NHI . ed we at ewes - ome et eee ey cay SOAR OD UN —_t an ae ie 9 Qed Lex et THE FACTOR LOSSES — IN THE PIPING SYSTEM OF THE MICHIGAN AGRICULTURAL COLLEGE HYDRAULIC LABORATORY. The Thesis Submitted To The Faculty of MICHIGAN AGRICULTURAL COLLEGE by MO } s- N PM Coy M.V.Hunter and V.M. Nagler x Candidates for the degree of BACHELOR OF SCIENCE June 1922. JHES!S ; =a V in Lo 0) \ . POR EWOR D The purpose of thia thesis is to determine by a series of experiments the factor losses for various commercial fittings which are installed in the piping syatem of the Michigan Agricultural College Hydraulic Laboratory. 101°747 INTRODUCTION. The Michigan Agricultural College Hydraulic Laboratory is located in the east end of the basement of the engineer=- ing building. The laboratory itself was built in 1916, but the commercial fittings were not installed wmtil the summer of 1921. The Civil Engineering Class of 1922 was the firat to perform any experiments in the laboratory. Before the fittings were installed the apparatus waa very limited, only a few nozzles, short tubes, and the weir in the steam laboratory being available. The souree of supply of the water which is used in the laboratory comes from wella which are located on the college grounds back of the Forestry Building. From the wells the water is pumped to the water tower which ia located just east of the Power Plant. From the water tower, by means of a system of pipes and valves the water is run into a tank located in the top of the Engineering Building. From there it is drawn directly through the piping System on which we performed our experimenta. . _ Gre ° ’ = 1 : —* Ve it, Da Vi ~ Ds Ve > ° Longitudinal Cross Section of a Venturi Meter. fhe Venturi Meter is a practical application of Bernoulli's theorem to the measurement of the flow of water in pipes under pressure. The same quantity of water passes through both the inlet and the throat, but since the area at 12 the throat is smaller the velocity will be greater than at the inlet. They have a constant relation for any meter depending upon the ratio of the two areas and a simultaneous observation of the pressure heads at the inlet and throat provides a method of determining the velocity at the throat, and from the velocity and areas the discharge can be obtained. This ratio was taken as Then K =/fR*( ze) Then Q = CKD‘ Ht For a value of R equal to 2/1 the value of K was found to be 6.505. As an example of our computation let: Time = 240. sec., Lbs. of water = 1050.5#, H in mercury = 0.21'. Actual quantity = 1050.5 = 0.0698 ou. ft. per sec. 0.21 x 12.59 = 2.645" head in water. fheoretical quantity = 6.505 x 00694 x 1.625 = 0.0734. The coefficient "co" equals actual quantity / theoretical quantity or in this cage equals 0.0698 / 0.0724 = 0.951. This same pro- cedure was followed in computing all of our readings. In calibrating the Venturi Meter we first connected the prassure lines with the manometer. (See the discussion of gauges.) Then water was allowed to run through the meter and @ reading was taken of the difference in level of the mercury in the gauge. The actual quantity flowing was measured by catching in a tank for a certain length of time and weighing on the scales. This weight waa then changed to cu. ft. per gec. About 20 readings were taken in this manner and comput- ed by the method outlined above. 