THE EFFECT ON VARIABILITY IN THE DOUBLE CROSS CORN HYBRID OF PARENTAL INBHEDS DIFFERING IN MATURITY AND OTHER PLANT CHARACTERISTICS By James Warren Thayer, Jr. A THESIS Submitted to the School of Graduate Studies of Michigan State College of Agriculture and Applied Science in partial fulfillment of the requirements for the degree of DOCTOR OF PHILOSOPHY Department of Farm Crops 1949 Acknowledgment The writer is indebted to and deeply appreciative of the guidance and assistance given freely during the course of this study by Dr. E. E. Down, Professor Hubert M. Brown and Dr. Kenneth Frey. For his help in the growing of the plant material, and cooperation during the harvesting season, the writer expresses thanks to Dr. E. C. Rossman. For their willing assistance in obtaining the data presented herein, the writer is indebted to Mr. and Mrs. John Showers. For assistance in calculating the data and preparation of the manuscript, the writer expresses sincere thanks and gratitude to his loving wife, Florence R. Thayer. INDEX Page Introduction . . Review of Literature . . . . . . • • . . Materials and Methods . Experimental Results - Variability Studies . . . . . . . Inbred Data . . . . . . . . . 1 * 2 . . • • 4 6 6 Single Cross Data . . . . . . . 10 Double Cross Data . . . . . . . 18 Experimental Results - Prediction Studies . . 25 Discussion . . 30 Summary . . . . .. . Literature Cited . . . . • . . . . . . . Analysis of Variance Tables frequency Distribution Tables . . . . . . . . . . . . . Prediction Tables - Mean Values Prediction Tables - Variance Values . 34 . . 38 . . . . . . . 37 45 71 . 79 THE EFFECT ON VARIABILITY IN THE DOUBLE CROSS CORN HYBRIDS OF PARENTAL INBREDS DIFFERING IN MATURITY AND OTHER PLANT CHARACTERISTICS It is well recognized among c o m breeders that "eye appeal" is of prime importance to fanners when selecting their "best hybrid". Uniformity of plant height, height, length and diameter of ear, and other plant characters of a similar nature all contribute to the de­ sirability or "eye appeal" of a corn hybrid. Many a high yielding hybrid has failed to gain prominence because it lacked the necessary uniformity in one or more of these important plant characters. Since uniformity or the lack of variability is of prime importance to the general acceptance of a c o m hybrid, it is necessary for the c o m breeder to know how the combining of parental inbreds affects the uniformity of the double crosses. The work reported here was undertaken for the purpose of determining the effect bn variability, in the double cross hybrid, of the different combinations of parental inbreds with contrasting plant characters. The variability of ear moisture as affec­ ted by the combining of inbreds similar in maturity as contrasted to the combining of inbreds of varying maturity was of prime importance in the instigation of this study. Although yield determinations were not a primary aim of this study, they were obtained for two reasons. First, because of the poss­ ibility of obtaining desirable hybrids as the result of the inbred com­ binations used in this study. Second, because of the excellent opportun­ ity afforded by obtaining yield data to study the relationship between the actual and predicted values obtained from the single crosses and their double cross combinations when grown in the same year. REVIEW OF LITIKA.TUEE Much work was done by the early breeders of hybrid corn to deter­ mine the relationship between the yielding ability of the inbred lines and their hybrid progeny. A good bibliography of these studies may be found in Jenkins* (6)1 work reporting his correlation studies between many inbred plant characters and their Fj_ hybrids. Jenkins* studies are especially worthy of note. Two statements from "The correlations be­ tween characters of the inbred parent and the mean values of the same character in the crossbred progenies were sufficiently high in many cases to be of value for prediction purposes.** "Different inbred lines showed marked differences in prepotency for practically all of the char­ acters studied." la 1934 Jenkins (7) published the results of his studies determin­ ing the best method of predicting double cross performance. Els "Method B" which uses the average performance of the four non-parental single crosses as the predicted value for the double cross has been generally accepted as the most satisfactory. Anderson (1) and Doxtator and Johnson (2) carried out experiments comparing the single cross predicted values with actual values obtained from growing the double crosses and substan­ tiated the findings of Jenkins. They further showed that it was impor­ tant to test the three combinations possible from the combining of any four inbreds because significantly different results might be obtained 1 Figures in parenthesis refer to "Literature Cited", p. 37. - 3- from the different combinations* Eckhardt and Bryan (3) compared the effect on variability of the hybrid from the crossing of single crosses made up of closely related inbred lines and widely divergent inbred lines* They designated close­ ly related singles as (A x B) and divergent singles (T x Z). A compar­ ison of the doubles (A x B)(Y x Z) to the doubles (A x Y)(B x Z) showed that the (A x B) (Y x Z) outyielded the (A x Y) (B x Z) in eleven out of twelve cases on the basis of a 3 year average* consistent throughout the test. The one exception was The authors conclude that, if inbreds are closely related, they should come into the double cross together rather than one in each single cross, if the best results are to be secured. Variability in the double cross was found to be significantly lower when this procedure was followed. In a similar study Eckhardt and Bryan (4) compared the effect of the method of combining two early and two late inbred lines upon