R2'='0.32,'p'<' 0.001).''Biomass'%N'was'a'significant'predictor'in'the'best]fit'model'for'litter'C:N'ratios. 55' ' Figure'2]5.''Regression'between'invasive'species'biomass'(cumulative'biomass'of' Phragmites'australis,'Phalaris+arundinacea,'and+Typha'spp.)'and'soil'C'stock'(adjusted'R'=' 0.27,'p'<'0.001).'Invasive'species'biomass'was'a'significant'predictor'in'the'best]fit'model' for'soil'C'stock. ........................................................................................................................................................56' ' Figure'2]6.''Regression'between'invasive'species'biomass'(cumulative'biomass'of' Phragmites'australis,'Phalaris+arundinacea'and+Typha'spp.)'and'ecosystem'C'stock' (adjusted'R2'='0.35,'p'<'0.001).'Invasive'species'biomass'was'a'significant'predictor'in'the' best]fit'model'for'ecosystem'C'stock.............................................................................................................57' ' Figure'2]7.''Carbon'mineralization'rates'over'the'36]day'laboratory'incubation.''Repeated' measures'ANOVA'showed'that'there'was'a'significant'3]way'interaction'between'species,' temperature'and'time'(F2,494'='7.00,'p'='0.001).''Error'bars'represent'1'SE.............................58' ' Figure'2]8.''Mean'cumulative'C'mineralization'over'the'36]day'laboratory'incubation.''The' main'effects'of'species'(F2,8'='5.82,'p'='0.028)'and'temperature'(F2,47'='1673.30,'p'<'0.001)' xii' were'significant,'but'not'their'interaction.''Same'letter'superscript'denotes'nonsignificant' differences'according'to'Tukey'post'hoc'tests.''Error'bars'represent'1'SE..................................59'' Figure'2]9.''Regression'between'soil'C:N'ratio'and'cumulative'C'mineralization'at'high' (21°C;'adjusted'R2'='0.53,'p'<'0.001)'and'low'(7°C;'adjusted'R2'='0.40,'p'<'0.001)' temperatures. ..........................................................................................................................................................60' ' Figure'2]10.'Comparison'of'mean'Q10'values'among'soil'collected'from'monospecific' stands'of'Phragmites+australis,'Phalaris+arundinacea,'and'Typha'spp.''The'effect'of'species' was'marginally'significant'(F2,8'='3.46,'p'='0.082).''Error'bars'represent'1'SE.........................61'''' ' Figure'2]11.''Comparison'of'mean'net'N'mineralization'rates'among'soil'collected'from' monospecific'stands'of'Phragmites+australis,'Phalaris+arundinacea,'and'Typha'spp.''The' effect'of'species'was'significant'(F2,5'='22.32,'p'='0.003).''Same'letter'superscript'denotes' nonsignificant'differences'according'to'Tukey'post'hoc'tests.''Error'bars'represent'1'SE. ..61'' ' Figure'3]1.''Map'showing'the'location'of'the'two'monospecific'stands'of'Phragmites+ australis'at'Lake'Lansing'Park'(LLP1'and'LLP2),'Haslett,'MI. ............................................................88''' ' Figure'3]2.''Map'showing'the'location'of'the'monospecific'stand'of'Phragmites+australis'in' the'wetland'area'surrounding'Glasby'Lake'(Glasby),'Delton,'MI......................................................89' ' Figure'3]3.''Water'table'position'at'Glasby'and'LLP1'from'July'to'October'of'2008.''Zero' water'level'represents'the'soil'surface'with'positive'water'levels'indicating'flooding' (standing'water)'and'negative'values'indicating'a'water'table'below'the'soil'surface. ...... 101' ' Figure'3]4.''Water'table'position'at'Glasby,'LLP1,'and'LLP2'from'August'to'November'of' 2009.''Zero'water'level'represents'the'soil'surface'with'positive'water'levels'indicating' flooding'(standing'water)'and'negative'values'indicating'a'water'table'below'the'soil' surface...................................................................................................................................................................... 102' ' Figure'3]5.''Water'table'position'at'Glasby,'LLP1,'and'LLP2'from'July'to'October'of'2010.'' Zero'water'level'represents'the'soil'surface'with'positive'water'levels'indicating'flooding' (standing'water)'and'negative'values'indicating'a'water'table'below'the'soil'surface. ...... 103' ' Figure'3]6.''Water'table'position'at'Glasby,'LLP1,'and'LLP2'for'2008'to'2010'(see'methods' for'exact'time'periods).''Zero'water'level'represents'the'soil'surface'with'positive'water' levels'indicating'flooding'(standing'water)'and'negative'values'indicating'a'water'table' below'the'soil'surface.''Error'bars'represent'1'standard'deviation. ............................................ 104! ' Figure'3]7.''Mean'light'levels'(PAR)'measured'directly'above'the'soil'surface'within'control' (C),'biomass'removal'(BR),'litter'removal'(LR),'and'total'removal'(TR)'treatment'plots' averaged'across'sites.''There'was'a'significant'treatment'effect'(F3,81'='109.95,'p'<'0.001).'' Same'letter'superscript'denotes'nonsignificant'differences'according'to'Tukey'post'hoc' tests.''Error'bars'represent'1'SE................................................................................................................... 105'' xiii' ' Figure'3]8.''Mean'manual'temperature'measurements'taken'at'6'soil'depths'(and'ambient)' within'control'(C),'biomass'removal'(BR),'litter'removal'(LR),'and'total'removal'(TR)' treatment'plots'averaged'across'sites.''There'was'a'significant'interaction'between' treatment'and'depth'(F18,174'='2.07,'p'<'0.009).''Same'letter'superscript'denotes' nonsignificant'differences'according'to'Tukey'post'hoc'tests.''Error'bars'represent'1'SE.106'' ' Figure'3]9.''Daily'ambient'mean'temperature'from'July'to'October'2010'within'control'(C),' biomass'removal'(BR),'litter'removal'(LR),'and'total'removal'(TR)'treatment'plots. ......... 107' ' Figure'3]10.'Daily'soil'surface'mean'temperature'from'July'to'October'2010'within'control' (C),'biomass'removal'(BR),'litter'removal'(LR),'and'total'removal'(TR)'treatment'plots.. 108' ' Figure'3]11.'Daily'mean'temperature'at'2'cm'soil'depth'from'July'to'October'2010'within' control'(C),'biomass'removal'(BR),'litter'removal'(LR),'and'total'removal'(TR)'treatment' plots. ......................................................................................................................................................................... 109' ' Figure'3]12'Daily'mean'temperature'at'10'cm'soil'depth'from'July'to'October'2010'within' control'(C),'biomass'removal'(BR),'litter'removal'(LR),'and'total'removal'(TR)'treatment' plots. ......................................................................................................................................................................... 110' ' Figure'3]13.''Mean'Cl]'concentrations'from'porewater'equilibrators'within'control'(C),' biomass'removal'(BR),'and'litter'removal'(LR)'treatment'plots'averaged'across'sites.'' There'was'a'significant'effect'of'treatment'(F2,63'='17.34,'p'<'0.001)'on'Cl]'concentrations,' but'not'depth'or'their'interaction.''Error'bars'represent'1'SE. ..................................................... '111' ' Figure'3]14.''Mean'Na+'concentrations'from'porewater'equilibrators'within'control'(C),' biomass'removal'(BR),'and'litter'removal'(LR)'treatment'plots'averaged'across'sites.'' There'was'a'significant'effect'of'treatment'(F2,63'='4.93,'p'='0.01)'on'Na+'concentrations,' but'not'depth'or'their'interaction.''Error'bars'represent'1'SE. ...................................................... 112'' ' Figure'3]15.''Mean'Mg2+'concentrations'from'porewater'equilibrators'within'control'(C),' biomass'removal'(BR),'and'litter'removal'(LR)'treatment'plots'averaged'across'sites.'' There'was'a'significant'effect'of'treatment'(F2,63'='3.29,'p'='0.043)'and'depth'(F13,63'=' 9.20,'p'<'0.001)'on'Mg2+'concentrations,'but'not'their'interaction.''Error'bars'represent'1' SE.'.............................................................................................................................................................................. 113' ' Figure'3]16.''Mean'Ca2+'concentrations'from'porewater'equilibrators'within'control'(C),' biomass'removal'(BR),'and'litter'removal'(LR)'treatment'plots'averaged'across'sites.'' There'was'a'significant'effect'of'treatment'(F2,63'='7.54,'p'='0.001)'and'depth'(F13,63'=' 5.44,'p'<'0.001)'on'Ca2+'concentrations,'but'not'their'interaction.''Error'bars'represent'1' SE................................................................................................................................................................................ 114'' xiv' ' Figure'3]17.''Mean'SO42]'concentrations'from'porewater'equilibrators'within'control'(C),' biomass'removal'(BR),'and'litter'removal'(LR)'treatment'plots'averaged'across'sites.'' There'was'a'significant'effect'of'depth'(F13,63'='4.48,'p'<'0.001)'on'SO42]'concentrations,' but'not'treatment'or'their'interaction.''Error'bars'represent'1'SE............................................... 115'' ' Figure'3]18.''Mean'NO3]]N'concentrations'from'porewater'equilibrators'within'control'(C),' biomass'removal'(BR),'and'litter'removal'(LR)'treatment'plots'averaged'across'sites.'' There'was'a'significant'effect'of'depth'(F13,63'='3.16,'p'='0.049)'and'treatment'on'NO3]' (F13,63'='2.91,'p'='0.002)'concentrations,'but'not'their'interaction.''Error'bars'represent'1' SE............................................................................................................................................................................... '116' ' Figure'3]19.''Mean'net'N'mineralization'rates'among'soil'collected'within'monospecific' stands'of'Phragmites+australis'at'Glasby,'LLP1,'and'LLP2.''The'effect'of'site'was'significant' (F2,87'='65.57;'p'<'0.001).''Same'letter'superscript'denotes'nonsignificant'differences' according'to'Tukey'post'hoc'tests.''Error'bars'represent'1'SE. ...................................................... 117'' ' Figure'3]20.''Mean'net'nitrification'rates'among'soil'collected'within'monospecific'stands' of'Phragmites+australis'at'Glasby,'LLP1,'and'LLP2.''The'effect'of'site'was'significant'(F2,87'=' 1.29;'p'<'0.001).''Same'letter'superscript'denotes'nonsignificant'differences'according'to' Tukey'post'hoc'tests.''Error'bars'represent'1'SE. ................................................................................. 117''' ' Figure'3]21.''Regression'between'soil'%'moisture'and'net'N'mineralization'rates'(adjusted' R2'='0.297,'p'<'0.001)........................................................................................................................................ 118' ' Figure'3]22.''Regression'between'soil'%'moisture'and'net'N'mineralization'rates'(adjusted' R2'='0.406,'p'<'0.001)........................................................................................................................................ 118' ' Figure'3]23.''Regression'between'soil'%'moisture'and'net'N'mineralization'rates'(adjusted' R2'='0.125,'p'<'0.001)........................................................................................................................................ 119' ' Figure'3]24.''Mean'first'order'rate'constants'(k;'day]1)'for'stems'incubated'within'control' (C),'biomass'removal'(BR),'litter'removal'(LR),'and'total'removal'(TR)'treatment'plots'over' a'90'day'time'period'averaged'across'sites.''There'was'a'significant'effect'of'depth'(F1,44'=' 6.43;'p'='0.014),'but'not'treatment'or'their'interaction.''Same'letter'superscript'denotes' nonsignificant'differences'according'to'Tukey'post'hoc'tests.''Error'bars'represent'1'SE.119''''' ' Figure'3]25.''Mean'first'order'rate'constants'(k;'day]1)'for'filters'incubated'within'control' (C),'biomass'removal'(BR),'litter'removal'(LR),'and'total'removal'(TR)'treatment'plots'over' a'90'day'time'period'averaged'across'sites.''There'was'a'significant'effect'of'depth'(F1,44'=' xv' 6.43;'p'<'0.001),'but'not'treatment'or'their'interaction.''Same'letter'superscript'denotes' nonsignificant'differences'according'to'Tukey'post'hoc'tests.''Error'bars'represent'1'SE.'120'''' ' Figure'3]26.''Mean'first'order'rate'constants'(k;'day]1)'for'stems'incubated'at'Glasby'(GL),' LLP1,'and'LLP2'sites'over'a'90'day'time'period.''There'was'a'significant'interaction' between'site'and'depth'(F2,54'='5.12;'p'='0.009).''Same'letter'superscript'denotes' nonsignificant'differences'according'to'Tukey'post'hoc'tests.''Error'bars'represent'1'SE.120''''' ' Figure'3]27.'Mean'first'order'rate'constants'(k;'day]1)'for'filters'incubated'at'Glasby'(GL),' LLP1,'and'LLP2'sites'over'a'90'day'time'period.''There'was'a'significant'interaction' between'site'and'depth'(F2,54'='10.33;'p'<'0.001).''Same'letter'superscript'denotes' nonsignificant'differences'according'to'Tukey'post'hoc'tests.''Error'bars'represent'1'SE.121'''''''' ' Figure'3]28.''Mean'denitrification'rates'(N2O'production)'among'soil'collected'within' monospecific'stands'of'Phragmites+australis'at'Glasby,'LLP1,'and'LLP2.''The'effect'of'site' was'significant'(F2,27'='11.41;'p'<'0.001).''Same'letter'superscript'denotes'nonsignificant' differences'according'to'Tukey'post'hoc'tests.''Error'bars'represent'1'SE............................... 121'' ' Figure'3]29.''Regression'between'nitrate'and'denitrification'rates'(N2O' production)(adjusted'R2'='0.310,'p'<'0.001).......................................................................................... 122' ' Figure'3]30.''Regression'between'soil'C:N'ratio'and'denitrification'rates'(N2O'production)' (adjusted'R2'='0.252,'p'<'0.001)................................................................................................................... 122' ' Figure'4]1.'Map'showing'the'location'of'the'monospecific'stands'of'Phragmites+australis+ (Phr),+Phalaris+arundinacea+(Pha),+Typha × glauca+(Typ),+and+Carex+lacustris'(Car)'in'the' wetland'area'within'Lake'Lansing'Park'North,'Haslett,'MI. ............................................................. 146' ' Figure'4]2.''Mean'cumulative'C'mineralization'over'the'68]day'litter'quality'and'soil'origin' € laboratory'incubation.''The'main'effects'of'species]specific'litter'(F3,80'='69.43,'p'<'0.001)' and'soil'origin'(F3,80'='11.29,'p'<'0.001)'were'significant,'but'not'their'interaction.''Same' letter'superscript'denotes'nonsignificant'differences'according'to'Tukey'post'hoc'tests.'' Error'bars'represent'1'SE................................................................................................................................ 157' ' Figure'4]3.''Regression'between'soil'C:N'ratio'and'cumulative'C'mineralization'(all' treatments)'(adjusted'R2'='0.003,'p'='0.423). ........................................................................................ 158' ' Figure'4]4.''Regression'between'soil'C:N'ratio'and'cumulative'C'mineralization'(no'litter' treatments'only)'(adjusted'R2'='0.077,'p'='0.105)............................................................................... 158' ' xvi' Figure'4]5.''Regression'between'soil'%N'ratio'and'cumulative'C'mineralization'(no'litter' treatments'only)'(adjusted'R2'='0.192,'p'='0.018)............................................................................... 159' ' Figure'4]6.''Regression'between'litter'C:N'ratio'and'cumulative'C'mineralization'(litter' addition'treatments'only)'(adjusted'R2'='0.524,'p'<'0.001). ........................................................... 159' ' Figure'4]7.''Regression'between'litter'C:N'ratio'and'day'1'C'mineralization'(Litter'addition' treatments'only)'(adjusted'R2'='0.861,'p'<'0.001)............................................................................... 160' ' Figure'4]8.''Mean'net'N'mineralization'over'the'68]day'litter'quality'and'soil'origin' laboratory'incubation.''The'main'effects'of'species]specific'litter'(F3,100'='92.30,'p'<'0.001)' and'soil'origin'(F12,100'='14.07,'p'<'0.001)'were'significant,'but'not'their'interaction.''Same' letter'superscript'denotes'nonsignificant'differences'according'to'Tukey'post'hoc'tests.'' Error'bars'represent'1'SE................................................................................................................................ 161' ' Figure'4]9.'Regression'between'litter'C:N'ratio'and'net'N'mineralization'(adjusted'R2'=' 0.452,'p'<'0.001).................................................................................................................................................. 162' ' Figure'4]10.''Mean'cumulative'C'mineralization'over'the'55]day'litter'diversity'laboratory' incubation.''The'main'effect'of'litter'treatment'was'significant'(F14,90'='8.08,'p'<'0.001).'' Same'letter'superscript'denotes'nonsignificant'differences'according'to'Tukey'post'hoc' tests.''Error'bars'represent'1'SE................................................................................................................... 163' ' Figure'4]11.''Regression'between'litter'C:N'ratio'and'cumulative'C'mineralization'(adjusted' R2'='0.131,'p'<'0.001)........................................................................................................................................ 164' ' Figure'4]12.''Regression'between'litter'%lignin'and'cumulative'C'mineralization'(adjusted' R2'='0.228,'p'<'0.001)........................................................................................................................................ 164' ' Figure'4]13.''Regression'between'litter'lignin/N'ratio'and'cumulative'C'mineralization' (adjusted'R2'='0.313,'p'<'0.001)................................................................................................................... 165' ' Figure'4]14.'Regression'between'litter'species'diversity'and'cumulative'C'mineralization' (adjusted'R2'='0.075,'p'='0.002)................................................................................................................... 165' ' Figure'4]15.''Mean'net'N'mineralization'over'the'55]day'litter'diversity'laboratory' incubation.''The'main'effect'of'litter'treatment'was'significant'(F15,96'='845.21,'p'<'0.001).'' Only'the'no'litter'treatment'was'significantly'different'from'the'other'treatment' combinations.''Error'bars'represent'1'SE. ............................................................................................... 166' ! ! xvii' Chapter!1! Introduction! ! ' Carbon!and!Nitrogen!Cycling!in!Wetlands! ' Human]induced'alteration'to'global'biogeochemical'cycles'is'creating'considerable' public'and'scientific'interest'today.''Of'special'concern'are'the'anthropogenic'activities'that' have'directly'and'indirectly'increased'the'amount'of'reactive'nitrogen'(N)'(NO3]'and'NH4+;' Galloway'et'al.'2003)'entering'terrestrial'and'aquatic'ecosystems,'due'to:'(1)'increased' cultivation'of'leguminous'crops'that'biologically'fix'un]reactive'N'(N2)'to'ammonium,'(2)' combustion'of'fossil'fuels'resulting'in'the'creation'of'NOx'species,'and'(3)'the'use'of'large' quantities'of'NH4+]based'fertilizers'to'increase'crop'yield'worldwide'(Vitousek'et'al.'1997;' Driscoll'et'al.'2003;'Galloway'et'al.'2003).''These'inputs'have'contributed'to'elevated'levels' of'reactive'N'that'result'in'major'ecological'and'human'health'problems,'such'as' tropospheric'ozone'formation,'acid'rain,'high'ammonium]N'toxicity'to'fish,'carcinogenic' effects'of'increased'nitrate'levels'in'drinking'water,'and'stimulation'of'pathogenic'microbes' which'can'cause'public'health'risks'(Vitousek'et'al.'1997;'Driscoll'et'al.'2003;'Galloway'et' al.'2003;'Zedler'2003).''Aquatic'ecosystems'are'particularly'sensitive'to'nutrient'loading,' which'can'result'in'eutrophication,'algal'blooms,'high'biological'oxygen'demand,'and'the' formation'of'dead'zones'(Livingston'2000).' Carbon'cycling'also'has'been'significantly'impacted'by'human'activities,'such'as'the' use'of'combustion'engines,'the'processing'of'natural'gas'and'crude'oil,'and'deforestation' (Hoffert'et'al.'1998).''These'actions'have'resulted'in'rising'concentrations'of'CO2'and'CH4' 1' in'the'atmosphere.''Both'CO2'and'CH4'are'greenhouse'gases'and'are'hypothesized'to'drive' most'of'the'anthropogenic'climate'change'now'underway'(in'addition'to'N2O),'and,' therefore,'understanding'how'they'cycle'through'the'environment'is'of'great'importance.'' While'the'majority'of'the'carbon'in'the'biosphere'is'stored'in'the'world’s'ocean,'primarily' as'bicarbonate'(Schlesinger'1997),'there'has'been'substantial'interest'in'understanding'the' dynamics'of'terrestrial'carbon'sources'and'sinks'because'they'are'potentially'very'active' and'thus'can'have'significant'impacts'on'carbon'cycling.''Heimann'and'Reichstein'(2008)' suggested'that'on'a'global'scale'terrestrial'ecosystems'will'provide'a'positive'feedback'to' global'warming,'mainly'by'permafrost'thawing,'the'microbial'priming'effect,'and'the' interaction'between'carbon'and'nitrogen'cycles,'though'the'magnitude'of'effects'is'less' well'known.''Soils'are'the'largest'terrestrial'carbon'pool,'though'living'plants'(trees,' grasses,'etc.)'are'also'a'significant'pool'of'terrestrial'carbon.''Although'forest'and'grassland' soils'can'store'organic'matter'for'long'periods'of'time,'wetlands,'by'far,'store'the'largest' amount'of'carbon'on'an'areal'basis,'storing'a'global'total'of'approximately'300'–'700' billion'tons'of'carbon'(Bridgham'et'al.'2006),'with'the'majority'in'northern'peatlands.'' Wetlands'are'significant'sinks'of'carbon'due'to'their'high'productivity'and'anaerobic' conditions'that'promote'slow'decomposition,'thus'resulting'in'the'buildup'of'organic' matter.''Euliss'et'al.'