13 The actual quantity was plotted against the difference in head in each case and a amooth curve drawn through these points. The curve showed that the relation between quantity and head was a constant when the quantity flowing was more than 0.1 cu. ft. per min. The average value of "co" for these 20 readings was found to be 0.9558. The coefficient "c" varies with the velocity at the throat, the ratio of the diameters at the inlet and outlet, and the actual dimensions of the meter. As meters are ordinarily constructed the coefficient varies between 0.97 and 1.0. Probably the reason why we obtained a lower value was because of the condition of the meter. The meter had not been used for about tour months and in that time had probably collected some rust or other growth. We wish to recommend as a value of the coefficient "oc" of the Venturi Meter now in the Michigan Agricultural College Hydraulic Laboratory as 0.9558. CALIBRATION OF VENTURI LiEYER Run Time Lbs.of Actual #H H K Db Q C. Sec. Water Quant, He Water Theor. 1 240 1050.5 -.0698 e2l1 2.645 6.505 .00694 00734 0.9561 2 180 783 00694 eel 2.645 00734 0.947 3 180 1069.3 .0947 e585 4,848 00995 0.953 4 180 1061.7 .0943 e580 4.78 . 00989 0.954 5 180 1184.6 .1051 e485 6.105 e1116 0.943 6° 150 1186.0 .1262 e675 8,50 eil317 0.960 7 120 1160.5 .1547 1.02 10.85 e1487 1.044 8 240 760.5 .0507 ell 1.385 0532 0953 9 180 569.5 .0506 ell 1.385 00532 e952 10 180 293.8 .0261 003 e578 0278 0939 11 180 430.8 .03825 .065 e818 «0408 0937 12 180 1039.0 .0923 0565 4,60 209 70 0952 13 150 992.0 .1057 e465 5.85 e109 e968 14 120 912.2 1.211 063 7.93 elZ272 0953 15 180 1007.0 .0895 054 4.28 009335 0962 16 150 1174.3 .1250 66 8.50 1301 e960 17 150 1255.5 .1336 e777 9.69 e140 0954 18 150 1320.5 .1405 e85 11.70 01554 0905 19 150 1167.0 .1240 #65 8.18 1286 0965 20 150 1156.5 .1230 064 8.05 elL275 0963 Av. Value of (C) = 0.9558 i == Ske an daweenre: : AG] rete xf 0% us haa 50, | #0 €0} 44) PACs eile LLB aeed | | | oo BSUS | | < a : | SB —+-—— " - | | R | ! : ; | | | Rage eee ee : i | W - Py i : = RS a PSHE ' 3 | : SERED S2baReSSc! CieaesbsBd cen. Seas: | | enawes | : a : 3 é ! ' oe 5 | sehr i eee : Soggy | R : nas | . oRaaee~ Bi } S | ne Tite PSSESS ESL Luaeas sat = ee Smee Th i eu “ie eerie Fl pment if rita ites | i : eeee ess aaa pates e im | | + Fi | : | | | NS | Cae : : Hin Fk nag Nae) / etek sets ctes.3 tes =H Ses i oe : : = a + | | 9 2 | i : a Ses | | c 5 pf 4. ae ue are ‘| Oe : : a teae) CALIBRATION OF THE PITOMETER The Pitot tube was first used in 