J. S. HARTT | a te y nat . TESTS ny A Do UNIT Tne era 1) ite) os wi?) eee A. W. BARRON THESIS = 0 he ee ee Ht mee a me ee te ae ee ee > mS x Ag © bang ta] Le Bee we ee ee ee COMMERCIAL T: STS ON A THREE UNIT “OTOR Gi'NiSRATOR SET, A Thesis Bubmitted to The Faculty of “ICHIGAN AGRICULTURAL COLL:GE By J.S.Hartt E.F.Holser A.4.Barron Canidates for the Degree of Bachelor of S3eience June,1915. DEDICATION As a Yark of Appreciation for the Unfailing Courtesy and Interest Shown to Hach of Us We Respectfully Dedicate this Thesis te MERTON ‘AAINE CORY EE. Teacher and Friend, FREFACE In accordance with the custom of this college the seni@ engineering students prepare a thesis during the last term of their course, as a partial fulfillment of the requirements for the degree of Batchelor of Science, The benefits to be derived in carrying out a thesis we believe to be many fold; it gives one an opportunity to outline and do something ace cording to his own ideas and also to meet an engine: ring probe lem more nearly as it will ce met in actual ecx:erience after leavinz college. After a careful investization of past theses and present Buojects available, we decided that many of the probdlexs treated were somewhat veyond the capacity of the ordinary colleze senior and are capabdle of veinz solved only sy men of more nature jud.rnent and experience, If some of the solu. tions offered were to be actually tried out they would doubte less be found imrracticaole coanercially and inconsistent with good enginerring practice, wiich oftea devends as much unon experience a3 uron pure ti:eory. Cur reasons fr slectin: the subject chosen were four fold; Firat, this is a phase of electrical work in which ve were especially interested; Second, the «lectrical derarte ment was reasonavly well equirped for carrying o1 the NeCER8@ ary vork; third, we velieved that the Strenge ca ined would be of rractical value to us in fiture work and; Fourth, that previous lavoratory experience, claserio1 vork, and available information ha@® qualified us for the work at hand, It has not been our aim to see how any different tests we could carry out out rather to obtain the best possible re~ Sults on those tests which we did run. Several of the tests were repeated when it seemed that the results obtained on the firet trial were erroneous. In many instances, by retesting, we have been able to eliminate difficulties and sources of error which were encountered during the first run, TABLE OF COUTENTS, Page. Introduction. « « = «= «© «= «= «© =e a«« «es eee } Instruments Used. - - 2 = 2© 2s 2-2 ese © e es & 3 SECTION ONE. Direct Current Hotor Experiments and Results. - 4 Celd Resistances. = = «© «= «= = a2 e«2e« se ee eee 5 Moter Saturation Test. «= =< = <2 <= -2« «2-2 - = 7 Generator Saturation Test. --«-= «© =©=s#=« «es ee 9 Brake Tests. = © © <2©« «328 e 2= ee ee ew ee e jl Motor Regulation, ©« «© = «© «2 2+«-e«-2 2+ - =] 18 Generator Regulation Test. = « = «= © © «© «© «= » ld Bar to Bar Voltage Test. -=-*-<*2«*« e«# 2+ 22 <= 20 Core Loss Tests, - © = = «© «© 2# «ee 2# «© = = = 25 General Conclusions, - - «= <©«« «2 <«#=s#=« 2 = = 34 BECTION TWO, Induction fotor Experiments and Results, - = = 35 Cold Resistances, -----222+-+--+----+-= 36 Predetermination of Preformance. - - - = =--+ = 37 Brake Test. «2 8=--= 2228 2-2 22 +--+ = 48 Motor Regulation, - - -« =< «2© «© « -« «== =e 51 General Conclusions, © -« © «= «= «-«=+-#-++ <2 52 SECTION THREE, Alternating Current Generator Experiments and Results. wee eee eee eee 53 Cold Resistances, - = * © = +s 2s 2 e««# ee = = 54 Regulation ef Alternating Current Generator ( BE..F. and M.M.P. Methods). - = = - = 56 Regulation of Alternating Current Generator ( By Actual Loading).+ -« - © © = = «© = = 61 Comparison of Reguiation as Determined by Different Methods. - +--+ += -+---+- 2 63 Brake Test. ©- -© © «© 2s © w© @© we ew ew ew ew we = ow 64 Synchronous Motor W Curves. - - = <= = -‘= = = = 67 Cere Loss Test. --#-2«-2= = 2 e©® © ee = © © w© we @ © 70 General Conclusions. « =~ «#8 <«#«2-e*#+-+ «= 74 INTROCDUCT IGN the object of this thesis is to nerform a series of tests uvon a three unit motor ;enerator set situnted in the College Llectircecal Laboratory, in créer to determine the sere formance and characteristics of the macnines. tne unit comorises three reneral anc distinct tyvves of slectrical Apoaratus, ninely; A Direct Current '.otor, an Ine duction “otor, and an Alternating Turrent “Cenerator. The name plate cata of the individual michines is as follows:e- (1) General Jlectric “irect Current "otor. shunt iotor squinvv,ed with inter voles. Noe 325698 Volts 220 Anns. 38 H.eP. 10. Soeed 700/121. 00 A poles. Equinped with a Cutler hanmer Combination Starting “ox and Speed Rerulator. (2) West@m Slectrical squirrel Casc Induction ators Noe 39562 Phises 3 Cycles 60 HeP. 10. Volts 220 Afio3.e 26 K.Pelie 1800. The Stator is 4 vole and deltx connected, ecuinved with a otarting Comoencsatore (3) Alternzting Current Generator. ioe 163456 Form A K.W. 10 Cycles 60 Yhnses 1-2-3 Volts 220 Amps. 26 4 Pole R.P.7. 1800 nquinoped with a *ield iheostat. These michines are mounted on 1 cast iron base and cone nected tosether by means of flange couplings with a leather washer between to »orevent bincin,: »n¢d insure flexibility. The Incuction “Notor is rigidly bolted to the base in the center with the Direct Current Hotor 2nd Alterniting Current Generre tor on the ends. The end machines are e-.cn fnistened to 2 screw whiien is used to separate the machines for testing 18 Sin;zle units. >revious to actual testin,; we consulted several books on Slectrical ‘Testing written by imen identificd with that line of work. iext ve outlined the tests to be verformed and the methods to be followed in conductinz the tests. In rune ning the tests no attempt wis mide to vc. form them in any definite or »wrecetermined craer, the governing fnetor veing the running of a test wnich required the least overehaulinzg of the macuine fro1 the previous test. The results were then worked uu,» and reccrded in ths: followings order:« wection I. Direct Current ! otor ixveriemts and Kesults. cection II. Induction !otor " a " section III. Alternating Current Senerator xperimerts and i.egults. lieferernces tsedie The +rincival ieferences used durin:; the »revaration of ti.is tl:esis were; le Gomuercinal (-Lectric testing, by _. «. Collins. t¢ =o exveriments, ‘irect Current, by lei. Cory , “ele 4 2e ‘ates and 3- " " " », siternatine ", by '.i. Cory , beh. 4. wxXNeYAimental iilectrical .nginecring, vy V. Karanetorf. e. Alternating Current Jschinery, by oneldon < Kagon. Instru:sents Used Make Kind Nfg, No. Range Thesis Wo, Veston D.C, Ammeter 616 Q - 50 Amps. 10 " ew 3562 QO -100 * 11 " oo 2193 0-15 " 12 Weston D.C. Voltmeter 3414 0 #600 Volts 20 " eu 6792 0 «150 " 21 " .* 3562 O #300 " 22 " “8 1690 QO «150 " 23 Weston fattmncters 207 O- 3 K.W, 30 " " 208 0-3 °* 31 Weston A.C, Ammeter 8889 O - 5 Amps. 110 " “on 6153 O- 5 * 112 " n 8 6177 O-5 * 112 " nM 8592 QO-5 * 113 © 6978 ye 2 114 Weston A. C. Voltmeter | 6297 O = 500 Volts 120 " " 4143 0-500 * 121 " " 6322 O- 500 8 122 " " 4547 0+ 500 * 123 Weeton Current Transforner 330 25 - 5 Amps 130 . . . 325 25-5 * 432 . . . 352 5025 8 132 " . . 349 50 = 5 " 133 " " " 124 100 = 5 * 1 34 Veeder Tachometer 140 300= 2000 R.P.M, SECTION ONE DIRECT CURRENT MOTOR EXE RIMDUTS AND RESULTS. THe Compouno D.C. Morton StTarRTER AND Speeo ReGuratTor ae a 220V Lime | e FIELD CONTACTS. Natu Pe Leola ae erst Io VOLTAGE RELEASE aiid piel: ae ae t ) i \ } T i i jl i ee Py os @ FIELD ike arate THESIS — H.H.4yB. ts) COLD weSISTAYCiS Cs DILECT Clin T PCTGR. The resistances of were measurec by the drop determined. temperature of tne windin:: Inst. No. Constant Inat. No. Constant Shat is by a> bs 64.2 f202 6 9509 105.5 110 120 130.9 134. 3 139.4 22 202 60.6 3 . fore 86 the dlying Chm's Law, viz; Is @/R. s was 20° Centi crade. THOT LATA Shunt Field Resistance, rt I I (corr) (corr) 0.01 63.2 27 0297 1909 30 oz U4. 