

2解Y CO

Thasis fa: cho Dessas af §ิ, §,

Charles W. Kayler
1801

** T H E S I S **

- form and performance of the dairy cow -
by

V M. Shoosmith and C.W. Kaylor.

CLASS 101.

Michigan Agricultural College
1901.

$$
\begin{aligned}
& 16=1 \\
& 5559
\end{aligned}
$$

Form and Performance of the Dairy Cow.

Much has been said and written upon tire form of the dairy cow, as indicating her production of milk and butter fat. just how much this form has to do with her production, or just what this forii should be are still disputed questions. the most generally accepted theory is that the form does have considerable to do with the performance and that the form should correspond closely to that indicated by the score card generally used for dairy cows. Many opinions, however, are held in regard $\ddagger 0$ this matter. Amons these are many iudicrous ones such as the belief that because a cow has a long tail or a broad, siliky eccutcheon that she must necessarily be a heavy producer, or that because she ias a soft, pliable skin and good quality she is a rich milker. Fven among the best informed and most successful dairymen we find a great difference of opinion. Some say that tine udder is by far the most important organ of the dairy cow, and would seemingly overlook considerable deficiency in other parts if this organ was well developed. Others would put more dependence upon tive size of tine belly as iudicating tie capacity for food and would overlook the udder, providing it was not seriously deficient. Again, others would look first to

$$
=-=
$$

constitution; others to quality. Sone would prefer the thinly fleshed animal of the so-called milk type and make no discount on the sway back and the high pelvic arch, while others would have a larger animal with more pleasing form and a stronger constitution.

Although macis has been said upon this subject hoth in farmer's and dairymen's meetinys and in live stock journals, but little accurate investigation has been made. It is natural to conclude that because the milk is secreted by the mammary glands that in order to have the largest production we must have these organs well developed; or, that in order to convert a lar se amount of food into milk, we must nave well developed digestive organs. $\Lambda i l$ this is undoubtedly true, yet most of sucin conclusions are theoretical and the theory is apt to be carried too far. What man works out by theory does not always accord with nature. A natural law is not established by theory but by use of telated facts and inductive reasoning. ngain, wroig conclusions are often drawn from observations. A farmer or dairyman may have a number of cows, a large portion of which are perhaps related and have a similar form. If for instance, this strain of cows are good producers and have good udders or some other good feature, the owner is apt to conclude that the udder or the other excellent quality is what causes the high production, and overlooks other points of equal importance. Practically nnting has been done to investigate this subject. It is surprising indeed that a subject should be so
much talked about and be $\boldsymbol{s} 0$ prominently before tine public, and yet receive so little scientific investigation.

The object then which the authors of this thesis nad in mind, aside from the practice gained in judging cows and planning an investigation, was to make a thorough stady of this subject,- to compare the form of the dairy cow with her performance, - to ascertain if possible now much dependence may be put upon her form as an indication of her milk and butter production, - and to determine $a:$ closely as possible the relative importance of the different qualities which influence the production of the cow.

Many difficulties always attend such an investiagtion, which, if not eliminated witil tie utmost care, so change the results that it is impossible to make any satisfactory conclusions. pirst among these is the difficulty of securing suitable herds to work upon. Accurate records of milk production with frequent butter fat tests must be had. The cows must be placed under exactly the same conditions as to care, food and shelter. The different breeds of a herd also cause difficulty, as the individuals of the breed for instance may be larger and consume more food and give a larger production tinan tinose of another breed, While the form may score nearly tine same. Another factor which may change the results is the length of the period of lactation. This surely nas much to do With the yearly productionof a cow, but it is impossible to show how much it is indicated in the form. Again, we may
study the form of a cow and compare it with her production, While some $i l l$ nealth, some internal derajement, has vastly altered the results indicated by that form. Further than this some temporary deranzenent of the animal may cause incorrect scoring. If the skin is tigint and the coat rough and harsh the judge is apt to discredit the quality, while the whole trouble may be a temporary one caused, for instance, by indigestion. The flesh of the cow, too, may cause a slight deficiency in scoring while the stage of lactation at time of scoring often has considerable effect upon the score of the udder and milk veins. As to the condition of the three herds studied, it might be said that they were as favorable, if not the best obtainable without an immense outlay of capital. The grade herd at the College was not of uniform breeding, yet as they were all grades and with two exceptions all grade shortnorns, this feature was not particularly objectinnamle. Their conditions as to care, rood and shelter wrere exactly the same. All the conditions with the registered College herd were favorable, except that it contained four breeds which so divided it that it was impossible to secure the most satisfactory results from the comparatively small number of each breed. The records of both these herds were accurately taken and carefully recorded. The individuals of the Welch herd, of which twenty-five were studied, were placed under the same conditions as to care, food and shelter. The cows, wilch were mostly grades, were somewhat divided as to breeds. The weights of milk were sufficiently accurate but the butter fat tests
5.
were not numerous enougin to insure the greatest accuract in the average percent for the year, and less reliance shouid be placed upon the butter comparisons of this herd as compared with the others. (It must be remenbered that comparisons cannot be made between animals of different herds as their conditions were different.)

