S. ๕. JOHNSON

THE EFFECT OF SALTS UPON THE STRENGHT OF CONCRETE CURED AT LOW TEMPERATURES

THESIS
Concrete - Teitanq

$$
t
$$

COPCCPETL CURLD A'T UON GISPLRAPUPLS

 by
SIDELY EGBERT JOPETSOT

A Thesis Submitted far the Derree of Civil Enoinetr
ajchisan Acricintural collçe

INTRODUCTORY.

This is a report of tests made duriner the winter and srrinf of 1912 bryr. H. F. Pulver, C. 上., Research Assistant in ? $e c h a n i c s$ at the Jnivensity of Wisconsin and the writer, instructor in Iechanics at the same University.

The object of the tests conoucted was tこ determine If there were any virtue in using salts to lower the freezing tempenture, and incidentally to increase the rate of hardeniris of concrete, and if so the proper percentage to use to fet the most desiriable effect.

In performine the tests, comon salt (iaCl) and calcium chloride $\left(\mathrm{CaCl}_{2}\right)$ were used dissolved in the mixins water, the percentart of the salts bein: varied over wat setmed to be any practicahle rance. The eftort was made to ret tre conditions as close as possible to the rost rigorous obtainine crdinalily in the field. To this end the agrrefate was taken directly from the outside atmosphere or from a refriserator in which the temperature was maintuined below freezine, the water was token from the cit: mains, and the c obes when made vere placci, as quickly as convenient in tine atmosphere in wish they were to be cured, the maximum time between mixing and exposina beine about half an hour. The water was usially at a temperatire of about $55^{\circ} \mathrm{F}$., the sand and stone about $20^{\circ} \mathrm{F}$.

Since it setmed desirable to know if all the chanfe in strenfth obtained were due to the lowerinf of the
fretzing temperature, and also to know if the salts had a detrimental effect on comerete as ordinarily made, tests were alsc made on cubes mixed with materials at noral temferatiret and stores in the laboratory under normit conditions.

Scope of the pests.
All cubes were four inches on a side. For tre first set of specimens the rercentare of TaCl to water was varied between the limits 5 , and lé, by weirnt. For the second set the percentare of CaCl_{2} was varied fror 2,' to 10,. For the next set the water centainer noth :Tacl and CaCl_{2}, NaCl varyire from $5,:$ to $15 ;$ and CaCl 2 varyine from $2 ;$, to $3 ;$ AII the above were store in air imediately after being mixed, at an initial temperatire of between 10° and 20° Fahrenheit and the temperature $k \in p t$ below 32° throurhout the curins, except that on two days before sorat of the specimens were placed ir the refrigerator the cutsice temperature rose to arout 35°. For other sets of specimens the same variables were used as in the first set but materials used were at nomal temperature, around 70°, and eubes, after ciring, In air for 24 hours were placeci under rumine water at about $6 S^{\circ}$ for thirteen days, then storea in air till broken. Specimens, four for each point wantict, were broinn at fourtetn and at sixty arys. All low terremature sfecimens were stored in the laboratory for ont dia: before
breakine to permit of thawing. All the nomial terferature cubes werc talec: fron the water of tie tan': at furtetn days, four of tach beinp broken, the others beinis stored in the air in tite laboratory.

Zaterial Used.
The cement used was Atlas Portiand, tensile testis of which follow un Table I. These testa were made ir. accordance with the rules of the American Scciet: for Testing lateriels. In oretr that there misht be no variation in the quality a sufricient quantity for the entire wort was mixec thorourny at the recimin ama stored in air tirht cans until ased.

We sand mas of rood quility fuon Jowesvilile, Wisconsin, and all used was fran the sare bin.

Whe stone was limestone frou quaries near "adison, Wisc onsin.

The Ta (al used was comon grainer salt aro the GaCl 2 was fror a barrel obtiantiofor use in the laboratory.
 beine adopted as beine tipical of that mich woul be
 ouis fomd to averare 110 lbs per ci. ft., stont oo lis. per cu. ft. and cenent mas assumed as weighinr loo lins. pur cu. ft.

Since the total quantity of concrete ir any onc batc: wais less taan a half ciobic fout 14 was considerea
best to weifh quantities used. All materials were thoroughly mixed tegether by hand, dry, tien tie liquid adied ir. sufficient quantity to rive a just wet rixture that would flow and form a smooth surface in tre moulcis. jhe wet mixture was turned with a trowel antil it arpeared to be of uniferm consistency. About lor, by weisht of water was required to produce a mixture of tine proper consistency thourh this percentare was varied sligitly for the different batches. Specinten were surfaced by trowelling till fairly smouth.

The Tempexi ni Liquid.
A mixture of water and Yacl was made usine $25 \%^{\circ}$ by weight of salt. This was stored in a can and sufficient used with water to rive the proper fercentase. In the same way a mixture containing 20 of CaCl_{2} was used. Testing.