3 36 0343 94.1 40 ° 381 103.5 44 e419 167.38 46 0439 11/2 50 047& 120.4 54.2 0522 137.1 58 055 Averaze Internole iiesistance EB I I (corr) (corr) 1O 1 1.202 20.9 21.1 1.46 25-5 25.6 1.536 and I, and arzature B® and I, A’ curve was then plotted with field anorres ng ave gscissae and arnnture volts as ordinates, Motor SATURATION TEST. D.c. MOTOR CONNECTION DIAGRAM. ao | a Crh re S FIELD SY > \ 9 \Q ‘ N - | Lele e ast rele MOTOR APPARATUS USED NO KIND RANGE i WESTON D.G AMMETER O- 1O AMPS ] ut FF VOLTMETER O - GOOVOLTS THESIS - H.H>y, B. I9is OD TOST DATA FOR BOTCON SATURATION Toot. yield Armature B I YM i RPM. Inst. No. 22 11 20 12 140 Sons tant 2 eQ1 1 1 1 19.5 1S 105 967 1200 22 17.2 10 6.9 " 26 20 11 6,12 " 29.5 2?,2 129 6.23 " 32 24.5 137 5.07 . 37 PUD 157 009 . 42,2 2.3 170 DV a 47 36 187 5.1 " c2 40 205 4.35 . 60 46 230 4.1 e &6 50 250 3.75 " 66 50 25 - ” Corrected data 33.2 0143 102 G68 1200 4207 2 164 104 OG " 4, 2 Ad 215.6 cea “ bu. 2212 127 O71 “ 00.9 0233 134.9 50095 a Vee e2/l 154 Def . 80.0 2 307 167 5.0 " 83.8 ° 343 omras Cea . 98,1 etul 200 4°39 ° 112.6 2439 225 4.1 f 114.5 0476 245 3075 " 214,5 .478 253 -° " v4 R37EneT p so “ = Ree ’ AT ee MSOEr .~ | ‘.one + q IZ5V Storage Battery. APPARATUS RY) KIND RANGE , WESTON ‘D.C. AMMETER o-/0 AMPS. ij « rn VoULTMETER © -300 YoLTS. THESIS - H.-H.%, B, 14915. | aa BoP ay Ve be . La BRAKS TusTS CW VIRECT CUNLUNT I CTOR. The motor waé connected in series with the booster set and run for about one and oneehalf hours at nearly full load to werm up the windings and a>yvroach, as nearly as vossible, normal runninz conditions. The load was then thrown off ind the s»,ecd made as neare ly S00 K.P... as rheostat on starting box would vermit; holding the line voltage constant at exactly 220 volts; readings were taken of line volts, ampers inout, K.P.ke, and weight in nounds. The weicht vas increased in 1 pound increnents fron 9 to about 125% overlond. The test was reverted at 1300 KR.P.H. and 1800 R.P.H. Curves Curves were then plotted for each speed with horse power outout as abscissae and Anns. inout, efriciency, .P.i., and torque a8 ordinutes. “rom tnese curves and from the action of the motor it is seen tnat the coeration of the michnine is better and it has a yreater efficiency at SOC speed. Brake Test on DC, Mortor. CONNECTION DIAGRAM. — BRAKE ARM eae SCALE INTER POLES BOOSTER MOTOR APPARATUS USED NO AIND wh clad i WESTON DC. tees idole ae 300 VOLTS | = DC AMMET ome Wil a) | SCALES te Be PRONY BRAKE i Bea a SET unl) ee a hone Const. Inst. No, Cone t, ~ £2332 23 82 Ba 338 8%) 33 32333 8 #3338 S-mwez2a2ss33 322222323232 Sa e Oooo s SINR UA “JIO\ & A) we RP. 140 1 710 (23 7135 720 702 P CUNIUNT wov0Rr (Crigonal) Load lbs. WiLL COINS ONT Pw 39 40 41 4} 12 bg NO Ssasseuezeanuseasazrnszea2nzsecscheanzsaesanzsan20a 2328285) O eee ee & «6 @ ee WOWW0O0 HR OOO WAN UN FO OOO’) PW 1 M0 CONN > SRAWMUIEUT FS PPA HAA HwWwWwwwWwWww dA) BRAY Rt de ~ PUNT UAR RT FAVE OO DET OPT OM Ni. awe ,. Alu! A be RPM. 779 707 774 710 963 767 766 762 FOL 75a 7957 742 73) 744 747 742 7 36 73° 73° 733 731 722 720 715 Net Brake Loak NO SN ON Bw AO eo o© » © «© @ «© @ ~J Speed 800 R.P.N. H.P. input 1.9 2.02 2.43 2,32 3.68 51 3°34 “ON OR Veg ote 2 ‘9 SCO ONIN NM OCR P RaW UNH AERO OG e e e e e e e ® e e e e e e e e -¢ (Corrected Data), P = e J Sf e ct PON e °@ On & FR OOKN TS COMO OP COUT DY CON OP Ms O PO PMI POC NM Ww fy P Clow Cola On Ww sO e Ore ‘oO 3 0 a ~ © e © ~~ 10.21 10.66 10.83 11.19 11,65 11.53 11.71 12.29 12.39) 12.85 13.22 13.2 Torque 0 o, 88 9, 30 11785 1a 0 38 16.00 19.38 21.83 24.30 20.80 29,33 31.83 34.33 38733 39. 33 41.383 44.36 40°28 49.3 51.58 54, 33 [6.00 59.30 2i°ga 64, 33 66. 69,38 $4.38 76.80 9. S83 34.38 806.88 39.38 89.38 01.88 94, 38 96,88 99. 161188 83.2 OOO CO OMG LIN) COAT & fe “~~ Pd SJ MCOCIOM COMM COCOMDOOOM e ON ON CO COUT F* pt PLN WO OO OH YY & Nw AW A NW ND MBit DO 13 14 BRAK! ist ON DINCCT CURRANT 7 OTOR. (Orizinal) E i R.P.M. Load lbs. Inst. No. 20 10 140 Constant i 1 1 225 4.1 304 0 . 9.5 1305 5 “ 12 1290 6 " 14.5 1270 7 " 16, 1273. 8 " 18.75 1270 9 " 21.25 1260 10 " 23 1254 1i " 25 1240 12 . 27.5 1235 13 " 29.25 1222 14 " 31.25 1205 15 " 33.5 1190 16 " 35.5 1170 1 “ 36.7 1162 1 " 39.5 1150 19 f 41.56 1147 20 fe 44.3 1150 21 “ 45.5 1130 2? " 47 1110 23 " 49.5 12080 24 " 50 1055 25 . 53 1055 26 * 57 1060 2 " 53 1045 2 " 61 1040 29 " 61 1025 0 nN © Z2aaeaezreszszsasaeaagesesaeaeats2e B&B 8tB 8B 2B ZAJ BRAKE TEST ON DIRUCT CURRMIT UCTOR, (Corrected data), Medium Speed. Net I R.P.M. Brake H.F. H.P. Torque Load Input Output Eff. 4.3 1324 0 1,27 0 0 273 1305 rg er 3. 678 60.4 ® 90 e ed | ° 34 14.6 1270 3:f2 3°3 24 13°83 66.9 16.6 1273 5.75 84.9 3 Sl 14.38 18.9 270 6.75 5.57 4.03 16.53 73.2 21.45 260 7.75 o+ 32 4.64 19.38 73.5 23.15 1254 8.75 6.82 5.2. 21.88 76.7 — 25.1 1240 9.75 gt 5.76 24.38 77. 27.55 1235 10.75 wll 6.31 26.88 77.9 29.25 1222 11.75 8.62 6.85 29. 33 79.4 31.25 1205 12,75 9.22 7.31 0331.88) 79.5 33-2 1190 13.75 9.88 7°79 = 354. 38 36.7 1161 15.75 10.81 8.7 3?- & 39.5 1149 16.75 11.66 9.16 208 78.46 41.5 1144 17.75 12.2 9.67 44, 35 «73.8 44,3 1149 18.75 13.0 11.24 40.08 78.4 45.5 1229 19.75 13.41 10.6 49-38 7 47.05 1103 20.75 13.9 10.91 é 78.5 49.7 1077 21.75 14.68 11.13 76 50.2 1051 22.75 14.8 11.39 56 76.9 52.9 1051 23.75 15.6 11.9 3.38 76.3 Ze.8 1056 aa 78 16.78 42642 éi 28 7.9 1041 25.75 17.1 2.7 74. 60.9 1036 26.75 17.97 13.1 66°28 73. 63.9 1015 28.75 18.85 13.9 71.88 73. BRAKE TEST ON DIRECT CURRENT “OTOR (Origonal) Inet.No. Const. a Z2s3322228 2N9 mM Oc > ~~. sSBS8t8sa2tststssaew3w7m Fs st 8 WF ~ © WOOO SO O OUNNUTUTRAMNUTAIT OWN Onn OOWOUMAN A PA BL ND Yee A NW C OPO CO OI OE MOV A WW OWN 16 2 © BEM TST CU DiIRUCT CURGAG MOTOR, (Corrected Data). Speed 1600 R.P.M. ZzsaoezeztsztF2tRaeszs2teaeteaeszksaezaesasestsbaeszdztse 3 8 Net ° Z N.P.. Brake HP, ¥.P. Torque % Load Input Outout uff, O. 1827 ) 1.05 0 Q 0 1778 2.75 6.01 2.32 6.88 57.9 1749 3079 4 2. 3.22 9636 63.5 170 4.75 5.6 3.9 11,60 69 1660 5.75 e7 4.55 14,438 68.2 1675 O.4S 7.26 e390 18S 74,5 G15 7095 797 5G 14.530 374.7 1600 3678 3.7 6.66 21.35 76.5 1525 0.75 9.29 7007 24,36 ©7043 L4¢0 10. “5 10.17 7.64 26,05 95 1450 ll. 06 10.77 oO. 4 29.6 Be 7502 L460) 12.76 22,05 §.o2 31.08 79.7 1390 13. “2 11.62 Ged 346 3 731 13490 14,7 11,94 G.42 3G.0C 7307 1320 15 98 13.92 9.4 Beene 7569 132% 12 95 13.4 10.5% 79 1370 17.75 14.5 11.6 f— 30 0 1349 13.75 1549 11.97 46,0075, 2325 19.75 17,2 12.45 49.35 72. 25 1279 29.75 1”, 39 2.52 ri. 726 2 1 1235 21.75 = 16,29 2675 94. 69.9 2 1229 29,45 18.41 13,2 bG.0G 71,6 ot a - Ltding” BsM0g 3S80Rn = : ¢ tity tl ; Hits 3 yD 5 Oar aye 9 See" | PGySay Tn psa DUeD rSce » 4 Se: ‘aes a OGG RSeR RE TATE Sy Ln eweER FoR rf wes : heen rome ee Pic baO a eeSRAO Oe Or emer wel res 9 Oris er Hh Rel i8 MCTOR REGULATION, From data obtained from brake test we fisured the speed regulation of the diredt current motor by means of the followe ing formula, speed regulation — 20. 108d speed — full load speed ~ full load speed From the data, it is apparent that the machine gives the best regulation at 800 R.P.LM. Regulation data 229 = 720 — $9 — 9.72% 1324 shh 2h W 20h = 17.87% - 1400 . 427 . 30.45% 400 - “{400" > 19 DIRGC® CURRENT GiucQATCR RUGULATION. Ye tried to get a "Saw Toothed”® reg: lation curve by running the direct current machine as a shunt generator. With rheostats in the field odrouit adjust the field cure rent to give 220 volts at no load, then put on oneefourth load current, note terminal voltaze, Then the field cure rent and load are adjusted to zive °20 volts at one-fourth load,and one-half load was thrown on, repeating this operae- tion until the machine was carrying full load then open the field ewitch and determine the rise in voltage, From this data the curve can be plotted betiveen armature volts and anperes load showing the voltaze regulation, Wnen we attempted to perform tiiis test we found we found that fron 0 to ~ load and at 1485 R.P.