

BUILDING CONSTRUCTION

Thesis for Degree of C. E.

Ralph Z. Hopkins

1915

* * * * * * * *

Application has been made for patents to cover the substance of this thesis.

BUILDING CONSTRUCTION

Knowledge of the newly awakened, irresistible demand for vastly increased economy and efficiency in building construction has led me to make an effort toward the solution of the problem.

Accepting concrete as the best fire-resisting, most durable and sanitary building material, I have designed a method of concrete construction with the following objects in view:

- First: To be able to make a wall with skilled labor, of such a character as would insure speed of construction.
- Second: To do away with form work and thus greatly decrease the expense.
- Third: To make a wall that can be either solid or hollow.

 By the latter method the wall would be insulated against

 dampness and be kept from "sweating" due to difference in

 temperature.
- Fourth: To make a wall that when hard would not have to be resurfaced, but could be given any desired decorative effect on the outside and be smooth enough on the inside to do away with plastering.
- Fifth: To do away with mortar joints used with the ordinary concrete block construction. These are unsightly and, unless every precaution be taken, there will be open places in the joints.

Sixth: A combination wall combined of standard precast units and concrete poured in place to form a monolithic wall, having any desired thickness, any width of air space and any number of these spaces.

The precast units to serve the following purposes:

- A. To be designed so as to interlock and form a rigid wall.
- B. To serve as a permanent mold or casing for a continuous filling of concrete, which can be reinforced horizontally and vertically to give the wall its required strength.
- <u>C</u>. To be made in steel molds of such design as to make the units alike as to size and thus insure a smooth and true wall.
- D. To be made at a permanent plant where machinery and system can reduce the cost to a minimum.
- E. To be as light as possible for the wall covered so as to reduce the cost of handling and shipping.

The precast units are to be divided into the following three divisions:

Outer units (See drawings # 6 & #7)

Inner units (" " # 8 & #9)

Tie units (" # 10)

The outer units form the outside and inside of the wall. The inside of an outer unit has one or more dove-tailed grooves running vertically throughout the height of the unit.

: • • • • -.

These grooves are spaced so that when laid in a wall the grooves in one unit are vertically above or below the grooves in the adjacent units.

The inner units are used to build up vertical division planes in the wall which serve to form continuous spaces that may be filled with concrete or left as air spaces. The upper and lower edge of the unit has one or more notches, these being one-eighth the depth of the unit and the same width as the thickness of the tie units. These notches are spaced the same as the grooves in the outer units and serve as a means of locking the inner units with the tie units, the outer and inner units being of the same height.

The tie units are used to space and tie the inner and outer units. The heighth of a tie unit is one half the heighth of the inner and outer units. A dovetailed tongue corresponding to the groove in the outer units is formed on each end of the tie unit. If the inner units are required in the wall the tie units will have one or more notches on the upper and lower edges, these notches to be one-fourth the depth of the unit and the same width as the thickness of the inner units.

DIVISIONS OF DRAWINGS.

- DRAWINGS #1 to 5 inclusive, show the different walls under this construction.
- DRAWINGS #6 to 11 inclusive, show the detail of units used in the different walls.
- DRAWINGS #12 to 14 inclusive, show the layout of assembled molds for the different units.
- DRAWINGS #15 to 22 inclusive, show the detail of parts used in the mulds.
- DRAWINGS #23 to 25 inclusive, show the tables of materials and parts required to make up and fill a complete mold.

DIFFERENT WALLS UNDER THIS CONSTRUCTION.

DRAWING #1, FIGURE #1 shows the perspective of a wall built up of pre cast units laid up in four vertical planes, two outer and two inner, all connected by tie units forming three interior spaces. The spaces next to the outer plane of units are filled with concrete to form two continuous monolithic walls reinforced horizontally and vertically. This is possible because the tie units occupy only one half of the vertical space and are so arranged that they come half above and half below the horizontal inner section between the horizontal rows of units.

The units in the vertically adjacent rows of each plane are staggered so that the tie units lock an inner or outer unit in one horizontal row with two inner or outer units in the vertically adjacent row. This is also made more effective by staggering the units of the inner rows with those of the units in the outer rows, as shown.

DRAWING #1, FIGURES #2, 3, & 4 shows a single space hollow wall into which is formed beams and columns to make the wall more rigid and also to serve as structural support for floors and roof.

The wall consists of outer and tie units only.

The outer units are shown grooved on the outside so that the wall may be plastered or stuccoed. The tie units consist of two different heights, one being the same height as the outer

unit and the other one-half that height.

of the same height as the outer units form a vertical, enclosed space the width of the wall to a certain heighth. This space so formed being filled with concrete and re-inforced with iron bars to form a column. The balance of this wall, to the same height, to be made up of the units of less heighth so as to form a continuous air space on both sides of the column.

The top edge, of the upper row of these tie units, forms a support on which to lay a piece of sheet iron the width of the air space, on which a concrete beam is poured, the lower side being reinforced with iron bars. From the top of this beam a continuation of the column is formed in the same manner as described above.

DRAWING #2, FIGURE #1 shows a circular threespace hollow wall, for use in the construction of reservoirs,
silos or any place where a circular walls is required. The
construction is the same as in a straight wall. The inner
and outer units differ in the fact that they are curved instead of straight and it is not possible to make them interchangeable as the units must be made shorter, owing to
the shortening of the circumference as the center is approached.

• • , -. • • •

DRAWING #2.FIGURE #2 shows a vertical section of a wall with a double air space, the construction being the same except that two more vertical planes of inner units have been added, also the lengthening out of the tie units. This construction to be used for ice houses, packing houses, or in any case where additional insulation is required.

DRAWING #2 FIGURE #3 is a horizontal section of a wall through a wall showing a pilaster. The construction is the same as in a straight wall, except at the pilaster, which required that two of the tie units be made lenger and a special outer unit for the face of the pilaster, also a short piece that is used on either side. These pieces are only special in as much as their ends are mitered and rounded for the corners. This is obtained in the standard melds by using a different style of spacer.

DRAWING #2 FIGURE #4 shows a horizontal section through a hollow column or chimney. This required only two different units, an outer and a tie unit. The outer unit is the same as that used in the pilaster or can be of any length standard unit by changing the spacer in the meld to form the mitered and rounded corner. The tie unit is made the same as the standard unit without notches, with the ends reduced to one half their heighth as shown in Figures #5 & 6.

All units shown in drawings will be designated by

a symbol

A representing outer units

B inner w

C w tie w

The following symbol (A - 8 - 484) stands for a standard 8" x 16" outer unit. The (8) or the second part of the symbol shows the height of the unit, the last part of the symbol or (484) shows the spacing of the grooves in the unit, the first groove being 4 inches from the end, the second groove 8 inches from the first and four inches from the other end of the unit, the sum of these distances being equal to 16 inches or the total length of the unit.

The symbol of an inner unit of the same size and spacing of notches would be (B - 8 - 484).

The inner and outer units for right angle corners are designated by adding (45°) to the end of the symbol. In the following symbol for a tie unit $(C-4-4\frac{1}{4})$

C represents the kind of unit

4 " height of unit

42 " total width of wall with only one air space.

In the following symbol for a tie unit

(C - 4 - 3(2\frac{1}{2}) 7) the last part of the symbol represents a

12" wall in which the 3" is the width in inches of the solid
portion on the outside of the wall, the "2\frac{1}{2}"" the width of

the hollow space in the center of the wall and the "7" the
width of the solid space on the inside of the wall. The

•

•

•

-- --

The sum of these or 121 is the total width of the wall.

DRAWING #3 shows the different units that are required for a straight wall. The standard inner and outer units being 8" x 16". In order to form openings where required or of different widths, it is necessary to have units varying in length from 8" to 24" inclusive. This allows all horizontal dimensions to vary in steps of four inches. If it is necessary to vary the vertical dimensions less than eight inches, the above blocks may be duplicated in length but having a height of one-half the standard or four inches. This would require a total number of eleven inner units and eleven outer units.

DRAWINGS #4 & 5 show the different outer and inner units required at the corners for different widths of walls. By varying the width or the wall in steps of one inch, it will readily be seen by the drawings that the outer units will repeat themselves, vis:

The units in the two inch wall being the same as those in the ten inch wall.

