THESg

the relation betake the structures
OF SOME CONIFEROUS hOODS aND their penetration by
PRESERVATIVES.

Thesis for the Desiree of Master of Science.

> Paul Clifford Kitchin
1917.

The incentive for the work which I have attempted on the relation, if there be any, between the microscopic structures of some of the soft woods ana the degree to which they are penetrated by creosote oil, was furnished by one of the conclusions reached by Teesdale (1) in his work on that subject. The conclusion was as follows;
"The results obtained with a given species of wood connotione applied to another species, however similar in structure the two may be. This fact is strikingly evident in the treatment of heartwood larch" (Larix occiaentalis)"and tamarack"(L. laricina). Teesale treated three pieces of each species under identical conditions and reported the results as follows;

L. occidentalis:	Averag̣e longituainal penetration	3.17 ins.
	Averag̣e radial penetration	$0.09 \mathrm{ins}$.
L. laricina.	4.verag̣ longituainal penetration	$0.84 \mathrm{ins}$.
	Averag̣e radial penetration	$0.04 \mathrm{ins}$.

Penhallow (2) aescribes these two species as follows;
Larix occidentalis Nutt.
"TRANSVEFSE. Growth rinọs usually broad, the dense and prominent summer wood about one half the spring wood, from which the transition is abrupt. Tracheids of the sumer wood lar§e, squarish, in re§ular rows. Tracheids of the spring wood very large and thin walled, squarish hexatcnal, in very regular rows, rather uniform. Hedullary rays prominent, rather resinous and broad, one cell wide, distant 2-6 rows of tracheids. Resin passages few, large, without thyloses, the epithelium narrow, rather thin walled, the nutritive layer thick walled and resinous. Besin cells
wicely scattersa on the outer surface of the summer woa, but readily recognissd by their abunaant resinous contents.

BADIAL. Kaye conspicuously resinaus thruout; the tracheias narrow and marginal, raraly intsrspersed. Eay cells chiefly straight theuout and equal to 3-9 spring trachetas; the upper ana lower walls ohisfly thick and unequal, sparingly pitted thruout, more strongly sa in the summer weaa; the termal walls coarsely pittea thrueut; the lateral walls with elliptical and aistinctly boraerea pits, with a narrou; ohiefly obiong or lenticular orifice, numeraus, at first 6-8 per tracheia, soon greatly reauced in sixe, and in the summer mood abruptly 1 per tracheia. Eoraerea pits conspicuausly in 1-血 raws, more rarbly in one row anly, elliotical, the arifice very laree. Fits an the tangential walls of the suminer wooa rather numerous but small and often obscurs. Kesin cells about $1 \% .5$ microns wiae and $60-150$ microne lane. TANGETIAL. Gays rather numerous, low to very hieh. fusiform rays with a larøe resin cancl without thyloses, the efithelium csils thick wallea. Ordinary rays often very high, chiefily very uniform, ana not contracted at the position af the rarely interspersea tracheias; the Darenchyma cells rather unequal, sometimes in pairs, oval or oblon¢, somewhat dariable.
Larix americana kichx. (L. laricina (Luroi) vach).

TRI.NSDERSE. Growth rings rather broai ana uniform, sometimes aouble. Sumer waoa rather aense, about one fourth to one half the sprine woad, frow shich the transition is either eraaual ar abruot; the tracheids small, conspicuously unequal, ana not in very requlor rows, distinctly rounded. Spring tracheias laree, hexagonal, raaially elondatea, thin. heaullary rays prominent, broaa, one cell wiae, ais tant 2-\&; rarely mare, tracheias. Resinous passages lerṣe, bqual to 2-3 tracheias,
devoid of thyloses, the epithelium cells flat; rather thin wallea, the nutritive farenchyma scanty, thick walled; not very numerous, chiefly in the summer wood. Resin cells few, widely scattered on the outer face of the summer woad, non resinous, distinguished by (1) their thin outer walls and advanced pasition, and (2) by the sieve plate structure of the terminal walls.

RADIAL. Rays somewhat resinaus thruout; the tracheias prominent, numerous and marginal. Parenchyma cells straight or barely contracted in the summer wood; the upper and loser walls thick, unequal, and usually sparin@ly pitted; the terminal walls coarsely pitted thruout; the lateral walls with aistinctly borderea pits, the narrow orifice chiefly oblong, 2-6 per tracheid, becoming distinctly smaller twara the summer mood, where they are abruptly reauced to 2 and finally 1 ner tracheid. Bordered pits in 1 or 2 rows, large, elliptical, becoming smaller and round tward the sumer wood. Pits of ten showing an equatorial band. Pits on the tangential walls of the sumier wood numerous, small, approximate, on the outermost tracheids only. The outer summer tracheids of ten show a marked tendency tward the formation of spirals. Resin cells 15 microns wide, about 125 microns lon.

TANGENTIAL. Rays numerous, medium to high, sparirgly resinous. The fusiform rays with a broad central tract and a large resin camal without thyloses. The orainary rays rather broad, sometimes 2 seriate in part; the resin cells thick walled, chiefly rather equal, uniforms.oblons, more rarely oval. Rays somewhat contracted at the position of the narrow and interspersed tracheids."

A careful comparison of the foregoing descriftions shows that in the transverse sicctions the tracheids of the summer wood are larder in Larix occidentalis than they are in Larix laricina. It has been found to be a fact in wood preservation that the dense summer wood of some species, notably of the hard pines, is much more easily penetrated. and absorbes mare creosote than doed the more open spring wood. The presumea cause for this difference is th? pres?nce of resin passanes in the summer wood, however. ©iven resin paissages in the summer wood of both L. laricina and L.occidentalis, the larger tracheids in the latter may be a contributing factor in it's easier penetration.

The radial and tangential sections, according to the descriptions, show no appreciable differences, at least no differences which would be active in assisting or retarding the penetration of preservatives.

