

Analysis of Cedar Street Reinforced Concrete Arch Bridge A. F. ZICKGRAF E. K. LOVELACE

.

.

•

This thesis was contributed by

Annalis Statements

And d'area in a

1

E. K. Lovelace

2 1

under the date indicated by the department stamp, to replace the original which was destroyed in the fire of March 5, 1916.

E. H. Lovelace Lansing, Mich

THESIS IN CIVIL ENGINEERING.

-00000000-

1

ANALYSIS OF THE CEDAR STREET REINFORCED CONCRETE ARCH BRIDGE OVER CEDAR RIVER, LANSING, MICHIGAN.

.

-1913-

--

· · · · ·

Т

£

•

.

-

THESIS

.

· · ·

This thesis was chosen with the idea of gaining more knowledge of the theory and practice in the design of reinforced concrete arches.

This bridge was built in 1909, by the Western Bridge Co. of Chicago, Ill., following the destruction of an old woolen bridge at that place. The bridge is 30 feet wide and consists of two equal spans of 70 feet, with the springing line at the pier 2 feet higher than that of the abutments at each end. It is on a skew of 30 degrees with the river which makes the problem of design and construction mere difficult. The arch is 16 inches thick at the crown and has a rise of 10 feet. It is back-filled with earth on which rests the base of the brick pavement. The bridge seems well constructed and in good condition, no cracks of any magnitude being visible except in the railing.

The loadings and allowable stresses we used were those given in the specifications and for which the bridge was designed. A live load of 200 # per sq. ft. of roadway, 100 # per sq. ft. of walls, a concentrated moving load of a 28 ton steam roller, and a dead load of 90 # per sq. ft. for earth backfill and 150 # per sq. ft. for concrete. The stresses allowed are:

 Modulus of Elas. of Concrete
 1,800,000. lbs.

 Modulus of Elas. of Steel
 28,000,000. lbs.

 Max. comp. per sq. in. on steel
 10,000. lbs.

 Max. comp. per sq. in. on concrete
 500. lbs.

 Max. comp. per sq. in. on concrete
 500. lbs.

Max. shear per sq. in. on concrete (plain) 100. lbs. Max. tension per sq. in. on concrete 50. lbs.

The theory followed in analyzing the design is on plates No. 1 and 2 and is a copy of the Elastic Theory of Arches by Prof. C. A. Melick. In our analysis most of the data for the horizontal forces, due to lateral earth pressure were calculated but owing to a lack of time only the vertical forces were considered.

The arching was divided into 30 radial parts symmetrically about the center and the loads applied at the points A, B, C, D, E, E, D, C, B, and A, the location of which being determined graphically as shown on diagram.

Tables No. 1 and 2 consist of values to be used in the further calculation and were constructed according to the properties of the arch. Plate 1 shows the general data that was computed and used in further work. The area of the arch ring where given is the equivalent area of concrete and is equal to $bh = 2pbh(n-1) = bh + A_s(n-1)$, where b and h are respectively the bredth and thickness of the ring at the section, A_s the area of the steel, p the percentage of steel in the section, and n the ratio of the Modulus of Elas. of steel to that of concrete and taken as 15. Table 3 was made of the summations of the guanties in Table s 1 and 2.

Table 4 was calculated from the formulae of the theory and from which Table 3 was made from the summations which were used to construct this table. The lead used was a 1,000 # load at on Plates 2 and 3 were plotted and besides being a comparative check on the calculations up to that point give graphical values of the moment, thrust, and shear for every point on the arch ring. These values were scaled off and make up part of Table 5. The other values shown in Table 5 were used to compute Table 6.

From Table 5 the influence lines for thrust, shear, and moment were plottel (see Elate 4).

After the thrust was calculated it's affect upon the sections of the arch was calculated but was so small it could not be noticed and was neglected. The calculations for a change in H due to this thrust depends on the following theory:

Average axial thrust $= \frac{\sum_{i=1}^{L} 1}{n} = T$. M = Hy or $dx = \sum_{o=1}^{L} \frac{Hy! \Delta s}{g I}$. If H = 1,000 then $a = dx = \frac{1,000}{E} \sum_{o=1}^{L} \frac{y^{2} \Delta s}{I}$. Change in dx due to axial thrust $= b = \frac{T \Delta x}{A E} = \frac{1}{E} \sum_{o=1}^{L} \frac{T \Delta x}{A}$. H due to axial thrust $= \frac{b}{a} \times 1000 = Q$ or $Q = \left[\frac{1}{E} \sum_{o=1}^{L} \frac{\Delta x}{A} - \frac{1000}{E} \sum_{o=1}^{L} \frac{y^{2} \Delta s}{I}\right]$. $Q = \sum_{o=1}^{T} \left[\sum_{o=1}^{L} \frac{\Delta x}{A} - \frac{1000}{E} \sum_{o=1}^{L} \frac{y^{2} \Delta s}{I}\right]$.

Actual $H = H_{L} - Q$.

In Table 6 from values shown in Table 5, we have figured the stresses at the diffrent points for the top and bottom of the arch ring, for a 1,000 # load at the loaded points. The upper and hower are tabulated respectively.

The upper is
$$\frac{T}{A} + \frac{Mc}{I}$$
 and the lower $\frac{T}{A} - \frac{Mc}{I}$, where A is

the transformed area of that section, c one half the thickness of the arch ring at that point, and I the moment of inertia of the transformed section. Plates 5 and 6 show respectively the influence lines for the stresses in the top and bottom fibres for a 1,000 # load, (moving). The stresses for dead and live load and for combined loads are given for top and bottom in Tables 6 and 7 respectively and give the maximum stresses in the ring and where they occur.