The methods employed in this work may be described as follows: In studying the form of the com, use was made of the ordinary score card for dairy cows which is here presented.
'Students'
Scale of Points. 'Perfect'Estimate:Cor' ${ }^{\prime}$ ' GENERAL APPFARANCE:

Age, estimate--- ; corrected
Weignt, estimater----lbs; corracted----- livs.
Form, welge-shayed, viewed from front, side
and above
Quality, hair fine; skin soft; medium thick's'
bone clean
Temper:ment, nervous HEAD:

Muzzle, clean cut; mouth large;nostrils large; face lean, long and dishing

Ears, medium size, fine texture-------------1
Horn, small at base
FOKEQUARTERS:
Neck, thin, medium lenzth

Shoulders,light,oblique
Legs, snort, straignt, cleaned boned$300 Y:$

HINDQUARTERS:

Pin Bones or Thurls, high wide apart---------' l

Jdder, lons, not fleshy, at tithed high; quar.'

Milk veins, ldwige tortuois, branching-m---1 4

Less, short, cle in boned, far apart-_-_--

(In scoring polled or dehorned cows the credit usually given the horns was added to quality under ceneral appearance as the horns are usually considered to be an indication of quality). The judges each scored the cows separately, and while still before the cow, carefully compared notes. If they agreel upon the individual scores these were placed in the corrected colunn at once but if there was a difference in the scores on the same point, that quality was carefully examined again, and the proper mark decided upon. If each judge continued to think that his first mark was correct, the difference between the two marks was divided and the result placed in the corrected column as the proper score. It might be said that a well fixed standard of scoring was establisioy which was quite uniformly held throughout the time of judging. The cows might have been scored a trifle too high or too low, but that makes no material difference so long as a uniform basis was employed. The accurate weights of all the cows were taken with the exception of a few from the herd of A. M. Welch of Ionia, of which the approximate weights were obtained. Measurements were taken of the cows according to the system employed by tine American Holstein-Friesian Association and described in the voutines of the Advanced Registry System" as follows: "The two items of height are taken perpendicularly fram the ground to the top of the animal, the one immediately over the knee and center of the shoulder and the other over the hook bore to the center of the back; the lengtin of the bods is taken from the extreme front of the shoulder point to the extreme rear and highest point of the rump, diagゅnally in a straight line; the length of the rump, from tine extreme front side of the hook bone to the extreme of
8.
the rump as described above; the width of hips from the outside of one hook bone to the autside of the other in a straight line; the width of the thurl fron the outside of one thrul bone to the outside of tine other, also in a straight line; the girtin by a tape closely fitting the smallest circumference of the chest". Although the authors of this work were unable to use these measurements, they have been inserted in the tables with the hopes that they may prove valuable to those wishing to make a further study of the subject.

The milk and butter production of each cow for one year was next obtained and compared with the corresponding total scores, also with certain individual scores which were regaried as beins most important. In order to make this work more conclusive, three bases of coiquarisons were adopted,-those of the butter production, milk production and total score. To explain more fully each herd was arranged in order according to butter production that is upon a butter basis, the highest producer being placed first; then the herd was divided into halves and the production of the separate halves compared with the scores of those respective divisions. (The M.A.C. grade herd was also divided into thirds). Each herd was then arranged in order according to total scores and the above comparisons made. The milk production was also compared with the scores both upon a milk and total score basis.

Comparisona of scores ant butter records upon a butter basis. Table l.
Total scores
18t half 1094.7
3nd half 1065.7

COLLEGE GRADE HERD.

