a ePTTTTT TTT TT rite eerrrrerrrrr rr rte tii! i 5 ‘ 4 ' c ; Bs 7. 5 H 5) 5 i . “d ‘ ; ; ' : ‘ . a - . at ! , a ; LIBRARY Michigan S:.:: Universit: — MSU LIBRARIES — “4 + 4 Lo . he “ . . n : t “ ¢t ¢ : 4 4 oO & . . F} , p a % ; a wae, ¢ "a 4s ' 4 4 Re Ws 5 Font & 2 ‘i i b, - Pa PYF A Wek gue Cai , a8 ded ta wf Po at RETURNING MATERIALS: Place in book drop to remove this checkout from your record. FINES wil] be charged if book is returned after the date stamped below. a An Analysis of the i Lansing State Savings Bank Building A fhesis Submitted to . The Faculty of The Michigan Agricultural College BY M. Ae Harkavy R. Ve Perry nN Candidates for the Degree of | Bachelor of Science oe May - 1918 PABLE OF OONTENTS Introduction Specificatiens Moments Loading Dimensions Dead Loads Dead and live loads on floor slabs Wall load on Beams Washington Ave. Elev. Main Floor Messanine Floor Second Fleor Typical Floor Mich. Ave. Hlev. Total load on Beans Main Floor Messanine Floor Pipe Space Floor Second Floor Typical Floor Roof Dead load and eccentricity of columns Sample computations Fleor slab analysis Beams and Girders analysis Colum Analysis Wind Stresses 96912 Conolusion Pages o @ oa a Ff LO L5 16 17 > $668 € S$ & p % oo mm 6} 14 BZ 19 2S 25 £9 5S 55 57 39 47 57 63 Plate il. " Re * Se " 4. " 5. " 6. " Te " 8. " 9. - 10. “ it. " 28. " 13. " Ie "= 15. - 16. " 27. “ 18. “ 19. - £0. - 2&1. " 8. “ #83. “ Phe " £6. PLATS INDEX. Front Elevation (Transverse Section) Footings (Basement) First Floor (Beam Schedule) Mezsanine Floor (Beam Schedule) Pipe Space Floor (Beam Schedule) Second Ploor (Beam Schedule) Typical Floor (Beam Sghedule) Roof Plan (Beam Schedule) Colum Seotions Column Sections Celumn Sections Column Sections Colum Sections Colum Sections Floor Sleb Analysis Beam Analysis Beam Analysis Loads on Columns Colum Analysis Colum Analysis Footing Analysis Wind Stresses Overstressed Ficor Slabs Overstressed Beans Curve showing relationship between p & k. Le INTRODUCTION. The Lansing State Saving's Bank was erected during the spring, summer and fall of 1916, on the south-east corner of Michigan and Washington Avenues, Lansing, Michigan, by the frussed Conorete Steel Company, of Youngstown, Ohio, and design- ef by S. D. Butterworth, of Lansing. It is an eight story, reinforeed concrete office build- ing, with terva. ootte concrete slab floors and brick walle, supported by reinforced conorete beams and girders which are supported by reinforeed conorete colums, mounted on footings of the same material. The basement is devoted mainly to restaurant space, and includes the area under all adjacent sidewalks, the latter rest- ing in part upon retaining walle and in part upon horizontal beams which also support the first floor. ) That for floor slabs the bending moments at center and at supports shall be taken as mS for both deed and live loads, where W represents the load per lineal ft. and L the span. (o) That for beams the bending moment at the center and at supports for interior spans, shall be taken as ut and for end spans - for center and adjoining supports, for both dead and live