In testing the archfor shear the value of the shear in Table 5 were used. The shear for dead load was first computed and then the shears for live load computed so as to give the maximum positive or negative values of the same sign as the deal load shear. These values of shear are given in Table 8. This shows the max, shear to be 25 # per sq. in. The bond strength of the shear bars did not have to be tested as this strength does not have to be figured where the shear is less than 40 # per sq. in. In Table 8 the Dead and Live load loadings are also given. A slider of the axle loads of the roller was used on the shear curves of Plate 4 to get the position for max. live load shear.

On Table 9 the diagrams and Hables of the stress in the steel are given. The reinforcement was placed at a uniform distance of 2.5 inches from the outside and is shown by the dotted lines. The top and bottom lines are the stress at the

top and bottom from Tables 6 and 7 and the distance apart is the ring thickness at that point.

From the specifications the pier is supported by piles, 12 inches in diameter at the large end and 8 in. in dia. at the **sette** small end and placed 3 foot c. to c. They were driven to such depth that the penetration under the last blow of a hammer weighing 2,000 # and falling 30 feet should not be greater than one inch.

From the Engineering New's Formula, the load one pile will support or $P = \frac{2WH}{s-1}$ where W = weight = 2,000 #/ h = height of fall of hammer = 30 feet, and s = penetration = 1 inch. Then P is found equal to 60,000 #. In this pier', considering that one pile takes care of 8 sq. ft. of pier-base, which is equal to a section 1 foot wide times the width of the pier which is 8 ft., the dead load on one pile equals

2(Dead load on all points plus Pier weight) = 2(1554 + 1946 + 2768 + 3965 + 7541 plus $150 \left[(8' \times 5.5' \times 1') + (5.5 \times 3 \times 1) \right]$ or equals $35,548 + 8,025 \pm 43,573 \#$. This shows the pier to be safe from sinking under the dead load.

The one foot section of the arch analyzed was taken parallel to the face of the arch. For Voussoir Arches the thrust, (lines of pressure), in an oblique arch are assumed to act in planes parallel to it's faces((S. Edward Warren on Stereotomy). A momolithec arch on a skew is considered in this same way. The section 1 foot wide analyzed in this arch was taken under that

.

assumption and therefore the affect of skew is not considered. No other references than that of Warren's book on Stereotomy on this subject could be found as the theory of skew arches is one not taken into consideration in most of the books on arches.

The bridge was found to be safe. The stresses determined are within the allowable limits with a factor of safty of about 2 for compression and about 4 for shear. The only tension found in the arch was less than 3 pounds per sq. in. No account of forces due to the slight incline of the arch, 2 ft. in 70 ft., were considered as they were too small to affect the stresses by any amount.

Theoretical Analysis of the Elastic Arch Fundamental Farmulae -

Let ADBC represent a portion of the linger arch, and let MINPQ be any section of the arch ring. Let E, on the

Let MODO impression a partien of the linear area, and let MOREL be any section of the earth angle of L, at the linear arch, but is constart of this section with Coordinations (s) measured from A. Let the central angle A be sub-induced by the airc DB of length As. This sections of the first from with section upon by same Besultant Arch Perssure P, which may be previous into a float Steer S, a Normal Arial Thrust T, and a Bending Moncent Ter M. Theose Sheers are Smell in Ordinary Archives and First Arial Thrust T, and a Bending Moncent Ter M. Theose Sheers are Smell in Ordinary Archives and Arth Theories register them in the Archivery of Streams, just as does in the Common Theory of Florine for Beams. This Kenses, for consideration then, the two agents Theorem the Stream Sating on the Section 'theorem for Beams. This Kenses, for consideration of the first Ming. T shortes at the sector DB working up and the first sector of the sector of the theorem the sector of the sector theorem the sector DB working up and the sector of the sector of the first sector of the first Ming. T shortes at the sector DB working up anyon the sector of the sector of the sector DB working the sector of the theory of the sector of the sector of the sector theory of the sector of the sector theory of the sector of the sector of the sector theory of the sector of the sector theory of the sector of the sector theory of the sec Resultant Langthening of the Section DB = -BB' = etas - 7.05 . A negative value of M will cause the Section DB to deform in the direction OB" changing A& by an amount d. . O is measured from the Vertical through the Grawn Positive to the left, Negative to the Hight - hence the change do is a Negative one. If x^{x} the $\frac{S_{a,a}}{z}$ - $\frac{N_{A,a}}{z}$. But $x^{x} \cdot z^{a}$ is hence do $\frac{M_{A,a}}{z}$ and since when M is Negative do is Negative, the equation stands correct for sign. Now immagine that, for any Arch Loading, starting at A, each section is taken in order and its affect found seperately and in turn. Then MP may be regarded as firmly to the last deformed section preceeding and the effect of the deformation of MNPQ, on the portion of the Arch to the Right determined. Let us find the effect of this deformation on the movement of the when the the there are a second between the effective terms determined on the theorem of the the Part of whose coordinates are (min). The danage in the 35, BD, and the Woods d. Bennessfore, will predict and again danage CC at G. Also the charge in the dana to the will produce a charge of C at CC two the test CBC + dot in increase in Space in eduction of Semantan the end of the section along a set of the section of the = CC to d = BC as $\theta = BB as \theta = BB as \theta = to a set of the sections in Rise - n. due to Therest & Temperature$ on this section alone - dyr = - CC'sind = $-BB'_{\Delta S} = at \Delta y = \frac{T \Delta y}{DE}$. The increase in span - m - due to a Profile: Bending Moment M will be die. But $\frac{d_{M}}{d_{M}} = \frac{d_{M}}{d_{M}} = \frac{d$ $\frac{m-x}{m-r} \quad \text{or } dJm = (m-x)d\phi = -\frac{M.x}{FT} + \frac{m.M.AS}{FT}$