1730 by Pitot to determine the velocity of flow. His apparatus consisted of a bent cylindrical tube with one leg horizontal and its orifive opposed to the current and a straight vertical tube set with ita opening at the same level as the orifice of the bent tube. h being the difference in level in the two vertical tubes, Pitot asaumed that V was equal to (2h) * Bxperiments have proved that in tubes having small points so Shaped as not to disturb the flow, with openings of cylindrical or converging or diverging cone form, h very nearly equals V/2¢; Therefore if h can be measured the velocity at any point can be obtained. The apparatus that Pitot used did not give a true measure of the velocity head because the vertical tube is not a true piezometer and did not accurately measure the pressure head. Darcy found that oscillations of the water surface in the tube made an accurate reading of the velocity head difficult, so he made the orifices much amaller than the tubes. Also the water in a pipe does not flow at the same velocity at the center as on the outside, the velocity at the center being greater so it was necessary for us to first determine some ratio between the center velocity and the mean velocity before we could calibrate the pitometer. This ratio is called the pipe coefficient. In finding the pipe coefficient we used the same shaped orifice as shown in the drawing. Water flowed against the orifice and the upper end of the tube was connected to the gauge. Another tube was run from the pipe to the gauge so that the difference in levels in the gauge was the velocity head. Then water was caused to flow through the pipe at a constant velocity. Spot readings were taken at pointa in the pipe 1/8", 3/8", etc. up from the bottom. The velocity at each of the points was then obtained. The mean velooity was obtained as the arithmetical mean of the observations made at the center of rings of equal value, or the mean velocity of the whole pipe is the total of these ring volumes divided by the area of the pipe. The mean velocity divided by the center velocity as read from the curve is the pipe coefficient. We took five triala in determining the pipe coefficient and we found the average value of pipe coefficient to be 0.953. ‘This value was found to be practically a constant for different velocities. Now with this value of a pipe co- efficient, by simply taking readings at the center of the pipe and multiplying by this coefficient the average velocity in the pipe was obtained. The quantity was then easily obtained by multiplying by the cross-sectional area of the pipe. We were then ready to calibrate the pitometer. It was necessary that we make three calibrations, one with the impact tube, and two with Pitot tube shaped ag the one shown in the drawing. One calibration wag made of the Pitot tube when the impact opening was against the atream and one when it was with the stream. The first calibration made