(2006)'estimated'that'North'American'prairie'wetland'restoration' alone'has'the'potential'to'sequester'378'Tg'of'carbon'over'a'10]year'time'period,'offsetting' the'annual'fossil'fuel'carbon'emissions'in'North'America'by'2.4%.'' There'is'a'strong'coupling'between'C'and'N'cycling'(Schlesinger'2011).''This'strong' coupling'occurs'for'two'main'reasons:'(1)'there'is'a'stoichiometric'requirement'of'C'and'N' 2' for'most'organisms,'so'limitation'of'one'element'will'usually'limit'the'cycling'of'the'other' (assimilatory'coupling)'and'(2)'the'metabolic'capabilities'of'many'microbes'allow'for'the' catalysis'of'energy'releasing'reactions,'usually'by'means'of'changes'in'oxidation'states'of'C' or'N'(dissimilatory'coupling)'(Burgin'et'al.'2011).''In'dissimilatory'reactions,'the'elements' are'not'incorporated'into'the'biomass'of'the'organism'and'are'instead'released'directly' back'into'the'environment.''The'coupling'of'C'and'N'cycling'can'have'consequences'to'the' structure'and'function'of'many'ecosystems.''For'example,'in'a'laboratory'incubation'using' soil'collected'from'an'old]growth'coniferous'soil,'Hart'et'al.'(1994)'found'a'strong'positive' relationship'between'CO2'evolution'and'gross'N'mineralization.''Microbial'growth' efficiency'declined'over'the'incubation'period'(456'days)'suggesting'the'use'of'lower' quality'substrates'as'C'availability'declined.''Thomas'et'al.'(2010)'studied'the'effects'of'N' deposition'on'northeastern'forests'and'found'that'N'deposition'increased'the'growth'of'the' majority'of'study'species,'and'thus'increased'tree'C'storage.''In'wetlands,'one'of'the'best' examples'of'the'tight'coupling'between'C'and'N'is'the'denitrification'process.''In'low' oxygen'conditions,'denitrifiers'can'convert'NO3]'to'N2O'and'N2'by'a'series'of'redox' reactions'that'use'NO3]'as'an'electron'acceptor'and'organic'carbon'as'an'electron'donor.'' This'is'one'of'several'metabolic'pathways'responsible'for'the'decomposition'of'organic' matter'in'anoxic'conditions.''''''''''' ''Wetlands'are'usually'found'in'depressional'areas'on'the'landscape'and'as'a'result' they'receive'large'amounts'of'water'from'surface'and'ground'water'inflow,'making'them' vulnerable'to'flooding,'nutrient'loading,'and'other'types'of'disturbance'(Zedler'and' Kercher'2004).''Wetlands'are'defined'as'ecosystems'on'the'interface'between'terrestrial' 3' and'aquatic'habitats'(Mitsch'and'Gosselink'2000).''The'three'main'features'that'distinguish' a'wetland'are:'(1)'a'zone'of'saturation'(at'the'soil'surface'or'within'the'rooting'zone)'for'at' least'part'of'the'year,'(2)'unique'soil'characteristics'arising'from'saturation'(e.g.,'gleying)' and'(3)'the'presence'of'hydrophytes'(plants'adapted'to'saturated'soil'conditions)'with'the' exclusion'of'plants'intolerant'to'waterlogging'(Mitsch'and'Gosselink'2000).''While' wetlands'provide'a'host'of'ecosystem'services'such'as'wildlife'habitat,'flood'control,'and' shoreline'stabilization'(Zedler'2003),'one'of'the'main'services'provided'by'these' ecosystems'is'the'enhancement'of'water'quality'via'the'retention'and'removal'of'excess'N' (Saunders'and'Kalff'2001;'Zedler'2003;'Verhoeven'et'al.'2006).''Wetlands'have'played' major'roles'of'improving'water'quality'in'a'number'of'climatic,'ecological,'and'land]use' settings'(Zedler'2003).''Wetlands'retain'and'remove'N'through'several'physical'and' biological'processes,'including'N'retention'via'plant'N'uptake'for'metabolic'processes,' cation'exchange'in'organic]rich'soils,'and'longer]term'sedimentation'and'burial'(Reddy' and'Delaune'2008).''Microbially]mediated'transformations'of'N'in'wetlands,'including' mineralization,'nitrification,'and'denitrification,'are'particularly'important'because'these' processes'result'in'the'conversion'of'reactive'N'to'less'reactive'species'(N2O'and'N2)'that' are'emitted'to'the'atmosphere.' Wetlands'furnish'ecosystem'services'disproportionately'to'their'area,'particularly'in' the'case'of'water'quality'improvement'(Zedler'2003;'Verhoeven'et'al.'2006).''Nitrogen' retention'and'removal'by'wetlands'has'received'particular'attention'in'North'America'and' Europe'where'excessive'N'is'a'concern.''Wetlands'can'reduce'the'ecological'and'health' risks'posed'by'excess'N'in'aquatic'ecosystems,'especially'in'areas'where'agriculture'or' other'land'uses'create'runoff'of'N'originating'from'fertilizers'(Verhoeven'et'al.'2006).'' 4' Wetland'N'cycling'is'sensitive'to'changes'in'soil'temperature,'redox'status,'available' nutrients,'and'pH'(Reddy'and'DeLaune'2008)'(Figure'1]1;'pathways'5,'6,'and'8).''Because' of'their'role'as'landscape'sinks'for'nutrients'and'organic'matter,'along'with'having'periods' of'drying'and'rewetting,'wetlands'as'known'as'biogeochemical'“hotspots”'for'N'(McClain'et' al.'2003).''Wetlands'are'very'productive'ecosystems,'and'in'most'cases,'rates'of' photosynthesis'(primary'production)'are'greater'than'decomposition'creating'organic' matter'rich'soil'that'contains'nutrients'as'well'as'electron'donors'(carbon)'needed'for' many'N'transformation'processes.''For'example,'nitrification,'the'microbially]mediated' conversion'of'ammonium'to'nitrate,'needs'an'aerobic'environment'and'ammonium'to' occur.''Conversely,'denitrification'requires'nitrate'as'the'oxidant,'labile'organic'carbon'as' the'electron'donor,'and'an'anaerobic'environment.''These'contrasting'requirements'limit' the'rate'of'these'N'cycling'processes'in'most'ecosystems,'but'wetlands'provide'aerobic'and' anaerobic'conditions'that'vary'spatially'and/or'temporally,'which'can'greatly'increase'the' rates'of'processes'like'denitrification.'(McClain'et'al.'2003;'Reddy'and'DeLaune'2008).''' Despite'their'benefits'to'water'quality,'the'majority'of'the'wetlands'in'the'United'States' have'been'drained'or'degraded,'often'for'agricultural'purposes'(Zedler'2003).''Over'the' past'several'decades,'mitigation'and'conservation'programs'in'the'United'States'have'been' established'to'protect'remaining'wetlands,'though'they'remain'vulnerable'to'perturbations' such'as'changes'in'natural'hydrologic'flow'and'nutrient'loading'from'surrounding'land] uses'(Saunders'and'Kalff'2001;'Zedler'2003;'Verhoeven'et'al.'2006).''In'the'Great'Lakes' region,'an'area'dominated'by'wetlands,'water,'and'water]based'recreation,'increasing' invasions'by'exotic'species'are'considered'to'be'one'of'the'most'critical'threats'to' biodiversity'and'ecosystem'stability'(Zedler'and'Kercher'2004).' 5' Wetlands'are'especially'vulnerable'to'biological'invasions'because'of'their'landscape' setting'where'they'often'receive'inflows'of'water'and'propagules,'and'because'they'often' are'periodically'disturbed'by'flooding'and'drying'events'(Zedler'and'Kercher'2004;'Magee' and'Kentula'2005).''While'wetland'plants'can'be'considered'stress]tolerators'(Grime'2002)' because'they'are'adapted'to'environments'that'are'highly'variable'(e.g.,'seasonally' flooded),'humans'have'introduced'additional'disturbances,'such'as'nutrient'loading,'that' native'species'are'not'adapted'to.''Nutrient'loading'usually'favors'species'that'respond' positively'to'high'nutrient'availability'(Davis'et'al.'2000),'which'is'the'case'for'most' wetland'invasive'plants.''Recent'research'has'shown'that'tall,'clonal'species'with'runner' behavior'(i.e.,'species'with'long'spacers'between'ramets,'which'includes'most'wetland' invasive'plant'species)'respond'to'nitrogen'addition'by'increasing'in'abundance,'while' short,'clumping'species'(many'native'wetland'plant'species)'decreased'in'abundance' (Gough'et'al.'2012).''This'may'be'one'of'the'main'mechanisms'for'the'invasibility'of' wetlands.''''' Wetland'plants'influence'wetland'soils'and'hydrology'through'their'structure,'life' history,'degree'of'clonality,'root'characteristics,'and'quantity'of'litter'inputs'(Ehrenfeld' 2003)'(Figure'1]1;'pathways'2'and'3).''Plants'and'their'litter'influence'abiotic'factors'(e.g.,' water'availability'and/or'soil'temperature),'thereby'indirectly'affecting'microbial' decomposition'rates'and'soil'carbon'sequestration'(Eviner'and'Chapin'2003;'Euliss'et'al.' 2006;'Lal'2008).'For'example,'Fisk'and'Schmidt'(1995)'found'that'relationships'between'N' mineralization,'soil'temperature,'and'water'in'alpine'tundra'communities'varied'among' plant'communities.''It'is'possible'that'invasion'by'high]productivity'plant'species'that' generate'low'quality'litter'could'increase'C'and'N'storage,'thereby'enhancing'an'ecosystem' 6' service'provided'by'wetlands.''A'meta]analysis'of'94'experimental'studies'across'a'variety' of'ecosystems'found'that'invasive'species'influence'C'and'N'cycling'by'increasing'C'stocks' (root'and'shoot),'plant'N'concentration,'and'inorganic'N'pools'in'the'soil,'and,'although'this' pattern'was'not'influenced'by'ecosystem,'there'was'variation'in'the'strength'of'effect' among'plant'functional'types'(Liao'et'al.'2008).''' As'mentioned'above,'wetland'hydrology'has'great'influence'on'the'structure'and' function'of'wetlands'(Hamilton'2002;'Trebitz'et'al.'2005;'Sierszen'et'al.'2006).''Directly,' flooding'decreases'the'oxygen'concentration'within'soil'or'sediment,'which'has' implications'for'soil'respiration'and'decomposition'(van'der'Valk'1991;'Neckles'and'Neill' 1994).''The'reduction'of'available'oxygen'due'to'flooding,'and'therefore'a'reduction'in' decomposition,'is'one'of'the'main'reason'wetlands'accumulate'organic'matter'in'their'soils' or'sediments.'''Flooding'not'only'changes'ecosystem'processes'directly'(e.g.,'prolonged'soil' anaerobiosis),'but'also'indirectly'through'influence'on'the'plant'community'composition.''' Because'flooding'can'be'a'common'disturbance'in'wetlands,'many'studies'have'focused'on' how'flooding'can'affect'wetland'plant'communities'(e.g.,'Hudon'2004;'Kercher'and'Zedler' 2004).''While'most'wetland'plants'can'survive'periods'of'inundation,'plant'species'vary'in' their'tolerance'to'the'duration'and'depth'of'flooding'(Cronk'and'Fennessy'2001).''This' variation'in'flood'tolerance'among'species'is'one'of'the'main'causes'for'differences'in'plant' community'composition'among'wetlands'(Sharitz'and'Pennings'2006).''Flooding'causes' multiple'challenges'for'plant'species:'(1)'oxygen'diffuses'10,000x'slower'in'water'than'in' air,'thus'roots'are'oxygen'limited,'(2)'anaerobic'conditions'produce'toxic'substances'such' as'Fe'(II),'H2S,'and'organic'acids'that'can'harm'plant'roots,'and'(3)'complete'submergence' of'the'plant'will'lead'to'a'reduction'of'light,'CO2,'and'oxygen'to'the'shoots'(Cronk'and' 7' Fennessy'2001).''Wetland'plants'have'multiple'adaptations'to'cope'with'flooding'stress,' including'passively'or'actively'transporting'oxygen'from'the'shoots'to'the'roots'for'root' respiration,'releasing'oxygen'from'the'surface'of'the'root'creating'an'oxic'environment'that' protects'the'root'from'Fe'(II)'and'H2S,'and,'in'many'cases,'tall,'emergent'stature'that' ensures'direct'interface'with'the'atmosphere'in'most'conditions.''The'effect'of'flooding'on' wetland'plant'community'composition'can'then'influence'ecosystem'function'by'altering' the'predominant'plant'traits'within'the'community.'' ' Invasive!Species!and!Plant!Functional!Traits! ' The'human]caused'redistribution'of'species'has'recently'accelerated'with'the' economic'globalization'of'human'society'(Theoharides'and'Dukes'2007).''Invasions'by' exotic'species'are'considered'to'be'one'of'the'most'critical'threats'to'biodiversity'and' ecosystem'stability'(Walker'and'Steffen'1997).''Invasive'species'threaten'ecosystem' function'on'multiple'levels'resulting'in'economic'costs'and'ecological'damage.''The'cost'of' damage,'control,'and'removal'of'invasive'species'reaches'approximately'$137'billion' annually'for'the'United'States'(Pimentel'et'al.'2000,'2004).''The'resulting'effects'of'species' redistribution'caused'by'the'introduction'of'exotic'species'on'ecosystem]level'processes' are'largely'unknown.'While'a'small'percent'of'introduced'species'become'established,'with' an'even'smaller'amount'becoming'invasive'(Williamson'and'Fitter'1996),'those'species' that'invade'successfully'often'become'dominant'and'can'alter'community'structure'and' composition'(Levine'et'al.'2002).''For'example,'garlic'mustard'(Alliaria+petiolata)'invasion' into'North'American'woodlands'has'resulted'in'the'alteration'of'under]story'plant' communities'(Meekins'and'McCarthy'2000;'Stinson'et'al.'2007).''Closer'examination'also' 8' has'shown'that'garlic'mustard'may'change'the'tree'community'to'more'shade'tolerant' species'whose'seedlings'can'withstand'the'intense'shading'created'by'garlic'mustard' stands'(Stinson'et'al.'2007).''In'addition,'garlic'mustard'produces'allelopathic'chemicals' that'inhibit'the'growth'other'plants,'potentially'via'inhibition'of'mycorrhizal'fungi'(Weir' 2007).''' While'much'research'has'investigated'why'certain'plant'species'become'invasive'while' others'do'not,'it'is'not'entirely'clear'what'mechanisms'are'responsible'for'invasion'success.'' Some'of'the'most'supported'hypotheses'include'the'enemy'release'hypothesis,'broader' tolerance'hypothesis,'efficient'use'hypothesis,'hybrid'vigor'hypothesis,'and'allelopathy' hypothesis'(Zedler'and'Kercher'2004),'though'none'can'explain'all'invasions.''There'is' much'evidence'that'propagule'pressure'is'a'strong'determinant'of'invasion'success' (Lockwood'et'al.'2005),'and'more'recent'theory'suggests'that'invasion'is'a'complex'process' with'many'stages'including'transport,'introduction,'establishment,'and'spread'(Blackburn' et'al.'2011).''The'spread'of'invasive'species'have'also'been'connected'to'economic'activity;' Taylor'and'Irwin'(2004)'were'able'to'explain'75%'of'the'variation'in'the'number'of'exotic' plants'in'the'50'states'with'a'population]economic'model'that'incorporated'human' population'and'real'estate.'' There'are'also'contrasting'patterns'for'the'effect'of'invasive'species'on'species' diversity.''On'a'global'scale'it'seems'clear'that'species'diversity'is'decreasing'as'a'result'of' many'human'activities,'such'as'habitat'destruction,'over]hunting,'and'species'introductions' (Kerr'and'Currie'1995).''On'a'local'scale'(study'sites'less'than'a'few'dozen'hectares)' species'loss'seems'to'follow'the'general'global'pattern;'species'introductions'decrease' species'richness'(Sax'and'Gaines'2003).''The'pattern'for'regional'scales'(between'global' 9' and'local'scale)'is'quite'different,'as'there'seem'to'be'diversity'increases'associated'with' species'introductions'(Sax'and'Gaines'2003).''This'contrasting'effect'of'introduced'species' is'not'easily'explained,'though'the'regional'increase'is'likely'partially'caused'by'species' redistribution'by'humans,'increasing'the'total'number'of'species'on'a'continental'scale,' while'at'the'local'scale'invasive'species'are'known'to'competitively'exclude'most'other' species'where'they'occur.''The'decrease'in'species'diversity'at'a'local'scale'is'also'more' severe'in'anthropogenic'environments'(Sax'and'Gaines'2003).''Another'paradox'related' with'scale'is'the'positive'association'found'between'natives'and'exotic'species'richness'at' broad'scales'contrasted'with'the'negative'associations'at'fine'scales'(Fridley'et'al.'2007).'' These'paradoxes'show'our'incomplete'understanding'of'species'invasions'and'seem'to' suggest'that'more'focused'studies'are'needed'to'resolve'these'dilemmas.''Regardless'of'the' mechanism'of'these'patterns,'it'is'clear'that'invasive'species'negatively'impact'species' diversity'on'global'and'local'scales.'' When'an'invasive'plant'becomes'locally'dominant,'it'can'directly'and'indirectly'impact' the'invaded'community'(Figure'1]1).''Invasive'and'resident'species'likely'differ'in'key'plant' traits'such'as'tissue'quality,'productivity'(above]'and'below]ground),'and'phenology.'' Ecosystem'processes'are'sensitive'to'the'identity'of'plant'species'that'comprise'community' species'pools'(Eviner'and'Chapin'2003),'thus'invasions'into'natural'communities'can'alter' ecosystem]level'processes'by'introducing'novel'plant'traits'that'influence'soil' environments,'soil'microorganism'composition,'and/or'nutrient'cycling.''In'a'mixed' deciduous'forest'in'New'York'it'was'shown'that'invasive'woody'species'accelerated' decomposition'rates,'which'in'turn'resulted'in'increased'N'loss'from'litter'(Ashton'et'al.' 2005).''What'was'interesting'about'this'study'was'that'all'litter'in'the'invaded'sites'(exotic' 10' and'native'species)'decomposed'faster'compared'to'the'non]invaded'sites.''This'showed' that'species]specific'litter'decomposition'was'not'the'only'important'difference'between' invaded'and'non]invaded'sites'and'that'invasive'species'indirectly'affected'ecosystem' processes'(Ashton'et'al.'2005).''' Variation'in'plant'traits'within'a'community'is'known'to'influence'many'aspects'of'' ecosystem'function'(Chapin'2003).''Biomass'accumulation'and'other'plant'traits'that'affect' organic'matter'quality'can'directly'and'indirectly'influence'an'ecosystem’s'ability'to'store' carbon'(C)'and'nitrogen'(N)'within'litter'and'soil'layers'(Ehrenfeld'2003).''Previous'work' has'shown'that'plant'functional'group'diversity'had'strong'effects'on'total'plant'N,'plant' productivity,'and'light'penetration'in'an'experimental'grassland'in'Minnesota'(Tilman'et'al.' 1997),'while'functional'group'composition'was'a'more'important'predictor'of'ecosystem] level'processes'than'functional'group'richness'in'a'serpentine'grassland'in'California' (Hooper'and'Vitousek'1997).''Plant'functional'traits'such'as'leaf'tissue'chemistry,'rooting' depth,'and'canopy'structure'affect'ecosystem'productivity'and'C'and'N'cycling'(Tilman'et' al.'1997;'Ehrenfeld'2003;'Eviner'and'Chapin'2003).'' Plant'functional'traits'are'useful'to'study'because'they'allow'us'to'simplify'complex' and'seemingly'species]specific'controls'on'ecological/biogeochemical'processes'to'a'few' plant'traits'of'dominant'influence'(Eviner'and'Chapin'2003;'McGill'et'al.'2006).''This'allows' predictions'to'be'made'about'the'outcomes'of'ecological'phenomena,'such'as'invasion,' succession,'or'competition,'with'some'confidence'given'knowledge'of'important'functional' traits'of'the'invading'or'competing'species'(Westoby'and'Wright'2006).''For'example,' Spartina+alterniflora'invasion'into'native'Phragmites+australis'and'Scirpus+mariqueter' populations'in'China'caused'an'increase'in'net'primary'production'and'C'and'N'storage.' 11' This'was,'in'part,'the'result'of'S.+alterniflora'having'a'longer'growing'season,'denser' canopy,'and'greater'root'biomass'than'either'native'species'(Liao'et'al.'2007).''In'addition,' Lythrum+salicaria'invasion'of'Typha+latifolia'stands'in'New'York'resulted'in'higher'soil' organic'matter'(OM)'content'and'greater'N'mineralization'rates.''While'hydrology'was'a' major'control'on'N'transformations,'L.+salicaria'total'biomass'was'more'than'double'that'of' T.+latifolia,'which'increased'litter'inputs'and'resulted'in'higher'soil'OM'content'(Fickbohm' and'Zhu'2006).''If'a'trait'is'found'to'strongly'affect'ecosystem'processes,'e.g.,' decomposition,'then'predictions'can'be'made'about'the'magnitude'of'effect'on'that'process' for'species'that'share'that'trait.'' Although'the'benefits'of'investigating'the'influential'functional'traits'affecting' ecosystem'processes'have'been'made'clear'(Diaz'and'Cabido'2001;'Lavorel'and'Garnier' 2002;'Arndt'2006;'Schindler'and'Gessner'2009),'not'all'variation'in'ecosystem'function,' such'as'C'and'N'mineralization,'can'be'completely'explained'by'a'few'functional'traits.''In' some'cases,'species'identity'is'the'best'predictor'of'ecosystem'level'effects'(Wardle'et'al' 2003).''Therefore,'if'possible,'it'is'important'to'simplify'complex'plant'community'data'to'a' few'key'traits'of'large'effect,'as'well'as'to'investigate'if'specific'dominant'species'are' strongly'influencing'the'overall'ecosystem'function,'perhaps'by'novel'traits'not'shared'by' the'rest'of'the'community.''Invasions'by'exotic'species'are'a'good'example'of'situations' where'both'approaches'may'be'useful.'''''' Phragmites+australis'has'been'shown'to'reduce'the'availability'of'inorganic'N'in' wetlands'and'increase'organic'N'retention'(Findlay'et'al.'2002)'compared'to'native' Spartina'species,'likely'due'to'differences'in'litter'chemistry.''Orwin'et'al.'(2008)' demonstrated'that'C'substrate'identity'can'influence'soil'chemistry,'microbial'metabolism,' 12' and'soil'microbial'community'structure,'all'of'which'could'influence'ecosystem'processes' such'as'decomposition'and'NPP'(through'effects'on'plant'available'nutrients).''Angeloni'et' al.'(2006)'showed'that'invasion'by'Typha+ × glauca'into'a'Michigan'marsh'increased'soil' organic'matter'and'altered'the'composition'of'the'bacterial'and'specifically'denitrifier' € communities,'which'could'have'been'influenced'by'the'higher'aboveground'biomass'of'T. × glauca'compared'to'the'invaded'community.''While'it'is'possible'that'plant'invasions'in' € temperate'wetlands'could'stimulate'the'short]term'uptake'of'N'through'increased'biomass' production,'invasive'species'could'have'different'longer]term'impacts'on'N' transformations'in'wetlands'through'more'complex'controls'on'soil'microenvironments' and'substrate'quality.''' 'Phragmites+australis'(common'reed),'Phalaris+arundinacea'(reed'canarygrass),'and' Typha × glauca+(hybrid'cattail)'are'some'of'the'most'successful'invasive'species'in'North' American'wetlands'(Zedler'and'Kercher'2004).''Phragmites+australis'is'invading'wetlands' € throughout'the'United'States,'and'is'of'particular'concern'in'the'Midwest'states'such'as' Michigan'(Marks'et'al.'1994).'''Phragmites+australis'is'a'high]biomass'invasive'(Windham' and'Lathrop'1999;'Minchinton'and'Bertness'2003),'and'can'have'high'N'use'efficiency'and' low'litter'quality'(Findlay'et'al.'2002).''In'Michigan'wetlands,'P.+australis'occurs'in'the'same' wetland'zone'as'Typha+latifolia'and'is'still'in'the'process'of'aggressively'invading'into'sites' where'it'has'colonized'(S.'Hamilton,'personal'communication).''Phragmites+australis'has' been'shown'to'reduce'the'availability'of'inorganic'N'in'wetlands'(Windham'2001)'and' increase'N'retention'(Findlay'et'al.'2002)'compared'to'Spartina'species,'likely'due'to' differences'in'litter'chemistry.''Similar'comparisons'with'Typha+latifolia'have'yet'to'be' made.' 13' Phalaris+arundinacea'and'T.+ × glauca'are'similar'to'P.+australis'in'that'they'produce' higher'biomass'compared'to'native'species,'spread'through'clonal'growth,'and'displace' € native'wetland'plant'communities'(Lavergne'and'Molofsky'2004;'Wetzel'and'van'de'Valk' 1998;'Hudon'2004).''Exotic'genotypes'of'P.