%., the voltage would drop from 220 to 50 volts, then after raising the voltage to 220 ve found that the nachine would carry only @ little over ¢ load vefore the voltage would drop to 9, also, when the load was thrown off the voltage would rise to about 1000 volts and flash over tne connutator. At highe er speeds the generator would not carry ¢ load. Not being able to zet a low enough frequeney to run the induction notor below 1456 8.P.M. as a crivinzg motor, ‘ve had to abandon the test. Prom the above results it is evident that the direct current machine was built 28 a lov specd motor, D.C, BAR-TOeBAR VOLTAGE THST, The motor is so designed that it has four sets of doubl« brushes around the coimtator. One vorush fron each set was raised and a band of fish paper about 2 inches wide was fastened around the conmutator by eans of strings tied “to the brush holders, ‘The fish paner had holes drilled in it a distance apart equal to the width of one coanutator bar, and the holes extending over nore than 360 el<«ctricl dezrees, the first hole placed about aidway between two brushes. ‘Then by taking two soft lead pencils attached to the woltmeter leads, the voltage between the first hole and each succeeding one was rcasured, the machine running under the followin:: econditions;- (a) conpensatinz winding in, in- duction motor and A, C, zenerator rannins free; (b) coanpcn- satinz winding in, A. C. generator loaded; (c) same as (bv) with ecnpensatinz windinz eut out. then by plottinz voltage azninst electrical dezrees we have the wave form. . The numver of eo wnutator bars vce inz expres3ed in electrical degrees, that is 1 commutator bar a 720/97 = 7.42 electrical dezrees The curves show tiat the neutral point shifts for dif- ferent loads, This i3 due to the fact that no load there is zreater fringing vecause at full load there is less local field duc to sreater arraturée current wiich neut#alizes some of the lines, Cr in other worés tiis ia due to armature ree action, Compensating winding in, generator running free, Inst. No, Constant Bar WON OM AW D.C, DdAR@ TQO-$BAK VOLTAGE Induction i (corr) 98.1 95.6 81.4 -69.9 -46 © 3209 Th wen ; 4 ed a DATA, Ar .ture E N MON se b Z2astsaaeagszkzssasodzeses&8B F&F BBS SH “otor and A, C, Arma ture I 1 SBaessasaestsazseeaesezeezeaeztsasaeaseweae ease eszeeoesaaezeaeesezeasaeaesazeseaaaeseszase Bs eazva3sa 8 fF BS BA OO Bar nm RB Armature Axrymatue# (corr) i I 48 220 “19.8 114 3 49 -7 - " " 50 6 i n ” 51 19, 18.8 " " 52 30 29.5 " . 53 45 44 " " Compensating windings in, A. ©. @ cnerator loaded Armature ArmatusB Bar r on B I (corr) Inst. No. 2l 22 10 Constant I 2 1 1 12.5 12.5 114 25 2 24 23.7 " . 3 36 35.3 " . 4 46.5 45.5 " " 5 57 56 " 0 6 62 67 " " ( 76 74.6 " " 82 80.4 " " 9 84 82.4 " " 1o 86 84.3 " " 11 86 ca 3 " " 12 87.5 a5. . " 13 U5 83.3 " . 14 82 80.4 " " 15 S21 79.4 " a 16 79 77.9 " . 1 70.5 69.3 * " 1 61 60 « « 19 50.5 45.5 " . 20 35 34.3 " . 21 20.5 20283 # " 22 6 " " 23 - 9.5 ~9. 5 " " 24 “21 =20.8 " " 25 -35 “34-3 . . 26 a 4+) ah " ” 2 -59.5 -58. . . 59 “A 20 30 #90 “88° 3 " ® 31 -100 ~9%, i " " 32 -108 ~105.8 f " ry" é& Armature Armature Bar 1 y " I (corr) 33 -114 -111.8 114 25 34 116 -113.8 " " 35 #120 ©117.8 " " 36 -120 -117.8 " . 37 “11 “116.8 " " 38 -1l ©115.% " . 39 =116 ~113.8 " e 40 -110 -107.8 " " 41 -107 -104.9 " . 42 “101 “#9 " " 43 91.5 “09.7 . " 44 -75 -73.6 . . 45 ©61.5 -60.5 " " 46 @43.5 =42,5 " " 47 -33 o 32.9 " . 45 20 ~19.3 " " 49 ~/ °/ " " 50 7 " 51 19 16.9 " . 52 31 JV.0 " . 53 44 43 " " Compensating winding cut out, A.C. generator loaded. Inst. No. Constant Armature Arma tu re - Bar i iE L I (corr) 21 1 i 26 1: 1 12.7 12.7 114 25 2 25 24.7 " " 3 36 35.3 " . 4 46 45 " * 5 52 51 " " 6 2.5 er " " ¢ 72 79. " . 8 73 76.6 " " S R3 81.7 " " 10 83 31.7 " " 11 $2 00.4 n " 12 89 7305 " " 13 74 2.7 « " 14 76 74.7 n # 15 65 64 " " 16 5765 56.5 " " 1 5 52 w 0 i 4 49 “ " 19 25 24.7 " ° " " 20 12.5 12,4 Armature Armature Bar Bi B I (corr) ai - 3? - 3.5 14 25 22 -1 “17.8 f “ 23 #26.5 =26,2 " " 24 @42 @41 " " 25 ~58 -57 . . 26 71.5 -70,3 " " 2 283 ~81.5 . " 2 -93 291.2 " . 29 ~99 “971 " . 30 #113 ~110.8 " " 31 #121.5 ©119,.3 " " 32 e131 e1l2::.5 " " 33 2135 ~332.6 . . 4 -139 -136, . . 35 ~139 ~136 . . 36 2136 133.6 " “ 3 #132 ~129,5 " . 3 126.5 0124.1 " « 39 -116 -113.8 " * A0 #113 -110.8 " . 41 elill -108.8 “ " 42 e112 ©109.8 " " 43 a) #88 ,2 " " 44 “75 -73.7 . . 45 -62 +61 " " 46 ~ 44 =43 . " 4 - 34 33. " . 4 «20 @19. " . 49 “7 -7 “ . 30 7 7 " . 51 18.5 Lo 3 " . Cort GS WIG UY a eID CP AI CTACCTING, A2U.P. Direct Currcnt aotor vag used to drive the D.C, machine thru a flanse enunlinz. The cold resistaie: of the driving motor was first taren, then it was senourately excited and connected so tnat readings of arnature volts and anncres, and speed could be taken, The vest wag then enrried out 1s Lfollowa:e ‘The field current of the driving iotor was adjusted tt. 2v0ut aormal value and held aonstant througnout tne test. The motor to be tested was driven first vithsut any field exeitution aid readins3 taken of inout to the driving otor at several speeds; third, starting witn the orisnes down and O field excitation readings of input into the driving .otor were taken as the field current wis incrensed fron 0 to 125 nornal at the fol- lowing sperda, 800, 1300, and 14600 R.PWM. ovhe driving motor 723 then diseonneeted and ita input neasgured hile rinninz free, The difference vetweon the invut to the driving motor when the vrushes were down and when raised zives the brush friction. j3y subtractinz the 17R loss and iniut to the drive int notor at 0 load fron its invut at each Jifferent field strangth the core loss was fizgured for each point. Curves were plotted witn field anperes as abscissae and core loss as ordinates, also with R.P.AI, 23 avscissae and bear ing, orush, and windfriction as ordinates, ana ov Pe uo [ve Gore Loss TEST. CONNECTION DIAGRAM D. C. MACHINE tae (25V_ BC. | eee MS 2 ss APPARATUS USED KINO RANGE D.C.AMMETERS (WESTON) 0-50 AMPS 0-/OAMPS D.C VOLTMETERS » ern WATTMETERS ~~ FIELD RHEOSTATS. LINE ” THESIS - H.H*,B 1915. COs Less TuST (Ordigonal) Driving “otor Running Free. Arm. Inet.No. 30 Const. i 2076 oil 0135 2126 20 eel5 0235 Inst. 40. 30 Const. 05 Driving Motor Arm, ry, inet. No. 30 Const. 05 0108 24 29 0 354 »429 .429 © 353 362 229 6237 "104 013 oe rord WN VNNNMNNN e e COUN Pw MO WN io bm 6 e e e e ® \O CATT PN RO LON Mn oN (vith the Grusnes) Arn. Field bie Se 2 23 1 1 36.5 45 46.0 " DDD " D204 " 74.2% . . et Gi 35.21 " 45.0 " 54.0 " 63.5 " 73-2 " 72.0 " 51.5 " ReoePoe 140 795 1000 1200 1490 1605 1705 1500 G00 1000 1200 1400 1690 1700 1400 Running Free. ({Asainst the rushes) Arn, qi. 12 1 ee2er ef © «© @ @ NOT SMU GATS HO RH em PO 1050 NAP NM NM e V5 un WD POM ONO Ari. Yield bie ive Pd a3 1 1 54.0 " 63.0 " 7220 " 60.5 " c1.0 4 75.0 " 71.5 " 62.5 0 53.5 " 45.1 “ 36,0 " Releiie 140 1 1090 1200 1400 1600 1800 1300 1700 1600 1400 1200 1000 od Brushes Motor. Inst.No. Inst.No. Const. CORK’ LOSS TEST DATA. (Origonal) 278 - 373 OO O=3 OWN Ply Crk AON On) e e lw Ovuv10 own out, O field, of D.C.Machine; input to driving Field Be R.P.M. 23 140 1 1 45 800 " 1000 " 1200 " 1400 " 1600 " £00 " 1500 Brushes Down, 0 field,of D.C.Machine; input to driving motor. inst.No. Const. Arm. I, 10 9.2 9.8 10.25 10.6 10.9 11.9 Field R.P.M. E. 23 140 ) 1 45 800 " 1000 1200 1200 " 1400 " 1600 " 1905 " 1805 CORE Los3 est (Crigonal) Brushes down,field excited,of D.C, itacline, Driving “otor nC achine Arn. Arm. arm. Fie Arm, wield Sield HPN. KW, q. Q i i i I Inst. 30 10 21-23 20 22 11 140 Const. 2 1 1 i 1 1 OL 1 ol&5 G7 49.3 45 8.5 0 0 800 ~19 9.25 39.7 " 20.0 Le 5 " 219 9.25 39.8 " 25.0 lo (5 " 01 G5 G4 39.0 =" 23-0 ie 9 14.5 " 020 G26 39,4 * 74.0 10.5 " 2202 9.7 39.5 ™ | 9 O67 . e215 10.25 40.0 " OG 70 29 " 6222 10.65 36.5 "108 ae 33 " o235 11.4 #+%.49.0 "% 133 100 41 " 0245 112.75 40.3% “ 145 Lo 45 " 025 11.96 40.5 * = 156 129 49 " 226 2.35 40.7 #* Lb 1390 5 2.u " © 37 41.2 63.7 45 14 0 Q 1 300 0375 11.4 63.9 * 30 10 4 " 2376 1115 63.6 " 45.2 1S Oo " 23909 12.665 GHD 8 3500 14,50" 32 12.9 3.7 * 39 40 16.5 " 240 12.15 64.9 *% le 50 29.5 " 0421 12.5 64,3 nm 155 49 2567 " 048 13.25 65.0 7 1978 OU 33 " 0477 14.2 64.9 *" 21b ny 43.2 " 0405 14.45 65.1 " 233 119 44.9 " 051 15.1 65.6 7 257 1% 49 " 054 5.50 6.0 FBO 130 53 " Driving Motor Running Free. (With the Brushes) Field £E. (Corr) Watts (Corr) 79 75 110 100 135 129 166 160 200 191 215 205 235 219 ATR. Res. 039 99 0 585 059 058 “38 058 “38 0379 ©5373 0373 0571 572 6572 Arm. I. (Corr) 2ei 2ei 203 2.2 2.4 2.39 2.46 205 2.6 2.55 2265 2.69 207 2072 *~ - Loss ~ eo @¢@ WAN 0x0 ee ee ee ee ee NM €oOoO Ovo ne lw we PP PP PFW Ww WW AL eo ® i ~~ Laid C3 RA Nas 1 AW UU WA GAR ® eo eo @ “CO PW WOOP WOOD Of “Js wh Watt ran" 76.4 72.4 106.9 1071 131.7 125.27 162.6 156.4 196.1 197.0 211.0 201.0 230.8 214.8 ew CORE LOSS TEST (Caloulated). 