THESIS

ARTHUR ERNEST BAYLISS

101 767 THS

> ANALYSIS OF A REINFORCED CONCRETE SCHOOL BUILDING A. E. BAYLISS. R. E. CASHIN

1917

Copil

SUPPLEMENTARY MATERIAL IN BACK OF BOOK

Analysis of a Reinforced Concrete

الم المحمد الم المستعد

School Building.

A Thesis Submitted to

The Faculty of

MICHIGAN AGRICULTURAL COLLEGE

By

A.E.Bayliss

1

f

.

R.E.Cashin

١

1.

Candidates for the Degree of

Bachelor of Science

June, 1917.

THESIS

Cop.1

i

Å.

ANALYSIS OF THE REINFORCED CONCRETE

GRANMAR SCHOOL BUILDING AT OWOSSO MICHIGAN.

Ľ

INTRODUCTION.

The authors as a basis for thos thesis have various reasons for selecting the analysis of a reinforced concrete building. First: there is a large field for this type of construction, and they are especially interested in it. Second: they have had some experience along this line of work, and expect to specialize in concrete construction. Third: the Kahn reinforcing used in this building is practically new and affords excellent data for investigation. Therefore an effort has been made to determine if it is a type of construction which will stand the tests of the best specifications.

This building was constructed in the year 1915, and the authors were not able to analyze it as it was being built. Sog in this investigation the plans, which were loaned by the courtesy of Mr. S.D.Butterworth, of Lansing, Mich., who is the Architect of the building, were carefully followed.

١

93874

2.

-0-

- Page 1. Title page.
 - 2. Introduction.
 - 5. Index.
 - 4. Nomenclature.
 - 6. Single line key to first and second floor, basement and roof plans.
 - 8. Analysis of beams.
 - 13. Analysis of stairs.
 - 15. Analysis of columns and footings.
 - 17. Analysis of roof truss.
 - 19. Sample computations.
 - 21. References.
 - 22. Surmary and conclusion.

--0--

M=bending moment in in. 1bs.

w=uniform load/lin.ft.

l=length.

 A_{n} =area of steel in tension. b=breadth of rect. beam or breadth of flange of T beam. d=distance from outer compressive fibre to c. of g. of steel. peratio of area of tension steel to area of beam,bd. " depth of neutral axis to depth of beam, de X= " " distance between centers of compression and J= " tension steel to depth of beam, d. fg=tension unit stress in steel in lbs/sq.in. Se=comp. " " concrete in lbs/sq.in. p'=ratio of area of steel in tension to area of beam,bd. $p^* = * * * * * * * * comp.$ d'=percent of d from top of beam to compression steel. $n = E_{n}/E_{c}$ = ratio of modulus of elasticity of steel and concrete. v=shearing unit stress in lbs/sq.in. V=total shear.

u=bond unit stress in lbs/sq. in. of surface of tension steel. EP=sum of perimeters of all horizontal tension steel at section considered.

I=total moment of inertia.

I_a= " " " of steel reinforcing.

.

•

· · ·

P=total axil load.
N=thrust, a component of the forces normal to the section.
A=effective area of column.
h=total depth of beam.
C= a constant.
L=Live Load.
D=Dead Load.
S=Snow Load.

Ċ.

۹

.

.

· ·

.

.

•

,

---0---

 $M=1/12w1^{2} \text{ for interior continuous beams.}$ $M=1/10w1^{2} \text{ for end continuous beams.}$ $p=A_{g}/bd_{0}$ $k=\overline{\sqrt{2pn} + (pn)^{2}} - pn.$ J=1-k/5. $f_{g}=M/A_{g}Jd$ $f_{c}=2M/d^{2}hJk$

Beams with steel in top and bottom.

---0 ---

p'=p1+p2
p2=p"(k-d')/(l-k).
M=M1+M2.
M1/fsbd²=p1J1.
M2/fsbd²=p2(l-d').
fc=fs/n x k/(l-k).
v=V/bjd.
u=V/EPJd.

Formulas for T Beams.

kd= $2ndA_{g} + bt^{2}/2nA_{g} + 2bt_{s}$ z= $3kd = 2t/2kd = t \pm t/3.$ jd= d=z. f_g=M/A_gjd. f_c=Mxkd/bt(kd=1/2t)jd.

