a —ee a feo P Se ehh ed it A’ PHYSICs!:, Aud UY NTS. STUDY of , Teshnioal Report Submitted to the “aculty of Tis UISUIGLT AGRIGULTUAAL COL. OS by Arthur Ve - ronson and Hevockyor hroane Candidates for the l'erres of Eachelor of Scionceéea: June 1921. THESIS In view of the @ast that the sabject of C-xbon Steels hag been thoroughly wrked out by a mime ber of experienced men, oni that information en this mubject is available from a mamber of sources, onc may think 41% queer that we should sclect it for our Teche Nical Problem. | Our aim, howevor, was to obtain a greater knowledge of the subject of Carbon Steels through our own original work, ani now that the work is completed, woe feal that the experience which wo geined in the mohine shop, heat treating shop, micrographical laboratory, am testing laboratory has been on ample reward for our energy e We aro greatly inhodted to Hr. Walter Hildor? ané ir. Charlies Thomas of the Reo Noter Car Co. and to Mr. CeHeStuart of lodge Lrothers for their aid in farnishing ue mith matorialse fie also wish to thank ir, Boker, Mre Publow, and lr. imeling of the ilichigan Agricultural College for their valuable suggestions, AeVeATOnsONe HeLeBroane East cansing, ‘ichigan, June 8th, 1921. 93'795 ‘esba saa iss" Tuy BiCuL . Ely ips e wtororrapitoasL fildlysaige Raga @ 8m mw ew ee wm Oiple Corputetbiuniue « = i Steel is one of the main materiels with which the civilized world has to deal in the prosent em. The mamfroture of steel has inoreasod immensely éuring the past century, due the increasot donnné for 1% and te the improved processes which have enabled the mimface taxes to mect this denani. The two main constituents of steel are carton and itron,- tho porcent:ce of the latter being cbout 99%, in the plain carbon steelae Besides those tw, there aro found a mamber of other elements, which ars termed impuritiese These ero varying 2 cunts of silicon, mane renese, phos-horous, sulphur, ani traces of mung ether metcls and motaloia€gs,. ‘11 pradea of stool contain a trace at loast of silicon, -nd occasionilly asa cach ag 0.5%, though most grades contain between 0.05 anf Qed, Nanganese is found in stecl in combination with eithor sulphur or ecrbon in the foum of m:nganese sulphide (nS) or a::rbido of manzinese (Laigl). The pare centago of muncanope varies from 25 up to as high a8 1e0j0 Steol of satisfactory quality contains frome trace to «1% Mhosphorus, which is held in #011d solution ty the iron as the phosphide of iron (FesP)e ‘hen the phosphorus content, «2%, it has a marked tenfensy to incresse the grain aise of the metal, thereby increasing the brittie- nees. Sulphur shoulé never ocour in steol in excens of 01%, tho content usmally boing 01 to .05,%. It cocurs chiefly in the form of fron gulphide (FeS) ani manganoese Ze gulphnide (2inS) « The alloy stecis ccntain other eloenents in addition to theacs mined nborse Tho most comzon alloy Steelg ero mMickol, nic.clechrome, chic:slua, chrone= Yamadiun, anh silfcoen mjanoree “hose Geni in tha alee ,oRts which thatr nino? aisscate tn rlein cericn steels the eurtcn content varien from .Ol1 to shout 1e70-,e iron gortoicdiw more then thie snout of o vton tetne tremed cast diume The Trorertles vary with tis amonnt of azilor, and in this raper vs have triad t show pons of trocs outstanding €1fferssese Ze PHY Sie ae PLIEY