4 ad | Exle Input 70.4 73-5 105.8 96:8 133.0 126.9 136.0 138.3 194.5 19305 211.0 209.0 224.0 220.0 Av.of 2 Read's 7404 107.0 128.7 159-5 191.5 206.0 222.8 (1) (2) (3) (4) (5) (6) (7) RP. 3 1000 1000 1200 1200 1400 1400 1600 1600 1700 1700 1800 1800 (2) (2) (#) (4) (5) (6) (7) CORE LOSS TSST (Caloulated). Driving Motor Running Free.(Against the Brushes). Vatts (Corr) 65 94 92 120 119 145 145 18f 9 214 214 Rese 26 059 059 23 58 057 256 @e 056 Arm. (Corr 1.75 2.0 1.99 2.18 2.12 2022 2.25 2.415 205 259 2.61 2.61 12R Loss Ie ) Arm. i. (Corr) 3903 44.0 44.1 PY 9205 63.0 61:5 70.8 70.3 74.8 79 20 7905 Vagte 63 92.5 90.0 116.0 142.0 142.0 173-5 17735 195.0 210.0 210.0 Field E. (Corr) 45 Av.of 2 Rdge. §3 91 116.5 142 17565 195 210 Bex I. Input 61.7 88.0 87.8 115.4 111.4 140.0 138.4 171.0 17505 194.0 oe 206.0 207.5 R.P.kie 800 1000 1000 1200 1200 1400 1400 1600 1600 1700 1800 1800 (1) (2) (3) (4) (5) (6} (7) (2) (2) (3} (4) (5) (6) (7) CORE LOSS TUST (Calculated). APM. Vatts (Corr) (Corr) 220 6.15 320 O62 $56 b°33 eon B33 746 8.5 Arn. 12k Res. Loss 0465 17.6 0455 20.3 «440 2 @ 0430 28.4 0425 29.7 430 2927 0425 31.1 XE Arm. le (Corr) 36.7 45.0 56.0 65.4 75el Sep: Watts R 202.4 29909 430.4 527.6 630.3 660.3 744.9 Brushes Raised, 0 Field, of D.C.kachine. e (Corr) * Windage & Bearing Loss 128 a 366.3 432.8 454.3 492.1 Brushes Down, 0 Field, of D.C.Machine. “Watts (Corr) (Corr 382 9.3 502 9.9 620 10.35 £29 10.7 0 11.0 958 11.4 1020 12.0 x input 8 0 aac 236 660 720 R.P.M. 800 1000 1200 1400 1600 1700 1500 input g 273 297 20 916 1029 “J OU) Sl f “NI AU SW A “) OWN PW AD 31 I2R Lose 359 40.1 42.9 45.9 04 52.0 9605 Watts » I°R 46.1 462°9 577el f2 el 12.6 906.0 963.5 CORE LOSS TEST(Caloulated). Windage, Bearing R.P.M. G& Brush Loss 800 1000 1200 1400 1600 1700 1800 “IQA PW fi Brushes Down, Field Excited,of D.C.Machine. (800 R.P.u.) VWatis Arn. (Corr) (Corr) 382 9.3 380 9.25 380 9.25, 390 9.4 400 9.6 404 9.7 430 10.25 442 10.65 470 11.4 490 11.75 500 11.9 520 12.35 Arm. I2R Res. loss — 0415 35. e415 35.6 0415 5.65 0415 6.7 e412 8.0. “Ali 38.7 e41 43.1 0405 420 “An 2e°5 ° ef 240 56.6 240 61.0 Arm, | (Corr) 38.5 8 8.4 WwW.10.0 CKO OC oeeee 8 @ ~~“) PWwO Mon WWW Ww WWW 38.8 45 Total Loss (Hatta) 271.7 273. 273-6 20225 291.2 290.1 16.1 2522 36-2 372-5¢ el (Corr) Be ON On awe 32 no pes te MH MO COr~R ON) PU f0 Cg gene ee We O CORE LOSS THST (Caloulated). Brushes Down, Field Excited,of D.C.Machine. (1300 R.P.M.) : Vf “Watts Arm. I. Arm. Ew Field &. x R.P.i. (Corr) (Corr) (Corr) (Corr) ‘Input 940 11.2 62.7 45 - 902 1300 750 11.6 62.9 " — 930 " Toe 11.7 62. " 7 4 “ 9750 12.05 63.0 " 760 " 82 12.1 62.7 " 758 " 00 12.35 63.0 " 797 " 842 13.0 63.3 " 24 " 960 13.45 63.9 “ 860 " 954 14.4 63.9 " 920 vo 970 14.65 64.0 " 945 " 1020 15.1 64.5 " 97 « 1080 16.0 64.9 " 103 " Driving ti mein opines Arm. atts ota e e re Res. Loss - I“R Loss (Corr) Loss (Watts) (Watts) 240 0.2 689.8 45.8 0 0 40 a0 698.0 253° 204 6.2 -40 23-0 697.0 553.0 208 7.2 «40 5 20 722.0 57420 0145 32.2 040 58.5 723-5 57905 0165 33-7 40 61.0 739.0 595.0 0205 49.2 o40 67.5 276-9 630.5 02037 84.7 040 fee? 9.3 745.03 0339 199.5 240 20 871.0 7270 0402 181.2 «40 86.0 834.0 740.0 2448 194.2 ° 240 91.0 929.0 55.0 4900s 234.2 240 103.8 978.2 34.2 0530 288.4 HM HO OO) OU lw 1D DR i? O wer ern 8 eer eee Be OI OM ew NE pet poe ti ; } ; ) ; } | | | | j | /¥O0 BEARING, BRUSH. ano WLNDAGE Loss | er Si ir Baa hd BEARING anp WINDAGE i | | ia rm ) | | a ead abad minenas| a peed CFT eetecals fare a ’ ; | | i | } } | } } Qo ' a8 | oe t | | fe : reed | jseum | | t | ie soe. i } -| / 5 } | | } : ag } } } a ' ' ezuuBns mee — ad — —— —_— oe — — 7 — r Oooo | } ; | It | « (YO6 PYM nay -Noloap L Cita) J a rT) » N Fla 8 720 _ 606 500 vr 320 00 {20 r~) GON RAL CONCLUSIONS DRAIN FRO TUSTS MADE ON TIL? DIRT CT CURSUNT “TACIING, That the direct current nachine was desgisacd as a slow speed motor is clearly shom »y the motor and generator regque lation tests, brake tests, and saturation tests. Ihile running at a slow speed we could see that the machine dad not heat a preelably and the Connutation wag good when over full load current was flowing, whereas at the highe er speeds the nachine did not seen to run stavle wiien full load was aoplied, that is, it Lezan to heat, and arciny at the crushes wis execssive, Aovarently nornal curren: is flowing in the field when at the s-ceed of 800 R.PLML, while at 1600 R.P.M, the field is necesserily so weakened tnet it persits anovther reaction to shift, trie o.eutral and tius ceuse the difficulty. “he compere saitin.c wiidings are intended tuo remedy tnis fault, tut the rane of srneed is so large thet it is imnoseible to secure aS stood a perfrornance on tne hizh sreeda as the slor speeds, ae SEEGICN Giro ~. fF sPryy zee. ¢? te 38 ¢ fv.’ AL Mi 0 a LG toake se WSS \ ad 7F a ese ey “"y yore oe . e Cee RPP ea A ype 3 »>aSs § poe - § LR om de as aa ‘J 44 ts @ Auto STARTER, FOR SPHASE INDUCTION MOTOR ~ SQUIRREL CAGE SECONDARY, CONNECTION DIAGRAM, CONNECTION BOARD BACK CLIP 1) Rule RUNNING SIDE MOTOR GENERATOR oil. SWITCH CYLINDER FRONT CLIP eer cs BLOCK BASE a es ee a i Ae ¥ INDUCTION MOTOR RESISTANCES At 209 Centigrade, by the drop of potential method. PHASE A - B Inst. No, Const. PHASE A= C PHASE B- C E E (Corr) 21 i 23 0 316 62° 6.1 70 6.88 74 7.27 6 7.46 0 2.84 86 43 31 3.05 35.7 32 33 23° 62 6.1 73 7.147 75 7.36 26 2.57 31.1 3.06 40 3.9 47 4.6 gO 66 6.5 I (Corr) 23.1 24.85 26.2 29.5 31.2 32.85 33-2 234 +2335 - 233 » 2335 - 233 234 234 234 Average e 36 -Tytet l Yt >> ay ¢ rm a vost ‘ rr ee ee fret om ATs “Ser cae es + erchpe 03 PREDER URL IAT IC Cot 2 CR OSTANP OE TA Di SPY a lb Uns ’ The followin, tests verc neevseary for reetetoraining the perf raance of the inducticn iotors lL, w“0erintance of the stator windin.s, Qe i Reatation “1lts the motor roaiithic adle, 3. Impedance with the rotor locxced, It may seen at first thet thest tecie, tow ther with the neccssity of constructing @8 diniram, ang other cale culxntions, siould tuxke siore time tian an orlannry ornke te3t,. “xperiense shows, however, that betucs -« sults are outained by the iandirert netnod, than ia powsiutle vvath @ oruke test, ote: “4 ‘oe “ \ "e5 . 9 One . “SPM mop Tee pay one t- . . ¢ » ' - : . - . -. ST aA, - eae h i eH Nd a ys The resistance wis measured oy the dra: of -otential method, direct curcrcent ocans arrbied vetyveca ouiras of tore minnls, If the soter is Yecoinaseted tne resistonee (r), of one phase will o¢ one nlf of tne resistance of (RO, vbetveen tvo terminals, and tie car cer loss ov tiie stator is 3 12r or 3/2 IPR. If the motor is deltaeconnected, the resisatinece (r), igs Y/2 or (R) ani the cororer los: is 3/2 I°R, Fron tris it is seen that in rerforaing the tusk it is not necesanry to asecrtiin the eharacter of eunneetions an the notor, 38 Mee CLACU DLASRA, Excitation Test or Noeloiid Characteristics of tic induction rotor, Yhe nurvcse oF tiis test vas to fete roan. tue watts and ananeres taxen vy theinduction sotor at no load, and the data waa used an the gonatruction of the circle Jinsran, to-rethcr with tne dita fron thebapedance anil resistance tests. ‘he alternetor in the enxzine lesoratory, wich i3 a ten pole anenine, «a2 run at a ogres d of 7eO RoP.T. during the test to keen a constant frejyeney of 65 eycli3. A rheoe atatovwes plaecd in tne field of the alternater in orier to vary the volts‘e., ‘Otarting with 125. rated voltacte, the voltrzc vas decreased ind steps of nvout 1) volts eich une til the cur.ent reached oo mininuda and ve zin ta incre nse, taking simultaneous resdin:s3 of volts, s2nerey, onl watta, She power aaput was neusured ef tue tvo watt wet or aietiuod. Purves vere nlotted with torniaal volts 13 ivseisosne to amp rea repr phage and tots 1$ts ic ordinntcse, faredance Test or JhorteTircult Cnearact: rastics of the {Induction ‘otor, The “urrase of tiis test was to deteraine watts and Amperces taken cy theraniuction notor with tic rotor locked, and the data wig atso used af Gcoiatrictinz the circle dine 2raa, ‘the