	1 1	1								
	$1 \quad 1$	11	' 1 bs .	${ }^{\prime}$ T	'Gen'		' Fore'			
Name'Breed'\% Fat'Milk			' Butter	'Score'apy'		'Hoad'quar' Body ' Chest				bs'Bell
18	'G.S. '3.96	'8357	'449.9	'80.8	127.6		4.1'5.6	'20.3'7.6		2.4'5.5'
87	'G. H.'3.6	'10706	'449.6	179.6	117.1		4.715 .7	181.417 .5		2.4'5.61
92	'G. S.'3.7	'9435	1418.3	178.2	'17.2		4. '5.3	'21.9'7.8		2.5'5.8'
139	'G. S.'3.9	'8869	'403.5	182.8	'16.6		4.415 .6	'22.2'7.7		2.6'6.6'
98	'G. S.'4	'8356	'389.9	187.	'19.5		4.716 .5	'22.8'7.8		2.8'6.2'
103	'G. S.'4.3	17795	1381.9	179.7	'17.3		4.5'4.9	'21. 7.8		2.5'6.2'
142	'G. S.'3.8	'9015	'357.6	179.2	117.3		4.3'6.6	'18.9'5.7		2.3'4.4'
86	'G. J.'4.3	17109	'348.3	183.6	118.4		4.4'6.1	'21.4'7.7		2.3'5.4'
89	'G. S.'3.8	17744	${ }^{\prime} 3433$	188.1	'19.1		4.5'5.6	121.6'7.5		2.5'6.1'
39	'G. S.'3.7	'7758	'335.	177.6	15.8		3.6'5.5	'19.8'7.7		2. 15.2
143	'G. S.'3.6	'7286	'331.2	'83.6	'16.5		4.5'6.3	'21.5'7.7		2.8'5.8'
95	'G. S. ${ }^{\prime} 3.8$	'7438	'329.7	180.5	115.8		4.216	'20.4'6.7		2.4'6.
109	'G. S.'3.6	17963	'325.1	174.2	117.8		4.115 .7	119.2'6.6		2.3'5.6'
90	'G. S.'3.?	18706	'325.	179.6	116.7		4.2'5.2	'20.8'7.7		$1.9^{\prime 5} 7^{\prime \prime}$
140	'G. S.'4.	'7044	'320.5	'80.1	'17!2		4.1'6.	120.4'7.8		2.5'5.6'
97	'G. S. ${ }^{\prime} 3.9$	17009	'318.9	182.3	117.7		4.515 .9	'21.717.		2.6'5.71
141	'G. S.'3.8	17026	'311.5	172.3	115.		3.815 .2	'18. '6.4		2.2'4.8'
106	'G. S.'3.?	'8291	'306.8	178.9	115.6	,	3.4'5.6	'21.2'7.5		2.715
94	'G. S.'3.9	'6586	${ }^{\prime} 304.5$	'68.9	'16.5		4.2'5.1	'20.5'7.7		2.5'5.7'
96	'G. S.'4.2	'6193	${ }^{\prime} 303.4$	188.	116.2		4.6'6.1	123.817 .7		2.9'6.
108	'G. S.'3.?	'7008	'302.5	179.6	'18.5	1	4. '5.9	'22.4'7.7		2.9'6.6'
93	'G. S.'3.8	16735	'298.6	175.1	${ }^{1} 15.5$		3.6'4.9	120.817 .7		2.1'5.5'
107	'G. S.'3.6	'6886	'288.9	179.8	117		4.3'6.1	'19.4'6.5		1.9'4.5'
88	'G. S.'3.8	16442	'285.6	176.8	117.4		4.1'5.8	'20.9'6.7		2.5'5.6'
110	'G. S.'3.5	16751	'279.7	175.	117.8		3.7'5.9	120.617 .6		1.714 .71
138	'G. S.'3.4	'6448	'263.5	'89.3	'18.9		4.6'5.7	'22.8'7.		2.6'6.8'
105	'G. S.'3.	17120	'256.3	180.4	117.		4.4'5.8	122.417.8		2.8'6.3'

COLLEGE GRADE HERD.

Note - All measurements for this and following tables are given in feet and inches.
9.

Table 8.
Total soores. Avr. scores Total butter. Avr. butter.