As the wood of conifers is made up almost wholly of tracheids, some of these at least, are anala@̣ous to the tracheary system of the 4ngiospermous woods. The question of the penetration of preservatives into wooa resolves itself into two problems; first, the structure of the conducting system of the wood, and secand, the penetrability of the cell walls. Both Railey (3) and reesdale (4) have shown that the rassaṭe of creosote oil thru the cell wall is practically neoliẹible. Therefoee ther remaine to be made a detailed stuay of the individual tracheids of L. laricina and L. occiaentalis with reference to their role as conducting structures. This,then, is the point fron which the problem has been attackt, and thou@h I consider it by no means solved, as. that would take much more time than was available, the results oive an inaicxtion as to what the structural differences may be which cause this seming paradox in penetration:

The Methad of Investi@ation.
Typical specimbns of Larix laricina and L. occidentalis were se; curea thru the kinaness of Mr. H.D. Tiemann of the Forest Products Laboratory at Madison, Wisconsin. That of L. laricina was a piece from the collection of "Commercial Woods of the Unitea States" prepared by the forest Service, while that of the L. occidentalis came from the collection at the Laboratory at Madison. Small pieces of each wood, about the thickness of a toothpick and 3/4" to 1" long were split from the specimens and macerated by Schultze's method*. However instead of using all nitric acid as Schuttze dix, I used about 1/4 water, applyin@ more heat and len@thening the time of macerstion, thus being able to control the process to a greater extent than with strong acid. After maceration the tracheids were boiled in water for a short time to expell the acid and air. The macerated material was then flaced in a vial and used as needed. Small amounts of the wood from the vial were carefully separated into individual cells with two needles and using a dissecting lens. Only one tracheid was mounted on the slide at a time and was placed in just enou@h vater to hold the cover glass down. The water gradually evaforated and it was found that the parts of the indiviaual pits were easiest to see at the time when the water was leaving them.

All measurements of tracheid lenoths were made in spaces of the ocular micrometer usins the 16 mm . objective. Such a space on the microscope employed was equal to 0.00845 millimeters. The remaining measurements werzc all made in spaces of the ocular micrometer using the 4 mm . objective. Such a space on the microscope used was equivalent to 0.00191 mm . At the conclusion of each set of measurements the average was secured and translated inta terms of millimeters. From these measure*Chamberiain, C.J. Methods in plant Hiatology, P. loo.
ments there were calculated the following;
(1) The fenetrable bordered pit area.

According to Bailey (3) the bordered pits are the means of passage for liquids going from one tracheid to another. Not all of the bordered pit,however, is available for this purpose. The accompanying diagram shows the various parts of the bordered pit both entire and in saction.

A, surface view of bordered pit. B and C, sectional views of boredred pits. Rr, embossed or borderea ar ea of siccondary wall. Oe, pit or orifice (mouth) in the seconary wall. Me, membrane. Ts, thickened area of membrane, or torus. (After Bailey).

According to Railey(3) the only part of the boraered pit structure which functions in the transmission of preservatives is the pit membrane, less the torus, which is locatea in the center of the same. After wood is seasoned, this membrane, from the torus to the edge, is composed of a number of radiating ribbons so shrunken that there is actual
space between them. This area of raaiating ribbons is what I have desienated as "the penetrable bordered pit area".

In oraer to compare the the penetrable bordered pit area of ane wood with that of another it is not enough to determine the penetrable bordered pit area of an avera@e tracheid of each. T'o make this comparison the lenoth of an averaote tracheid, in millimetgrs, was aivided into the average number of bordered pits per tracheid and the penetrable bordered pit area of an average pit was then multiplied by the quotient obtained. The result was. "the penetrable bordered pit area per millimeter of tracheid lenoth". This was then airectly comparable to the same lenoth of tracheid in any other species.
(2) The simple pit area.

Here the average area of a simple pit was aeterminea, and then multiflied by the average number of simple pits in a tracheid. Then,oy the same method as described for the penetrable bordered pit area, "the simple pit area per millimeter of tracheid lenetr""was aixertained.

I'he preliminary tables of measurements on Larix laricina ana l. occcidentalis are as follows; (See next page).

Larix laricina(heartwood) Forest Service specimen.

	1	2	3	4	5	6	7	8	9	10	ab.	$m m$.
Length	500	380	500	455	510	590	440	485	440	440	470	8.87150
Diameter	43	82	40	45	35	40	40	40	42	38	40	0.07840
No. bord. pite.	185	188	3:27	195	200	158	216	208	188	166	187	
Pit diam.	12	12	12	12	12	12	138	12	12	12	12	0.02292
Torus diam.		8	8	8	8	8	8	8	8	8	8	0.08528
Mouth diam.		4	4	4	4	4	4	4	4	4	4	0.00784
$\begin{aligned} & \text { Nop simple } \\ & \text { pitse. } \end{aligned}$	325	330	268	197	225	281	246	250	283	234	264	
$\begin{gathered} \text { Avaimple } \\ \text { pit areaco } \end{gathered}$	2	2	2	2	2	2	2	2	2	2	2	0.000007
$\begin{aligned} & \text { No. reys } \\ & \text { orosecd. } \end{aligned}$	8	8	8	5	7	10	6	4	7	7	7	

The penetrable bordered pit area is;
AU. area of 1 pit
$0.00038 \mathrm{sa} . \mathrm{mm}$.
Av.. area of torus

- $0_{2} 00019$

Penetrable erea of 1 av. pi 0.00019 sq. mm.

Av. no. pits per tracheia 187

Penetrable area of 1 av. tracheid $0.03553 \mathrm{sq} . \mathrm{mm}$. The simple pit area is;

Av. area of 1 pit 0.000007 sq. mm.

Av. na. pits per tracheia
Simple pit area per av. tracheid
$0.001848 \mathrm{sq} . \mathrm{mmo}$
The penetable bordered pit area per m. of tracheid is 0.00912 sq.mm The simple pit area for the same unit is 0.000462 sq. mm.

TABLGII.
Larix occidentalis(heartwood) Forest Service specimen.

	1	2	3	4	5	6	7	δ	9	10	$a v$.	$m m$.
Length	650	510	530	620	510	450	520	620	600	800	561	4.74045
Diameter	35	30	40	40	45	40	45	40	40	40	40	0.07640
No. bord. pite.	215	250	280	283	220	220	250	23.3	250	300	248	
Pit diam.	13	13	13	13	13	13	13	13	13	18	13	0.02483
Torus diame		7	7	7	7	7	7	7	7	7	7	0.01387
Mouth dismo		5	5	5	5	5	5	5	5	5	5	0.00955
$\begin{aligned} & \text { Nopsimple } \\ & \text { pitson } \end{aligned}$	268	202	308	830	171	148	326	321	546	540	325	
$\begin{gathered} \text { Avisimple } \\ \text { pit aroat } \end{gathered}$	2	8	3	1	1	2	3	3	1	1	2	0.000007
No, reys orosedd.	11	8	10	18	3	8	10	12	13 ;	13	10	

The penetrable bordered pit area is;
Av: area of 1 pit
$0.00048 \mathrm{sq}. \mathrm{mm}$.
Av. area of torus
-2.0013
Penetrable area of 1 au. pit

$$
0.00034 \mathrm{sq} . \mathrm{mm}
$$

Av.. no. pits per tracheid
Penetrable area of J av. tracheid 0.08527 sq. mm.