setourowss the sane 2a for the exeitition teste starting vith about 72O. rated voltacte, reviinzs of witia, acrereg , and volts wer caked), oradually anererasing the voltavze until rated eurreit wis renened, “urves wore 39 plotted with tcorminnl volts as auscissne to napere3 per phase and total watt3 as ordinates, The aarivere curve 18 A strraisgnt line and the satt curve ig a paracola, Sonstruction of the Cirele Jia -raa, (1) cover Factor yairant, fhefereace axce Ox and CF were selected, Op wis tiken ejyuanl to 100% tewer factor to aconvenient senle, “itn Cp 2s a ridius the yunitrant prg wig drawn, ‘or any fseetor of prinaary current, such ais Cl the pover factor is rerres:contcd by Ot, the ordinate of the point r where the vector interseets tne quaisrint. (2) Inout. “he arcarent horse noowes invut with the rotor locke! was then fiwrired which du cqual to int 3 746 HeP. and tiis viluc plotted to a convenient scale 25 the veator Cl at a nower factor ejyual toa . W 100 8 igh Y3 Ye then plotted the ariarent horse iover in-out at no Load Cl ss 4,7: Y3_ ° 746 yer cent. hurse ower. The pover factor being 100 i, A’ seni circle waa then drew thra the points I, and I,, per erent. navinz its center on the horizontal line I9%, "or ony noint such as 1, the veeotr Cl resrecents the arrnrent horse -over inrut, and tne ardinate Ido revere sents the tme hors yo -7er inpute (3) Prinary turrent., The vector of the prianry current coincides with the veetor CI of anvarent input. Ol is mersured in horse power, and the prisary current per 46 Cl B Y3 (4) Cutpat, A line y.3 driv conacetines {oI,. i he gmanreres, portion of any ordinate of the circle nuove the line i,t, as qa, mensures the horse pover output. (5) Worjyue, %ne horse rover losa wis figered from the formla; If 3 (4, — 2 x1/2R C 8 , ny eatg “756 zx horse pover loss, This vasa plottcd, as fg, and the line Ijg wis drawn, Yor any invut, such as Id, the ortlinate lo serasures torjue in synchronous horse rover, ne ; torque in arnonron,. hep. x 5°52 -orque in ft. los, aynehron. rev. per én, (6) true ¥fficiency, The true efficisncy of the motor i3 cqual to the ratio la to ld. “he cfficiency is measured direadtly by rroducinz Int, to l and the vertical line IN dravn, The etficienoy scale UN' wag tien drawn at such a distance fron the aris Gm ag to ost the lenagto NA easily divisible vy 100. ane efficiency corres ondin.s to the innit Id was then ovtained oy layans A BtrHishnt ed ze vetayecen the points l and I and the efficieney resi directy in rer cent at tne oi xt n on the sane line, (7) Avvarent 'ffielenoy, This is calculated as the ratio of Ia to IQ, 40 41 (8) Slip, ier cent alin any we calculat d as the ratio of 14 to Ib, (‘ihe slin seals wns consatucts* by drave inz the line 5°S carallel to the Line Igg at Buch a diatance ago to have it easily divisivol, oy 109. The slir Tora point, such as I, vas found cy laying a straignt «ite Jee tween tne points I, and I, S's measured the slip. eaxina Values fron tirele Sia‘iram, (1) Maxitun input corresoonds to the voint at whieh the taisent to the circle is ;arallel to the sxis Cx, (2) “axivtu’n tore corresronis to the point st which the tanvent to the circle ig parallel to the line Ip9g. (3) “Maxinun oubput corresponds to thescint at which the tantent te the circl: i8f rarallel to the line or (4) “axivum effichency corressonds to the point at wiioch the tanzent fron 1 touch:ss the eirmile, (5) “aximun povrr faetor eorresyoady to the voint st whieh the tanerent fron 0 touches the eirele, PALCULAT LIONS» Gea Yata token fron the ¥ «eitition Test, fos ll anneres at 9°99 volts, vos 462 ~atts at 2°%O volta, Nata taken fron the: Iuredrnee Test, ne anmoere curve ocins &@ Striigsnat line se enloulated the current anput at ’2) volts by direct proportion, as 1, Ey iy =a 164,90 vapePregy S$ 3 “9 ‘=s Cc i, w 1042 " | 4 3 tn 8 220 i, =< 194.2 * 26.5 “30 ~ Averazea 194.13 auis-eres In aa much as the watt input eurve takes tic forn of tiie total power innut at normal voit se can ve | 2, Vong 2 is e mo igs any voltoze and Wg is tie inzsut at that volt vge, Y paraonls, obtnined fron the folloving, W, ; 2208, where therefore’ 2 9 1315 . 82 i, 3 39,500 watts W n9n\2 “507 * SE2- dg @ 39,100 * 55 8 9, 8 9 0 - £20, Fa @ 369.24 " 73 30 g = 3G 300 —s AVETA{3e 9,400 witts. Apprrent ; i,—E yY3~ 746 lor3se joyver in;ut egjuals 2 ll x ?20 Y3 = 746 5.6 horse OEY 43 Ww Power Faotor s TE yr * 100 _x 462 # 11,054 O 11 x 220 3 Apparent horse ;over iniut with rotor locked eyusls ig E YD Fae = aa y r = 99 Horse rover Dower "3 100 # 100 x 30,400 5 yer rower sactor se Tr yr = eT IO YT = D0 30 The stator corper loss cyuals 72 17k where Rois the resigtinee vctyvcen terminals, This resistence in o-sea on rp omoximum tempveciture of o5? 6. (or allowin: 40° GC, rise in teapernture) and iv detersined Ly neaas of the followe in: fornulag Ry « R, ( 7t2t ) where t is the initisl, and T the final teuperatures, 4? Rese Wea ( ot , at ) ow 04234 (1,156) = 0.2705 Yroa the dia.sran Int, = 94 horse rover Oi, # 99 horse power, Yorse vower los3 = 3x ( ig a )? x 1/2 R 2 _ | yx ( MAES 2 5 ay x 0.2705 Quem 746 e 18,5 horse pover Impedance:- INbucTION MoTor IMPEDANCE AND EXCITATION lest TO OBTAIN DATA FOR CONSTRUCTING THE CIRCLE DIAGRAM, CONNECTION DIAGRAM nec =~ B ae = ie (w) | me 5 BBhee! saovias 9 ae ___»——~. = 7 [ a ) es ai W.M SHORT GIRCUIT SWITCH CURRENT TRANS, FOR METERS, APPARATUS USED NO PeaN te} seo | 2 WESTON WATTMETERS 0-3 KW O0-Z0AMPS 0-300 VoITS | 2 WESTON AMMETERS-AcS. 0-5 AMPS | 2 CURRENT TRANSFORMERS 25-5 AMPS USED WITH WM. F ie ) 50-5 AMPS " Tae , WESTON AC. VOLTMETER © -500VOLTS. THESIS - H-HwB. 4 i915. - MXOTPATIO’ Tho? ON LOG OTLOW MGPCR, (Original), HAS A Inet. Ho. 30 Constant fonstant ? e pa We © » WO et CO Ps OO Ch ewes ena @e8e8e8 8 82 808 0 Ass CNS © om Pw nang 80 O MND > ee ee 1900 10:70 $e» SV fut ® ¢ ND Nua ~T\O be WoW e PO ~ PrAI C 31 2 54 0035 of? .63 202 54D 6435 045 0395 2 35 223 023 99 L185 oO 0135 el2 ,095 2 007 Ns eV / 06 005 005 0045 094 004 0935 vo J 111 2 2,65 2,49 250 225 220 p12 200 139 100 170 100 140 132 120 110 100 CO oh 44 THAS! A LW @ I o1,3 13.3 -1.13 12.75 ” 05 Cie =o7 0188 ©0,6 bed e 54 BLO 47 8.05 e,41 7.6 “32 6.55 ea) O25 “ee 50D =.16 5.2 «12 4.5 «08 4) 2.064 3.75 #02 3,25 2016 = 3,12 0 a 40 602-2479 e036 2, 75 0038 2475 «04 2679 0942 3.34 0046 383.51 04 4.2 PHASE & @ Wn e «ee *e?eee ® PD OR9 CMAQ © N45) ON V1 IAN Pi 29 99 00 YN Dw ww & SULT OG POAT A SIA ee © @ @ @ Wratten. teh PACITACION PROP CO LD Sut PERS 4 ‘ TOTO Rs E 249 224 219 (Corrceeted Data), 10.925 10. 325 DRY wn 7 oo 3 21595 Ang os ees MAL WIA OA war Cr en ee ee ee ee ee ee ee ee ee) SINS F&F NS ON PON “Ni CNT PW NNN YNWW & EVI O @ BS e ~ WH PHASE Inst.#o. 30 Constant 5 003 2005 90 ~00 ~009 ~O1 O01 Ol eOll e912 913 +0139 01 016 PHASE A ols 26 0925 oJ 0025 204 8 0045 8 005 | 005 5 "oes 269 a e 06 6 065 00675 2 0075 37 0 4 IMPEDANC? ES? Gl TDICTION 1210 1.16 PHASE C +225 “275 {no 855 945 1,235 “OUVOR, (Original),. PHASE C We 31 111 5 10 3 1.2 "045 1.49 072 1,87 09 2.07 eil 2.37 12 2.5 0143 2.66 160 2.8 +78 2.88 1 9 3.02 202 3.15 0222 3.31 024? 3.5 Corrected data. Total EB KW 12.5 ~ 165 2 e2ld 1 025 20 ~ 40 20.6 2 495 23.8 2 eo 25.3 28.8 26.9 29.8 28.3 31.9 185 20.1 32.9 932 30.6 34.9 1,01 31.8 36.5 1.078 33.3 38 Lei 5 35.2 40 1.315 2 196 1,.07§ 1,205 1.07 1.205 1.16 1.085 1.105 1.12 1,12 1.132 1.14 1.135 1.135 1 | ) / ; =we y; } i $ ess . f } ipa debate saae| ++ saaaes Esai eye ead NDUCT/ON | Fens 7 eeieeriaees i fe abs aBGn snes ee Oe dose \euses : i } |} K ‘ t om t i | ieeieat : a pe VORA 200k YL ARISE RAG KD EAR i ES at 1B A i | ; | ly ee ~ i es LDA ov? PFaVal IO wi s Cy < — pl mA ba tas Es Ag Latha rs vr, 14 i 3 Sa tee ee oe ee Naish a Gite were / Paimary Correr Loss 4 = Ry 3 NS > a) a Sa i ee: : a ee WSN Fd v : awe Pa S | ; M SY | rae ra ita ate. OP 0 5 WORT STS CREED Dn Sen Wig set Dane Cheese i hel iS § Fi NS eS 8 = iS) Sy Ss 2 cL a Te was ol I zs Terque in Ft.Lbs. = Syn. Torque H.P 2.0 5.84 4.0 11.7 6.2 18,1 8.3 24.2 10. 0. 12.6 30 °8 14.6 (42.65 7. 