+arundinacea'was'introduced'to'the'United' States'ca.'1850,'though'native'populations'are'known'to'have'existed'prior'to'that' introduction'(Lavergne'and'Molofsky'2004).''Invasive'genotypes'have'been'shown'to'come' primarily'from'Europe'and'after'introduction'for'forage,'bioremediation,'and'erosion' control,'invasive'genotypes'hybridized'with'the'less'aggressive'native'genotypes'(Lavergne' and'Molofsky'2007).''Currently,'the'distribution'of'P.+arundinacea'includes'most'of'the' northern'half'of'the'United'States.'Phalaris+arundinacea'is'extremely'phenotypically'plastic' and'can'adjust'morphologically'to'match'abiotic'conditions'(Martina'2006),'which'has'been' assumed'to'aid'it'when'invading'in'to'new'areas.''Typha' × glauca,'currently'distributed' across'the'eastern'United'States,'is'a'hybrid'between'T.'latifolia'(native)'and'Typha+ € angustifolia'(exotic)'that'is'very'aggressive'and'can'out]compete'the'native'cattail'when' they'co]occur.'''Typha+angustifolia'is'native'to'Europe'but'the'date'of'introduction'to'the' United'States'is'not'well'known,'though'it'was'likely'at'the'beginning'of'the'20th'century.''' For'invasive'species'that'are'more'productive'(in'terms'of'biomass)'than'natives,'such' as'P.+australis,'P.+arundinacea,'and'T.+ × glauca,'one'of+two'mechanisms'may'be'responsible:' (1)'invasives'have'higher'nitrogen'use'efficiency'(NUE,'biomass'per'unit'N)'than'natives'or' € (2)'they'respond'to'nutrient'loading'more'than'natives.''While'it'is'widely'hypothesized' that'the'latter'is'the'correct'mechanism'in'most'circumstances'(Zedler'and'Kercher'2004;' Tyler'et'al.'2007),'invasive'species'can'still'invade'wetlands'at'low'nutrient'levels'(Green' and'Galatowitsch'2002)'and'there'is'also'evidence'that'invasives'are'successful'because'of' 14' greater'NUE'(Funk'and'Vitousek'2007),'at'least'in'low'resource'habitats.++A'thorough' understanding'of'how'these'invasive'plants'are'influencing'C'and'N'cycling,'along'with'the' controlling'factors,'will'help'to'predict'the'impacts'of'invasion.'While'there'has'been'some' research'on'the'effects'of'invasive'species'in'wetlands'(e.g.,'Findlay'et'al.'2002;'Angeloni'et' al.'2006;'Liao'et'al.'2007),'few'studies'have'directly'investigated'the'mechanisms' responsible'for'ecosystem'process'changes'due'to'invasion'and'even'fewer'have'looked'at' multiple'invasive'species'simultaneously.''' ' Decomposition:!Abiotic!and!Biotic!Determinants!!!!! ' Decomposition'is'an'essential'ecosystem'process'defined'as'the'physical'and'chemical' breakdown'of'organic'matter'(Chapin'et'al.'2002).''During'decomposition,'organic'matter'is' broken'down'into'its'chemical'components'releasing'CO2'to'the'atmosphere'and'nutrients' to'the'soil.''Decomposition'consists'of'three'basic'processes:'leaching,'fragmentation,'and' chemical'alteration'(Chapin'et'al.'2002).''Leaching'is'the'mobilization'of'labile'soluble' materials'into'water,'such'as'sugars'and'amino'acids,'from'decomposing'OM.''In'a'litter'bag' field'incubation'investigating'the'controls'on'decomposition'in'two'Mediterranean' ecosystems,'it'was'found'that'leaching'was'an'important'phase'in'decomposition'that' lasted'2]4'months'(Gallardo'and'Merino'1993).'Fragmentation'is'the'physical'breakdown' of'large'detritus'mainly'by'soil'animals'(though'freeze]thaw'and'wet]dry'cycles'can'also' fragment'organic'matter)'that'increases'surface'area'for'microbial'activity'and'can'be'a' very'important'process'in'environments'where'soil'animals'thrive'(Verhoef'and'Brussaard' 1990).''Soil'animals'can'also'influence'the'magnitude'and'direction'of'the'effects'of'litter' diversity'on'decomposition'(Hattenschwiler'and'Gasser'2005).''Chemical'alteration'mainly' 15' occurs'by'the'action'of'microbial'activity'though'some'alteration'can'occur'spontaneously,' such'as'when'exposed'to'UV'radiation'(Austin'and'Ballare'2010).''' Microbes'(mostly'fungi'and'bacteria)'release'extracellular'enzymes'that'react'with' organic'matter'resulting'in'the'breaking'of'chemical'bonds.''Ultimately,'through'microbial' respiration,'organic'matter'is'used'as'an'energy'source'and'oxidized'to'CO2'(in'aerobic' environments).''The'majority'of'soil'respiration'is'due'to'the'action'of'both'bacteria'and' fungi,'though'aspects'of'how'they'influence'decomposition'can'differ'in'important'ways.'' Fungi'are'the'main'initial'decomposers'of'dead'plant'material'because'they'are'capable'of' producing'enzymes'that'can'break'down'most'plant'compounds,'including'lignin'(Chapin' et'al.'2002).''Though'they'are'the'dominant'decomposers'in'ecosystems'like'forests' because'of'their'large'networks'of'hyphae,'they'are'poor'decomposers'in'low'oxygen' environments'like'wetlands.''Conversely,'bacteria'can'survive'in'oxygen'poor'soils'(e.g.,' wetlands)'and'are'responsible'for'a'myriad'of'chemical'transformations,'such'as' nitrification,'denitrification,'and'methanogenesis'that'occur'in'low'oxygen'conditions,' though'in'soils'that'have'drying]rewetting'cycles,'bacteria'are'not'nearly'as'dominant,'and' in'some'cases'fungi'can'become'dominant'(Strickland'and'Rousk'2010).' Many'factors'influence'microbial'biomass'and'activity'and'thus'decomposition'rates,' including'temperature,'moisture,'oxygen'concentration,'and'organic'matter'quality' (Wardle'1992).''Generally,'increasing'temperature'can'directly'enhance'decomposition'by' promoting'microbial'activity'with'almost'zero'microbial'activity'at'very'low'temperatures.'' Reichstein'et'al.'(2000)'incubated'subalpine'soil'at'three'temperatures'(5,'15,'and'25°C)' and'found'that'increasing'the'temperature'by'10'degrees'nearly'tripled'C'mineralization' rates.''While'in'many'laboratory'incubations'the'effect'of'temperature'on'the' 16' mineralization'of'soil'organic'carbon'is'obvious,'a'study'by'Giardina'and'Ryan'(2000)' compiled'data'from'82'sites'and'five'continents'and'determined'that'decomposition'of' organic'matter'found'in'forest'mineral'soils'is'not'controlled'by'temperature'limitations'to' microbial'activity.''This'apparent'lack'of'a'temperature'effect'on'decomposition'may' actually'be'due'to'multiple'environmental'constraints'on'carbon'mineralization,'which' might'also'be'sensitive'to'global'warming'(Davidson'and'Janssens'2005).''' Soil'moisture'is'needed'due'to'the'requirement'of'water'for'normal'biotic'activity,' though'as'soil'moisture'increases'to'fully'saturated'conditions,'oxygen'diffusion'is'reduced' leading'to'anoxic'conditions.''Oxygen'is'required'for'aerobic'respiration,'which'yields'more' energy'gain'compared'to'anaerobic'respiration.''In'the'absence'of'oxygen,'NO3]'is'used'as' an'electron'acceptor'(denitrification)'followed'by'Mn4+,'Fe3+,'SO42],'CO2,'and'finally'H+,' with'the'order'dictated'by'the'energy'efficiency'of'the'various'electron'acceptors'(more' energy'is'gained'by'using'NO3]'as'an'electron'acceptor'compared'to'Mn4+)''(Reddy'and' Delaune'2008).''Because'more'energy'is'gained'during'aerobic'respiration'versus' anaerobic'respiration,'low'oxygen'concentrations'usually'results'in'low'decomposition' rates,'though'anaerobic'respiration'using'NO3]'can'be'almost'as'efficient.''Oxygen' availability'can'also'influence'humic'acid'formation;'Ramunni'et'al.'(1987)'found'that'the' formation'of'humic'acids'during'decomposition'increased'in'the'presence'of'oxygen.' ''Finally,'organic'matter'quality'can'be'a'major'control'on'decomposition'rates.'' Organic'matter'quality'is'dependent'on'its'chemical'composition,'including'size'of' molecules,'type'of'chemical'bonds,'regularity'of'structures,'toxicity,'and'nutrient' concentration'(Chapin'et'al.'2002).''Lignin'is'very'recalcitrant'(hard'to'decompose)'because' 17' it'is'a'large'phenolic'compound'with'a'very'irregular'structure,'making'enzymatic' degradation'difficult.''Consequently,'plant'material'with'high'concentrations'of'lignin' decomposes'slower'than'material'with'low'lignin'concentrations'(Melillo'et'al.'1982).'' Organic'matter'C:N'ratios'or'lignin:N'ratios'have'a'negative'relationship'with' decomposition'rates'and'are'regularly'used'as'metrics'of'substrate'quality'(lability)'in'the' literature.''In'a'study'of'seven'canopy'species'from'a'subtropical'evergreen'forest'in'Japan,' Xu'and'Hirata'(2005)'found'decomposition'rates'were'strongly'controlled'by'N'and'lignin' content,'as'well'as'C:N'and'lignin:N'ratios.'In'a'different'study'that'spanned'10'years,'21' sites,'and'seven'biomes,'Parton'et'al.'(2007)'found'that'N'release'during'decomposition' was'mainly'controlled'by'initial'N'concentrations,'i.e.,'litter'with'high'C:N'ratios'(low'N' content)'released'less'N'over'the'incubation'period'than'litter'with'low'C:N'ratios'(high'N' content).''They'also'found'that'net'N'release'started'when'litter'C:N'ratios'fell'below'about' 40'(range'of'31]48).' Besides'the'four'major'determinants'of'decomposition'described'above,'litter'diversity' can'have'profound'effects'on'decomposition'rates,'though'the'relationship'between'litter' diversity'and'decomposition'can'be'positive,'negative,'or'neutral'(Gessner'et'al.'2010).'' Blair'et'al.'(1990)'used'the'leaf'litter'from'three'common'woody'species'(Acer+rubrum,' Cornus+florida,+and'Quercus+prinus)'to'test'the'effects'of'single]'versus'mixed]species'litter' bags'on'decomposition'and'found'that'mixed]species'litter'bags'had'greater'decomposition' rates'than'single]species'litter'bags,'but'the'effects'of'the'mixed]species'litter'bags'could' not'be'predicted'from'the'single]species'litter'bags.''They'hypothesized'that'the'difference' between'mixed]'and'single]species'litter'decomposition'was'explained'by'changes'in'the' decomposer'community'(Blair'et'al.'1990).''In'a'similar'experiment'performed'to' 18' determine'if'enhanced'decomposition'due'to'increased'litter'diversity'was'caused'by'litter' species'composition'or'alteration'to'the'microenvironment,'it'was'found'that'there'was' more'support'for'changes'to'the'microenvironment'(physical'factors'and'decomposer' community)'than'for'litter'species'composition'(Hector'et'al.'2000).''Litter'diversity'effects' on'decomposition'may'be'specifically'important'in'plant'invasions'because,'initially,'the' addition'of'an'invasive'species'may'increase'litter'diversity,'but'later'in'the'invasion,'if'the' invasive'species'forms'a'monospecific'stand,'litter'diversity'would'be'lower.'''' Wetlands'are'highly'productive'ecosystems'that'undergo'periodic'flooding'events;' therefore,'productivity'is'usually'greater'than'decomposition'causing'the'accumulation'of' organic'matter'in'wetland'soils'(Mitsch'and'Gosselink'2000).''Because'of'the'low'oxygen' levels'in'the'soil,'fungi'and'soil'animals'cannot'survive'and'therefore'bacteria'mediate'the' majority'of'decomposition.''In'flooded'soils,'the'absence'of'both'fungi'and'soil'animals' (Anderson'and'Smith'2000)'slows'decomposition'due'to'the'positive'effects'of' fragmentation'by'soil'animals'and'lignin'breakdown'by'fungi'(Hattenschwiler'et'al.'2005).'' As'discussed'above,'wetlands'are'considered'biogeochemical'“hotspots”'because'of'the' landscape'sink'nature'of'wetlands'combined'with'wetting'and'drying'events'(McClain'et'al.' 2003).''These'“hotspots”'are'created'by'the'diversity'of'redox'reactions'that'often'occur'in' close'proximity'to'each'other'due'to'the'micro]gradients'of'oxygen'concentrations'in'soil' pore'space'(Burgin'et'al.'2011),'which'often'vary'spatially'and'temporally.''This'makes' wetlands'the'site'of'multiple'transformation'pathways'for'many'elements,'including'C,'N,' Fe,'P,'S,'and'Hg.''' Wetland'plants'can'influence'all'of'the'major'determinants'of'decomposition'discussed' above,'including'temperature'(soil'shading;'Eviner'and'Chapin'2003),'soil'moisture' 19' (evapotranspiration;'Goulden'et'al.'2007),'oxygen'availability'(radial'oxygen'loss;'Soukup' et'al.'2007)'and'organic'matter'quality'(litter'quality;'Quested'et'al.'2007).''Therefore,'plant' community'composition'is'an'important'factor'to'consider'when'attempting'to'understand' elemental'cycling'in'wetlands.''Additionally,'plants'can'“condition”'soil'by'influencing'the' soil'microbial'community,'soil'nutrient'availability,'priming'effect'(Fontaine'et'al.'2003),'or' by'all'of'the'above'effects.''This'conditioning'can'then'feed'back'to'alter'the'decomposition' of'plant'OM'inputs,'such'as'litter.''The'“home]field'advantage”'phenomenon,'described'by' Gholz'et'al.'(2000)'and'Ayres'et'al.'(2009),'is'an'example'of'soil'conditioning'where'soil' microbes'become'accustomed'to'OM'inputs'by'the'dominant'plant'species,'resulting'in'the' OM'inputs'from'that'plant'species'decomposing'faster'(Strickland'et'al.'2009).''A'more' complete'understanding'of'plant'effects'on'C'and'N'cycling'in'wetlands'is'required'to'be' able'to'predict'the'effects'of'plant'invasion'on'biogeochemical'cycling.''''' ''''' Research!Objectives! ' The'broad'goal'of'my'dissertation'research'was'to'quantify'the'ecosystem' consequences'of'invasive'plant'species'in'temperate'wetlands,'focusing'on'Phragmites+ australis,+Phalaris+arundinacea,'and'Typha+ × glauca.'The'first'part'of'my'research'(Chapter' 2)'characterizes'the'spatial'variability'in'C'and'N'storage'and'organic'matter'quality'in'24' € wetlands'in'south]central'Michigan.''In'Chapter'3,'I'investigate'the'mechanisms'by'which'P.+ australis'influences'C'and'N'cycling'in'three'wetlands'in'central'Michigan.''In'Chapter'4,'to' understand'the'effects'of'litter'quality,'soil'origin,'and'plant'diversity'on'C'and'N' mineralization,'I'performed'two'laboratory'incubations'using'litter'and'soil'collected'from' monospecific'stands'of'invasive'species.''Together,'these'approaches'allowed'me'to'test'the' 20' following'hypotheses!regarding'direct'and'indirect'effects'of'invasive'plants'on'plant' community'composition'and'ecosystem'processes'in'wetlands:'' + Hypothesis+1+(Chapter'2):'Invasion'into'wetlands'by'plant'species'that'typically'form' monospecfic'stands'reduce'species'richness'and'evenness,'and'therefore'there'will'be'a' negative'relationship'between'the'invasive'species'dominance'and'Shannon'diversity.'' + Hypothesis+2+(Chapter'2):''Invasive'plants'have'higher'nitrogen]use'efficiency'(NUE)' than'natives,'leading'to'higher'biomass'per'unit'of'available'N'as'well'as'lower'N'content'of' biomass'and'litter'(Figure'1]1;'pathway'1,'10).'' + Hypothesis+3+(Chapter'2):''The'lower'quality'(lower'N'content,'higher'C:N'ratio)'of'litter' from'the'invasive'species'results'in'lower'rates'of'decomposition,'increasing'rates'of' organic'matter'storage'in'invaded'wetlands'(Figure'1]1;'pathway'8,'9).' ' Hypothesis+4'(Chapter'2'and'4):'Variation'among'invasive'species'effects'on'C'and'N' mineralization'rates'can'be'attributed'to'differences'in'plant'traits'among'species,' specifically'litter'quality'(Figure'1]1;'pathway'3,'8,'9).''''' + Hypothesis+5'(Chapter'3):''Invasive'plants'(specifically,'Phragmites+australis)'influence' C'and'N'cycling'directly'by'affecting'plant'N'uptake'(Figure'1]1;'pathways'1,'4'and'1,'5,'9)' and'indirectly'by'affecting'soil'climate'(Figure'1]1;'pathways'2,'6,'9'and'3,'7,6,'9)'and'the' quality'and'quantity'of'organic'matter'inputs'(Figure'1]1;'pathway'3,'8,'9).' ' 21' Hypothesis'6'(Chapter'4):'C'and'N'mineralization'rates'depend'not'only'on'the'species] specific'quality'of'the'litter'(hypothesis'4),'but'also'on'the'conditioning'of'the'soil'by'the' dominant'species.''The'soil'conditioning'effect'can'be'due'to'the'priming'effect'(Figure'1]1;' pathway'3,8,9),'differences'in'soil'microbial'community'(Figure'1]1;'pathway'9),'or'soil' nutrient'availability'(Figure'1]1;'pathways'1,5,9'and'8,9).'' + Hypothesis+7+(Chapter'4):''Mixtures'of'litter'from'different'plant'species'have'higher' decomposition'rates'compared'to'litter'from'monospecific'stands'due'to'higher'substrate' diversity'(Fig.'1]1;'pathway'3,8,9).''Hence,'invasive'species'decrease'decomposition'rates' by'reducing'species'(and'hence'litter)'diversity.'' 22' ! Alters PCC, including dominance Introduced plant traits Nitrogen Use Efficiency/ Productivity Leaf Area 1 2 Index/ Biomass Production Litter N concentration Plant N Uptake N Retention 4 C and N Storage and Cycling Determines plant trait composition and dominance Plant Traits 3 Invasive Species Introduction Plant Community Composition (PCC) Litter Inputs 7 ading oil Sh 10 ubs tr Ns 3 Pathway Effects Direct Indirect Soil Microenvironment S ate 8 ava ilab 6 Soil 5 le fo temperature r mi crob es 9 Microbial Community/ Metabolism C and N cycling rates Substrate Quality, Quantity and Diversity Amount, quality and diversity of OM available for decomposition Figure 1-1. Interactions between plant community composition (PCC), plant traits and soil microenvironment influence ecosystem processes. Plant community composition effects on C and N cycling are mediated though plant traits directly (plant N uptake) and indirectly (substrate quality and soil microenvironment alteration). Invasive species introduce novel plant traits into a community and potentially can alter ecosystem function. Arrows represent pathways of influence and are addressed in the text. 23! Chapter(2( Organic(Matter(Accumulation(and(Quality(in(Michigan(Wetlands:(Consequences(of( Invasive(Plants( ! Brief(Rationale( ! Wetlands!provide!a!number!of!valuable!ecosystem!services,!such!as!wildlife!habitat,! flood!control,!shoreline!stabilization,!and!C!and!N!retention!and!storage!(Zedler!2003).!! There!has!been!increasing!interest!in!understanding!the!spatial!and!temporal!pattern!of!C! dynamics!in!different!ecosystems!due!to!the!concern!of!increasing!greenhouse!gas!(CO2!and! CH4)!concentrations!in!the!atmosphere!(Smith!et!al.!2012).!!Globally,!wetlands!only!cover! 2J6%!of!the!land!area,!but!store!14.5%!of!the!terrestrial!C!stocks!(Post!et!al.!1982)!mostly! due!to!their!high!productivity!and!low!decomposition!rates!caused!by!prominent!anaerobic! conditions!(Reddy!and!DeLaune!2008).!!While!most!of!the!global!wetland!C!stocks!are! associated!with!peatlands!in!northern!latitudes!(Roulet!2000),!temperate!wetlands!can!also! be!important!landscape!sinks!for!both!C!and!N!(Euliss!et!al.!2006).!!The!role!wetlands!play! in!N!retention!has!been!known!for!a!while,!though!the!exact!mechanisms!and!processes! associated!with!N!cycling!in!wetlands!is!still!an!active!area!of!study!(Chapman!et!al.!2006).!! Wetlands!are!known!as!biogeochemical!“hotspots”!because!of!the!allochthonous!inputs!of! carbon!substrates!and!nutrients,!along!with!a!fluctuating!hydrology!causing!temporal! variation!to!the!redox!status!of!the!sediment,!which!creates!the!ideal!environment!for!N! processes!such!as!denitrification!(McClain!et!al.!2003).!!Wetlands!are!therefore!known!to! both!store!N!and!lose!N!through!denitrification.!!!!!!!!! ! For!some!of!the!same!reasons!that!make!wetlands!biogeochemical!hotspots,! wetlands!also!can!be!one!of!the!most!invaded!ecosystems,!given!that!they!serve!as!sinks!for! invasive!species!propagules!(carried!by!inflows!of!surface!water),!nutrients,!and! 24! disturbance!(Zedler!and!Kercher!2004).!!Disturbance!(Eschtruth!and!Battles!2009),! propragule!pressure!(Lockwood!et!al.!2005),!and!nutrient!enrichment!(Davis!et!al.!2000)! have!all!been!shown!to!increase!the!colonization!and!establishment!of!invasive!species,! making!wetlands!very!susceptible!to!invasion.!!Additionally,!many!of!the!species!that! invade!wetlands!are!clonal!species!that!can!form!monospecific!stands,!which!reduces! diversity!and!species!interactions.!!Invasive!species!in!temperate!wetlands!are!usually!high! biomass!producers!associated!with!thick!litter!layers.!!Because!these!species!usually! produce!more!biomass!than!native!species,!they!either!have!higher!nitrogen!use! efficiencies!(NUE:!the!amount!of!biomass!produced!per!unit!N)!or!are!able!to!access!a! larger!pool!of!N!compared!to!natives.!!Organic!matter!buildup!beneath!monospecific!stands! of!aggressive!wetland!invaders,!such!as!Typha! × glauca,!has!been!documented!(Ehrenfeld! 2003;!Angeloni!et!al.!2006),!though!the!pattern!across!different!wetland!types!has!not!been! € evaluated.!!With!the!prevalence!of!invasion!in!temperate!wetlands!it!is!important!to! understand!the!effect!of!invasion!on!wetland!processes!such!as!C!and!N!storage!and!organic! matter!quality.!!It!is!possible!that!invasion!by!high!biomass!invasive!species!could!increase! wetland!C!and!N!storage!and,!therefore,!could!be!a!positive!outcome!of!invasion.!! ( While!there!has!been!some!research!on!the!effects!of!invasive!species!in!wetlands! (e.g.,!Findlay!et!al.!2002;!Angeloni!et!al.!2006;!Liao!et!al.!2007),!few!studies!have!directly! characterized!the!spatial!variability!in!C!and!N!storage!and!organic!matter!quality!and!even! fewer!have!looked!at!multiple!invasive!species!simultaneously.!!Additionally,!though!these! species!likely!have!cumulative!effects,!they!can!also!differ!in!plant!traits,!e.g.,!litter!quality,! and!therefore!it!is!important!to!understand!the!differences!among!invasive!species.!!The! broad!goal!of!this!chapter!is!to!quantify!the!consequences!of!invasive!species!in!temperate! 25! wetlands!on!C!and!N!storage!and!organic!matter!quality.!!!In!the!first!part!of!this!chapter,!I! quantified!the!effects!of!invasive!species!on!plant!community!composition,!litter!and!soil!C! and!N!stocks,!and!OM!quality.!!In!the!second!part!of!this!chapter,!I!used!two!soil!assays!to! determine!differences!in!C!and!N!mineralization!rates!from!soil!collected!from! monospecific!stands!of!the!most!dominant!invasive!species.! * Objectives,(Hypotheses,(and(Predictions( ! Objective)1:!To!determine!the!cumulative!effect!of!invasive!wetland!plants!on!species! diversity,!C!and!N!storage,!and!organic!matter!quality.! ! Hypothesis)1:!!Invasion!into!wetlands!by!species!that!can!form!monospecfic!stands!reduces! species!richness!and!evenness.!! ! Prediction!1.1:!There!will!be!a!negative!relationship!between!invasive!species! dominance!and!Shannon!diversity.!! ) Hypothesis)2:!Invasive!plant!species!have!higher!nitrogenJuse!efficiency!