The simple pit area is;
Av. area of 1 pit 0.000007 sq. mm.
Av. no. pits per tracheid
325
Simple pit area per av. tracheia
0.002371 sq. min.

The penetrable bordered pit area per mm. of tracheia lenoth is $0.01804 \mathrm{sq} . \mathrm{mm}$.

The simple pit area for thes same unit is 0.000490 sa. mm..

1. comparison of the figures given in Tables I and II shows that the simple pit area is not directly connected with the penetrance fioures as given by Teesdale (1). However the penetrable bordered pit areas show enough of a correlation t.o the figures of Teesdale to warrant a more critical study of a large number of bordered pits in order to fyrther test and verify the results of the preliminary survey. Therefore I abandoned any close study of the simple pit areas and concentrated on measurements of the penetrable areas of boraered pits. The rest of the measurements, on the fresh material, ware taken merelyto check the first ones and establish their accuracy as far as possible.

Table III shows the measurements of 100 bordered pits, selected from 10 averặ tracheids, 10 pits per tracheid, of Larix laricina. The aversoes of each 10 pits are incorporated in Table IV under the headings of Fit diameter; Torus aiameter, and Mouth diameter.

Tables V and VI show the corresponding measurements for Larix pccidentalis. (See followin乌 pa@es for tables)

TABLE III.
Measurements of 100 bordered pits
of Larix laricina, penetrance specimen from Michiṣan.

Diameters

Pit	Borus	Houth	$A U$. of 10	Fit	Torus	Mouth	$A \cup$. of 1 C .
10.0	\% 6.0	3.0		11.0	3.	4.	
11.0		5.0		11.0	3.0	4.0	
10:0	6.0	4.0		10.5	3.0	3 3 .5	
10.0	6.0	4.0		10.5	3.0	4.0	
10	6.0	4.0		11.0	7.0	4.0	
1180	6. 6	4.8		10.5	6.8	3.0	
10.0		4.8	${ }_{\text {Porus }}{ }^{\text {Pit }} 2$	19.5	6.8	3	Torus ${ }^{\text {Prit }}$. 6
10.5	6.5	4.0	Mouth 4.0	9.0	6.0	3.0	Mouth 3:9
9.0	6.0	4.0		11.0	7.0	4.5	
11.5	6.5	4.5		11.0	7.0	4.0	
110.0	6. 0	4.5		10.0	6.5	4.0	
10.0	$5{ }^{\circ} 7$	300		11.0	$3: 0$	4.5	
10.0	6. 25	4.0		11.0	7.0	4.5	
10.75	5:5	4.8	Pit 10.3	11.5	\%.0 ${ }^{5}$	3.5	Fit 11.0
10.0	6.7. ${ }^{\circ}$	4.0	Torus 6.4	$11: 0$	$7 \cdot 0$	4.0	Torus 6.8
10.5	6.5	4.0	Mouth 4.0	11.0	6.5	4.5	Mouth 4.
11.0	6.5	3.95		8.5	5.5	3.5	
10,0	8.5	2.75		9.0	\%. 0	4.0	
10:5	6.0	2.5		9.0	$5: 5$	3.5	
10.75	6.5	3.5		10.5	6.5	3.5	
11.5	9.8	3.5		10.5	6.5	3.5	
12.5	$3: 0$	4.5	Pit 11,3	$10: 8$	6.5	4.0	Fit 9.8
11.0	3.5	4.8	Porus 3.2	10.0	6.5	4.0	Torus 6.3
11.0	7.0	3.5	Mouth 3.6	10.0	6.0	3.0	Mouth 3.8
11.0	7.0	4.0		10.5	6.5	4.0	
110.5	3.0	4.5		10.0	6.5	3.5	
11.0	7.5	4.5		89.5	$5: 5$	3.5	
19.5	6.5	4.0		10.0	6.0	3.0	
12.5	8.5	4.0		8.0	4.5	$2 \cdot 0$	
12.0	8.0	4.0	Pit 11, ${ }^{1}$	9.5	6.0	3.5	Pit 9.7
11.8	8.0	5.0 4.5	morus 7.3	10.5	9.8	3.5	mouth 3.3
10.5	6.0	4.0		10.5	6.5	4.5	
10.5	8.0	4.0		110	6.57	4.5	
9.0	5:0	$2 \cdot 5$		10.0	6.25	4.0	
10.0	6.0	3.0		11.0	6.5	4.5	
10.5	\%.0	3		10.5	7.0 5.5	4.5	
19.5	6.0	4.8	Fit 10. ${ }^{1}$	11.0	6.5	4.0	Pit 10.3
11:5	7.0	$3: 5$	Mouth 3.5	10.5	6.0	4.5	Morus 4.3
	The 6.2 ave	Ce of	the ten previous	aver	es.3 is	as 4.0	lows;
11.3	3.2	3.6		11.1	9.3	4.4	
10.4	6.1	3.5		10.3	6.6	3.7	
19.9	6.1	$3 \cdot 3$		10.3	6.3	3.8 4.3	Pit

The previous measurements are all in units of 0.00191 mm . Translatin to millimeters then. the measurements are as follows;

Pit aiameter 0.03:006 mm.
Torus aiameter 0.01242 mm .
Houth diameter 0.00745 mm .
Usint the formula Radius squared $x 3.1416$ to obtain the area. the results are:

Pit area	$0.00032 \mathrm{~s} a . \mathrm{mm}$
Torus area	$0.00012 \mathrm{~s} a . \mathrm{mm}_{\text {. }}$
Mouth area	$0.00004 \mathrm{sa.mm}$.

Larix laricina(heartwood) Penetrance snecimen.