49.9 19.4 56,16 246 x ol 220 x IZ Or I % bff, 6,2 12.15 £3 7.4 14.5 2-2 9.0 17.65 88.0 11.00 21.55 = 891 13.0 25.4 8¢.1 15.4 30.2 58.7 17.4 34.1 87.6 29.3 39.8 86.8 23.0 45.02 86.0 Syn. nop. x 5252 Syn .Speed, y 4 Blip COA Pils 10 ND oo © © e@ &®© @ @ OWN AAs) Kn ORFORMANCSE DATA DETR RMIED FRO CIRCLE DIAGRAM, at 43 PF, 42.3 64,0 6.0 3.0 87.0 89.0 90.0 51.0 91.5 R.P.M, 1785 1775 1765 1750 1735 1715 1700 1680 1655 {> Co ty AIFS, r ae “y Lt VEE SW eee VR Ar Ite z Ma wr sg . “ : A : wf 4. * JA‘ \. eo ne purpose of this tce3t .13 to ovtriin rerforsaance curves of the inductio1 motor. “he rotor 3 run for avout one hour ecarryin: nrerrly rated load, orfore restinss were tiken, to earnur tre windirgs and arcrosen, us ncirly 18 rossivle, nornal rmig1ing conditions, » ‘tarting with 02 load readiness were inka of volts, ayncpeg reg phase, catts invut, RP. , add veisht in rounds; mridually inerecsins tie load cn the brake arm in 2} incresents fron 0 to 139% overlori, Surves vere tien plotted with horse rover outvut us auseis7ae to the followin: ordinitesse efficiency, alip, and vover fnetor, an rer cent; torjue, an foot sounds; Breed; and anperes per chase, The eaxleulations ‘cre nunde 23 followa3:e . W jover actor = Y3 BX « elip = Synehronous speed - “‘otor sceed ve p oynehronous speed Lorque @ linsth of ereke sra x net wei gt. — Tatts HP. invut 2 “746 : 2 ry ny ete tn OT H outnuts 33,000 49 wie "orp Lge [OR (Crizinal), PHASE A PHASE C Kv, 44d Koy 1 B Load RP. Inst..jo. 30 110 34 111 120 los, 140 Constant 5 10 5 10 i 2 «18 1.6 028 1.7 232-220 0 1708 -. 06 1.1 38 1160 4 1789 005 1.? 5 1.3 ° 6 1733 019 1.53 26450 1.52 " 3 1769 033 1.83 279 13z0C«S 10 1750 0 44 2.13 0945 7.13 =" 12 1749 250 2.43 1.08 2.4 " 14 1734 7 2.85 1.23 2,8 16 1730 “onstant 10 LO 247 3.6 07S 3256 220 20 1705 253 4.0 266 3.92 2 1690 aon 4,4 Ke 4.3 " 24 LU7S 64 4,6 1.06 4,1 " 26 1650 (Corrected Data). iA A pr Asi Co. Ky I ry I Y ~otid AV. nf I .9 16.2 1.4 17.0 219 5 16.6 =.3 11,3 1.9 11.6 " 1.6 11.45 025 12.9 205 13.0 " 2045 12.95 095 15.5 3.°4 8615.2 " 4.19 15.35 1.65 13.3 3655) 18.3 f 5.6 13.3 Pee 21.3 4.73 21.3 " 6.93 21,3 2.8 24.7 5.4 Pa. " B.? 24.4 3.6 25,8 GL 344 " 5.65 23.6 4.6 Tene | Qe 3567 " 12,6 3529 5-3 40.0 6 39,3 " 1i.9 39.65 5. 44,1 SG. 43,2 B 15.5 43.65 6.4 43.0 10.6 47.2 " 17.0 47.6 Pm AS ONAN ODD Ne Ow ~~ Be wee ee oe Oe ee we Qe Qt Me 50 Saloulated Data Load H.2. H.P. wv oe 63 RP ot. injut output “ff, Slip YF, 0 67 0 0 ~i2 7.94 1798 (1) 1.75 2.145 1.49 69.45 62 36.8 1789 (2) 3.75 3.685 3.175 66.15 1,11 56 1780 (3 5675 «65.62 4,545 86.3 1.67 7: 1770 (4 7075 = 705 6,51 COG 2.06 40.6 1763 (5 9.75 9.23 §&.1 7.4 2&@ 83 55.2 1749 S} 11.75 11.0 G.75 S3e 3.90 Led 1734 g 13.75 1°.94 11.31 7D 3.87 83.9 1730 17.75 16.9 14,45 5.4 5.78 = 92.6 1705 (9 WS.7§ 135.60 19.85 O52 bell = G2.5 1690 (10 P1675 20.6 = 17.63 C344 6.05 93.5 1675 (1 23.75 22.8 19.7 62 8.34 94.2 1650 (12 ee pd me | | zi | ' i | | yaa Pai vcrio "i Mis ui SYA CHRONO t fs Bir ' apa ee dite iat EESRSaac yp were Say eegeetett cae tH pe zB basaaae | SEU SSSaecs)s Abe. sear seaesoan: | feeb: Hr re iH SF psese eebszsat ; a oy) : ' ! | | VT) Pe oerT PEN eee eee h Ses | } | PERFORMANCE 4 i] aa TOT : Olea Tas ets Abtkes! zm — Wb 3 ———— »~ | an Enea s } | Eg Var MPH PF aJala A) a S a= -3oLsees 5 eA ny o 51 TIMUCTICON VOre? PUIVLATLICM, Yrom lata outiuined from the brake teut ve Taisured the gpeed regulation of the induction motor by nuins of the ollowin,s Yomaula; no Loud speed @ Full loud anced wi sprced ea e. rt a 4 } aad pene , smeod rewmulation e fuli Lo. Yata 1g: @ 1% 6 es cf 5 = os 3.7; “ay de GENERAL CONCLUSICNS DRAW FRCN THSTS ON INDUCTICN i CTOR, The results of thest tests show that the efficiency of the motor is very hizh at all loads, specially doee it hold up well unier heavy overload, It has a strong starte ing torque and ite pover factor is very good under full lead. Also, the regulation of the machine as deternined from the broke test is very good. We believe that the results of these tests were ale together eatisf-ctory as shorn by the fact that the results of the circle disazran and brake test cheek very closely, ALTERNATING CUaRUNT Oo: CTION THREE G.8SRATOR PeaRIM, at im a> AAD RUGULTS TESTS ON ALTERNATING CURRENT GEN RATOR. This machine has gix slip rings with connections tc the winding whieh allows the machine to be used as eitner a single phase twoephase or thre¢- phase zenerator,. Since threeephase systems aire nost comnon in alternate ing current pradtice of the present day, due to economy of line construction and virious other reasons, we decided to cone fine our testa on this macnine to the three-phase connection, Inst. No. Constant Cold Resistance of Alternator. Taken at 24.7° C. Drop of Potential Nethod, Field Resistance. E E I I R (corr) (corr) 21 18 1 Ol 48 47.9 99 097 49.4 65,2 64,2 13 1.3 49.4 78.5 77 17.5. 1.75 49.4 101 99 — 20 2.0 49,5 122 118.8 24 2.4 49,1 130.7 128.4 26 2.6 49.8 140 137.8 28 2,8 49.1 147 144.5 29.6 2.97 48.7 Averaze 49.2 Armature Resistance, Phase A - B Inst. No. al Constant ek Phase Ae © 3.3 46.1 2¢ ‘ 93 WO Ce ONAN Piw e e e e e e e FF OVO OO OWNS fhOR & CO = CO 2.76 7.08 8.5 12.6 14.75 16.7 19.45 22.5 24.2 2549 7.6 12, 5a. os 51:6 24.6 (corr) WO Nw Pa) ss @e@e@hUmu86GmhmUmUrCOMhMCOO CO PHM RAC WW URN) ND A) AO 0D DD Averaze Average «3562 Ri GULATION, THR! PHASE REGULATION BY E.M.F, AND MMF. METHODS. The object of this test is to determine the decrease in voltage between phases from no load to full load and express it in terms of per cent of the full load voltage. Volts at no load - Volts at full load Regulation — Volts at full load When it is impossible to ovtain regulation by direct loadinz of the machine one of the above ma@hods is generally used. By these methods the only data necessary is a no load saturation test and a short circuit or impedance test. Very little power compared to that required for full load is required for these tests, 1. e. for the saturation test only the power necessary to drive the machine at no load with full field excitation, and for the short circuit test it is only that required to send 125% rated current # the windings on short circuit. The connections for the saturation test are shown in figure one on the preceeding blue print. Yigure two gives the connections for the short cirouit test. The machine was driven at rated speed by the D.C, motor and readings taken of field I and armature E up to aoout 100 per cent above rating. The curve obtained was practically a straight line up to a little above rated voltage (220), showing that the iron does not Lecome saturated when working under normal conditions, SATURATION TEST Ne GEN. CONNECTION DIAGRAM ALTERNATOR. Tay Girncuit Test CONNECTION DIAGRAM ee l2sVv DC. ef ALTERNATOR, THESIS —H. a B. 1915. In the short circuit test readings are taken of field I and armature I up to about 125 per cent rated current, Inst. No. Constant Constant Constant SATU RATICHN Phase B= ¢ E z (corr) 121 i 1 4 7 bs 107 107 124 126 139 139 155 155 175 173 189 158.5 205 204 218 217 240 239 260 260 280 280 e 323 «(30 41 41 42 42 430 430 399 309 190 190 125 125 65 65 SHOT DATA. R.P.M. 1800 Phase A = € Aver. E E (corr) 123 1 fe 75 74.5 9 91 50 108 108 107.5 125 125.5 125.7 140 141 140 156 157 156 176 177 176 190 190 189.2 206 206 205 218 219 218 240 241 240 261 261 260.5 281 281 280.5 307 307 306.5 33? 335 339 360 360 360 415 41 41 428 42 42 430 430 430 Decreasing field 309 309 309 192 192 191 130 130 127.5 bo 70 67.5 A.C, G&NURATOR Field Z TD DP pat bet ee ft BP -~ wWNe eo @ WMR® e@ ec @ ee COV WA Vield I (cory e @ e COD AN=3\n & VY ~O Ran MUTI Hp ° Wi © 356 SHORT CIRCUIT TEST DATA, A.C. GENERATOR. ha ha oe a0 1eld, Piel Phase 56 se Aver, Field, Field, I pes | pat I I I (corr? (corr) (corr) (corr Inst.No. 110 114 12 11 Constant 10 20 1 O21 2.12 11.2 .525 10.1 1.08 10.8 410.7 2? 0 315 1.5 15.2 .§ 9.6 1.47 14, 13-2 . 44 1.9 19 9 17.8 1.87 18, 13.5 58 56 2.21 22, 1.06 21.04 2.17 21, 21.68 68 66 2.51 25. 