

RELATION BETWEEN WOOD STRUCTURE AND PENETRATION

THESIS FOR DEGREE OF M. S. PAUL CLIFFORD KITCHIN 1917 .

/

Word.

. ~ ~

.

Edeny

.

,

THE RELATION PETHEEN THE STRUCTURES OF SOME CONIFEROUS WOODS AND THEIR PENETRATION BY PRESERVATIVES.

4

Thesis for the Degree of Master of Science.

Paul Clifford Kitchin

1917.

THESIS

7

.

THE RELATION PETNEEN THE STRUCTURES OF SOME CONIFEROUS WOODS AND THEIR PENETRATION BY PRESERVATIVES.

The incentive for the work which I have attempted on the relation, if there be any, between the microscopic structures of some of the soft woods and the degree to which they are penetrated by creosote oil, was furnished by one of the conclusions reached by Teesdale (1) in his work on that subject. The conclusion was as follows;

"The results obtained with a given species of wood cannot be applied to another species, however similar in structure the two may be. This fact is strikingly evident in the treatment of heartwood larch" (Larix occidentalis)"and tamarack"(L. laricina). Teesaale treated three pieces of each species under identical conditions and reported the results as follows;

L. occidentalis.	Average longitudinal penetration	3.17 ins.
	Average radial penetration	0.09 ins.
L. laricina.	Average longitudinal penetration	0.84 ins.
	Average radial penetration	0.04 ins.

Penhallow (2) describes these two species as follows;

Larix occidentalis Nutt.

"TRANSVERSE. Growth rings usually broad, the dense and prominent summer wood about one half the spring wood, from which the transition is abrupt. Tracheids of the summer wood large, squarish, in regular rows. Tracheids of the spring wood very large and thin walled, squarish hexagonal, in very regular rows, rather uniform. Medullary rays prominent, rather resinous and broad, one cell wide, distant 2-6 rows of tracheids. Resin passages few, large, without thyloses, the epithelium narrow, rather thin walled, the nutritive laye**t** thick walled and resinous. Resin cells

101905

widely scattered on the outer surface of the summer wood, but readily recognized by their abundant resinous contents.

RADIAL. Rays conspicuously resingue throut; the tracheias nerrow and marginal, rarely interspersed. Eay cells chiefly straight the uout and equal to 3-9 spring tracheias; the upper and lower walls chiefly thick and unequal. sparingly pitted thruout, more strongly so in the summer wooa; the terminal walls coarsely pitted thruput; the lateral walls with elliptical and aistinctly bordered pits, with a narrow, chiefly eblong or lenticular orifice, numerous, at first 6-8 per tracheid, soon greatly reduced in size, and in the summer wood abruptly 1 per tracheia. Boraerea pits conspicuously in 1-2 raws, more rarely in one row only, elliptical, the orifice very large. Pits on the tangential walls of the summer wood rather numerous but small and often obscure. Resin cells about 12.5 microns wice and 60 - 150 microns lang. TANGENTIAL. Rays rather numerous, low to very high. Fusiform rays with a large resin canal without thyloses, the epithelium cells thick wallsa. Ordinary rays often very high, chiefly very uniform, and not contracted at the position of the rarely intersperses tracheids; the parenchyma cells rather unequal, sometimes in pairs, oval or obloné. somewhat variable.

Larix americana Nichx. (L. laricina (Luroi) Kach).

TRINSVERSE. Growth rings rather broad and uniform, sometimes double. Summer wood rather dense; about one fourth to one half the spring wood, from shich the transition is either gradual ar abrupt; the tracheids small; conspicuously unequal, and not in very reguler rows, distinctly rounded. Spring tracheids large, hexagonal, radially elongated, thim. Wedullary rays promiment, broad, one cell wide, distant 2-8; rarely more, tracheids. Resinous passages large, equal to 2-3 tracheids,

devoid of thyloses, the epithelium cells flat, rather thin walled, the nutritive parenchyma scanty, thick walled; not very numerous, chiefly in the summer wood. Resin cells few, widely scattered on the outer face of the summer wood, non resinous, distinguished by (1) their thin outer walls and advanced position, and (2) by the sieve plate structure of the terminal walls.

2

RADIAL. Rays somewhat resinous thruout; the tracheias prominent, numerous and marginal. Parenchyma cells straight or barely contracted in the summer wood; the upper and loser walls thick, unequal, and usually sparingly pitted; the terminal walls coarsely pitted thruout; the lateral walls with distinctly bordered pits, the narrow orifice chiefly oblong, 2-6 per tracheid, becoming distinctly smaller tward the summer wood, where they are abruptly reduced to 2 and finally 1 per tracheid. Pordered pits in 1 or 2 rows, large, elliptical, becoming smaller and round tward the summer wood. Pits often showing an equatorial band. Pits on the tangential walls of the summer wood numerous, small, approximate, on the outermost tracheids only. The outer summer tracheids often show a marked tendency tward the formation of spirals. Resin cells 15 microns wide, about 125 microns long.

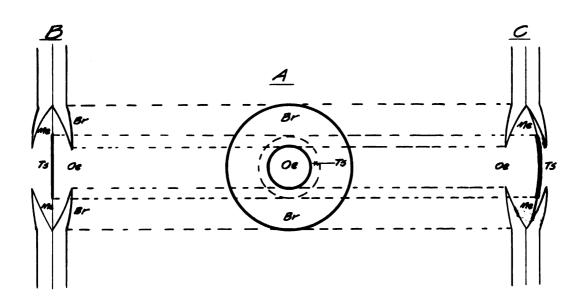
TANGENTIAL. Rays numerous, medium to high, sparingly resinous. The fusiform rays with a broad central tract and a large resin camal without thyloses. The ordinary rays father broad, sometimes 2 seriate in part; the resin cells thick walled, chiefly rather equal, uniform, oblong, more rarely oval. Rays somewhat contracted at the position of the narrow and interspersed tracheids."

I careful comparison of the foregoing descriptions shows that in the transverse suctions the tracheids of the summer wood are larger in Larix occidentalis than they are in Larix laricina. It has been found to be a fact in wood preservation that the dense summer wood of some species, notably of the hard pines, is much more easily penetrated. and absorbes more creosote than doed the more open spring wood. The presumea cause for this difference is the pressure of resin passages in the summer wood, however. given resin passages in the summer wood of both L. laricina and L.occidentalis, the larger tracheias in the latter may be a contributing factor in it's easier penetration.

The radial and tangential sections, according to the descriptions, show no appreciable differences, at least no differences which would be active in assisting or retarding the penetration of preservatives.