The behat inderease in span in due to a thread T_i in this in Temperature of $\mathcal{C}^{*}(f, \phi, a)$ function Dawling Moment M, acting on this section stands will be detected at $\frac{1}{2}\frac{\partial f_i}{\partial x_i} + \frac{1}{2}\frac{\partial f_i}{\partial$

Lo e Fixed Arch - Symatrical-the following Conditions are Assumed. I. The Radial Lines, at the Springing Remain Unchanged in Direction-Thus, suming up d& for all Sections between Springing Roints $E_0 d\phi = T_0^{-\frac{10}{2}} \frac{10}{2T} = 0$. 2. The Supports are fixed an Immoveable Distance apart-ie are Rigid. Thus $\Sigma_{c}^{*}dx = \Sigma_{c}^{*}et \Delta x - \Sigma_{c}^{*}\frac{T\Delta x}{R_{c}} + \Sigma_{c}^{*}\frac{R_{c}}{R_{c}} = 0$ since $\Sigma_{c}^{*}\frac{R_{c}}{R_{c}} = \Delta x$. 3. The Supports are Relatively Immoveable in Elevation. Then $\Sigma_{a}^{*} dy = \Gamma_{a}^{*} \sigma_{A} y - \Gamma_{a}^{*} \frac{T_{A} y}{\pi \Sigma} - \Sigma_{a}^{*} \frac{M_{A} y}{\Sigma} = 0$ Since the term $\Sigma_{a}^{*} \frac{m_{A} x}{\Sigma}$ becomes in $\Sigma_{a}^{*} \frac{m_{A} x}{2}$ and since $\Gamma_{a}^{*} \frac{m_{A} x}{2} = 0$. From the figure below M=ML+V-X-H_y-W.(X-a) x>a-WH(Y-b) y>b. T=HLcos & + Vi sin & + WHcos & xxa - Wy sin & xxa. Substituting these values in Equations 1.2.63, they become $I M_{\Sigma_{a}} = M_{V} \sum_{a} I_{\Delta} = M_{V} \sum_{a} I_{\Delta} = M_{V} \sum_{a} I_{\Delta} = M_{V} \sum_{a} I_{\Delta} = 0$ 2 Eat Zoax -H. Zoax os & W. Zoax on & W. Zoax on & W. Zoax os & W. Zoax on & M. Zoax of + W. Zoa 3 East Zody - H. Zody cos & - W. Zody she - WA Zody cos & + W. Zddy she - M. Zodas - W. Zodas + W. Zodas + Remaiting the above equations they become 1.a.M. +6.W. +6.H. + d. = 0. or HL = - 8.M. - 8.W. - 6. 2.a.M. + 6.W. + 6.H. + d2 = 0. or HL = - 8.M. - 8. U. - 8. 3. a.M. + 6.W. + 6.H. + d1 = 0. or HL = - 8.M. - 8. U. - 8. Substituting 3 in 162 ML(2:3) = -K(2:3) - (第-4) or R.ML = B.VL + G, or ML = 4.V. + 4. M(台 岩)=-V(信-恕)-(岩-恕) br F1ML=B2VL+G2 or ML= 品VL+ G $\begin{pmatrix} B_1 & B_2 \\ B_1 & B_2 \end{pmatrix} V_L = -\begin{pmatrix} C_1 & C_2 \\ B_1 & B_2 \end{pmatrix} \text{ or } D_1 V_L = E_1 \text{ or } V_L = \frac{E_1}{B_1} .$ But for Symetrical Arches A = Q. hence V. = - S. The following terms are constants for any given arch and are independent of the loading a, as, as, b, bs, bs, ci, cz, cz, Az, B, Bz. Their values are from above-B,= 8- - 8. G = - 2" yas A, = 0. $a_2 = \sum_{a}^{+} \frac{y_{AB}}{z}$, $b_4 = \sum_{a}^{+} \frac{x_y a_s}{z} = \sum_{a}^{+} \frac{a_x}{A} \frac{a_1 h}{A} \phi$. CI = -2" XTAS - 2" AX COS 4 $F_{2} = \frac{a_{1}}{c_{1}} - \frac{a_{2}}{c_{1}}, \quad B_{2} = \frac{b_{2}}{c_{1}} - \frac{b_{2}}{c_{1}}$ Cy = E x y as - I' ay cos d 4) 5 2° × 43 0 = - E° × 45 - E° AY sin \$ di = - Wr Ea (x-a) 45 - Wr Z (x-0) AS $d_{L} = \mathcal{E}ef \Sigma_{o}^{*} \Delta x - W_{v} \left[\Sigma_{a}^{*} \left(\frac{e}{e} - \frac{e}{2} \right) \frac{e}{2} - \Sigma_{a}^{*} \frac{\Delta x \cdot sin \phi}{R} \right] - W_{v} \left[\Sigma_{a}^{*} \frac{(y - b)}{2} \right] \Delta x - \frac{1}{2} \sum_{a}^{*} \frac{\Delta x \cdot cos \phi}{R} \right].$ $C_1 = \frac{d_3}{c_1} - \frac{d_1}{c_2}$ 4 = Eet So Ay + W. [2 (1 - 0) x.05 + 2 Ay sin 0] - W. [2 (1 - 0) x.05 + 2 Ay cos 0] Ca = ds - da

•

TRBLE 1.