was of the impact tube. A series of about 20 readings were taken in Galibrating the tube under different heads. The opening was held in the center of the pipe in each case, and a read- ing taken of the difference in levels in the gauge. (See discussion of gauges.) The average velocities were plotted against quantities in each case and a smooth curve drawn through these points, The curve was practically a straight line. This shows that the quantity of water discharged increased as the velocity increased. The second calibration to be made was of the Pitot tube with the opening turned against the stream. OY Time SeCce 120 120 180 180 120 120 180 180 120 120 120 120 120 120 120 Lbs.of Water 922.0 815.0 872.5 1202.0 648.6 442.5 543.5 281.3 278.0 576.5 435.5 480.0 534.5 705.0 758.5 LOSSES ON CONTRACTION Quant. Cu. Ft. SeG. 01226 ° 1083. 00773 «1066 0863 ~0588 00304 00249 0370 ~0502 ~0599 ~0638 0712 00938 - 1009 Average 1.365 y* "Bg ©4928 - 5840 1959 o3702 2438 eo 1133 00302 e0203 ~0448 ~0823 «1096 01335 1662 2888 3353 H ccl, 1.14 0.90 0.47 0.87 0.575 027 07 005 e105 0195 e255 31 0 59 067 - 78 H, 29 «666 « 526 0257 - 508 2536 - 158 -041 e029 ~061 -114 e149 181 0228 0592 456 1.352 1.37 1.512 1.372 1.378 1.394 1.358 1.428 1.36 1.385 1.36 1.355 1.572 1.356 1.568 g ~~ OVWDAMMEAN HH ro PE SOODAMMEMED Time SeCe 240 180 180 120 120 180 210 120 120 LOSSES THROUGH STRAIGHT GLOBE VALVES Lbs.of Water 476 514. 525 597.5 698.5 774.5 861.5 611.0 666.0 872.5 972.0 514.0 437.5 460. 421.5 389.5 368.0 $3320 509 .0 243.5 Quant. Cu.Ft. / Sec o. eOSl1 00342 00466 «0530 0619 e0687 00764 008138 0886 00774 00738 00684 00581 00614 0561 e052 00491 00444 00412 00325 y* 2B 00314 0383 00705 00915 L250 01533 e140 e216 e257 e196 e178 e153 elll 0123 e101 0885 ~0785 00633 00545 00545 H He 007 ell 014 o19 o26 edl 2 59 045 o 51 041 2 58 954 022 025 e20 018 e16 0125 e115 007 H H,0 e882 1.585 1.764 2.39 52275 5.905 4.92 5.67 6.42 5.17 4,79 4.28 2077 5.15 2252 2.27 2.015 1.575 1.45 «882 Average Coefficient 2.605 aN SSSSreesasesss = & OND NNNWNHNNNW DD WW oeoe ete eee e eo © © @© @ te 0 e® ®@ Cn =3 ~ % eee O & O1 OwWO WJ 2-56 aera Cao | | g ODIO MA he OH Time Sec. 240 180 180 180 180 180 120 120 180 210 120 LOSSES Lbs.of Water 467.0 525.0 597.5 698.5 774.5 861.5 611.0 666.0 872.5 972.0 514.0 437.5 460,5 421.5 3589 5 $68.0 535.0 509 20 243.5 196.0 THROUGH ANGLE GLOBE VALVES Quant. Cu.Ft. / Sec. e031 0047 e053 0169 0687 00764 0813 0888 00774 e0739 0684 0583 00614 0561 0052 0491 00444 00412 ©0325 e0262 06 0062 005 0042 004 0033 003 002 0012 H,0 252 « 504 «630 e 756 eL1007 1.260 1.588 1.639 1.388 1.260 1.1352 o 756 o 782 063 053 «504 416 0578 e252 e151 Average Coefficient Fé 8.14 7.15 6.88 6.04 6.53 6.64 6.43 6.38 7.09 7207 7.41 6.81 6.35 6.25 6.06 6.435 6.56 6.93 751 6.78 6.761 a rs Sys er palatal Tee : Refs] 10 Wey) Qu 06 / Q . Q: a iF 4 tay pa epeapestg fezezee fesresbeea teenaiated Es esate ir Sees Begeae tte I + . petead ge | j iN} | ~ aro xX 03 04 OF a ‘Cras ce) eae] vai bed eae 2A /e a ction .