As the wood of conifers is made up almost wholly of tracheids, some of these at least, are analagous to the tracheary system of the Angiospermous woods. The question of the penetration of preservatives into wood resolves itself into two problems; first, the structure of the conducting system of the wood, and second, the penetrability of the cell walls. Both Failey (3) and feesdale (4) have shown that the passage of creosote oil thru the cell wall is practically negligible. Therefore the remains to be made a detailed stuay of the individual tracheias of L. laricina and L. occiaentalis with reference to their role as conducting structures. This, then, is the point from which the problem has been attackt, and though I consider it by no means solved, as that would take much more time than was available, the results give an indication as to what the structural differences may be which cause this seeming paraaox in penetration :

The Method of Investigation.


Tupical specimens of Larix laricina and L. occidentalis were secured thru the kindness of Mr. H.D. Tiemann of the Forest Products Laboratory at Madison, Wisconsin. That of L. laricina was a piece from the collection of "Commercial Woods of the United States" prepared by the **Forest** Service, while that of the L. occidentalis came from the collection at the Laboratory of Madison. Small pieces of each wood, about the thickness of a toothpick and 3/4" to 1" long were split from the specimens and macerated by Schultze's method*. However instead of using all nitric acid as Schuttze did, I used about 1/4 water, applying more heat and lengthening the time of maceration, thus being able to control the process to a greater extent than with strong acid. After maceration the tracheids were boiled in water for a short time to excell the acid and air. The macerated material was then placed in a vial and used as needed. Small amounts of the wood from the vial were carefully separated into individual cells with two needles and using a dissecting lens. Only one tracheid was mounted on the slide at a time and was placed in just enough water to hold the cover class down. The water gradually evaporated and it was found that the parts of the individual pits were easiest to see at the time when the water was leaving them.

All measurements of tracheid lengths were made in spaces of the ocular micrometer using the 16 mm. objective. Such a space on the microscope employed was equal to 0.00845 millimeters. The remaining measurements werk all made in spaces of the ocular micrometer using the 4 mm. objective. Such a space on the microscope used was equivalent to 0.00191 mm. At the conclusion of each set of measurements the average was secured and translated into terms of millimeters. From these measure-"ChamberIsin, C.J. Wethods in Plant Histology, P. 109.

ments there were calculated the following;

(1) The penetrable bordered pit area.

According to Pailey (3) the bordered pits are the means of passage for liquids going from one tracheid to another. Not all of the bordered pit, however, is available for this purpose. The accompanying diagram shows the various parts of the bordered pit both entire and in suction.

A, surface view of bordered pit. B and C, sectional views of boredred pits. Fr, embossed or boraered area of sucondary wall. Oe, pit or orifice (mouth) in the secondary wall. Me, membrane. Ts, thickened area of membrane, or torus. (After Failey).

According to Pailey(3) the only part of the boraered pit structure which functions in the transmission of preservatives is the pit membrane, les5 the torus, which is located in the center of the same. After wood is seasoned, this membrane, from the torus to the edge, is composed of a number of radiating ribbons so shrunken that there is actual space between them. This area of radiating ribbons is what I have assignated as "the penetrable bordered pit area".

In oracr to compare the the penetrable bordered pit area of one wood with that of another it is not enough to determine the penetrable bordered pit area of an average tracheid of each. To make this comparison the length of an average tracheid, in millimeters, was divided into the average number of bordered pits per tracheid and the penetrable bordered pit area of an average pit was then multiplied by the quotient obtained. The result was. The penetrable bordered pit area per millimeter of tracheid length. This was then directly comparable to the same length of tracheid in any other species.

(2) The simple pit area.

Here the average area of a simple pit was determined, and then multiplied by the average number of simple pits in a tracheid. Then, by the same method as described for the penetrable bordered pit area, "the simple pit area per millimeter of tracheid length" was accertained.

The preliminary tables of measurements on Larix laricina ana L. occcidentalis are as follows; (See next page).

TABLE I.

Larix laricina(heartwood) Forest Service specimen.

	1	2	3	4	5	6	7	8	9	10	a v.	mm.
Length	500	890	500	45 5	510	590	440	4 85	440	440	470	8.97150
Diameter	43	82	40	4 5	35	40	4 0	40	42	38	40	0.07640
No. bord. pits.	185	188	3;27	195	200	158	21 6	206	128	166	187	
Pit diam.	12	12	12	12	12	1 2	123	12	12	12	12	0.02292
Torus diam	.8	8	8	8	8	8	8	8	8	8	8	0.08528
Mouth diam	. 4	4	4	4	4	4	4	4	4	4	4	0.00764
No, simple pita.	325	330	269	197	225	281	246	250	283	234	264	
Av. simple pit area.	2	2	2	2	2	2	2	2	2	2	2	0.000007
No .reys orossed.	8	8	8	5	7	10	6	4	7	7	7	
The	penet	rable	bo r d	ered	pit a	rea i	s;					
Av. area o	f 1 p	it				1	0.000	38 sq	• m.m.			
Av. area o;	f tor	us				-	0.000	<u>19</u>				
Penetrabl e	area	of 1	av.	pit			0.000	19 sq	• <i>mm</i> •	,		
Av. no. pi	ts pe	r tra	cheid				1	<u>87</u>				
Penetrable	area	of 1	av.	trach	eid		0.035	53 sq	. mm.	•		
The s	imple	pit	area	is;								
Av. area o	f 1 p	it				0	.0000	07 sq	• mm	•		
Av. 'no. pi	ts pe	er tra	cheid				2	64				
Simple pit	area	pe r	av.t	rache	id	0	.0018	48 sq	• mm.	•		
The p	enet a	able	borde	red p	nit ar	ea pe	er mm.	of t	rach	eid i	s 0.00	912 sq.m.m

The simple pit area for the same unit is 0.000462 sq. mm.

Larix occidentalis(heartwood) Forest Service specimen.

- ---

	1	2	3	4	5	6	7	δ	9	10	aυ.	mm.
Longth	650	510	530	620	510	450	520	620	600	600	561	4.74045
Diameter	35	80	40	40	45	40	45	40	40	40	40	0.07640
No. bord. pits.	215	250	260	283	220	2 20	250	23 3	250	300	248	
Pit diam.	13	13	13	13	13	13	15	19	18	18	13	0.02488
Torus diam	• 7	7	7	7	7	7	7	7	7	7	7	0.01 33 7
Mouth diam	• 5	5	5	δ	Б	5	5	5	5	5	5	0.00955
No. simple pits.	268	202	806	880	171	149	32 6	321	546	5 4 0	325	
Av. simple pit area.	2	8	3	1	1	2	3	3	1	1	2	0.000007
No. rays crossed.	11	8	10	18	3	6	10	12	13;	13	10	

The penetrable bordered pit area is;

Av. area of 1 pit	0.00048 sq. mm.
Av. area of torus	_0.00014
Penetrable area of 1 av. pit	0.00034 sq. mm.
Av. no. pits per tracheid	248
Penetrable area of 1 av. tracheid	0.08527 sq. mm.
The simple pit area is;	
Av. area of 1 pit	0.000007 sq. mm.

