

WILLIAM C. STRAND

Thesis Test of Lighting Plant at Jonesville Mich. W. C. Strand R. S. Newtor 1905 GENVOORD & CO. BINDERS AND BLANK BOOK MAKERS, NSING, - MICH.

THESIS

1

This thesis was contributed by

Mr. R. S. Newton

.

. .

1

under the date indicated by the department stamp, to replace the original which was destroyed in the fire of March 5, 1916.

THESIS

. `

•

Test of Lighting Plant at Jonesville, Nichigan.

W. C. STRAND.

.

۰,

R. S. NEWTON.

•

THESIS

Objects of Test:-

12-4-51

First: To determine the cost per Kilowatt in terms of coal. Second: To find the amount of water evaporated per # of coal. Third: To find water consumption per H. P. per hr. of engine. Fourth: To find thermal efficiency of engine.

Fifth: To find the efficiency of the engine and dynamo taken in combination.

Sixth: To find the efficiency of the dynamo.

The Jonesville lighting plant is owned and operated by the village of Jonesville. It consists of two Mansfield Machine Works' horizontal tubular boilers, one Stillwell-Bierce and Smith-Vale duplex feed pump, one Cookson feed water heater, one 16 x 36 Bates, Corliss engine and one 100 K.W. Warren Alternator. The plant also includes two Stillwell-Bierce and Smith-Vale fire pumps rated at 154,000 gal., neither of these pumps being run during the test.

Boilers.

In the plant are two Mansfield Machine Works' horizontal tubular boilers each 16 ft. long and with a diameter of 60 inches. These boilers are connected by a six inch header. They are set in brick arches with a straight front according to the usual custom. The boilers are hand fired, only one being used at a time. The feed water is supplied by a 1° pressure main connected to the feed water heater and is regulated by means of a float and valve. The feed water is heated by the exhaust steam. The water is pumped from the feed water heater into the boiler by a Stillwell-Bierce and Smith-Vale feed pump. The boilers are also supplied with a No. 4 U.S. injector which can be used in case of emergency. The following dimensions were taken by actual measurement, as required by the A. S. M. E. in report of boiler trials.

The No. 1 Boiler was used.

Diam. of shell	60	in.			
Length of shell	16	ft.			
No. of tubes	52				
Diam. of tubes	4	in.			
Length of tubes	16	ſt.			
Length of furnace	5	ft.			
Width of furnace	5	ft.			
Kind of grate bars Plain	Station	ary.	I		
Width of air spaces	1/2	in.			
Length of air spaces	2	in.			
No. of air spaces (<u>each bar</u>)	75				
Ratio of area of grate to area of air spaces	1:25				
Area of chimney	4.89	8 q.	ft.		
Height of chimney above grate	69.5	ſt.			
Length of flues connecting to chimney	16	ft.			
Area of flues connecting to chimney	4	sq.	ft.		
Governing proportions of boil	er.				
Grate surface	25	aq.	ft.		
Heating surface (water)	969.7	sq.	ft.		
Area of draught through tubes	4.25	sq.	ft.		
Ratio of grate to heating surface	1:38.75				
Ratio of least draught area to grate	1: 5. 9				
Ratio of least draught area to total					
heating surface	1:228				
Water space	164.16	cu.	ft.		

Steam space82.08 Cu. ft.Ratio of grate to water space1:6.56Ratio of grate to steam space1:3.28Grate surface 5 ft. long, 5 ft. wide, area25 sq. ft.Water heating surface969.7 sg. ft.Ratio of water heating surface to grate surface1:38.7

Engine.

The engine is a 16 x 36 Bates Corliss made by the Bates Machine Co., Joliet, Ill.

All the following dimensions were taken by actual measurement: Length of cylinder 36 in. Diameter of cylinder 16 in. 4-1/2 in. Diameter of steam pipe Length of steam pipe 45 ft. Diameter of exhaust pipe 6 in. Length of exhaust pipe 67 ft. Diameter of piston rod 3 in. Diameter of crank shaft 8.5 in. Diameter of fly wheel 12 ft. Width of face of fly wheel 23.5 in. 18 in. Width of belt Thickness of belt 7/16in. R.P.M. 88 1:5 Ratio of crank to connecting rod Age of engine 8 years. Engine runs under Cylinder Lubricator Detroit Capacity one quart

No. of drops of oil fed to cylinder per min. 6 Engine exhausts into Cookson feedwater heater. 2 No. of turns in steam pipe No. of turns in exhaust pipe 6 Steam pipe lagged with asbestos. Cylinder lagged with wood and asbestos. Exhaust steam used to heat feed water. Temperature of feed water before entering heater 50.05 F. Temperature of feed water after leaving heater 201.1 F. No. of boilers: 2. One used. Rated at 88 H.P. 85.82 Boiler pressure per gauge Kind of coal used. 500 Average consumption of coal per hour

Apparatus.