Those in the four inch wall will be the same as those in the twelve inch wall.

Therefore if the outer units for corners are increased in one inch steps from eight to twenty-three inches, inclusive, it will give all the required lengths

for any width of wall.

The inner units are so designed that they can be placed to form a minimum space of one inch between the inner and outer units. This space is increased by steps of one inch. It will also be seen that the length of these units will soon repeat themselves so that it only required units from 62" to 212" inclusive, to form any width of space.

The walls shown on these two drawings represent the walls most used in standard practice. Each different width of wall required a different length of tie units for a all parts of the wall.

DETAIL OF UNITS USED IN THE DIFFERENT WALLS.

DRAVING #6 shows the detail of all outer units used in the straight wall construction also giving the volumn and the weight of each unit.

DRAWING #7 shows the detail of all outer units used at the corners.

DRAWING #8 shows the detail of all inner units used in the straight wall construction.

DRAWING #9 shows the detail of all inner units used at the corners for all widths of wall.

DRAWING \$10 shows the detail of all tie units required to make up the standard walls shown in drawings \$4 & 5.

DRAWING #11 shows a light sheet metal facing for the groove in the outer units and a tongue in the tie units and these are made so that the tongue nicely slips into the groove and serves to form a very firm connection between the outer and tie units. It will also be noticed that four clips are made on the back face of the sheet metal facing for the groove. This is to connect to and hold the reds used to reinforce the outer units as shown in Brawing #6, Detail #1.

•

•

•

In the sheet reinforcing for the tengue of the tie units there are two loops which serve as eyes into which can be dropped the hook ends of the tie rods as shown in Betail #6 of Drawing #10. These form a complete chain of metal ties which hold the reinfercing of the outer unit on one side to the reinfercing of the outer unit on the other mide.

The sheet metal facings for the tongue and groove are made with very little cost as the steel is light and is formed by running it through a continuous machine operated by one man which rolls it into the required shape at a speed of approximately 25 feet per minute which would turn out enough facing to supply 5,000 units per day.

. - - -

MOLDS

The units are to be made by pouring a "sloppy" mixture of concrete into steel molds. These molds are made up of standard sheets of cold rolled steel, cut to size and blanked out on presses, and cold rolled bars, rolled to size and cut to length with practically no machinery needed to assemble these to form a complete mold. This reduces the cost of the molds to but very little more than the cost of the steel itself.

en the ordinary industrial track. The cars are relied under the mixer and the molds are filled with concrete. From there the cars are run into steam cureing rooms and left from twelve to twenty hours. They are then hard enough so that the molds can be removed. This allows the use of the molds once every twenty-four hours.

•

-- --

THE LAYOUT OF ASSEMBLED MOLDS FOR THE DIFFERENT UNITS.

assembled mold used for making the outer units. The mold as shown is for making the straight wall units. It differs from the mold required to make the corner units only in the kind of spacer used. The mold consists of division plates with attached form bars and spacers. The division plates are punched to receive the dowels in the spacers. These dowels are long enough to extend through into the spacer on the other side of the plate. The attached form bars are attached permanently to the division plates by rivets.

This mold will make sixty-five units in length and from two to six units in width, depending on the length of the unit, making a total of from 150 to 590 outer units per mold. The maximum dimensions of the mold being 4'6" wide by 8' long.

DRAWING \$15 is a layout of an end of an assembled mold used for making the inner units. The mold consists of division plates, spacers and detached form bars. The division plates being punched to receive the dowels in the spacers. These dowels are long enough to extend through into the spacer on the other side of the plate. Notches are also punched in the upper and lower edges of these division plates to receive

•

.

•

r

•

the detached form bars which form the notches in the upper and lower edges of the inner unit.

This mold will make 100 units in length and from 2 to 7 units in width depending on the length of the unit, or a total of from 200 to 700 inner units per mold. The maximum dimensions being 4.6 wide by 8. long.

DRAWING #14, is a layout of one end of an assembled mold used for making the tie units. The mold consists of
division plates with attached form bars, spacers and detached form bars, these being assembled as in above described
molds.

This mold will make 80 units in length and from 4 to 50 units in width depending on the length of the tie unit or a total of from 320 to 2400 units.

The maximum dimension of the mold being 4'6" wide by 8' leng.

DETRIL OF PARTS USED IN THE MOLDS.

DRAWING #15 shows the standard cold rolled shapes of steel bars used for molds.

Detail #1 is used to make spacers for outer units for straight walls.

Details #2.3 & 4 are used to make spacers for outer units requiring mitered and rounded ends.

Details #5 & 7 are used to make spacers for inner units.

Detail #6 is used to make spacers for the tie units.

Details #8 & 9 are used for detached form bars,
Detail #8 being used for tie units and #9 for inner units.

Detail #10 is used for attached form bars for forming grooves in outer units.

Detail #11 is used for attached form bars for tie units. The table of dimensions shows the length into which these bars are cut, and weight of each.

DRAWING #16 shows the different mold division plates required. The sheet steel is purchased rolled to width. The plates are cut off, notched and punched by the use of special dies in power presses.

DRAWING #17 shows the mould division plates with attached form bars for outer units. After the plates have been cut to length and punched as stated above they are put into a riveting fixture and the cold rolled steel

form bars are riveted in place.

<u>DRAWING #18</u> is a table giving sises, weights and number of mold division plates required for one mold of outer units.

DRAWING \$19 is a table similar to \$18 except that it is for inner units.

<u>DRAWING #80</u> shows the mold division plates with attached bars for tie units. The attached form bars being small can be welded (electric) in place.

<u>DRAWING #21</u> is a table showing the sises, weights and number of mold division plates required for one mold of tie units.

praying \$22 shows spacers used in all molds, each spacer having two cold rolled steel dowels. These dowels can be made in automatic screw machines, and are to be a press fit in reamed heles in the spacer. The holes are drilled and reamed in a drilling fixture which makes their location exact. It will be noticed that all interchangeable parts of the molds must be made to exact dimensions as only plus or minus two thousandths of an inch being allowed or a total variation of four thousandths of an inch. This makes it possible to have every unit of the same symbol exactly alike.

TABLES OF PARTS AND MATERIALS REQUIRED TO MAKE UP AND FILL A COMPLETE MOLD.

DRAWING # 23 is for outer units.

DRAWING # 24 is for inner units.

DRAWING # 25 is for tie units.

COSTS OF MOLDS.

To get an idea of the cost of the molds, take the molds required for standard $8^{\rm H}$ x $16^{\rm H}$ units for a $12^{\rm H}$ wall.

The mold for outer units (A-8-484) will cast 195 units at a time and weighs 1850 lbs. complete. (See Drawing #25.) Say that we distribute the cost on the number of units made in one mold in one year's time allowing 500 working days and basing the cost of the mold at 5¢ per lb. which is ample. This mold would make 58,500 units at a cost of \$92.50. This is \$.0016 per unit.

The mold for inner units (B-8-484) will cast 500 units at a time or 90,000 units in a year. This mold weighs 1,297 lbs. and would cost at 5¢ per lb. \$65.00. This is \$.0007 per unit.

The tie unit (C-4-5(2\frac{1}{2})7) will cast 320 units at a time or 96,000 units per year. This meld weighs 2,266 lbs. and would cost \$115.00. This is \$.0012 per unit. Cost of meld per outer unit \$.0016

w w w inner w .0007

" " " tie " _.0012

Total cost of one half of wall \$.0035

As it requires 6 units to make up 8" x 16" of complete wall, the total cost for 128

sq. in. is - .0070

• •

• • •

· ·

•

.

•

Cost per sq. ft. of wall surface - \$.0078

Allewing one cent per sq. ft. of wall would more than cover cost for any of the molds.

There being practically no wear on the molds, they should last at least four times as long as figured which would reduce the cost to \$.0025 per sq. ft. of wall surface for a 12" wall. The cost does not vary with the width of the wall as the difference in length of the tie unit would make very little difference.

_

COST OF MATERIAL.

In figuring the cost of material we will take the same size units used in figuring the molds.