Av. no. pits per tracheid325Simple pit area per av. tracheid0.002371 sq. mm.

The penetrable bordered pit area per mm. of tracheid length is 0.01804 sq. mm.

The simple pit area for thes same unit is 0.000490 sq. mm.

4. comparison of the figures given in Tables I and II shows that the simple pit area is not directly connected with the penetrance figures as given by Teesdale (1). However the penetrable bordered pit areas show enough of a correlation to the figures of Teesdale to warrant a more critical study of a large number of bordered pits in order to fyrther test and verify the results of the preliminary survey. Therefore I abandoned any close study of the simple pit areas and concentrated on measurements of the penetrable areas of bordered pits. The rest of the measurements, on the fresh material, were taken merelyto check the first ones and establish their accuracy as far as possible.

Table III shows the measurements of 100 bordered pits, selected from 10 average tracheids, 10 pits per tracheid, of Larix laricina. The averages of each 10 pits are incorporated in Table IV under the headings of Fit diameter; Torus diameter, and Mouth diameter.

Tables V and VI show the corresponding measurements for Larix occidentalis. (See following pages for tables)

·

TABLE III.

11

Neasurements of 100 bordered pits

of Larix laricina, penetrance specimen from Michigan.

Diameters

Diameters

.

Pit	Borus	Nouth	Av. of 10	Pit Torus	Nouth	Au. of 16.
	6.0 7.600 6.00 6.00 6.00 6.00 6.00 6.00	354000000 444000000000000000000000000000	Pit 10.4 Torus 6.2 Mouth 4.0	$\begin{array}{c} 11.0\\ 7.0\\ 10.5\\ 10.5\\ 7.0\\ 10.5\\ 7.0\\ 10.5\\ 7.0\\ 10.5\\ 7.0\\ 0\\ 10.5\\ 7.0\\ 0\\ 10.5\\ 6.0\\ 9.0\\ 9.0\\ 9.0\\ 9.0\\ 0\\ 9.0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0$	5005000500 444343433333	Pit 10.3 Torus 6.6 Wouth 3.7
9.0 11.5 11.5 10.0 10.0 10.0 10.0 10.0 10	05007 55 667 65 665 665 665 665 665 665 665	4.55000000 4.550000000000000000000000000	Pit 10.3 Torus 6.4 Mouth 4.0	11.0 7.0 11.00 6.55 10.00 6.00 110.00 7.60 110.00 7.60 110.00 7.60 11.00 7.60 11.00 7.65 11.00 7.65 11.00 7.65 11.00 7.65	4.5000 4.4.4.4.5 4.4.4.5 5.5 5.000 5 4.4.4.4.4.4.4.4.4.4.4.4.4.4.4.4.4.4.4	Pit 11.0 Torus 6.8 Mouth 4.2
11.0 10.5 10.5 10.75 11.5 11.0 12.5 12.0 11.0	5550500050 66866977777	070:55:550 32423334 4 433	Pit 11,3 Borus 7.2 Mouth 3.6	50 50 50 50 50 50 50 55 50 55 50 55 55	5055555000 344333344433	Pit 9.8 Torus 6.3 Nouth 3.8
11.05505050 11019022050 1022211 11.019022221 11.0190222200000000000000000000000000000	0005505000 77776688868	4 4 4 4 4 4 4 4 4 5 4 5 4 5 4 5 4 5 4 5	Pit 11,1 Torus 7.3 Mouth 4.4	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	ᢕ ੵਜ਼ਜ਼ਜ਼ਗ਼ਗ਼ਗ਼ਗ਼ਗ਼ਗ਼ ਖ਼ਗ਼ਗ਼ਗ਼ਗ਼ਗ਼ਗ਼ਗ਼ਗ਼ਗ਼	Pit 9.7 Torus 6.1 Houth 3.3
10.5 10.5 11.0 10.0 10.0 10.5 10.0 10.5 11.0 11.5	6.000000000000000000000000000000000000	444233334483	Pit 10.4 Torus 6.1 Mouth 3.5	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	55505550 4444 444 445 445 445 445 445 44	Pit 10.3 Torus 6.4 Mouth 4.3
10.4 11.3 10.4 11.0 9.7	The aver 6.2 7.2 6.1 6.5 6.1	a e of 4.0 3.6 3.5 4.2 3.3	the ten previous			llows; Pit 10.5 Torus 6.5 Wouth 3.9

The previous measurements are all in units of 0.00191 mm. Translating to millimeters then, the measurements are as follows;

> Pit diameter 0.02:006 mm. Torus diameter 0.01242 mm. Nouth diameter 0.00745 mm.

Using the formula Radius squared x 3..1416 to obtain the area, the results are;

Pit area	0.00032	89. mm.
Torus area	0.00012	89. mm.
Mouth area	0.00004	sa.mm.

. *

TABLE IV.

Larix laricina(heartwood) Penetrance specimen.

	1	2	3	4	5	6	7	8	9	10	av.	Mi . M
Length	\$ 30	570	460	410	545	420	430	4 00	400	410	448	3.78560
Diameter	43	27	37	39	30	31	40	40	38	85	36	0.06876
No. bord. pits.	196	220	217	189	260	160	193	189	3,80	3 j2 5	209	
Pit Diam.	10.4	10.3	11.8	\$1.1	10.4	10.3	1 1.0	9.8	9.7	10.3	10.5	0.02006
Torus Diam.	6.2	6.3	7.2	7.3	6.1	6.6	6.8	6.3	6.1	6.4	6.5	0.01242
Mouth Diam.	4.0	4.0	3.6	4.4	335	8.7	4.2	3.8	3.3	4.8	3.9	0.00745
No. Simple Pits.	301	427	337	368	352	257	246	317	209	268	808	
Avl Simple Pit Arca.	8	3	2	4	8	2	2	2	2	2	2 (0.000007
NO . fays cr émsdd.	8	8	8	5	7	10	6	4	7	7	7	

The penetrable boraered pit area is; Average area of one pit 0.00032 sq. m.m. Average area of torus 0.00012 Penetrable area of 1 av. pit 0.00020 sg. mm. Av. no. of pits pert tracheid _____209 Penetrable area og one av. tracheid 0.04880 sq. mm.

The simple pit area is;

Average area of one pit	0.000007 sq. mm.
Average no. pits per tracheid	208_
Simple pit a rea per av. tracheid	0.002156 sq. mm.

The penetrable bordered pit area per mm. of tracheid length is 0.01100 sq. mm. The simple pit area for the same unit **V**^{is} 0.000560 sq. mm.

• -

TABLE V.

Keasurements of 100 bordered pits

of Larix occidentalis, penetrance specimen from Montana.