Beam	Shope and Looding	W/O lin.tt.	W/L. Inft.			Stir	rups	5/20	spacing	źP	u	r
	- 12 M 22			2210	18.41		yes	Kohne	or used	149	124	145
	\$ iz			8600								
								"				
C	+ 8 K/2 J /8	1938	1428	1190			•		"			176
	·/2 7/8	3650	1975	5700	14.85					6	250	175
E	8 × 12 1 = 22	1563	1350	2910	18.90					14.06	117	142
									v			
	* va 12 1 22	1850	1330	2220							147	173
	1 30 TH	2020	1540	1195	- 15.37					13.0	163	126
Н	× 30 12x	2360	1540	7658	16.234					12.0	139	140
I	10-18	1650	1200	1235	14.12						245	143
K	12 × 18	2320	2730	5563	14.25					12.06	126	128
L	10 2/2 - 10	1170	1170	6557	15.185			1 1 1 1				1.1
										12	96	95

. . . . •

·

.

		-					-		-		
	Shape and Loading	W/A lin.tt.	lin. tt.	M= M		needed		spacing			
	- 34 	1450	1010	1950	18.56	yes	Kahn b	orused		108	
	- Le in	1560	1065	848						213	212
		1410	1070	1850	15,26					82	116
	1/2 1/8	1610	17.5	315						132	113
		1560	1216	282	11.40					115	136.0
		1380	1053	1675							
					18.40	•			14.06	113	158
	E125-1	1360	1111	832	15.385				13	146	159
H		1385	1141	496	15.385				120	93	129
		1200									
1	1.	661	450	573	14.76				7.0	108	63.2
K		1765	1200	628							
		10.5		1.2	15.00				16.0	19	19.3
		1250	510	6//0	15.81			"	16.06	65	861
M	1.	439		234	12.45						
N	10 76	439		179	12.45					2.05	38.0
			1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1								

And State	-				100 m	Sec. 1		and the second			and so its owner.		
													-
Beam and Shape			WIL Infe					Stir	rups Decided	EP		r	2
242-4 2 - 4"F													95
			83.5	16-6	,750	2.33	625	Nohn L	Bars used	4.5	97	110	5.5
"		135.0		19-6	.810				Yes		78	/88	4
4				18.8 8	.748		6.2.52			4.5	88	985	4
		255		16-6	.748		62.52			4.5	77	875	
				19-8%	748		6257			4.5	124	138	4
					-					ar		0.20	4
		102.0		16-6	.798		6752			7,5	78	875	4
	7	1200		18.88	.798		6.2.52			4.5	94	94.5	3
1	8		163	17:0	.748	233	6.2.52			4.5	86	96.0	3
	9		163	18:93	.748	2.33	6.252			4.5	100	112	17
		102	165	14-62	.290		6.71			3.5	82	77	-1
					-		1200			45	95	1005	4
"	11	185	765	16-6	.748		6. LJK			10		1005	4.7
		102	163	9.3	.748	2.33	6.252			4.2	44	49	9.4
		102	163	5-0	495	1615	6505			20	51	25.5	25
		102			748	2.33	6252				73	805	20
"		120			.748						83	96	
													1

				h						rups	20		
× = 242			172		16-6	718	0.22		t-h	R	45		
		122	122				2.00	6.472	IJ	sed	1.2	242	112
	2'	114	123	1	19-6	.810	2.77	8.79	4	405	4.5	69	695
	3'	102	123		18-6	.748	2.35	6.252	•		4.5	715	80.5
"	4'	102	123		16-6	.748		6.252	•		4.5	74:5	84
11	5'	102	123		18-63	,748	2.33	6.252	•	•	4.5	74.5	84
"	6'	102	123		18:10	.748	2.33	6.252	•	·	4.5	93	104
"	7'	157	123		16-6	,748	2.33	(252	•	•	45	74.5	84
	8'	102	123		18 8 8	.748	2.35	6.252			4.5	74.5	84
"	9'	120	123		17-00	.748	233	6.252	•	•	45	73.5	83
	9"	120	123		17'00	.748	2.33	6.252	•	*	15	735	83
	10'	134	123		18 93	.748	2.33	6.252	•	4	4.5	85.5	96.7
		102	123		14.6%	748	1.865 2.33	6.383		•	3.5	73	64
	12'	102	123		9:3	748	2.33	6.252	•	•	1.5	37	141.7
	13'	102	123		5.0.	512	1.760	6,438		•	25	39	19.4
	14'	144	123		15-6	.748	2.33	(.252			1.5	73	8.2.5
	15'	102	123	-		748	2.33	6.252			4.5	62	70

Analysis of Stairs.