the yield and variability of the resulting double cross. The two general types of crosses produced were (E x E)(L x L) and (E x L)(E x L). In the first type differential plantings are necessary for making the double cross seed and in the second type this difficulty arises in the making of two single crosses. Variability studies indicated that sig­ nificantly greater uniformity may be obtained by combining (E x E) (L x L). This was true for silking date, ear height, ear length, ear diameter and ear weight * The authors did not determine ear moisture variability but state that "It is reasonable to expect that this relat­ ionship would also hold for moisture content of ear c o m at harvest time". They further state, "There seem to be definite advantages in the production of superior hybrid seed corn from the practice of util­ izing inbred lines of similar maturity in the same single cross parent". Pinnell (9) studied variability in the double crosses for date of silking, date of first pollen, ear height, plant height, leaf area, % ear moisture, ear length and row number as effected by the method of ooinbining two early and two late inbred lines. Significant differences in variability for certain characters were apparent between crosses, but it was impossible to predict relative variability in the double crosses on the basis of the character means of either the inbreds or their single crosses* MATERIALS AMD METHODS In 1946 four late inbreds (CC 5, CC 25, 40 B, Oh 51) and four early inbreds (MS 24, MS 206, A 158, R 53) were selected on the basis of their past pollinating record to be used for this study* All 28 possible single cross combinations were made in the summer of 1946 and all 210 possible double cross combinations were made in the summer of 1947. In 1948 the 8 inbreds, their 28 single crosses and 1 of the 3 poss­ ible double crosses arising from the combining of any 4 inbreds (70 double crosses in all chosen at random) were planted on the College Farm at East Lansing, Michigan. Inbreds, single crosses, and double crosses were each planted as groups in randomized blocks. hills. Plot size was 2 x 12 Six replications were planted for all groups. Only 20 hills, totaling as near to 60 plants as possible, were selected from each plot ' for harvest. - 5- At harvest, data for plant height,'ear height, ear length, ear diameter, number of rows of kernels per ear, ear weight and ear moisture were obtained from one plant selected at random from each hill harvested in three replications. Due to labor shortage and the time consuming nature of the work, harvesting was carried out in a systematic manner by replications. By this procedure a replication from which individual plant data were ob­ tained and a straight yield replication were harvested in a 5-day week. Thus, the total harvesting operation was spread over a 3-week period. Blant and ear height measurements were taken in the field at har­ vest time to the nearest inch. The ears from the measured plants were taken to the laboratory and the green ear weight determined to the nearest gram. The ears were then placed in an oven and dried to approx­ imately 5$ ear moisture. The dry weight was recorded to the nearest gram and the ear weight at 0# moisture was later determined by calcu­ lation. Ear length measurements were made on the dried ears to the nearest half centimeter and ear diameters to the nearest quarter centi­ meter. Ear row number was counted at the middle of the ear. All statistical calculations were made directly from the individual character values wherever possible. Analysis of variance and correlation^ coefficients were obtained for all characters by machine methods of cal­ culation as suggested by Snedecor (10). Inbred, single cross and double cross progeny variances were obtained by the formula; s tf - crA + sx§ - CTB ♦ sag - ctc 3(k - 1) = ^progeny - 6- where k is the number of individual measurements (X) per plot and A, B and C are field replications. . Prediction studies were carried out By using the method suggested "by Millang and Sprague (8). Due to poor stands in some of the inbred plots, all inbred calcu­ lations are based on 16 individuals per plot. All single and double cross calculations are based on 20 individuals per plot. Only data from 65 double crosses are reported. Plot weights, to be used for yield determinations, were taken con­ currently with field measurements of plant characters. The ear mois­ ture values determined on the individual ear basis were averaged and used for correcting field weights to a uniform moisture of 15.5$. EXPERIMENTAL RESULTS - VARIABILITY STUDIES Inbred Data A study of the mean values, Table 1, for the several characters shows ti;*t there are large differences between the inbred means. It is interesting to note that inbred G, which was chosen as an early inbred on the basis of its pollinating da.ta, has a much higher ear moisture at harvest than the other three inbreds in the early: group. All of the late inbreds have a relatively high ear moisture content. The inbreds were divided into contrasting groups, Table 2, on the basis of the data in Table 1. Por ear moisture, ear height, and plant height, it was possible to divide the inbreds into groups of either four and four or three and five and have the means of all of the inbreds in each group significantly different from the means in the contrasting group. Such a division of inbreds into contrasting groups was not poss­ ible for the characters ear weight, ear length, ear diameter and number Table 1* Inbred Mean values and least significant differences for the seven characters of the inbreds studied and the code letters used to designate the inbreds in all other tables and the text. : Code : Ear : Ear no. : Ear 3 : Plant Ear : Ear ^ : Ear 2 : : Letter :: Moisture : Weight : Length : Diameter : of Rows : Height : Height CC 5 A 48.5 98.7 13.5 3.85 16.7 28.9 77.2 CC 25 B 56.7 71.0 13.5 3.63 13.7 26.1 69.3 4° B C 54.3 97.7 18.6 3.51 12.3 15.7 69.0 Oh 51 D 50.4 76.3 12.7 3.53 14.2 21.1 68.1 m 24 E 44.9 85.0 12.3 4.13 14.4 10.6 48.4 MS 206 F 40.9 66.1 U.8 3.44 11.7 13.4 56.0 A 158 G 48.6 59.9 12.3 3.40 13.5 8.6 47.4 R 53 H 41.1 88.5' 14.1 3.65 .14.3 15.1 52.7 3.3 18.8 1.3 0.14 0.5 4.2 5.1 L. S > t 1 2 3 4 Weight in grams at 0# moisture. Bar length and diameter in centimeters. Ear and plant height in inches. Least significant difference at the 5$ point. - 8- of rows per ear and so the inbreds were separated for these characters by placing the four inbreds with the high means into one group and those with the low means into the other group. Table 2. Plant Character Grouping of inbreds for the purpose of determining the effect of method of combining contrasting characters upon the variability of the resulting crosses. : : Contrasting Characters : : Code Letter Ear Moisture (Late (Early H L Ear Weight (Heavy (Light H L Bar Length (Long (Short H L Ear Diameter (Large (Small Ear no. of Sows (Many (Few Ear Height (High (Low Plant Height (Tall (Short Inbred Code A B C D G E F H : : X2 (1) 0.99 6.83 AC E H B D F G 22.41* 2.11 ’ ABC H D E F G 14.96* 27.93* A B EH CD F G 19.26* 5.99 H L A D E H B C F G 7.17 6.55 H L A B D C E F G H 6.33 11.63 H L A B C D E,F G ;H 5.28 14.06* . 'H ' L . : : (1) Bartlett's chi-square test for homogeneity was calculated on the variances of the inbreds by groups. * Chi-square values are too high to indicate homogeneity of variability within the inbred group. With the exception of A which consistently falls into the high group and F which is always found in the low group, the inbreds shift " from the high to the low group depending upon their expression of the - 9- particular character in question. Inbreds A, B, C, D and H are found most frequently in the high groups and inbreds F, G and E in the lour groups. These groupings indicate a tendency for the late inbreds to have high and the early inbreds low values for the several characters. Table 3 presents in a condensed form the pertinent data from the inbred analyses: Tables 19-25. It shows for all characters whether or not there are significant differences between the means of the in­ breds* the means of the high and low groups of inbreds and the means of the inbreds within the high and the low groups. For the 28 items indicated in the table, the F-values of 23 exceed the 1% point, 1 exceeds the 5$ point and 4 show no significant differences. Table 3. Significant mean differences indicated by analyses of variance for inbreds. Bata summerized from Tables 19-25. Character • 9 : Inbreds • • : High : Low : Within : Within : High : Low Bar Moisture ** ** ** Bar Weight ** ** ww — Ear Length ** ** ** MM Ear Diameter ** ♦♦ ** -- Bar no. of Bows ♦* ** ** ** Ear Height ** ** ** ** Plant Height ** ** ** ** * * Exceeds the 5$ point. ** Exceeds the 1# point. — No significant difference. The chi-square values, Table 2, indicate that the inbreds within some of the character groups differ significantly from each other in - variability. 10- Inbred A, Table 27, shows a significantly greater vari­ ability for ear weight than either inbreds E or H. Similar differences in variability are apparent in both the high and the low groups of in­ breds for ear length, Table 28. They, also, occur in the high group for ear diameter, Table 29, and in the low group for plant height, Table 32. These differences in variability may be due to either genetic heterozygosity or inbred reaction to environmental conditions. Since the inbreds used for this study have been selfed for many genera­ tions and have shown a high degree of uniformity, it is more likely that the differences in inbred variability are an expression of inbred sensi­ tivity to environment rather, than genetic segregation. Inbred frequency distributions and variances for all characters are given in Tables 26-32. Single Cross Data The mean values for the several characters, as determined by aver­ aging the single cross values for each inbred when crossed with every other inbred, are presented in Table U. A comparison of the inbred values, Table 1, and their single cross combination values, Table U, shows that for all inbreds the average moisture for inbreds in combin­ ations is lower than for the inbreds themselves. For all characters, except ear moisture, the combination means are higher than the indivi­ dual inbred values. When the inbred means and the single cross combina­ tion means are ranked from high to low, it becomes apparent that the in­ breds do not maintain the same rank in combinations that they do as individuals. Also, there is less spread between the means of the inbreds in combinations than in the means of the inbreds themselves.' Table 4. Mean values and least significant differences for all characters of the single crosses involving each inbred with every other inbred. J. Inbred Code : Bar Ifoisture : : Ear ^ : Weight : Ear 2 : Length Ear : : Diameter : Ear no. : of Rows : Ear 3 : Height : Plant : Height A 43.5 165 17.7 4.23 16.2 28.7 84.9 B 45.0 166 18.3 4.20 14.9 30.0 85.9 C 44.5 181 20.6 4.12 13.6 26.7 84.5 D 41.7 161 17.8 4.11 14.7 30.9 83.7 E 43.4 161 17.3 4.34 15.5 25.4 72.6 38.8 151 17.4 4.05 13.9 26.1 77.6 G 41.6 157 18.3 4.03 14.5 24.3 73.7 H 39.9 151 17.7 4.09 13.4 24.8 72.6 L. S.4 0.74 7.41 0.59 0.23 0.053 % 1 2 3 4 Weight in grains at 0# moisture. Ear length and diameter in centimeters. Ear and plant height in inches. least significant difference at the 5# point. 