A set of four cubes of each batch was broker at the end of sixty days. A 100,000 lh Riehle Universal testing nacinine was uced for the loadire. The cubes rested on a sperical bearime block and care vas taken to insure the cube being centrally pleced on the block. Cuces were bedded on several thicknesses of blotitinf paper both above and below.

Results of Qests .
The results of tests on low temperature cules are given in tables 2 to 7 inclusive. In the cubes of table 2 NaCl alone was used, in those of table $3 \mathrm{CaCl}_{2}$ ulone was
used, while in those of tables $4,5,0$, and 7 bot: salte were used in varying percentrages.

T:t results of the testa wity cobes curec at normal
tenpeantires are riven in tables 3 to la inclusive, the variables and arramenent of tables being the same as in the case of the low temperatire cures.

Curve sinets 14 to 18 inclusive shov graphically the resilts ontained.

On si:eet ly are the curves obtuinect usior but one salt in the teraterire water, both for lou tomperatire and nomme cabes at 14 and at o dars. On sitects 15 and 16 unit loaris are plotted as ordinates and porents. CaCl_{2} as abscissat and curves draw for various rercentares of
 sixt

In tite sume way on shetes 17 and 10 curves are plottea for various percentages of $\because a C l$, NaCl rercentages beine ordinates.

covciustors.

The curves show an almost strairst linc decrease in the strength of concrete cared under roral conciitions as the rercentare of racl is increased, up to 1 ,, , at the
 mixinc liquid, after wich there is apparenty a slight increase (vinc: a chec\% on results woulci robably show, did not occur.)

Whe effect of TaCl alone addea to concrete cyred at 10% temeratures probably is to redice the freezian temperature and so permit of the setivinf and hardenine of the concrete. The curves show a strexeti? increase of ahout 20, for each 1, salt up to tivelve rercent, after wish there is a recrease in strenrth. It is rroranle tiat beyore twolve percent till weakenirg of the concrete due to tiat excess of salt moie tha: offstete the rail: in strencth due to the redretion of the freezine temperature. Whe effect of the adidition of CaOl_{2} alone to concrete cired either normally or at lov tomperature is to increase the streni,th b: an almost strairot line variation up to 4e, $^{\prime} \mathrm{CaCl}_{2}$ at which point maximan stremeth is cbtained. The rate of increase is the ravet anored in the case of the fourteen day lo: temperature concrete, probably dat to the acceleration of thc setting of tle cement be the CaCl_{2}. Sericus disinterration :uas observalle on the surface in the case of the 0 and 3 cacle concrete
cureá at low termeratree, but dic not arrear on ang of the cures cured normally, or were "acl was :ilso used in the mixint witer.

The nosi desirable effect seeme to be chtained when both wacl and CaCl_{2} are used in the mixiner water, and frum a study of the curves it setus that the use of 2, CeCl $_{2}$ and $6 ;$ YaCl will rive the mest satisfactur., results. This is protably due to the fact that the rercertage of racl used is safineiently high to retard freezire but not thourh to greatly rediace fice strensin, While the fercestare of CaCl_{2} also does its share in retarcinc freezing and, furticer, accelerates the tirae of setioine very appreciably. The normal strencth of the concrete is refoced onl: ahout lof, and the increase in streneth of low temperature concrete, rarticoliarly at 14 dars, vver that of concretc containime no salt or containira CaCl_{2} or TaCl alone is ver. maneci. The use
 becaidee the normil temperatilre curves point to the probability that arter a long puricd titie may be sufficitnt disirtersation to caust a consicienale rediaction in the strenctin of tiac concrete.

These tests were marie using but one brime of cement. It is probable that there will be sam variation ir: results with other rands. It i: not anticipated that this will be sufficitntly nariece ou affect the felleral conclusions.

It is possible that at times coman salt will b cbtained whict will contion a sufficiently hish rercentarse of calcium sulphate to affect the results somewhat.

It is surgested that a fixutier fiela for researenes of tinis character would be in mixims tic miteriais as is frequensly done at the present tine, i.t., bir aine the aggregates heated somewhat, anc by usiner a mixiny water heated ta a temperatire of from 125° to $175^{\circ} \mathrm{F}$. It may be that in this sase the accelerating erfect of the CaCl_{2} on the settime wuld enable the concrete to harden so rapidiy tiat the fonm could be removed much earlier than is now done wen concrete is poured in cola weatitr. It would be well ta obtain all possible inforation regarding the erfects of electrolusis on concreter containing titese salts hefore usin"; then i" cancrete to be used in structures where the effect of electrial currents might de detrimental.

At the tint 0 makin the cubes for the above tests another set of each was mat to bu cired for a year or more in order to observe the effect of tae aalis over antertandi period of time.