Outer unit (A - 8 - 484) contains 154 cm. in.
of concrete, .23 lbs. of steel for sheet facing and .22 lbs.
1/8" iron rods for reinforcement.

Inner unit (B - 8 - 484) contains 95 cu. in. of concrete.

Tie unit (C - 4 - 5 (22) 7) contains 59 cu. in. of concrete, .11 lbs. sheet metal facing and .08 lbs. 1/8" iron rods.

The amount of material contained in the three units is as follows:

286 eu. in. concrete.

.34 lbs. sheet metal facing.

.30 lbs. 1/8" rods.

Reducing this to one sq. ft. of wall surface for a twelve inch wall, we have the following amounts and costs:

76 lbs.steel facing 6 3¢ per lb. .025
66 lbs. 1/8" rods 6 3¢ per lb. .02
Total cost of wall per sq. ft. \$0.090

- , ,

:

•

.

.

- - - ·

•

• •

•

•

•

• •

• •

:

• •

•

• •

•

•

•

•

The above cost is with the units reinforced.

For plain units the cost would be \$.07 per sq.

ft. for 12" wall.

COST OF MANUFACTURING THE UNITS.

Figuring on a plant to make units for 5,000 sq. ft. of 12" wall. This means approximately 40 cu. yds. of concrete per day or 50 cu. yds. or one car load of gravel and 55 bbls. or approximately 2/5 of a car of cement.

In order to handle this amount of material to the best advantage it would mean dumping the gravel from gondels cars into a hepper below the track, from here to be carried to storage bins directly above the mixer by a belt conveyor which would require little or no labor. By buying cement in bulk it could be transferred to a storage bin in a similar manner by scraping it out of the side of the box car into a receiver and from there by conveyors to the storage bin above mixer.

by having the molds on cars running on the ordinary industrial track so that the molds could be transferred from the mixer to the steam cureing rooms and from there to the storage yard by the use of very little labor. Estimating the cost of manufacturing in a rough but safe estimate, the cost of units per sq. ft. of wall would be as follows, labor being previously estimated:

•

:

•

•

• '

•

•

Interest on principle and depreciation	
of equipment	- \$.04
Labor	30.
Materials	07
Cost for plain units per sq. ft.	\$.18
w w reinforced units per sq. ft.	.15

.

• • • •

• •

,

.

ESTIMATED COST OF WALLS,

MADE OF CONCRETE BY THE UNIT CONSTRUCTION METHOD AND COM-PARISON OF SAME WITH WOOD, BLOCK, BRICK, TILE AND MONOLITHIC CONCRETE CONSTRUCTION.

Unit constructed wall per sq. ft. - @ 24¢ to 30¢

Frame wall per sq. ft. - 0 16¢

Bleck wall per sq. ft. - @ 26¢ to 35¢

Brick wall per sq. ft. - 0 25¢ to 56¢

Tile wall per sq. ft. - Q 25¢ to 28¢

Monolithic concrete wall " " - @ 35¢ to 44¢

The above prices are for walls finished on the outside and ready for plaster on the inside. A still further saving in the use of unit construction can be made by putting canvas on the wall to receive the decorating instead of plaster. This is possible because the units form a smeeth wall.

UNIT BUILDING CONSTRUCTION:

Basing estimate on

8" x 16" units per sq. ft. of 8" wall	\$0.18
8" x 16" units per sq. ft. of 12" wall	0.20
Cost of laying up wall per sq. ft.	0.03
Cost of concrete filling per cu. ft.	0.15

,

•

- · · · ·

-

•

• • • • •

- . . .

The 5¢ per cu. ft. for laying up wall does not include labor on concrete filling which is 2" thick in the 8" wall and 6" thick in the 12" wall. Labor being estimated at the same rate as above. No lathing is required in this construction. The unit wall with concrete fill will cost ready to plaster on the inside as follows:

8" wall costs 24¢ per sq. or surface ft.

12" wall costs 50¢ per sq. or surface ft.

If the above units are reinforced add 2¢ per square or surface ft. of wall.

WOOD CONSTRUCTION:

Material used 2" x 4" studding, 7/8" sheathing, pine clap boards, pine lath and good grade of building paper.

Basing estimate on

Rough lumber at, per M. - - - \$27.00

Siding at, per M. - - - - - 40.00

Carpenter werk at, per day - - 3.75

The frame walls will cost \$0.16 per square or surface ft. including 10 per cent for waste. This is the approximate cost per sq. ft. for the outside walls of a frame house, lathed ready to plaster on the inside and ready to paint on the outside.

•

•

•

. - -

CEMENT BLOCK CONSTRUCTION:

Basing estimate on

8" x 8" x 16" blocks each - - - - \$0.15

8" x 12" x 16" blocks each - - - 0.21

Mason per day - - - - - - - 4.80

Helper per day - - - - - - - 2.50

Furring and lathing per se. ft. - - .03

The cement block walls will cost ready to plaster on the inside as follows:

8" thick 26¢ per square or surface foot

12" thick 35¢ per square or surface foot

BRICK CONSTRUCTION:

Basing estimate en,

Brick, per M. - - - - - \$8.00

Mortar, per M. - - - - - 1.00

Mason per day - - - - - 4.80

Helper per day - - - - - 2.50

Furring & lathing per sq. ft. .05

The brick walls will cost ready to plaster on the inside as follows:

8" thick \$0.25 per square or surface feet

18" thick 0.36 per square or surface foot.

: ·

. - - -

• • • • • • • • • •

· - - »

;

. _ _ _ _ _ _

, _ _ _ _ _ _ _ _ _

•

TILE CONSTRUCTION:

Basing estimate on

Stucco per sq. ft. - - - - - -

The tile walls will cost, ready to plaster on the inside as follows:

-04

8" thick \$0.25 per square or surface foot
12" thick 0.28 per square or surface foot

MONOLITHIC CONCRETE WALLS:

Basing estimate en

The Monolithic concrete walls will cost ready to plaster on the inside as follows:

8" solid wall 35¢ per square or surface foot

8" cored wall 30¢ per square or surface foot 12" solid wall 41¢ per square or surface foot 12" cored wall 44¢ per square or surface foot

CONCLUSION.

The main points of this construction are vis:

Speed of construction

Insulation or air space

Adaptability to extensive decorative possibilities by the use of pre-cast units.


Minimum cost for upkeep and insurance

Flexibility of these units over the larger ones that have been so far used in unit construction work.

Strength is greater than other wall of the same cost of construction.

•

,

BUILDING CONSTRUCTION

LAY OUT OF WALLS

ERM

DRAWING I SCALE 4 SIZE MAY 27-1915

R. Z. HOPKINS DETROIT MICHIGAN

PATENT APPLIED FOR

*

ì

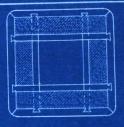
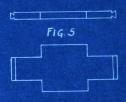



FIG.4
HOLLOW COLUMN OR CHIMNEY

_ SECTION OF H PILASTER FIG. 6

DETAIL OF TIE UNIT FOR

FIG. 4

BUILDING CONSTRUCTION

LAY OUT OF WALLS

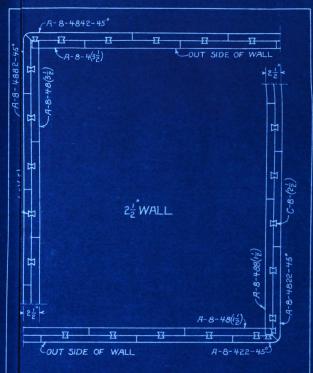
DRAWING 2 SCALE SIZE MAY 27-1915

R.Z. HOPKINS DETROIT MICHIGAN

PATENT APPLIED FOR

BUILDING CONSTRUCTION

12" WALL SHOWING STANDARD UNITS


DRAWING 3 SCALE 4 SIZE MAY 27, 1915.

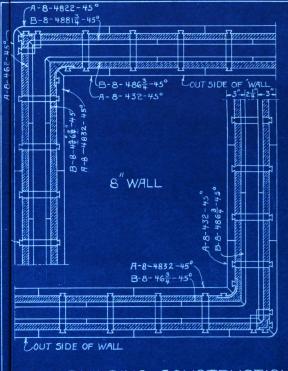
R.Z. HOPKINS DETROIT, MICHIGAN.