There nro 2 number of pointe to bo conside- ered in the physical anilysis of 4 snam-le of steel. Among these, the most important are the tansile and tor sionsi tests. In this work, howevor, wo inten to show only the tonsile proverties of a mimber of samples of plain carbon steels varying from a very low to s very high carbon content. In ordor to do thia, it was necesacry to assemble data for the following curvcs: le Flastic Linit 2. Uaxinam atrength 4. Modulus of elasticity 4. Mastic resilience §. Reduation of aras 6. Elonsation 7. “ardness The samplics of steol which wers tested were 7/8" rollc& stcel bars, anf in orfer to bring thom sll to tho some comitions before making am tests, it wes neceasnry to normalize theme This wes dono by hant-~ ing thom to 1700 © F and allowing thom to cool alowly in the farnsaoe, for nbout ‘twonty-four hourse ia bupoat tigi dao aiverets ye roa Le tarenbenes WOME ! | es Monin iat ie a casas oi at ee . FAY seam SES Ne iy eh SS { Zz / o 4 ° Ce 4 i hae F NO ayn a ab, so Mea La F! , o i is , i. ’ ry A ‘ a '# i re) ’ . _ ‘ EL AT/O! OV ‘ NGAI? TENT. rae * . -. a sh La ee , £40 aie e A as of ARLA WREOY CON TL . «a LOVES 53 TZ g Cc | LJ gas Paez . 4 a we AEM A Sh ll ELL eee dnat ae £i ee b +o ht ‘ oe . ; aes ' 4 Sta ewasc iy : * 1% me 7 d 1 [ t 6 y AUR 4 7 : 5 retin P vr . . var é% 4 ike j Thy 2A ‘ L a) AgusIteegee O95 eg ss ‘a4 var Nees ce , eo wee V4 ‘ ~ ~?" Ay Oe e beoG ee » DeRENy Kaede: jean (eeeben eee ; 3 " PIvOTE PSD Peters . : nat ny pete OS . ew ‘ v abe 7 e¢ TEACH HRRAOEP NHS ®) fy “TT vane Py reed ‘.9BTh a we Paves BAShGhevnne eabar cy ‘i i he bod : ; Pa " 4% avy L : . wtvvet r wee nereee ley ane ’ ota ne ease daoweg het Cker pate PAL OOF \ Tt + web 486 hee PEFERUR REROBATASA TAAL At TULL veer eer ist cite : 1 yi Oe on’ ah 0g8es’ baaaae ‘pata yrs y geechys aa “ eee Phang ane Apayare setre \ } PaGiaaey 6h Fae aiew uureat ets 3 d rat * 4% GA: ? . opel wes Hedge ~ ABP UAB S ; ee “1 re LE Ack ahd GRELEAA GEA VEbEONED ba DURDLCRDE) CRAED? UND | SYCEDEEDGA CARSURESE REE i ET La det ys ey reaaa : a Jan pt | Me cut iO Lea ee i ms ; 7 : - as oS Seen wee ‘Se r ES OSS oe U RESTS a / Pe eS BI 6 , . NS - + oo-4 ‘ - ; or Oe . - : - - ‘ - ymin a 7 ' _—> : —— - ——— Ses : | fi | Pigg! i . F A ois 4-44 > or + ts ataae * - 4a ener nd ten a oo a J > - tee os o + es —s eo i +-© 9? Le of all tho ourves is to show o marked inorcage in tha hardness up to the esutectoid point, and from thora on, the hariness soema to reuein oither constent or to drop slightly. In tha followin: discuggion, steel will be oonsidered 23 a mrs alloy of iron -né ocrbon, free fron the impurities cilicon, mungunesa, sulphur, cond vhoephoras, Wiech ors slweys oreaont in aomporcial proe Cuctse Two chotomferegre:hs sere takon of cach Sanple,- one as recoived omf ono in tho normels:e€@ cone dition, In nomniyliving, ech smile was Ir ated to 1700°F amd allowsd to coo slowiy in the furnace for about tecntye four hours, which troatmeat snlargod the grain si:@e The samplag «3 reeoived were in the annealed conkition, having beon given e treataent which romoved all internal stroine cuuosd by rolling er& vcrmduccé 2 ctructure thet eave it maximum strength end ductility. Stecl 1e gonorally eredod according to the anount of carton it contnins, andi this grading is uaclly expronsed in the following terns: Very low