1st. div.	734.	81.5	3542.8 lbs.	393.6 lbs
end.	709.1	78.8	3903.7	322.6
3rd.	718.3	791818	3583.	287.

In the first table we notice that the half having the highest butter record also has the highest soores, while in Table 2 the scores of the third division are a trime higher than those of the second. The general tendemey in this comparison is for the best scores to correspond to the best butter production, although the latter table may be regarded as an excoption to the "dairy farm" theory.
comparison of scores and butter records upon a score basis.
Table 3.

18t. hals	1186.	83.4	4582.3 lbs.
and. half	1034.4	76.6	4437.8

Table 4.
rot. scores. Avr. coores. Tot. butter. Avr. butter

lat. div. 765.5	85.1	3152.8 lbs.	350.2	lbs.		
2nd. "	717.9	79.7	3012.2	$"$	334.7	"
3rd. "	677.1	75.2	2865.1	.	318.3	.

Here we find tiuat tiue bighest scores in either table correspond with the best butter production, a drop of 6.8 points in the first table being equivalent to 10.7 lbs . of butter.
10.

The decrease in Table 4 , though very perceptible, is not so marked as in Table 3.

Comparison of scores and milk records upon a milk basis. Table 5.

Totl. milk AVF. milk Tot'l. scores AV. 8cores.

| 18t. half | 114076 lbs. 8450 Ibs. | 1093.4 | 80.9 |
| :--- | :---: | :---: | :---: | :---: | :---: |
| 2nd. half 92000 | 6815 | 1078.8 | 79.4 |

Tablo 6.
Tot. milk AVr. milk Tot'i mcores. Avi. scores.
1st. div. 79530 1bs 8836.6 1bs. 931.281 .8
znd. " 66488 n 7387.5 . $720.8 \quad 80.1$

In each of the above tables it should be noticed that the results confirm the theory that the best formed animals are the best producers.
comparison of scores and milk records upon a score basis. Table 7.

Tot. Ac. AVr. sc. Tot. milk Avr. milk
18t. half 1126. 83.4 100472 lbs. 744.\& 1bs.
2nd. half 1034.277 .4105904 . 784.4 . Table 8.

Tot. sc. AVF. sc. Tot. milk AVF. milk
18t. div. $765.5 \quad 85.1 \quad 67571$ 1bs. 7508 lbs

2nd. div 717.979 .771818 . 7979 .
3rd. فュv.676.8 75.2 66987 * 7443 *
11.

In this comparison the results are just the reverse of those in the two previous tables. In table 7 we find a difference of 402 lbs of milk in favor of the lower average score, but in table 8, the production of the first division is only slightly in advance of the third; while the second division shows a mech larger production tian either of the other two.

As considerable attention is usually given to the udder and milk voins in judging dairy cows, it was thought best to prepare the following tables to show the comparison botween these points and the milk and butter production. (The score ased is the combined score of udder and milk veins.)

Comparison of udder and milk vein score with butter records upon a score basis.

Table 9.
Tot. sc. Avr. score Tot. butter Avr. butter.

let. half 230.7	17.	4655.8	lbs.	344.8
2bs				
2nd. half	182.2	18.5	4372.6	323.1

Table 10.
Hot. sc. Avr. acore Tot. blttor. Avr. butter

In Table 9, a difference of 3.5 in the average scores of the two halves of the herd corresponds to an increased production of 21.7 lbs . of butter in favor of the first half. In table 10, however, there is only the slight difference of .9 lbs of butter between the first and third divisions as corresnonding
to a difference of 5 between the average scores, while the second division shows an approximate butter production of 24 1bs. more than either of the others.
comparison of udder and milk bein score with butter reoords upon a butter basis.

Table 11.
Tot. butter: Avr. butter Total sc. Avr. score.
1st. half 5085.8 lbs 372.2 lbs 215.715 .9
and. half $4008.7 \times 296,5 \times 197.4$ 14.6

Table 12.
Tot. butter Avr. hutter Total sc. Avr. score.
18t. div. 3542.3 1bs 393.6 1bs. 144.3 16.
2nd. " 2903.8 . 322.6 . 141.3 .7
3rd. " 2583. * 287. . 127. 14.2

In both of the above tables the wairy farmuthoory holds good. In Table 11 a difference of 1.3 between the average scores corresponds to a difference of 75.7 lbs of butter in favor of the better form. In Table 12, a difference of .3 between the average scores of the first and second divisionseorresponds to a diffecrence of 71. Ibs in favor of the first, while a difference Of 1.5 betweon the average scores of the second and third divisions carresponds to a diffarence of 35.6 lbs in favor of the second.