PATENT APPLIED FOR.

.

.

BUILDING CONSTRUCTION


DETAIL OF WALLS AT CORNERS.

DRAWING#4 SCALE #SIZE MAY 27, 15.

R.Z. HOPKINS, DETROIT, MICHIGAN

PATENT APPLIED FOR

. energy of the second of the s - -•

BUILDING CONSTRUCTION

DETAIL OF WALLS AT CORNERS.

DRAWING \$5 SCALE \$SIZE MAY 27, 15.

R.Z. HOPKINS, DETROIT, MICHIGAN

PATENT APPLIED FOR

TAB	TABLE OF DIMENSIONS													
DETAIL	LENGTH	HEIGHT	LO	CCU IN WEIGHT										
	A	В	C	D,	DZ	D ₃	E							
*3	8"	8"	2"	2"	2"		2"	71.	6.2					
#1	12"	"	4"	6"			2"	114	9.9					
1	16"		4"	8"			4"	154.	13.4					
2	16"	μ	4"	6"	2"	2"	2"	148.	12.9					
3	20"		4"	8"	6"		2"	191.	16.6					
3	24"	11	4"	8"	8"		4"	231.	20.0					

BUILDING CONSTRUCTION DETAIL OF OUTER UNITS

DRAWING 6 SCALE 4SIZE MAY 27-1915.

R.Z. HOPKINS DETROIT MICHIGAN

PATENT APPLIED FOR

L	TABLE OF DIMENSIONS													
	DETAIL	LENGTH	HEIGHT	LOC	LOCATION OF NOTCHES N. I.									
		A	В	C	D,	Dz	D_3	E						
	#/	8"	8"	4*	2"			2"	66.5	5.8				
L		9'	- 11	"	3"			P	76.5	6.6				
Ľ	" .	10"	11	11	4"				865	7.5				
		11"	- 11		5*			**	96.5	8.4				
Ľ	"	12"	- 11	"	6"			"	106.5	9.2				
,	- #	13"	0.0	- 11	7"			- 11	116.5	10.1				
,	"	14"		и	8"			"	126.5	11.0				
	h	15*	. 11	.,	9"				136.5	11.9				
°	#2	16"	n	"	8"	2"		11	143.5	12.5				
0	11	17	"	1/		3"		11	153.5	13.3				
0	11	18"	-	4	4	4"		"	163.5	14.2				
°	4	19"	11	и	- 11	5"		11	173.5	15.0				
0	ii	20"	"			6"		и	183.5	15.9				
0	11	21"	- 4	"	14	7"		"	193.5	16.8				
•	ii .	22"	11	11	"	8"		"	203.5	17.7				
0	"	23"	"		- 14	9"		u	213.5	18.5				

BUILDING CONSTRUCTION DETAIL OF OUTER UNITS

FOR CORNERS DRAWING TO SCALE 4 SIZE MAY 27-1915.

R.Z. HOPKINS DETROIT MICHIGAN

PATENT APPLIED FOR

• • •••

ΓAB	TABLE OF DIMENSIONS												
DETAIL	LENGTH	HEIGHT	LOC	LOCATION OF NOTCHES NOT NOT NEIGHT NAME NOT									
	A	В	С	D	D ₂	D ₃	E						
#3	8"	8"	2"	2"	2"		2"	43.5	3.8				
#1	12"		4"	6"			2"	69.0	6.0				
1	16"	В	4"	8"			4"	93.0	8.1				
2	16"		4"	6'	2"	2"	2"	90.0	7.8				
3	20"	м	4"	8"	6"		2"	1155	10.0				
3	24"	н	4"	8"	8"		4"	139.5	12.1				

BUILDING CONSTRUCTION DETRIL OF INNER UNITS

DRAWING *8 SCALE \$\frac{1}{4}\size MAY 27-1915

R.Z.HOPKINS DETROIT MICHIGAN

PATENT APPLIED FOR

		_	4
			-
•			
	_		
			,
	•		

T	TABLE OF DIMENSIONS													
	DE I AIL	LENGTH	HEIGHT	Loc	CATIO	VOLUMN CU. IN.	WEIGHT LBS.							
		A	В	C	D	Dz	D_3	E						
#1		63/4	8"	4				23	36.0	3.1				
# 1		73	"	"				37	42.0	3.6				
#1		834						434	48.0	4.2				
#		94	u	u '				53	54.0	4.7				
#		10 3/4	· u	**				63	600	5.2				
# 1		113		и				734 834	66.0	5.7				
#1		1234	*					834	72.0	6.2				
° #2		133			8			1盏	76.5	6.6				
° #2		143			4			234	82.5	7.2				
° #2		154			"			33	885	7.7				
° #2		164	*		"			434	94.5	8.2				
° #2		173	*	*				43 54	100.5	8.7				
° #2		183	н					64	106.5	9.3				
° #2		1934	"	и				734	1125	9.8				
° #2		20 3	ш	4	u u			84	118.5	10.3				
5 #3		213	4	H	4	8"			123.0	10.7				

BUILDING CONSTRUCTION

DETAIL OF INNER UNITS

FOR CORNERS

DRAWING 9 SCALE 4 SIZE MAY 27-1915

R.Z.HOPKINS DETROIT MICHIGAN

PATENT APPLIED FOR

-. -· • • ---÷

3LE OF DIMENSIONS

=				Name of Street											
	1									CONC	WT. LBS. TW				
	HEIGHT		LOCATION OF NOTCHES												
\neg	В	С	D _i	DZ	E	C'	D'	DZ	E						
	8″									6.0	.5				
П	2									1.5	l.				
+	4									10.0	.9				
П	2		5.00							5.0	.#				
4	4									18.0	1.6				
П	2									9.0	.8				
4	4	1/8	3"		1/8	1/8	3"		1/8	23.0	2.0				
	2	F	0		11					11.5	1.0				
4	4	11	0		3%		п		3%	31.0	2.7				
	2	11	0		н					15.5	1.3				
4	4	- 11	ıı .		5/8	- 0	ш		5/8	39.0	3.4				
	2	n	- 0		п			500		19.5	1.7				

BUILDING CONSTRUCTION

DETAIL OF TIE UNITS

DRAWING IO SCALE 4 SIZE MAY 27-1915

R.Z. HOPKINS DETROIT MICHIGAN

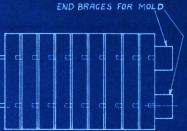
PATENT APPLIED FOR

• *

TABLE OF DIMENSIONS.													
UNITS	WIGHT CALLED CAL												
OHITS	DETAIL NUMBER.	WID	GAUGE	MEI LE	A.	B.	C.						
OUTER	#1 .	3.35	#28	.175	7.99Ő	1"	2.						
OUTER	#1.	3.35	#28		3.990°	1"	5						
TIE	#2.	3.35	#28	.056	3.990	11/2"	1						
TIE	#2.	3.35	#28	028	1.990	1/2"	1						

ole

TAIL#2. BUILDING CONSTRUCTION TONGUE AND GROOVE REINFORCEMENT


DRAWING#11 SCALE \$SIZE MAY 27, 15.

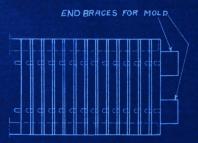
R.Z. HOPKINS DETROIT MICHIGAN

PATENT APPLIED FOR

.....

