THESIS

A. ''opographical Survey
of the M. A. O. Vampus

W. M. BROWN S. W. Mc CLURE W. J. CARRRE

1903

WAGENVOORD $\&$ CO. BOOK Bind Ems and blank BOOK MAKERs,
LANSING, - MICH.

THESIS

\qquad

-: THESIS :-

ATOPOGRAPHICALSURVEY

```
of the
```

M. A. C. CAMPUS.

B Y

$$
\text { CIASS } 103
$$

A TOPOGRAPHICALSURVEY

> of the

M. A. C. CAMP US.

This survey was made for the rurpose of securing data for the completion of a mal of the M. A. C. Campus and farm. On this map to a scile of fifty feet to one inch was to be located accurately by means of a system of trianguletion all the numerous buildings, walks, and drives on Colleधe frounds, as well as various toporrapinical features and contours. Mucin work had already been done. A svstem of six triancles, indicated (see mar) by stations A, B, D, E, I, J, and $K, ~ c o n-$ nected to a base line along the front of Faculty Fow, had been established and plotted on the map, the survevs having been rade by students jn their recular class work in Civil Fnineer ing. The leneth of this usse, 036.27 feet, vas established by takine the rean of many rasurements, taken every year since 1892 and the ancles of tie system were also well established by many repetitions. In the spring term of 1902 the old rough stone monuments, some of which rad becoe covered wita sod, :ere replaced by cement blocks 6" x 6" x 30". This work was done by the classes of 102 ard Civils of '03. All the stations were easily located from tre old field-notes of the Civil Engineering Department. Large tripods (fie. I) were set up over these trianculation stetions and the point of a plumb-bob suspended over the exact point as ciesignated by a
-
cross mark on the stone. Four stakes :ere then driven and. strings stretched intersecting at the glumb-line. The plumbline was then taken up, the ola stone removed, and the new monument set in its place flush with the surface. The pluabline was then let down aģain, and a punch mark made in the iron bolt in the center of the momment under the point of the bob. Thus the exact point was preservea curing the di ing and transferred to tie rew stone. The intersectire stings gere simply a check on the accuracy of the plum?, in cose the tripod legs were moved slightly. After these new monuments were set the angles were agin read and the mean of twelve repetitions recorded.

Our first :ork :as an exanination of the map and old field notes in order to fird out mat work nad already been done and to determine unon a plan of procedure. In the transit book beloneing to C.E. Dept., merked "Base and References", we found reference to an old Base line as follows. "Runs nearly North and South alone the West sice of the far:: lane. Ine North end marked: lst by the center of the bottor of a wi:e bottle set three feet under the surface of the ground; 2nd by a prick-nunch maris in the end of a seven-eight inch cast iron rod fourteen inches lone set just above the bottle; 3 rd by a cross, cut in a stone set flusil with t e surface, over the iron rod. Located east of Torth-east of the sixth tree from the river, at a distance of eicht and onehalf feet frorn said tree, and sixteen and one half feet fron the wire fence on the sane side of the road. We reedily found these old marks as recorded,
except that the stone wai covered with sod, and replaced them bu a monument, usinc the aethod described above. Tne The South end of the base was also referenced in the notes but in such an indefinite manner that it could not be found. The eround for about nine hundred feet south from the above located station was of an everi slope and easily accessille by a line of sigint from any airection, so ae concluded to lay off there a base line in the true meriaian by an observation on Polaris. This was found to be impracticable becauae the south end cane in the midile of the road, the farm lane not being truly North and South. We tierefore laid out the line parallel to tine road. Our work was riow, (1) to conect tris base by a sustem of trianculation with the ola base above nentioned, (2) to measure the base accurately, (3) to observe the ancles of all the triangles, and from the data thus obtimined, (4) to copute the length of all the sides and plot the new gyotem on the mape Tnen the details of topography rere to be filled in oy a systern of stadia traverses. By reference to tie accomanyine map it will be ween that the area to be covered ircludes the South-East portion of tive Campus, that part of the farm lyire North of the Red Cedar River between the Farm Lane and the P. M. Spur, and emracing field ro. 6 South of said river and a portion of field No. 8. A careful reconnaissance was macie of this area to obtain a familiarity with the ceneral topocrariacal features in order to properly locate triangulation stations. This work took considerable tine for we realized that a single station inpoperly located might ocasion several
days labor to clear a line of sigint. W三 also rished to obtain angles not less than tiirty ciegrees or more than one hundred and twenty decrees so that the triancles would be well proportioned; for triangles rust be so formed that a sall error in measurement will cause the least possible error in a calculated value. Tinis as proved by hicher Calculus is when the triancles are as nearly equilateral as possible. The stations also had to be located where they would not be disturbed, and at the same tine be accessible with an instrument. Owing to the many buildings and trees we had great difficulty in finding suitable locations, and clear lines of sicht, especially where the system crossed the river as the banks were thickly wooded. The instruments used in the iield were, an aneroid barometer, a prismatic pocket-compass, a field glass, and flags. We thus located stations, I, I, N, O, P, and Q, forming six triancles (see man), and set monunents at all the triengulation stations. All these stations were located in positions where they would not ke disturbed if left flush with the surface except station M in field ro. 6 which was set one and one half feet below the surface to avoid the plow. After these menuments were firmly planted, they were referenced in the notes by tieing them to buildings, trees, or any permanent objects near at hand, so that they would not be lost if covered up. As this triangulation system forms the framework of our map, each of its stations must be accurately located, so that a traverse could start from any one of them and the notes taken for making a plot of that particular
-
-