(NUE)!than!native! species,!leading!to!lower!N!content!of!their!biomass!and!litter.! ! Prediction!2.1:!There!will!be!a!positive!correlation!between!the!degree!of!invasion! (total!biomass!of!invasive!species)!and!the!overall!plant!community!NUE.! ! Prediction!2.2:!Degree!of!invasion!will!be!positively!correlated!with!organic!matter! C:N!ratios!(litter!and!soil).! 26! * Hypothesis)3:!!Invasive!plant!species!have!litter!with!higher!C:N!ratios!than!native!species’! litter,!leading!to!increased!organic!matter!storage!from!slower!rates!of!decomposition.! ! Prediction!3.1:!!There!will!be!a!positive!correlation!between!the!degree!of!invasion! and!litter!C!and!N!stocks,!soil!C!and!N!stocks,!and!total!ecosystem!C!and!N!stocks.! ! Prediction!3.2:!!Based!on!hypothesized!higher!NUE!of!invasives,!litter,!soil,!and! ecosystem!N!stocks!could!either!decrease!or!increase!with!the!degree!on!invasion.!! There!is!uncertainty!because!while!the!overall!decrease!in!tissue!N!content!should! decrease!N!stocks,!the!decreased!N!content!could!also!lower!the!quality!of!the!OM! and!therefore!lead!to!low!decomposition!rates!and!N!buildup.!! ! Objective)2:!!For!objective!1,!I!tested!the!cumulative!effects!invasive!species!have!on!C!and! N!stocks!and!OM!quality,!though!there!was!evidence!for!variation!among!invasive!species! in!key!plant!traits!that!could!influence!the!speciesJspecific!magnitude!of!effect.!!This! variation!was!examined!through!the!use!of!two!assays!to!determine!differences!in!C!and!N! mineralization!rates!from!soil!collected!from!monospecific!stands!of!the!most!dominant! invasive!species.!!An!additional!objective!was!to!be!able!to!link!the!variation!among! invasive!species!to!plant!traits,!such!as!litter!quality.! ! Hypothesis)4:!The!quality!(C:N!ratio)!of!soil!collected!within!monospecific!stands!of!the! most!dominant!invasive!species!from!the!wetland!survey!will!influence!C!and!N! 27! mineralization!rates,!and!the!variation!in!soil!quality!will!mainly!be!due!to!litter!quality! differences!among!species.!!! ! Prediction!4.1:!!The!will!be!a!negative!relationship!between!soil!C:N!ratios!and!C!and! N!mineralization!rates.!! ! Prediction!4.2:!!Soil!collected!from!monospecific!stands!of!the!species!with!the!most! recalcitrant!litter!(high!C:N!ratios)!will!have!the!highest!soil!C:N!ratios,!and! therefore!the!lowest!mineralization!rates.! ! ( Methods( ! Study*sites*and*sampling*for*wetland*survey*! ! This!study!was!conducted!near!the!W.K.!Kellogg!Biological!Station!(KBS)!on! Michigan!State!University!property!in!southwestern!Michigan,!and!at!Lake!Lansing!Park! (LLP)!in!central!Michigan!during!peak!biomass!growth!(late!June!to!early!August).!The! region!around!KBS!lies!on!a!glacial!landscape!and!has!abundant!wetland!cover!(approx.! 10%),!with!low!levels!of!residential!development!in!a!landscape!dominated!by!forests,!rowJ crop!agricultural!fields,!and!abandoned!fields.!!The!wetlands!of!Lake!Lansing!Park!are! embedded!in!a!mosaic!of!woodlots!and!residential!areas!and!are!contiguous!with!the!lake! system.!!! In!the!summer!of!2007,!23!wetlands!near!KBS!and!one!wetland!at!LLP!were!sampled! (for!GPS!coordinates!of!each!site!see!Table!2J1).!!Wetland!sampling!sites!were!chosen!to! span!the!diversity!of!wetlands!around!KBS!that!support!emergent!vegetation!including!the! 28! focal!invasive!species,!along!with!an!additional!depressional!wetland!at!LLP!dominated!by! Phragmites*australis.!!Wetlands!were!classified!based!on!their!hydrogeomorphic!setting!as! well!as!the!dominant!water!source,!estimated!using!dissolved!magnesium!(Mg2+)!in!the! wetland!surface!water!as!an!indicator!of!precipitation!versus!groundwater!dominance;! higher!Mg2+!concentrations!indicated!higher!groundwater!contribution!to!standing!water! (Stauffer!1985,!Whitmire!and!Hamilton!2008).!Categories!include!depressional! (precipitation!dominated),!intermediate!(in!between!groundwater!and!precipitation! dominance),!groundwater!dominated,!and!lakeside.!!Lakeside!wetlands!were!given!a! unique!classification!due!to!the!overriding!effect!an!adjacent!lake!has!on!the!physical!and! chemical!wetland!environment!(HGM!classification;!Brinson!1993).!!These!wetlands!were! relatively!small,!usually!with!a!total!surface!area!of!less!than!one!hectare.!The!majority!of! the!study!sites!had!relatively!pure!stands!of!P.*australis,*Phalaris*arundinacea,!and*Typha* spp.!(hereafter!Phragmites,!Phalaris,!Typha,!respectively),!or!mixtures!of!relatively!pure! stands!of!these!species.!The!most!common!native,!nonJinvasive!graminoid!species!at!these! sites!included!sedges!(Carex!spp.),!rushes!(Juncus!spp.),!and!spikeJrushes!(Eleocharis!spp.).!! Other!common!wetland!species!found!at!these!sites!included!buttonbush!(Cephalanthus* occidentalis),!pickerelweed!(Pontederia*cordata),!spatterdock!(Nuphar*advena),!and! smartweed!(Polygonum!spp.).!! !A!randomly!placed!linear!transect!was!set!up!in!the!emergent!vegetation!zone!at! each!site.!!Six!1.0!x!0.5!m!(0.5!m2)!quadrats!were!established!along!each!transect!for! vegetation,!litter,!and!soil!sampling.!!The!quadrats!were!randomly!placed!(1J10!m!distance! between!quadrats)!along!the!transect!using!a!random!number!table.!!In!each!quadrat,!all! 29! plant!species!that!had!developed!past!the!seedling!stage!were!identified!and!percent!cover! was!estimated!for!each.!!SpeciesJspecific!aboveground!biomass!was!clipped!at!the!soil! surface,!dried!at!65°C!for!48!hours,!and!weighed!on!a!topJloading!balance.!!Litter!depth!was! measured!and!a!known!area!of!litter!(629!cm2)!was!removed!from!the!soil!surface,! avoiding!mostly!decomposed!material!beneath!the!relatively!fresh!litter!layer.!!Litter! samples!were!collected,!dried,!and!weighed!in!the!same!manner!as!biomass!samples.!! Surface!soil!was!sampled!to!10!cm!depth!using!a!soil!corer!(246!cm3)!and!samples!were! transported!to!the!lab!on!ice!and!frozen!until!processed.!!For!processing,!soils!were!thawed,! sieved!(4!mm),!subJsampled!for!bulk!density!and!gravimetric!water!content!(GWC)! determination,!and!then!dried!to!a!constant!mass!at!80°C.!!! ! Carbon*and*nitrogen*analysis* ! Dried!aboveground!biomass!and!litter!samples!were!ground!and!homogenized!using! a!cyclone!sample!mill!(Udy!Corporation,!Fort!Collins,!CO)!and!dried!soil!samples!were! ground!using!a!mortar!and!pestle.!!Percent!C!and!N!were!measured!for!aboveground! biomass,!litter,!and!soil!using!a!Costech!Elemental!Combustion!System!4010!(Costech! Analytical!Technologies!Inc.).!!Samples!were!run!in!duplicate!with!atropine!used!as!a! standard!every!10!samples.!!Subsamples!of!dry!soil!from!all!sites!were!tested!for!carbonate! minerals!and!concentrations!were!found!to!be!negligible.!!Aboveground!biomass!C!and!N! stocks!were!calculated!by!multiplying!each!species’!tissue!%C!and!%N!by!its!total!dry! biomass!and!then!summing!speciesJspecific!C!and!N!stocks!for!each!quadrat.!!Litter!and!soil! C!and!N!stocks!were!calculated!by!multiplying!%C!or!%N!by!total!litter!mass.!!Soil!C!and!N! 30! stocks!were!calculated!from!soil!%C!or!%N,!soil!bulk!density,!and!sampling!depth.!!Total!C! and!N!ecosystem!stocks!were!calculated!by!summing!soil,!litter,!and!biomass!stocks!for! each!site.!!Carbon!to!nitrogen!ratios!were!used!as!a!measure!of!organic!matter!(OM)!quality.!! Low!C:N!ratios!indicate!high!quality!OM!and!high!C:N!ratios!indicate!recalcitrant!OM.!! ! Plant!aboveground!tissue!%N!was!used!to!determine!plantJ!and!plotJlevel!nitrogen! use!efficiencies!(NUE).!!NUE!was!defined!as!the!amount!of!biomass!produced!per!unit!N! (van!Ruijuen!and!Berendse!2005)!and!was!calculated!on!the!plot!level!by!first!determining! the!NUE!for!each!species!in!each!plot!(total!biomass!divided!by!the!tissue!N!content).!! Though!similar,!NUE!is!not!perfectly!scaled!with!biomass!C:N!ratio!because!%C!varied! among!species!(~!40!to!50!%C),!and,!therefore,!both!can!be!informative.!!This!is!an! acceptable!way!to!calculate!NUE!in!this!study!because!all!species!were!collected!at!peak! biomass!and!were!either!annual!or!perennial!deciduous!growth!forms,!in!which!all!biomass! was!produced!during!a!single!growing!season.!!For!buttonbush!(woody!habit),!the!only! abundant!species!with!perennial!aboveground!biomass,!leaves,!and!stems!were!separated! and!an!NUE!estimate!was!made!using!leaf!tissue.!!A!weighted!NUE!average!was!then! calculated!for!each!plot!and!averaged!for!each!site!(hereafter!called!the!Site!NUE).! ! Estimation*of*plant*abundance*! ! Percent!cover!was!estimated!for!every!plant!species!in!each!of!the!six!0.5!m2! quadrats!at!each!site.!!This!percent!cover!was!then!assigned!to!a!cover!class!from!1!to!6!(1:! 0J5%!cover;!2:!6J25%;!3:!26J50%;!4:!51J75%;!5:!76J95%;!6:!96J100%).!!Shannon’s! diversity!index!was!calculated!using!percent!cover!data!following!Seefeldt!and!McCoy! (2003)!and!was!used!as!a!measure!of!biodiversity!(incorporating!both!species!richness!and! 31! evenness).!!The!percent!of!the!total!biomass!from!invasive!species!(referred!to!hereafter!as! invasive!species!dominance),!which!included!the!combined!biomass!of!Phragmites,! Phalaris,!and!Typha,!was!calculated!by!dividing!their!combined!biomass!by!the!total! biomass!in!each!quadrat.!!Native!species!dominance!was!calculated!similarly!(total!native! species!biomass!divided!by!total!biomass)!with!nonJnative,!nonJinvasive!species!excluded! from!both!metrics.!!Phalaris!%biomass!was!calculated!by!dividing!Phalaris!biomass!in!a! quadrat!by!total!biomass!in!that!quadrat.!!In!some!cases!(see!statistical!analysis!section)! Phalaris*was!analyzed!instead!of!the!invasive!species!category!due!to!its!presence!at!the! majority!of!sites!sampled!(Table!2J1).! ! ! Soil*carbon*quality*assay! ! To!determine!dominant!species!effects!on!organic!matter!quality!(as!aerobic!C! mineralization!rates)!in!these!wetlands,!a!laboratory!incubation!was!done!at!two! temperatures!(7°C!and!23°C)!using!soils!collected!under!monospecific!stands!(>!90%! cover)!of!the!three!most!dominant!species!sampled!during!the!survey!study.!!Monospecific! stands!were!used!because!species!effects!on!soil!C!quality!are!more!likely!to!be!detected! when!only!one!species!is!present.!!The!two!temperatures!used!represent!growing!season! average!temperature!(~!23°C)!and!nonJgrowing!season!average!temperature!(~!7°C)!for! southern!Michigan.!!Soils!were!incubated!at!two!temperatures!so!the!Q10!for!each!speciesJ specific!soil!could!be!calculated.!!The!temperature!coefficient,!Q10,!is!a!metric!that! describes!the!rate!of!change!in!a!biological!or!chemical!system!with!an!increase!of!10°C.!! This!allowed!a!comparison!to!be!made!of!temperature!effects!on!C!mineralization!rates!due! 32! to!dominant!species.!!Q10!was!calculated!with!the!following!equation:!!Q10!=! (R2/R1)^10/(T2JT1),!where!R1!is!the!C!mineralization!rate!at!low!temperature,!R2!is!the!C! mineralization!rate!at!high!temperature,!T1!is!the!low!temperature!and!T2!is!the!high! temperature!in!degrees!Celsius!(Solondz!et!al.!2008).!!! Eleven!wetland!sites!were!sampled!for!the!incubations:!4!Typha*dominated,!4! Phalaris!dominated,!2!Phragmites!dominated!and!1!Carex*lacustris!dominated.!!For!a!site!to! be!considered!dominated!by!a!specific!species,!that!species!had!to!consist!of!>!90%!of!the! total!biomass.!!Because!the!aggressive!genotype!of!Phragmites!is!a!recent!invader!to!inland! Michigan!(Hamilton,!personal!communication),!only!two!sites!from!the!24!that!were! surveyed!could!be!classified!as!a!monospecific!stand.!!Additionally,!due!to!low!native! species!abundance,!only!one!C.*lacustris!dominated!area!was!included!in!this!incubation.!! Because!of!the!absence!of!replication!at!the!site!level,!C.*lacustris!was!left!out!of!statistical! analyses!but!is!placed!in!some!figures!as!a!native!reference.!!Soil!samples!were!collected!in! February!2007!at!the!end!of!the!growing!season.!!Five!soil!cores!(5!cm!depth)!were! collected!at!each!site!using!a!linear!transect!similar!to!the!design!described!above!(11!sites! x!5!cores!=!55!cores).!!These!soil!cores!were!sealed!in!whirlJpak!plastic!bags!(Nasco),! immediately!placed!on!ice,!and!transported!to!the!laboratory!where!they!were!kept!frozen! (J20°C)!until!the!start!of!the!incubation.* ! Prior!to!the!start!of!the!incubation,!soils!were!thawed!at!room!temperature!for!24! hours!and!hand!sieved!to!remove!rocks!and!large!roots.!!Each!soil!core!was!then!subJ sampled!for!bulk!density!and!GWC!determination.!!The!dry!mass!of!the!subJsample!was! measured!by!oven!drying!at!80°C!for!48!hours.!!Dry!mass!values!were!used!in!bulk!density! 33! and!GWC!calculations.!!Dried!soils!were!then!ground!and!homogenized!using!a!mortal!and! pestle!and!run!on!an!elemental!combustion!system!(Costech!ECS!4010,!Valencia,!CA)!for! %C!and!%N!analysis.!!Samples!were!run!in!duplicate!with!atropine!used!as!a!standard! every!10!samples.!!The!remaining!wet!soil!was!then!split!into!2!subsamples!of! approximately!10!g!and!placed!into!a!250!mL!incubation!jar!(Chromatographic!Specialties,! Inc.;!Ontario,!Canada).!!These!incubation!samples!were!equilibrated!for!7!days!at!4°C!to! allow!the!C!mineralization!pulse!from!root!death!to!pass!(Weintraub!and!Schimel!2003).!! Duplicate!jars!were!then!randomly!assigned!a!temperature!treatment,!flushed!with! ambient!air!(~!400!ppmv!CO2),!and!loosely!sealed!with!lids!fitted!with!septa!to!allow!room! air!to!enter!the!jar!until!the!start!of!a!CO2!extraction!round!(see!below).!!The!two! temperature!treatments!consisted!of!high!temperature!(room!temperature,!~!23°C)!and! low!temperature!(cold!room,!~!7°C).!!All!jars!(110!total;!4!vegetation!classes!x!1,!2,!or!4! replicate!sites!x!5!replicate!cores!per!site!x!2!temperatures)!were!incubated!in!the!dark!for! 36!days.!!Similar!soil!moisture!conditions!were!created!across!all!incubation!samples!by! bringing!each!to!a!comparable!moisture!content!using!distilled!water!before!the!beginning! of!the!experiment!(40J60%!representing!ideal!nonJlimiting!conditions).!!Moisture!content! was!maintained!weekly!over!the!course!of!the!incubation!by!adding!an!appropriate!volume! of!distilled!water!after!each!jar!was!weighed!to!determine!water!loss.* ! Carbon!mineralization!rates!were!estimated!for!six!24Jhour!periods!over!the!36Jday! experiment,!on!days!1,!3,!8,!15,!22,!and!36.!!During!each!period,!a!10!mL!headspace!gas! sample!was!taken!from!each!jar!immediately!after!jars!were!sealed!(time!=!0)!using!a!threeJ way!stopcockJfitted!syringe,!and!then!every!12!hours!over!the!24!hour!period,!except!for! 34! the!first!round,!which!was!48!hours.!!Before!gas!samples!were!extracted,!each!jar!was! shaken!by!hand!to!mix!soil!pore!spaces!and!to!release!trapped!gas!bubbles.!!After! headspace!samples!were!collected,!jars!were!injected!with!10!mL!of!N2!gas!to!ensure! constant!air!pressure!and!volume.!!After!each!round,!lids!were!removed,!samples!were! gently!flushed!with!ambient!air,!and!jars!were!wrapped!with!plastic!wrap!to!prevent! moisture!loss.!!! ! Each!10!mL!headspace!sample!was!analyzed!for!CO2!partial!pressure!by!injecting!5! mL!of!sample!into!a!PPJsystem!EGMJ4!infrared!gas!analyzer!(IRGA).!The!IRGA!was! standardized!using!a!CO2!standard!gas!after!every!10!injections.!!Carbon!dioxide! concentrations!were!corrected!for!headspace!dilution!caused!by!the!added!N2!gas.!!The! slope!of!CO2!concentrations!over!the!incubation!period!was!used!to!calculate!overall!C! mineralization!rates.!!These!overall!mineralization!rates!were!divided!by!soil!dry!weight! (g)!to!report!data!on!a!mass!basis!(umol!CO2!gJ1!dayJ1)!and!by!total!soil!C!(SC)!to!report! data!on!a!SC!basis!(umol!CO2!gJ1!SC!dayJ1).!!Slopes!were!discarded!if!R2!values!were!less! than!0.75,!which!comprised!less!than!2%!of!the!slopes.!! ! N*mineralization*and*nitrification*assay* To!determine!rates!of!net!N!mineralization!and!nitrification!in!these!wetlands,!an! aerobic!laboratory!incubation!was!conducted!using!soils!collected!under!monospecific! stands!(>!90%!cover)!of!Phragmites,!Phalaris,!and!Typha.!!Eight!wetland!sites!were!used!in! all:!3!Typha*dominated,!3!Phalaris!dominated,!and!2!Phragmites!dominated,!and!were!a! 35! subset!of!the!wetlands!used!for!the!C!quality!incubation.!!Soil!samples!were!collected!at!the! end!of!the!2008!growing!season.!!Three!soil!cores!(10!cm!depth)!were!collected!at!each!site! from!permanent!plots!that!were!established!during!the!summer!of!2008!as!part!of!a!larger! research!project!(8!sites!x!3!cores!=!24!cores).!!These!soil!cores!were!sealed!in!whirlJpaks! (Nasco,!Fort!Atkinson,!WI),!immediately!placed!on!ice,!and!transported!to!the!laboratory! where!they!were!kept!at!4°C!for!2!days!until!the!start!of!the!incubation!to!reduce!microbial! activity.* Soil!samples!for!assays!of!N!mineralization!and!nitrification!were!processed! similarly!to!the!C!mineralization!soil!samples.!!After!sieving,!10!g!subJsamples!were!taken! from!the!remaining!wet!soil:!one!subJsample!was!used!to!determine!initial!NO3J!and!NH4+! concentrations!by!the!KCl!extraction!method!(Robertson!1999),!while!the!other!was!placed! in!a!100!ml!plastic!container.!!After!30!days!of!aerobic!incubation!at!room!temperature,!the! KCl!extraction!method!was!used!to!determine!final!NO3J!and!NH4+!concentrations.!!All! extracts!were!analyzed!by!the!microplate!method!for!nitrate!and!ammonium!using! protocols!developed!by!Dr.!David!Rothstein!(Dept.!of!Forestry,!MSU).!!Net!rates!of!N! mineralization!and!nitrification!were!calculated!from!the!changes!in!inorganic!N!(NH4+!+! NO3J)!or!NO3J,!respectively,!during!the!incubation!period!(initial!–!final!pool!sizes).!!Similar! soil!moisture!conditions!were!created!across!all!incubation!samples!by!the!same!method! used!in!the!C!quality!incubation.!!N!mineralization!and!nitrification!rates!were!calculated!on! a!soil!mass!and!soil!carbon!basis!similar!to!the!C!quality!incubation.! ! * 36! Statistical*analyses* Wetland!survey( Because!the!majority!of!wetlands!sampled!were!invaded!by!Phalaris,!Phragmites,! and/or!Typha!(23!out!of!24;!Table!2J1)!simple!linear!regression!(SLR)!analysis!was!used!to! determine!the!relationship!between!site!Shannon!diversity!index!and!invasive!species! dominance!(%biomass!of!total!community!biomass)!(Hypothesis!1).!!To!address!hypothesis! 2,!another!SLR!was!performed!to!determine!the!relationship!between!vegetation!NUE!and! invasive!species!dominance.!!For!Shannon!diversity!and!NUE!SLRs,!all!24!wetlands!were! included;!for!the!other!analyses!only!20!wetlands!were!used!due!to!incomplete!datasets! from!4!wetlands.!!! To!address!hypothesis!3,!general!linear!models!were!constructed!to!determine!the! controlling!factors!for!biomass,!litter,!soil,!and!total!ecosystem!C!and!N!stocks.!!To!explore! species!controls!on!biomass!C!and!N!stocks,!I!constructed!general!linear!models!using! species!composition!data!(invasive!species!and!native!species!dominance!or!biomass)!as! predictor!variables.!!Invasive!and!native!species!dominance!(percent!of!plant!community)! was!used!instead!of!invasive!and!native!biomass!for!biomass!C!stocks!because!there!is!an! allometric!relationship!between!biomass!C!and!total!biomass,!therefore!these!variables! would!be!autoJcorrelated.!!This!allometric!relationship!does!not!necessarily!exist!for! biomass!N!stock!because!species’!NUE!can!influence!the!amount!of!biomass!%N!present.!! For!this!reason!invasive!species!biomass!was!used!to!predict!biomass!N!stocks.!!For!litter!C! and!N!stocks,!species!composition!data!and!aboveground!biomass!chemistry!(%C,!%N,!and! C:N!ratio)!were!used!as!predictor!variables.!!After!no!significance!was!found!for!any!plant! community!predictor!variable,!Phalaris!abundance!was!included!as!a!predictor!variable!in! 37! place!of!invasive!species!dominance!due!to!its!presence!at!most!sites!(Table!2J1).!!To! determine!species!effects!on!soil!C!and!N!stocks!and!soil!C:N!ratios,!general!linear!models! were!constructed!that!included!plant!community!composition,!litter!chemistry!(%N,!%C,! and!C:N!ratio),!and!litter!quantity!(mass!and!bulk!density)!as!predictor!variables.!!Finally,! for!total!ecosystem!C!and!N!stocks,!general!linear!models!were!constructed!using!plant! community!data!as!predictor!variables.!!No!lower!level!categories!(soil,!litter,!or!biomass! characteristics)!could!be!included!as!predictors!because!those!data!were!used!to!calculate! related!stocks,!and!thus!would!be!autoJcorrelated!with!total!ecosystem!stocks.!!! For!all!general!linear!models,!site!ID!was!included!in!the!model!as!a!random!factor,! treating!the!design!as!nested!(quadrats!nested!within!site).!!Model!selection!procedures! based!on!Akaike’s!information!criterion!(AIC)!values!were!used!following!Zuur!et!al.! (2009).!!Briefly,!the!most!complex!biologically!meaningful!model!(i.e.,!the!most!complex! model!constructed!from!nonJautocorrelated!terms!that!hypothetically!could!influence!the! predictor!variable)!was!compared!to!models!of!decreasing!complexity!based!on!individual! model!AIC!values.!!The!bestJfit!model!was!the!one!with!the!lowest!AIC!value!and!highest! Akaike!weights!(wi),!which!describe!the!weight!of!evidence!for!one!model!compared!to!the! other!models.!!Once!the!best!model!was!selected!a!tTable!(R!code)!data!frame!was! constructed!to!determine!individual!variable!significance.!!Here!I!mainly!report!results!for! the!final!“bestJfit”!model.!!!Full!model!selection!results!can!be!found!in!Appendix!A.!! Wetland!classification!(see!above)!was!also!included!as!a!predictor!variable!to!the!bestJfit! model!determine!if!its!inclusion!would!improve!the!fit!of!the!model,!therefore!minimizing! the!possible!confounding!effect!of!wetland!class!on!C!and!N!stocks!(for!instance,!if! depressional!wetlands!have!high!OM!accumulation!independent!of!plant!community,!but! 38! also!were!highly!invaded).!!In!all!cases!adding!wetland!classification!improved!the!fit!of!the! model!(i.e.,!it!lowered!the!model!AIC),!but!in!no!case!was!wetland!classification!significant! and!is!therefore!left!out!of!the!results!section.!!Model!diagnostics!were!assessed!for!the! bestJfit!model!to!determine!if!the!residuals!were!normally!distributed!and!displayed! constant!error!variances.!!Log!transformations!were!used!to!correct!for!any! heteroscedasticity.!!All!statistical!tests!were!performed!in!R!