Comparison of udder and milk vein scores with milk records on a score basis.
13.

Tot. so. Avr. sc. Tot. milk Avr. milk

| 1st. half 230.9 | 17. | 103693 lbs. 7681. lbs | | |
| :--- | :---: | :---: | :---: | :---: | :---: |
| and. half | 182.2 | 13.5 | 103283. | 7576 |
| | | Table 14. | | |

1st. div.	159.4	17.7	68733	"	7637	"
2nd. div.	139.1	15.4	68306	"	7589	"
3rd. div.	114.6	12.7	69037	.	7671.	"

In Table 13, a difference of 3.5 between the average scores, corresponds to a difference of lis lbs of milk in favor of the higher soore, while in rable 14 the results are reversed, the production of the third division being greater than oither of the others.

In making a further study of the individual scores of this herd in order to determine the relative importance of each in the judging of dairy cows, the following plan was adopted. The cows were first arranged according to a milk or butter baais as before, the herd divided into three equal parts, and those points of the score card seledted which were regarded as most important. The scores of each division were then averaged and figured in perconts, tine perfect mark of each point on the score card being monsidered as 100\%. These perconts wore thon compared with each other and with the milk and butter production.
comparison of leading points upon a butter basis.

Table 15.

Average '334.4年' 80 '82.6 184 '81.6'80.3'91.6'80.6'80.6'77'6'73'85'8182.

Here we note considerable variation in the relation of scores to butter production. Although the percents in the second diviaion do not complete an even gradation from the first to the third, and in some points are even lower than tio third; yet in nearly overy case we find that the percents of the first division, are greater than those of the third, especially those of the head, hind quarters, udder, teats, milk veins, and milk wells. As the head is of minor importance so far as the production of butter is concerned, and the high percent of the hind quarters is due largely to the development of the mammary organs; we conclude that the latter have the most marked influence on the butter produotion, while the percents for the chest, ribs and belly in their respective divisions were more nearly equal. Comparison of leading points upon a milk badis. Table 16.

In this table the results compare very favorably with those of the previous table, in that the udder,teata and milk veins are most indicative of the milk and butter production. The percents of the chest and ribs also compare very satisfactcoily.

WELCHHERD.