vicinity, and many differet surveys made in cifferent parts of the sustem coula be connected with this same skeleton framork and so form one united wiole.

The ancles of the triancles wore measured by the method of repetition, taking three reacings with the telescope direct and three with the telescope reversed, as follows: We set the instrument over some station, as 0 to measure trie angle $P O N$ (see map), with verniers at zero and sighted on station P. Clamped the lower notion, loosened the upper motion anci set telescope on station Q and clamed, read both verniers to eliminate errors of eccentricity, loosened lower motion, and set on station P, clamped and turned upper motion to Q and read angle as before. We repeated the ahove operations until me had three additions on the limb and then reversed the telescoje to elfminate error of acijustment in line of collimation and norizontal axis. Tiree readings were now taker, adidig to those already on the limb. The sum of the readincs divided by the number of repetitions cave the nean value or ancle. When three ancles of a triancle have thus been determined their sum would equal 180° if there were no error. Absolutely correct
results are however impossible and a limit of error of fifteen seconds was allowed. If the observations were all considered equally correct each ancle would be corrected by one third of the error, if not they are balanced according to the theory of prohable errors, as ircicated by the following specinen of notes.
(Sample of iotes) Ancle IIK.

Sta. Index Ver A. Ver B. Mean Diff Angle I $63^{\circ} 00!25^{\prime}$
$126^{\circ} 30^{\prime} 21$ $\begin{array}{lll}126^{\circ} & 30^{\prime} & 21 \\ 190^{\circ} & 00^{\prime} & 18\end{array}$ 26' $63^{\circ} 25-1 / 2^{\prime} 63^{\circ} 25-1 / 2^{\prime}$) $22126^{\circ} 51-1 / 2^{\prime} 63^{\circ} 26^{\prime}$ 19 1900 18-1/2' 63° 271 Direct $253^{\circ} 30^{\prime} 15$
$15 \quad 253^{\circ} 45^{\prime}$
$63^{\circ} 26-1 / 2^{\prime}$
$317^{\circ} 00111$
$11317^{\circ} 111$ $63^{\circ} 26^{\prime}$. $63^{\circ} 26^{\prime} 10^{\prime \prime}$ $380^{\circ} 30^{\prime} 7$
$7 \quad 380^{\circ} 371$
$63^{\circ} 26^{1}$

Computation of Prolable Error in Ardes of the Trianculation.

$\mathrm{n}=$ number of observations.
$\mathrm{d}=\mathrm{dif}$ Cerence between one observation and arituetic ame
$\mathbf{E}=$ pronanle error of sincle observation.
$\mathbf{E}=$ pronàile error of mean.

If tine oiservations are weined
$\mathrm{M}=$ any observation
W = its weicht

Weicit mean $=\frac{\sum(W \mathrm{~L})}{\Sigma W}$
$E=C \frac{\left(w d^{2}\right)}{n--1}$
$E=C \sqrt{\frac{\sum\left(w d^{2}\right)}{\left(\sum w\right)(n--1)}}$

We considered all our observations of equal vei ht.
-

Fixamples of how those formulae are avolied.

Method of annlying the probanle error is show by following example.

Consider triangle LIK.