carbon atoel, Very or extra mild steel, voiy soft or de & soft ateol « C not over 10% Be Lew carbon steel, mild or soft stecl =. .C not over of) iedfum high carbon steel, hulf- hard steel -C 26 ta .60% High earbon steel, hard steel © C over .60° Very high exarbon steol, very horé or extra hard steol - 6 over 10255 in this work, wo used nines suples,- varying in carbon content from .all to 1.08%. Howover, phétomiocrographs were takin of only six of these, which, we believe, io sufficiant to show tho changes in structure with tho ohango in o: rbon contonte Low coxbon Steal ge The first two piotures {llustraite the etructure of « practisslly earbonless stesl, The 20m meroial namo of this steal is American Inzgot Iron, and it is camfaectured by tho ‘mortenn “olling ‘lls Company of iiddletewn, Chio.g Ito min chnractoriatic is that 1% will not oxidize, smi 16 is used concidarably in making articles which sre sxposod to the wonther and which do not require mich atrensth, such ca pirta for vontil-ting aystema. The €ifforance betveon low garton ste :l and wroucht irom is breed upon the G@iffcrame between the methods employed for thoir res: ootive numfacture rathor than upon unlike chonienl or “hysionl properties, for these metals may ind@ bo uite identical both Re phyesieonlliy ard chonicallye BL. ¢/aqe" 32500 31300 Maximum load # 13000 13600 Stress / max. load 84000 85000 (#/ sq") Elastic Ratio eo85 «569 Mod. of ELasticity £909 28.5 (millions) Elastic Resilience 17.8 176k ("#/ou.") Unit deformation 0011 £0011 Fras ture Straight C 0476 0417 01780 01566 20414 LO 2et2 2200 0.42 21 6000 55 700 15400 66600 0389 5006 18.6 20011 D e491 0448 01893 01541 e052 19. 2.58 2200 0.58 19 7000 56900 16200 95500 0452 5149 eLe4 20012 Samy Chemical Analysis:< Carbon - 0b Ho Phosphorus =< .008/ Sulphur = .015% Haxiness:- Before HT. After H.T. Bar Shore Brinell Shore A 31 250 27 RB 31 242 24 C 1 233 26 D 31 235 2A average 31 255 36 Tongile Teast Bar A B C Diae before pulling e476 0451 e506 " efter " 0447 0428 = A475 ‘rea befoRe " 01706 48=6. 4. 1598) LOL " after " 01569 §=©.1489 Ss «772 Tiff. in ares 00337 0159 02587 & Red. of area 7.8 10 12 Length after pulling 2422 2020 £a24 " before " 2.00 2400 2200 Diff. in length Oo22 O620 0424 % Elongation 11 30 12 Manganese = 23% Brineal BBB 217 235 e217 231 D 2461 0427 «1598 014352 20166 10 Rekh 2000 0.22 11 S Noe7?. (gon Bar A B Cc D Load 2 Ele = ¢ 7000 6500 =7600 66500 Stress @ E.L. #/sce" 41000 40600 37300 46000 Maximum lead # + (20000 18100 22500 16000 Stress 9 Max. load 117600 133200 112000 122800 mastic Beets 0360 6.357 BBB_ti«é«itédBEG Mod. of Elastioity 30.4 312 S2c1 316 (aillions) Hastie, Rooilieme 2766 2604 28167 26.8 Unit deformation 20013. 0013. 0012 += .0013 Fracture Straight Semple No.8 Chemical, Analysia:-— Carbon « 94% Manganese - 27% Phosphorus =< «010% Sulphur - .012% Hardn233i- Befora H.Te A¥fter H.Te Bar ohore Brineil Shore Brinell 4 24 174 25 235 B 26 174 27 229 c 2A 174 27 2365 D 25 183 25 223 Average 25 176 26 231 Tensile Test Bar | A B Diae before pulling ,506 e451 " after " 0482 en-~ A¥ea before " eL011L -——« " after " elB825 = -anee Diff. in ares 20186 9s wows % Rede of area 9ed- mae Lemgth after pulling 2.18 onan " before " 2.00 ween Diff. in length 0.18 ---- % Blongation 9 ene Loat @ EL. #¢ 7500 — 6000 Stress Ele #/sq." 37300 37500 Maximum Load # + 26800 18900 Max. Stress 7/sq." 117400 118300 Elastie Ratio e519 e518 Modulus of Elasticity 21.0 Olek (millions) Blastio Resilience 22 eM. 22 06 cnit aotefontion 60012 0012 Frac ture Straight Remebks:- oASle an co ae 6000 57500 18900 118500 2318 51.8 2205 0012 0476 0455 01780 01626 09154 867 2e18 800 0.18 6500 56500 22500 125200 e293 2004 2199 20012 Bars B and C broke outside the punck marks. Carbon - 1.08% Phosphorus - .025% Before H.T. Bar Shore Brineil A BO 225 B 54 228 C 34 LOA D 34 229 Average 33 229 T e T Rar : A Dia. before Pulling .5°5 " after " 0487 Area before "“ »2008 " atter " 01863 Diff. in area 00140 % Red. of area 7 weneth sfter pulling 2.15 " before " 2200 Diff. in length 0.15 % Blongation 7.6 Mengenese = .34% Sulphur = .814% After H.T. Shore Brineil £8 260 28 264 28 261 | 28 269 28 264 t B C D 055 0505 0004 w--- ---- »489 wane anne 1995 -+- ---- 1878 meee wens SOUL? wen eee OG o<-- ---- Bx2 15 mane -<-= 2.00 w--= eee 0B wnns meee Sample No. 9 (comta) Bar A B C D Load © E.Le t 12000 11000 11500 11600 Streas 2 BL. #/s7." 600008 655000 57500 65100 Maximum load # 23900 21700 23200 23000 Max. Stress ?#/s8." 119500 108800 116000 405000 Elastio Ratio 2503 ~507 0496 e525 Mod, of Elasticity 3264 30,5 3129 29.0 (millions) Elastic Resilience 55.5 40.6 52 46 52.3 ( "t fou. " ) Unit deformation 20019 .0018 .0018 # .0019 Frao tare Straight Remarks:- Bars B and C broke outside punch marks. vu . ~~ _ Carbon ° Reale MaxeStress Modulus of $$Elastic Content #/sqeine F/sqeine Elasticity Resilience 0011% 14300 43250 18,700,000 11.9 015 31200 51500 29,900,000 16.3 023 22800 —«61400 22,100,000 11.7 025 29500 64800 31g200,000 - -14el 039 37800 —«- 80500 30,600,000 24.3 056 33500 85300 30,100,000 18.5 263 $9900 113900 31,300,000 2565 294 37200 119800 31,000,000 2265 1.08 66900 112300 30, 900,000 52.3 Hardness Content ‘Area tion Shore Srinell shore” Brinell o011% 704% 45.0% 18 81 16 el o15 6445 «48.0 ss19Sté« 7 89.3 e283 6641-396 24 123 19 96 29 025 5306 3400 19 123 e1 133.0 039 31082466 21.6 131 Be 153.0 05602246 2008 26 170 23 179.0 68 9.95 11.0 31 235 26 231.0 094 9.0 90 26 174 26 £31.40 1.08 6.5 765 33 229 28 264.0 The following set of computations is an exemple of how foregoing data w:s obtained. These figures are those of Bar "A" of the «94% carbone Frem the stress-strain diagram, which ,was plotted from the readings taken from the testing machine ani Berry strain gauge, we took the load et the Mastic Limit ané also the un$t deformation. The latter is found by reading the abscissa of the E.L. and dividing it by 2, since the distance between the punch marts on the teat bar wes 2 inchede Road at £.L. - 15007 Maximum load - 236007 Unit deformation - .0012" Diameter before pulling ~ .506" " after " - 482" Area befome " ~ .2011 52 eine " after " ~ 23825 ” Difference in aren ~ 0186 ” % Reduction in area » 207.96 3 902% @ Length after pulling - g2@ 2.18" " defo¥e " - 2.00" Difference in length - 0.18" % Blongation e 0518 & 9.0% Stress at Elastic Limit » _7500 2 37300 #/sq.in. Maximum stress « 23600 2 117400 #/sq.in. eeOLL ample Commutetiozrs (eontd) Elastic Ratio s stress 2 Ele = 37 @ eo19 MaKe Ssress finite Modulus of Elasticity s uni gtr eilormation « 387500 ~OOLS = 31,000,000 Elastic Resiliene z ota stegs) x e O asticity 2 (27200) - ee x ° ° 4 22 64 "#/cusine —, = re eras 100M USE ONLY Lagi