WHLCHERRD

$1 \quad 1$	$1 \quad 1$	1	1	1	1	1	1 Hei			1	＇
mat	＇＇	＇Milk	Milk	．		17 gth	＇Shou		＇wd．	P^{\prime}	＇＇Thl．
lar＇Udder	＇Yeats＇	＇veins	woll	＇1bs．	1 Girth	＇body	IIders	＇Hips	Hip		＇Rump＇Bones＇
				T		1					
1.5115	4.	1 3.5	12.5	＇11ds	－ $0-2$	15－2	$14-3$	14－6．	1－9		12－81コーラ
4．8．15	4.5	－ 3.	12.5	11100	160	1	14－3	14－8＇	11－9－		1－5 1－
）．4＇12．5	4.5	＇2．5	11.6	11050	＇5－9	＇5－3	$14-5 \frac{1}{2}$	1 4－5 $\frac{1}{2}$	${ }^{1} 1-9 \frac{1}{2}$		11－8管1－1管
i．1＇15．5	4.4	3.7	12.7	－1262	16－2	16－3	14	$14-4$	11－8 $\frac{1}{2}$		1－8 1－2
6．5＇13．7	3.5	2.8	12.	＇1250	＇6－	＇5－2	$14-4 \frac{1}{2}$	14－2 ${ }^{2}$	1－11		1－91－1－2
3．1：13．4	4.5	2.5	12.3	11015	＇5－11	＇5－2	14－2t	＇4－2	1－8		1－9 1－1
！．5＇13．	4.6	3.5	12．9	11620	＇5－9	＇5－8	14－6	$14-7$	11－11		11－9 1－3
i．5＇14．4	4.7	3.4	12.6	－ 820	＇5－5	：4－10	＇4－1	－4－2	1－7		1－8 1－
＇．4＇16．7	4.7	3.6	12.6	＇1185	＇5－11	15－2	14－1	14	1－8		11－8191
－2＇16．1	4.8	3.4	12.7	11050	＇5－10	14－98	＇3－11	$14-\frac{1}{2}$	12－8		1－7 111咅
i．＇14．	3.5	3.	12.9	＇1080	${ }^{1} 6-1$	＇5－1	$14-4$	14－3	1－9		${ }^{1} 1-9 \frac{1}{2}{ }^{\prime} 1-1 / 2$
．3＇12．5	4.4	3.	12.4	＇1050	$\cdot 5-10$	15－${ }^{\frac{1}{2}}$	14－1	$14-$	1－8		1－7 $11-\frac{1}{2}$
．9＇15．6	4.9	3.4	12．6	＇1300	16－	＇5－5	＇4－5	＇4－5	1－10		1－8 1－1
－5＇1E	4.8	3.8	12.9	＇1200	16－2	14－10	14－1	14－2	11－8		$11-7 \cdot 1-1$
114.8	4.3	3.9	12.9	－ 790	＇5－4	14－9 $\frac{1}{2}$	＇3－9	＇3－1	1－5		11－7 11咅
．6＇16．4	4.6	3.1	＇2．6	－ 931	＇5－10	$14-7$	＇3－11	＇3－91	1－71		＇1－8＇11
．3＇15．5	4.5	3.1	12.7	11150	＇6－1	15－	14－3	$14-3$	1 1－81		
．4＇13．8	3.3	2.5	12.5	11025	＇5－9	15－3交	$14-2 \frac{1}{2}$	14－4	$1-7 \frac{1}{2}$		11－9．1－1
． 3 ＇12．2	3.9	3.	12．8	－ 925	＇5－7	＇5－1	14－	14－3	11－7\％		11－7 1－
． 3113.	3.	3.6	12.8	11150	16－	＇5－3	14－1	14－1	1－9		11－9 ${ }^{\frac{1}{2}} 11-1 \frac{1}{2}$
．4＇14．9	4.7	2.7	12.6	11180	16－3	＇5－2	14－3	14－3	11－8		1－8 1－1
．2＇12＇	3－2	2.9	12.1	－ 875	＇5－8	14－9	＇3－10	13－11	$11-7$		$11-7111$
.$^{\prime} 15$.	4.2	3.5	＇2．8	＇ 805	＇5－6	＇5－1	＇4－1	14－7	11－6		11－7 1－雨
－4＇14．	4.3	2.7	＇2．	－ 750	＇5－8	＇4－10	14－3	14－4	11－7		11－8＇11
．2＇10．5＇	4.7	＇ 1.6	12．7	－1250	16－3	＇5－	14－2	14－2	11－9 ${ }^{\frac{1}{2}}$		11－9굴1－1

Comparison of total scores with butter records upon a butter basis.

Table 1.

From this table the development of form ahows no relation to butter production, the average scores of each half being equal.

Comparison of total scores witil buttor records upon a soore basis.

Table 2.

lst half	Tot.so. 1074.8	$\begin{gathered} \text { AVr. 8c. } \\ 85.9 \end{gathered}$	rotal butter. 5304.6类	Arr. butter 431.5 总
2nd hale	982.7	78.6	4588.5	367. ${ }^{*}$

In this table wo obtain a difference of 64. Ff in the average butter production corresponding to a difference of 7.3 between the average scores, in favor of the highor peom duction.
comparison of total soores and milk records upon a milk basis.

$$
17
$$

Ist half	Tot.milk $180003 \#$	Avr. milk 9600%	Tot. score 1059.6	Avr. 8core. 84.7
2nd half	$77531 *$	6802	996.2	79.7

comparison of total soores and milk records upon a score basis.

Table 4.

lst half	Tot.sc. 1072.2	$\operatorname{AvF}_{85.7}{ }^{8 c}$	$\begin{aligned} & \text { Total milk } \\ & \text { 111889\# } \end{aligned}$	$\begin{aligned} & \text { Avr. } \frac{\text { milk }}{9591} \underset{7}{7} \end{aligned}$
2nd halt	983.7	78.7	85344*	6827*

In both of the above tables the better developed dairy forms are indicative of the higher milk production.