Ancle	Mean of six readings			Probable error	Balanced.		
KIL	63°	26^{1}	10"	$\pm 8.53^{\prime \prime}$	63°	26^{1}	$16.86{ }^{\prime \prime}$
IKL	50°	56^{\prime}	$55^{\prime \prime}$	± 3.375	50	56	57.72
ITK	65	36	40	± 6.74	65	36	45.42
Total Sum	179°	59*	$45^{\prime \prime}$	$\pm 18.645^{\prime \prime}$	180°	00^{\prime}	00.00"

$$
\begin{aligned}
& 180^{\circ} 00^{\prime} 00^{n} \\
& \frac{179^{\circ}}{} \frac{59^{\prime} 45^{n}}{15^{\prime \prime}}=\text { error of triangle. }
\end{aligned}
$$

Divide the error of the triancle by the sum of rarobable errors thus,--

$$
\frac{15^{\prime \prime}}{+18.645}= \pm .805
$$

Now rultiply the probable error of each ancle by the result just obtained and add or suhtract the product to the ancle according to whether the error of the triangle is nogative or positive.

$$
\begin{aligned}
& \text { Thus for Ansle KII } \\
& \qquad .805 X 8.53=6.86 \\
& 63^{\circ} 26^{\prime} 10^{n}+6.86=63^{\circ} 26^{\prime} 16.86^{\prime \prime}
\end{aligned}
$$

In the same manner apply corrections to angles IKL and IIK. The sum of the balanced ansles must equal 180°

The base was neasured with a 500' tape, which we tested with a K. \& E. 100' tape standardized at Washington. The testing was done as follows,-- On as level a piece of cement walk as we could find we laid out 100 ft . with the standard tape at proper tension and supported trroughout. Supports consisting of a nail driven into the side of a stake were placed at the ends of this 100 foot length in order to support each end of each hundred feet of the 500 ft . tape on the same level, and leave it unsupported between the ends. Thus each 100 ft . was tested separately by hooking a spring balance to one end and applying tension until the hundred foot length agreed with that on the walk as shown by a plumb bob held beside the tape. These tensions for each hundred foot length were, commencing at the 0 end of the tape, $17,16-1 / 2,17,16-3 / 4$, and $18-3 / 4$ pounds. The average tension, 17.2 pounds, was that required for the whole tape suspended at 100 ft . intervals. No correction for temperature was necessary in this test as the standardized tape and tape tested were of the same temperature.

To prepare the base for measurement, stakes were set at intervals of 100 ft . along the line and by aid of a level slats were tacked to them so as to support the tape on. the same level throughout its entire length. At each end of the tape we sét up a board, firmly supported by wires, (see sketch) with a threaded hook at the top by means of which the required tension could be obtained and maintained mile points were being transferred to the ground with a plumb bob. The ends of
tine base were marked by plumb lines inung as follows: At the north end of the base, as the ground was about five feet below the line, the plumb line was hung from one of the large tripods (used to mark the trianfulation stations) and carefully centered over the punch mark in the monument.

At the south end the line passed about twelve inches above the ground so the plurn line was hung from a transit.

Five hundred feet was first measured along the base nortinward from the south end. Four applications ware aade by transferring the five hundred foot point with a plumb bob to a board nailed to two stakes driven into the ground. Tine mean of these four apolications was taken as the measureinent. The greatest difference between any too of these was not over one-sixteentil of an inch. The remaining part of the line was measured fron the north end of the line to the point found by transferring the point from the board up to the tape and the tape read. Four readings of this were also taken and the mean used.

The measurements were as follows.

Yeasurement	Temperature (F)	Corrected reasurement.
867.880	50°	867.812
867.685	75°	867.791
867.736	75°	
		867.809
		Mean $=$

Greatest variation froin mean $=.013 \mathrm{ft} .=\frac{1}{66,754}$

We computed the sides of tie tricnales throu h the systen from the establisined base alons aculty FO on to our base in the farm Iane. Two of us worked independently with seven place logaritinns and checked. The computed lenstin was 867.464 feet, a difference of 36. ft. The nearness of agreement letween the measured and calculated lenctis deterinines the degree of accuracy of all previous measurements and calculations. Calculating back fron tine new to tins old base also served as a further check on the work.

To determine tine true azimuth of our buse line (OP) we took an observation on Polaris from the worth end, station $\stackrel{0}{P}$, using the Ruff and Berger transit. The reflector belonging to the instrument was so heavy thuit it over-balanced the telescope, so we made a sinilar one out of mite paper. It consisted of a culincer made of drawing paper inside of wich was plaged a card of oristol board set at an ancle of fortrfive derrees to tige axis of the culinder. Throwsi the center of the card an elliptical hole, three-eights incir minor axis, and concentric with the outer edce of the card, was cut, to perait siçating tiroußn the tolewcoge. A hole in the side of the cylincier pernitted liciat to he tirow upon the card and reflected into the telescope to illuninate the cross wires. Ideht was furnised by three bicycle lanterns.

The tarcet at the south end was a box about $6 n \times 12^{\prime \prime} \times 4^{\prime \prime}$, open on one side. On the opposite side a slit one-eisinth incri wide and aoout eicint incies lone was cut extending from one end tiromoh tine center of the side. The slot in tine box
was placed facins the norlh exactly over the center of the monuments and carefully pluaned. Within the boan and beninc the slot one of tre lanterns was placed.