1,19 23.6 2.49 24, 24.66 77 75 2.74 27.8 1.31 2 2.68 27 26.9 84 32 3.2 32.2 1.47 29.2 3.03 30.3 30.2 94 0923 3.32 33.25 1.57 31.4 3.24 32.4 32.35 100 .995 Constant ea 3.66 36.7 1.74 34.8 3.58 35.8 35.76 11 1.1 4.02 40.2 1.92 38.4 3.93 39.4 39.2 12 1,2 Inst. No. 111 Constant 20 4-3 43.2 2.05 41 4.22 42 42 13° (1.3 4.65 46.7 2.22 44.4 4.56 45.7 45.6 14 1.4 5 50 2.39 47.8 4.91 49 9 5 1.5 ) Saha Ses eae ket foteee te fed Tb te bey raat ae * Gm 5 puase eee b eS nami: u ; ae a are oe : | IR ERE LEC ar fa aheeesu att ; + Set See a sovesdc cos eckvond coastessaa foun sesses een engeus aneuss feed} 40 2 GULATLICN BY THE EMF. LTioD 100%; YF. | P—s- 20,000 Rated current per terninal 23 R= xXx <20™ 26.25 Average armature resistance between terninals measure ed at 24,7° Cy xs 2356 Chua, The tempernture Limit to which the windings will rise fs taken as 65° ©, Res. at 65° C. .356 @ .004 x .356 (65 = 24.7) = .411 ols, Araature IR eee Wz x eoe22 mALh 9.34 volts. and is in phase with the terminal voltazse sinee 10u, P,F, is ase sumed, The araatiure resistance drop plus rated voltage is 220¢ 9.34 s 229.34 volts, Tne field excitation neoessary to nroducs rated cure rent on anort circuit from the short circuit curvs is .Gl Amp, The no load voltaze corresondins to this excitation fron the no load saturniticn curve i8 173 volta, Addin: this at rimht angles to the 229.34 volts we have W(229.34)%% (173)° w= 267 volte =O 3 evs MMO, I THOD, 100% PF. fhe field current corresponding to 229.34 volts on the saturation curve is > = 1.08. The field current corresonding to 26,25 unps. on the short cireuit curve is I, s 81 anp. Adding these two values at right anylesa we have | 2 (1.08)? + (.81)¢ se 1.35 & apse, CU The voltae corresponding to this field current on the no- load saturation curve is 277 volte Rezgalation s 277 = 220 = 25.9% REGULATION BY KOM F. “SO THOD 80% P.F. Rated current same as above = 26.25 a@ipsB. Resistance,as before, # .411 ohms. Armature IR drop s 9.34 volts. The terminal voltage may be considered as consisting of two components, one in pnase with the current and the ote her at right angles to it. The E.M.¥. in phase with the cure rent is Ey = Bx .8 = 220 x .8 = 176 volts. The E.MW.F, at right angles to the ourrent is E, = Bx sin cos").8 = 220 x .6 = 132 volts Adding, - 176 + 9.34 = 186.34 volts. The impedence voltage as obtained from saturation and short circuit curves as before is 173 volts. Adding,=- 173 + 132 w 305 volts. Total *#.M.F, at rizht angles to the ourrent. Adding vectorially as before we hecve, YO305)2 + (185. 34)" ~@ 357 volte Regulation = 357 = 220 = 62.36 RUGULATION 3Y THE MMF. 2"): THOD 80% P.F. Is 26.26 m 26,25 = 32.9 In this case I; = y ri* + ny ent, sin ooa7 8 I 3* e > (, + x 2.056 x .62 x .6 =s Y2.8%6 «= 1,695 The voltage corresponding to this field current from the no load saturation curve is 330 volts Regulation # 330 - 220 s 50% R'GULATION BY AT TUAL LOADING. The connections for this test are ahown on the blue print. Machine was run by the induction motor and the D.C. motor working together. The reason for this was that neither machine, working alone was able to maintain the rated speed when the alternator was carrying full load, The alternator was loaded to its rated current oapac ify and the voltage adjusted to 220. Then the load was thrown off and holding the same speed, open circuit voltage was read. This test was repeated several times and the regulation is odtained directly from the voltage readings. Following are the results obtained by this nethoé: FREGULATION BY ACTUAL LOADING. A. GENERATOR. CONNECTION DIAGRAM. o 5 f A ae FR. > ar . a fj25vVv DC. ®) GENERATOR WATER BARRELS Y CONNECTED APPARATUS USED ™N O KIND RANGE. cf WESTON AC, AMMETERS oder ias et rm ‘» VOLTMETERS oC ToYomn A = rf CURRENT TRANSFORMERS Ree eto) eS WATER BARRELS. THESIS H.H%, 6 rE ee TEST DATA, MIGULATIGCN s¥Y ACTUAL LOADING. (Original) Phase Pkhase Phase Phase B, Phase C. bsrnase Aw Be OC Aw B Awe C RPM, I I I i 8 B Inet.Ho. 113 114 110 122 121 123 140 Constant 10 20 10 1 1 1 a 2,65 1.205 2.6 219 219 220 1815 0. 0 9 270 270 270 1915 2.58 1.07 2.67 219 21 223 1815 0 0 0 269 26 269 1815 2,63 1.31 2.5 219 220 220 1812 0 0 268 268 269 1812 2.62 1.39 2.65 222 221 220 1808 0 0 0 278 278 . 278 1808 2.61 1.31 2.61 220 218 218 1800 0 0 0 271 271 272 1800 Corrected data. % Reg. 26.8 24.8 26.4 219 219 220 0 0 0 270 «2370S 2790—St—«2 0 8B 26.1 21.2 27 219 21 22 0 , 0 269 566 368 18, 38 26.6 26 25.5 219 220 220 0 0 0 268 268 269 28-29 26.5 25.8 26.9 222 221 220) 29.5 0 0 0 278 278 278 . 26.4 26 26.5 220 218 218 19.4 0 0 0 271 271 272 ° Average 19.06 COMPARISON OF TH! RVGULATION AS DUTERVINGD BY DIFFRENT MisTHODS, ¥WM.¥, MebBhod 100% P,P, - 2 © 2 ee 2 = se = @ = 30,48 MMF. Method 100 PLP. - ee ew we we ww we 25,95 Actual Loading - «= = «© = «© « = «© «= = = «= «= « = 19,064 BRAKY TROT ON ALS, GUAURATOR running as A SYNCHRCYOUG *OTOR, The rurpose of this test wes to deternine the perfore mance of the A.C, gzenerator while running as a synehrenous motor. The notor wag started uy tiruwing a low voltaze on to the machine without any Tield excitation, thus starting it F3oAN induction motor, “Yhen ite sreed had nearly reached synchronism tne volta ve of the 117° was rnasacd to normal and the field ewiteh closed, ‘When we did this the motor came quietly ints step and ran synehronously with the lcrge ale ternator, The field rheostat 18 adjusted tec give unity pover factor or until the line anmeter resdings were the lowest at a siven lond. The load was av::lied by means of the pony braze, strrting «t 0 and increasinz vy 24 incre- ments until the motor went out of synehronism and stopped. At each load rendinis vers taxen of watts inout, ans. Input, volts, R.e.uM., ani load, ‘ithe tv7o watt meter method ot three wuhase power uvasurement wags used. q fron tiie data ontained curve's were 1.iotted with horse prover outout as a@bscissae and nips. insut, per cent efficleng, per cent power factor, and torque as ordinntes, BRAKE TEST ON ALTERNATOR AS A SYNCHRONOUS MOTOR CONNECTION DIAGRAM & f | 220Vv. AC, = J 220V DC.LINE Note a a) USED ie) KIND RANGE Fa WESTON WATTMETERS ©-20AMPS O-30O0VOLTS 0-3 KW ra) n AMMETERS AC. 0 -SAMPS FM we iehghes dl ili Fe os Fy used with WM. P<} 50 " " AMMETERS. ’ ere rye tf AC O- or. % FIELD RnEOSTATS D.C. AMMETER o-/0C AMPS, adc ee ee oY [ts hee es Test data BRAK TEST ON SYNCHERONCUS MCOPOR, (Original data). Lenzth of orake arn w 30 in, Jeitnt of vrake arn = 6.5 lows, rEASE_A PHASE. C yy Tt Kv Lf. &£ RP. Load Inst.No. 31 111 30 110 l2l 140 lbs, “onstant 10 10 10 10 " d 1 26 1,25 012 1,08 223 1790 lo (1 033 1.5 02 1.37 223 1308 12 (2 03S 1.6 26 1.7 219 1806 14 (3 045 2.15 - 36 2.05 220 1810 16 (4 240 208 045 2.4 218 1810 18 (5 055 2. 23 2.75 222 1804 20 (6 aac 3.2 99 5.15 °22 1806 22 (7 64 3.85 78 3.8 220 1807 24 (8) 665 4,2 91 4.15 223 1803 26 (9) Motor broke down at this point at a little over fifty ampcres, Corrected dxta, PHAST At YHA" C KY. T Kg i KB ReP.M. Load lbs, 2.6 12.5 1.2 10,8 272 1790 3.5 (2 3.3 15 2 13.8 279 1 525 (2 3.9 17.9 2,6 17.1 218 1806 75 (3 4.5 21.4 3.6 29.5 279 1810 9.5 (4 4.9 25.25 4.5 24.2 217 1800-1165 (5 5.5 25.3 «3 29.7 221 1804 13.5 (6 5.9 32. 3 6.65 31.7 220 1806 15.5 0.4 33. 7.3 33.1 21g 13807 §=17.5 6.5 42.1 9.1 41.5 222 1603 19.5 (9 Ht be pe 7otal AV. H.P. H.P. KY, I Input Output Eff, PF. 3.8 11.65 5.1 2.98 58.4 84.8 5.3 14,4 ol 4.73 66.6 95.9 6.5 17.5 71 6,44 7309 = - 9B 8.1 21.05 10.86 8.2 7525 100 9.4 24.73 12.6 9.85 73.2 102 0.8 fe 14,48 11.6 0.2 101 2.55 16.8 13.32 79-3 103 - 4,29 38.35 19.02 15.08 79 E66 20.9 16.7 19.8 90.9 ‘a -} AMUN UTUTUTUL PPWWND HY COW Cw Cw CWC ct O MNNVVVNINVA OF NO OD ON OW ND Seay GepUbapdane acs OSH -SIBFHL | | PA 74 Sf } A gy a ot a ok 2 peeeeee’ “7-09 neem 1 Ps ie i=) (5) 7 aa | i 7 i} preseege sae bE bce ie Lik: ae ay pad ee hs ie el : ' } : | 1 | : et S ~ Bt eects, aes aes EI PEE] oy eysea cree Seeahgemne Page| ages, a: } = : oe Q - | eee ee Se Mae ok 1 i ;: ss eR CE Se CORE ane ast Se SPOKE Cha RaaRaNs Rae) SeSee8 Con wi | 5 | i rie Sect 2S OIE LEE) | NS ee oe = | See Ws uIMI %-aNOY n Qa ~ nap sich | | } | SLNCHRGOTCUS “SOTOR V. CURV?S, The object of this test is to show the relition of the armature current and pover factor to the excitation of a Syne chronous Motor, The connections were nade the same asa shown on the Syne chronous ‘fotor brake test coinection diagram, except that several rheostats and an anmtetcr were placed in the field cim cuit of the mator, The machiae wag started on low voltage a3 an Induction ‘Motor and -hen nearly syncnroi10oUs speed was reached the field avitch ‘13 