	Diameter	'S		Ľ	Diameters		
Pit	Torus	Mouth	av. of 10	Pit	T orus	Mouth	Av. of 10
5505550050 20312333333 11111111111111111111111111	00.5050555 77 777766	0505555505 545444505	Pit 12.6 Torus 7.2 Nouth 4.7	11.0550 12.250 12.2550 12.2550 11.25500 11.25500 11.25500 11.25500 11.25500 11.25500 11.25500 11.25500 11.25500 11.255	50505555500 • • • • • • • • 0 6 • • • • • • • 0 6 • • • • • • 0 6 • • • • • 0 6 • • • • • 0 7 • • • • • • 0 7 • • • • • • • • 0	444555544445	Pit 12.1 Torus 6.5 Nouth 4.5
12.00 12.50 12.53 12.53 12.53 12.53 12.53 12.55	00000000000000000000000000000000000000	50 500005 4455545554	Pit 13.0 Torus 7.0 Mouth 4.8	5050005500 1223148122 14312 143122 14312 1432 143	000055500555 677766666666	0:5505000555 4.454434	Pit 12.3 Torus 7.0 Nouth 4.4
105055500005 123335100005	666677766666	0055000500 5544554350	Pit 12.7 Torus 6.7 Nouth 4.7	5000555550 12223333511 122233335 1111 1111 1111 11	767776657	54455554355 •••••	Pit 12.6 Torus 6.9 Mouth 4.6
5005000 1111000 1111000 12310 111000 10000 10000 10000 10000 10000 10000 1000000	5005000000 6766666666676	5544455500000 44455555554	Pit 12.1 Torus 6.3 Nouth 4.8	10.500 0050000 11233221 1123520 1123550	0 0 0 0 0 0 0 0 0 0 0 0 0 0	34455434343 4455434343	Pit 12.2 Torus 6.4 Mouth 3.6
11.00 12.00 122.55 122.32 122.32 123.55 123.	0055000350	55555444454 	Pit 12.0 Torus 6.6 Mouth 4.8	11.0 13:550 13:32.0 12:332.0 12:22.0 12:22.0 12:22.0 12:22.0 12:20 12:00 10:00	5055005005 687677787	455050050555	Pit 12.9 Torus 7.3 Youth 5.0
	The avera	ge of th	e ten foregoin	e 12:00 12:07 12:07 12:07 12:07 12:07 12:07 12:07 12:00 12:00 12:00	12 es is as 7.7.7 6.73 6.5 7.09 6.5 7.09 6.5 7.09 6.5 7.3 6.5 7.3 6.5 7.3 6.5 7.3 7.3 7.3	follows 4.7 4.8 4.7 4.5 4.5 4.6 3.6 5.0	; Pit 12.5 Torus 6.8 Mouth 4.6

14

The previous measurements are all in units equivalent to 0.00191 mm. Translating to millimeters then, the **avern**ges are as follows;

Pit diameter	0.02388 mm.
Torus diameter	0.01299 mm.
Nouth diameter	0.00879 mm.

Using the formula, radius summer x 3.1416, to obtain the areas, the resulta are;

Pit area	0.00044	sq.	mm.
Torus area	0.00013	sq.	mm.
Nouth area	0.00006	sq.	nn m i

TABLE VI.

Larix occidentalis (heirtwood) Penetrance specimen.

	1	2	3	4	5	6	7	8	9	10	av.	mm.
Length	4 0 0	450	590	410	420	510	480	460	455	620	486	4.10870
Diameter	38	42	55	47	85	55	46	55	44	55	47	0.08977
No. bord. pits.	179	208	340	240	221	240	270	216	186	262	286	
Pit diam.	12.6	13.0	12.7	12.1	12.1	12.3	12.6	12.2	12.0	12.9	12.5	0.028875
Torus diam.	.7.2	7.0	6.7	6.3	6.5	7.0	6.9	6.4	6.6	7.3	6.8	0.012988
Mouth diam.	.4.9	4.8	4.7	4.8	4.5	4.4	4.6	3.6	4.8	5.0	4.6	0.008786
No. simple pits.	338	292	569	230	243	S, £ B	424	805	312	666	868	
Av. simple pit area.	2	2	2	2	2	2	2	2	2	2	2	0.000007
No. rays orossed	10	8	10	8	4	10	10	8	9	17	9	
The .p	enetr	able	borde	red p	it ar	ea is	;					
Av. area o	f 1.p	it				0	.0004	4 89.	mm.			

Αv.	area	of	torus	_ <u>0_00013_</u>

Penetrable area of 1 av. pit 0.00031 sq. mm.

Av. no. pits per tracheid _____236

Penetrable area of 1' av. **tra**cheid 0.07316 sq. mm.

The simple pit area is;

1

Av. area of 1 pit 0.000007 sq. mm.

Av. no. pits per tracheid _____365

Simple pit area per au. tracheid 0.002576 sq. mm.

The penetrable bordered pit area per mm. of tracheid length is 0.01798 sq. mm.

The simple pit area for the same unit is 0.000630 sq. mm.

The figures given in Tables III; IV, V, and VI verify the preliminary figures of Tables I and II. The penetrable bordered pit areas shem to be the only factors which show a consistant relation to the penetration figures. The simple pit areas wary from 0.000462 sq. mm. to 0.000560 sq. mm. in the same species and there is no evidence elsewhere that the simple pit area is a factor in the penetration of preservatives into wood.

Summary of Results.

In the case of Larix laricina and Larix occidentalis we have two species very similar in most of their characters but dissimilar in those structures most concerned in the passage of creosote oil into wood. Thus the seeming paradox in penetration, upon close examination of the bordered pit structures, is explained by a difference in "penetrable bordered pit areas". Whether the figures which I have obtained in the careful measyrements of one humared boraered pits will be found true in all cases remains to be proven.

It would be interesting to pursue this question of "penetrable bordered pit areas" thru all the woods which are trated commercially in order to see whether the relationship between penetration and penetrable areas will hold in other cases besides the one investigated. In the appendix I have incluaed studies of several other kinds of wood, different species of Pinus, and one of Abies. The penetrance figures for all of these have not been ascertained. Their main value lies in the penetrable bordered pit areas per millimeter of tracheid length which is given for each. Of course a comparison betw:cen two species with several points of structural difference

will necessatate a careful aifferentiation between each pair of points involved. In the case of the two species of Larix discussed the spe+ cimens were very similar excepting in bordered pit area which was penetrable by preservatives. In comparing Abies to Pinus it would be eccessary to allow for the fact that most forms of Abies have no resin passages while they are frequent in Pinus. Thus for purposes of comparison species should be associated which have only one or a few points that are not common to both. In many cases the heartwood of a species is harder to genetrate than the sapwood. Since in the higher conifers the tracheids, which are the pawage ways, are seldom found to cantain resin, the cause of this aifference can scarcely be assumed as a clogged condition of tracheids. Here then is a case where there are no, or few, structural differences, and still a difference in penetration.