1.08 1.27 - 12- Sin ce the inbreds were divided into high and low groups for each character* it becomes possible to separate the single crosses into three groups* high x high* low x low and high x low. Table 5 gives the group means and the high and low individual means within the groups of crosses for all characters. In every instance* the mean for the high x high group is highest* for the low x low group lowest and for the high x low group intermediate. In all but three cases* the highest individual mean value occurs in the high x high group and the lowest in the low x low group. However* for all characters* except plant height, there is a great deal of overlapping of individ­ ual means between all groups. Individual means equal to those in the high x high group may be found in the high x low and low x low groups and vice versa. For the character plant height * there is no overlapp­ ing of individual progeny means from one group of crosses to another. „ The summary of Tables 19-25 of the single cross analyses of vari­ ance for the several characters* Table 6, shows that in these analyses significant differences at the 1# point are indicated for practically all of the comparisons between the means under consideration. The lack of a significant difference for plant height in the high x high and high x low groups is in sharp contrast to the significant differ­ ences indicated for all other conqparisons within crossing groups. The single cross variances by groups are given in Tables 26-32 for all characters and the means of these group variances are presented in TUble 7. The data in this table £how that* in all cases except ear moisture and ear weight* the highest mean variances are associated with the high x high crosses* the lowest with the low x low crosses* Group mean and high and low individual cross mean values for the single cross com­ binations of inbreds within and between contrasting groups for each character. Character : High x High : Group : High : Low Type of single cross : Low x Low : Group : High : Low : High x Low : Group : High : Low 44.7 50.5 39.7 38.8 41.1 36.7 41.4 46.6 37.8 Ear weight 169.0 191.0 149.0 157.0 175.0 123.0 161.0 188.0 117.0 Ear Lenth 19.3 21.6 16.9 17.1 18.5 16.0 18.1 21.8 15.5 4.3 4.5 4.1 4.0 4.1 3.8 4.1 4.3 3.9 Ear no. of rows 16a 17.3 14.6 13.5 15.0 12.9 14.8 16.5 13.2 Bar height 33.8 34.7 32.1 23.1 27.1 18.1 28.3 33.1 25.1 Plant height 91.2 92.4 90.1 66.0 71.1 61.7 79.9 87.4 73.2 Ear moisture Ear diameter -fit Table 5. - 14- wlth the mean variances for the high x low crosses intermediate to those of the other two groups. The mean variance for ear moisture in the low z low group is exceptionally high because of the mean value of 28.78 for cross BH and the fact that there are only 3 crosses in this group. When the F-values are obtained for the variouse comparisons, Table $it is found that there are significant differences at the 2$ point between the variances of many of the groups* Ear. weight does not show any significant differences between groups. Table 7. Single cross group mean variances for all characters. Summarized from Tables 26-32. Character Ear Ubistuxe Ear Weight : Single:crossing group : Hififr x High : Low x Low : High x Low 9.52 1412 12.74 9.49 1241 1448 Ear Length 7.00 3.60 5.03 Ear Diameter 0.066 0,044 0,063 Ear no. of Bows 2.72 1.65 2.30 Bar Height 19.90 16.47 15.06 Plant Height 31.6 20.9 . 24.8 Ih order to test whether or not there were any significant differ­ ences between the inbreds in their ability to cause high or low vari­ ances in their single crosses, the mean variances for each inbred when crossed with every other inbred were calculated for all characters. These data are presented in Table ?. When the F-values, Table 10, are obtained, it is found that there are significant differences between the mean variances of many of the inbreds in combinations. Inbred F is significantly higher than all of the other inbreds for ear moisture J Table 6. Item Significant differences between means indicated by analyses of variance for single crosses. Data summarized from Tables 19 - 25. : Ear : Moisture : Ear : Weight ** ** ** ** ** ** ** ** ** ♦♦ ** Crosses 1 H x H 2 L x'L 3 1:2 4 H x L 5 1+2:4 : Ear : Length : Bar : Diameter ** ** ** ** ** ** ** ** ** ** : Ear no. : of Rows ** ** ** ** ** : Ear : Height : Plant : Height ** ** * ** ** ** ** • • • ** ** ** Table 8. F-values for all possible comparisons of variance means given in Table 7. Ear Comparison : Moisture • ' • (HxH)i(LxL) (HxH) :(HxL) (HxL):(LxL) “ST * Exceeds the 5$ point. ** Exceeds the 1$ point. — No significant difference. : Ear : Weight : Ear : Length 1.14 1.00 1.17* 1.94** 1.39** 1.40** 1.34** 1.00 1.34** * Exceeds the 10$ point. ** Exceeds the 2$ point. Ear : : Diameter 1.50** 1.00 1.43** : Bar no. : of Rows 1.65** 1.18 1.39** : Ear : Height : Plant : Height 1.21 1.32** 1.09 1.51** 1.27* 1.19** Table 9. Ifean variances for all characters of the single crosses involving each inbred with every other inbred. Inbred Code : Far : Ifa1sture : Bar : Weight : Bar : Length : Ear : Diameter Ear no. : of Rows : Ear : Height : Plant : Height A 9.75 1674 5.73 0.076 3.11 16.37 29.76 B 11*02 1661 7.14 0.071 2.01 17.10 26.73 C 8*35 1749 6.77 0.053 1.71 14.43 29.07 D 9.06 1221 3.86 0.053 1.85 18.01 25.43 E 7.92 1252 3.56 0.047 2.19 14.56 22.43 F 12.85 1152 5.34 0.063 2.26 20.64 26.33 G 10.01 1402 4.91 0.051 2.12 16.07 20.17 H 10.50 1055 3.86 0.064 2.77 15.79 23.66 *T 1 Table 10. 7-values for all possible comparisons of variance means given in Table 9. t '• •. Ear Comparison : Moisthxe A :B C D E 7 G H B :C ■: 5 7 G H C :D S 7 G H D :E 7 G H E :7 G H 7 :G H G :H i 1.13 1.17* 1.08 1.23* 1.32** 1.03 1.08 1.32** 1.22* 1.39** 1.17* 1.10 1.05 1.09 1.05 1.54** 1.20* 1.26** 1.14 1.42** 1.10 1.16* 1.62** 1.26** 1.33** 1.28** 1.22* 1.05 : Ear : Weight : Bar : Length 1.01 1.04 1.37*'* 1.34** 1.45** 1.19* 1.59** 1.05 1.36** 1.33** 1.44 1.18* 1.57** 1.43** 1.40** 1.52** 1.25** 1.66** 1.03 1.06 1.15 1.16* 1.09 1.12 1.19* 1.22** 1.09 1.33** 1.25** 1.18* 1.48** 1.61** 1.07 1.17* 1.48?