loads. (4) In ease of beams and slabs continuous for two spans only, the bending moment at the central support shall be taken es ae and near the middle of span as a e (eo) At the ends of continuous beams the amount of negative bending moment will be left to the judgment of the designer, but it must be provided for. LOADING. | 15. Live Load on Floors. Sohneider's Spec. S.H.B. - page 72. Upper Stories - Distributed SOf per sq. foot; Concen- trated S5000¢; per lin. ft. of girder 1000¥ and for slabs Te 1000# per ft. width concentrated at center. First Floor - Corridors and Stairs: Distributed 80F; Concentrated 5000¢; Load per ft. of girder 1000#. 16. Live Load on Colums. Sohneider's Spec. S.H.-B. - P. 74. Use Specified Uniform Live Load per aq. ft. with mininga of 20,000% per Colum. | For Columns oarrying more than 5 floors these live loads may be reduced as follows; For Columns supporting roof and top floor - no reduction; For OColums supporting each succeeding floor a reduotion of 5% of the total live load may be made until 50% is reached, which reduced load shall be used for the columns supporting all remain- ing floors. 17. Loads on Foundation. Schneider's Spec. - 8.H.B. - P. 75. Live Loads on Columns shall be assumed to be the same as for the footings of Colums. The Areas of the bases of Columms shall be proportioned for the dead load only. That foundation which receives the largest ratio of live to dead load shall be selected and porportioned for the combined live and dead loads. ‘The dead load on this foundation shall be divided by the area thus found and this reduced presaure per sqe ft. shall be the permissable working pressure to be used for the dead load for all foundations. Permissablie pressure on foundation - 8.H.Be - P. 75 - 8 tons per sq. ft. 18. Wind Load ~- Sokneider's Spec. - S.H.Be Pe 78 = 208/aq. ft. 8. 19. Snow on Roof - Merriman and Jacoby - Part II - page 36. (Graphie Statics) - 15# per aq. foot of horisontal area. DIMENSIONS. 20. Thickness of Walls - S.H.B. p. 75. he minimum thickness of ourtain walis in steel skeleton buildings should be 12 inches for brick or conorete and 8 inohes for reinforced conorete. 21. The minimum width of web in beams and girders shall not be less than 1/24 of the span. Spec. 131 - page 19. 8S. & Oo He Bridges. NOTE: An equivalent distributed Live Load » to twice the distributed Live Load given in Speco. 15, Page 7 was used and the concentrated load; also the live loads per lineal foot of slabs were omitted. (KXetohum SeKeHe Be Peo 72) partitions were considered as live load. 9. DEAD LOADS. The following unit weights were used in oomputing the dead loads. Common Brick - -~-----+--.-- - - 112# per on. ft. Conorete oinder- - ---------- 64# per ou. ft. Conorete stone --------+----.-- 150# per ou. ft. Terra-cottea briok backing- - - - - - - 1li2z# per ou. ft. Plaster- - - = - - eee eee te ee 5# per aq. ft. Slate on Roof- - -.-..-.-.. - ~=-—- 6# per sq. ft. Windows inoluding frame- - - - ~ - - . LO# per sq. ft. Bronse door- - ----.. ee 2+ -- 254 per sq. ft. All these unit weights were taken from &sROHITECTUAL ENGINEERING by FREITAG - Page 190. These unit weights are @lso recommended by KETCHUM - S.EB.H.Be - pege 69. Wood was taken as 3.5f 1.7.B.M. Hollow Terra-ootta. 