\ eee os PRS ahaa farecstt pede RENO Tem Eee PL ee way) es aes a ona Showing relation Recents | og beet | in Merny aT { AGRI Went 27,2 A oY'7-) aa AY 77> A 0) a | Angle Globe Velves ina (acc? 7S haf toe tame a aad ee . . Tad sat ay. | | Dilference af. Head _ in Feet | of Water. tdeses ees ries 0.6 eho) Le laa 1.6 Run WO 3H om 60 LOSSES THROUGH GATE VALVES Time Lhsa.of 3aC~6 120 120 150 120 120 150 120 120 90 Water 212.0 -508.5 569.5 638.5 702.0 766.0 794.0 1065. 775.0 740 .0 682.5 625.5 762.0 547.0 471.0 428.0 392.0 367.5 523.0 229 .0 Quant. Gu.Ft. [ Sec. 0282 00676 00757 00848 009535 01019 «1056 1133 «1030 0985 20907 e0831 0811 00727 00627 ~0569 00521 ~0488 00430 00406 Average Coefficient 1.1127 y* ee e0260 01494 01872 o2552 2848 e 5390 5642 4205 05478 5176 2690 o 2257 £151 | oe LFB4 01284 ©1058 ~0888 «0780 ~0605 0539 oll 228 0187 070 e064 46 1.115 1.057 1.094 1.119 1.088 1.085 1.077 1.071 1.091 1.121 1.108 1.138 1.060 1.083 1.136 1.105 1.182 1.191 1.158 1.186 uiie a eee iia ng | | | | | | | | | ae ce wa40M 4° PoE aed lad Rake 6 | Seas SERED OE re 02 rae aay | | | ' | Cle A Lee eae AT FA STRL ISS DEOX) ANOF puw sup FAQ soacrad Lote VATS yA Pee REPLY rAd “woizo/ay) < = ie ; VL hh, “4 Y neat ae) . : ehh kek Wao ooh? Eee eRe Va vat TALI) } | j a fa EE gn ) ) er 2 ; Time Run sec. OO WH OP OD! 120 Los.of Water $49 .0 586.5 470.5 512.0 578.5 648.5 673.0 761.0 812. 833.5 943.0 858.0 777.5 720. 698.0 656.0 538.0 466.0 414.0 Quant. Cu. Ft. Sec. 0464 00513 «0563 00625 0681 ~0768 00863 ~0895 «1012 « 1080 1109 01255 e1141 01054 0958 ©0929 00873 00715 ©0620 «0550 yt fg -0705 ~0861 01037 «1281 ~1518 ©1928 «2438 ©2618 05547 « 3809 +4028 - 5158 04253 «5508 «2999 2821 02492 01673 01257 -0988 LOSSES THROUGH FLANGES a: CCl, «10 o12 o14 ol’ 220 026 eOl 0 34 043 - 46 2 5S 067 255 045 041 057 053 025 oL7 014 e058 e070 e082 099 ell? 0152 e181 198 0251 268 e510 0592 e521 02635 0239 e216 0193 0134 099 e082 Average Coefficient 4& e823 «813 e791 0772 0772 « 789 o 143 « 756 o 749 e 708 « 770 e 760 « 756 o 749 27197 « 766 775 ~801 788 829 07781 OO 3K OTH Time Run sec, 120 Lbos.of Water 970.0 909.0 860.5 788.0 653.0 598.0 539 .0 468.0 349.0 195.5 179.5 256 .0 277.5 349.0 386.5 423.0 470.5 512.0 578.5 648.5 LOSSES IN UNIONS Quant. Cu. Ft. Sece 129 ©1208 01144 1048 -0869 00796 00717 0623 00464 ~0260 00239 00314 ~0369 00464 00513 00562 0625 «0680 «0770 0862 Average .9511 y* Be e 5449 04772 04285 3597 ~ 2470 2071 o1678 el272 0705 0221 0187 0322 0445 0705 0862 ei1031 1276 21513 01937 e 2426 H cl, 86 077 °69 « 58 041 054 28 21 ell 0035 e025 0045 007 ell 014 017 21 025 032 2 59 H H.0 503 «450 0402 0509 «240 199 e164 0123 0064 e0Z0 - e015 0026 e041 e064 e082 2099 0123 2 146 0187 228 4 & 0924 0943 938 0943 0971 0961 0977 0967 ~908 0905 ~803 «808 0922 908 0951 0959 0965 0964 966 9359 a so ——. aa : Sc aS el aA Ea : . J HOWD IO MR ODE DO eS ee SY OCWDUMHNHAD Time Run Sec. 