(version!2.11.1,!2010).!!! ! Assays!of!C!quality!and!N!transformations! The!general!goals!for!the!statistical!analysis!of!the!C!quality!assays!were!twofold:!(1)! to!determine!treatment!(vegetation!type!and!temperature)!effects!on!C!mineralization! rates!and!(2)!to!explore!the!relationships!between!C!mineralization!and!organic!matter! quality!(C:N!ratio)!(hypothesis!4).!!To!investigate!treatment!effects!on!C!mineralization! rates,!I!used!a!repeated!measures!analysis!of!variance!(ANOVA)!and!Tukey’s!HSD!multiple! comparison!tests!were!used!to!determine!vegetation!and!temperature!effects,!as!well!as! their!interaction!on!C!mineralization!rates.!!For!the!ANOVA,!soil!core!ID!was!nested!within! site!and!included!as!a!random!effect.!!I!used!linear!regression!models!to!examine!the!effects! of!soil!C:N!ratios!on!C!mineralization!rates.!!Species!effects!on!Q10!values,!litter!and!soil!%C,! %N,!and!C:N!ratios!and!N!transformation!rates!were!determined!using!general!linear! models.!!All!statistical!tests!were!performed!in!R!(version!2.11.1,!2010).!!!! ! ( ( ( 39! ( Table!2J1.!!GPS!coordinates!of!the!24!survey!sites!with!their!hydrological!classification,! which!is!based!on!magnesium!concentrations!(see!methods!for!more!details),!and!the! presence!or!absence!of!the!most!dominant!invasive!species.!Phalaris!=!Phalaris* arundinacea,!Typha!=!Typha!xglauca,!Phragmites!=!Phragmites*australis.! ( Site! LLP! LS! LTER! NLCL! NLCLP! P1! P11! P18! P26N! P26S! P3! P5! P8! P9! Parker! SMCL! SP7! SWMCL! SWP7! TM! TM2! WMCL! EF1! LOP! Classification! precipitation! precipitation! precipitation! lake! lake! precipitation! precipitation! intermediate! intermediate! intermediate! precipitation! intermediate! intermediate! precipitation! lake! lake! intermediate! lake! intermediate! groundwater! groundwater! lake! lake! groundwater! Phalaris* ! X! X! X! ! X! X! X! X! X! X! X! X! X! X! ! X! ! X! X! X! ! ! ! Typha* ! ! ! X! X! ! ! X! X! X! ! ! ! ! ! X! X! ! X! ! X! X! X! ! Phragmites* GPS!Coordinates! X! 42°!46.117N,!085°!23.533W! ! 42°!24.228N,!085°!23.087W! ! 42°!24.794N,!085°!22.455W! ! 42°!28.287N,!085°!27.128W! X! 42°!28.254N,!085°!27.782W! ! 42°!29.352N,!085°!27.100W! ! 42°!28.339N,!085°!27.696W! ! 42°!28.733N,!085°!27.553W! ! 42°!28.689N,!085°!27.768W! ! 42°!28.689N,!085°!27.768W! ! 42°!29.341N,!085°!28.424W! ! 42°!28.518N,!085°!27.882W! ! 42°!28.274N,!085°!27.797W! ! 42°!28.267N,!085°!27.726W! ! 42°!28.926N,!085°!27.753W! X! 42°!28.737N,!085°!27.547W! ! 42°!28.396N,!085°!27.862W! X! 42°!28.965N,!085°!27.861W! ! 42°!28.285N,!085°!28.005W! ! 42°!24.497N,!085°!24.455W! ! 42°!24.497N,!085°!24.455W! ! 42°!28.965N,!085°!27.861W! ! 42°!21.414N,!085°!21.939W! ! 42°!22.101N,!085°!21.656W! ( ( ( ( ( ( 40! Results( Wetland*survey! TwentyJthree!of!the!24!wetlands!surveyed!were!invaded!by!at!least!one!of!the!three! focal!invasive!species!(Phragmites,!Phalaris,!and!Typha).!!As!invasive!species!dominance! increased,!Shannon!Diversity!decreased!(Figure!2J1;!adjusted!R2!=!0.75,!p!! Typha!>!Phragmites!(significant!species!main!effect,!p!=!0.03;!Table!2J6).!!As!expected,! carbon!mineralization!at!high!temperature!was!greater!than!low!temperature!among!all! species!(significant!temperature!main!effect,!p!F! 0.0276! 95%)! 139! were!greater!than!0.95.!!CO2!production!was!assumed!to!be!due!to!C!mineralization! (decomposition).!!! The!C!mineralization!rates!for!litter!addition!treatments!were!background)corrected! based!on!CO2!production!in!No!Litter!treatment!counterparts!(assumed!to!represent! ambient!soil!C!mineralization)!for!the!particular!day!of!measurement,!and!then!divided!by! litter!dry!weight!to!report!data!on!a!mass!basis!(g!CO2)C!kg)1!litter!C!day)1).!!!!First!order! rate!constants!(k,!day)1)!were!calculated!by!taking!the!natural!log!(In)!of!the!C! mineralization!rates!and!then!determining!the!slope!of!the!In!transformed!rates!over!the! time!course!of!the!incubation.!!Total!CO2!production!was!calculated!by!fitting!a!nonlinear! curve!(log)!to!the!time!course!of!rates!described!above,!then!interpolating!daily!CO2! production!and!summing!these!values.!! ! N!mineralization/nitrification!assay! Initial!NO3)!and!NH4+!concentrations!were!determined!from!the!15!g!subsample! collected!at!the!time!of!initial!soil!processing!using!the!KCl!extraction!method!(Robertson! 1999).!!After!the!68)day!incubation!period,!the!contents!of!each!jar!(litter!and!soil)!were! extracted!for!final!NO3)!and!NH4+!concentrations!using!the!same!method.!!Concentrations! of!NO3)!and!NH4+!in!the!extracts!were!analyzed!by!the!microplate!method!using!protocols! developed!by!Dr.!David!Rothstein!(Dept.!of!Forestry,!MSU).!!Net!rates!of!N!mineralization! and!nitrification!were!calculated!from!the!changes!in!inorganic!N!(NH4+!+!NO3))!or!NO3),! 140! respectively,!during!the!incubation!period!(initial!–!final!pool!sizes/incubation!period).!!N! mineralization!and!nitrification!rates!were!expressed!on!a!soil!mass!basis!similar!to!the!C! mineralization!component!of!the!experiment.! ! Litter+diversity+incubation+ The!litter!diversity!incubation!was!designed!as!a!single!factor!treatment!structure! and!was!conducted!from!1!December!2010!to!24!January!2011.!!The!single!factor!of! species)specific!litter!diversity!consisted!of!16!factor!levels!of!different!combinations!of! litter!collected!from!monospecific!stands!of!Phalaris,!Phragmites,!Typha,!and!Carex.!!The!16! treatment!levels!consisted!of!all!possible!species!combinations!within!a!litter!diversity!level! and!were!as!follows:!single!species!(4),!two!species!(6),!three!species!(4),!all!species!(1)!and! no!litter!(1).!!A!replacement!design!(as!opposed!to!an!additive!design)!was!used!for!litter! mixtures!(see!below).!!All!litter!treatment!levels!were!incubated!in!a!“common!soil”,! meaning!the!soil!was!not!collected!from!a!monospecific!stand!of!any!of!the!four!species.!! Instead,!the!soil!was!collected!from!a!shallow,!unvegetated!ephemeral!pond!to!minimize! the!possible!conditioning!effects!plant!species!could!have!on!the!soil.!!Each!treatment!level! was!replicated!seven!times!for!a!total!112!experimental!subjects!(incubation!jars).!!This! experimental!design!was!developed!to!test!the!effects!of!wetland!species!litter!diversity!on!! C!and!N!transformation!rates.! ! Site!description!and!sample!processing! Soil!and!litter!samples!used!for!this!laboratory!incubation!were!collected!from!Lake! Lansing!Park!North,!within!the!same!wetland!complex!used!for!the!soil!origin!incubation! 141! described!above!(Figure!4)1).!!Litter!was!collected!using!the!same!protocol!and!from!the! same!monospecific!stands!of!the!four!study!species!as!in!the!soil!origin!incubation.!!During! the!fall!of!2010,!litter!was!collected!after!all!plants!had!senesced,!but!before!the!first! snowfall!to!avoid!leaching.!!Within!a!unvegetated!ephemeral!wetland,!twenty!10)cm!deep! soil!cores!(166!cm3)!were!collected!during!fall!2010!using!linear!transect!sampling!with! one!meter!between!each!core.!These!soil!cores!were!sealed!in!whirl)pak!bags!(Nasco),! immediately!placed!on!ice,!and!transported!to!the!laboratory!where!they!were!kept!at!4°C! for!2!days!until!the!start!of!the!incubation.!! After!being!stored!at!4°C!for!2!days,!each!core!was!sieved!(4!mm)!to!remove!large! roots!and!rocks.!!Each!sieved!soil!core!was!then!combined!and!homogenized!in!a!large! plastic!container.!!Eighteen!sub)samples!(30!g)!were!taken!for!bulk!density!and!%!moisture! determination,!and!eighteen!more!subsamples!were!taken!for!initial!nitrate!and! ammonium!concentration!determination!(15!g,!see!below!for!N!mineralization/nitrification! methods).!!The!dry!mass!of!the!eighteen!30!g!sub)samples!was!measured!by!oven!drying!at! 80°C!for!48!hours.!!Dried!soils!were!then!ground!and!homogenized!using!a!mortal!and! pestle!and!run!on!an!elemental!combustion!system!(Costech!ECS!4010,!Valencia,!CA)!for! %C!and!%N!analysis.!!Samples!were!run!in!duplicate!with!atropine!used!as!a!standard! every!10!samples.!!From!the!homogenized!wet!soil,!112!30)g!subsamples!were!placed!into! separate!250!ml!incubation!jars!(Chromatographic!Specialties,!Inc.;!Ontario,!Canada).!! These!incubation!soils!were!equilibrated!for!7!days!at!4°C!prior!to!litter!treatment!addition! to!allow!the!C!mineralization!pulse!from!root!death!to!pass.!!Litter!collected!at!each! monospecific!stand!was!air!dried!at!room!temperature!for!two!weeks!before!processing.!! Litter!%C!and!%N!were!determined!on!an!elemental!combustion!system,!while!%lignin! 142! was!determined!by!near!infrared!reflectance!spectrophotometry!(samples!analyzed!by! Litchfield!Analytical!Services,!MI;!McLellan!et!al!1991).!!! The!remaining!litter!processing!was!carried!out!as!in!soil!origin!incubation.!!For! each!replicate!of!each!treatment!level,!2!g!of!litter!was!hand!mixed!into!the!common!soil!to! maximize!physical!contact!between!soil!and!litter.!!As!mentioned!above,!litter!was!added! within!a!replacement!design,!as!opposed!to!an!additive!design.!!The!same!total!amount!of! litter!was!added!to!each!incubation!jar!regardless!of!litter!diversity!treatment,!e.g.,!2!g!of! Phragmites!litter!was!added!for!the!single!species!additions,!but!for!the!two!species!litter! addition!of!Phragmites!and!Phalaris,!1!g!of!each!was!added.!!A!replacement!design!was!used! to!keep!the!total!amount!of!litter!the!same!because!changing!the!amount!of!total!litter! added!would!alter!the!decomposition!rates!and!would!confound!any!diversity!effects.!!The! stem:leaf!ratio!of!added!litter!differed!among!species!(3:1!ratio!for!Phalaris!and!Phragmites! and!1:1!ratio!for!Typha!and!Carex)!in!this!experiment!to!approximate!stem:leaf!ratios!that! occur!in!the!field.!!Jars!were!then!allowed!to!equilibrate!for!3!days!after!which!they!were! loosely!sealed!with!lids!(fitted!with!septa)!to!allow!room!air!to!enter!the!jar!until!the!start! of!a!CO2!extraction!round!(see!below).!!All!jars!(112!total)!were!incubated!in!the!dark!for! 55!days.!!Non)limiting!soil!moisture!conditions!were!created!similar!to!the!soil!origin! incubation.! ! Carbon!mineralization!assay! Carbon!mineralization!rates!were!estimated!during!six!24)hour!periods!over!the!55) day!incubation!(days!1,!3,!7,!15,!29,!and!55).!!I!estimated!CO2!production!and!C! 143! mineralization!rates!following!the!same!methods!as!outlined!in!incubation!1!(litter!quality! and!soil!origin!incubation).!!No!slope!had!an!R2!value!of!less!than!0.85!and!the!majority! (>95%)!were!greater!than!0.90.!!The!C!mineralization!rates!for!litter!addition!treatments! were!background)corrected!based!on!the!No!Litter!treatment!for!a!particular!day!of! measurement!and!then!divided!by!litter!dry!weight!to!report!data!on!a!mass!basis!(g!CO2)C! kg)1!litter!C!day)1).!!!!First!order!rate!constants!(k,!day)1)!and!total!CO2!production!were! calculated!as!in!the!soil!origin!incubation.! ! N!mineralization/nitrification!assay! Initial!NO3)!and!NH4+!concentrations!were!determined!from!the!15!g!subsample! collected!at!the!time!of!initial!soil!processing!using!the!KCl!extraction!method!(Robertson! 1999).!!After!the!55)day!incubation!period,!the!contents!of!each!jar!(litter!and!soil)!were! extracted!for!final!NO3)!and!NH4+!concentrations!using!the!same!method.!!Concentrations! of!NO3)!and!NH4+!in!the!extracts!were!analyzed!by!the!microplate!method!using!protocols! developed!by!Dr.!David!Rothstein!(Dept.!of!Forestry,!MSU).!!Net!rates!of!N!mineralization! and!nitrification!were!calculated!from!the!changes!in!inorganic!N!(NH4+!+!NO3))!or!NO3),! respectively,!during!the!incubation!period!(initial!–!final!pool!sizes/incubation!period).!!N! mineralization!and!nitrification!rates!were!calculated!on!a!soil!mass!and!soil!carbon!basis! similar!to!the!C!mineralization!component!of!the!experiment.! ! ! 144! Statistical+analysis+ General!linear!models!(GLMs)!were!used!to!test!for!treatment!effects!on!first!order! rate!constants,!total!C!mineralization,!N!mineralization,!and!nitrification.!!Species!effects!on! soil!%C,!%N,!and!C:N!ratio!and!litter!chemistry!(%C,!%N,!C:N!ratio,!%lignin,!lignin:N!ratio)! were!determined!using!GLMs.!!Tukey’s!HSD!multiple!comparison!tests!were!performed!to! determine!significant!differences!between!factor!levels.!!To!determine!the!relationship! between!litter!diversity!and!total!C!mineralization,!a!regression!analyses!was!performed! with!litter!diversity!treatments!1!though!4!as!the!independent!factor.!!Simple!linear! regression!was!used!to!investigate!both!soil!and!litter!quality!controls!on!C!and!N! mineralization!rates.!!Model!diagnostics!were!assessed!for!each!analysis!to!determine!if!the! residuals!were!normally!distributed!and!displayed!constant!error!variances.!!Log! transformations!were!used!to!correct!for!any!heteroscedasticity.!!All!statistical!tests!were! performed!in!R!2.13.2!(R!Development!Core!Team!2011).!!! ! ! ! ! ! ! ! ! ! ! 145! 0 0.5 1 km ± _[ [_ Phr Pha Typ _ [ _ [ Lake Lansing Car Figure!4)1.!Map!showing!the!location!of!the!monospecific!stands!of!Phragmites+australis+ (Phr),+Phalaris+arundinacea+(Pha),+Typha × glauca+(Typ),+and+Carex+lacustris!(Car)!in!the! wetland!area!within!Lake!Lansing!Park!North,!Haslett,!MI.! ! ! € ! ! ! ! ( ( ( 146! ! Results( Litter+quality+and+soil+origin+incubation+ First!order!rate!constants!(k,!decomposition!rate)!varied!among!treatment! combinations,!with!the!highest!rate!constant!occurring!when!Phragmites!litter!was! incubated!in!Phalaris!soil!(0.0282!±!0.012!day)1)!and!the!lowest!when!Typha!litter!was! incubated!in+Carex!soil!(0.0085!±!0.003!day)1)!(Table!4)1).!!For!a!species)specific!litter!type,! there!was!a!general!pattern!of!the!highest!decomposition!rate!occurring!when!incubated!in! Phragmites!soil,!followed!by!Phalaris,!Typha,!and!Carex,!except!for!Phragmites!litter!which! showed!no!pattern!among!the!soil!it!was!incubated!in!(marginal!litter!x!soil!interaction;!p!=! 0.068).!!Averaged!over!soil!origin,!Phragmites!litter!had!the!highest!decomposition!rate!and! Typha+litter!the!lowest!(main!effect!of!litter;!p!F! ! ! ! <0.0001! ! <0.0001! ! 0.0683! ! ! ! 80! ! 80! ! 80! ! ! ! 100! ! 100! ! 100! ! ! 11.29! ! 69.43! ! 1.60! ! ! ! 14.07! ! 92.30! ! 0.97! ! ! <0.0001! ! <0.0001! ! 0.1283! ! ! ! <0.0001! ! <0.0001! ! 0.4871! ! 154! !! !! ! ! ! ! ! ! ! ! ! ! Table!4(3.!Soil!and!litter!%C,!%N,!and!C:N!mass!ratios!of!the!four!species!used!in!the!litter!quality! and!soil!origin!incubation.!!Same!letter!superscript!denotes!nonsignificant!differences!according!to! Tukey!post!hoc!tests.!Values!are!means!±!SE.! Species! Soil!%C! Soil!%N! Soil!C:N! Litter!%C! Litter!%N! Litter!C:N! Phragmites+ 24.8!±1.07a! 1.78!±0.10a! 14.0!±0.32a! 41.4!±0.15a! 1.48!±0.01a! 28.0!±0.32a! Phalaris+ 40.22!±0.39b! 3.10!±0.03b! 13.0!±0.08b! 45.6!±0.14b! 1.14!±0.03b! 40.0!±0.94b! Typha+ 39.10!±3.62b! 3.13!±0.28b! 12.4!±0.17c! 45.5!±0.18c! 0.62!±0.01b! 74.3!±1.37c! Carex+ 31.13!±1.09c! 2.37!±0.09c! 13.1!±0.07b! 43.1!±0.16c! 0.62!±0.01c! 69.8!±1.51c! 155! ! Table!4(4.!Average!decomposition!rates!expressed!as!first(order!rate!constants!(k;! day(1)!for!each!litter!diversity!treatment.! Litter! Standard! k!constant!(day(1)! Error! Diversity!! Species! 1! Phalaris( 0.0222! 0.0084! 1! Typha( 0.0191! 0.0072! 1! Phragmites( 0.0173! 0.0066! 1! Carex( 0.0206! 0.0078! 2! Phragmites(+(Phalaris( 0.0192! 0.0072! 2! Phragmites(+Typha( 0.0212! 0.0080! 2! Phragmites(+(Carex( 0.0211! 0.0080! 2! Phalaris(+(Typha( 0.0239! 0.0090! 2! Phalaris(+(Carex( 0.0249! 0.0094! 2! Typha(+(Carex( 0.0240! 0.0091! 3! Phragmites(+(Phalaris(+(Typha( 0.0227! 0.0086! 3! Phragmites(+(Phalaris(+(Carex( 0.0232! 0.0088! 3! Phragmites(+(Typha(+(Carex( 0.0223! 0.0084! 3! Phalaris(+(Typha(+(Carex( 0.0241! 0.0091! 4! All!Species!Litter! 0.0233! 0.0088! ! Table!4(5.!Summary!of!ANOVAs!for!the!effect!of!Treatment!on!decomposition!(K)! constant,!cumulative!C!mineralization,!and!N!mineralization.! ! Response!! K!Constant! Cumulative!C! mineralization! N!mineralization! ! ! num!df! 14! ! 14! 15! den!df! 90! 90! 96! Table!4(6.!Litter!C:N!mass!ratios,!%!lignin,!and!lignin:N! mass!ratios!of!the!four!species!used!in!the!litter! diversity!incubation.!!Same!letter!superscript!denotes! nonsignificant!differences!according!to!Tukey!post!hoc! tests.!Values!are!means!±!SE.! Species! C:N! %!Lignin! Lignin:N! Phragmites( 47.2!±0.03a! 11.1!±0.40a! 12.4!±0.45a! Phalaris( 62.0!±1.10b! 8.9!±0.24b! 12.6!±0.47a! Typha( 63.0!±0.81b! 13.7!±0.02c! 19.1!±0.20b! Carex( 53.7!±2.0c! 10.0!±0.30b! 12.1!±0.10a! 156! ! F! 2.50! 8.08! 845.21! ! P>F! 0.0047! <0.0001! <0.0001! ! ! Phragmites"Soil" Phalaris"Soil" Typha"Soil" Carex"Soil" c bc b 800" Total&C&Min&(g&CO2/C&kg/1&li2er&C)& 700" a a a a a a c 600" b 500" 400" e e e e 300" d 200" 100" 0" Phragmites" Phalaris" Typha" Carex" Species&Li2er& ! Figure!4)2.!!Mean!cumulative!C!mineralization!over!the!68)day!litter!quality!and!soil!origin!laboratory! incubation.!!The!main!effects!of!species)specific!litter!(F3,80!=!69.43,!p!>!than!35:1),!especially!when!Phalaris!litter!was!incubated!with!Typha!soil,! which!resulted!in!positive!N)min!rates.!!For!all!litter!types!besides!Carex,!litter!incubated!in! Typha!soil!had!the!highest!N)min!rates,!which!is!likely!due!to!Typha!soil!having!the!lowest! C:N!ratio!of!all!soils!resulting!in!the!highest!N)min!rates!when!no!litter!was!added.! The!results!from!this!experiment!suggest!that!dominant!plant!species!from!the!same! functional!group!can!influence!C!and!N!cycling!by!species)specific!litter!effects,!and!that! these!influences!can!have!lasting!effects!in!soils!(soil!origin!effects).!!These!results!may!give! less!justification!for!categorizing!wetland!species,!especially!invasive!species,!into! generalized!functional!groups!(Boutin!and!Keddy!1993).!!Further!evidence!for!the!lack!of! usefulness!of!functional!groups!was!found!by!Bremer!et!al.!(2007),!which!found!that!plant! functional!group!did!not!affect!nirK)type!denitrifier!communities,!though!plant!species! 171! identity!did.!!However,!plant!function!group!classification!has!been!found!to!be!useful!in! other!studies!that!have!shown!that!the!diversity!of!plant!functional!groups!helped!to! resisted!invasion!by!Centaurea&maculosa!(Pokorny!et!al.!2005).!!All!four!wetland!species! used!in!this!incubation!had!different!litter!and!soil!quality!properties,!although!they!are!all! highly!clonal,!emergent!wetland!species!that!can!be!found!in!similar!wetland!habitats!and! could!be!classified!as!clonal!dominants!by!Boutin!and!Keddy!(1993).!!They!do!vary!in!some! key!wetland!plant!characteristics,!such!as!total!height,!biomass!production!(though!they! are!all!high!biomass!producing!species),!flowering!phenology,!and!water!depth!tolerance.!! For!invasive!species!that!have!become!ubiquitous!wetland!plants,!it!might!be!more! advantageous!to!consider!species!as!unique!components!of!the!plant!community!and!then! study!their!species)specific!plant!traits,!instead!of!considering!them!members!of!a!specific! functional!category.!(!!!!!! ! Litter&diversity&incubation& Similar!to!the!soil!origin!incubation,!in!the!litter!diversity!incubation!Typha!litter! had!the!lowest!total!C)min!rates!and!decomposition!rates!(k!constants)!compared!to!the! other!single!species!litter!addition!(Figure!4)10),!which,!as!before,!is!likely!influenced!by!its! high!litter!C:N!ratio!and!physical!structure.!!Phalaris!litter!had!a!similarly!high!C:N!ratio!but! a!higher!total!C)min!and!decomposition!rate!than!Typha!litter.!!The!general!pattern!of!an! increase!in!decomposition!as!diversity!increased!was!not!as!apparent!as!hypothesized.!! Total!C)min!showed!a!more!idiosyncratic!pattern!in!which!the!species!added!had!a!greater! impact!that!just!the!number!of!species.!!For!example,!when!Phragmites!and!Phalaris&litter! were!incubated!together,!their!combined!effect!was!greater!than!when!either!was! 172! incubated!alone!or!any!of!the!other!litter!diversity!treatments.!!Despite!this!idiosyncratic! pattern,!litter!diversity!still!had!a!significant!effect!on!total!C)min,!albeit!a!weak!one!(Figure! 4)14).!!The!relationship!between!diversity!and!decomposition!has!been!shown!to!be! positive,!neutral,!or!negative!(Gessner!et!al.!2010)!so!the!lack!of!a!strong!impact!of!litter! diversity!on!decomposition!is!not!too!surprising.!!! Litter!quality!had!a!greater!effect!on!decomposition!than!diversity,!specifically!litter! lignin:N!ratio!(Figure!4)22).!!The!importance!of!lignin!content!on!decomposition,!due!to!its! recalcitrant!nature,!has!been!shown!in!multiple!litter!decomposition!studies!(Melillo!et!al.! 1982;!Taylor!et!al.!1989;!Berg!2000).!Litter!C:N!ratio!had!less!of!an!effect!compared!to!the! litter!quality!and!soil!origin!incubation!probably!because!of!the!higher!similarity!between! species)specific!litter!quality.!!The!difference!between!species)specific!litter!C:N!ratios!used! in!this!incubation!compared!to!the!litter!C:N!ratios!for!the!litter!quality!and!soil!origin! incubation!is!explained!by!the!different!stem:leaf!ratios!used!in!these!incubations.!!For!the! soil!origin!incubation,!a!1:1!stem:leaf!ratio!was!used!for!each!species!for!standardization! purposes,!but!for!this!incubation!(litter!diversity)!a!3:1!stem:leaf!ratio!was!used!for! Phragmites!and!Phalaris!and!a!1:1!stem:leaf!ratio!was!used!for!Carex!and!Typha;&these! ratios!are!closer!to!what!is!seen!in!the!field.!!The!higher!proportion!of!stems!to!leaves! decreased!the!lability!of!the!overall!mixture!(i.e.,!increased!the!C:N!ratio).! Net!N!mineralization!rates!were!less!variable!for!this!incubation!than!the!soil!origin! incubation!as!all!litter!addition!treatments,!regardless!of!species!identity!or!diversity,! resulted!in!negative!N)min!rates!(Figure!4)15).!!As!explained!above,!the!litter!C:N!ratio!of! less!than!30!for!Phragmites,!and!near!that!demarcation!line!for!Phalaris,!was!able!to!explain! the!immobilization!pattern!seen!for!the!different!treatments!in!the!litter!quality!and!soil! 173! origin!incubation.!!In!this!incubation,!all!of!the!litter!C:N!ratios!were!greater!than!30!due!to! the!different!stem:leaf!ratios!used!for!Phragmites!and!Phalaris!