** 1.05 1.85** 2.01** 1.34** 1.45** 1.85** 1.75** 1.9(3** 1.27** 1.38** 1.75** 1.08 1.38** 1.27** 1.00 1.50** 1.38** 1.08 1.09 1.38** 1.27** * Exceeds the 10# point. ** Exceeds the 2# polnt. : m Ear Diameter 1.07 1.43** 1.43** 1.62** 1.21* 1.49** 1.19* 1.34** 1.34** 1.51** 1.13 1.39** 1.11 1.00 i.is 1.19* 1.04 1.21* i.is 1.19* 1.04 1.21* 1.34** 1.09 1.36** 1.23* 1.01 1.25** : Ear No . : of Hons : Bar : Height 1.55** 1.04 1.13 1.82** 1.68?** 1.10 1.42** 1.12 1.38** 1.26** 1.47** 1.02 1.12 1.04 1.17* 1.19 1.09 1.05 1.09 1.17* 1.12 1.21* 1.05 1.06 1.38** i 1.08 1.08 1.25** 1.28** 1.01 1.32** 1.43** 1.24** , 1.11 1.62** 1.09 1.18* 1.24** 1.22* 1.15 • 1.12 1.15 1.50** 1.14 1.05 1.42** 1.10 1.03 1.26** 1.08 1.28** 1*07 1.31** 1.23* 1.31** 1.02 : Hiant : Height 1.11 j 1.02 1.17* 1.33** 1.13 1*47** , 1.27** 1.09, 1.05 1.19* 1.01 USSf* 1.13 1.14 1.30** 1.10 1.44** 1.23** 1.13 1.03 1.26** 1.07 1.17* 1.11 1.05 1.31** 1.11 1.17* -in­ variability. Inbred IE has the lowest variability but it is not signi­ ficantly different from inbreds C and D in this respect. A study of the progeny frequency distributions and variances pre­ sented in Tables* 26-32 shows that for all .characters there are signifi­ cant differences in variability between many of the single crosses. Significant differences between individual crosses as tested by obtain­ ing F-values from variances, occur for all characters, both between individuals within the same crossing group and between individuals in the different crossing groups. Since date of harvest materially affects ear moisture in central Michigan, the frequency distributions for ear moisture are given for each replication. These data, TahLe 26, show that the different single crosses do not lose ear moisture uniformly. Compare, for example, the frequency distributions of the single crosses EH and FH in the early x early group. During the three week harvest period, the ear moisture of cross EH did not change materially while that for cross FH changed more than 10%. Other examples of similar differences in rate of ear drying are apparent in the data. Double Cross Data From the .ttoee .types of single crosses, it .is possible .to. make six types or groups of double crosses; (HxH)(HxH), (Lx L)(Lx L), (HxH)(Hxl), (Hx L)(Lx L), (HxH)CLx L) and (HxL)(HxL). Since only one third of the possible double cross combinations were chosen for this study, not more than one cross for each of the first two types can be obtained when the inbreds are separated four and four into contrasting - groups. 19- When the lnhreds are separated three and five, as in the case of the characters of ear moisture and ear height, no individuals of one or the other of the first two types are obtained. The number of progenies in the other groups varies according to the classification of the inbreds and the original selection of the crosses. The group mean values and the individual high and low mean values within the groups for all characters are presented in Table 11. Plant height is the only character which shows the mean value for the cross (HxH)(HzH) to be higher than any individual appearing within one of the other crossing groups. Even this Value, when tested by the least significant difference is found not to be significantly higher than the high Value in the (HrS) (HxL) group. A study of the data show that the group means do not follow a similar pattern for all characters as they did in the case of the single crosses. The differences between many of the group means are small and even in several cases when these differences are Indicated to be significant by the F-test, they are so minor as to be of doubtful significance from an agronomic standpoint. A comparison of the individual means shows that there is much overlapping between groups for all characters. The characters ear moisture, ear diameter, ear number of rows, ear height and plant height have their lowest value in the (LsL)(LxL) or (HxL)(LxL) group. There is a tendency with all characters for the higher mean values to be associated with those crossing groups containing the greater number of high value inbreds and the lower mean values with those groups in which the low value inbreds predominate. For all characters except ear length, the individual mean low value for the (HzH) (LxL) crosses is higher than the comparable value in the (HxL) (HzL) crosses. Table 11. Group means and high, and low individual mean values for all characters of all double cross combination groups. • Double cross combination groups • • (HzH)(HzH) : (IxL) (LxL) : (HxH) (HxL) : (HxL) (IxL) : (HxH) (LxL) : (HxL) (HxL) Character Ear Moisture la 2 3 43.9 44.9 42.3 Bar Weight 1 2 3 148^3 --- - Ear Length Bar Diameter Ear no. of Hows 1 2 3 1 2 3 1 2 3 Ear Height 1 2 3 Plant Height 1 2 3 155.1 ---- — — 17.7 17.3 . --- ■ 4.3 — 4.0 -- --- 13.9 42.4 47.8 38.0 39.6 43.5 35.8 40.5 43.2 37.6 39.7 44.9 35.8 158.6 173.8 146.2 162.4 177.0 143.5 161.4 167.5 152.1 162.3 180.2 142.6 18.0 19.9 16.1 18.0 19.5 16.9 17.6 18.6 15.8 18.1 19.7 16.3 4.1 4.2 3.9 4.1 4.3 4.0 4.1 4.2 4.0 4.2 4.3 4.1 1 ---- - ■ 15.0 16.7 14.1 14.5 15.4 13.4 15.1 16.3 14.3 15.1 16.5 14.0 25.8 26.5 23.3 32.9 35.3 31.6 26.5 31.6 22.2 29.6 33.5 26.3 29.0 31.7 23.6 92*7 70.3 ---- ------- 87.3 91.4 84.1 75.7 80.0 71.6 80.0 83.8 77.7 81.6 87.8 76.7 --- a 1 Group mean value; 2 High individual mean value; 3 Low individual mean value. The summary of Tables 19-25 of the double cross analyses of vari­ ance for the several characters, Table 12, shows that for all charac­ ters, except ear weight, significance exceeding the 1# point is indi­ cated for many of the items under consideration. No significant diff­ erences for any items are indicated for the character ear weight. diameter also shows a lack of significance for most items. Ear It should be remembered (see Tables 19 to 25) that for items A1 and A2 only one