	1	2	3	4	5	6	7	8	91	10	$a v$.	$m \cdot m_{1} \cdot$
Length	-30	570	460	410	545	420	430	400	400	410	448	3.78560
Diameter	43	27	37	38	30	31	40	40	38	85	36	0.06876
No. bord.												
pits.	196	220	217	188	280	180	183	188	3;80	325	209	
Pit Diam.	10.4	10.3	11.8	©1.1	10.4	10.3	\$1.0	9.8	9.7	10.3	10.5	0.02006
Torus Diam.	6.2	6.3	7.2	7.3	6.1	6.6	6.8	6.3	6.1	6.4	6.5	0.01242
Moyth Diam.	4.0	4.0	3.6	4.4	335	8.7	4.2	3.8	3.3	4.8	3.8	0.00745
Noderimple	301	427	337	368	352	257	246	317	209	268	308	
$\begin{gathered} \text { Avb Sinple } \\ \text { Pit Arease } \end{gathered}$	2	3	2	4	3	2	2	2	2	2	2	0.000007
	8	8	8	5	7	10	6	4	7	7	7	

The penetrable boraered pit area is;
Average area of one pit 0.00032 sq. m.m.
Average area of torus
-_응ㅇㅇㄴㄹ
Penetrable area of 1 av. pit 0.00020 sq. mm.

Av. no. of pits pert tracheid
Penetrable area os one av. tracheid
0.04880 sq. mm.

The atmple pit area ts;

Average area of one pit 0.000007 sq. mm.

Average no. pits per tracheid
Simple pit area per av. tracheid
0.002156 sq. mim.

The penetrable boraered pit area per mm. of tracheia lenoth is
$0.01100 \mathrm{sq} . \mathrm{mm}$.
The simple pit area for the same unit $f^{\text {sis }} 0.000560 \mathrm{sa} . \mathrm{mm}$.
of Larix occidentalis，penetrance specimen from Montana．

Diameters

OGNENNNNAN － O vicirio0000	NANHANHANA RAnNNNHELO o0G000G000	NHMN cochi 0000	Whn Gove	Ghan ocroo
ambingonajn	9vorososos．vo	orosos	$0 \sim N$	90，
ourionoveron	00noocurar			
acana crerercr	Agergera	encrat	Acier	
ooviremionion	cooderarion	cocror	crooo	ocooric
ㅈ№	30	3000	700	3×0
Eアワ	¢ア\％	天「へ	¢アウ	¢ヲか
$\underset{\sim}{\square}$	Fer	Fis		Fen
AON゙	AON	AON	Avo	A $\mathrm{NH}^{\text {a }}$
－000	－	\bigcirc	\bigcirc	－
∞	ockr	Vnos	$0 ; 00$	venos
A AMA NNNGGNAN －．	MNANHNHNRNA	$\begin{aligned} & \text { ANHNA } \\ & \text { ANHOS } \end{aligned}$	NNNH	Chinn
－0000000rio	orricooovioo	ovivior	oover	ooerer
	groogonymos	Neros	gosos	voros
arovodrater	ornorioriorno	ouract	cioloo	ooer
gergugaciga ererocrooiocrar	Acuancrat Grorio00000r	verag 0000	$\begin{aligned} & \text { Achat } \\ & \text { cioioos } \end{aligned}$	GAAA 0000
ล\％\％	E8\％	®\％「	¢0\％	욱
${ }^{\text {Fen }}$	$\underset{\sim}{5 C 5}$	$\underset{\sim}{56}$	${ }^{2} \mathrm{~F}$	${ }^{\sim}$
$\bigcirc 0$	¢ont	Aoñ	A．NA0	AsN

Torus Mouth av．of 10

agara
Gocicheriogoso
Pit 12.6
Torus
mouth 4.7

Pit 13.0
Torus
Mouth 4.0
$\begin{array}{ll}\text { Pit 12．} \\ \text { Torus } & 6: 3 \\ \text { Mouth } & 4.8\end{array}$

Pit 12．0
Torus $6:$ 6
Mouth 4.0

Diameters

The average
auerag
13.6
13.0
12.7
12.1
12.1
12
12.6
12.2
12.0
12.0
vogavogagnvico nunmisounnom Co
0
0
 Pit 12． 5
morus 6.8
Mouth 4.6

The previous measurements are all in units equalent to $0.00191 \mathrm{~m} . \mathrm{m}$. Translating to millimeters then, the averages are as follows;

Pit diameter	0.02388 mm.
Torus diameter	0.01299 mm.
Mouth diameter	0.00879 mm.

Using the formula, radius $3 J_{\text {ulurea }} x$ 3.1416, to obtain the areas, the resulta are;

Pit area	$0.00044 \mathrm{sq} . \mathrm{mm}$.
Torus area	$0.00013 \mathrm{sq} . \mathrm{mm}$.
Houth area	$0.00006 \mathrm{sq} . \mathrm{mm}$.

Larix occidentalis (hex.rtwood) Penetrance specimen.