The appendix also contains a table showing the results of a few penetrance tests which I have conducted in an endeavor to check the figures on L. laricina and L. occidentalis given by Teesdale (1). Where they vary from his, the error, if there be one, is perhaps due to the imperfections of my apparatus, a picture of which will be found in PLATTI XII.

- (1) Teesdale, C.H. *Pela*tive resistance of various conifers to injection with creosote. U.S. Dept. of Agr. Bul. 101. Washington. Sept. 1914.
- (2) Penhallow, D.P. A manual of the North American Gymnosperss. Ginn and Co. Poston. 1907.
- (3) Pailey, I.W. The preservative treatment of wood. Forestry Quarterly. Vol. 11. 1913.
- (4) Teesdale, C.H. The absorption of creosote by the cell walls of wood. U.S. Forest Service Cir. 200.

APPENDIX

Containing tables of measurements on eight species of Pinus and one species of Abies. Also penetrance figures on Larix laricina, L. occidentalis, and several miscellaneous species.

Pinus	strobus,	specimen	from	Michigan.

	1	2	3	4	5	6	7	8	9	10	av.	mm.
Length	454	537	300	585	550	285	312	325	350	410	412	8.48140
Diameter	26	27	19	81	S 2	20	25	20	20	30	23	0.04392
No. bord. pits	118	153	91	120	117	52	61	56	35	50	85	
Pit dism.	8	8	10	10	10	9	10	10	10	11	10	0.01910
Torus diam	. 4	4	6	5	5	6	6	6	6	6	Б	0.00955
Mauth dimm	. 2	2	3	3	З	3	4	5	4	4	3	0.00573
No. simple pits.	15	18	4	14	13	10	7	8	7	20	12	
Av. simple pit area.	81	60	70	90	90	1 70	100	90	100	100	85	0.00031
No. rays crossed.	Б	7	2	б	4	2	8	3	8	6	5	

The penetrable bordered pit area is;

Av. area of I pit	0.00029 sq. mm.
Av. area of torus	0.00007_sq. mm.
Penetrable area of 1 av. pit	0.00622 sq. mm.
Av. no. pits per tracheid	85_
Penetrable area of an av. tracheid	0.01827 sq. mm.

The simple pit area is;

Av. area of 1 pit 0.00031 sq. mm.

Av. no. pits per tracheia _____12_

Simple pit area per av. tracheid 0.00372 sq. mm.

The penetrable bordered pit area per mm. of tracheia length is 0.00504 sq. mm.

The simple pit area for the same unit is 0.00107 sq. mm.

i

Pinus lambertiana, specimen from California.

	1	2	3	4	5	6	7	8	9	10	av.	m m
Length	650	670	610	800	770	910	690	f9 Q	640	640	707	5.97415
Diameter	38	34	50	37	41	38	35	40	40	21	37	0.07067
No. bord. pits	215	245	245	296	2 0 3	822	300	250	210	102	239	
Pit diam.	11	11	12	12	12	12	12	12	12	12	12	0.02292
Torus diam	. 8	6	7	6	6	6	6	7	6	6	6	0.01146
Mouth diam	. 3	4	5	4	4	4	4	5	4	4	4	0.00764
No simple pits.	70	51	52	86	5 4	51	49	49	74	43	59	
Av. simple pit area.		45	43	55	4 5	30	40	40	40	40	42	0.00015
No. rays orossed.	7	7	8	13	11	13	7	8	8	6	9	

The penetrable border ed pit area is;

Penetrable area of an av, tracheid	0.06382 sq. mm.
Av. no. pits per tracheid	689
Penetrable area of 1 av. pit	0.00027 sg. mm.
Av. area of toeus	<u> </u>
Av. area of 1 pit	0.00038 sq. mm.

The simple pit area is;

Av. area of 1 pit0.00015 sq. mm.Avl. no. pits per tracheid_____59Simple pit area per av. tracheid0.00904 sq. mm.

The penetrable bordered pit area per millimeter of tracheid length is 0.01080s sq. mm.

The simple pit area for the same length is 0.00150 sq. mm.

ii

Pinus monticola, specimen from Com. Hoods of U.S.

	1	2	3	4	5	6	7	8	9	10	av	m m
Length	700	705	710	710	7 20	685	610	600	860	450	675	5.7 0375
Diameter	9 1	35	30	29	45	37	25	25	30	30	32	0.06112
No. bord pits.	121	12 5	115	140	240	140	178	155	193	146	155	
Pit diam.	12	13	12	13	12	12	11	12	13	12	12	0.02292
Torus diam.	6	6	6	6	6	6	6	6	7	6	6	0.01146
Nguth diam.	4	4	4	4	4	4	4	4	5	4	4	0.00764
No. simple pits	40	43	39	42	80	60	46	40	81	44	54	
Av. simple pit area.	28	28	30	30	50	3 0	4 0	4 0	50	60	89	0.00014
No. rays grojzsed	8	9	8	8	9	7	9	8	13	6	9	

The penetrable bordered pit area is;

4v. area of 1 pit	0.00038 sq. mm.
1.v. area of torus	<u>0.00011 si. mm.</u>
Penetrable area of an av. pit	0.00027 sq. mm.
Av. no. pits per tracheid	155
Penetrable area of an av. tracheid	0.04139 sq. mm.
The simple pit area is;	

Av. area of 1 pit 0.00014 sq. mm.

Av. no. pits per tracheid _____54_

Simple pit area per av. tracheid 0.00768 sq. mm.

The penetrable bordered pit area per millimeter of tracheid length is 0.00729 sq. mm.

The simple pit area for the sma length is 0.00133 sq. mm.

iii

Pinus resinosa, specimen from Com. Hoods of U.S.

	1	2	3	4	5	6	7	8	9	10	αυ	mm 🕳
Length	500	450	400	360	410	365	350	420	360	355	397	3.35465
Dismeter	28	38	5 5	21	25	23	25	81	24	26	25	0.04775
No. bord. pits	87	84	71	76	101	67	63	73	60	107	79	
Pit diam.	10	10	10	10	12	10	10	10	10	11	10	0.01910
Torus diam.	6	5	б	5	6	6	6	6	5	6	6	0.01 14 6
Mouth diam.	8	3	3	3	4	4	4	4	3	4	4	0.00764
No. simple pits.	15	14	14	14	7	19	2 2	7	17	10	14	
Av. simple pit area.	50	50	50	50	50	50	60	60	40	70	50	0.00018
No , rays cr.omsed	δ	4	3	8	2	6	6	2	6	3	4	

The penetrable bordered pit area is;

Av. area of 1 pit	0.00(31 sq. mm.
Av. area of torus	0.00011 sq. mm.
Penetrable area of 1 av. pit	0.000 2 0 sq. mm.
Av. no. pits per tracheid	79
Penetrable antea of an av. tfacheid	0.01588 sq. mm.
The simple pit area is;	
Av. area of 1 pit	0.00018 sq. mm.
Av. no. pits per tracheid	14_

Simple pit area per av. tracheid 0.00255 sq. mm.