SIDE VIEW OF ONE END OF MOLD

BUILDING CONSTRUCTION MOLDS FOR OUTER UNITS


DRAWING IR SCALE 4 SIZE MAY 27-1915

R.Z.HOPKINS DETROIT MICHIGAN

PATENT APPLIED FOR

. :

SIDE VIEW OF ONE END OF MOLD

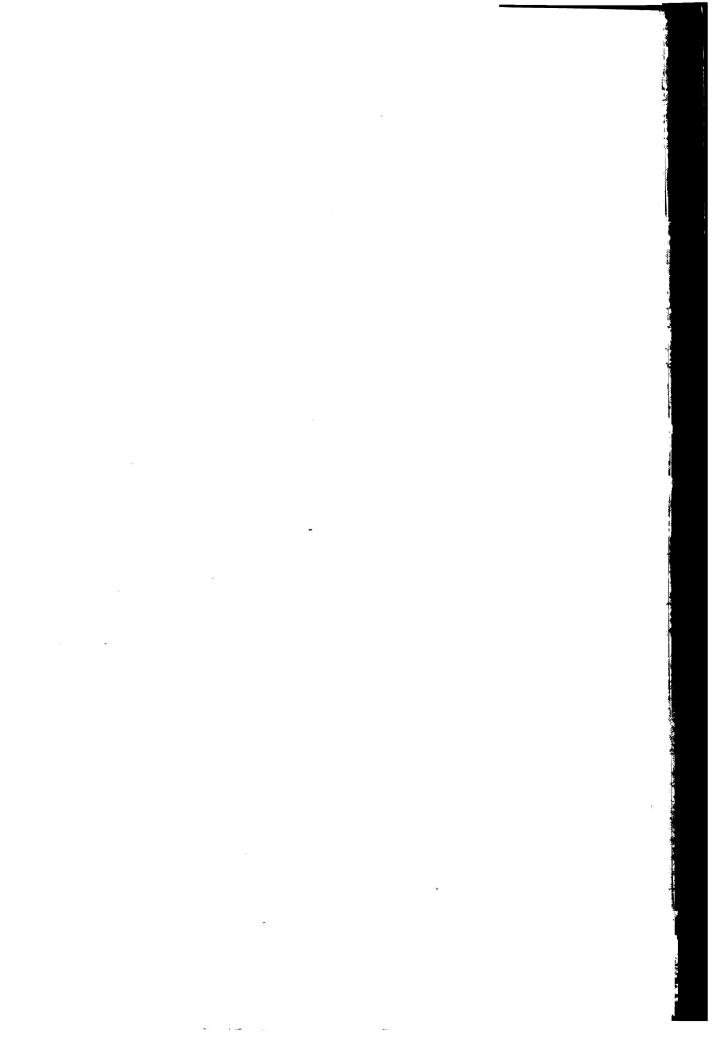
BUILDING CONSTRUCTION MOLDS FOR INNER UNITS

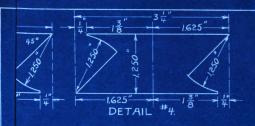
DRHWING 13 SCALE 4 SIZE MAY 27-1915

R.Z. HOPKINS DETROIT MICHIGAN

PATENT APPLIED FOR

SUPPORT FOR END OF MOLD


BUILDING CONSTRUCTION

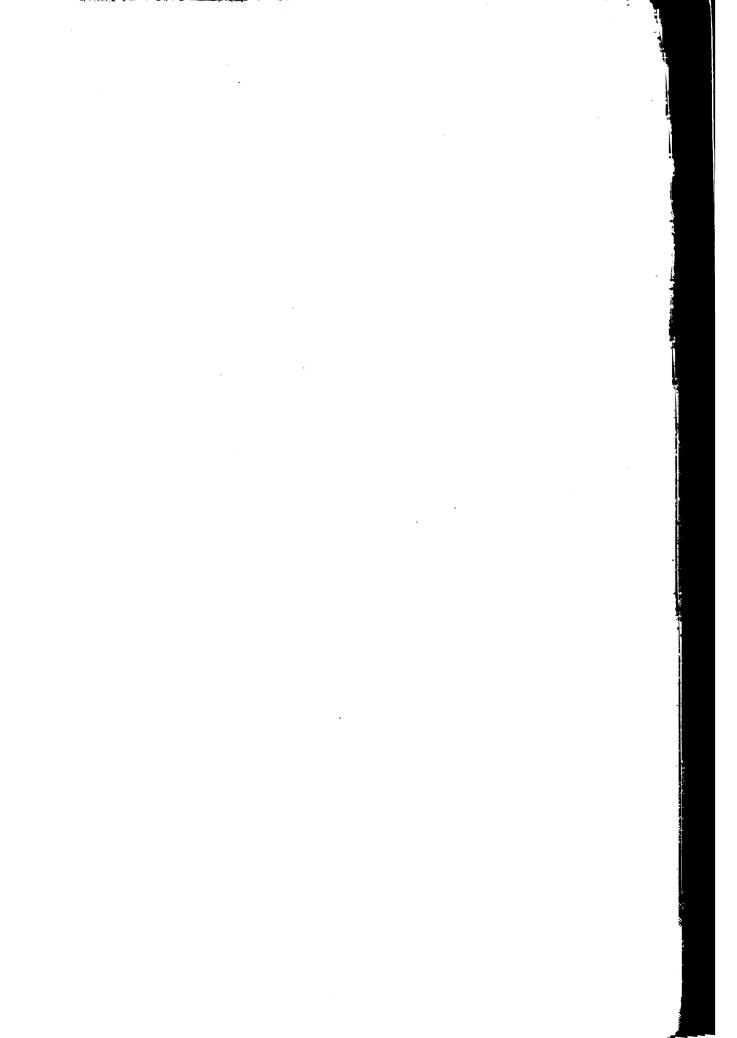

MOLD FOR TIE UNITS

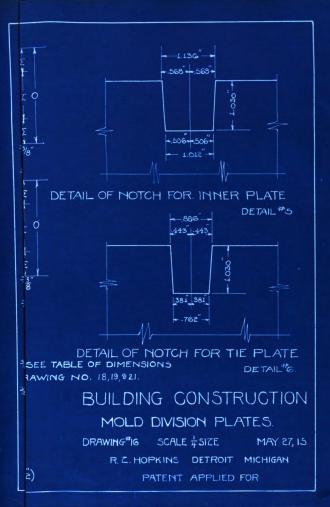
DRAWING 14 SCALE \$\frac{1}{4}\ SIZE MAY 27-1915

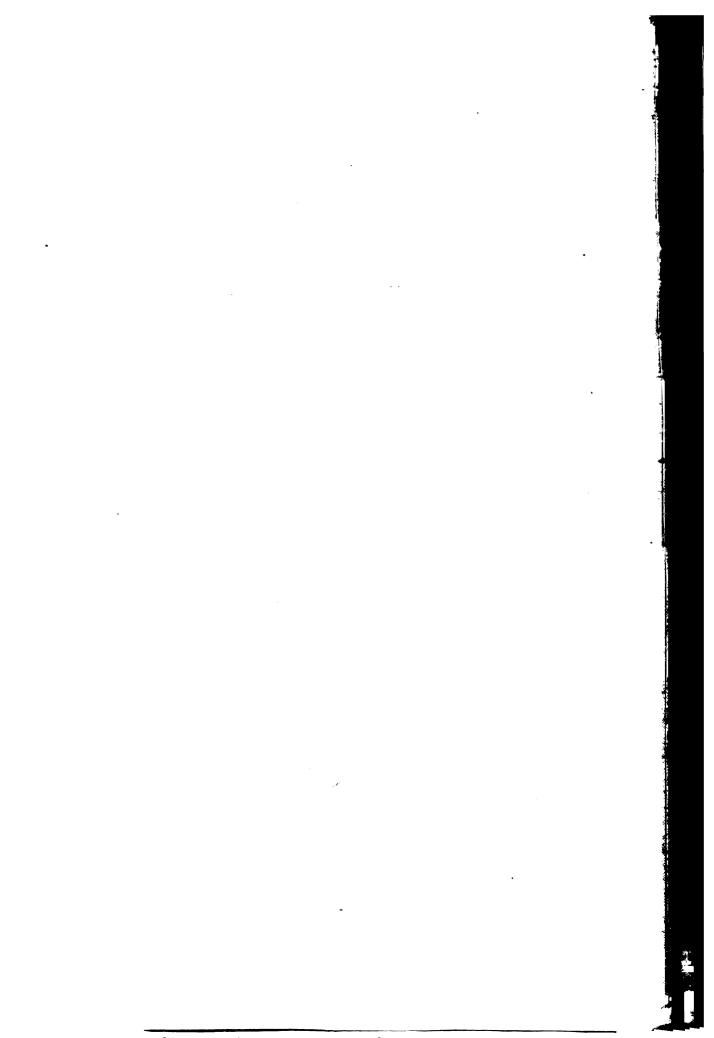
R.Z. HOPKINS DETROIT MICHIGAN

PATENT APPLIED FOR

	TABLE OF DIMENSIONS													
DETAIL NUMBER	LENGTH	WEIGHT LBS.	LENGTH	WEIGHT LBS.	LENGTH	WEIGHT LBS.	LENGTH	WEIGHT						
#1.	7.996	2,12	3.99 <i>0</i> ″	1.06										
2.	7.998		3,9 <i>9</i> 0	2.14				1						
3.	7.990	6.40	3.990	3.20										
4.	7,990	6,40	3,990	3.20										
5.	7.990	1.28	3.990	.64										
6.	7.9 9 0	1.70	3.990"	.85	1.990	.43								
7.	7.9 <i>96</i>	2,05	3.990	1.03										
8.	92.0"	21.5			100									
9.	90.0"	27.5												
. 10.	7,990	.85	399ő	.43	1,990	.21								
11.	7.990	.14	3996	.07	1.990	.04								


BUILDING CONSTRUCTION COLD ROLLED STEEL


BARS FOR MOLDS.