1 - 4" X12 X 128 block = 16 1 ~ 5" X12 X12 blook = 20f 1 - 6" X12 X 12 block = g2¢ 2-7" X12 X12 blook = 27% Reinforced concrete construction by Hool - Vol. II - page 69. DEAD AND LIVE LOAD OM FLOOR SLABS. Lf | YY | | 1st floor. Sections A, 0, & D. & = 4" c= 6" Wt. of floor beam per lin. ft. Wt. of stem 6X4@ 150 = 25.0# Wt. of flange 2X12 X 150 = 25.0F fotal wte- ----------+-+--+-+--+--- 50.0# Wt. of flooring/aq.ft. = 7/8 S.6# I-F.BeM.= 3.1 Wt. of cinder oonorete/sq ft. = Ao ya'x1' Xx ete 12. 2¢ Wt. of Terra-cotta per eq.ft. 4X12X18 = 16.0# Wt. of plaster ceiling per sq. ft. _5.0f Total sqe ft.- -----+--- + ------ --] 36. S# Wt. of floor beam/sqeft. 20 12 . 37. 6f Total dead load per sq. ft. = 713.8F Live load per sq. ft. = 80.0# Total dead and live load per sq. ft. ---- - - 153.8 Seotion B as 6" G6 = 8' 150 s 150 = Wt. of stem per lin. ft. = 8 X 4 Wt. of flange per lin. ft. = 2X12 Wt. of total floor beam per lin. ft. = Wt. of total floor per sq. fs. = 58-3 X12, 16 Other material per sq. ft. = Total dead load = Live load = Total dead and live load = NOTE Terra-ootta, 6X12X128 = Other materials 36.3 + 6 = Massanine and Pipe Space Floors. Seotions A, C, & D. Wt. of floor beam per lin. ft. = d = 4", go = 5" Wt. of stem per lin. ft. BX4 180 = Wt. of flange = 1X12 150. Total wt. of floor beam per lin. ft. =» fotal wt. of floor beam per sq. ftew 2525 X12 16 Potal wt. of other material per sq. ft. = Total dead load per sq. ft. Total live load per sq. ft. Total Load per sq. ft. 33.3# 25.0F 58 .3f 43.7# 42.3¢ 66 .0F 80 .0¥ 22¢ 42.3 20.8# 12.5f 535.5 25.0F 36. 3# 61.3% 50 .0f 111.3# 166# Bae ft. Seotion B. ad = 6" o = 7" Wt. of floor beam per lin. ft. Wt. of stem per lin. ft. 7X42 160 = 29.14 Wt. of flange per lin. ft. = 1X12 @ 1650 = 12.5% Total wt. of floor beam per lin. ft. 41.6# Total wt. of beam per sq. ft. s Si26 228 = 51.2# Other material per sq. ft. 42.3¢ Total dead load per sq. ft. 73.64 Total Live load per sq. ft. _50.0# Total load per sq. ft. 123.5# Second Floor. Seotion A. & D. Total dead and live load per sq. ft. = 111.3# See calou- dation on Page Section B, Total dead and live load per sq. ft. = 123.5# Seotion 0. Wt. of solid slab per sq. ft. = 5 X 150 = 62.5 Wt, of other mterial per sq. ft. = 20.3¢ Total dead load per sq. ft. = 82.8¢ Total live load per sq. ft. = _50.08 Total dead and live load per sq. ft. = 132.8# TYPICAL FLOOR. Section Be & De Total dead and live load = 123.5f Seotion A. & Co fotal dead and live load = 111.5# ROOF. Section A. & Co Wt. of stem per lin. ft. = 5" x 4" © 150 = 20.8¢ Wt. of flange per lin. ft. = 1x12 21580 = L2e Total wte of floor beam per lin. ft. = 33.3F Total wt. of floor beam per 8G. Stn Zoe5 EU = 25 .0F Total wt. of cinder conorete 8 x1lxil eE>-—lUmDlCi™ _-_ ee &. 4G ik eta i ES | | } yh ae tae Fin. Fl.=2000' | ie oe / | (EL. Fin. Fl,=179.0" | : ee Seventh Fi. | | ea Th ae | ae | Pa a Teel aOe £ | atonal elias ae J h ird ao - Ej. Fin. Fl. 137.0 | het tate.) an i m a 1 J el lor— Facosueee Floor - ata ee ee i os lezzanine Floor First 7 El.Fin Fi.