An interesting comparison was made between the milk and butter production of the arade Shorthorns, the mhoroughbred and crade Jorseys, and the Guernseys.

$$
\text { Table } 5 .
$$

No. of'tot ' Avr' tot. of' Avr ' Avr ' Breed 'cows 'milk'milk' butter 'butter' scores'

Shorthorns ' 10 '94711 '9481'4252.1 f' 425.2 ' 83.4
Jerseys ' 11 '77702 '7063'4224.6 \#' 329.5' 80.9
Guernseys ' 3 '16412 '5470' 913.4 \#' 304.4' 81.
In this table only a small number of cows were considered. The results in this case, however, show that the milk and butter production of the arade Shorthorn is greater in proportion to total scores than either the Jersers ar cuamsave wininh we
18.
conclude to be a point in favor of the general purpose shorthorn.
another interesting conclusion drawn from this table shows that for every pound of weight the Shorthorns gave .34e of butter per year, the Guernseys . 36t and the Jerseys . 4.4. Al80 that for every pound of weight the Shortiorns gave 7.cit of milk per year, the Jorseys 7. 4 and the Cuernseys 6.6f

Another comparison was made by taking the Crade Shorthorns of the herd, ton in muber, arranging them in order according to milk or butter production and dividing thom into lots of five each. The leading scores of each half were averaged and reduced to percents.

Comparison of scores and butter records upon a butter blais.

Table 6.
Avr 'Tot. 'cenl' 'Fore' ' ' ' 'Hind' ' iMk 'Mk butter'scors'app 'hd'quar'bdy'cht'bbs'bly'quar'Udr'tts'vns'mls'
 2nd hale '360.5' 83\% '87\% '67'81\% .81\%'86\%'86\%'87\%'84\%' 84\%'90\%'71\%'89\%

Average '404.7'83'5 '86.5'69'82.5'82.5187'82.5'87.5'84.5'84.5'87'77'865
19.

Table 7.
Comparison of scores and milk records upon a milk basis.
Avr. 'Tot. 'Genl' 'Fore' ' \quad ' 'Hind' ' 'mk 'ris
'butter'scores'app 'hd 'quar'bdy'cht'rbs'bly'q造ar'Udr'tts'vns'ma.

In the above tables we conclude that there is a tendency for the body, chest, belly, udder and milk veins to be best developed in those cows which excel in milk and butter production.

A similar comparison was made with the Guernseys, Grade Jerseys and Jerseys, fourteen in number.

Comparison of scores and butter records upon a butter basis.

Table 8.
'Avr. 'Tot. 'Genl' 'Pore' ' \quad ' 'Hind' ' 'mk 'mk 'butter'scodes'apy 'ind 'quar'bdy'cst'rbs'bly'quar.Udr'tts'vns'rls
 2nd half' 333.1'81 $185 \quad 173$ '83 '82 190 182 '86 ,80 ,80' 75 '76'81

Averaze ' 378.5'81 186 '73 '82.5'81.5'88'81.5'86'81 '82' 83'77'81

Comparison of scores and milk records upon a milk basis. 'rable 9.
20.

In this comparison with but fow exceptions, the highest scores correspond to the higher production.

COLLEGE REGISTERED HERD.

Name 'Brd'\%patikilk 'Butter 'score'app 'Head'quar'Body.Chst'Ribs'B'

Bell Sarcastic' H '3.17'23149'839.3 Col. Rosa Bonheur Becky Col. Pauline Wayne Pogis IV Col. Houwtje niduld
Pogis III Col. Belle Col. Rosa B. queen Col. Becky col Pandora col.Cara col. content Cara Houwtje III
' H '3.25'13962'529.9
'B.S'3.56'10148'422.6

- H 13.2 '11090'415.6
' J '4と88' 6294'314.3
' H ${ }^{1} 3.43^{\prime} 7882^{\prime} 299.6$
' J '4.5 5326 '283.7
' H '3.2 ' 7489'279.7
' H '3.47' 6603'267.8
'B.S'3.47' 6231'252.?
1 J '4.77' 4444'247.6
'R.P'4.2 ' $5543^{\prime} 232.8$
' J '4.76' 3993'221.7
'R.P'4.09' 4149'198.3
' H '3.19' 5126'190.8
$183.3^{\prime \prime} 18.9^{\prime} 4.715 .7182 .3^{\prime 7} .512 .416 .1$
'86.7 '17.5' 3.91 6. '22.4'7.2 92.5
'6.
'85.3 '17. ' 4.9' 5.9'22.3'7.4 '2.8 $\mathbf{1}^{\prime} 6$.
'90. '19.1'4.9 ' 5.7'22.3'7.3 '2.3 ${ }^{16 .}$ '85.8 '17.9'5.5 ' 6.5'32.9'7. 12.8 '65