	15		13	54		-	2	=	*	22	-	5	0	6	5	15	16				-	1	-	7	L
	<u>y</u> ^z /		.190	3,325	121 11	101-11	19.508	30.014	41.636	54.95	61.324	82.2.78	96.832	96.832	92.278	67/324	52.968	76711	0000	1410.00	9.5084	1.1614	1120	05830	
	X.YAS	7	14066%	8388	2263		3/11/2	0.1051	1302	. 3603	8.4549	8.047	3.803	7.225	7.528	9.286	5.667	166	2 000	0.000-	429 1	.979 //	5684 3.	9521 .	C 12C A
	125		0332	532 5	6 10 2		1 CLX	060 //	210 10	10 10	07 607	962 27	93 35	48 39	15 37	IH 34	55 31	45 282	H6 62		31 198	26 150	84 68.	37 6.0	0 2/2
	X		14. 8	1 10.40	1 HH 2	1 0 0 M	7 36.6	0 100.	1130	act a	619.	939.	1 1336.	1623.		1812.	1881.	1909.	1923		KUI8"	2042.	1510.8	630.6.	21000
	<u>Y</u> A		.01393	08888	20193	06496	EINDY	Donac	acuert.	ICATTC	11AUCO	107332	88×59	882594	764358	550217	544080	153050	366880	100000	LEINA	HE610	85839	072116	1235 QV
	X 45	-	1219126	57550	402120	105301	ACCUTO	1475	1100	6061	ZUE O		1401	2055	. 6110	1341 .	43067 .	65.86	32308	100	0000	5152 .4	1172 .0	16230 .0	A714 A
	5	+	1. 60%	5723 .1	5534	7116	200	11 7220	× 1 868	798 20	3 6 800	C. 7 000	7.C CLL	145 3.6	108 3.5	798 3.3	3.8 3.2	226 3.0	946 2.98	0 6 914	0.4 01	124 K. 1.	154 1.91	14	29 40 6
+	4	4	5 .001	5 .0023	8 0036	3 0040	nhu a	6400 1	2 0055	3 0062	8 007L	0000 0		0801.	00210	.0062	.00556	6400	14400	WHUN	10200	.00.00	.00236	.00088	09489
	I		19,835.	21,446.	11,996.	10.844	1266 6	8.903 6	7.840.8	5.979.3	2213	68703	Y'01 L'0	478.60	172.38	,979.33	640.82	903.61	773.08	F HH R.C	0 700	336.8	1,275.13	0.502.9	
	A	1	0L1.Y	4.122	5.574	6.526	06 4-2	8.444	9.394	0.358	320	HLC	nec	6 11 3	.320 6	2.358 6	394 7	1444 8	:490 9	526 11	11 1163	11 110	7 061	×30 63	
-			44 00	31 33	52 27	98 26	48 25	12 24	17 23	14 23	04 22	68 213	016 07	YIY 00	14 KRI	4 231	7 235	12 240	48 257	8 266	326 6	IN A LO	arc o	404 (
-	×	35 5	0.00	26.5	21.6.	20.8.	20.14	19.35	18.63	17.86	17.13	16.37	16 27	10.01	11.130	17.88	18.63	19.39	20.14	20.89	2165	27 40	10.10	110.00	
	٨y	212176	*0.1010	\$3.6178	15.3/30	13.3476	1.3460	9.31848	7.26992	5.20425	3.12763	LSEHO!	CSERV.	Inclas	1.16 163	20425	\$6993	31848	.3460	3.3476	53130	A THER	9611.1	0900	
T	X	1747		1585	0608	7432	3357	6416	2219	1613	7172	8167	8167		1114 0	5/9/ 3	2,219 7	9147 9	3357 11	432 13	608 13	6 6160	A 411	241 20	
-	4	25 43		\$ 76.	14 41	1 41.	3 42	4 42.	5 43.	3 43.	5 43.	2 43.	2 43			3 43.	5 43.	4 42.	3 4%.	1 41.7	4 41.0	C3 E	HO	10.6	
	COS	8576		3018	.9368	.9524	.9659.	-1616.	.9861	.9929.	4166.	1666	1666	100	Lice	.99,29.	.9861	.979/4	.9659.	.9524	.9368	9038	CH49		
	sin ø	51400	06777	16750	34948	30454	5887	1361	6587	1874	17136	12381	2381	7212	0.01	418	1809	1261	5887	4540	8464	2788	1038		
	a	5.83	001	. ac. 1	7.50	3.83	0.16	6.50 .2	2.33 ./	9.16 .1	5.50 .0	.830 .0	830 .0	0 03 2		1. 01.	.33 .1	.50 .2	16 .2	3.83 .3	7.50 .3	9.0 .4	5.5		
		5 /85	140	EL I	0 122	106	90	23	57	:04	24:	18	81.	245		Cal	2/1	136	900	106.	1221	0 1520	1461		
	ΔS	50.878	-		43.8 2 9	=	-	=			-	-		=			-	-				57.8330			
	Y	13.647	37 441	out	53.2/3	69.476	81.809	92.035	97.336	03.541	07.644	417.60	99.714	07.644	02 541	110.00	01.000	14.035	51.809	37.4.76	55.273	56.056	8./68		
	*	+ 869	4 18 +		+ 000	820 +	757 +	3/3 +	374 +	1+ 0688	1+ 089	341 +1	1+ 022	33 +/	1- 01	1 051	2	+ 100	×01+8	3+ 441	314 + 5	159 + 3	+ 924		
	-	\$ 024	076	101	146	.173	.221	.270	.319.	3.366	1.418	7 .466.	664. 3	.568	619	677	100.	101/.	. /65	-813,	1.860	1416. 6	\$16.		
	×	21.464	66.412	10.00	90.011	151.06	192.721	234.919	\$77.45	320.456	363.74	407.667	450.06	493.915	537184	580176	210,007	CCC. 011	10.000	106.671	747.665	794.455	845.097		
4,	100	-	*		, ,	4	5	9	7	8	6	10	+ ,01	+ ,6	8	in	. '9) iu	n `	+	+ M	× ,×	-	Sum	

•

. .

•

, , .