The **penetrable** border jed pit area per millimeter of tracheia length is 0.00460 sq. mm.

The simple pit area for the same length is 0.00074 sq. mm.

ίv

Pinus divaricata, sapwood; specimen from Maaison Laboratory.

	1	2	3	4	5	6	7	8	9	10	αυ	m m
Length	350	260	290	240	370	290	310	290	330	410	314	2.65330
Diameter	20	80	17	25	23	20	8 0	20	20	20	20	0.08820
No. bard. pit s .	50	41	42	48	90	48	72	69	83	69	61	
Pit diam.	10	10	10	10	10	10	10	10	10	10	10	0.01910
Torus diam.	6	6	6	6	6	6	6	6	6	6	8	0.01146
Mauth dism.	4	4	4	4	4	4	4	4	4	4	4	0.00764
No. simple pits.	46	37	19	48	24	43	22	38	17	76	37	
Av. simple pit area.	10	8	8	8	10	10	8	6	8	8	8	0.00003
No. rays crossed	б	з	з	5	5	4	4	3	З	9	4	

The penetrable bordered pit area is;

Av. area of 1 pit	0.00029 sq. mm.
Av. area of torus	<u>0.00011</u> sq. mm.
Penetrable area of 1 av. pit	0.00018 sq. mm.
to no nite non two hoid	01
Av. no. pits per tracheid	61
AD. no. pits per trachela Penetrable area of 1 av. tracheld	0.01098 sq. mm.

Au. area of 1 pit0.00003 sq. mm.Av. no. pits pen tracheid37Simple pit area per av. tracheid0.00107 sq. mm.

The penetrable borderea pit area per millimeter of tracheid length is 0.00396 sq. mm.

The simple pit area for the same length is 0.00042 sq. mm.

U

Pinus palustris, heartwood; specimen from Com. woods of U.S.

	1	2	3	4	5	6	7	8	9	10	av	m m.
Length	700	510	700	720	6 50	740	710	680	700	800	691	5.88895
Diameter	35	85	35	37	28	35	80	30	32	42	34	0.06494
No. bord. pit d.	208	205	190	280	108	152	180	808	188	187	190	
Pit diam.	12	14	12	1æ	19	12	12	12	13	12	12	0.03;292
Torus diam.	7	7	7	7	7	7	7	7	7	7	7	0.01337
Mouth diam.	5	5	5	5	5	5	5	5	5	5	5	0.00955
No. simple pits.	82	20	99	5 6	64	129	78	5 4	35	83	70	
Av. simple pit area	45	45	45	40	30	45	30	35	50	45	41	0.00015
No. rays grossed	8	3	8	8	7	12	8	6	4	9	7	

The **pe**netrable bor**de**red pit area is;

Av. area of 1 pit	0.00038 sq. mm.
Av. area of topus	<u>0.00014 sg</u> . m.m.
Penetrable area of 1 av. pit	0.00024 sq. mm.
No. of pits per av. tracheid	<u>190_</u>
Penetrable area of 1 av. tracheid	0.04560 sq. mm.
Simple pit area is;	
A v. area of 1 pit	0.00015 sq. mm.
Av. no. pits per tracheid	70_
Simple pit area per av. tracheid	0.01050 sq. mm.

The peretrable bordered pit area per millimeter of tracheid length is 0.00792 sq. mm.

The simple pit area for the same length is 0.00180 sq. mm.

vi

Pinus glabra, sapwood(?), specimen from Madison Laboratory.

vii

	1	2	3	4	5	6	7	8	9	10	av	$m_i m_i m_i$
Length	440	435	425	350	340	550	290	390	390	570	418	3.53210
Diameter	26	27	27	30	30	28	25	25	2 2	27	27	0.05157
No. bord. pits.	74	73	67	81	68	88	7 0	51	55	44	67	
Pit diam.	12	12	12	12	12	10	12	10	10	12	13,	0.02292
Torus diam	6	6	6	6	6	6	6	6	6	6	6	0.01146
Mouth diam.	4	4	4	4	4	4	4	4	4	4	4	0.00764
Nc. simple pità	31	28	27	23	17	43	24	36	33	5 7	32	
A'v. sim ple pit area	15	20	20	18	7	10	10	10	10	15	13	0.00005
No. rays cross-d	4	4	4	2	2	8	4	6	5.	6	5	
The p	The penetrable bordered pit area is;											
Av. area of	1 pi	t				0.	,00038	5 sq.	mm.			
Av. area of	toru	s					0001	<u>1</u> sq ;	n, m .			
Penetrable (area	of 1	av. p	i t		0	0002	7 sq.	mm.			
No. no. pit:	s per	trac	heid				ĝ	7				
Penetrable	Penetrable area of 1 av. tracheid 0.01809 sq. mm.											
The simple pit area is;												
Av. area of	Av. area of 1 pit							5 sq.	m.m.			
Av. no. pits per tracheid								2				
Simple pit	0.	.0016) sq.	mm.								
The penetrable bordered sit area per millimeter of tracheid length												
is 0.005 13	sq.	mm.										

The simple pit area for the same length is 0.00045 sq. mm.

Pinus taeda, sapwood(?), specimen from Com. Woods of U.S.

	1	2	З	4	5	6	7	8	9	10	av	m m
Length	590	530	6 00	420	510	530	410	490	500	510	509	4.30105
Dianeter	36	34	40	35	37	26	23	30	28	32	32	0.06112
No. bord. pits.	97	82	112	110	77	75	66	74	72	1 17	88	
Pit diam.	12	123	12	12	15	10	10	12	12	12	12	0.02292
Torus diam.	7	7	7	7	7	6	6	7	7	7	7	0.01837
Mouth diam.	5	5	5	5	5	4	4	5	5	5	5	0.00955
No. simple pits	49	81	64	54	81	25	37	37	27	44	50	
Av. simple pit area	35	20	20	25	20	20	20	20	20	20	20	0.00007
No. rays orossed	7	10	9	8	10	4	6	5	5	6	7	

The renetrable bordered pit area is;

Av. area of 1 pit	0.00038 sq. mm.
Av: area of torus	<u>0.00014_sq.</u> mm.
Penetrable area of 1 av. pit	0.00024 sq. mm.
Lu. no: pits per t r acheid	<u> </u>
Penetrable area of 1 av. tracheid	0.02112 sq. mm.
The simple <i>fit</i> area is;	

Av. area of 1 pit0.00007sq. mm.Av. no.. pits per tracheid_____50Simple pit area per av. tracheid0.00350 sq. mm.

The penetrable bordered pit area per millimeter of tracheid length is 0.00480 sq. mm.