The coal was weighed on a set of Buffalo standard scales, which were carefully tested before using. The feed water was measured by an Empire hot water meter connected in a by-pass in feed pipe between feed pump and boiler. The meter was calibrated after the test and found to be absolutely all right. Four thermometers were used. Two for indicating temperature of feed water and the other two used for determing the temperatures of the boiler room and outdide atmosphere respectively. The temperature of the feed water was taken between feed pump and water meter also at a point in the cold water main near the feed water heater.

The quality of the steam was determined by means of a Carpenter's separating Calorimeter placed about 18 inches above the throttle valve on the engine. The steam used by the instrument was allowed to go direct into the atmosphere. The gauge on the Calorimeter was calibrated before test and found to be correct for steam pressures from 73# to 90#, therefore, no corrections were necessary.

The indicator used was a Thompson with a 50# spring; the spring being carefully calibrated before using and was found to read correctly. The indicator was connected to each end of the cylinder by a 1/2 inch steam pipe and a three way cock. A reducing wheel was used.

The R. P. M. was taken at the time of taking each card; they were found to be constant throughout the test.

The load on the engine was kept constant by means of a water rheostat connected in the lighting circuit. The water rheostat used in this test was made by placing two brass plates in a barrel, one of which was stationery in the bottom and the other so arranged that it could be raised or levered as the load was to be increased or diminished. The electrolite used was water. The rheostat was placed outside the plant at the point where the main wires entered the building and connected in paralell to the commercial circuit and was insulated from the ground by an insulated platform. An approximate elevation is shown in Plate I. The windlass (W) being placed near the switch board.

The dynamo is a Warren alternator; the distance between the centers of the driving pulleys of the engine and dynamo is 36 feet. The diameter of the drive pulley is 15.5 inches and it has a capacity of 100 K. W. The voltage is 1100 and is run at a speed of 800 R. P. M. Number of alternations, 16,000; at full load it will carry 91 amperes. The field coil is excited by an exciter bolted

on the frame of the dynamo and has a drive pullev 18 inches in

diameter connected to a pulley 7 inches in diameter.

The boller and engine test was of 12 hours duration; and in the last four hours a dynamo test was run. This was made possible by cutting out all the load except the water rheostat, thus having a load that had practically no induction. The results of the dynamo test are only approximate, because of the fact that the voltmeter and ammeter used were not calibrated. The original plans called for a primary wattmeter to measure the output of the dynamo, so that the readings of the voltmeter and ammeter would not enter into the computations; but it was found to be impossible to procure a wattmeter on such short notice so the test was run without it.

The test was made according to the A. S. M. E. specification, the Standard method of starting and stopping the test being used. Readings were taken every ten minutes. They consisted of feed water temperatures; water meter readings, weight of exhaust from feed pump; Calorimeter readings; R. P. M. of engine; ammeter readings and voltmeter readings. A card was taken from the engine at time of getting the R. P. M.

Log of Boiler Trial.

Steam pressure in boiler by gauge	85.82
Absolute steam pressure	শণ • ৬৫
Atmospheric pressure	20.11
Temperature of external air	61 F.
Temperature of boiler room	74.7 F.
Temperature of steam	316.69 F.
Temperature of feed water) to heater	201.1 F. 50.05 F.

Fuel.

•

Total azount of coal consumed	6C00#
Total refuse	505. 50
Total combustible	5404.B <i> </i>
Coal consumed per hour	50 0 4
Combustible consumed per hour	4.57 . 0 //

Result of Calorimeter Test.

Quality of	stoam	98.725		
Percentage	of moisture in steam	1.3 9		

Water.

Total weight of water pumped into boiler and	
apparontly evaporated	46,252.4 8#
Water actually evaporated corrected for	
quality of steam	44, 664.197
Equivalent water evaporated into dry	-
steam from and at 212°F.	47,234. 955
Equivalent total heat derived from fuel	
in B. T. U.	45,619,497.78
Equivalent water evaporated into dry	
steam from and at 2129 F. per hour	8,986.24
Economic Evaporation.	
Sater actually evaporated per 1b. of coal	
from actual pres. and temp.	7.44}
Equivalent water evaporated per 1b. of	
coal from and at 212 ⁰ F. 7.	7 •87∯

Equivalent water	evaporated per 1b.	of
combustible	from and at 212°F.	8.59#

Jommercial Evaporation.

Equivalent water evaporated per # coal with 1/6 refuse at 70# gage pressure from temperature of 100°F. 6.23#

Special.

Coal actually burned per sq. ft. of grate surface per hour 20# Water evaporated from and at 212°F. per sq. ft. of heating surface per hr. 4.05#

Commercial H. P.