DRAWING#15 SCALE # SIZE MAY 27,15.

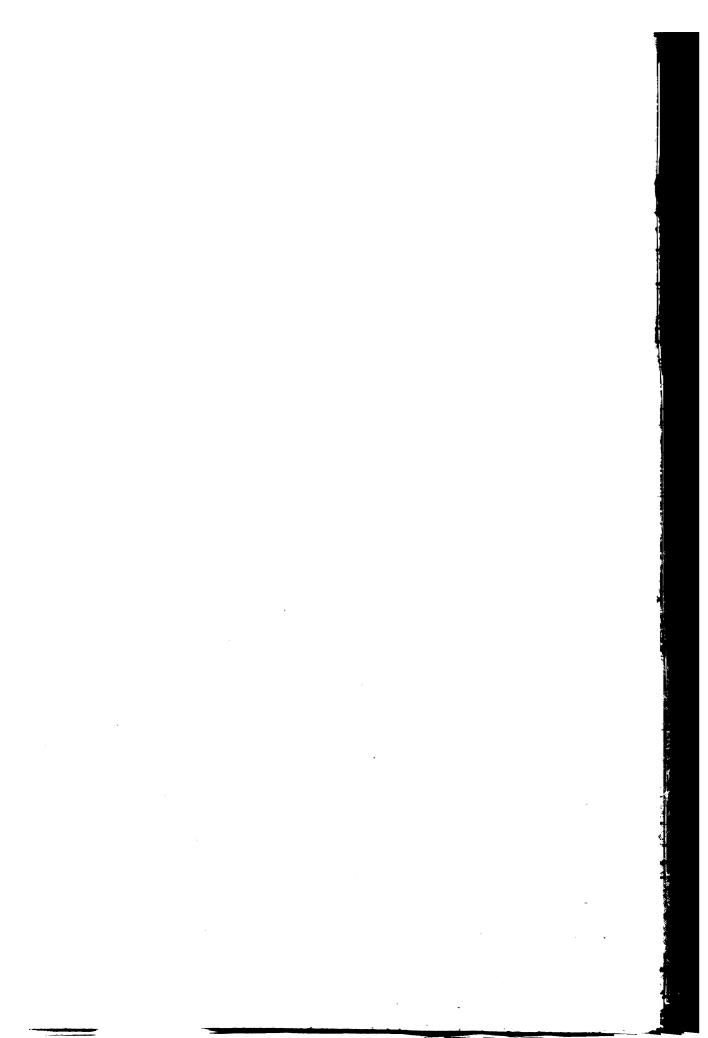
R.Z. HOPKINS DETROIT MICHIGAN

PATENT APPLIED FOR.

FORM BAR TO BE HELD IN PLACE BY 1/4" RIVETS, THE ENDS OF WHICH MUST BE GROUND OFF TRUE WITH OUTSIDE SURFACE.

SEE TABLE OF DIMENSIONS ON DRAWING NO. 18

DRAWING TIT SCALE TSIZE MAY 27, 15


R.Z. HOPKINS DETROIT MICHIGAN

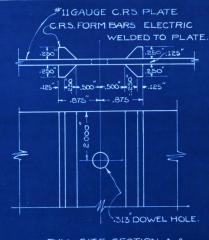
PATENT APPLIED FOR.

•

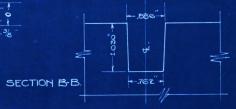
MAY- 27-1915

E	S	0.00	E	TTA	CHE) F.0	RM	BAR	s		1000	TAL			
	ON	NUMBER PER-UNIT	NUMBER PER- PLATE		WEIGHT NOITHOOF										
L	N			С	D,	D ₂	D ₃	D ₄	E						
ő	4.000	3	18	2.365	2.000				2,365	.85*	15.3	30.4			
	11	2	8	4.365	6.000	100			"	p	6.8	21.5			
L		2	6		8.000				4.375"	н	5.1	19.5			
		4	12	n n	6.000	2.000			2.375		10.2	24.6			
	11	3	6	10	8.000	6.000			"	"	5.1	17.1			
L		3	6	11	н	8.000			4.375"	н	5.1	19.3			
L		2	12	n	2.000				2.375		10.2	25.3			
		2	10	11	3.000				n n	n	8.5	22.5			
Ц	н	2	10		4.000				0	н	8.5	23.9			
Ц	- 11	2	8	"	5.000				0	п	6.8	20.3			
Ц	11	2	8	11	6.000				- 11	п	6.8	21.4			
Ц	"	2	6	"	7.000				11		5.1	17.0			
Ц	"	2	6	0	8.000				11	н	5.1	17.9			
Ц	н	2	6	- 0	9.000				п		5.1	18.8			
Ц	"	3	9	n	8.000				"	п	7.7	22.2			
Ц	н	3	9	"	"	3.000			н	"	7.7	23.1			
Ц	"	3	6	11		4.000			"		5.1	16.0			
4		3	6	0		5.000			"	"	"	16.6			
4	"	3	6	"		6.000			"	"	"	17.2			
4	"	3	6	"	_	7.000			"	"	"	17.8			
4	"	3	6	"	_	8.000			"	"	"	18.4			
4		3	6	п		9.000			"		11	18.9			
4															
4															
4				-		1,1									
4															
4															
+								7							
+						4									
\perp		Towns.	200	1000		400						100			

INNER UNITS.