		4	1		T	T				ŢŢ	5 3	Tr	- 10	TS		
		(v-4)	I								- 4.5834	++919-	-4.2729	-55985	-17.0332	
		v- h)xds								11 902H	46.6226	93.38.51	94.5992	5293/3	304.4.46	
		6) 45								7898	5975 -	1527 -	8510 -	8542 -	2452 -2	
										2-0-5	10-8	5 - 11	11-1	2-01	4-36	
		(x-a) YA	I							6216 9+	+16.878	+20.416	+12704	TIE#1+	+58.145	
		x-a)x6s								550266	71.682	76.170	81.262	48.154	32.295	
		45 (15 +	1+2+1	2+111	55 +2	1+ 06	6+ 12	
		(x-a)								+0827	+ 2429	+.3695	+3523.	+1752	+1.222	
		Y-6) YAS	-					2.86404	74981	1.62780	30102	.55693	5.71606	681006	0.5333	
		x45 (15	1-80	-25	6-84	15 -9	8 -	80 -	63 -4	
		(q-h)	I					-17.07	-32.35	-62.00	-94.60	-129.2	-126.5	-70.46	-532.3	
	a +	(y-b) 25	I					-,0294248	-0520073	-0932393	-,133874	+06211-	-158534	-083375	-723358	
ADLE	ad a	(x-a)yas	1					HH69.01.	282218	38.3357	.41.0383	37.7909	20.0351	1.79264	177.9688	
	24	x-a)x45	I					63.7458	190.982	311.624	614.714	511.190	444.886	185.496	2,125.34	
		(-a) 45	1					+ 218201	306644 +	468600+	590684+	683715+	557336+	+ 124613	23632 .	
		0) cay(o	-			0726	8945	2852 +.	+ 1770	2908+.	858 +	7685 +.	3146 .	+275+	1926	
		5 (J-F				621	-3.2	-6.1	-7.5	-9.8	-10.9	-10.	-6.2	172	-56.	
		(y-b)×0:	I			- 3.35281	-17.0661	-36.5299	-50.7860	-79.8991	141.111-	-145.664	-137.958	-74.94S	-657.942	
		y-b)AS	1			0067884	031769	062963	081543	120147	158124	194825	.172829	:088672	.917661	
	at E	x-a)yas				15. 2222	41.0833	57.7682	1614.13	1870.07	65.3326	55.2623	27.5271	2.67620	402.3697	
	Load	-a)xas (I			· 3.8457 ·	13.146 -	++.336 +	156.240 -	69.654 -	64.527 -	147.521 +	09.423 +	+ 426.91	953.62 +	
		25 (X				9. 2	85 -2	03 -3	4 - LA	5+ 62	63 .6	- 80	162 -6	45 -2	95 3	
		(x-a)	I			14141.+	3967	-,5'935	7325	-8154	£046.+	\$666.+	+.7634	+.3276	+5.7/0	
			Bint	10	10.	9	00		° I	S	4	ŝ	è~e			

		(A-b)							-0882	-0882
		sux(9-5)							-9.12789	-9.12789
	at A	(J-b) <u></u> <u>45</u>	I						8667.010	-0107998
		(x-d)yas	1						+.120701	+.120701
		SAX(D-X)	1						+12.4897	+12.4897
		<u>(x-a)</u>	1						+0147773	+.0147773
		(y-b)yas	1				-1.43918	-2.26292	-3.91099	-4093199
		SAX(6-Y)	1				-19.4675	-50.0989	-40.4695	-110.0359
	at B	(<u>y-b)</u> <u>A</u> s	1				-026038	-0627619	-047882	-136682
	Load	(x-a)yas	-				+3.28446	+5.4/671	+.819937	+9.52111
		(x-a)x45	1				+ 44.4282	+1/9.921	+84.8441	+249.1933
		(x-a) <u>05</u>	1				+.059423	+.150232	+100384	+.310039
F			tu	in	2	it.	in	in	-	E.

mm

ABLE 2

· ·

	. 20x 10-			$\frac{b_1}{a_1} V_1 = \frac{d_1}{a_1}.$	- 1000 (T - a)
AH	2 3		U U	E I	
	1.10	Til: Sile		2.	3
Z	MM		-	1 .1.	
00	000	1 1	00>	- 210 ·	4
0	101	8080	B	1 1	S.
	h n			4 . 4 .	Ø-
T	N N	CO CI	28		8

+.0948929	+8.483677	+1299.04-	+ 40.66714	+ 3635.135	-20 89.2	-8.483677	-810.2203	+3635.135	-,0104708	+.01118724	+.00071684	-5.80149	+4.79357	-1.00792	-580149	+4.48660	-1.31489	-01118535	+:01118734	+,00000189
Σ° 15	$\sum_{i=1}^{L} \frac{y \Delta 5}{I}$	E. X.45	$\sum_{i=1}^{L} \frac{X \Delta S}{I}$	E. XY.DS	5° X? 45	E: 405	54. 2.3	Z° xy AS	222	- 43	Sum	50 00	- <u>6'</u>	Sum	é P	- 64	Sum	စံပြ	- B3	Sum
a.	a,	a,	Þ.	b_{z}	b3	5	62	S			Az			Β.			B,			А.