On a basis of 30% water per hr. evaporated from a tem. pf 100°F. into steam of 70% gage (=34-1/2% from and at 212° 7.) 114 H. P. Eutldors rating at 11 sq. ft. per H.P. 80 % developed above rating 29.5%

Steam Consumption of Engine.

Water actually evaporated	44,664.19#
Weight of feed pump exhaust corrected	
for quality of steam	1,490.67#
Weight of steam passing through calorimeter	
in 12 hours	226.3 8#
Total weight of steam used by auxillaries	1717. 05#
Steam consumption of engine for 12 hours	42,847.14
Steam consumption per I. H. P. per hour	28.59

Complined Efficiency of Engine & Dynamo.

Primary voltage	1059
Ampores	74
Watts output	78,356
Watts input (126 x 746)	93,996
Fficiency	83.3%
Dunamo.	
Primary voltage	1,059
Amperes	74
Watts output	78,365
I. H. P.	126
Friction H. P. (no load)	10.97
Assumption of loss in belt by slipping	5%
I. H. PFriction H. P.	115
Watts input (115 x .95 x 746)	81,500,50
Dificiency	96%
Rise of temperature in dyname during test	850F.

.

.

- - .

General Results.

Evaporation (under 75 ampere load)	7.44
Steam consumption	28.59
Thermal efficiency	1.27%
Ufficiency of engine and dynamo combined	83.3%
Efficiency of dynamo	96 🚀
Number of Watts output per $\#$ coal	14.2
#Coal per KW.hr,	6,39
#Coal per H.P. hr.	3.97

.

FRICTION CARDS TAKEN BEFORE TEST.

R.P.M. - 88. ME.P. - H.E. = 4.397 " CE = 3.14" T.H.P. - H.E. = 6.98' CE = 4.86 TOTAL= 11.84

RPM=88. MEP-HE=4.035⁴⁶CE=2.884* I.H.P.-HE=6.46 CE=4.46 TOTAL=10.92.

R.F.M.= 88. M.E.P.-H.E.: 3.27# CE:= 3.20# J.H.P.-H.E: 5.24 CE=5.13 TOTAZ=10.37

SAMPLE CARDS TAKEN DURING TEST.

CARD NO.5. R.P.M.= 88. M.E.P. - H.E.= 36.21⁴, CE.= 42.25." I.H.R. - H.E.= 58.00, C.E.= 65.50 - TOTAL=123.50.

CARDNO34 RRM=88. MER-HE.=38.06, CE=40.98 IHR-HE.=38.06, CE=63.50 T0 TAL=125.25

CARD NO.64. R·PM=88. ME:R-HE:39.95,[°]CE=40.50⁴ <u>I:H:R-HE</u>:6400, CE**:=62:**85 TOTAL=12686

SWITCH BOARD

DYNAMO LOG.

	NO.	TIME	VOLTS	AMP.	WATTS
	49	12:05	109	74	
	50	12:15	107	75	
	51	12:25	107	75	
	52	12:35	107	75	
	53	12:45	107	75	
	54	12:55	107	75	
	55	1:05	107	75	
	56	1:15	107	75	
	57	/:25	107	75	-
	58	1:35	107	,75	
	59	1:45	108	73	
	60	1:55	108	74	
	61	2:05	107	75	
	62	2:/5	107	75	
	63	2:25	107	75	
	64	2:35	107	75	
	65	2:45	107	75	
	GG	2:55	107	75	
	67	3:05	107	75	
	GB	3:/5	107	75	
	69	3 :25	100	76	
	70	3:35	107	75	
	7/	3:45	107	74	
	72	3:55	107	75	
	73	4:05	107	75	
RAGE.			106.8	74.8	78366

AVE

ENGINE

				M.E	E.P
	CARDNO	DITIME	R.P.M.	H.E.	I C
	1	P:M4:05	88		
	2	4:15		36.62*	4
	3	4:25		35.91	40
	4	4:35		37.12	4
	5	4:45		36.2.1	4
	6	4:55		37.39	4
	7	5:05		37.64	4
	8	5:15		36.21	4
	9	5:25		38.03	4
	10	5:35		36.57	4
	11.	5.45		13.669	
	54	12:55		39.01	41.
	55	1:05		39.40	41
	56	1:15		38.15	42
	57	1:25		38.55	37
	58	1:35		3.8.60	40
	59	1:45		39.10	40
	60	1:55		58.65	4
	61	2:05		37.30	4
	62	2:15		38.99	4
NAME OF	63	2:25		38.65	2
A NIG	64	2:35		37.75	4
	65	2:45		39.80	4
	66	2:55		71.01	- 2
	67	3:05		39.80	
	68	3:15		39.20	- C
15/5 10	69	3:25		30.05	-7
C. P. C.	70	3:35		38.10	
	71	3:45		28.90	
	72	3:55		3970	
	73	4:05		57.20	
_					

4.4.