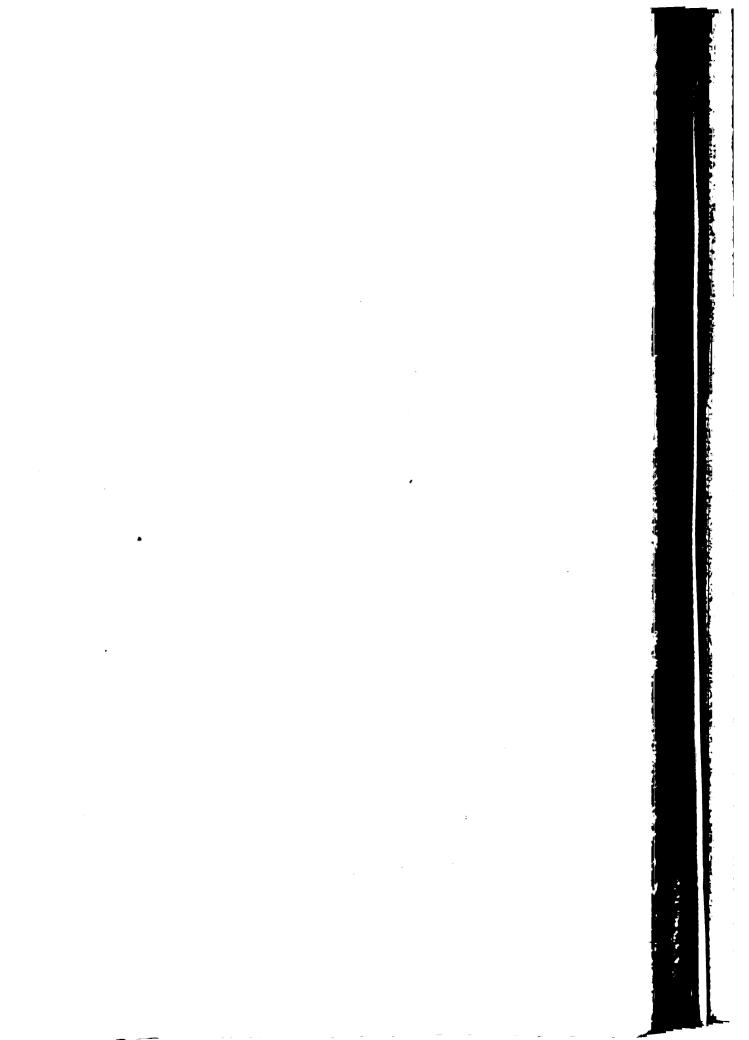

DRAWING NO. 19

TOTCHES FOR DETACHED FORM BARS

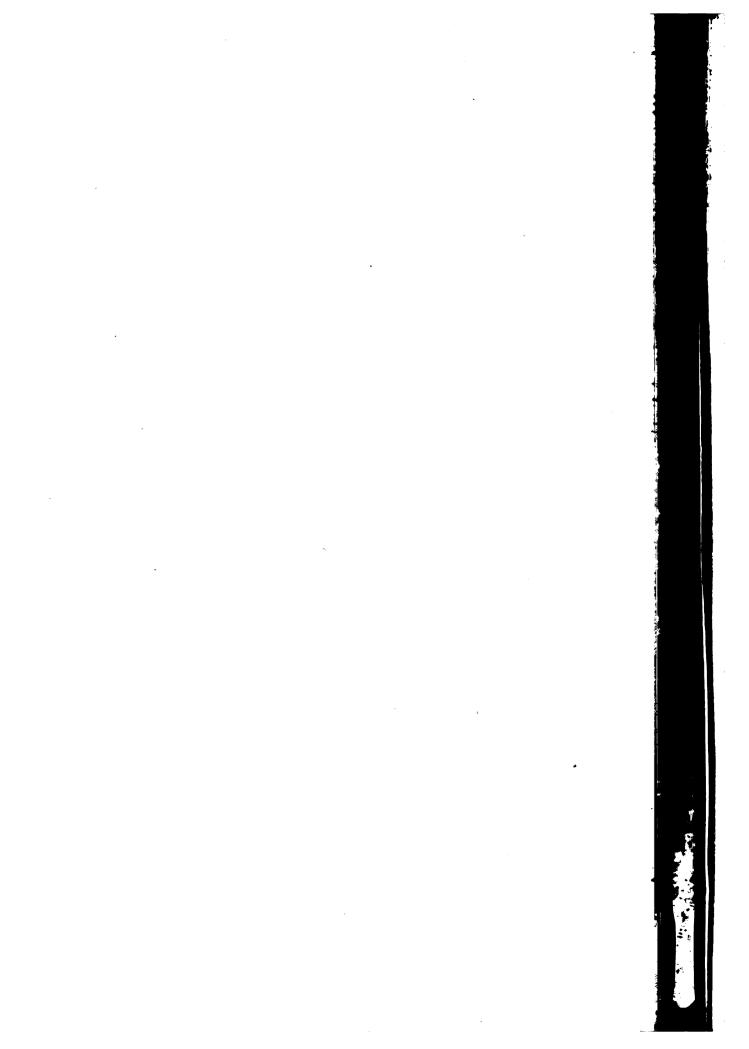

LOCATION

L	С	Di	D2	D ₃	D ₄	E	C'	D'	D ₂	D' ₃	D' ₄	E'
Ī	2.365	2.00 <i>ő</i>	2.000			2,365	2,365	2,006	2.000			2.365
ľ	4.365	6.000	1			2.365	4.365	6.000				2.365
ſ	н	8.000				4.365	11	8.000				4.365
ſ	11	6.000	2.000	2.000		2.365	P.	6.000	2.000	2.000	The same	2.365
Ī	"	8.000	6.000	The last		2.365	- 11	8.000	6.000			2.365
Ī	n	8.000	8.000			4.365		8.000	8.000			4.365
Ī			160			3.115						3.115
I	И				1	4.115	- 11					4.115
Ī			SE.			5.115						5.115
Ī	p					6.115						6.115
I	"	2.7				7.115	- P					7.115
I						8.115	- 11					8,115
	u u	15-1-1				9.115	11					9.115
	II.	8.000				2.115	ш	8.000				2.115
Ī	1	- 11				3.115	- 11					3.115
Ĺ	n n					4.115						4.115
	U	н				5.115	n	- 0				5.115
	"					6.115	п	n .				6.115
	"	н				7.115	- 0	P				7.115
	- 11					8.115	н	11				8.115
	н					9.115	н					9.115
ì	- 11	н	8.000			2.115	п	и	8.000			2.115
L						T.			-		813	
				1	100	1,51						
L				1		. 20.3			1			
	7/6				J. 3.							

• en en server e en en en •



BUILDING CONSTRUCTION MOLD DIVISION PLATES FOR TIE UNITS


DRAWING#20 SCALE \$SIZE MAY 27, 15

R.Z. HOPKINS DETROIT MICHIGAN

PATENT APPLIED FOR

ED F	ORM	BA	R5				F	FORM BARS				
ION						MO. PER	NO. PER PLATE	WEIGHT	WT. PER	TOTAL WEIGHT		
E	c'	D'i	D' ₂	D' ₃	D'	E'						
			TOWN				4	120	.14*	16.8	31.9	
								120	.035	4.2	8.0	
1							"	60	.07	4.2	11.7	
SALE							н	60	.035	2.1	5.9	
				Total Co				36	.07	2.5	9.6	
							"	36	,035	1.3	4.9	
1.375	1.375	3.000		1		1.375	"	28	.07	2.0	8.3	
13.3	1.375	3.000				1.375	u	28	.035	1.0	4.4	
3.375	1.375	3.000				3.375		20	.07	1.4	7.6	
13,375	1.375	3.000				3.375	- 0	20	.035	.7	3.8	
5.375	1.375	3.000				5.375		16	.07	1.1	7.2	
100	1.375	3.000				5.375		16	.035	.6	3.7	
			1									
						-						
									-			
		72 10										
				2								
					-						100	
			_	200								

TABLE OF DIMENSIONS.

LINUTE	DETAIL.	VEKUT	DIM	1ENS	10NS	
UNITS.	DE IAIL.	WEIGHT.	A.	B.	C.	D.
OUTER.	#1.	a.ılbs	7.9 9 0	4.000	1.995	1.245
OUTER.	2.	4.3	7.990	4.000	1.995	1.245
OUTER.	3.	4.3	7.990	4.000	1.995	1.245
OUTER.	1.	1.1	3.990	2.000	.995	1.245
OUTER.	2.	2.2	3.990	2.000	.995	1.245
OUTER.	3.	2.2	3 .9 9 0	2.000	.995	1.245
INNER.	4.	1.3	7.990	4,000	1.995	.745
INNER	5.	5.7	7.990	4.000	1.995	.745
INNER	4.	.64	3.990	2.000	.995	.745
INNER	5.	1.1	3.990	2.000	.995	.745
TIE.	Ø.	e.	3.990	2.000	.995	.995
TIE.	6.	.4	1.990	2.000	<i>A</i> 95	.995