CEMENT TESTS

DATE MAOE	TEMPERATURES WHEN MIXED			SALT Comtent	PESULTS OF LOAO TESTS.						TEEMARKS
	$\begin{gathered} \text { firsiof } \\ \text { fir } \end{gathered}$		BATCN		A才, DAY			600イV.			
					Total	UNIT	AfVir	TOTAL	UMT	invir.	
$\operatorname{San} 20-12$	64°	13°	42°	MONE	$\begin{aligned} & 2600 \\ & 3300 \\ & 3300 \end{aligned}$	$\begin{aligned} & 163^{x} \\ & 300 \\ & 206 \end{aligned}$		$\begin{aligned} & 6910 \\ & 5830 \\ & 6610 \end{aligned}$	$\begin{aligned} & 431 \\ & 364 \\ & 4 / 4 \end{aligned}$		
					3590	224	213	6980	436	427	
UAN30-12	61°	13°	5\%\%	$\begin{aligned} & \sigma \% \\ & \mathcal{N}_{\mathrm{a}} . \mathrm{Cz} . \end{aligned}$	7350	459		11300	706		
					7660	479		10600	662		
					7580	474		11900	744		
					8250	5/5	482	10040	628	685	
Uar 30\%2	61°	13°	51°	$\begin{gathered} 9 \% \\ \text { Na. } \mathrm{Cz} . \end{gathered}$	11950	746		14680	918		
					10600	662		15070	942		
					9460	591		15270	905		
					1/500	719	680	15230	952	942	
UAr30-12	610	13°	51°	$\begin{aligned} & 12 \%_{0} \\ & N_{2} C Z . \end{aligned}$	12000	750		19630	1228		
					12000	750		18590	1161		
					13000	812		19910	1246		
					15050	940	$8 / 3$	18130	1133	1192	
UAN20-12	64°	13°	4.20	15% Na.Cl.				15610	976		Poor BAJEON * $1-1 \not \subset$ DAY.
					7680	480	x	17160	1072		
					10230	640	614		1173		
					$9+10$	$\sigma \in 8$		18770		1060	
				\times omit	teo Fron	mar	ERAG				3

$$
\text { ATE IN } \angle A S \text {. PER. SQIN. }
$$

TEMPEPATUTE.
IN WATER.

DATE MAOE	TEMPE PATURES WHEN MIXED			$S A<T$ Cortert	PESULTS OF LOAD TESTS.						PEMATKS
	INSMOE A / P	outside	BATCA		14	DAY		60	DAY		
					TOTAL	UNIT	V̆MT	TOTAL	UNT	BMT	
Fesiz-12	68°	15°	520	$\begin{aligned} & 2 \% \mathrm{CaCl}_{2} \\ & 6 \% \mathrm{MaCl} . \end{aligned}$	$\begin{aligned} & 12290 \\ & 12930 \\ & 13800 \end{aligned}$	$\begin{aligned} & 768 \\ & 808 \\ & 864 \\ & 8.30 \end{aligned}$	817	15800 16080 15000 16600	$\begin{aligned} & 908 \\ & 1005 \\ & 937 \\ & 1038 \end{aligned}$	992	
FE. $5.12-12$	68°	15°	52°	$\begin{aligned} & 2 \% \mathrm{CaCl}_{2} \\ & 9 \% \mathrm{NaCl} . \end{aligned}$	$\begin{aligned} & 13100 \\ & 12140 \\ & 14720 \\ & 14350 \end{aligned}$	$\begin{aligned} & 918 \\ & 759 \\ & 920 \\ & 896 \end{aligned}$	$8+8$	$\begin{aligned} & 19320 \\ & 18500 \\ & 19660 \\ & 18400 \end{aligned}$	$\begin{aligned} & 1307 \\ & 1157 \\ & 1223 \\ & 1150 \end{aligned}$	$1 / 85$	
Fと89-12	68°	7°	38°	$\begin{aligned} & 2 \% \mathrm{CaCl}_{2} \\ & 15 \% \mathrm{NaCl} \end{aligned}$	$\begin{aligned} & 9650 \\ & 10050 \\ & .8400 \\ & 9250 \end{aligned}$	$\begin{aligned} & 602 \\ & 628 \\ & 525 \\ & 577 \end{aligned}$	58.3	$\begin{gathered} 13430 \\ 13160 \\ 9300 \times \\ 12150 \end{gathered}$	$\begin{aligned} & 840 \\ & 823 \\ & 580 \\ & 760 \end{aligned}$	807	
FES 9-12	66°	7°	41°	$\begin{aligned} & 3 \% \mathrm{CaCl}_{2} \\ & 12 \% \mathrm{NaCl} \end{aligned}$	$\begin{aligned} & 10800 \\ & 10800 \\ & 12100 \\ & 10400 \end{aligned}$	$\begin{aligned} & 678 \\ & 675 \\ & 756 \\ & 650 \end{aligned}$	690	$\begin{aligned} & 15210 \\ & 18.380 \\ & 15640 \\ & 17640 \end{aligned}$	$\begin{aligned} & 951 \\ & 1147 \\ & 977 \\ & 1102 \end{aligned}$	1040	
				\times omit	$E O$ FRC		crat				