(3:1!versus!1:1).!!Therefore,! since!all!of!the!added!litter!mixtures!were!above!the!critical!C:N!ratio!of!35:1!(at!which! point!microbes!need!to!scavenge!the!soil!for!available!N!to!support!growth)!all!litter! addition!treatment!levels!resulted!in!N!immobilization!within!the!soil.!!These!results! demonstrate!that!recalcitrant!litter,!when!added!to!the!soil,!reduces!the!available!N! concentration!in!the!soil!which!could!feedback!to!plant!fitness.!!This!ability!of!low!quality!C! (high!C:N!ratio)!to!reduce!the!availability!of!N!is!well!known!and!has!been!successfully!used! in!restoration!to!decrease!high!nutrient!conditions!that!invasive!species!respond!positively! to,!to!allow!native!species!to!establish!(Averett!et!al.!2004).!!!! Though!the!relationship!between!litter!diversity!and!decomposition!was!weaker! than!hypothesized,!the!effect!of!litter!diversity!was!still!significant.!!Because!of!this!result,! one!outcome!of!the!formation!of!monospecific!stands!(and!hence!a!single!species!litter! layer)!could!be!a!reduction!in!overall!decomposition!and!an!increase!in!organic!matter! buildup.!!In!other!words,!invasive!species!would!decrease!decomposition!rates!when!they! reduce!species!(litter)!diversity.!!According!to!the!results!of!this!experiment,!the!identity!of! the!plant!species!that!forms!a!monospecific!stand!could!play!an!important!role!in! determining!plant!effects!to!C!and!N!cycling.!!For!example,!in!this!experiment,!Typha!litter! resulted!in!the!lowest!decomposition!rates!and!could!explain!why!Typha!monospecific! stand!sites!used!in!these!incubations!had!the!highest!soil!%C.! ! ! ! ! ! ! 174! ! Chapter(5( Conclusions( Humans!have!removed!the!physical!and!biological!barriers!restricting!the! population!ranges!of!many!species!around!the!world!resulting!in!a!global!exchange!of! exotic!species!(Richardson!et!al.!2000).!!While!many!species!are!transported!to!new!areas! on!freight,!in!ballast!water,!or!for!cultivation,!only!a!few!become!established!and!expand! into!surrounding!areas!(Williamson!and!Fitter!1996).!!Though!relatively!few!in!number,! invasive!species!can!have!numerous!negative!impacts!on!the!ecology!of!invaded!areas.!!On! a!global!scale,!invasive!species!are!considered!to!be!the!one!of!the!greatest!causes!of! biodiversity!loss,!second!only!to!habitat!destruction!(Walker!and!Steffen!1997).!!! Many!studies!have!shown!that!invasive!species!dramatically!alter!species! composition!on!a!local!scale!(Zedler!and!Kercher!2004).!!And!while!there!is!still!some! debate!about!the!impacts!of!invasive!species!on!biodiversity!at!multiple!spatial!scales!(Sax! and!Gaines!2003),!their!impact!on!C!and!N!cycling!seems!to!be!more!direct.!!For!example,!a! meta)analysis!of!94!experimental!studies!showed!that!invasive!plant!species!significantly! increased!root!and!shoot!C!stocks,!primary!production,!litter!decomposition,!and!N! availability!compared!to!native!plant!communities!(Liao!et!al.!2007).!! It!is!important!to!understand!the!impacts!of!invasive!plants!in!wetlands!for! numerous!reasons.!!Because!of!their!placement!on!the!landscape,!wetlands!are!one!of!the! most!highly!invaded!ecosystems!with!the!resulting!invasion!ranging!from!the!addition!of!a! new!co)dominant!to!the!complete!replacement!of!the!local!flora!by!a!monospecific!stand!of! the!introduced!species!(Zedler!and!Kercher!2004).!!Wetlands!are!often!important! ecosystems!for!the!biogeochemical!cycling!due!to!their!high!productivity,!low! decomposition,!and!spatiotemporally!variable!redox!status!due!to!fluctuating!water!table! 175! position!(McClain!et!al!2003;!Reddy!and!DeLaune!2008).!!Therefore,!the!introduction!of! new!species!can!affect!wetland!function!by!introducing!new!traits,!or!increasing!the! abundance!of!an!already!existing!trait,!that!influences!decomposition!rates!or!redox!status! of!the!soil,!such!as!litter!quality!and!radial!oxygen!loss,!respectively!(Figure!1)1).!!Though! the!negative!aspects!of!plant!invasions!are!hard!to!ignore,!e.g.,!loss!of!biodiversity,!it!is! possible!that!plant!invasions!in!wetlands!could!be!partially!beneficial,!such!as!increasing!C! and!N!storage!or!increasing!denitrification!rates.! The!broad!goal!of!this!dissertation!was!to!investigate!the!ecosystem!consequences! of!invasive!plant!species!in!temperate!wetlands,!focusing!on!Phragmites&australis,&Phalaris& arundinacea!and!Typha × glauca&(hereafter,!Phragmites,!Phalaris,!and!Typha,!respectively).!! These!are!among!the!most!aggressive!wetland!invaders!in!the!Great!Lakes!area!and! € understanding!their!impact!on!biogeochemical!cycling!in!wetlands!is!of!great!importance.!! In!Chapter!2,!I!characterized!the!spatial!variability!in!C!and!N!storage!and!organic!matter! quality!in!24!wetlands!in!south)central!Michigan!that!support!monospecific!stands!of!these! invasive!species.!!Additionally,!I!used!laboratory!assays!to!determine!potential!differences! in!C!and!N!mineralization!within!monospecific!stands!of!Phragmites,&Phalaris,&and!Typha.&& In!Chapter!3,!I!investigated!the!mechanisms!by!which!Phragmites!influences!C!and!N! cycling!in!three!wetlands!in!central!Michigan.!!This!was!accomplished!by!manipulating! Phragmites!litter!and!living!biomass!within!plots!at!each!site!and!then!monitoring!abiotic! conditions!and!performing!a!number!of!assays,!including!litter!bag!decomposition,!an!in& situ!N!mineralization!incubation,!and!a!laboratory!denitrification!incubation.!!In!Chapter!4,! to!understand!the!effects!of!litter!quality,!soil!origin,!and!plant!diversity!on!C!and!N! mineralization,!I!performed!two!laboratory!incubations!using!litter!and!soil!collected!from! 176! monospecific!stands!of!the!three!invasive!species,!as!well!as!Carex&lacustris&(hereafter! Carex),!a!native!sedge.!!Together,!these!approaches!allowed!me!to!test!multiple!hypotheses( regarding!direct!and!indirect!effects!of!invasive!plants!on!ecosystem!processes!in!wetlands.! I!hypothesized!that!invasive!species!would!have!higher!NUE!than!native!species,!and! therefore!wetlands!that!were!more!invaded!would!have!a!higher!site!NUE!compared!to! those!that!were!less!invaded!(Figure!1)1:!pathway!1).!!While!there!was!some!support!for! this!hypothesis!(Figure!2)2),!the!exclusion!of!just!one!site!removed!the!significant! relationship,!thus!little!support!was!found!for!this!hypothesis.!!This!lack!of!a!convincing! relationship!likely!indicates!that!instead!of!invasive!wetland!species!being!able!to!attain! high!biomass!production!through!the!efficient!use!of!N,!they!instead!are!able!to!use! different!N!pools!than!natives!or!respond!more!positively!to!nutrient!enrichment!(Davis!et! al.!2000).!!! My!subsequent!hypothesis!that!wetland!C!stocks!would!be!positively!influenced!by! invasive!species!was!supported,!although!the!hypothesized!mechanism!behind!the! relationship!was!not!(invasive!species!have!higher!NUE!than!natives;!Figure!1)1:!pathway! 1,10).!!I!found!evidence!that!both!soil!and!ecosystem!C!stocks!increased!due!to!presence!of! high!biomass!producing!invasive!species!(Figures!2)5!and!2)6)!and!even!though!invasive! species!did!not!have!an!influence!on!wetland!N!stocks!(Figure!1)1:!pathway!1,4),!there!was! evidence!that!native!species!had!a!negative!effect!on!both!soil!and!ecosystem!N!stocks.!!This! could!be!considered!an!indirect!effect!of!invasive!species!because!of!the!negative!effects! invasive!species!had!on!the!presence!and!diversity!of!native!species!(Figure!2)1).!!As!for!the! effect!invasive!species!had!on!wetland!C!stocks,!because!there!was!only!weak!evidence!for! invasive!species!decreasing!litter!quality!(Table!2)3)!and!no!evidence!for!any!effect!on!soil! 177! C:N!ratios,!it!is!possible!that!wetland!invasive!species!affect!C!stocks!by!some!belowground! mechanism,!such!as!greater!belowground!biomass!(BGB)!production!or!lower!quality!BGB,! which!would!be!in!agreement!with!what!Liao!et!al.!(2007)!found!in!a!meta)analysis! showing!that!invasive!species!increase!root!C!stocks.! Besides!the!importance!of!considering!the!cumulative!effects!of!invasive!species,!I! also!hypothesized!there!would!be!differences!among!the!three!most!dominant!invasive! species!in!their!effects!on!soil!C!and!N!mineralization.!!In!my!wetland!survey,!I!found! considerable!support!for!this!hypothesis!(Figure!2)8)!and!was!able!to!connect!this!to!the! quality!of!their!litter!(Figure!1)1:!pathway!3,8,9),!a!plant!trait!known!to!affect!ecosystem! functioning!(Eviner!and!Chapin!2003;!Eviner!2004).!!Considering!the!results!from!Chapter! 1!(wetland!survey!and!laboratory!incubations)!it!seems!that!invasive!species!are! influencing!the!C!(and!to!some!extent!N)!stocks!in!inland!Michigan!wetlands,!but!that!the! most!dominant!invasive!species!in!the!study!region!differ!in!important!plant!traits,!such!as! litter!quality,!and!hence!the!identity!of!the!invasive!species!is!important!to!understand!the! full!effect!of!an!invasion.! In!Chapter!3,!I!showed!how!removal!of!Phragmites!litter!and!living!biomass!had!the! hypothesized!effects!of!increasing!light!levels!at!the!soil!surface!and!increasing!soil! temperature!(Figure!1)1:!pathways!2,6!and!3,7;!Figures!3)7!and!3)8).!!The!effect!on!soil! temperature,!though,!seemed!to!be!dependent!on!the!time!of!year,!as!warmer!months!with! more!direct!sunlight!increased!soil!temperature!when!biomass!and!litter!was!removed,!but! when!there!was!less!direct!sunlight!and!daytime!temperatures!were!lower,!biomass!and! litter!removal!decreased!soil!temperature!(Figure!3)10).!!This!contrasting!effect!is!likely! due!to!the!litter!layer’s!ability!to!insulate!the!soil!surface.!!Interestingly,!this!increased!soil! 178! temperature!did!not!affect!rates!of!litter!bag!decomposition!or!in&situ!N!mineralization! rates!as!I!had!hypothesized!(Figure!1)1:!pathway!2,6,9!and!3,7,6,9).!!As!mentioned!in! Chapter!3,!the!lack!of!significant!treatment!effect!could!have!been!due!to!the!depth!of!the! soil!core!used!in!the!N!mineralization!incubation!and!the!cooler!treatment!conditions!found! in!the!treatment!plots!when!the!litter!bag!assay!was!performed.!!Additionally,!the!absence! of!any!treatment!effect!on!potential!denitrification!rates!was!probably!caused!by! nonsignificant!treatment!effects!on!OM!quality!(a!potential!control!on!denitrification!rates)! since!the!assay!was!done!in!the!laboratory,!free!from!temperature!variation!among! treatments!found!in!the!field.!!Litter!and!biomass!removal!did!affect!porewater!ion! concentrations,!specifically!Na+,!Cl),!Ca2+,!and!NO3),!due!to!either!direct!uptake!or!reduced! evaporative!concentration!by!evapotranspiration!(Figure!1)1:!pathway!5).!!! Though!not!initially!hypothesized,!all!process!rate!data!(litter!bag!decomposition,!in& situ!N!mineralization,!and!potential!denitrification)!showed!strong!site!effects.!!These!site! effects,!which!included!high!potential!denitrification!rates!at!LLP1!and!LLP2!compared!to! Glasby!(Figure!3)28),!negative!N!mineralization!and!nitrification!rates!at!LLP1!(Figures!3) 19!and!3)20),!and!a!significant!interaction!between!site!and!depth!for!filter!paper! decomposition!rates!(Figure!3)27),!were!likely!influenced!by!the!very!different!hydrologic! conditions!among!the!three!sites.!!Glasby!had!constantly!flooded!conditions,!LLP2!had!a! water!table!that!fluctuated!above!to!below!the!soil!surface,!and!LLP1!had!a!water!table! usually!below!the!soil!surface.!!These!differences!in!hydrology!created!variation!in! moisture!conditions!and!soil!redox!status!among!sites.!!The!effects!of!hydrology!seen!in!this! study!demonstrate!the!overriding!importance!that!water!table!position!can!have!within! wetland!sites!that!all!support!the!same!species,!Phragmites,!and!this!concords!with!many! 179! studies!that!show!the!importance!of!hydrology!to!wetland!function!(e.g.,!Hamilton!2002;! Trebitz!et!al.!2005;!Sierszen!et!al.!2006).!!!!! In!Chapter!4,!I!showed!the!effects!litter!quality!has!on!decomposition!rates!among! species!within!the!same!functional!group!(emergent,!clonal!wetland!dominants;!Boutin!and! Keddy!1993),!as!well!as!the!effects!of!litter!quality!on!N!mineralization!rates!(Figure!1)1:! pathway!3,8,9).!!I!found!support!for!my!hypothesis!that!the!four!species!used!in!this!assay,! Phragmites,!Phalaris,!Typha,!and!Carex,!would!differ!in!litter!quality!and!that!litter!C:N! ratios!would!be!negatively!related!to!C!and!N!mineralization!rates.!!Though!litter!C:N!ratios! had!a!clear!linear!relationship!with!decomposition!(Figures!4)6!and!4)7),!there!seemed!to! be!a!threshold!for!litter!quality!effects!on!N!immobilization,!in!which!litter!with!a!C:N!mass! ratio!greater!than!~!35!to!40!resulted!in!N!immobilization,!while!C:N!ratios!less!than!the! threshold!resulted!in!net!N!mineralization!(Figures!4)8!and!4)9).!!! Besides!litter!quality!effects!on!decomposition,!I!found!strong!soil!origin!effects! (significant!soil!effects!after!litter!decomposition!rates!where!corrected!for!background!soil! C!mineralization).!!The!soil!origin!effect!is!likely!due!to!soil!nutrient!availability,!but!it!is! possible!that!other!factors,!such!as!the!soil!microbial!community,!influenced!litter! decomposition!rates.!!The!different!litter!quality!and!soil!origin!effects!on!C!and!N! mineralization!for!these!four!plant!species!is!notable!because!these!species!are!in!the!same! functional!group!and,!therefore,!their!effects!on!ecosystem!processes!can!sometimes!be! classified!together!(Diaz!and!Cabido!1997;!Craine!et!al.!2002;!McLaren!and!Turkington! 2010).!In!addition,!their!unique!effects!on!decomposition!and!N!availability!could!feed!back! to!increase!their!fitness!and!offer!a!mechanism!of!individual!invasion!success.!!For!example,! because!the!decomposition!of!Phragmites!leaf!litter!was!shown!to!result!in!net!N! 180! mineralization!(as!opposed!to!N!immobilization),!especially!when!incubated!in!its!own!soil! (Figure!4)14),!and!since!Phragmites!has!been!shown!to!have!a!greater!response!to!N! availability!than!some!native!and!exotic!plant!species!(Minchinton!and!Bertness!2003;! Saltonstall!and!Stevenson!2007),!this!might!result!in!a!positive!feedback!that!could!explain! its!success.! There!is!an!apparent!discrepancy!across!experiments!(Chapters!2!and!4)!in!regard! to!the!quality!of!Phragmites!litter.!!In!Chapter!2,!Phragmites!litter!had!the!highest!C:N!ratio! compared!to!the!other!study!species!(indicating!low!quality),!while!in!chapter!4,! Phragmites!litter!added!in!the!litter!quality!and!soil!origin!incubation!had!the!lowest!C:N! ratio!among!study!species.!!Also,!in!Chapter!4,!for!the!litter!diversity!incubation,!Phragmites! litter!was!intermediate!between!Chapter!2!and!the!other!incubation!in!Chapter!4.!!As! discussed!in!the!discussion!section!for!Chapter!4,!the!discrepancy!between!the!C:N!ratios!of! Phragmites!litter!additions!in!the!two!incubations!originated!from!different!leaf:stem!ratios! used.!!Because!leaf!tissue!was!much!more!labile,!the!difference!in!leaf:stem!ratio! significantly!changed!the!overall!litter!quality.!!The!same!general!explanation!can!be!used! to!explain!the!very!low!quality!of!Phragmites!litter!observed!in!Chapter!2.!!Litter!collected! in!Chapter!2!was!from!the!established!litter!layer!at!each!site,!and!therefore!most!of!the! labile!tissue,!such!as!leaf!material,!had!likely!already!decomposed,!leaving!the!recalcitrant! stem!tissue.!!The!stark!difference!in!lability!between!stem!and!leaf!tissue!of!Phragmites! could!have!consequences!to!biogeochemical!cycling.!!Phragmites!is!a!late!season!grass!that! doesn’t!flower!until!late!August!or!September,!after!which!aboveground!tissue!senesces.!!At! this!time!leaves!detach!and!fall!to!the!soil!surface.!!The!large!input!of!labile!tissue!to!the!soil! likely!causes!a!pulse!of!C!and!N!mineralization!and!N!availability.!!Because!of!this!behavior! 181! (late!senescence!and!leaf!shed),!Phragmites!likely!alters!C!and!N!cycling!temporally! compared!to!earlier!flowering!native!species!that!do!not!have!as!much!labile!leaf!material.! As!I!hypothesized,!there!was!a!significant!effect!of!litter!diversity!(Figure!1)1:! pathway!3,8,9)!on!litter!decomposition!rates!(Figure!4)15),!which!could!indicate!that!an! outcome!of!the!formation!of!monospecific!stands!(and!hence!a!single!species!litter!layer)! would!be!a!reduction!in!overall!decomposition!rate!and!an!increase!in!organic!matter! buildup,!i.e.,!invasive!species!decrease!decomposition!rates!when!they!reduce!species! (litter)!diversity.!!However,!the!effects!of!plant!species!diversity—and!the!corresponding! diversity!of!litter!inputs—on!decomposition!rates!were!minimal!and!more!dependent!of! the!identity!of!the!species!than!just!the!number!of!species!incubated.!!For!example,!the! greatest!C!mineralization!occurred!when!Phalaris!litter!was!incubated!with!Phragmites! litter,!exceeding!rates!when!either!of!the!two!species!was!incubated!alone,!suggesting!a! multiplicative!response!(Figure!4)10).! While!all!of!the!pathways!shown!in!Figure!1)1!were!investigated!to!some!degree!for! the!research!described!above,!a!more!thorough!investigation!is!needed!for!some!pathways.!! In!particular,!for!pathways!2,6,9!and!3,7,6,9,!significant!effects!of!both!living!biomass!and! litter!were!found!for!light!levels!and!soil!temperatures,!but!these!effects!did!not!translate!to! significant!effects!on!C!and!N!cycling.!!A!longer,!multi)season!litter!bag!assay!should!be!able! to!determine!if!the!temperature!effects!are!large!enough!to!influence!decomposition!rates.!!! Additionally,!the!field!study!investigating!litter!and!living!biomass!effects!on!C!and!N! cycling!(Chapter!4)!was!only!done!in!monospecific!Phragmites!stands.!!Other!dominant! invasive!species!should!be!included!in!such!investigations!to!determine!species!differences.!! There!was!evidence!from!the!porewater!equilibrators!used!in!Chapter!4!that!Phragmites! 182! affected!nitrate!concentrations!in!the!soil!(Figure!1)1:!pathway!5),!but!the!assay!was!only! conducted!late!in!the!growing!season.!!Nitrate!concentrations!should!be!measured! throughout!the!growing!season!to!determine!the!full!extent!of!Phragmites!impact!on!nitrate! availability.!!Lastly,!significant!effects!of!litter!quality,!litter!diversity,!and!soil!origin!(Figure! 1)1:!pathway!3,8,9)!were!found!for!Phragmites,!Phalaris,!Typha,!and!Carex!during! laboratory!incubations.!!To!understand!the!strength!of!pathway!3,8,9!in!a!natural!setting,!a! field!experiment!needs!to!be!conducted!with!the!same!basic!experimental!design!as!the! incubations!in!Chapter!4,!except!instead!of!CO2!production!in!jars,!litter!mass!loss!could!be! monitored!in!a!reciprocal!transplant!field!experiment.!!! Taken!together,!the!results!from!this!dissertation!research!show!how!invasive! species!influence!C!and!N!cycling!in!inland!Michigan!wetlands!through!plant!traits,!such!as! litter!quality!and!quantity,!biomass!production,!and!direct!N!uptake.!!Most!wetlands!of!the! southern!Great!Lakes!region!are!either!invaded!or!under!the!threat!of!invasion!by! aggressive!wetland!invaders!like!Phragmites,!Phalaris,!and/or!Typha,!therefore!studies!like! those!described!in!this!dissertation!are!important!if!the!ecosystem!consequences!of! wetland!invasions!are!to!by!fully!understood.!!If!invasive!species!are!increasing!C!stocks!in! wetlands,!this!could!be!a!positive!outcome!of!wetland!invasion.!!The!research!I!described! here!also!has!value!for!wetland!managers!facing!challenges!from!invasive!plants.!!Large! sums!of!money,!often!from!public!funds,!are!spent!to!control!the!invasive!plants!I!studied! and!restore!native!plant!communities!in!wetlands.!!We!need!a!better!comprehension!of! their!impacts!on!wetlands,!which!may!not!all!prove!to!be!negative,!in!order!to!focus!control! efforts!where!they!are!most!needed.!!! 183! My!results!also!indicate!some!future!research!opportunities.!!First,!while!inland! wetlands!are!an!important!feature!to!interior!Michigan,!many!invaded!wetlands!occur! throughout!the!extensive!Great!Lakes!coastal!zones,!thus!the!results!of!Chapter!2!showing! the!positive!effects!of!invasive!species!on!inland!wetland!C!stocks!should!be!compared!to!a! similar!study!of!these!coastal!wetlands.!!Second,!the!major!shortcoming!of!the!biomass!and! litter!manipulation!study!was!the!short)term!nature!of!the!experiment.!!A!five!to!ten!year! manipulation!study!may!be!able!to!identify!living!biomass!and!litter!effects!on!soil!organic! matter!quality!and!quantity!that!could!not!be!elucidated!in!the!study!described!in!this! dissertation.!!Finally,!the!mechanism!behind!the!soil!origin!effect!found!in!Chapter!4!should! be!investigated,!along!with!expanding!the!litter!quality!incubation!experiment!to!the!field! to!determine!if!the!same!patterns!found!in!the!laboratory!incubation!can!be!extended!to!a! natural!setting.! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! 184! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! APPENDICES! ! 185! Appendix(A( ! ! ! Table!A)1.!Models!of!Biomass!C!Stock.!!Model!in!bold!indicates!the!best)fit!model! based!on!lowest!AIC!value.( Model! AIC! ∆!AIC! wi! Null! 1493.53! 21.91! 0.00! Invasive(Dominance(+(Native(Dominance(( 1471.62( 0.00( 1.00( Invasive!Dominance! 1485.43! 13.81! 0.00! Native!Dominance! 1485.46! 13.84! 0.00! Table!A)2.!Models!of!Biomass!N!Stock.!!Model!in!bold!indicates!the!best)fit!model! based!on!lowest!AIC!value.! Model! AIC! ∆!AIC! wi! Null! 615.13! 77.74! 0.00! Invasive!Biomass!+!Native!Biomass!! 547.48! 10.09! 0.01! Invasive!Biomass! 572.09! 34.70! 0.00! Native!Biomass! 625.19! 87.80! 0.00! Total(Biomass( 537.39( 0.00( 0.99( Table!A)3.!Models!of!Litter!C!Stock.!!Model!in!bold!indicates!the!best)fit!model!based!on! lowest!AIC!value.! Model! AIC! ∆!AIC! wi! Null! 1500.44! 13.68! 0.00! Invasive!Biomass!+!Native!Biomass! 1507.27! 20.51! 0.00! Phalaris!Biomass! 1501.86! 15.10! 0.00! Total!Biomass! 1503.87! 