degree of freedom was possible in the case of most characters and so there are no values available for testing in these crossing groups. The group mean variance was determined for each type of double crossing group and these data are presented for all characters in Table 13 . The highest mean variance does not occur in the same crossing group for all characters. It is found three times in the (HxH)(HxH) group, twice in the (HxH)(HxL) group and twice in the (HxL) (HxL) group. The lowest group mean variance is found five times in the (LxL) (LxL) group, and once each in the (HxL)(LxL) and (HxL) (HxL) groups. F-val- . ues, Table 14, obtained for all possible mean variance comparisons of Table 13 show a very irregular pattern of significant differences. The extremely high variance of 10.98 for the (HxH) (HxB) cross in ear length is significantly higher than all other variances for this char­ acter. Significant differences are more numerous for this character than for the others. The double cross progeny frequency distributions and variances, Tables 26-32, show, in general, slightly greater frequency ranges and higher variances than were shown by the single crosses. When the vari­ ability of the progenies is tested by obtaining F-values from their Table 12. Significant mean differences indicated by analyses of variance for double crosses. Data summarized from Tables 19 - 25. '* Item • Ear : Moisture Crosses ** A1 (HxH) (HxH) ~ A2 (LxL) (LxL) • — 3” j Ear : Weight — . A1 : A2 : Ear t : Length ** — B5 (HxL) (LxL) .** — 6 B4 : B5 ** 7 A :B C8 : Ear : Height ** — -- — — . — — ** ** mm mm — (HxH) (HxL) : Ear no. : of Bows ** -- B4 Ear : : Diameter * j : Plant : Height ** ** - •mtm ** ** ***** ** — ** ** — *♦ ** ** — — ** ** ** ** ** — — mm ** ** — (HxH) (LxL) ** -- **' ** ** ** — C9 (HxL) (HxL) *♦ — ** ««• ** * ** 10 C8 : C9 ** ** ** -- * 11 A+B : C * Exceeds the 5# point* ** Exceeds tbe point. — Ed significant difference. ■ a* ** f— — — Table 13. Group mean variance and'high and low individual variance for all characters of all double cross combination groups. • Double cross combination groups • • • (HxH) (HxH) : (LxL)(LxL) : (HxH) (HxL) : (HxL)(LXL) : (HxH)(LxL) : (HxL) (HxL) Character Ear Moisture la 2 3 Ear Weight 1 2 3 \ Ear Length 1 2 3 Ear Diameter 1 2 3 Ear no. of Bows 1 2 3 • 15.70 16.35 12.69 1750 --- 1060 ....... --- 10.98 3.94 ---- --- 1 2 3 ---- Plant Height 1 2 3 36.30 _— _ ---- 1433 2032 953 5.84 9.07 3.96 0.098 0.120 0.064 0.086 0.120 0.062 0.080 0.120 0.050 0.086 0.124 0.056 --- 3.83 5.12 2.75 2.68 3.26 1.61 3.33 4.61 2.12 3.29 5.70 2.05 15.98 18.3 13.1 20.55 25.7 13.2 21.07 32.3 9.6 18.46 24.4 12.9 23.14 30.0 15.1 32.50 49.63 81.8 38.3 49.05 77.3 30.4 45.30 49.9 32.7 51.21 76.3 30.9 .... ■ 1324 1629 911 12.68 18.76 9.67 5.05 8.75 3.04 2.49 Ear Height ! 1211 1879 882 14.33 21.11 9.00 3.93 6.89 3.34 ------- 1630 2477 862 15.50 21.62 9.75 6.22 8.62 4.16 0.056 0.084 14.58 26.50 7.66 ----- ---- ■ a 1 Group mean variance; 2 High individual variance; 3 Low individual variance. Table 14. Comparison la : 2 3 4 5 6 2 : 3 4 5 6 3 : 4 5 6 4 : 5 6 5 : 6 F-values obtained for all comparisons of group mean variance values in Table 13. : Ear : Lbisture .... 1.08 1.00 1.10 1.24* _ . .... . 1.06* 1.00 1.15* 1.08 1.22* 1.13* : Bar : Weight 1.65* 1.07 1.45* 1.32 1.22 1.54* 1.14 1.25 1.36 1.35** 1.23** 1.14* 1.09 1.18** 1.08* : Ear : Length 2.79** 1.77* 2.79** 2.17** 1.88** 1.58* 1.00 1.28 1.48* 1.58** 1.23** 1.07 1.28** 1.49** 1.16** : Ear : Diameter 1.50 1.17 1.00 1.05 1.00 1.75** 1.53* 1.43" 1.53* 1.14* 1.22** 1.14* 1.07 1.00 1.07 : Ear no. : of Hours .... 1.54* 1.08 1.34 1.32 1.43** 1.15* 1.16** 1.24** 1.23** 1.01 : Ear : Height .... .-.... .... «... 1.29* 1.32** 1.15 1.45** 1.03 1.11 1.13 1.14* 1.10* 1.25** : Plant : Height 1.12 1.37 1.35 1.25 1.41 1.53* 1.51* 1.39 1.57* 1.00 1.09 1.03 1.08 1.04 1.13* a 1 (HxH) (HxH); 2 (LxL) (IxL); 3 (HxH) (HxL); 4 (HxL) (LxL); 5 (HxH) (LxL); 6 (HxL) (HxL). * Exceeds the 10# point. ** Exceeds the 2# point. - 25- varianoes, it is found that there are significant differences between many of the progenies both within and between crossing groups. The individual high and low variance values for all crossing groups and characters, Table 13, show how generally, rather uniformly, high and low variance values are found in all groups. An F- test shows no significant differences between the individual high values in each group Above the 10$ point. The same holds true when the low values of all groups are tested. EXPERIMENTAL RESULTS - PREDICTION STUDIES In determining predicted double cross values, Jenkins' (7) method of averaging the four non-parental single cross means was used. The actual double cross means and their corresponding predicted values are given for the seven plant characters under study and for yield in Tables 33 - 40. The pertinent data from these tables are presented in summary form in Table 15. ■? The correlation coefficient was obtained between the actual and predicted values in all instances as a measure of testing the accuracy of this method of determining double cross values from single cross results. Although, all of the r-values obtained from the data under consideration show significance exceeding the 1% point, there are wide differences between them. Ear moisture, ear diameter, ear number of rows, and plant height ail gave r-values exceeding 0.78 which indicates that these values for the double crosses in the present study may be predicted with a high degree of accuracy from the single cross values. Ear weight gave ah - 26- r-value of 0.23 and indicates that little credence can be placed on the predicted values of this character. Yield which showed an rvalue of 0.75 in Jenkins' (7) studies and which has been supported by other workers (5)*(2), only gave an r-value of 0.31 in the pre­ sent instance. Table 