$$
\begin{aligned}
& \text { STS OF } \\
& \text { WITH } 8
\end{aligned}
$$

-

$\begin{aligned} & \text { ATE } \\ & \text { ADE } \end{aligned}$	TEMPERATURES WHEN MIXCD			SALT CONTEMT	Results of Load Tests.						TEMARKS.
	$\begin{aligned} & \text { INSIDE } \\ & \text { AIR } \end{aligned}$	outsiox: AIT	Baten		14 D	Ay		60 D	AY		
			52		ToTAL ${ }^{\text {c }}$	Unit	unvir	TOTAL	Unit	Unir	
$\begin{aligned} & \text { AR. } 9 \\ & 912 \end{aligned}$	63			NONE	33,300 2	2080		51,250	3202		
					29,990/18	1873		4, 5,800	2861		
					31,880 1	1985		48,540	3035		
					27,080 1	1738	1994	46,780	2921	3005	
$\begin{aligned} & =0.3 . \\ & 912 \end{aligned}$	63		58	NONE CUREOIN inside AIR.	19,800 1	1240		21,040	1315		
					19,2201	1200		22,700	1419		
					18,2401	1140		20,070	1255		
					22,13013	1380	1240			1330	
$\begin{aligned} & \text { AR. } 9 \\ & 912 \end{aligned}$	63		52	6% Na.Cl.	27,4001 28,7601	1728 1796		39,500 45450	2470 2840		
					28,600	1787		40,000	2500		
					23,0701	1443	1688	42,550	2660	2617	
$\begin{aligned} & 8,10 \\ & 912 \end{aligned}$	65		65	9\%Na.Cl.	23,750	1483		36,250	2266		
					25,200	1573		40,250	2515		
					24,600	1537		39,000	2438		
					242001	1513	1526	36,870	2360	2395	
$\begin{aligned} & 68.12 \\ & 912 \end{aligned}$	68		68	$12 \% \mathrm{Na} . C l$.	20600 $1735{ }^{\text {a }}$			32,000 36,480	2000		
					20250	1266		29,140	1820		
					20,000	1250	1270	34,040	2132	2060	
$\begin{aligned} & 69.3 \\ & 912 \end{aligned}$	63		58	15\%MaCl	21,900	1370		35,640	-2228		
					$\frac{18}{18} 940$	118		36,970	2192		
					23,230	1450	1335	34,3 20	2145	2220	
				*omırra	D FRo	A A	AVER	AAGE			

TESTS OF CONCMETE CURED AT NOFMAL TEMPERATU 4INCHCUKES WITH $8 \% \mathrm{CaCl}_{2}$ ANO VARVING\% S NaCZ INMIXING WAT										
$\begin{aligned} & \text { DATE } \\ & \text { WADE } \\ & \hline \end{aligned}$	TEMPERATURES WHEN MIXED		$5 A<T$ CONTENT	RESULTS OFLOAD TESTS						$R E M A R N S$
	IMSIOE			14 DAV			GO DAY			
				TOTAL	Unrr	免保	TOTAL	UNIT	Arvit	
$\begin{aligned} & 5026 \\ & 1912 \end{aligned}$	68	60	$\begin{aligned} & 8 \% \mathrm{CaCl}_{2} \\ & 6 \% \mathrm{NaCl}^{2} \end{aligned}$	20300	1270		32600	20.39		*3.oH l/4DAY HAD BAD TOP.
				19000	1188		32300	2020		
				15800	988		35860	2242		
				16500	1032	1120	31850	1990	2073	
				19810	1238		32400	2025		
Mare 8	62	58	3\%CaCz	17030	1065		32100	2007		
1912			9\% Na Cl	18.480	1155		34850	2180		
				17360	1085	1136	34070	2130	2085	
				17920	1121		29760	1860		
Mara	62	60	$8 \% \mathrm{CaCl}_{2}$	17050	1066		37300	2330		POORLY MOULDED.
1912			$12 \% \mathrm{NaCl}$	20160	1258		27960	1716		$8,8 \pi$
				16060	1004	1112	33180	2075	1995	
				23750	1483		41900	2620		
Mar. 7	63	59	8\% CaCl_{2}	24950	1559		42.700	2605		
1912			$15 \% \mathrm{NaCZ}$	25340	1582		38600	2415		
				25260	1577	1550	43450	2715	2604	
										13
-										

.

Ropmase culy
$\tan 2451^{\circ}$