---0----

Consider the stairs as a beam whose length is equal to the horizontal projection. Sections one foot and fifteen inches were analyzed. The live load was seventy lbs. per sq.ft.

Formulae used on stairs.

--0--

$$M=wl^{2}/8$$

$$p=A_{g}/bd.$$

$$k=\sqrt{2pn + (pn)^{2}} - pn.$$

$$J=l-k/3.$$

$$f_{g}=M/A_{g}Jd.$$

$$f_{c}=2M/bd^{2}Jk.$$

.

13.

i L

Analysis of Columns and Pootings.

Τ.

15.

---0---

In the construction of the building there were twelve columns used, only two extending to the roof. The analysis includes one of each case.

Formulae used on Columns.

 $f_{c}=P/A + (n-1)A_{g}.$ $f_{c}=N/A + (n-1)A_{g} + M/I + (n-1)I_{g}.$ $I + (n-1)I_{g}= bh^{3}/12 + (n-1)pbha^{2}.$ M=CaP. $p=A_{g}/bd.$ $k=2pn = (pn)^{2} - pn.$ J=1-k/3. v=V/bjd. u=v/EPJd.

							16.	1
								Con its
						1		
Column	Location	Wt Girder		Ħ	Le . (11-1) I's	Mc	Maxte	
	Root	13800	900000	340	3665	242	340	
	2nd Floor		1016500	650	3000	220	620	-
	1st Floor		94/000	640		180	640	`
	Footing			260	il. r.		215	
	2nd Floor		123300	265		29	170	
	1st Floor		1492500	620	5160			
	Footing	A. Sugar		280				

			-			
	D+S	Length	'o Rivets	Volue one rivet	Volue rivet conn.	Size river
IM	25+30		3-2	H-C		
ABCDEFG		3'- 3.15"	2.3	4220	8440	n.
Ja	Snow Lood=30	4 - 3"	4 4	4220	16880	
ab	Decoload. 25	4-2.5"	3.3	4220	12660	
AML:KIJ-H	Ceiling " "= 20	6-6.2"	4.3	4220	12660	
68	Upper Pp.4.0	6-6.3"	33	4220		
cL	Lower	6-6.2"	33	4220		
be		4'5"	33	33/0	9660	
cd		4'-1"	3-3	4220	12930	
dC		6'- 6.3'	3.2	3310	8440	
de		3'-10.5'	2-2	4220	6620	
eK		6-6.5"	3-3	3310	8440	
ef		3'- 10"	2-2	4220	6620	
f.D		6-6.5	2.3	3310	6660	
ta		3' 85	3-3	4220	12630	+
01		6'-6.2"	3.3	3310	9660	
ah		3'- 8"	3-3	4220	9930	
hE		6: 6.5	33	3310	12660	
hi		3'-6"	3-3	4220	12660	
iT		6-6.2°	3-3	4220	12660	
4.7		3'- 6.5"	3.3	4220	12660	"
JF		6'- 6.5"	3-3	4220	12660	
ľκ		3'- 4.5"	3.4	4220	12660	
KH		6- 6.2"	4-4	4220	12880	
KM		3'- 3.15"	3-2	4220	8440	
MG		3'- 4"	3-2			
MH		3'- 00"				

Sample Computations.

--0--

Bending moment for Beams.

Beam C- Continuous beam lst. floor. $M=wl^2/l2.= 63500 \ge 18.8l2 \ge 12/l2 = 1,190,000.$ $p=A_g/bd = 3.945/36l= .0169l.$ $kd=2xl5xl7x3.945 + 30 \ge (8)^2/2 \ge 15 \ge 5.945 + 2 \ge 30 \ge 8=6.56$ $z= 3x6.56 - 2x8/2x6.56 - 8 \ge 8/5= 1.92$ jd=(d=z)= 17=l.92=l5.08 $f_g=M/A_gjd=l,190,000/3.945 \ge 15.08=20,000$ $f_c=l,190,000 \ge 6.56/$ 30 $\ge 8(6.56 - 1/2x8)l5.08=845$ Negative Moment for same beam. k= .578(from chart) J=l=..578/5=.88l $f_g=l,190,000/l2x(17)^2 -(.00659 \ge .881)+ .00445 \ge (1-.1)-$ = 35,100

f = 55,100/15x ,578/1-.578= 1,500. Concrete Beams supporting floortyle are analyzed the same as the above beams.