I		-			
×410	AX.GOSØ	Aycos ¢ A	<u>AX.sin Ø</u> A	Ay. sin ø A	$\frac{\Delta X}{\beta}$
-	.084681	050739	050739	03040/4	2417800.
2	255332	0641285	.064/285	.0328124	138148
Э	139587	0520573	.0520579	7614610.	000641
4	991641.	0426366	.0476966	.0152512	.156619
5	158815	.0425626	.0425626	8904110.	714491.
ه	0£1691.	0367249	0367249	H+16100.	.172734
7	.178046	2846620.	.0299483	1150200.	180547
8	.187583	DRZHJZZ	.0224322	.0026826	188919
6	.137025	.0140957	7260410.	PH800100.	197528
0	.206358	7416400.	TH16400.	00011705	206415
10,	206358	7416400.	2416400	2011/05	206415
9	.197025	OP40957	7260410.	480010Q.	.197528
·90	.187583	.0224322	.0224322	.0026826	<i>6188919</i>
7	.178046	.0299483	2846620.	1750200.	.180547
ē,	169130	.0367249	.0367249	PH72700.	172734
°S	,158815	.0425626	.0425626	.0114068	714401.
.4	<i>491641</i> .	.0476966	9969 740.	.0152512	156619
,w	.139587	.0520579	.0520579	76/46/0.	000641.
Ň	.135701	.0642418	.0642418	.0304126	.150139
~	.0852216	.0539959	.0539959	.0342115	100887
Sum	3.202356	.733969	.733969	.2536326	3.320246

TABLE 3.

;}

·

.

.

	MR	+ 31,600.	- 27.786.	- 72.425.	- 89.070.	- 37,703.
	HL	r 2.073.195	+ 1.628.108	+ 985.388	+ 350.510	+ 23.677
	- di/c,	- 673.17	- 346.11	- 144.125	- 36.550	- 1.740
,	- bi Ui	+ 1,971.03	+ 1,134.50	+ 534.287	+ 152.190	+ 7.890
	a, M.	+ 775.335	+ 839.718	+ 595.226	+ \$34.870	+ 17.527
	ML	+ 69,317.	+ 75,073.	+ 53,215.	+ 20,998.	+ 1,567.
	Cy/Rz	+ 824,437.	+ 509,193.	+ 257,662.	+ 79, 238.	+ 4,586.
	$\frac{B_2}{R_2} U_L$	- 755,120.	- 434,120.	- 204,447.	- 58,240.	- 3,019.
	١٨	411.183	236.671	111.459	31.749	1.646
Ľ	Load	F,	, D	U.	B,	A'

TRBLE 4.

	C_{s}	590.99	365.01	148.703	56.801	3.2876	
	- dz/cz	496.62	219.65	71.764			
	ds c3		584.666	256.467	68.551	3.4356	
	<i>c</i> ,	H14.44	238.556	112.342	32.001	1.695	
	- d/c,	- 673.17	- 346.11	- 144.125	- 36.55	+1.1 -	
	dy Co	+ 1,087.61	+ 584.666	+ 256.467	+ 68.551	+ 31.356	
	d3	+ 3,953,620.	+ 2,125,340.	+ 932,295.	+ 249,193.	+ 12,489.	
	da	+ 402,369.	+ 177,968.	+ 58,145.	+ 9,521.	+ 120.	
	d.	+ 5,7/0.95	+ 8,936,2	+1,222.71	+ 310.04	+ 14.779	
1	1007	F,	,a	Ù	B,	A'	

		T. Mc	.306	.857	2.782	4.920	5.815	6.023	4.967	2.847	4E.1	6.178	6.118	4.031
		T + MC	3.256	H.079	4.438	3.470	3.135	3.167	4.111	5. 793	8.573	2.862	.598	. 783
	<i>c</i> ¹	mc/r	1.475	1.611	.8285	.720	1.340	1.428	. 4284	1.473	3.600	.1.658	.2.760	1.624
	1 84	T/Ar	1.781	2.468	3.610	4.195 -	4.475	4.595 -	4.539 -	4. 320	3.973	4.520 -	3.358 -	2.407 -
	Loan	W	+5.5 5273.5	+ 3.3	+ .9 .895.5	.597.0	-1.	-995.0	238.5	+ 1.1 1094.5	+3.	-1.8	-6. 5970.0	-7.1 7064.5
			+ OLH -	-383 .	-220	-125	- 48	+66	+152 -	+ 252 +	- 54.6 +	-522	- 797 -	-128 -
			884	928	382	995	4001	998	987	970	944	1229	1302	1330
		F - 116	1357	2.012	5.244	7.920	9.543	9.672	7.270	3.645	5.502	9.390	6.389	3.604
			4.891	6.092	6.426	5.6/0	4.817	5.088	7.270	0.110	2.806	3.48	2.699	2.502
	-	MS/IT	1.967	040.	5912	1.155	2.363	2.292	0	3.225	1.348	2.955	1.845	155.
0.	At D	T/Ar	2.924	1.052	5.835	5.765 -	7.180 -	7.380 -	7.270	6.870	6.850 -	6.435 -	4.544 -	3.053 -
lable	Load	m	1031.2	+2.6 4154.8	639.2	958.8	1757.8	1598.0	• 0	\$397.0	1118.6	3196.0	3995.0	2397.0
		s	-607 +	- 561 +	- 295	-148	-15 -	+/60	r 308	+ 460	- 397 -	- 204 -	+105 -	+ 327 -
		7	1450	1512	1587	1607	1612	1604	1580	1680	1626	1750	1762	1686
		- 1	1.982	3.550	7.686	10.827	11.588	9.589	5.870	9.359	1.243	9.778	5.180	2.750
		T + T -	5.698	6.301	7.314	6.463	6.710	9.011	12.615	8.817	6.387	5.682	5.360	4.370
		Mc/IT	1.858	1.679	1861	2.182	2.436	. 2889	3.465	7072.	.2.428	840.7.	.0930	.810
	E'	T/Ar	3.840	5.230	7.500 -	8.645 -	9.150 -	9.300	9.150	9.088 -	8.815	7.730	5.273	3,560
	oad At	W	+ 3.3	+ 3420.4	- 201.2	8.0/8/-	8.0181-	- 201.2	+ 1.2 * 2414.2	- 201.2	-2012.	-2213.2	+ 201.2	+ 1.75
	7	s	-792	- 610	-260	- 76	+ 98	r 3/8	+ 5.04	- 303	-/03	+ 98	+ 465	+717
		٢	/894	1365	£040	2052	2053	2031	2029	2040	2092	2092	440%	1966