120 Lbs.of Water 673.0 716.0 812.0 943.0 858.0 777.5 720 .0 698.0 538 .0 466.0 $57.0 263.0 212.0 508.5 569.5 638.5 702.0 766.0 794.0 1065.0 LOSSES IN COUPLINGS Quant. Cu. Ft. Sece ~0896 «1013 e LO80 01255 01141 1034 09 58 00929 00715 ©0620 00474 00349 e0282 00677 00757 0848 00933 «1019 « 1056 01134 yt eg 2626 53562 «5809 - 5158 ©4253 «3508 02999 £821 ol67Z «2156 00735 00398 0260 01495 01872 22552 «2848 05397 5642 «4220 H CCl, 020 026 029 041 054 228 0Z5 022 014 010 06 003 002 H H 20 0117 0152 169 «240 e199 0164 0146 e128 e082 058 e035 ©0175 0117 «070 087 elll 0134 158 e172 0193 Average Coefficient 4& 0445 0452 0444 0465 468 468 2 486 0454 489 0462 0476 2 440 451 468 464 0478 465 0473 452 4633 eaeuert Pe LOne Run gec. bal Bd fad ad fad fal Bad ft fd ed Sob Eane ew OCesonannl 120 LOSSES THROUGH STRAIGHT TEES Lbds.of Water 323.0 362.0 593.0 419.6 450 .0 479.0 618.0 604.0 729.0 970.0 909.0 860.5 788.0 653.0 698.0 639.0 468.0 403-6 $49 .0 195.5 Quant. Cu. Ft. 00431 20482 0524 20858 «0600 00639 20692 00806 20973 en291 eifZlil o1148 21040 20870 20799 e1718 e0624 00539 00466 0261 y* Eg 206095 007593 208998 210189 eil 7 58 ol S547 015623 e21210 od092L7 o 5449 04789 —@4002 055375 o24752 e208 26 016828 o22717 009485 e0 7120 eO2259 601, 0145 e185 0205 £45 0875 031 036 049 e 70 1.24 1.09 097 083 9 59 ° $1 H Ho e085 2108 «20 0145 e161 e181 e210 e286 41 e725 e688 e 566 e485 0545 e289 e240 0181 0134 0105 0035 Average Coefficient 1.2884 4 E, 1-595 1.42 1.5355 1.405 1.569 1.355 1.345 1.348 1.327 1.381 1.353 1.315 1.372 1.595 1.452 1.425 1.423 1.412 1.474 1.56 7 g OO 32 Om O19 Time Sec. 240 180 180 180 180 180 180 210 120 LOSSES THROUGH ANGLE TEES Lbs.of Water 476 597.5 698.5 774.5 861.5 611.0 872.5 972.0 437.5 538.0 693.0 827.0 874.0 857.0 | 777.0 725.0 641.5 554.0 470.0 Quant. v* H Cu.Ft. be CCl, / Sec. 0311 00314 019 0466 00706 041 0529 0915 « 55 20619 e 1250 e 76 20687 1533 290 0765 «190 1.15 20813 e216 1.30 00775 e196 1.15 00739 oL78 1.10 e0583 eitll e711 «0720 e169 1.08 00924 e278 1.73 21105 0413 2.58 e1165 2442 2.81 012141 e426 2.75 21035 e550 2.16 0966 504 1.83 08 56 e239 1.40 007389 eiL79 1.075 e0627 e128 e753 Average Ceefficient 3.558 H,0 elll 2840 e521 0444 526 0672 e760 0672 ~643 0415 063 1.01 1.51 1.64 1.61 1.26 1.07 e818 ©5629 0440 46 5-53 3.41 5.51 3.56 5.45 3.53 5.52 3243 5.61 5.74 5.73 3.64 3.65 5-72 35.78 3.60 3.52 5.43 3.515 5.41 a eens a es by E OM 1M Om GIO Time Sec. 120 120 Lbs.of Water 395.0 431.0 307.5 147.5 143.0 185.0 22540 240.0 263.0 296.20 525.0 562.0 593.0 419.5 450.0 479.0 518.0 556.0 604.0 729 0 Quant. CuFt. SeCe e0526 «0459 00408 ~0196 ©0190 00246 00296 00519 ©0350 00394 20430 ~0468 e0522 e0558 20598 o0637 e0689 00739 e0803 09 70 y? eg 00903 ~0986 00544 e0125 -0118 -0198 0287 00332 ~0400 * 20508 -0604 00715 -0888 «1019 01167 «1526 e 1552 01787 02112 «5079 Average Coefficient | LOSSES THROUGH ELBOWS H CCl, 0.40 NN c™ TC) OO) OO 10 WD gO 3 3 SAMACHAR AOHHOREOHODRAS NOHNHNNNYNNHMWONNHNNHNHWNWWD