	1	2	3	4	5	6	7	8	9	10	$a v$.	$m m$ 。
Length	406	450	590	410	420	510	480	460	455	620	486	4.10670
Diamoter	38	42	55	47	85	55	46	55	44	55	47	0.08877
```No. bord. pits.```	178	208	340	240	221	240	270	216	186	262	288	
Pit diam.	12.6	13.0	12.7	$12 \cdot 1$	12.1	12.3	12.6	12.2	12.0	12.9	12.5	0.038875
Torus diam.	7. 2	7.0	6.7	6.3	6.5	7.0	6. 9	6.4	6. 6	$7 \cdot 3$	6. 8	0.012888
Mouth diam.	8.7	4.8	$4 \cdot 7$	4.8	4.5	4.4	4.6	3.6	4.8	5.0	4.6	0.008786
$\begin{gathered} \text { Noosimplo } \\ \text { pits. } \end{gathered}$	338	282	568	230	243	2' ¢я	424	305	312	666	868	
$\begin{gathered} \text { Avisimple } \\ \text { pit arese } \end{gathered}$	2	2	2	2	2	2	2	2	2	2	2	0.000007
No, rays orosed	10	8	10	8	4	10	10	8	9	17	9	

The penetrable borderea pit area is;
Av. area of 1 pit
$0.00044 \mathrm{sq} . \mathrm{mm}$.
Av. area of torus

- $0_{2} 00013$ _

Penetrable area of 1 av. pit
$0.00031 \mathrm{sq} . \mathrm{mm}$.
Av. no. pits per tracheia
Penetrable area of $l$ av. tracheid 0.07316 sq. mm. The simple pit area is;

Av. area of 1 pit 0.000007 sq. mim.
Av. no. pits per tracheid
Simple pit area per av: tracheid 0.002576 sq. mm.
$T h e ~ p e n e t r a b l e ~ b o r d e r e d ~ p i t ~ a r e a ~ p e r ~ m m . ~ o f ~ t r a c h e i d ~ l e n g t h ~$
is 0.01798 sq. mm.
The simple pit area for the same unit is 0.000630 sq. mm.

The fiơees given in Tables III, IV, $V$, and VI verify the preiliminary fioures of Tables $I$ and II. The penetrable bordered pit areas s.sem to be the anly factors which ohow a consistant relation to the penetration figures. The simple pit areas . . vary from 0.000462 sq. m. to $0.000560 \mathrm{sq} . \mathrm{mm}$. in the same species, ana there is no evidence elsewhere that the simple pit area is a factor in the penetration of presernatives into wood.

Summary of Results.
In the case of Larix laricina and Larix occidentalis we have two species very similar in most of their characters but dissimilar in those structures most concerned in the passage of creosote oil into wood. Thus the seeming paradox in penetration, upon close examination of the bordered pit structures, is explaiasd by a aifference in "penetrable bordered pit areas".. Whether the fioures which I have obtained in the careful measyrements of one humared boraerea pits will be found true in all cases remains to be proven.

It would be interesting to pursue this question of "penetrable bordered pit areas" thru all the woods which are trsated commercially in ordor to see whether the relationship between penetration and penetrable areas will hold in other cases beside the one investionted. In the aprendix I have incluaed stuaies of several other kinds of wood, different species of Pinus, and one of Abies. The penetrance figures for all of these have not been ascertained. Their main value lies in the penetrable bordered pit areas per millimeter of trachetd length which is @iven for each. Of course, a comparison betwicen two species with several points of structural difference
will necessatate a careful aifferentiation between each pair of points involved. In the case of the two species of Larix discussed the spe; cimens bere very similar excepting in bordered pit area which was penetrable by preservatives. In comparing Abies to Pinus it would be aecessary to allow for the fact that most forms of abies have no resin passages while they are frequent in Pinus. Thus for purposes of comparison species should be associated which have only one or a few points thet are not common to both. In many cases the heartwood of a species is harder to fenetrate than the safwood. Since in the higher contfers the tracheids, which are the passage ways, are seldom found to cantain resin, the cause of this difference can scarcely be assumed as a cloged conditoon of trachetas. Here then is a case where there are no, or few, structural differences, ana still a difference in penetration.

The appendix also contains a table showing the results of a few penetrance tests which I have conducted in an endeavor to check the figures on L. laricina ana L. occidentalis given by Teesale (i). Where they vary from his, the error, if there be one, is perhaps due to the imperfections of my apparatus, a picture of which will be faund in PLATT, XII.

## Literature cited.

(1) Teesdate, C.H. Relative resistance of various conifers to injection with creosote. U.S. Dept. of Agr. Bul. 101. Washington. Sept. 1914.
(2) Penhallow, D.P. A manual of the North American Gymnosperas. Ginn and Co. Roston. 190\%.
(3) Bailey, I.H. The preservative treatment of wood. Forestry Quarterly. Vol. 11. 1913.
(4) Teesdale, C.H. The absorption of creosote by the cell walls of wood. U.S. Forest service Cir. 200.

## APFENDIX

Contatning tables of measurements on eight spectes of pinus and one species of Abies. Also penetrance figures on Larix laricina. L. occidentalis, and several miscellaneaus sxecies.

Pinus strobus, specimen from Michigan:


The penetrable bordered pit area is;
Av. area of 1 pit
$0.0002 \mathrm{~s} \mathrm{sq} . \mathrm{mm}$.
Av.. area of torus
Penetrable area of 1 av. pit
_- 0.00007_sq. mm .

AU. no. pits per tracheid
Penetrable area of an av. tracheid
---------8.
$0.01827 \mathrm{sq} mm.$. The simple pit area is;

Av. area of 1 pit
0.00031 sq. $m_{i} m_{\text {. }}$

Av. no. Dits per tracheid
12
$0.0037 \varepsilon$ sq. mm.
Simple pit area per av. tracheid
The penetrable bordered pit area per mi. of tracheid length is $0.00504 \mathrm{sq} . \mathrm{mm}$.

The simple pit area for the same unit is $0.00107 \mathrm{sq}$.mm .

Pinus lambertiana, sxecimen from California.

	1	2	3	4	5	6	7	8	9	10	$a v$.	$m m$.
Longth	650	670	610	800	770	810	880	frier	640	640	707	5.87415
Diameter	38	34	50	37	41	38	35	40	40	21	37	0.07067
$\begin{gathered} \text { No. } \\ \text { Fi } \pm \text { bord } \end{gathered}$	215	245	245	296	$2 \theta 3$	322	300	250	210	102	239	
Pit diam.	11	11	12	12	12	12	12	12	12	12	12	0.02282
Torus diamo		6	7	6	6	6	6	7	6	6	6	0.01146
Mouth diam.		4	5	4	4	4	4	5	4	4	4	0.00784
Noptsimple	70	51	52	86	54	51	48	49	74	43	59	
AWo. imple pit area.		45	43	55	45	30	40	40	40	40	42	0.00015
No. raye arossed.	7	7	8	13	11	13	7	8	8	6	9	

The penetrable border.ed pit area is;

Av. area of 1 pit	$0.00038 \mathrm{sq} . \mathrm{mm}$.
Av. area of tocus	
Penetrable area of 1 av. pit	$0.00027 \mathrm{sq} . \mathrm{mm}$.
Av. no. pits per tracheid	_-_892
Penetrable area of an av, tracheid	$0.06382 \mathrm{sq}$. mm.
The simple pit area is;	
Av. area of 1 pit	$0.00015 \mathrm{sq} . \mathrm{mm}$.
Avl. no. pits per tracheid	-_- 59
Simple pit area per av. tracheia	$0.00904 \mathrm{sq} . \mathrm{mm}$.

The penetrable bordered pit area per millimeter of tracheid
length is $0.01080 \mathrm{~s} \mathrm{sq} . \mathrm{mm}$.
The simple pit area for the same length is 0.00150 sq. mm.
tii
Pinus monticola, specimen from Cam. Hoods of U.S.

	1	2	3	4	5	6	7	8	9	10	$a v$	$m m$
Length	700	705	710	710	720	685	610	600	860	450	675	E. 70375
Dismoter	81	35	30	29	45	37	25	25	30	30	32	0.06112
No: bord. . pite.	121	125	115	140	240	140	178	155	193	146	155	
Pit diem.	12	13	12	13	12	12	11	12	13	12	12	0.02292
Tarus diam.	6	6	8	6	6	6	6	6	7	6	6	0.01146
Nouth diam.	4	4	4	4	4	4	4	4	5	4	4	0.00764
Nopitsimple	40	43	39	42	80	60	48	40	81	44	54	
Av. implo pit aroa.	28	28	30	30	50	30	40	40	50	60	39	0.00014
$\begin{gathered} \text { Nagrayz } \\ \text { orosised } \end{gathered}$	9	9	8	8	9	7	9	8	13	6	9	

The penetrable bordered pit area is;
4.v. area of 1 pit
1.v. area of torus

Penetrable area of an av. pit
Av. no. pits per tracheid
Penetrable area of an av. tracheid
The simple pit area is;
Av. area of 1 pit
Av. no. pits per tracheid
Simple pit area per au. tracheid
The kenetrable bordered pit area per millimeter of triacheid length
is $0.00729 \mathrm{sq} . \mathrm{mm}$.
The simple pit area for the sna len@th is 0.00133 sq. mm.

Pinus resinosa, specimen from Com. Moods of U.S.

	1	2	3	4	5	6	7	8	9	10	$a v$	$m m$ 。
Langth	500	450	400	380	410	385	350	420	380	355	397	3.35465
Diameter	28	32	22	21	25	23	25	21	24	26	25	0.04775
$\underset{\text { pita }}{\text { Nard. }}$	87	84	71	76	101	67	63	73	60	107	79	
Pit diam.	10	10	10	10	12	10	10	10	10	11	10	0.01810
Torus diam.	6	5	5	5	6	6	6	6	5	6	6	0.01146
Nouth aiam.	3	3	3	3	4	4	4	4	3	4	4	0.00764
$\begin{aligned} & \text { Nof simpld } \\ & \text { pits. } \end{aligned}$	15	14	14	14	7	18	22	7	17	10	14	
$\begin{gathered} \text { Avioncle } \\ \text { pit area. } \end{gathered}$	50	50	50	50	50	50	60	60	40	70	50	0.00018
$\begin{aligned} & \text { No. rays } \\ & \text { cromace } \end{aligned}$	5	4	3	3	2	8	6	2	6	3	4	

The penetrable bordered pit area is;
Av. area of 1 pit
$A v^{\prime}$. area of torus
Penetrable area of 1 av. pit
Av. no. pits per tracheid
Penetrable atea of an av. tfacheid The simple pit area is;

Av. area of 1 pit
Av. no. pits per tracheid
Simfle pit area per av. tracheid