15. Average of actual means of double crosses, average of double cross means predicted from single crosses, and their r-values for all' characters. Summarized from Tables 33-1*0. Character • • * Actual Mean j . Predicted Mean : : r value 1*1.15 1*2.25 0.82*# Ear Weight 161.10 162.31 0.23** Ear length 17.97 18.21 0.51*** 1*.15 U.15 0.78** Ear no. of Rows 15.01 ll*.8l 0.85** Ear Height 28.09 26.93 0.59** Plant Height 80.97 79.17 0.89** '■ Yield 61.56 61.98 0.31** Ear Moisture Ear Diameter *#£xceeds the 1% point. Since yield and certain other plant character double cross values may be predicted from single cross data with a satisfactory degree of accuracy, an attempt was made to predict variability values for plant characters in the double cross on the basis of variability values obtained in the single crosses. Jenkins' method as used with -27single cross mean values was followed except that single cross pro­ geny variance values were averaged to obtain the double cross pre­ dicted values. The actual variances for the double crosses and their corres­ ponding variances, as predicted from the single cross variance values are given for all characters in Tables Ul-h7• A summary of the pertinent data from these tables is presented in Table 16. For all the characters, the actual average variance of all crosses is higher than the predicted average variance. When r-values are calcu­ lated between the actual and predicted values, values of r- exceeding the 1% point are obtained for the characters ear moisture, ear weight and ear length and ear number of rows. However, these values, except in the case of ear number.of rows, are small, 0.26, 0.38 and 0.3U,t respectively, and would indicate that the method is of doubtful value for useful prediction purposes. The .r-value of 0.5>2 for ear number of rows is substantially higher than the other values and indi­ cates that predictions as to variability of this character .might be of use. The two r-values, 0.08 and 0.01, obtained for ear height and plant height, respectively, indicate that, in the present study at least, there is no relationship between the actual double cross variances and variances predicted from the non parental single cross variance values. -28- Table 16. Average of actual variances for double crosses, average of variances predicted from single crosses and their r-values for all characters. Summarized from Tables i+l-U?. } t Character : Ear Moisture Ear Weight Actual Mean Variance 1U.16 : : x Predicted Mean Variance : r value 0.26#* 9.67 1388.9 lUio.U x t 0.38** Ear Length 5.37 5.11 0.3U** Ear Diameter 0.0867 0.0603 0.22* Ear no. of Rows 3.26 2.31 0.52** Ear Height 20.83 16.27 0.08 Plant Height 1+8.67 25.21+ 0.01 * Exceeds the $% point. ** Exceeds the 1% point. Since the attempt to predict variability in the double crosses from single cross data proved unsatisfactory, an analysis of the inbreds involved in the double crosses showing the 10 highest and 10 lowest variances for all characters was made. The average variance, Table 17, of the high variance group was two or more times that of the low group, in the case of each character, which makes the differ­ ence between the groups highly significant. The analysis, Table 17, shows that all of the inbreds do not occur with the same frequency in both the high and the low variance groups of double crosses. There is shown a definite tendency for certain inbreds 'to be associated with either the high or low variance Table 17. Frequency of occurence of inbreds in the double crosses with the 10 highest and 10 lowest variances for all characters. Inbred Code : Ear : Moisture : Bar : Wight : Ear : Length r_ Ear : Diameter : Ear no. : of Bows : Ear : Heigit : Plant : Height High Variance Crosses A B C D E F G H Aver, variance A B C D E F G H Aver, variance 5 7 6 6 6 5 4 4 7 4 9 2 1 5 4 5 4 3 3 5 5 5 5 0.115 6 6 4 21.00 2 6 6 7 6 6 4 3 9.35 1998 4 4 2 5 7 9 4 5 930 8 5 8.33 8 4 3 3 6 6 5 2 1 4 4 5 6 8 5 4 4 3 7 7 3 7 3 8 6 Low Variance Crosses 2 3 5 4 7 3 5 8 7 6 4.74 7 7 4 8 6 6 1 3 5 4 1 6 8 6 5 3 3 3 0.058 5 4 3.22 28.94 2.10 6 4 8 70.24 8 6 3 3 3 7 7 3 7 6 13.28 33.96 -30group for one or more characters. Inbred D does not occur as often In the high group for several characters as would be expected by chance alone. The same is true of inbred A in the low variance group. Howeverf these two inbreds also show that an inbred may be associated with low variance for one character and high variance for another. In order to show what types of crosses were involved in the high and low variance groups of double crosses, the data in Table 18 were assembled. Except that no (LXL) (LxL) crosses appear in the high var­ iance group, all possible types of double crosses occur in both groups; In the high variance group, the (HxH) (HxL) and (HxL) (HxL) types occur most frequently while in the low group the (HxL) (LxL) type predominates. DISCUSSION C o m inbreds which have been selfed sufficiently to make them appear uniform for plant characters and show no hybrid vigor when sib mated are considered more or less genetically homozygous for practical purposes. When several inbreds are grown in replicated plots side by side and show significant differences in variability for a character, it may be considered that they are expressing differences in sensitivity to their environmental surroundings. This is assumed to be the reason for the significant differences in variability for the several characters of the inbreds under study. Single cross c o m hybrids are expected, because of their genetic constitution, to express the maximum of uniformity for plant characters. As in the case of inbreds, variability of plant character expression must be attributed to plant reaction to environmental conditions. Since j Table 18. Cross type Frequence of occurence of the different possible