=U.0° | an ae) r Pa x "~ El. ate Fi.= Tr) { yr __ . = ret te ae: % oi ssc OS a j oe: Ae TS! we Transverse Section neo Columns 6, 1, 8,and Y. ae.” & c~] PY Weed ta 3-4 |S24 ami) 9-T|S2+4! (fn el = ied ee a oe s 13-9'| S24 | aos k-la 17-9) $24 j2'-7'| $24 | eee mena fied “Sa em a = VR! a my 5-71 S\2 13-G | S24 | el BW on 5 w ff: ee is+4'5 2+ KPO-~ a+ Vad | ! | x/3 dy | S52 1 —< 524 fr: o =p 8-4 524 fl |i a eee nT, -. a - 349" Siz 0" | Si2 ote 524 1 ee ke) an} & aS = r a | 7 £ =e) | the th Ohear | = oY ee S36 | J 's ‘ _ fs ~~ - i | 3 Ceri Ss rs a eT ie ¢) . No Wa i Fel ai eo | ro x des Length! Sheer — ; oo S$ 2+)| 204.5 Oem he 4 ln ne = 1A -F"| 936) vi x /7'-6 3 3G “ ge Paha PE Ld rt Mol Oe 2-5. ete oan e 7 7-9 | C.986 : #*I7-9 | CJe wa - 3 ek KX /8-4'| SRF os el LS: ae ce me Pah a aid 2 + */4-3) 33¢ alt hon ee LY K/4-'-3"| $3¢ z . 4AIG-3 | CR4 y i J * ya oh) i ‘i . Ne io 2 wlk Bea ae was ry ¢ bed Note rectongvlor ep tions for Columns ry) Py [a] & 8 under OIrd.Fleo Ai Slee © Sea Ned A Ti aa ar a s i c®@ oa ar ae) Celumn Ne FW. fee 8 5 Ve oe eis REPS. We — 2 a a 5- | a ms hse rg aa =e ——¥. 2 D Column N26, showing Column Ne \4, showing 8 bar com binaTion. T bar combination. : PLATE (13) \ @ 2z a rd @ 8 A e e a oh a ee | errr N2 iy, | “Ye Bi SS a. Ne ,eCOoOna - * EBA 22 40% | Ph ea SLO6Y £3800 Rosie on Loy | i teley kK 3t00 fe 1 Ce ; a Li: 18 30¢ ; x] rg « / RS4t 06 ery 85 2 Fe] ¥ ere ‘2h > C mere me: . rs Ob - 21 8/8 @| | 5) 8, x ei 17000! 1340 F 5 © ois ‘é on > ; ¢ - Lav Le ere ©) 500) |C ———_——————— —+— é ahs Bi | te iad rs ae Pre perties M,= es Be tn TES Pi 5 tPalt-4) 14:5 18,5 tok) en Mes of sD Ie) G00 2500, 356 18000,276 96000, 216).505) 10500|, 276). 505) (0000, 415 |,505 10000) 4 15! /.28 90000 415'|.758 185.22 2.09} /69 £08,164 18.5)|,208) 169 18,5 ras) i reer ml 4 AlN Aee)e 7K al’) err ook 930 by Re) | 43! me ) | 1 107 mn mea 158 A55 \83 [25000 126000 183000) 34+0|_|40000 1315 | 010000 EE pe aa | 660000 i a edd 19500 Paty) ri soo CEE REEVE ce BEd Ae ORs TAUB od 4.000) 328} |.00 | eae & a [,02| L02| 24.0], 343 ATLL eed 00, 524580 " |286) 412). $000|,524,380| '' |2BAAI2). +300 Sr Re) oN 1 "T000 450! 1.54) Pie asi 7 Tele PALIN PX: Alot ll Fx) Pts tee) tie} PX ele Mob -) reer ee) Su mrey Ld eee Rel So A lo2h| EI wT ae Zi rey Paleo ae 53! fen 403| 423. Ornra mz | 1-18 4 tre ISA SBS| RF | RNs elerere Rel 1 Log | Teed RTs 8000} ed Aaa nw Rin sPel se, ad Te i roe Pe | " | « | ir) 725] 79000 545) \15000 685) /O7000} reared x ae De aL! b12|\240 00d aire TN exe oral IP aerer, ORI 160 13% TATE Pe rantctyd Pees ees) FL eXe Py A=) |OZ00 v4 lex FETS Take ieee 096, B67, 37500 508 844 ALTO) Fs ka Prem: ea smell IF rm IT Pera [70200] ey te)k Ere seY4-d Rear Ro eerste eee ae XR i 4 201 i " | &750 | 306| 147500) 257,814 bere | 675) 49G000 16,895) Fem 22) 760| 525 000 57o =e i Cele, errr EE need eee eT Forel mihi ews re fe 528 mcr ra) ae aa 9007 " | | oso | | | “ & ELIE Rast ee ae ce 271 BY 21.000 | x Te) se aaa Tha! = = MU ea a2 Ea re we — i ae Fal retell PEs 638 000) PLATE @ Sve aT ROY ee A : ee Pe ot le bd * 100. pth of neutral axis to eff. OTT dor vy) of resisting one AES +o rf et - stress in Steel in A ip » Concrete in po" Vs ey ims with dovble reinforcing. >f Compressive steel, tensile " a ‘ra tensile Steel in beam To be vo steel. ss To ana beam Ue Ae as B : Loads A r] on Columns : ’ Column No | Column Ne 8S Tote! aes 4 | San end Abc 94 a hd TY i) aT Ae at: i haan A ) Betel-Rels a Re ag re 2 Bi: ea-T-T el > t 5] A 2 { } 7 en I r \ rt _ Snr: ~ 8 al a eli l:-1aehal Veo > M= Pe x rs of : a | 419 7 we e| “> | 4 I / 84 35 5) KRAaLOO nd w 135 1277255 6 00K mat ole) -- 17-1 Pa Lele) e) Mezz. |.57 #12 ll ol hol ae Supporta| €z-2, P| M=P-e| Roof |/03/|38770|400000 | hi, Floor |.095 | 62590! 5950 [th rT 135| 86255) |/ Goo J 2 Tt “ |,.094///2/55 | [O500 “3a, 188|135955| RECOK ttt WEY Ole se P42 Srd : |.J85 [84355| 44000 And |.J00 |217255| 21726 Pipe Space|.200|230965| 46192 Mezz. |.224\253825| S5¢500 lst Floor F410|R6593I5| 55600 Supporfg) P ooTy el — my ace A ee - 10 5 = es LU | /60255 | |6 | J6 RS , | /84355| 18! je] 32 ray. RITZS5S5 | RO! Zo! 400 pe Spoce| 3096S | RR} 22] 404 a (SY) - 7S i oor |ROES53I45 awa 13:2 eg eee, dnd A)*2L6 = 60000". = FI 4(2540=/47 0000 hd ‘_g2xo7) 42 467).9REXxZO ba re] es eek x a i ae 2 sae mabe) "at center & 750%" of supporTs. kell oer alan eas Toye hani heat fs Fe + ae I — an Shear Overstressed Floor Slabs Bond Allowed Stress hi? aay Se, FS PS Fn eg Ee Par Pea oe ee a | ag TT sd ee i re Ee Sea em eae ea aa @ | 96+| L|.ser | —| —| » Pe XS es CARY Ye Oe ee Tae ee a ee Pra fi] SE eee oe) ee | TES Fay Pe ED IR ay PIE RE Heke eae b ” =" Lesh ket® IN Male alk) k-20 Be Ld 1-20) Aah ae hal A a sulunjon POSSPALSADAD jooidhy | foo Mezzanine u uv =] a (9) 7) o c anes Overstressed Beams Note: Results of Main Floor Beams are not Censored as not enough data wos obtainable 5 oka ae To PLATE @s) Curve Showing relationship between & and p. | cent Sen a ee a ee from Ona Corresponding a) adh of a a TTS aT ey Te, 2) | PR, = Pe ety) FreP, are computed from formulae} * se 7 =R -P2 xX is Scaled, as in illustration. Letters in older er explained on PLATE € In pocket on right is contained the 25 tracings of the 25 blue prinvs inciuded in the text. Their number and title are:- Plate 1. Front Elevation (Transverse Section) Plate 2. Footings (Basement) Plate 3. First Floor (Beam Schedule) Plate 4. Mezzanine Floor (Beam Schedule) Plate 5. Pipe Svace Floor (Beam Schedule) Plate 6. Second Floor (Beam Schedule) Plate 7. ‘Typical Floor (Beam Schedule) Plate 8. Roof Plan (Beam Schedule) Plate 9. Coluan Sections Plate 10. Colum Sections Plate 11. Column Sections Plate 12. Column Sections Plate 13. Column Sections Plate 14. Colum Sections Plate 15. Floor Slab Analysis Plate 16. Beam Analysis Plate 17. Beam Analysis Plate 18. Loads on Colums Plate 19. Column Analysis Plate 20. Colum Analysis Plate 21. Footing Analysis Plate 22. Wind Stresses Plate 23. Overstressed@ Floor Slabs Plate 24. Overstressed Beans Plate 25. Curve showing relationship between p& k. Roof Eighth Fi. Lod ieee tal £F4 Fin. Fl.szo00! LAL rr a a al = ‘ le = e Sete ee ——— meee TT } - a . HTN 3 1293 03084 8935