The simple pit area for the same length is 0.00081 sq. mm.

viii

Abies grandis, sapwood; specimen from Madison Laboratory.

	1	2	З	4	5	6	7	8	9	10	av	m m
Length	270	45 0	550	4 20	520	460	500	430	400	410	441	8.72645
Diameter	28	35	B :3	35	50	27	27	40	30	53	36	0.06876
No. bord. pits	75	212	260	195	270	95	186	164	128	230	182	
Pit diam.	10	10	10	10	10	10	10	10	10	10	10	0.01 810
Torus diam	6	6	6	6	6	6	6	6	6	6	6	0.01 146
Mouth diam.	4	4	4	4	4	4	4	4	4	4	4	0.00764
No. simple pits.	112	105	140	135	184	35	81	2 1 5	101	194	130	
Av. area of simple pit	.10	10	10	10	10	10	8	8	6	5	9	0.00003
Ng . ræys grossed	8	7	7	8	8	Б	6	8	5	5	6	

The penetrable borderea pit area is;

Av. area of 1 pit	0.00029 sq. mm.
Av. area of torus	<u>0.00011</u> sq. mm.
Penetrable area of 1 av. pit	0.00018 sq: mm.
Av, no. pits per tracheid	<u>182</u>

Penetrable area of 1 av. tracheid 0.03276 sq. mm.

The simple pit area is;

Av. area of 1 pit 0.00003 sq. mm.

Av. no. pits per tracheid <u>130</u>

Simple pit area per av. tracheid 0.003**40** sq. mm.

The penetrable bor**der**ed pit area per millimeter of tracheid length is 0.00882 sq. mm.

The simple pit area for the same length is 0.00105 sq. mm.

ix

The foldowing table gives the penetrations in inches (according to Teesdale), and the penetrable borderea pit and simple pit areas per millimeter of tracheid length, in sq. mm. (according to my calculations).

Species		Penetr long.	rad.	P. P. P. A.	S. P. A.
Pinus	taeda	12.0	2.0	0.00480	0.00081
n	palustris	12.0	2.0	0.00792;	0.00180
ŋ	glabra	12.0	2.0	0.00513	0.00045
Larix	occ idental is	3.17	0.09	0.01798	0.00063
n	laricina	0.87	0.04	0.01100	0.00056
Abies	grandis	9.00	0.18	0.00882	0.00105

The following are penetrations which I have made, using one specimen only, with a pressure of 100 pounds per sq. in. continued for 30 minutes. The oil temperature was 20° C. The apparatus used was that shown in PLATE XII. The penetrable bordered pit and simple pit areas were not determined for Tsuga canadensis or Picea excelsa.

Species		Penetr	ration	(ins.)	P. P. P. A.	S.P.A.		
		long.	rad.	tan.				
Tsuga	canadensis	2.62	0.05	0.20				
Picea	excelsa	2.93	0.05	0.15				
Pinus	taeda	7.31	0.50	0.80	0.00480	0.00081		
Finus	lambertiana	7.31	0.30	0.20	0.01080	0.00150		

x

The following tables show the penetrations in Larix laricina and L. occidentalis as caused by a pressure of 100 pounds per sq. in. continued for 30 minutes. In all my penetrations the oil used was a commercial product from the Barrett Co., Chicago, known as "Carbosota, Grade One, Liquid Creosote Oil". In all cases, unless otherwise noted, the wood was in pieces $24 \times 2 \times 4$ inches. It was first dried in an electric oven for 48 hours at a constant temperature of 100°C to remove as much moisture as possible. The oil temperature at the time of treatment was about 20° C.

LARIX LARICINA

Pen.bor.pit area 0.01100 sq.mm Simple pit area 0.00056 " "

Specimen no.					Penetration in inc				
					long.	rad.	tan.		
j	I	(12	ins.	long)	0.15	0.05	0.15		
j	II	(do	j	6.00*	0.20	0.10		
L	III	-			0.15	0.05	0 .1 5		
	IV	6	do)	6.00**	0.20	0.10		
l	V	(do)	4.30	0.15	0.05		
. 1	VI	(do)	6.00	0.20	0.05		

* At the end of 10 minutes.

** Almost instantaneously.

Due to an oversight Specimens II, IV, V, and VI, which were cut from the same piece of wood, remained in the oven about 60 hours instead of the usual 48 hours. This, coupled with the fact, that other pieces shipped in the same lot were so season checked as to be worthless for experimental purposes, seems to indicate poor seasoning of the entire lot and perhaps accounts for the excessive and variable longitudinal penetrations in those cases. Numbers I and III were from a different source than the foregoing and presumably were put from the same piece.. They show a more normal penetration. In widw of Teesdale's figures these last are the ones to be compared to the corresponding penetrations in Larix cooldentalis.

LARIX OCCIDENTALIS Pen. bod. pit A. 0.01798 Simple pit A. L.00063 Specimen no. Penetration in inches. long. rad. tang. 0.54 0.20 0.10 Ι 0.43 0.20 0.10 II0.30 0.20 0.10 III 0.33 0.20 0.10 IV 0.30 0.15 **0.05** V 0.30 0.20 0.05 (long. occasionally VI

				to 1.15	ins.)	0
VII	0.30	0.10	0.05			
VIII	0.35	0.20	0.20			
IX	G . 1 5	0.15	0.10			
X	0.17	0.20	0.20			
X I	0.25	0.10	0.20			
Average	0.31	0.17	0.11			

The specimens of L. laricina were obtained from the R. Hansen Co. and came from northern Michigan. They were of poor quality for experimental work, generally, and only about one third of the lot could be utilized at all.

The specimens of L. occidentalis were secured from Montana thru the kindness of Mr. C.N. Whitney, the then (June **1917**) Leting Forester of District I. The material was first class in every respect, giving evidence of having been carefully seasoned and selected.

PLATE I.

Larix laricina, radial section, showing the perforated pit membranes and the relatively large pit torus. Magnification about 697 diameters.

PLATE II.

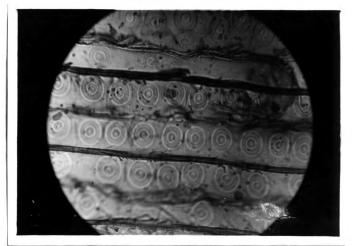
.

Larix occidentalis, radial section, showing the perforated pit membrane and the relatively small pit torus. Nagnification as above.

Alexandra Alexandra Alexandra Alexandra Alexandra Alexandra Alexandra Alexandra Alexandra Baller Alexandra - State Alexandra Alexandra Been

✓ 1

•


ierix cecisertails, e dui sentien, stadien de Preference put e sitore de tos tos tos do autilians, a crifentin a above.

.

-

PLATE I

PLATE III.

Larix laricina, cross section, showing the relatively large tarus in sectioned pits. Kagnification, about 564 diameters.