The penetrable bordenea pit area per millimeter of tracheia length. is 0.00460 sq. $m_{i} m_{\text {. }}$

The simple pit area for the same lehoth is 0.00074 sq. mm.

Pinus aivaricata, sawwood; skecimen from Maaison Laboratory.

	1	2	3	4	5	6	7	0	9	10	Qu	$m m_{i}$
Length	350	260	290	240	370	280	310	290	330	410	314	2.65330
Diametar	20	80	17	25	23	20	20	20	20	20	20	0.0ミ820
No. bard. pite.	50	41	42	48	80	48	78	69	83	69	61	
Pit diam.	10	10	10	10	10	10	10	10	10	10	10	0.01810
Tarue diam.	6	6	6	6	6	6	6	6	6	6	8	0.01148
Mauth diam.	4	4	4	4	4	4	4	4	4	4	4	0.00764
$\begin{aligned} & \text { Noo simple } \\ & \text { pites. } \end{aligned}$	46	37	19	48	24	43	22	38	17	76	37	
Av. simple pit area.	10	8	8	8	10	10	8	6	8	8	8	0.00003
$\begin{aligned} & \text { No. rays } \\ & \text { orosed } \end{aligned}$	5	3	3	5	5	4	4	3	3	9	4	

The reretrable boraered pit area is;
Av. area of 1 pit $0.00029 \mathrm{sq} . \mathrm{mm}$.

Av. area of torus
Penetrable area of 1 av. Dit
 $0.00018 \mathrm{sq} mm.$. Av. no.. pits per tracheid

Penetrable area of 1 av. tracheia The simple pit area is;

Au. area of 1 pit

Au. no. pits ren tiacheid
Simple pit area per av. tracheid $0.00107 \mathrm{sq} . \mathrm{mm}$.
The penetrable borderea pit area per millimeter of tracheid
length is 0.00396 sq. m. $\quad$.
The simple pit area for the same length is 0,00042 sq. mm.

Finus palustris, heartwood; specimen from Com. hoods of U.S.

	1	2	3	4	5	6	7	8	9	10	$a v$	$m_{i} n_{i}$ 。
Length	700	510	700	720	650	740	710	680	700	800	881	5.88895
Diameter	35	35	35	37	28	35	30	30	32	42	34	0.08484
$\begin{gathered} \text { No } \\ \text { pit } \\ \text { bard. } \end{gathered}$	208	205	190	280	108	152	180	208	188	187	190	
Pit diam.	12	14	12	18	12	12	12	12	13	12	12	0.031282
Torus diame	7	7	7	7	7	7	7	7	7	7	7	0.01337
Mouth diam.	5	5	5	5	5	5	5	5	5	5	5	0.00955
No. imple pits.	82	20	98	56	64	128	78	54	35	83	70	
$\mathrm{Av}_{\mathrm{pit}} \mathrm{marea}_{\mathrm{ar}}^{\mathrm{imple}}$	45	45	45	40	30	45	30	35	50	45	41	0.00015
$\begin{gathered} \text { Nog rays } \\ \text { orossod } \end{gathered}$	8	3	8	8	7	12	8	6	4	9	7	

The panetrable borderea pit area is;
Av. area of 1 pit $0.00038 \mathrm{sq}$.mm .
Av. area of tocus
Fenetrable area of 1 av. pit

- O20 O 14 -sg. mm 。
$0.00024 \mathrm{sq}$.mm . .-.-.. 4190
$0.04560 \mathrm{sq} . \mathrm{mm}_{\mathrm{m}}$. Simple pit area is;

2v. area of 1 pit
0.00015 sq. mm.

AU. no. pits per trackeid
Simple pit area per au. tracheid
The netrable bordered pit area per millimeter of tracheid leneth
is 0.00792 sq. mm.
The simple pit area for the same length is $0.00180 \mathrm{sq} . \mathrm{mm}$.

Pinus glabra, sapwoci(?) , specimen from Madison Laboratory.

	1	2	3	4	5	6	7	8	9	10	av	mmm
Length	440	435	425	350	340	550	290	380	380	570	418	3.53210
Diamoter	28	27	27	30	30	28	25	25	22	27	27	0.05157
No. bord. pits.	74	73	67	81	68	88	70	51	55	44	67	
Pit diam.	12	12	12	12	12	10	12	10	10	12	13,	0.02292
Tarue dian	8	6	6	6	6	6	6	6	6	6	8	0.01146
Mouth diam.	4	4	4	4	4	4	4	4	4	4	4	0.00764
${ }_{p o i t a}^{i m p I e}$	31	28	27	23	17	43	24	36	33	57	32	
$\operatorname{tiv}_{\text {pit }} \text { inple }_{\text {aroa }}$	15	20	20	18	7	10	10	10	10	15	13	0.00005
$\begin{gathered} \text { No. rays } \\ \text { oroseg } \end{gathered}$	4	4	4	2	2	8	4	8	5	8	5	

The penetrable borderea pit area is;
Av. area of 1 pit
$0.0003 \mathrm{~s} \mathrm{sq} . \mathrm{mm}$
$-\underline{0}_{2} 00011 \mathrm{sq} \mathrm{mm}$
$0.00027 \mathrm{sq} . \mathrm{mm}$

Av. area of torus
Penetrable area of 1 av. pit
Mo. no. pits per tracheid
Penetrable area of 1 av. tracheid
$0.01809 \mathrm{sq} . m m$.
The simple pit area is;
Av. area of 1 pit
0.00005 sq. mim.

Av. no. pits per tracheid
Simple pit area per au. tracheid
$0.00160 \mathrm{sq} . \mathrm{mm}$.
The penetrable bordered zit area per millimeter of tracheix lensth is $0.00513 \mathrm{sq} . \mathrm{mm}$.
q'ine simple pit area for the same lensth is $0.00045 \mathrm{sa} . \mathrm{mm}$.

Pinus taeda, sapwood(?), srecimen from Com. Hooas of U.S.

	1	2	3	4	5	6	7	8	9	10	$a v$	mm
Length	590	530	600	420	510	530	410	490	500	510	509	4.30105
Dfameter	36	34	40	35	37	26	23	30	28	32	32	0.06112
$\begin{gathered} \text { Nag } \\ \text { pitard. } \end{gathered}$	87	82	112	110	77	75	68	74	72	117	88	
Pit diam.	12	18	12	12	15	10	10	12	12	12	12	0.02292
Torus dfam.	7	7	7	7	7	6	6	7	7	7	7	0.01337
Mauth diam.	5	5	5	5	5	4	4	5	5	5	5	0.00955
	48	81	84	54	81	25	37	37	27	44	50	
Av. simple pit area	35	20	20	25	20	20	20	20	20	20	20	0.00007
No. rays orosed	7	10	9	8	10	4	6	5	5	6	7	

The kenetrable bordered pit area is;
Av. area of 1 pit
$0.00038 \mathrm{sq} . \mathrm{mm}$.
Av. orea of torus
_O. Q0014_sq__mm.
Penetrable area of 1 av. pit
0.00024 sq. mm.
su. no: pits per tracheix
Penetrable area of 1 av. tracheid
The simple kit area is;
AD. area of 1 pit
$0.00007 \mathrm{sq} . \mathrm{mm}$.
4v. no. pits per tracheid
Simple pit area per av. tracheid 50
$0.00350 \mathrm{sq} . \mathrm{mm}$.
The penetrable bordured pit area per millimeter of tracheia
lenoth is 0.00480 sa. mm.
The simple pit area for the same leneth is 0.00081 sq. mm.

Abies grandis, 3apwood; specimen from Madison Laboratory.

	1	2	3	4	5	6	7	8	9	10	$a v$	$m m$
Length	270	450	550	420	520	460	500	430	400	410	441	3.72845
Diameter	28	35	B:3	35	50	27	27	40	30	53	36	0.06876
	75	212	260	195	270	85	186	164	128	230	182	
Pit diam.	10	10	10	10	10	10	10	10	10	10	10	0.01810
Torus diam	6	6	6	6	6	6	6	6	6	8	8	0.01146
Mouth diam.	4	4	4	4	4	4	4	4	4	4	4	0.00764
$\begin{gathered} \text { Nofitsimple } \\ \text { pitso } \end{gathered}$	112	105	140	135	184	35	81	215	101	184	130	
Av. area of simple pit		10	10	10	10	10	8	8	6	5	9	0.00003
$\begin{gathered} \text { Na. rasye } \\ \text { orasose } \end{gathered}$	3	7	7	8	8	$\sigma$	6	8	5	5	6	

The penetrable borderea pit area is;
Av. area of 1 pit
0.00029 sq. mm.

Av. area of torus
Penetrable area of 1 av. pit
Av, no. pits per $t$ acheid
Penetrable area of 1 av. tracheia
$0.00011 \mathrm{sq} . \mathrm{mm}$.
$0.00018 \mathrm{sq} . \mathrm{mm}$.
-----182
0.03276 sq. mm.

The simple pit area is;
Av. area of 1 pit
$0.00003 \mathrm{sq} . \mathrm{mm}$.
Av. no. pits per tracheid
Simple pit area per au. tracheid
--_-130
$0.00390 \mathrm{sq} . \mathrm{m}_{\mathrm{m}}$.

The penetrable borderea pit area per millimeter of tracheia len@̣th is $0.00882 \mathrm{sq} . \mathrm{mm}$.

The simple pit area for the same length is 0.00105 sq. mm.

The foldowing table gives the penetrations in inches (according to Teesdale), and the penetrable borderea pit and simple pit areas per millimeter of trachetd length, in sq. mm. (according to my calculations).

Specties		Penetration		P. R.P.A.	S.P.A.
		long.	rad.		
Pinus	taeda	12.0	2.0	0.00480	0.00081
"	palustris	12.0	2.0	0.00793	0.00180
	glabra	12.0	2.0	0.00513	0.00045
Larix	occidentalis	3.17	0.09	0.01798	0.00063
	laricina	0.87	0.04	0.01100	0.00056
Abies	grandis	9.00	0.18	0.00882	0.00105

The following are penetrations which I have made, using one specimen only, with a pressure of 100 pounds per sq. in. continued for 30 minutes. The oil temperature was $20^{\circ} \mathrm{C}$. The axparatus used was that shown in PLATEXII. The penetrable bordered pit and simple pit areas were not determined for Tsusa canadensis or Picea excelsa.

| Species | Penetration (ins.) <br> lons. rad. <br>  <br> Tan. |  | S.F.A. |
| :--- | :--- | :--- | :--- | :--- | :--- |

The fallowing tables shaw the pentrations in Larix laricina and L. occidentalis as caused by a pressurs of 100 pounds per sq. in. continued for 30 minutes. In all my penetrations the oil used was a commercial product from the Barrett Co..; Chicago, known as "Carbosota, Grade One, Liquid Creosote Oil". In all cases, unless otherwise noted, the wood was in pieces $24 \times 2 \times 4$ inches. It was first dried in an electric oven for 48 hours at a constant temperature of $100^{\circ} \mathrm{C}$ to remove as much moisture as possible. The oil temperature at the time of treatment was about $20^{\circ} \mathrm{C}$.

LARIX LARICINA

Pen.bor.pit area $0.01100 \mathrm{sq.mmi}$ Simple pit area 0.00056 " "

Specimen no.

I	ins. long)	
II 1	do	)
III		
IV 1	do	)
$\checkmark 1$	do	)
VI 1	do	)

Penetration in inches. lon@. rad. tan. $0.15 \quad 0.05 \quad 0.15$ $6.00^{*} 0.20 \quad 0.10$ $0.15 \quad 0.05 \quad 0.15$ $6.00 * 0.20 \quad 0.10$
$4.30 \quad 0.15 \quad 0.05$ $6.00 \quad 0.20 \quad 0.05$

* At the ond of 10 minutes.
*     * Almost instantaneously. Due to an oversight $S p e c i m e n g I I$, $I V, V$ and $V I$, whoh were out from the same piece of wood, remained in the oven bout bo houre inetead of the usual 48 hours. This, coupled with the fact, that other piooes ehipped in the same lot were so season ohecked as to be worthless for oxperimental purposes, seems to indioate poor seasoning of the entire lot and perhaps acounts for the excesive and variable longitudinal penetrations in those oaser. Numbers I and III were from a different source than the