WW 2.625 uaa a2 ; a eek La) . eh en Elbow a ee io ss D a ; aesscats fi ie it fy . | Lah rts oH) ving FeVation ~~ | ae pe aire geet acti er el ig BeeeeceepreseTs tara Bee 907 1214 1a a Ee ae ae abi Saaae RAEN ies aetet Laos Reed teet dese ste OREN REE 080177, AA Ad Se eee ee Distas Setagetsel f . itt Mista te Et i a ci k-inth Fipe. : eae bien sscibreaa aye easihgy | -juee erage fbb et? < ee: eas) | aT eesitetn § ence fee ot Water. ob oReaebe Beeibbedts HS Sean e302 ROCIA USE ONLY. Run sec. OP bal al ad ad al ed Bk fed ed SoG Ea aan Owawomaunl 120 LOSSES THROUGH STRAIGHT TEES Lbs.of Water 523.0 362.0 593.0 419.5 450 .0 479.0 518.0 604.0 729 .0 970.0 909.0 860.5 788.0 653.0 598.0 539.0 468.0 4036 $49.0 195.5 Quant. Cu. Ft. / Sec. 00431 e0482 0524 e05858 20600 20639 20692 00806 209 73 es291 eiZil 01148 «1040 20870 20799 e1718 e0624 00539 00466 0261 y* "eB 006095 007593 208998 210189 v11758 oL S547 015623 e21210 ed09L7 05449 04789 4502 055575 024762 e208 26 016828 obfLT17 009485 007120 eO22S9 0145 0185 e205 0245 0875 051 036 049 e 70 1.24 1.09 097 083 9 59 eS1 041] ed1 o£5 018 206 H.o 085 e108 e120 0143 o161 e161 e210 e286 041 e725 638 o 566 0485 0545 2289 2240 0181 0154 0105 0035 Average Coefficient 1.8884 4 1.595 1.42 1.535 1.405 1.569 1.355 1.345 1.348 1.527 1.331 1.553 1.2515 LeS72 1.393 1.4352 1.425 1.423 1.412 1.474 1.56 é OO 3M OP OVD Time Sec. 240 180 180 180 180 180 120 180 210 120 LOSSES THROUGH ANGLE TEES Lbs.of Water 476 597.5 698.5 774.5 861.5 611.0 872.5 972.0 437.5 538.0 693.0 827.0 874.0 857.0 777.0 725.0 641.5 554.0 470.0 Quant. Cu.Ft. / 3ec. 0311 00466 e0529 00619 20687 ~0765 00813 00775 00739 0583 e0720 00924 e1105 ©1165 ©1141 21035 0966 0856 00739 0627 y* £8 o0314 00705 0915 «1250 «1533 «190 216 e196 0178 elll 169 0278 0413 0442 426 «550 504 e259 0179 0128 H CCl. 19 041 2 55 o 76 90 1.15 1.30 1.15 1.10 071 1.08 1.73 2.58 2-81 2-75 2.16 1.83 1.40 1.075 e 753 Average Ceefficient 3.558 elll e840 e521 0444 « 526 0672 e 760 0672 »643 0415 063 1.01 1.51 1.64 1.61 1.26 1.07 e818 «629 2440 46 5-53 3.41 5.51 5.56 5.45 3.53 3.52 5243 3.61 3-74 5.73 3.64 3.65 5072 5.78 3.60 3.52 5243 3.515 5.41 by B OOWM Oh OIE fime Sec. 120 120 Lbs.of Water 595.0 431.0 307.5 147.5 143.0 185.0 225.20 240.0 263.0 296.20 525.0 562.0 593.0 419.5 450.0 479.0 518.0 556.0 604.0 729 .0 LOSSES THROUGH ELBOWS Quant. v* H Cu.Ft. bg CCl, Sece 0526 00903 0.40 0459 0986 32 20408 0544 021 0196 eO125 206 20190 0118 055 0246 0198 209 0296 0287 0125 00319 0332 0155 0350 0400 0185 00394 ° .0508 023 0430 0604 228 0468 0715 035 0522 0888 » 39 00558 1019 041 20598 01167 053 00637 01326 259 0689 01552 70 00739 01787 80 0803 2112 095 20970 » 3079 240 H H,0 o£54 0187 0125 e055 0032 053 0073 e091 2108 0134 0164 e205 228 240 e510 0345 408 0467 555 -818 Average Coefficient 2 c™ oes @ 0 0@8 6@ 8 ®@ NWHNHWDWHNIDN DW WW W019 TW HS 9 1H WD DD TH ~H e.h|6©8 ADDON AD vw on cw OV aj ~J or ~~ gl SAM RAOGROONMGARoOHORAS 2.625 ee