Beam D- Simple beam 1st. floor. M=w1²/8= 44,584 x 8.5 x 12/8=579000"# p=1.58/18 x 12=.00E75. k=V2X15x.00775 + (15x0077)²= (15 x .0077) = .380 Jd=17 x (1- .380/3)= 14.85 f_s=M/A_pjd= 570000/1.58x14.85=24,300 f_c= 2 x 570000/17 x 12 x 14.85x.380=985.

Stairs -0-

• - •

-

Hor. projection.= 19400° M=wl²/8=4180 x 19x12/8=1,19300p=1.58/ 12x8=.0165. k= $\sqrt{2x15x.0165 + (.0165 x 15)^2} = .0165 x 15=.497$ jd=8(1 = .497/5)=6.68 f_s= 119300/ 1.58x 6.68= 113300 f_s= 2x119300/12 x 8(6.68 x .497)=740

Columns.

---0---

Col.#5 second floor.

▲_=6 bars x 5/8"= 2.3436

A_e=11 x 11=121

p=2.3436/121=.0194

Area to be added= 141 x .0194 x 144=39.2

Total area of concrete = 144 + 59.2= 183.2

P/At= 119,665/183.2=650#

In analyzing the columns sections were taken between the floors.

References.

--0--

For references the authors had excess to the following: "Taylor & Thompson", "Turneure & Morse", "Ketchums Structural Handbook", and "Kahn Building Specifications". Special acknowledgment is due to Professors H. K. Vedder, and C. A. Melick.

SUMMARY AND CONCLUSIONS.

--0--

In this analysis we did not deal directly with the building as we found it, but tried to find out the specifications for which it was designed. Not being familiar with the actual construction, we were not able to analyze some parts as they exist. But as we had the actual plans to work from, we had to analyze the various parts as they were shown.

Not being able to obtain the roof plans, we found it necessary, to measure the members of the roof truss, and estimate values to a more or less degree. As a whole the truss was found to be amply safe, although occasionally a member was found to be slightly overstressed. Each of the three trusses supporting the roof carried a uniform load, there being no concentrated loads on them. The graphical analysis used in finding the stresses in the members proved the truss safe for imposed loading.

The second floor beams on the average were found to be within the safe values of 16,000 for f_s and 650 for f_c , which are recommended by most authorities. Occasionally a decided overstress in the steel as well as in the concrete was found occuring at the points of negative bending moment, at the supports. However, in actual construction this overstress may have been taken care of by additional reinforcment. For instance Beams E on the first and second floors, according to our figures shows the largest overstress at the supports. This shows a very poor point in the design.

On the first floor the beams were stressed over the conservative values stated above especially so at the supports, as was found on the second floor. The beams are overstressed 30to 35% in both concrete and steel. This shows a decided lack of steel over the supports for continuous beams. As previously stated in the construction extra steel may have been used, as our analysis adhered to the data on the plans.

The concrete beams supporting floors were stressed above the conservative values at the supports, but at the centers averaged within the allowed unit. The concrete beams supporting the floors of sections 1 to 9 inclusive, also 11 and 14, on both floors are decidedly overstressed, indicating poor design. These like the floor beams show a lack of negative steel over the supports.

According to our figures the whole structure is fairly well balanced, although there seems a lack of reinforcing steel in some beams. The beams which present the largest over-stress are supported wholly or in part by tile walls. Taking some of these points into consideration tends to lower the stresses in the concrete and steel. The stairs and columns are well designed and carry their live load well within the allowed units. The building as a whole has been well designed, and can be considered safe for its live load. The building represents a neat and strong appearance and is absolutely fireproof. For analysis we have used "Taylor and Thompson" text on reinforced concrete and the findings of the "Joint Committee". These references afford the very latest formulae for testing structures and are the best in use at the present time.

.

, -4

•