	C/T-	.008280	164 000	6000326	.001206	.001346	.001435	.001435	.00 1346	.001806	.000926	.000462	.000,30
	0	20.00	15.00	10.68	9.24	8.70	8.40	8.40	8.70	9.24	10.68	15.50	22.35
	I_r	71,500.00	30,555.00	11.541.97	7,655.80	6,460.13	5,852.95	5,852.95	6,460.13	7,655.80	11,541.97	33,556.00	97, 250.00
	A _T	496.23	375.80	272.07	237.51	224.55	217.35	217.35	224.55	237.51	272.07	387.80	552.32
	7-14	.0388	.0624	9760.	4121.	.1363	.1423	1452	.1307	.1050	<i>20189</i>	.0468	2.218
	T. + M.	8640.	.0760	1082	.1228	.1315	1337	0041.	1364	1224	.1051	8160.1	480.
11 A'	Mc/IT	.005545	.00678	.00528	421000.	0024R	004305	00258	.002825	.00868	201305	84210.	-1.0370
Load 1	T/A.	5443.	\$690.	6801.	1221	.1339	.1380	.1426	.1336	. 1137	.0320	.0533	1.1210
	M	+ 19.8	+ 13.8	+ 1.9	9. t	9	-3.0	-1.8	+ 2.1	+ 7.8	1.4.1	+ 27.	-4770.
	s	-23	-/9.	- 10.	- 9.	- 5	0	+ 3,	+ 7.	+ 3.	+ 11.	+ 13.	-790.
	7	22	26	28	29	30	30	31	30	27	25	23 HI3	620
	$\frac{T}{Hr} - \frac{Mc}{Tr}$	180.	181.	.76/	1.516	1.867	2.181	1.907	1.080	.231	53	H. 705	3.665
	$\frac{1}{h_r} + \frac{Mc}{\Gamma_r}$	1.247	1.603	1.833	1.516	1.385	1.139	1.387	2.054	2.673	2.35	645	529
Β'	MS/IT	.608	.711	.536	0	142	521	260	.487	1.221	1.742	-2.675	-2.097
ad At	T/AT	.639	\$69.	1.297	1.516	1.626	1.660	1.647	1.567	1.452	1.210	2.030	1.568
200	М	+ 2172.	+ + + + 48.	+ /.6 + 5792.	•0	- 253.4	-1.0	-/8/.	+ 362.	+ 1/0/3.6	+ 1882.4	-5792.	+.5216 -
	S	-178	-/50	- 30	-55	- 24	+ 20	+53	+ 87	+/12	- 800	-672	- 569
	T	317	335	353	360	365	361	358	1 352	345	328 654	187	1 867

			SAIL	X0X.	1010	20 7	0.00	10.00	11.01	11.00	1001	26/	179 EV	311 62				Live	209	242		.95	6.50	8.37	8.53	1.675	5413	205	0.48/	27.215
			604	200	00	11	. 62	.90		0.9.	5/1/1	938	138	-			IT E	ead	461	56 2.		H 16	545 3	91 2	39 8	27 8	52	38	734 12	21
		2010	1 000	1 40.		11 10	61 518	800 19	1 000	0 10 10	1 62	137	85				tress a	00_00	2% 1.1	27 7.	67 13.	HI 1.	90 00	.89 14.	72 19.	\$3 17.	8/ 8.		106.	
			2 2		17	2	12.0	18.	6 4	3.0	11		10				2	101	:41.	1.91	4.9	2.2	5.01	9.5	9.6	6.0	2.18	145		
			HDI TON	246 6	13 510	67.651	20.60	16.65	10.01	10.0	1.967	.187	134.09	229.23				7176	./88	1.555	4.100	9.94	58.20	27.03	22.27	8.38	2.68	196	134.453	234.51
		1 may	1028	815	16.03	19.65	1369	2401	77 0	999 P	5.41	.923	141.56				e35 al	Dead	. 386	4. 282	7.880	7.095	14.55	18.02	19.12	16.67	7.292	. 956	00.051	
	Stre	1000#	1364	2.054	5.79.3	10.095	8.8/7	6 71	H 817	3212	1.385	.1315					1	0001	Laci.	.08	148.	3.645	9.359	11.588	9.543	5.815	1.867	./363		
		Live	176	3.8.50	2.30	4.04	16.4	14.04	13.09	8.10	2.182	177	39.235	87.838		1 10		171	ICI.	336	.931	2.83	0.00	5.30	8.46	7.085	2.183	.175	844.81	\$5.563
		Dead	923	0.60	0.95	5.455	9.935	0.10 4	42.1	9.95	5.92	.86	8.603 5	1		-	10 0	100	Vel		.115	0.70 1	1.47 7	5.84 2	5.87 1	4.10	.9k	.852	1.175 /3	21
	Stre	00 -	42	73 //	2 61	306	587 5	163 11	1 0/	20 5	16	88	8				A AF	4 0 2		2 5	00	08 16	43 11	827 16	9K 13	92 I'	5/6 5	418	81	
		10	12	2.6	5.2	2.6	6.9	0 6.9	5.6	34	1.5	3 .12,	9	X	C rer		, ;	a	5 6	-y-	1.34	5.5	11.2	10.8	7.5	4.	1.3	1.		
	7 8	Live	151	.5.97	4.138	5.014	13.23	45.51	14.95	10.35	10.30	1.09.	110.75	196.40	TOM	B	1140	#11	954	1000	06.0	15.38	ZZ.80	47.80	12.22	6.49	1.096	041.	114.04	201.94
	4 550.	Dead		11.69	7.92	6.775	8.84	11.36	12.88	12.73	7.16	.759	85.646		Rot	10 35. at	Deed	365	-2.101	8.65	1.11	18.84	15.80	11.95	10.51	7.98	2.97	.685	87.90	
9 3	St,	+0001	1051	2.95	2.862	3.48	5.682	7.314	6.426	4.438	1.833	1082			E 7.	Stre	1000 #	6810		1 107	101.0	9.330	9.778	1.686	5.244	2.782	.761	.0976		
TABL	H'	Live	###	-,865	108.	3.635	12.53	42.93	11.41	9.52	8.149	601.	36.363	47.616	TABL	H' H	Live	1.517	266 2	8 012	0 000	3. 601	×.00	K.KU	4.695	1.998	.261	680.	57.635	44.87
		Dead	145.	2.555	1.655	.255	.345	. 730	12.51	1.70	5.26	.533	1.253 8			ss at	Dead	.355	8.65	6 97	271 61	0.10	0.027	170.0	7.065	2.457	.707	TEH.	7. 241	
	Stre	# 0001	0718 8	.645 -	598	6 669 3	.366 8	106.	1 260.	1 610:	.603	076	6			Stre	1000*	8940	202	811	200	100	100		XIO	857	181	0624	2	
		re	45 %	- X9	. 61	05 2	00 5	480 6	110 6	90 4	97 1	72	2	576		-	e	93	4 84	05 6	8.0	000		2	XC		. 54	56 .	54	185
	+ 0	17 1	8 .03	5 - 7	101	3.6	10.2	35.4	4.11	7.5	1.7	0	1.01	115.3		0	117	3.	5.2	5.8	1	1 2 2	0				°.	0.	41.4	101
	55 0	Dea	.180	-2.03.	2.130	4.86	6.790	8.863	9.803	9.335	4.874	34	45.101			55 at	Dead	16.7	14.5.	11.15	10 2	H 27	2 0.0	00.0	16.1	12.	.05	.274	59.87	
	Stre	0001	.024	529	.783	2.502	4.37	5.698	1.891	3.256	1.247	864.0.				Stre	*000/	2.218	3.665	4.031	404 Z	2 750	1 907	1.70 1	100.	900.	.031	.0388		
	Load	ar	Α'	Β	C,	D,	E,	E	0	C	B	H J	Sum	Total		Load		Α'	Β,	is		i i	4 4		a '	۹ د	0	H .	Dum T	lotal