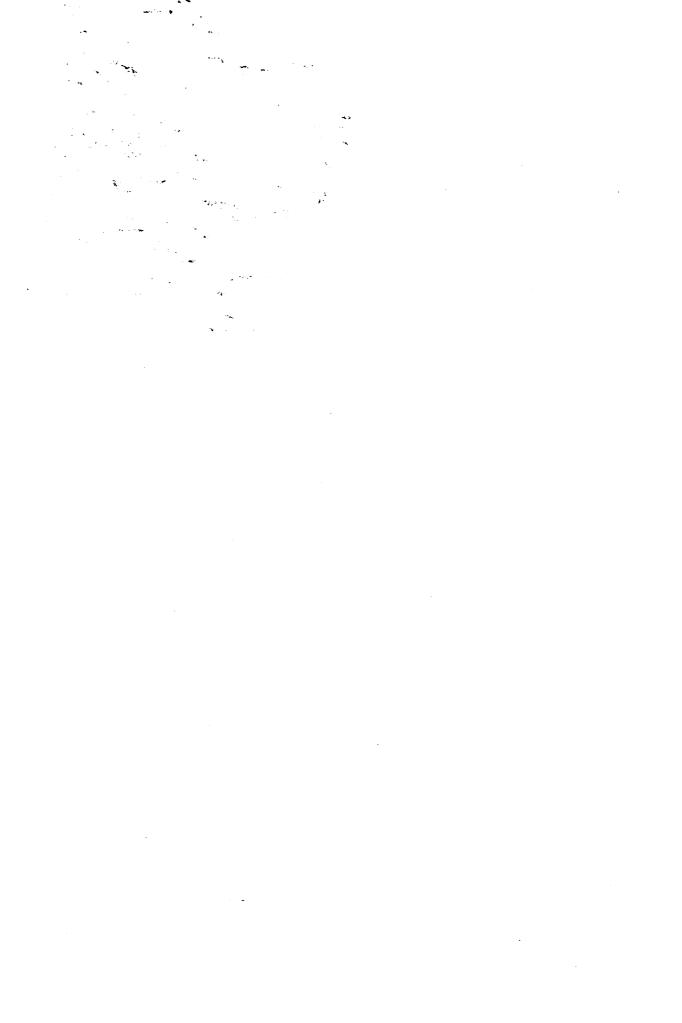
D HOLE

BUILDING CONSTRUCTION SPACERS FOR MOLDS

TAIL#7.

DRAWING \$22 SCALE \$15 MAY 27, 15 R.Z.HOPKINS. DETROIT, MICHIGAN.

PATENT APPLIED FOR


		MAT	TERIA	AL F	EQU	IRED	TO F	ILL	MOL	DS		15 TS
		CON	CRET	E	SH	EET	REII	NFOR	CEMI		¥.	N. I
4)	CU, IN. EACH	WEIGHT EACH	TOTAL CU. FT.	TOTAL WEIGHT	DRAWING NO.	DETAIL NO.	WEIGHT EACH	NUMBER EACH	TOTAL NO.	TOTAL WEIGHT	OF UNITS	TOTAL WT. OF MOLDS & UNITS
A-	71	6.2	16.0	2400	*11	#1	.112	3	1170	131		5522
A-	114	9.9	17.2	2580	9	u	ji .	2	520	58	2638	4781
A	154	13.4	17.4	2610	10	п		2	390	44	2654	4504
A-	148	12.9	16.7	2505	п		"	4	780	87	2592	4779
A-		16.6	14.#	2160	· ·		п	3	390	44	2204	3755
A-	231	20.0		2610	11		B	3	390	44	2654	43 49
A-	66.5	5.8	15.0	2250		п	- 0	2	780	87	2337	5851
A-	76.5	6.6	14.4	2160		11		H	650	73	2233	5282
A-	86.5	7.5	16.5	2475		- 0	11	H	650	73	2548	5690
A-	96,5	8.4	14.5	2175	- 11	- 4	11	H	520	58	2233	4848
A-	106.5	9.2	16.0	2400	- 6		п		520	58	2458	5146
A-	116.5	10.1	13.2	1980	11	- 11	ч	- 11	390	44	2024	41 38
A-	126.5	11.0	14.3	2145	н				390	44	2189	4362
A-	136.5	11.9	15.4	2310	п		11	н	390	44	2354	4587
A.	143.5	12.5	16.2	2430	n n	1		3	585	66	2496	4952
A	153.5	13.3	17.3	2600	0			p	585	66	2666	5182
A	- 163.5	14.2	12.3	1850		9	-11		390	44	1894	3657
A	- 173.5	15.0	13.0	1950	- 11	n	11	11	- II	и	1994	3797
A	- 183.5	15.9	13.8	2070			- 1	- 1	11	n n	2114	3957
А	- 193,5	16.8	14.6	2190	0	n		н	- 11	1	2234	4117
A	- 203.5	17.7	15.3	2300		- 11	И		1	н	2344	4267
A	- 213.5	18.5	16.1	2420			ıı	ц	- 0	n .	2464	4420
						55.5		100				
					1							
						5.00						
						Mark I	July 3					
				100					200			
	4 115	1										

•

7	MATERIAL REQUIRED TO FILL MOLDS												الا ك
- 1	I		CON	RET	E	SH	EET	REI	NFOR	CEM	ENT	٠.	- Z
		CU. IN. EACH	WEIGHT EACH	TOTAL CU.FT.	TOTAL WEIGHT	DRAWING NO.	DE TAIL NO.	WEIGHT EACH	NUMBER EACH	TOTAL NO.	TOTAL WEIGHT	TOTAL WT.	TOTAL WT, OF MOLDS&UNITS
В	1	43.5	3.8	15.1	2265	75						2265	5566
В	7	69.0	6.0	16.0	2400							2400	4927
В	6	93.0	8.1	16.2	2430							2430	4696
В	6	90.0	7.8	15.6	2340							2340	4896
В	5	1155	10.0	13.4	2010							2010	3900
В	$\bar{\underline{2}}$	1 39.5	12.1	16.2	2430							2430	4542
В	1	36.0	3.1	14.6	2190							2190	5671
E	2	42.0	3.6	14.6	2190							2190	
E	3t	48.0	4.2	13.9	2085							2085	4899
E	36	54.0	4.7	15.6	2340							2340	5296
E	36	60.0	5.2	13.9	2085							2085	4601
E	37	66.0	5.7	15.3	2295							2295	4922
1	38	72.0	6.2	12.5	1875							1875	3973
	33		6.6	13.3	1995							1995	4308
	B3		7.2	14.3	2145							2145	4548
	В		7.7	15.4	2310							2310	4795
	В		8.2	16.4	2460							2460	
	8		8.7	11.6	1740							1740	3558
	В		9.3	12.3	1845							1845	3724
	В		9.8	13.0	1950							1950	3890
	В		10.3	13.7	2055							2055	4055
	В	123.0	10.7	14.3	2145							2145	4296
	L												
	L												
	L												
				1									

• • • "

		ERIA		EQU	IRED			MOL			or ST
	CONC	RET		THE RESERVE AND ADDRESS.	EET	REI	THE RESERVE	CEMI	STATE OF TAXABLE PARTY.	۳ ۲	F. 5
CU. IN. EACH	WEIGHT EACH	TOTAL CU.FT.	TOTAL WEIGHT	DRAWING NO.	DETAIL NO.	WEIGHT EACH	NUMBER EACH	TOTAL NO.	TOTAL. WEIGHT	TOTAL WT.	TOTAL WT. OF
6.0	.5	8.3	1245	#10	#1	.142#	1	2400	313	1558	8746
1.5	1	2.1	315		II .	.036	- 11	2400	78	393	2058
10.0	.9	6.9	1070	*H	2	.056	2	2400	135	1205	3333
5.0	.4	3.5	525		11	.028	п	2400	78	603	1606
18.0	1.6	7.5	1125	h	0	.056	0.0	1440	81	1206	2721
9.0	.8	3.8	570	10	п	.028	н	1440	40		1336
23.0	2.0	7.5	1125	n	n	.056	h	1120	63	1188	30 53
11.5	1,0	38	570	п		.028	D	1120	31	601	1521
31.0	2.7	7.2	1080	14	- 11	.056	H .	800	45	1125	2614
15,5	1.3	3.6	540	n	11	.028	11	800	22		1278
39.0	3.4	7.2	1080	li i	- 11	.056	U	640		1116	
19.5	1.7	3.6	540	10	11	.028	11	640	18	558	1194
						200					
		5 9							1995		
						453		Sale		60.8	
	F-19										10.74
					00	200					
	ALC: N	STA							1000	1	8 1
	DE LE	SAN				400		1000			
	TAKE.	5742			200	NAME OF		500			
	100	-					1.50				
1000		100	47/45		200	20/2			3.2		1000
	SEVE.		14.5%			25.75			1000		1000
	25.00		6 TO	22	35.00	1000				247/2	100
				die	5 36						
		1		5 19	335			25.63			999
			(E) 100 (S)	1966		1000	100	31.3			Share I