closed and the motor cane into step, The motor will run sy 1chronously rezirdless of the field current within certain limits, If the field current is veak @he motor will draw a large lazzing current, while if the field current is avove normal it will draw a large leading current, there being one value of field current at which the line current and Ey, MF. are in pnase, or at which the power factor is unity. In conducting this test the Lond was kept absolutely constant. ‘The field current was reduced until the motor drew about rated current, then the field wis increased by eteps until the line current hed reached a minimum and azain increased to about the same vrlue as at the start. The voltage and frequency were held constant at 220 volts and 60 cycles respectfully. Readings vere takan of Amps. per phase, Watts input, Volts, k.P.M., and field Amps. for each value of the field current, The test wes performed with the motor runniny, free and repeated at anpromimately half load, From this data curves were plotted with field Amps. as absoissae and Line anps. as ordinates, also with field amps as abscissae and percentage power factor as ordinates, SYNGIACHOUS TICTOR VettURV!S. (original). “Ootor running free, FHAST_A FHASE Co Ky TT Ky. i E RP oily Inst.No. 31 111 30 1.0 121 140 “fon stant 20 LO LO LO L 1 © 12 1.72 oc 1.8 220 1000 ~.09 1.45 22 1.5 220 1800 ~.04 08 014 J 220 1500 04 3 06 2 220 ~=—s-: 1800 ~l2 *f met 065 229 1800 19 os 1.65 220 1803 w28 1.95 = 8 1.62 220 1800 2% 265 1 2.5 220 ~=—«:1800 45 3.1 m.27 2 220 18d5 O 0 ee ee er ee MO COON) OM ly 10 Fb — Brake load 12 rounds (aprrom, 1/2 load). -,01 2.05 054 2,0 220 1800 oy 2.5 045 226 220 1/99 0 2.25 044 2.3 220 1800 006 2.2 “4 2.25 220 1300 013 1.8 ° 1.85 220 1800 013 1.6 035 1.6 220 1800 023 1.3 025 1.2 220 1800 031 1.4 19 1.3 220 1805 © 39 1.8 12 , 220 1800 047 23 005 2.2 220 1800 056 2.85 0 2.75 220 1200 ~65 3.55 06 3.45 PO 1500 Corrected data, Yachine running free, PHASE A PHASE Co Ka. I Kive 1 1.8 23.5 3.4 24.5 -1,2 17.3 2.4 1S - JI 14.5 2.1 15.2 -.4 8 1,4 G 4 3 6 e leo ~~. a, 18 13.1 =12 1628 2. 1962 21.5 15.2? 3.6 26. Pel 26 4.5 31.3 o2.7 30.2 NO wo Sasesaaa3azas3 3 ea RO ON) OUN SWB AV, total RPM, I Kad. 24 1.6 1795 17.65 1.2 18 14.85 1.2 165090 8.5 1.0 1800 2.5 1.9 14609 6.75 oJ 1609 17.35 1.2 14503 15.95 1.3 1500 26,4 1.2 1500 30.75 1, 1805 PHASE PHASS C KW I oe CW -.1 2302 5.4 “f 25.3 4.9 e 22.5 4.4 06 22 409 4.3 1763 3 1.3 16 305 2.3 43 2.5 3.2 14 1.9 3.9 L7e 5 1.2 4.7 oa 22 5.6 23.7 0 0.5 35.24 ~.6 AV. 1OValb RePeH. I ri. 30.15 563 1800 2$.8 5G 1795 22.7 5.2 1800 22.25 5.1 1800 18,15 5a 1800 16. 4.8 1800 12.5 4.8 1800 . 13.5 5.0 1805 17.4 5.2 14950 22.5 5.2 1800 28.2 5.6 1800 35.1 5.9 1800 Machine running free, Corrected data, (Contanued),. % Field PF. I 17.55 Lait finde 3D (1 17.9 5 (2 21.3 " 6 {3 32 " oO 4 105 1.0 «(5 35.2 lendingl.2 (6 10.75 " 1.4 18 a 1.6 15 “ 1.08 (9 15,4 * 2.0 (1 brake ivad 12 vounis (xprrox. 1/2 load), I kK 30.4 219 11 26.3 " 12 23. " 1 22.5 " 14 13,4 " 15 16 " 16 12 “ 1 13 " 1 16,9 " 19 22 " 20 27.6 " (2l 34.6 " (22 ci rield Pi. I 40.4 ls.scing 23 (11 D7 ee " 43 12 60,4 " 055 13 60.5 ts 057 14 74 " of 12 79 " 78 101 1.0 t 97.5lending 1.2 1 772 e 861.4 61 " 1.6 2 52.4 " 1.8 21 44.2 ‘" 2 22 Lad ene Cea Cage ag Mee Ten Cage ggg Met te 70 CORE LOSS TEST CN ALTERNATING CURRUNT GUN RATOR, This test was run with the same machine as a driving motor, and by the same method ag was used in the core loss tests on the Direct Current tachine. The only difference between the two was the running of the former test at one speed, because of this machine being designed for 1800 RPM, A curve was then plotted with field Amps. as abscissae and core loss as ordinates, 71 CORE LOSS THST. (Original), Brushes down, field excited, of A.C. generator, Dviviny aotor running against the dbrus::es, Driving motor a Arm. Arm, Arn rield He I 3 E Ineat.No. 30 10 20 23 121 22 1l 030-140 Constant 12 1 1 1 i 1 0.1 1.015 11.8 88 45 0 0 0 1800 2.03 12.0 88 " 40 12 2.7 " 1.025 12.1 88 " 61 15 3.5 " 1.0 11.25 86 " 5 17.5 4.0 " 1.01 113, 89 * /] 21 4.5 . 1.038 12 89 " 100 2 5.0 . 1.036 coon oh * 115 2725 6,0 * 1.05 132.25 8 * 132 32 7.0 " 1.055 12.4 87 " 135 32 £:9 . 1.2 12.7 &9 " 154 36.5 am) « 1.132 13.0 3 8 130 43 9.0 " 1.190 13.6 = 8 " 203 49 10.1 " 1.225 14.2 6&8 " 223 44 11 " 1.289 14.65 88 " 249 60 12.3 " 1.405 15.8 90 " 283 73 14.5 ° Constant 2 0759 17.35 90 45 305 ge 16 1300 , | . 78 17,6 60 e 32 5 19 062 14,4 90 “ 24 60 12 " Constant 1 2.235 13.2 90 . 490 44 9 1800 1.0 12.1 &8 " aad 3325 7 . 9 11.4 6&7 . 9 22 5 " 0905 10.5 87 " 60 14 3 " 289 10.4 9&7 " Q 0 Q . WINDAGH MID SBUARITNG PRLOCOLON, Srushes raised, QO field, of A.C. generator, Driving sotor running against the brushes, Field KW, I K R.P.XM, Inst. No, 30 10 23 140 Constant | 1 1 i 65 726 45 1800 0635 709 . " e 64 7 « 5 ] ® Cor: LOSS TEST. (Corrected data). 72 Brushes down, field excited, of A.C. Generator, Driving motor running against the brushes, Driving motor Watts ‘ Arm, Pield Arg. Arm. y*n Watis Bo Z B Input Res. ilioss = I*R 45 11.9 85.5 1015 10138 2395 56 959 (1 "12.2 85.5 1030 1035 © 395 2h°8 972 2 * 12.2 85.5 1035 1042 0395 8 976.2 (3 *e 11.85 85.5 1000 1015 0 395 55:3 944.7 (4 * 11.9 83.6 1010 #1000 2395 56.0 254 5 4 12.1 84.5 1038 £1022 0395 57.8 980 6 " oo @ 84, 5 1036 en aoe Ba oo @eno@ Gene e °* 12.35 84.5 1050 104 239 29° 3 990.9 "6:12, 85.5 1055 2106 239 61.0 994.0 (9 e 12, 84.5 1100 1081 039 3. 8 1036.2 (10 * 13.2 86.5 1132 1142 a) 1065 11 * 13.7 86.5 1190 5 039 73.2 116.8 (12 © 14.3 &5.5 1225 1223 229 438 1145.2 (13 " 14.75 85.5 1289 1262 039 4.9 1204.1 (14 » 15.95 87.4 140 1496 039 5 e2 «1305.8 (15 * 17.3 87.4 151 1512 °39 + =10 3 1409.7 (16 " =17.75 &7.4 1560 1593 039 = «123 1437.0 (1 " 14.5 57.4 1240 126 039 2 1158.0 (1 * 13.2 87.4 21325 1153 239 68 1067 19 " 12.2 85.5 1050 1043 0395 55.5 991.2 (20 * 411.5 64.5 979 972 0397 = 524 226. 22 * io. 84.5 905 396 402 45,2 59.8 (22 »" 10.5 84,5 599 bo 0402 44,3 845.7 (23 A,C,. Generator 0 ore Arm, Field Yield lose loss HP. EK E I 749 Q 1300 0 0 0 1) 762 71 " 49 12 027 (2 766.2 5 " 66 15 © 35(3 (34.7 43. , . 78 L765 .40(4 144.7 53-2 " 39 21 04515 77002 " 1090 23 5 (6 one oe " 115 2765 06 g 780.7 39.7 a 13 32 7 754.0 93 ° 13 32 f 9 326.2 135.2 " 155 JO.4 8 (10) 855.0 164 " 130 42.5 09 (12 906.8 215.8 " 203 43.6 1.01(12 935.2 244,2 " 224 43.7 1.- (13 Rob. 1800 n 2s238:8s3 323 8 Arm, t- at 248 253 305 323 249 190 148 9 64 0 Fieid os 2909 F125 704 4.1 9925 43.7 33.5 22 14 0 73 “37, (Corrected data). Cont'd, Yield I 4.23 (14) 4.45 15} 1.6 het 1.9 17) 1.2 (18) oJ 19 7 is 0) -{21 3 22 0 (23) VIPDAGE AW) GUARINS FRICTICN, (Cerrected data), Srushes raieed, O field, of A.C. generator, Derivins sotor running ajrainst the brushes, Yield 6 45 “ Arm. I 7695 bee Vatts 650 635 640 Arn { Res. 44 44 44 12R Wats 3088 - I°R 26,4 623.6 25.7 609.3 2507 014.3 Averaze 615.7 BRUSH LOSS. (Calculated). 965 « (210 ¢ 615.7) a 133.3 watts lose, 845.7 = (210 615,7)8_20 76.65 watts loss. Notes Ave raze ve Contribute the connarativély poor resulta of of this test to the hizh sy;eed of the machines varying the friction loss, of the coupling vetween the two machines, . st i 74 GENERAL CONCLUSIOUS DRAWN FROM THSTS ON ALTVRNATING CURRINT GENVRATOR, The results of the test show that this machine pere- formed very creditably, both as an alternating curren. three phase generator, and a synchronous motor, The saturation curves show that the magnetic circuit is properly designed for 220 volts at a frequency of 60 cye- cles, The voltage regulation on actual load was found to be considerable better than as determined oy either the K.M.*. or M.M.P,. metinods, and is as good as can be expected, As a Bynchronous Motor the machine ran very stable and was capable of carrying a fairly heavy overload, ‘the effie clency as a motor is not as high as that of the Induction woter, It is reasonably good, however, and holds up well to the break down point. The machine did not show signs of hunting at any time, ‘ ¢ @ 8 | , « @ . . . . ~*~ * + eo v ’ . ’ * ‘ - @ ° - ° a ‘ o . a e a . * » s ' ° . . © PRE LE TSS EEE RE ED ETE TLE EE ET TE YT ETE Te OT ‘af > - ee Meee - oe - : : . 2 . . . - roe 3 , . io . . x ~ . . wee - . MH ~ oO T VN AU