17.11! 0.00! Phalaris!Biomass!+!Biomass!N!+!Biomass!C!+!Biomass!C:N! 1487.77! 1.01! 0.29! Phalaris!Biomass!+!Biomass!N!+!Biomass!C!! 1490.15! 3.39! 0.09! Phalaris!Biomass!+!Biomass!N! 1493.43! 6.67! 0.02! Biomass(N(+(Biomass(C(+(Biomass(C:N( 1486.76( 0.00( 0.48( Biomass!N!+!Biomass!C:N! 1490.11! 3.35! 0.09! Biomass!C:N! 1499.51! 12.75! 0.00! Biomass!N! 1491.94! 5.18! 0.04! ! ! ! ! ! ! ! ! ! ! ! ! 186! ! ! Table!A)4.!Models!of!Litter!N!Stocks.!!Model!in!bold!indicates!the!best)fit!model!based!on! lowest!AIC!value.! Model! AIC! ∆!AIC! wi! Null! 737.54! 1.52! 0.28! Invasive!Biomass!+!Native!Biomass! 757.66! 21.64! 0.00! Phalaris!Biomass! 745.76! 9.74! 0.00! Total!Biomass! 747.63! 11.61! 0.00! Phalaris!Biomass!+!Biomass!N!+!Biomass!C!+!Biomass!C:N! 751.40! 15.38! 0.00! Phalaris!Biomass!+!Biomass!N!+!Biomass!C!! 747.22! 11.20! 0.00! Phalaris!Biomass!+!Biomass!N! 744.30! 8.28! 0.01! Biomass!N!+!Biomass!C!+!Biomass!C:N! 743.52! 7.50! 0.01! Biomass!N!+!Biomass!C:N! 740.53! 4.51! 0.06! Biomass!C:N! 743.40! 7.38! 0.02! Biomass(N( 736.02( 0.00( 0.61( ! Table!A)5.!Models!of!Litter!C:N!ratio.!!Model!in!bold!indicates!the!best)fit!model!based!on! lowest!AIC!value.! Model! AIC! ∆!AIC! wi! Null! 926.87! 18.28! 0.00! Invasive!Dominance!+!Native!Dominance! 909.33! 0.74! 0.31! Invasive!Dominance! 923.25! 14.66! 0.00! Invasive!Dominance!+!Biomass!C!+!Biomass!N!+!Biomass!C:N! 912.72! 4.13! 0.06! Invasive!Dominance!+!Biomass!N!+!Biomass!C:N! 911.54! 2.95! 0.10! Invasive(Dominance(+(Biomass(N( 908.59( 0.00( 0.45! Biomass!C!+!Biomass!N!+!Biomass!C:N! 916.61! 8.02! 0.01! Biomass!N!+!Biomass!C:N! 915.53! 6.94! 0.01! Biomass!N! 912.55! 3.96! 0.06! Biomass!C:N! 921.67! 13.08! 0.00! ! ! ! ! 187! ! Table!A(6.!Models!of!Soil!C!Stock.!!Model!in!bold!indicates!the!best(fit!model!based!on!lowest!AIC!value.! Model! AIC! ∆!AIC! wi! Null! 2105.64! 38.88! 0.00! Invasive(Biomass(+(Native(Biomass(+(Litter(Mass(+(Litter(C(+(Litter(N(+Litter(C:N( 2066.76( 0.00( 0.68( Invasive!Biomass!+!Litter!Mass!+!Litter!C!+!Litter!N! 2075.76! 9.00! 0.01! Invasive!Biomass!+!Litter!Mass! 2103.37! 36.61! 0.00! Invasive!Biomass!+!Litter!Mass!+!Litter!C!+!Litter!N!+!Litter!C:N! 2069.09! 2.33! 0.21! Invasive!Biomass!+!Litter!Mass!+!Litter!N!+!Litter!C:N! 2077.23! 10.47! 0.00! Invasive!Biomass!+!Litter!Mass!+!Litter!N! 2084.96! 18.20! 0.00! Native!Biomass!+!Litter!Mass!+!Litter!C!+!Litter!N!+!Litter!C:N! 2070.80! 4.04! 0.09! Invasive!Biomass! 2103.62! 36.86! 0.00! Native!Biomass! 2104.12! 37.36! 0.00! Litter!C!+!Litter!N! 2080.10! 13.34! 0.00! Litter!N!+!Litter!C:N! 2082.79! 16.03! 0.00! Litter!Mass! 2105.62! 38.86! 0.00! Litter!N! 2090.03! 23.27! 0.00! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! 188! Table!A(7.!Models!of!Soil!N!Stocks.!!Model!in!bold!indicates!the!best(fit!model!based!on!lowest!AIC!value.! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! Model! Null! Invasive!Biomass!+!Native!Biomass!+!Litter!Mass!+!Litter!C!+!Litter!N!+Litter!C:N! Invasive!Biomass!+!Litter!Mass!+!Litter!C!+!Litter!N! Invasive!Biomass!+!Litter!Mass! Invasive!Biomass!+!Litter!Mass!+!Litter!C!+!Litter!N!+!Litter!C:N! Invasive!Biomass!+!Litter!Mass!+!Litter!N!+!Litter!C:N! Invasive!Biomass!+!Litter!Mass!+!Litter!N! Native(Biomass(+(Litter(Mass(+(Litter(C(+(Litter(N(+(Litter(C:N( Invasive!Biomass! Native!Biomass! Litter!C!+!Litter!N! Litter!N!+!Litter!C:N! Litter!Mass! Litter!N! 189! AIC! ∆!AIC! wi! 1548.56! 16.12! 0.00! 1536.78! 4.34! 0.08! 1539.19! 6.75! 0.02! 1551.27! 18.83! 0.00! 1537.44! 5.00! 0.06! 1540.97! 8.53! 0.01! 1543.43! 10.99! 0.00! 1532.44( 0.00( 0.72( 1552.70! 20.26! 0.00! 1547.90! 15.46! 0.00! 1537.69! 5.25! 0.05! 1538.09! 5.65! 0.04! 1547.61! 15.17! 0.00! 1541.31! 8.87! 0.01! Table!A(8.!!Models!of!Soil!C:N.!!Model!in!bold!indicates!the!best(fit!model!based!on!lowest!AIC!value.! ! Model! AIC! ∆!AIC! wi! Null! 530.87! 3.60! 0.13! Invasive!Biomass!+!Native!Biomass!+!Litter!Mass!+!Litter!C!+!Litter!N!+Litter!C:N! 573.96! 46.69! 0.00! Invasive!Biomass!+!Litter!Mass!+!Litter!C!+!Litter!N! 558.55! 31.28! 0.00! Invasive!Biomass!+!Litter!Mass! 556.95! 29.68! 0.00! Invasive!Biomass!+!Litter!Mass!+!Litter!C!+!Litter!N!+!Litter!C:N! 565.50! 38.23! 0.00! Invasive!Biomass!+!Litter!Mass!+!Litter!N!+!Litter!C:N! 560.75! 33.48! 0.00! Invasive!Biomass!+!Litter!Mass!+!Litter!N! 554.21! 26.94! 0.00! Native!Biomass!+!Litter!Mass!+!Litter!C!+!Litter!N!+!Litter!C:N! 561.15! 33.88! 0.00! Invasive!Biomass! 543.46! 16.19! 0.00! Native!Biomass! 539.83! 12.56! 0.00! Litter!C!+!Litter!N! 531.79! 4.52! 0.08! Litter!N!+!Litter!C:N! 533.65! 6.38! 0.03! Litter!Mass! 544.51! 17.24! 0.00! Litter(N( 527.27( 0.00( 0.76( Table!A(9.!Models!of!Ecosystem!C!Stock.!!Model!in!bold!indicates!the!best(fit!model!based!on!lowest!AIC!value.! ! Model! Null! Invasive(Biomass(+(Native(Biomass(( Invasive!Biomass! Native!Biomass! AIC! ∆!AIC! wi! 2108.37! 6.79! 0.02! 2101.58( 0.00( 0.74( 2104.43! 2.85! 0.18! 2106.85! 5.27! 0.05! Table!A(10.!Models!of!Ecosystem!N!Stock.!!Model!in!bold!indicates!the!best(fit!model!based!on!lowest!AIC!value.! Model! Null! Invasive!Biomass!+!Native!Biomass!! Invasive!Biomass! Native(Biomass( AIC! ∆!AIC! wi! 1547.04! 0.60! 0.38! 1550.75! 4.31! 0.06! 1550.91! 4.47! 0.05! 1546.44( 0.00( 0.51( 190! Table!A(11.!!Best(fit!model!summary!table!for!each!dependent!variable.! Dependent!! Biomass!C!Stock! Biomass!N!Stock! ! Litter!C!Stock! Litter!N!Stock! Litter!C:N! ! Soil!C!Stock! Soil!N!Stock! Soil!C:N! ! Ecosystem!C!Stock! Ecosystem!N!Stock! Model!Structure! Invasive!Dominance!+!Native!Dominance!! Total(Biomass( ! Biomass!N!+!Biomass!C!+!Biomass!C:N! Biomass!N! Invasive!Dominance!+(Biomass(N! ! Invasive(Biomass(+!Native!Biomass!+!Litter(Mass!+!Litter!C!+!Litter!N!+Litter!C:N( Native(Biomass(+!Litter(Mass!+!Litter!C!+!Litter!N!+!Litter!C:N( Litter(N( ! Invasive(Biomass(+!Native!Biomass!( Native(Biomass( ! ! 191! wi! 1.00! 0.99! ! 0.48! 0.61! 0.45! ! 0.68! 0.72! 0.76! ! 0.74! 0.51! Appendix(B( ! In!each!reference!plot,!the!following!plant!traits!were!estimated!in!the!2008!and!2009! growing!season:!aboveground!biomass!(AGB)!production,!nitrogen!use!efficiency!(NUE),! organ!specific!tissue!chemistry,!litter!mass,!litter!depth,!litter!chemistry,!and!plant!height! (plant!height!data!were!also!collected!in!2010).!!These!measurements!were!taken!for!both! baseline!data!and!for!the!ability!to!compare!the!three!P.#australis!sites.!!AGB!production! was!estimated!in!a!randomly!selected!1!m2!subplot!within!each!permanent!plot!by! harvesting!standing!biomass!at!the!peak!biomass!period.!!Biomass!samples!were!separated! into!leaves,!stems,!and!inflorescences,!weighed,!and!analyzed!for!%C!and!%N!on!a!Costech! Elemental!Analyzer.!!Maximum!plant!height!was!measured!once!a!month!during!the! growing!season.!!NUE!was!calculated!as!plot!and!plant!level!N!productivity!(g!dry!weight!gO 1!N)!(Berendse!and!Aerts!1987;!van!Ruijuen!and!Berendse!2005).!!Litter!depth!was! recorded!and!litter!was!collected!from!within!the!1!m2!subplot!(629!cm2),!dried!at!65°C!for! 48!hours,!weighed!and!analyzed!for!%C!and!%N.!!! Along!with!these!measurements,!belowground!biomass!(BGB)!was!measured!in!the! summer!of!2009.!!BGB!was!estimated!by!coring!to!a!depth!of!30!cm!using!a!PVC!pipe!(10!cm! diameter).!!Biomass!was!sampled!to!a!30!cm!depth!because!this!is!within!the!depth!range! of!the!majority!of!BGB!production!for!P.#australis,!though!it!can!grow!deeper!in!drier! conditions.!!Five!BGB!cores!were!collected!for!each!site,!one!in!each!reference!plot!and!two! additional!cores!collected!outside!the!treatment!plots!but!within!the!P.#australis!stand.!!Soil! was!removed,!washed,!and!sieved!(2!mm)!to!separate!roots!and!rhizomes!from!soil.!!Roots! and!rhizomes!were!then!dried!to!constant!mass!at!80°C,!weighed,!and!analyzed!for!%C!and! 192! %N.!!Seasonal!variation!in!tissue!chemistry!was!determined!by!sampling!AGB!three!times! during!the!growing!season.! ! ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( 193! ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ! REFERENCES! ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( 194! References( ( ! Able,!K.W.,!Hagan,!S.M.!&!Brown,!S.A.!(2003)!Mechanisms!of!marsh!habitat!alteration!due!to! Phragmites:!Response!of!youngOofOtheOyear!mummichog!(Fundulus#heteroclitus)!to! treatment!for!Phragmites!removal.!Estuaries,!26,!484O494.! ! AgostonOSzabo,!E.!&!Dinka,!M.!(2008)!Decomposition!of!Typha#angustifolia!and!! Phragmites#australis!in!the!littoral!zone!of!a!shallow!lake.!Biologia,!63,!1104O1110.! ! Allendorf,!F.W.!(2003)!Introduction:!population!biology,!evolution,!and!control!of!! invasive!species.!!Conservation#Biology,!17,!24O30.! ! Anderson,!J.T.!&!Smith,!M.S.!(2000)!Invertebrate!response!to!moistOsoil!management!! of!playa!wetlands.!Ecological#Applications,!10:550O558! ! Angeloni,!N.L.,!Jankowski,!K.J.,!Tuchman,!N.C.!&!Kelly,!J.J.!(2006)!Effects!of!an!invasive!cattail! species!(Typha!xglauca)!on!sediment!nitrogen!and!microbial!community!composition! in!a!freshwater!wetland.!FEMS#Microbiology#Letters,!263,!86O92.! ! Armstrong,!J.!and!Armstrong,!W.!(2001)!Rice!and!Phragmites:!effects!of!organic!! acids!on!growth,!root!permeability,!and!radial!oxygen!loss!to!the!rhizosphere.! American#Journal#of#Botany,!88,!1359O1370.! ! Arndt,!S.K.!(2006)!Integrated!research!of!plant!functional!traits!is!important!for!the! understanding!of!ecosystem!processes.!Plant#and#Soil,!285,!1O3.! ! Ashton,!I.W.,!Hyatt,!L.!A.,!Howe,!K.M.,!Gurevitch,!J.!&!Lerdau,!M.T.!(2005)!Invasive!species! accelerate!decomposition!and!litter!nitrogen!loss!in!a!mixed!deciduous!forest.! Ecological#Applications,!15,!1263O1272.! ! Austin,!A.T.!&!Ballaré,!C.L.!(2010)!Dual!role!of!lignin!in!plant!litter!decomposition!in! terrestrial!ecosystems.!Proceedings#of#the#National#Academy#of#Sciences,!107,!4618O22.! ! Averett,!J.M.,!Klips,!R.A.,!Nave,!L.E.,!Frey,!S.D.!&!Curtis,!P.S.!(2004)!Effects!of!soil!carbon! amendment!on!nitrogen!availability!and!plant!growth!in!an!experimental!tallgrass! prairie!restoration.!Restoration#Ecology,!12,!568O574.! ! Ayres,!E.,!Steltzer,!H.,!Berg,!S.!&!Wall,!D.H.!(2009)!Soil!biota!accelerate!decomposition!in! highOelevation!forests!by!specializing!in!the!breakdown!of!litter!produced!by!the!plant! species!above!them.!Journal#of#Ecology,!97,!901O912.! ! ! 195! Bekku,!Y.S.,!Nakatsubo,!T.,!Kume,!A,!Adachi,!M.!&!Koizumi,!H.!(2003)!Effect!of!! warming!on!the!temperature!dependence!of!soil!respiration!in!arctic,!temperate!and! tropical!soils.!Applied#Soil#Ecology,!22,!205O210.! ! Berg,!B.!(2000)!Litter!decomposition!and!organic!matter!turnover!in!northern!forest!soils.! Forest#Ecology#and#Management,!133,!13O22.! ! Binkley,!D.!&!Hart,!S.C.!(1989)!The!components!of!nitrogen!availability!assessments!! in!forest!soils.!Advances#in#Soil#Science,!10,!57O112.! ! Blackburn,!T.M.,!Pyšek,!P.,!Bacher,!S.,!Carlton,!J.T.,!Duncan,!R.P.,!Jarošík,!V.,!Wilson,!J.R.U.!&! Richardson,!D.M.!(2011)!A!proposed!unified!framework!for!biological!invasions.! Trends#in#Ecology#&#Evolution,!26,!333O9.! ! Blair,!J.M.,!Parmelee,!R.W.!&!Beare,!M.H.!(1990)!Decay!rates,!nitrogen!fluxes,!and! decomposer!communities!of!singleO!and!mixedOspecies!foliar!litter.!Ecology,!71,!1976.! ! Borken,!W.!&!Matzner,!E.!(2009)!Reappraisal!of!drying!and!wetting!effects!on!C!and!N! mineralization!and!fluxes!in!soils.!Global#Change#Biology,!15,!808O824.! ! Boutin,!C.!&!Keddy,!P.A.!(1993)!A!functional!classification!of!wetland!plants.!Journal#of# Vegetation#Science,!4,!591–600.! ! Bradley,!P.M.!&!Morris,!J.T.!(1991)!Relative!importance!of!ion!exclusion,!secretion!and! accumulation!in!Spartina#alterniflora!Loisel.!Journal#of#Experimental#Botany,!42,!1525O 1532.! ! Brady,!N.C.!&!Weil,!R.R.!(2001)!The!nature!and!properties!of!soils,!13th!ed.!Prentice!! Hall,!New!Jersey.! ! Bremer,!C.,!Braker,!G.,!Matthies,!D.,!Reuter,!A.,!Engels,!C.!&!Conrad,!R.!(2007)!Impact!of!plant! functional!group,!plant!species,!and!sampling!time!on!the!composition!of!nirKOtype! denitrifier!communities!in!soil.!Applied#and#Environmental#Microbiology,!73,!6876O84.! ! Bridgham,!S.D.,!Updegraff,!K.!&!Pastor,!J.!(1998)!Carbon,!nitrogen,!and!phosphorus! mineralization!in!northern!wetlands.!Ecology,!79,!1545O1561.! ! Bridgham,!S.D.,!Megonigal,!J.P.,!Keller,!J.K.,!Bliss,!N.B.!&!Trettin,!C.!(2006)!The!carbon! balance!of!North!American!wetlands.!Wetlands,!26,!889–916.! ! Bubier,!J.L.,!Bhatia,!G.!&!Moore,!T.R.!(2003)!Spatial!and!temporal!variability!in!! growing!season!net!ecosystem!carbon!dioxide!exchange!at!a!large!peatland!in!Ontario,! Canada.!Ecosystems,!6,!353O367.!! ! 196! Burford,!J.!&!Bremner,!J.!(1975)!Relationships!between!the!denitrification!capacities!of!soils! and!total,!waterOsoluble!and!readily!decomposable!soil!organic!matter.!Soil#Biology#and# Biochemistry,!7,!389–394.! ! Burgin,!A.J.,!Yang,!W.H.,!Hamilton,!S.K.!&!Silver,!W.L.!(2011)!Beyond!carbon!and!! nitrogen:!how!the!microbial!energy!economy!couples!elemental!cycles!in!diverse! ecosystems.!Frontiers#in#Ecology#and#the#Environment,!9,!44O52.! ! Chambers,!R.,!Meyerson,!L.!&!Saltonstall,!K.!(1999)!Expansion!of!Phragmites#australis!into! tidal!wetlands!of!North!America.!Aquatic#Botany,!64,!261O273.! ! Chapin,!F.S.!(2003)!Effects!of!plant!traits!on!ecosystem!and!regional!processes:!a!! conceptual!framework!for!predicting!the!consequences!of!global!change.!Annals#of# Botany,!91,!455O463.! ! Chapin,!F.S.,!Matson,!P.A.!&!Mooney,!H.A.!(2002)!Principles!of!terrestrial!ecosystem!! ecology.!Springer,!New!York.! ! Chapman,!S.K.,!Langley,!J.A.,!Hart,!S.C.!&!Koch,!G.W.!(2006)!Plants!actively!control!nitrogen! cycling:!uncorking!the!microbial!bottleneck.!New#Phytologist,!169,!27O34.! ! Chimney,!M.J.!&!Pietro,!K.C.!(2006)!Decomposition!of!macrophyte!litter!in!a!subtropical! constructed!wetland!in!south!Florida!(USA).!Ecological#Engineering,!27,!301O321.! ! Colmer,!T.D.!(2003)!LongOdistance!transport!of!gases!in!plants:!a!perspective!on!! internal!aeration!and!radial!oxygen!loss!from!roots.!!Plant,#Cell#and#Environment,!26,! 17O36.! ! Cornwell,!W.K.,!Cornelissen,!J.H.C.,!Amatangelo,!K.,!Dorrepaal,!E.,!Eviner,!V.T.,!Godoy,!O.,! Hobbie,!S.E.,!Hoorens,!B.,!Kurokawa,!H.,!PérezOHarguindeguy,!N.,!Quested,!H.M.,! Santiago,!L.S.,!Wardle,!D.!A,!Wright,!I.J.,!Aerts,!R.,!Allison,!S.D.,!van!Bodegom,!P.,!Brovkin,! V.,!Chatain,!A.,!Callaghan,!T.V.,!Díaz,!S.,!Garnier,!E.,!Gurvich,!D.E.,!Kazakou,!E.,!Klein,!J.!A,! Read,!J.,!Reich,!P.B.,!Soudzilovskaia,!N.!A,!Vaieretti,!M.V.!&!Westoby,!M.!(2008)!Plant! species!traits!are!the!predominant!control!on!litter!decomposition!rates!within!biomes! worldwide.!Ecology#Letters,!11,!1065O71.! ! Craine,!J.M.,!Tilman,!D.,!Wedin,!D.,!Reich,!P.,!Tjoelker,!M.!&!Knops,!J.!(2002)!Functional!traits,! productivity!and!effects!on!nitrogen!cycling!of!33!grassland!species.!Functional# Ecology,!16,!563O574.! ! Cronk,!J.K.!&!Fennessy,!M.S.!(2001)!Wetland!plants:!biology!and!ecology.!CRC!Press,!! Boca!Raton.! ! D’Antonio,!C.M.!and!Vitousek,!P.M!(1992)!Biological!invasions!by!exotic!grasses,!the!! grass/fire!cycle,!and!global!change.!Annual#Review#of#Ecology#and#Systematics,!3,!3O87.! !! 197! Daehler,!C.!(2003)!Performance!comparisons!of!coOoccurring!native!and!alien!invasive! plants:!implications!for!conservation!and!restoration.!Annual#Review#of#Ecology,# Evolution,#and#Systematics,!34,!183O211.! ! Davidson,!E.!A.!&!Janssens,!I.!A.!(2006)!Temperature!sensitivity!of!soil!carbon! decomposition!and!feedbacks!to!climate!change.!Nature,!440,!165O73.! ! Davis,!M.A.,!Grime,!J.P.!&!Thompson,!K.!(2000)!Fluctuating!resources!in!plant!! communities:!a!general!theory!of!invasibility.!Journal#of#Ecology,!88,!528O534.! ! Day,!F.!(1983)!Effects!of!flooding!on!leaf!litter!decomposition!in!microcosms.!Oecologia,!56,! 180O184.! ! Diaz,!S.!&!Cabido,!M.!(1997)!Plant!functional!types!and!ecosystem!function!in!relation!to! global!change.!Journal#of#Vegetation#Science,!8,!463–474.! ! Diaz,!S.!&!Cabido,!M.!(2001)!Vive!la!difference:!plant!functional!diversity!matter!to! ecosystem!processes.!Trends#in#Ecology#and#Evolution,!16,!646O655.! ! Driscoll,!C.T.,!Whitall,!D.,!Aber,!J.,!Boyer,!E.,!Castro,!M.,!Cronan,!C.,!Goodale,!C.L.,!Groffman,!P.,! Hopkinson,!C.,!Lambert,!K.,!Lawrence,!G.!&!Ollinger,!S.!(2003)!Nitrogen!pollution!in!the! northeastern!United!States:!sources,!effects,!and!management!options.!Bioscience,!53,! 357.! ! Ehrenfeld,!J.!(2003)!Effects!of!exotic!plant!invasions!on!soil!nutrient!cycling!processes.! Ecosystems,!6,!503O523.! ! Eno,!C.F.!(1960)!Nitrate!production!in!the!field!by!incubating!the!soil!in!polyethylene!! bags.!!Soil#Science#Society#American#Proceedings,!24,!277O299.! !! Eschtruth,!A.K.!&!Battles,!J.J.!(2009)!Assessing!the!relative!importance!of!disturbance,! herbivory,!diversity,!and!propagule!pressure!in!exotic!plant!invasion.!Ecological# Monographs,!79,!265–280.! ! Euliss,!N.H.,!Gleason,!R.!A,!Olness,!a,!McDougal,!R.L.,!Murkin,!H.R.,!Robarts,!R.D.,! Bourbonniere,!R.!A!&!Warner,!B.G.!(2006)!North!American!prairie!wetlands!are! important!nonOforested!landObased!carbon!storage!sites.!The#Science#of#the#Total# Environment,!361,!179O88.! ! Evans,!R.D.,!Rimer,!R.,!Sperry,!L.!&!Belnap,!J.!(2001)!Exotic!plant!invasion!alters!nitrogen! dynamics!in!an!arid!grassland.!Ecological#Applications,!11,!1301O1310.! ! Eviner,!V.T.!(2004)!Plant!traits!that!influence!ecosystem!processes!vary!independently! among!species.!Ecology,!85,!2215–2229.! ! 198! Eviner,!V.T.!&!Chapin!III,!F.S.!(2003)!Functional!matrix:!a!conceptual!framework!for! predicting!multiple!plant!effects!on!ecosystem!processes.!Annual#Review#of#Ecology,# Evolution,#and#Systematics,!34,!455O485.! ! Farrer,!E.C.!&!Goldberg,!D.E.!(2009)!Litter!drives!ecosystem!and!plant!community!changes! in!cattail!invasion.!Ecological#Applications,!19,!398O412.! ! Fickbohm,!S.!&!Zhu,!W.!(2006)!Exotic!purple!loosestrife!invasion!of!native!cattail! freshwater!wetlands:!Effects!on!organic!matter!distribution!and!soil!nitrogen!cycling.! Applied#Soil#Ecology,!32,!123O131.! ! Findlay,!S.,!Groffman,!P.!&!Dye,!S.!(2003)!Effects!of!Phragmites#australis!removal!on!marsh! nutrient!cycling.!Wetlands#Ecology#and#Management,!11,!157–165.! ! Findlay,!S.E.G.,!Dye,!S.!&!Kuehn,!K.!a.!(2002)!Microbial!growth!and!nitrogen!retention!in! litter!of!Phragmites#australis!compared!to!Typha#angustifolia.!Wetlands,!22,!616O625.! ! Finzi,!A.C.,!Breemen,!N.V.!&!Canham,!C.D.!(1998)!Canopy!treeOsoil!interactions!within!! temperate!forests:!species!effects!on!soil!carbon!and!nitrogen.!Ecological#Applications,! 8,!440O446.! ! Fontaine,!S.,!Mariotti,!A.!&!Abbadie,!L.!(2003)!The!priming!effect!of!organic!matter:!a!! question!of!microbial!competition?!Soil#Biology#and#Biochemistry,!35,!837O843.!! ! Fontaine,!S.,!Bardoux,!G.,!Abbadie,!L.!&!Mariotti,!A.!(2004)!Carbon!input!to!soil!may! decrease!soil!carbon!content.!Ecology#Letters,!7,!314O320.! ! Fridley,!J.,!Stachowicz,!J.,!Naeem,!S.,!Sax,!D.,!Seabloom,!E.,!Smith,!M.,!Stohlgren,!T.,!Tilman,!D.! &!Holle,!B.V.!(2007)!The!invasion!paradox:!reconciling!pattern!and!process!in!species! invasions.!Ecology,!88,!3–17.! ! Funk,!J.L.!&!Vitousek,!P.M.!(2007)!ResourceOuse!efficiency!and!plant!invasion!in!lowO resource!systems.!Nature,!446,!1079O81.! ! Gallardo,!A.!&!Merino,!J.!(1993)!Leaf!decomposition!in!two!Mediterranean!ecosystems!of! southwest!Spain:!influence!of!substrate!quality.!Ecology,!74,!152.! ! Galloway,!J.N.,!Aber,!J.D.,!Erisman,!J.A.N.W.,!Sybil,!P.,!Howarth,!R.W.,!Cowling,!E.B.!&!Cosby,! B.J.!(2003)!The!nitrogen!cascade.!Bioscience,!53,!341O356.! ! Gessner,!M.!(2000)!Breakdown!and!nutrient!dynamics!of!submerged!Phragmites!shoots!in! the!littoral!zone!of!a!temperate!hardwater!lake.!Aquatic#Botany,!66,!9O20.! ! Gessner,!M.O.!(2001)!Mass!loss,!fungal!colonisation!and!nutrient!dynamics!of!Phragmites# australis!leaves!during!senescence!and!early!aerial!decay.!Aquatic#Botany,!69,!325–339.! ! 199! Gessner,!M.O.,!Swan,!C.M.,!Dang,!C.K.,!McKie,!B.G.,!Bardgett,!R.D.,!Wall,!D.H.!&! Hättenschwiler,!S.!(2010)!Diversity!meets!decomposition.!Trends#in#Ecology#and# Evolution,!25,!372O80.! ! Gholz,!H.L.,!Wedin,!D.A.,!Smitherman,!S.M.,!Harmon,!M.E.!&!Parton,!W.J.!(2000)!LongOterm! dynamics!of!pine!and!hardwood!litter!in!contrasting!environments:!toward!a!global! model!of!decomposition.!!Global#Change#Biology,!6,!751O765.! ! Giardina,!C.P.!&!Ryan,!M.G.!(2000)!Evidence!that!decomposition!rates!of!organic!! carbon!in!mineral!soil!do!not!vary!with!temperature.!Nature,!404,!858O861.! ! Giardina,!C.P.,!Ryan,!M.G.,!Hubbard,!R.M.!&!Binkley,!D.!(2001)!Tree!species!and!soil!! textural!controls!on!carbon!and!nitrogen!mineralization!rates.!Soil#Science#Society#of# America#Journal,!65,!1272O1279.! ! Gordon,!D.R.!(1998)!Effects!of!invasive,!nonOindigenous!plant!species!on!ecosystem!! processes:!lessons!from!Florida.!Ecological#Applications,!8,!975O989.! ! Gough,!L.,!Gross,!K.L.,!Cleland,!E.E.,!Clark,!C.M.,!Collins,!S.L.,!Fargione,!J.E.,!Pennings,!S.C.!&! Suding,!K.N.!(2012)!Incorporating!clonal!growth!form!clarifies!the!role!of!plant!height! in!response!to!nitrogen!addition.!Oecologia.! ! Goulden,!M.,!Litvak,!M.!&!Miller,!S.!(2007)!Factors!that!control!Typha!marsh! evapotranspiration.!Aquatic#Botany,!86,!97O106.! ! Graneli,!W.!(1990)!Standing!crop!and!mineral!content!of!reed,!Phragmites#australis!! (Cav.)!Trin.!Ex!Studel,!in!Sweden:!management!of!reeds!stands!to!maximize! harvestable!biomass.!Folia#Geobotanica#&#Phytotaxonomica,!25,!291O302.! ! Green,!E.K.!&!Galatowitsch,!S.M.!(2001)!Differences!in!wetland!plant!community! establishment!with!additions!of!nitrateON!and!invasive!species!(Phalaris#arundinacea# and!Typha!×glauca).!Canadian#Journal#of#Botany,!79,!170O178.! ! Green,!E.!&!Galatowitsch,!S.!(2002)!Effects!of!Phalaris#arundinacea!and!nitrateON!addition! on!the!establishment!of!wetland!plant!communities.!Journal#of#Applied#Ecology,!39,! 134O144.! ! Grime,!J.P.!(2002)!Plant!strategies,!vegetation!processes,!and!ecosystem!properties.!! 2nd!edition.!John!Wiley!