'88.6 '19.1'4.8 ' 6.1'23.5'7.5 '2.6 '6.
'83.1 '16.6'3.9 5 5.1'21.6'7.7 '2.3 '5.
'81. '15.8'4.4 ' 6. '22.1'6.8 '2.6 16.
'77.3 '16. '4.9'5.7'22.1'7.6 '2.2 ${ }^{15}$ (
179.5 '15.3'3.6 ' 6.4'20.8'7.3 12.t '5.
'80.4 '17.8'4.1 5.7120 .917 .3 '2.6 '5,
'83. '17.1'5.5 . 6.1'21.3'6.9 '2.5 '5.
175.4 '17.4'4.1 ' 6.1'20.4'7.3 '2.5 '5.
'76.4 '15.3'5. $5.8180 .8 ' 7 . \quad 12.3 ' 5$.

COLLEGE REGISTERED HERD.

lind' ' 'Milk'Milk 'wt. ' 'igth' Height 'wd of' 'Thl !uar'Udder'Toats'veins'wellailbs' 'Girth'body'Shou' Hips'Hips'Rump'Bones'

1	1	1	1	1	1	1	1	1	1	,	1

This hord does not present the most favorable conditions for study along this line, as it is so small and, so divided into different breeds. The largest number in any one breed is that of the Holsteins, and ore of these, Belle Sarcastic, would have to be thrown out, as her record was made under extraordinary conditions quite unlike the others. Two of the other Holsteins are young heifers, and should not be conpared with the older cows. The number of cows in each of the other breeds is still smaller, and no comparisons can be made botween them. For these reasons, and resause of the lack of time on the part of the authors no study has been made of this hord. Hoping that the records and measurements of this berd may prove of value to other workers, the above table has been inserted.

In spming up the results of this investigation the following conclusions were drawn. First, that no infallible rule can be made conceming the relation of dairy form to milk and butter production, and second, that thore is a marked tondency for the best developed cows to be the best producers. With regard to the first, the authors are satisfied that no definite line can be dram between individual cows, for an inspection of the large tables will convince anyone that striking differences in the milk or butter production exist between cows having approximately the same weight or the same total score. It is to be ndticed also that a wide difference in production often exists between cows having certain qualities equally well developed, or that
cows widely difforent in perhaps the same qualities are equally productive. Owing to the variable results obtained from the comparison, a definite statement regarding the second conclusion is more diffldult to make. Thore 18 as the tables show considerable evidence both for and against the "dairy form" theory especially in the comparisons between total score, and milk and butter production. In studying the comparisons of individual scores with the production, however, the resurts obtained show a marked tendency in favor of the above theory. Although there is considerable variation ever here among some of the different points, yet, we find that the above statement holds true in the majority of cases, and especially with the mamary organs whose development we mast conclude to be a highly important. factor in the performance of the dairy cow. This work has proven a very interesting study and the investigatcrs realize more than ever the importance of the subject. The results obtained though as good as could be expected from existing conditions are not as satisfactory as might be desired. In order to make this study more conclusive, more favorable circumstances should be had. First of all an evon herd of 75 to 100 mature coms of one breed but of different form is required. The conditions as to care, sholter and food should be exactly the same, and the weight oll each cows food should be accurately determined and taken into account in comparing the form and performance. The investigation should
continue throughout a period of at least two yoars and proferably longer. The cows should be scored at least twioe each year and the results averaged for the final score. These conditions together with accurate milk and butter records would prove the foundation of an important and conclusive investigation.

Doubtless the authors have derived much more from this investigation than it is possible for anyone else to obtain by studying their work. It is, however, hoped that this thesis may prove of some value to others if not from its own merits at least as an inspiration to some student to continue the same study, as it surely is an important one, and one upon Which the farmors and dairymon of our state should be onlightened.