```
foregoing snd presumably werd out from the game piece.. Thoy show a
more normal penetration. In vidm of Teesdale's figures these lagt are
the ones ta be oavpared to the oorrespanding ponetriations in Lariax
000identaIis.
```

LARIX OCCIDENTALIS Pen. bou. pit A. 0.01798
Simple pit A. 0.00063
Specimen na.

> Penetration in inches.
long. raa. tang.
I
$0.54 \quad 0.20 \quad 0.10$
II
$0.43 \quad 0.20 \quad 0.10$
III
$0.30 \quad 0.20 \quad 0.10$
$0.33 \quad 0.20 \quad 0.10$
$0.30 \quad 0.15 \quad 0.05$
$0.30 \quad 0.20 \quad 0.05\left(\begin{array}{ll}\text { (land. occasignally } \\ \text { to }\end{array}\right.$
$0.30 \quad 0.10 \quad 0.05$
$0.35 \quad 0.20 \quad 0.20$
G. $15 \quad 0.15 \quad 0.10$
$0.17 \quad 0.20 \quad 0.20$

Average
$0.31 \quad 0.17 \quad 0.11$

The specimens of $L$. laricina were obtained from the $R$. Hansen Co. and came from northern Michig̣n. They were of poor quality for exper:imental work, oenerally, and only about one third of the lot could be utilized at all.

The specimens of $L$. occidentalis were secured from Montana thru the kindness of Mr. C.N. Whitney, the then (June 191Z) licting Forester
 evidence of having been carefully seasoned and selected.

## PLATE $I$.

Larix laricina, radial section, showine the perforated pit membranes and the relativelu larẹe pit torus. Magnifitcation about 697 diameters.

## PLATE II.

Larix occidentalis, radial section, showing the perforated pit membrane and the relatively small pit torus. Maenification as above.



## PLATE I



PLATE III.
Larix laricina, cross section, showing the relatively larse torus in sectioned pits. Nasnification, about 564 diameters.

## PLATE IV. 113

Larix occidentalis, cross section, show ing the relativelu small torus in sectioned pits. Masnification as above.
.'

$$
\begin{aligned}
& 1951
\end{aligned}
$$



Plate III


Plate IV.

## PLATE V.

Larix laricina, cross suction, another view, show ins the
relatively laree torus in ssotioned pits. HaEnification, about
590 diameters.

;

Plate $V$.

## PLATE VI.

Larix laricina, cross section, showing the general nature of the wood structure. The dense part is the summer wood and the mare open section is the sprine wood. NaEnification, about 218 diameters.

## PLATE VII.

Larix occidentalis, cross section, show ine the similarity to L. laricina. Haenification as above..