&!Sons.! ! Groffman,!P.M.,!Altabet,!M.!A,!Böhlke,!J.K.,!ButterbachOBahl,!K.,!David,!M.B.,!Firestone,!M.K.,! Giblin,!A.E.,!Kana,!T.M.,!Nielsen,!L.P.!&!Voytek,!M.!A.!(2006)!Methods!for!measuring! denitrification:!diverse!approaches!to!a!difficult!problem.!Ecological#Applications,!16,! 2091O122.! ! 200! Hamilton,!S.K.!(2002)!Hydrological!controls!of!ecological!structure!and!function!in!the! Pantanal!wetland!(Brazil).!The#Ecohydrology#of#South#American#Rivers#and#Wetlands,! 133–158.! ! Hart,!S.C.,!Nason,!G.,!Myrold,!D.D.!&!Perry,!D.A.!(1994)!Dynamics!of!gross!nitrogen! transformations!in!an!oldOgrowth!forest:!the!carbon!connection.!Ecology,!75,!880–891.! ! Hattenschwiler,!S.!&!Gasser,!P.!(2005)!Soil!animals!alter!plant!litter!diversity!effects!! on!decomposition.!!Proceedings#of#the#National#Academy#of#Sciences,!102,!1519O1524.! ! Hattenschwiler,!S.,!Tiunov,!A.V.!&!Scheu,!S.!(2005)!Biodiversity!and!litter!! decomposition!in!terrestrial!ecosystems.!!Annual#Review#in#Ecology,#Evolution,#and# Systematics,!36,!191O218.! ! He,!Z.,!Bentley,!L.P.!&!Holaday,!A.S.!(2011)!Greater!seasonal!carbon!gain!across!a!! broad!temperature!range!contributes!to!the!invasive!potential!of!Phalaris#arundinacea! (Poaceae;!reed!canary!grass)!over!the!native!sedge!Carex#stricta!(Cyperaceae).! American#Journal#of#Botany,!98,!20O30.! ! Hector,!A.,!Beale,!A.,!Minns,!A.,!Otway,!S.!&!Lawton,!J.!(2000)!Consequences!of!the!reduction! of!plant!diversity!for!litter!decomposition:!effects!through!litter!quality!and! microenvironment.!Oikos,!90,!357–371.! ! Heimann,!M.!&!Reichstein,!M.!(2008)!Terrestrial!ecosystem!carbon!dynamics!and!climate! feedbacks.!Nature,!451,!289O92.! ! Hejda,!M.,!Pyšek,!P.!&!Jarošík,!V.!(2009)!Impact!of!invasive!plants!on!the!species!richness,! diversity!and!composition!of!invaded!communities.!Journal#of#Ecology,!97,!393O403.! ! HerrOTuroff,!A.!&!Zedler,!J.B.!(2005)!Does!wet!prairie!vegetation!retain!more!nitrogen!with! or!without!Phalaris#arundinacea!invasion?!Plant#and#Soil,!277,!19O34.! ! Hoffert,!M.I.,!Caldeira,!K.,!Jain,!A.K.,!Haites,!E.F.,!Harvey,!L.D.D.,!Potter,!S.D.,!Schlesinger,!M.E.,! Schneider,!S.H.,!Watts,!R.G.,!Wigley,!T.M.L.!(1998)!Energy!implications!of!future! stabilization!of!atmospheric!CO2!content.!Nature,!395,!881–884.! ! Hooper,!D.U.!&!Vitousek,!P.M.!(1997)!The!effects!of!plant!composition!and!diversity!on! ecosystem!processes.!Science,!277,!1302O1305.! ! Houlahan,!J.E.!&!Findlay,!C.S.!(2004)!Effect!of!invasive!plant!species!on!temperate!wetland! plant!diversity.!Conservation#Biology,!18,!1132–1138.! ! Hudon,!C.!(2004).!Shift!in!wetland!plant!communities!and!biomass!following!lowO! level!episodes!in!the!St.!Lawrence!River:!looking!into!the!future.!Canadian#Journal#of# Fiseries#and#Aquatic#Sciences,!61:!603O617.! 201! Jacinthe,!P.A.,!Bills,!J.S.,!Tedesco,!L.P.!&!Barr,!R.C.!(2012)!Nitrous!oxide!emission!from!! riparian!buffers!in!relation!to!vegetation!and!flood!frequency.!Journal#of#Environmental# Quality,!41,!95O105.! ! Jarvis,!P.,!Rey,!A.,!Petsikos,!C.,!Wingate,!L.,!Rayment,!M.,!Pereira,!J.,!Banza,!J.,!David,!J.,! Miglietta,!F.,!Borghetti,!M.,!Manca,!G.!&!Valentini,!R.!(2007)!Drying!and!wetting!of! Mediterranean!soils!stimulates!decomposition!and!carbon!dioxide!emission:!the!“Birch! effect”.!Tree#Physiology,!27,!929O40.! ! Ju,!W.,!Chen,!J.M.,!Black,!T.A.,!Barr,!A.G.,!Mccaughey,!H.!&!Roulet,!N.T.!(2006)!Hydrological! effects!on!carbon!cycles!of!Canada’s!forests!and!wetlands.!Tellus#B,!58,!16O30.! ! Kerr,!J.T.!&!Currie,!D.J.!(1995)!Effects!of!human!activity!on!global!extinction!risk.! Conservation#Biology,!9,!1528–1538.! ! Kominková,!D.,!Kuehn,!K.,!Büsing,!N.,!Steiner,!D.!&!Gessner,!M.!(2000)!Microbial!biomass,! growth,!and!respiration!associated!with!submerged!litter!of!Phragmites#australis! decomposing!in!a!littoral!reed!stand!of!a!large!lake.!Aquatic#Microbial#Ecology,!22,!271– 282.! ! LaBaugh,!J.!(1986)!Wetland!ecosystem!studies!from!a!hydrologic!perspective.!#Journal#of#the# American#Water,!22.! ! Lafleur,!P.M.,!Moore,!T.R.,!Roulet,!N.T.!&!Frolking,!S.!(2005)!Ecosystem!respiration!in!! a!cool!temperate!bog!depends!on!peat!temperature!but!not!water!table.!Ecosystems,!8,! 619O629.! ! Lal,!R.!(2008)!Carbon!sequestration.!Philosophical#transactions#of#the#Royal#Society#of# London.#Series#B,#Biological#sciences,!363,!815O30.! ! Lavergne,!S.!&!Molofsky,!J.!(2004)!Reed!canary!grass!(Phalaris#arundinacea)!as!a!biological! model!in!the!study!of!plant!invasions.!Critical#Reviews#in#Plant#Sciences,!23,!415–429.! ! Lavergne,!S.!&!Molofsky,!J.!(2007)!Increased!genetic!variation!and!evolutionary!! potential!drive!the!success!of!an!invasive!grass.!Proceedings#of#the#National#Academy# of#Sciences,!104,!3883O8.! ! Lavorel,!S.!&!Garnier,!E.!(2002)!Predicting!changes!in!community!composition!and! ecosystem!functioning!from!plant!traits:!revisiting!the!Holy!Grail.!Functional#Ecology,! 16,!545–556.! ! Levine,!J.M,!M.!Vila,!C.M.!D’Antonio,!J.S.!Dukes,!K.!Grigulis!and!S.!Lavorel.!(2003)!! Mechanisms!underlying!the!impacts!of!exotic!plant!invasions.!Proceedings#of#the#Royal# Society#of#London#B.,!270,!775O781.! ! ! 202! Liao!C.Z.,!Luo!Y.Q.,!Jiang!L.F.,!Zhou!X.H.,!Wu!X.W.,!Fang!C.M.,!Chen!J.K.,!Li!B.!(2007)!Invasion!! of!Spartina#alterniflora!enhanced!ecosystem!carbon!and!nitrogen!stocks!in!the!Yangtze!! Estuary,!China.!Ecosystems,!10,!1351–1361! !! Liao,!C.,!Peng,!R.,!Luo,!Y.,!Zhou,!X.,!Wu,!X.,!Fang,!C.,!Chen,!J.!&!Li,!B.!(2008)!Altered!ecosystem! carbon!and!nitrogen!cycles!by!plant!invasion:!a!metaOanalysis.!New#Phytologist,!177,! 706O14.! ! Liu,!P.,!Huang,!J.,!Han,!X.,!Sun,!O.!&!Zhou,!Z.!(2006)!Differential!responses!of!litter! decomposition!to!increased!soil!nutrients!and!water!between!two!contrasting! grassland!plant!species!of!Inner!Mongolia,!China.!Applied#Soil#Ecology,!34,!266O275.! ! Livingston,!R.J.!(2000)!Eutrophication!Processes!in!Coastal!Systems.!Lewis!! Publishers!Inc.! ! Lockwood,!J.L.,!Cassey,!P.!&!Blackburn,!T.,!(2005)!The!role!of!propagule!pressure!in!! explaining!species!invasions.#Trends#on#Ecology#and#Evolution,!20,!223O228.! ! MacKinney,!A.!(1929)!Effects!of!forest!litter!on!soil!temperature!and!soil!freezing!in!autumn! and!winter.!Ecology,!312O321.! ! Magee,!T.K.!&!Kentula,!M.E.!(2005)!Response!of!wetland!plant!species!to!hydrologic! conditions.!Wetlands#Ecology#and#Management,!13,!163–181.! ! Marchand,!C.,!Baltzer,!F.,!LallierOVergès,!E.!&!Albéric,!P.!(2004)!PoreOwater!chemistry!in! mangrove!sediments:!relationship!with!species!composition!and!developmental!stages! (French!Guiana).!Marine#Geology,!208,!361–381.! ! Marks,!M.,!Lapin,!B.!&!Randall,!J.!(1994)!Phragmites#australis!(P.#communis):!!! threats,!management,!and!monitoring.!Natural#Areas#Journal,!14,!285O294.! ! Martina,!J.!P.!2006.!Effects!of!soil!nutrient!characteristics,!moisture,!and!light!on!the!! growth!response!and!resource!allocation!of!Phalaris#arundinacea,!an!invasive!wetland! plant.!MS!Thesis,!Northern!Illinois!University.!123.! ! McClain,!M.E.,!Boyer,!E.W.,!Dent,!C.L.,!Gergel,!S.E.,!Grimm,!N.B.,!Groffman,!P.M.,!Hart,!S.C.,! Harvey,!J.W.,!Johnston,!C.!A.,!Mayorga,!E.,!McDowell,!W.H.!&!Pinay,!G.!(2003)! Biogeochemical!hot!spots!and!hot!moments!at!the!interface!of!terrestrial!and!aquatic! ecosystems.!Ecosystems,!6,!301O312.! ! McClaugherty,!C.A.,!J.!Pastor,!J.D.!Aber!and!J.M.!Melillo.!(1985)!Forest!litter!! decomposition!in!relation!to!soil!nitrogen!dynamics!and!litter!quality.!Ecology,!66,! 266O275.! ! McGill,!B.J.,!Enquist,!B.J.,!Weiher,!E.!&!Westoby,!M.!(2006)!Rebuilding!community!ecology! from!functional!traits.!Trends#in#Ecology#&#Evolution,!21,!178O85.! 203! McLaren,!J.R.!&!Turkington,!R.!(2010)!Ecosystem!properties!determined!by!plant!functional! group!identity.!Journal#of#Ecology,!98,!459O469.! ! McLeelan,!T.M.,!Martin,!M.E.,!Aber,!J.D.,!Melillo,!J.M.,!Nadelhoffer,!K.J.!&!Dewey,!B.!(1991)! Comparisons!of!wet!chemistry!and!near!infrared!reflectance!measurements!of!carbonO fraction!chemistry!and!nitrogen!concentration!of!forest!foliage.!Canadian#Journal#of# Forest#Research,!21,!1689O1693.! ! Meekins,!J.!&!McCarthy,!B.!(2000)!Responses!of!the!biennial!forest!herb!Alliaria#petiolata!to! variation!in!population!density,!nutrient!addition!and!light!availability.!Journal#of# Ecology,!88,!447O463.! ! Melillo,!J.M.,!Aber,!J.D.,!Linkins,!A.E.,!Ricca,!A.,!Fry,!B.!&!Nadelhoffer,!K.J.!(1989)!Carbon!and! nitrogen!dynamics!along!the!decay!continuum:!plant!litter!to!soil!organic!matter.!Plant# and#Soil,!115,!189–198.! ! Melillo,!J.M.,!J.D.!Aber!and!J.F.!Muratore.!1982.!Nitrogen!and!lignin!control!of!! hardwood!leaf!litter!decomposition!dynamics.!Ecology,!63:!621O626.! ! Minchinton,!T.!&!Bertness,!M.!(2003)!DisturbanceOmediated!competition!and!the!spread!of! Phragmites#australis!in!a!coastal!marsh.!Ecological#Applications,!13,!1400O1416.! ! Mitsch,!M.J.!and!J.G.!Gosselink.!(2000)!Wetlands#3rd!Ed.!John!Wiley!and!Sons,!Inc.!! New!York.!! ! Neekles,!H.A.!&!Neill,!C.!(1994)!Hydrologic!control!of!litter!decomposition!in!! seasonally!flooded!prairie!marches.!Hydrobiologia,!286,!155O165.! ! Nieveen!J.P.,!Jacobs!C.M.J.,!Jacobs!A.F.G.!(1998)!Diurnal!and!seasonal!variation!of!! carbon!dioxide!exchange!from!a!former!true!raised!bog.!Global#Change#Biology,!4,!823O 834.!!! ! Orwin,!K.H.,!Wardle,!D.A.!&!Greenfield,!L.G.!(2008)!Ecological!consequences!of!carbon! substrate!identity!and!diversity!in!a!laboratory!study.!Ecology,!87,!580O593.! ! Otto,!S.,!Groffman,!P.M.,!Findlay,!S.E.G.!&!Arreola,!A.E.!(1999)!Invasive!plant!species!and! microbial!processes!in!a!tidal!freshwater!marsh.!Journal#of#Environmental#Quality,!28,! 1252–1257.! ! Parton,!W.,!Silver,!W.L.,!Burke,!I.C.,!Grassens,!L.,!Harmon,!M.E.,!Currie,!W.S.,!King,!J.Y.,!Adair,! E.C.,!Brandt,!L.!a,!Hart,!S.C.!&!Fasth,!B.!(2007)!GlobalOscale!similarities!in!nitrogen! release!patterns!during!longOterm!decomposition.!Science,!315,!361O4.! ! Pimentel,!D.,!Lach,!L.,!Zuniga,!R.!&!Morrison,!D.,!(2000)!Environmental!and!economic!! costs!of!nonindigenous!species!in!the!United!States.!Bioscience,!50,!53O65.! 204! Pimentel,!D.,!Zuniga,!R.!&!Morrison,!D.!(2004)!Update!on!the!environmental!and!economic! costs!associated!with!alienOinvasive!species!in!the!United!States.!Ecological#Economics,! 52,!273!O!288.! ! Plut,!K.,!Paul,!J.,!Ciotir,!C.,!Major,!M.!&!Freeland,!J.R.!(2011)!Origin!of!nonOnative!Phragmites# australis!in!North!America,!a!common!wetland!invader.!Fundamental#and#Applied# Limnology,!179,!121O129.! ! Pokorny,!M.,!Sheley,!R.,!Zabinski,!C.,!Engel,!R.,!Svejcar,!T.,!Borkowski,!J.!&!USDA.!(2005)! Plant!functional!group!diversity!as!a!mechanism!for!invasion!resistance.!Restoration# Ecology,!13,!448O459.! ! Post,!W.M.,!Emmanuel,!W.R.,!Zinke,!P.J.!&!Stangenberger,!G.!(1982)!Soil!carbon!pools!! and!world!life!zones.!Nature,#298,!1586O1589!# ! Quested,!H.,!Eriksson,!O.,!Fortunel,!C.!&!Garnier,!E.!(2007)!Plant!traits!relate!to!wholeO community!litter!quality!and!decomposition!following!land!use!change.!Functional# Ecology,!21,!1016O1026.! ! Ramunni,!A.,!Scialdone,!R.!&!Felleca,!D.!(1987)!Decomposition!of!humic!acids!by!incubation! in!a!soil!waterOextract!under!various!conditions!of!oxygen!availability.!Plant#and#Soil,! 97,!15–23.! ! Reddy,!K.R.!&!Delaune,!R.D.!(2008)!Biogeochemistry!of!wetlands.!CRC!Press,!Boca!! Raton.! ! Reichstein,!M.!(2000)!Temperature!dependence!of!carbon!mineralisation:!conclusions!from! a!longOterm!incubation!of!subalpine!soil!samples.!Soil#Biology#and#Biochemistry,!32,! 947O958.! ! Richardson,!D.M.,!Pysek,!P.,!Rejmánek,!M.,!Barbour,!M.G.,!Panetta,!F.D.!&!West,!C.J.!(2000)! Naturalization!and!invasion!of!alien!plants:!concepts!and!definitions.!Diversity#and# Distributions,!93O107.! ! Robertson,!G.P.,!Wedin,!P.M.,!Groffman,!P.M.,!Holland,!E.A.!Nadelhoffer,!K.J.!&!Harris,!! D!.!(1999)!Soil!carbon!and!nitrogen!availability:!nitrogen!mineralization,!nitrification,! and!soil!respiration!potentials.!p.!258O272.!In!G.P.!Robertson,!C.S.!Bledsoe,!D.C.! Coleman!and!P.!Sollins!(eds.)!Standard!soil!methods!for!long!term!ecological!research.! Oxford!University!Press,!New!York.! ! Roulet,!N.T.!(2000)!Peatlands,!carbon!storage,!greenhouse!gases,!and!the!Kyoto!protocol:! prospects!and!significance!for!Canada.!Wetlands,!20,!605–615.! ! 205! Rovira,!P.!&!Vallejo,!V.R.!(2002)!Labile!and!recalcitrant!pools!of!carbon!and!nitrogen!in! organic!matter!decomposing!at!different!depths!in!soil:!an!acid!hydrolysis!approach.! Geoderma,!107,!109–141.! ! Sakai,!A.K.,!Allendorf,!F.W.,!Holt,!J.S.,!Lodge,!D.M.,!Molofsky,!J.,!With,!K.A.,!Baughman,!S.,! Cabin,!R.J.,!Cohen,!J.E.,!Ellstrand,!N.C.,!McCauley,!D.,!O’Neil,!P.,!Parker,!I.M.,!Thompson,! J.N.!&!Weller,!S.G.!(2001)!The!population!biology!of!invasive!species.!Annual#Review#of# Ecology#and#Systematics,!32,!305–332.! ! Sale,!P.!&!Wetzel,!R.G.!(1983)!Growth!and!metabolism!of!Typha!species!in!relation!to!cutting! treatments.!Aquatic#Botany,!15,!321–334.! ! Saltonstall,!K.!&!Court!Stevenson,!J.!(2007)!The!effect!of!nutrients!on!seedling!growth!of! native!and!introduced!Phragmites#australis.!Aquatic#Botany,!86,!331O336.! ! Saunders,!D.!&!Kalff,!J.!(2001)!Nitrogen!retention!in!wetlands,!lakes!and!rivers.! Hydrobiologia,!443,!205O212.! ! Sax,!D.!&!Gaines,!S.D.!(2003)!Species!diversity:!from!global!decreases!to!local!increases.! Trends#in#Ecology#&#Evolution,!18,!561O566.! ! Schieferstein,!B.!(1997)!Ökologische!und!molekularbiologische!Untersuchungen!an!! Schilf!(Phragmites#australis#(Cav.)!Trin.!ex!Steud.)!im!Bereich!der!Bornhöveder!Seen.! EcoSys!Suppl.,!22,!1–143.! ! Schindler,!M.H.!&!Geener,!M.O.!(2002)!Functional!leaf!traits!and!biodiversity!effects!on!litter! decomposition!in!a!stream.!Ecology,!90,!1641O1649.! ! Schlesinger,!W.H.!(1997)!Biogeochemistry:!an!analysis!of!global!change,!2nd!ed.!! Academic!Press,!San!Diego.! ! Schlesinger,!W.H.,!Cole,!J.J.,!Finzi,!A.C.!&!Holland,!E.A.!(2011)!Introduction!to!coupled!! biogeochemical!cycles.!Frontiers#in#Ecology#and#the#Environment,!9,!5O8.! ! Schwintzer,!C.!&!Lancelle,!S.!(1983)!Effect!of!waterOtable!depth!on!shoot!growth,!root! growth,!and!nodulation!of!Myrica#gale!seedlings.!Journal#of#Ecology,!71,!489O501.! ! Scott,!N.A.,!Cole,!C.V.,!Elliott,!E.T.!&!Huffman,!S.A.!(1996)!Soil!textural!control!on!! decomposition!and!soil!organic!matter!dynamics.!Soil#Science#Society#of#America# Journal,!60,!1102–1104.! ! Seefeldt,!S.S.!&!McCoy,!S.D.!(2003)!Measuring!plant!diversity!in!the!tall!threetip!sagebrush! steppe:!influence!of!previous!grazing!management!practices.!Environmental# Management,!32,!234O245.! ! 206! Sharitz,!R.!R.!and!S.C.!Pennings.!(2006)!Development!of!wetland!plant!communities.!! p.!177O284.!In!Batzer,!D.P.!and!R.R.!Sharitz!(eds.)!Ecology!of!Freshwater!and!Estuarine! Wetlands.!University!of!California!Press,!Berkeley,!California,!USA.!! ! Sierszen,!M.E.,!Peterson,!G.S.,!Trebitz,!A.S.,!Brazner,!J.C.!&!West,!C.W.!(2006)!Hydrology!and! nutrient!effects!on!foodOweb!structure!in!ten!lake!superior!coastal!wetlands.!Wetlands,! 26,!951O964.! ! Smith,!P.,!Albanito,!F.,!Bell,!M.,!Bellarby,!J.,!Blagodatskiy,!S.,!Datta,!A.,!Dondini,!M.,!Fitton,!N.,! Flynn,!H.!&!Hastings,!A.!(2012)!Systems!approaches!in!global!change!and! biogeochemistry!research.!Philosophical#Transactions#of#the#Royal#Society#B:#Biological# Sciences,!367,!311–321.! ! Solondz,!D.S.,!Petrone,!R.M.!&!Devito,!K.J.!(2008)!Forest!floor!carbon!dioxide!fluxes!within! an!uplandOpeatland!complex!in!the!Western!Boreal!Plain,!Canada.!Ecohydrology,!1,! 361–376.! ! Soukup,!A.S.,!Armstrong,!W.,!Schreiber,!L.,!Franke,!R.!&!Votrubová,!O.!(2007)!Apoplastic! barriers!to!radial!oxygen!loss!and!solute!penetration:!a!chemical!and!functional! comparison!of!the!exodermis!of!two!wetland!species,!Phragmites#australis!and!Glyceria# maxima.!New#Phytologist,!173,!264O278.! ! Stauffer,!D.!(1985)!Introduction!to!percolation!theory.!Taylor!and!Francis,!London.!! ! Stinson,!K.A.,!Kaufman,!S.K.,!Durbin,!L.!&!Lowenstein,!F.!(2007)!Impacts!of!garlic!! mustard!invasion!on!forest!understory!community.!Northeastern#Naturalist,!14,!73O88.! ! Strickland,!M.S.,!Lauber,!C.,!Fierer,!N.!&!Bradford,!M.A.!(2009)!Testing!the!functional! significance!of!microbial!community!composition.!Ecology,!90,!441O451. ! Strickland,!M.S.!&!Rousk,!J.!(2010)!Considering!fungal:!bacterial!dominance!in!soils!O! methods,!controls,!and!ecosystem!implications.!Soil#Biology#and#Biochemistry,!42,! 1385–1395.! ! Taylor,!B.W.!&!Irwin,!R.E.!(2004)!Linking!economic!activities!to!the!distribution!of!exotic! plants.!Proceedings#of#the#National#Academy#of#Sciences,!101,!17725O17730.! ! Taylor,!B.R.,!Parkinson,!D.!&!Parsons,!W.F.J.!(1989)!Nitrogen!and!lignin!content!as!! predictors!of!litter!decay!rates:!a!microcosm!test.!Ecology,!70,!97O104.! ! Theoharides,!K.A.!&!Dukes,!J.S.!(2007)!Plant!invasion!across!space!and!time:!factors! affecting!nonindigenous!species!success!during!four!stages!of!invasion.!New# Phytologist,!176,!256O73.! ! Thomas,!R.Q.,!Canham,!C.D.,!Weathers,!K.C.!&!Goodale,!C.L.!(2010)!Increased!tree!carbon! storage!in!response!to!nitrogen!deposition!in!the!US.!Nature#Geoscience,!3,!13–17.! 207! Tilman,!D.!(1997)!The!influence!of!functional!diversity!and!composition!on!ecosystem! processes.!Science,!277,!1300O1302.! ! Trebitz,!A.S.,!Morrice,!J.A.,!Taylor,!D.L.,!Anderson,!R.L.,!West,!C.W.,!Kelly,!J.R.!(2005)! Hydromorphic!determinants!of!aquatic!habitat!variability!in!lake!superior!coastal! wetlands.!Wetlands,!25,!505O519.! ! Tyler,!A.C.,!Lambrinos,!J.G.!&!Grosholz,!E.D.!(2007)!Nitrogen!inputs!promote!the!spread!of! an!invasive!marsh!grass.!Ecological#Applications,!17,!1886O1898.! ! van!der!Valk,!A.G.,!Rhymer,!J.M.!&!Murkin,!H.R.!(1991)!Flooding!and!the!! decomposition!of!litter!of!four!emergent!plant!species!in!a!prairie!wetland.!! Wetlands,!11,!1O16.!! ! van!der!Valk,!A.G.!(2000)!Vegetation!dynamics!and!models.!In!Prairie!wetland!! ecology.!p.!125O161.!In!Murkin,!H.R.,!van!der!Valk,!A.G.!&!Clark,!W.R.!(eds)!Iowa!State! Press.! ! van!Ruijven,!J.!&!F.!Berendse.!(2005)!DiversityOproductivity!relationships:!initial!! effects,!longOterm!patterns,!and!underlying!mechanism.!Proceedings#of#the#National# Academy#of#Sciences,!102,!695O700.! ! Verhoef,!H.A.!&!Brussaard,!L.!(1990)!Decomposition!and!nitrogen!mineralization!in!! natural!and!agroecosystems:!the!contribution!of!soil!animals.!Biogeochemistry,!11,! 175O211.! ! Verhoeven,!J.,!Arheimer,!B.,!Yin,!C.!&!Hefting,!M.!(2006)!Regional!and!global!concerns!over! wetlands!and!water!quality.!Trends#in#Ecology#and#Evolution,!21,!96O103.! ! Vitousek,!P.M.,!Walker,!L.R.,!Whiteaker,!L.D.,!MuellerODombois,!Matson,!P.A.!(1987)!! Biological!invasion!of!Myrica#faya!alters!ecosystem!development!in!Hawaii.!Science,! 238,!802O804.! ! Vymazal,!J.!&!Kropfelova,!L.!(2005)!Growth!of!Phragmites#australis!and!Phalaris# arundinacea!in!constructed!wetlands!for!wastewater!treatment!in!the!Czech!Republic.! Ecological#Engineering,!25,!606O621.! ! Waldrop,!M.,!Balser,!T.!&!Firestone,!M.!(2000)!Linking!microbial!community!composition!to! function!in!a!tropical!soil.!Soil#Biology#and#Biochemistry,!32,!1837–1846.! ! Walker,!B.!&!Steffen,!W.!(1997)!An!overview!of!the!implications!of!global!change!for!natural! and!managed!terrestrial!ecosystems.!Conservation#Ecology,!1,!1O17.! ! Wardle,!D.A.!(1992)!A!comparative!assessment!of!factors!which!influence!microbial!! biomass!carbon!and!nitrogen!levels!in!soil.!Biological#Reviews,!67,!321O358.! ! 208! Wardle,!D.A.,!Yeates,!G.W.,!Williamson,!W.!&!Bonner,!K.L.!(2003)!The!response!of!a!! three!trophic!level!soil!food!web!to!the!identity!and!diversity!of!plant!species!and! functional!groups.!Oikos,!102,!45O56.! ! Wardle,!D.A.,!Bardgett,!R.D.,!Klironomos,!J.N.,!Setälä,!H.,!Van!Der!Putten,!W.H.!&!Wall,!D.H.! (2004)!Ecological!linkages!between!aboveground!and!belowground!biota.!Science,! 304,!1629O1633.! ! Weintraub,!M.N.!&!Schimel,!J.P.!(2003)!Interactions!between!carbon!and!nitrogen! mineralization!and!soil!organic!matter!chemistry!in!arctic!tundra!soils.!Ecosystems,!6,! 129–143.! ! Weir,!T.!(2007)!The!role!of!allelopathy!and!mycorrhizal!associations!biological!invasions.! Allelopathy#Journal,!20,!43O50.! ! Westoby,!M.!&!Wright,!I.J.!(2006)!LandOplant!ecology!on!the!basis!of!functional!traits.! Trends#in#Ecology#and#Evolution,!21,!261O268.! ! Wetzel,!P.R.!&!van!Der!Valk,!A.!(1998)!Effects!of!nutrient!and!soil!moisture!on!competition! between!Carex#stricta,!Phalaris#arundinacea,!and!Typha#latifolia.!Plant#Ecology,!138,! 179O90.! ! Whitmire,!S.L.!&!Hamilton,!S.K.!(2008)!Rates!of!anaerobic!microbial!metabolism!in! wetlands!of!divergent!hydrology!on!a!glacial!landscape.!Wetlands,!28,!703O714.! ! Williamson,!M.!&!Fitter,!A.!(1996)!The!varying!success!of!invaders.!Ecology,!77,!1661O66.! ! Windham,!L.!(2001)!Comparison!of!biomass!production!and!decomposition!between! Phragmites#australis!(common!reed)!and!Spartina#patens!(salt!hay!grass)!in!brackish! tidal!marshes!of!New!Jersey,!USA.!Wetlands,!21,!179O188.! ! Windham,!L.!&!Lathrop,!R.G.!(1999)!Effects!of!Phragmites#australis!(common!reed)!invasion! on!aboveground!biomass!and!soil!properties!in!brackish!tidal!marsh!of!the!Mullica! River,!New!Jersey.!Estuaries#and#Coasts,!22,!927–935.! ! Xu,!X.!&!Hirata,!E.!(2005)!Decomposition!patterns!of!leaf!litter!of!seven!common!canopy! species!in!a!subtropical!forest:!N!and!P!dynamics.!Plant#and#Soil,!273,!279O289.! ! Zedler,!J.B.!(2003)!Wetlands!at!your!service:!reducing!impacts!of!agriculture!at!the! watershed!scale.!Frontiers#in#Ecology#and#the#Environment,!1,!65O72.! ! Zedler,!J.B.!&!Kercher,!S.M.!(2004)!Causes!and!consequences!of!invasive!plants!in!wetlands:! opportunities,!opportunists,!and!outcomes.!Critical#Reviews#in#Plant#Sciences,!23,!431O 452.! ! 209! Zhou,!L.,!Zhou,!G.!&!Jia,!Q.!(2009)!Annual!cycle!of!CO2!exchange!over!a!reed!(Phragmites# australis)!wetland!in!Northeast!China.!Aquatic#Botany,!91,!91–98.! ! Zuur,!A.F.,!Ieno,!E.N.,!Walker,!N.J.,!Saveliev,!A.A.!&!Smith,!G.M.!(2009)!Mixed!effects!! models!and!extensions!in!ecology!with!R.!Springer,!New!York.! ! ! 210!