PLATE IV.

Larix occidentalis, cross section, showing the relatively small torus in sectioned pits. Magnification as above.

,

 $\begin{array}{c} \mathbf{i} \ \mathbf$

•

•

_ _ _

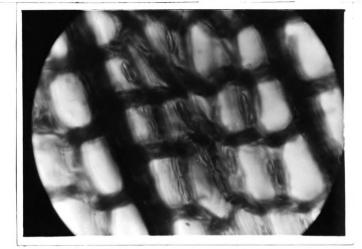


Plate III

PLATE V.

Larix laricina, cross suction, another view, showing the relatively large torus in sectioned pits. Nagnification, about 590 diameters.

• •

.

اليه مي كان ما تعليم الالمي الالم المنتو وتقويم الممات المعر وتقوي المعرف المعرف المعرف المعرف المعرف المعرف ا الموقو وقد الالا المعرف المالية من المعرفة المالية وتقوي المالية وتقوي المالية وتقوي المعرفة ومعرف المعرفة المع المحالي المقولة معرفة معرفة المعرفة المعرفة المعرفة المعرفة وتقوي المعرفة المعرفة وتقوي المعرفة المعرفة المعرفة

.

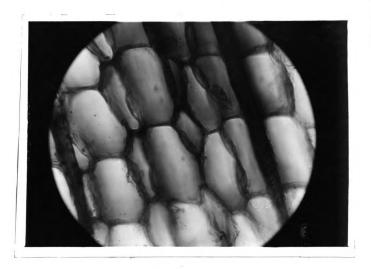


Plate V.

PLATE VI.

Larix laricina, cross section, showing the general nature of the wood structure. The dense part is the summer wood and the mare open section is the spring wood. Wagnification, about 218 diameters.

PLATE VII.

ALAMA THE

Larix operatells, cross section,, showing the similarity to L. larisina. Nagnification as above..

13

inter lands in , where a contart, when its less intered mathe of the second tree. I have also is the number where the land as a color is the cartin second in the contart, about the developed

.

Larix cocteestatis, or existing, wheated the starts to

L. i mistre. The difficulty we contain i ul

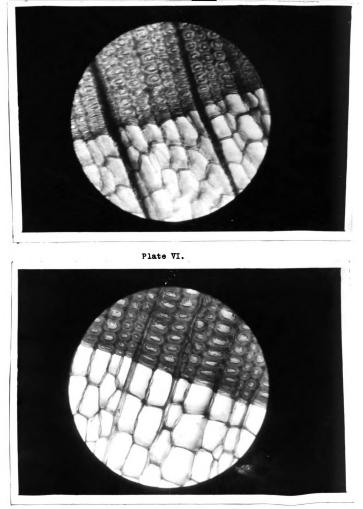


Plate VII.

BLATE VIII.

Larix laricina, radial section, spriné wood only, showiné medullary ray, simple pits, and bordered pits. Wagnification about **233**7 diameters.

PLATE IX.

Larix occidentalis, radial section, both spriné and summer wood, showiné medullary ray, simple pits, and bordered pits. Naénification as above.

■ 1 = 1 ■ 2 = 0 ■ 2 = 0 ■ 3 = 0 ■ 3 = 0 ■ 3 = 0

currix variable, so variable, early concourd, parents; conclusion real, whether plice, concernences concerns; concerns;

•

•

#define on a content of a content, both of the order of the content of the c

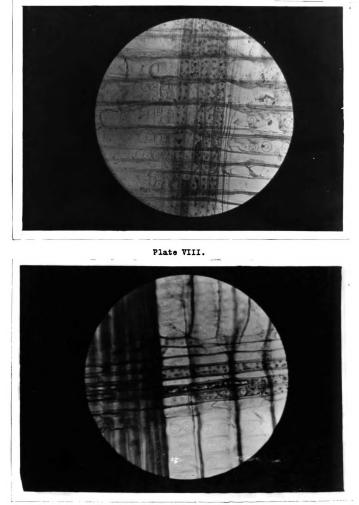


Plate IX.

PLATE X.

Larix laricina, tanéential section, showing the comparatively larée torus in the sectioned pits(center). Maénification about La diameters.

PLATE XI.

Larix occidentalis, tangential section, showing the comparatively small torus in the sectioned pits (bottom row). Magnification about 483 diameters.

inter issista, is estis contant, somer to ocer, nation in outoms in the estime of the protect. Suchting the cont o Locaters.

.l. 81838

•

.

Lintx collectets, thrienitat entites, this continues the states in the collection containes the states of the sector control and the sect

x

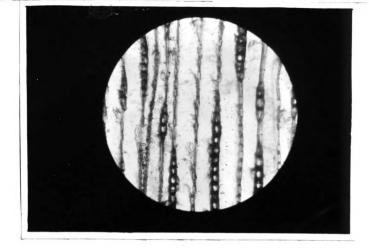
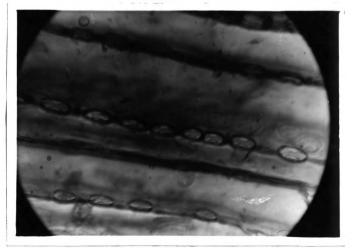



Plate X.

PLATE XII.

The apparatus used in the penetrance experiments, consisting of a reserve cylinder above for use in case vacuum is first desired, and the pressure cylinder below. A piece of wood is shown in position between the metal plates which hold it to the pipe leading from the pressure cylinder. The wood has a hole bored in the face which fits over the tip of the pipe coming thru the plate from the cylinder. This hole affords the penetrance surface. Apparatus modeled somewhat after that of Teesdale. (see U.S.D.A. Pul. 101).

The and onther and the relation of the contraction of the relation of a structure and the second of the second of

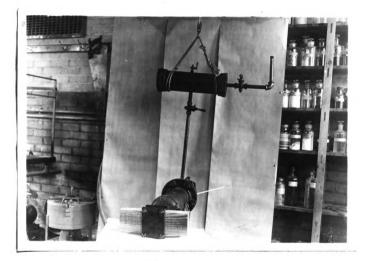
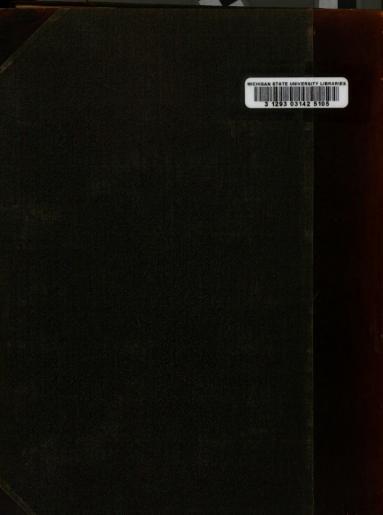



Plate XII.

. **,**

ROOM USE CALY