```
 . %
```





```
 \therefore !. \ddots., :
```





Plate VI.


Plate VII.

## BLATE VIII.

Larix laricina, radial section, sprine wood only, showin§ medullary rau, simple pits, and bordered pits. Masnification about 437 aiameters.

## PLATE $I X$.

Larix occidentalis, radial section, bott sprine and summer wood, show ine medullary ral, simple pits, and bordered pits. Mánification as above.


Plate VIII.


PLATE $X$.
Larix laricina, tansential section, showine the comparatively large torus in the sectioned pits(center). Naentfication about 2 diameters.

## PLATE XI.

Larix oceidentalis, tangential section, showine the comparat ivelly small torus in the sectioned pits (bottam row). Haenification about 483 diameters.


```
 !!!
```




```
 *13!%%%品
```



Plate X .


PLATE XII.
The apparatus used in the penetrance experiments, consistine of a reserve culinder above far use in case vacuum is first desired; and the pressure cylinder belaw. A piece of wood is shown tn pasition between the metal plates which hala it to the pipe leading fram the prestsure cylinder. The wood has a hole bored in the pace which fits over the tip of the pipe comine thru the plate from the cylinder. This hole affords the penetrance surface. Apfaratus modeled somemhat after that of Teesdale. (see U.S.D.A. Bul. 101 ).

$$
.5:
$$




Plate XII.
man we cily
$\qquad$
$\qquad$