Stress at 0'

A Curres of Stresses in Top ef Arch Ring for 1000 ^{ar} Jond. PLATE 5.

					227.		173.	915.			4.3		36.2	
						+ +94. +	190	619	436			228.3 -	5-	
				+ 66. +	+ 160. +		- 504.	- 308		- 53				
		- 7.0	-33.6	-67.2		+/37.	+ 4.84.	1048	.1566.	- 203.	- /6.3	1159.1	1799.2	
	Dead	- 37.9		-132.7	- 29.4		+ 468.	-925.	-723.	-340.	- 49.	-640.1	İ	
345						+ 98.	+ 303.	- 460.	-252.	-87.				
	Live	-12.6	-77.	-175.	-207.	+-901-	+ 240.	+ 308.	-2160.	-261.	-12.6	+2026.4	+2210.2	
	Dead	- 68.2		-346.	-287.	-118.	+162.	+762.	- 996.	-437.	- 63.	+ 183.8		
	1000 #	- 9.	-55.	-125.	-148.	-76.	t/03.	+ 379.	- 348.	-112.	- 9.			
	Live	- 13.7	-123.3	- 301.5	- 404.	- 356.	-134.3	+476.	+ 1215.	- 927.	-25.6	+ 4385.6	+6580.2	
ar ar	Dead	-75.4	- 365.	-608.	-574.	- 40%.	-152.	+ 410.	+ 1502.	+3120.	-77.	+21946		
auc	*000/	-10.	- 30.	-220.	-295.	-260.	- 38.	+ 204.	+522.	- 149.	- 11.			
	Live	×31.2	-246.	-628.	-921.	-1000.	- 763.	-172.2	+698.	+/565.	- 80.8 +5350.	+ 37646	+9024.6	
ar ar	Dead	1.441-	- 594.	-1060.	-1083.	- 948.	- 723.	-211.	+ 86%.	+ 2650.	+ 6603.	+ 5260.		
auc	1000 #	- /9.	- 150.	-383.	-561.	- 6/0.	- 465.	-105.	+ 297.	+672.	+ 860.			31, 333
	Live	- 37.7	- 292.	-771.	- 990.	- 1300.	-1177.	- 536.	+ 298.	+1325.	+ 4910.	+/429.3	+3192.8	
ar	Dead	-174.5	- 703.	-1300.	-1180.	-1230.	-///4	- 656.	+ 367.	+2250.	+5530.	+1763.5		
DICAL	1000	-23	-178	014-	-607	-192	L1L-	- 387	+128	+569	+ 790			66" k
The second se	##	Α'	B	i	D'	Lu I	E	D	U	B	Н	Sum	Total	18,6

· •	
-	
of R	
gram of R	
lgram of R	
ggram of R	
igram of R	
liggram of R	

A	1541	180
B'	3965	1370*
<i>c</i> ,	£768"	#00HI
<i>p'</i>	1946	1420*
E'	1554 #	*OHHI
E	1554#	=04HI
0	2010	# 0841
10	2868	# 00+1
B	3905#	1370*
Я	7008 #	1640 #
Point	Dead Load	re Load-200" of

H 14

6.220

ROOM USE ONLY

Ņ

.