Observations were made every five ininutes by stanciard tine. With instrunent carefully leveled, and verniers at zero, the telescope :vas pointed at Polaris. Witn the lower motion clamped tine cross nairs were kept carefully on the star by the lower tangent screen until the time keeper announced the tine to observe. Tais he did by countine vackwards the last fifteen seconds of the five minutes, thus: "15, 14, 13,-------3, 2, 1, and go!" The upper motion was trien loosened and the cross hairs set on the target at the south and of the base, and then clamed again, end ancle read and recorded. The telescope was then turned on the lover motion and siçited at the star, anc ancle turned and read as before. To eliminate instrumental errors six readings mere taken with the telescope direct and six reversed. The true azimuth correspondine to each observation was conputed from tables given in the U. S. "ranual of Instruction to Sarveyors," and the connection applied with roper sien as shown in form of notes below. The sean of the connected angles is the true azimuth of the base. Thoring the azimuth of the wase the azimuth of all the other lines of the trianeulation can ve determined byr.computation.
-
$\left.\begin{array}{l}\text { 'ns } \\ \text { Verb } B\end{array}\right\}$ Brown
$\left.\begin{array}{c}\text { Vern } 1 \\ \text { index }\end{array}\right\}$ Mc Clare
Notes Carrel
Time Index Var. A: Var. B' Mean Diff. Azimuth Cor. Diff

Yean....!.. $10^{\prime} .5^{\circ} 0^{\prime \prime}$.
Probable error of a since observation...............
Probable error of the mean $=$. .
Bearing . N. $1^{\circ} 10^{\circ} 50^{\prime \prime} \mathrm{W}$.

Traverse.
A traverse of four sides was run north of the river for the purpose of locating bujlaings, railroads, fencelines, etc., betweon the river and that pert of the Capuis that had been previously tied in. A inndred foot steel tape, and Iifent Mountain transit were used.

Sample of Notes.

Set transit on station 1 , sigited on station 4 witn upper motion clamed on zero, (i.e.,- took tine first line as the true meridian). Clamped lower notion, inverted telescope, unclamed $u_{i} p=r$ motion, sighted on station 2 , read horizontal aneles and compass bearing. Lined in chainten to measure line 1-2, and make offsets from line to tie in buildiness, etc. Repeated same operation on all stations.

The Iocation of Contour by the Stadia retiod.

This work may be considered under three heads, viz.,-
 field, and Plotting said results on the map. The fiela party consisted of an observer, a recorder, and a rodman. The instruments used were a light mountain transit and a rod Eraduated to feet and tentis. The wire interval of the transit was tested, and the space subtended on the rod found to be one one-hundredtin of the horizontal distance from the telescope, the horizontal distance being aeasured fror a point $f+c=$.765 ft from the vertical axis of the instrument, winere f is the focal length, and c the distance fron the center of the instruent to tire objective. The ancle surberided by the cross-wires was about thirty-four ninutes. The field work was to obtain the three co-orainates, as referred to sone known point of reference, of a sufficient number of points in the territory gone over to enable contour lines to be plotted. Tine points of reference used wer. triangulation stations, whose elevations ivere deternined by running two lines of levels from the bench mark on College Hall. The big Gurley Ievel was used for this work, after the bubble had been adjusted carefully to the line of sight by the peg adjustment metioci. These levels checked within .007 and .011 inches in about hald a mile run.

The stadia work was as follows,-- The observer set up the transit over a triangulation station, with the vernier of the
horizontal limb at zero, and the vertical circle at zero men the line of sifht was horizontal. With the plates clamped in this position tile telescope ras set to read on tre next trianeulation station. The lower movenent was then clamped and an angle turned off on the horizontal limb to any desired point. In order to fet the proper data to show the conficuration of the surface, points were taken close tofether where there was a sudden change in slope and only a few where the slope was comaratively unfform. The heiget of the instrument above the triangulation station was taken on the stadia rod, and in takinc the elevation of points fron that station the midile horizontal wire of the instrument is brought to this same division of the rod as it is held on that point, and the vertical ancile read. The upper, aiddle and lo:ar intercents are also recorded in order to ©et the distance. The form of notes is as follows:-

Ht. of Inst. =

Object Hor. I NTERCEPTSVer. Ver. Cor. Dist. Elev. Upper Middle Lower

A sketcin was ade on the oposite page to aid in plottinc the work. The points taken were numbered corresponding to numbers in tine column of onjects, and apmroximate contours drawn in.