double cross types in tbs double crosses having the 10 highest and 10 lowest variances for all characters. : Ear : Ifoisture : Ear : Weight : Ear : Length : Eaf : Diameter : Ear no. : of Rows : Ear : Height : Plant : Height . i High Yariance (brasses 1 0 5 1 2 1 0 0 1 0 0 0 0 0 0 0 0 0 0 4 3 5 5 1 0 1 2 1 1 0 1 5 0 1 5 3 3 4 5 5 0 2 1 1 1 0 1 3 -31. (HxH) (HxH) (LxL) (LxL) (HxH) (HxL) (HxL) (LxL) (HxH) (LxL) (HxL) (HxL) Low Yariance Crosses (HxH) (HxH) (LxL) (LxL) (HxH) (HxL) (HxL) (LxL) (HxH) (LxL) (HxL) (HxL) 0 0 7 1 1 1 0 0 2 0 0 0 0 1 1 0 0 0 4 3 7 3 0 2 3 3 7 5 3 1 2 1 1 3 1 2 1 the inbreds showed significant differences in variability, it is only logical to expect that the single crosses would also show significant differences in this respect. One might expect that the crossing of inbreds with high vari­ ability would produce single crosses with higher variability than the crossing of inbreds with low variability. The present study does not indicate that such is necessarily the case. For ear moist­ ure, inbreds A and C in the late group bad variances of 31.06 and 28.63, respectively. 11.33. The single cross AC had a variance of only In contrast, inbreds F and H in the early group had variances of 17.32 and 18.78, respectively, and the single cross FH had a vari­ ance of 28.78. It would appear that interaction of factors enters into the expression of variance and the variability of the single cross cannot be accurately predicted on the basis of the variability of the inbred parents. Variability is expected to be greater in double cross c o m hybrids than in single crosses because there is opportunity for a certain amou­ nt of genetic segregation in the double cross hybrid. A double cross of the type (HxH) (LxL) would theoretically be more uniform than a cross of the type (HxL) (HxL) • Crosses of the types (HxH) (HxH) and (LxL) (LxL) would be expected to show the least variability. In the double crosses, it appears that the ccmbination of factors plays just as an important role as it does in the single crosses. In the case of ear moisture, the cross of the four late inbreds which ail have high variance gave a double cross with high variance which -33is what we might anticipate. However, crosses of the (HxH)(HxL) type gave 7 of the 10 lowest variances for this character -which is not according to expectation. The data indicate that on the basis of the averages of all the individuals within the different crossing groups for ear moisture that the (HxL) (HxL) group gave significantly lower average variances than any of the other groups tested. However, it should be remembered that there are individual crosses in all of the other groups that have just as low variances as those in the (HxL)(HxL) group. Unfortunately,, there were no crosses in the (LxL)(LxL) group since only three inbreds fell- into the low group. In so far as the present study is concerned, it may well be con­ cluded that the variability in ear moisture cannot be predicted from the parent inbreds. It would seem that it is entirely practicable to cross early and late maturing inbreds to produce hybrids with low variability of ear moisture. One has no assurance from the work re­ ported herein that the practice of combining all early and all late inbreds will produce lower variability of ear moisture than the com* bining of early and late inbreds in the same cross. This discussion concerning variability in the double crosses has been confined to ear moisture since it was the primary object of this study. However, what has been said about ear moisture and its vari­ ability in the double-crosses might well be repeated for all of the other characters studied. -34SOMMARY 1. Experiments were conducted to study the effect upon variability in the plant characters ear moisture, ear-dry weight, ear length, ear diameter, ear number of rows, ear height and plant height, of different methods of combining inbreds with similar plant characters and inbreds with contrasting plant characters. 2. Eight inbreds which showed marked differences for the plant characters under study were combined into all possible single and double cross combinations. All of the inbreds, single crosses and one-third of the possible double cross combinations were planted in the season of 1948 and a study of plant to plant variability was made at harvest time. 3. Significant mean differences for all characters were found to exist between the inbreds giving the highest and lowest mean values for any. particular character. 4. Significant differences in variability were found between inbreds for all characters and were attributed to inbred sensitivity to environmental conditions. 5. For plant height, the crossing of tall x tall inbreds always produced the tallest hybrids; short x short the shortest; and tall x short inbreds always produced hybrids with mean heights intermediate to the other two types of crosses. For all other characters, there was a slight tendency for the crossing of inbreds with- high values to produce high value hybrids; the crossing of low value inbreds to produce low values; and the crossing of a high value inbred with a -35low value inbred to produce intermediate value hybrids, but some hybrids of similar value resulted from each of these three types of crosses. 6. Significant differences were obtained for all characters, except ear weight, between many of the group mean variances for the three types of single crosses. 7* The differences between the group means for all characters in the double crosses, although statistically significant in many cases, are so small in some instances, as to be of doubtful value from an agronomic standpoint. There is a tendency for the crosses with the greater number of high value inbreds to produce hybrids of high value and crosses with a greater number of low value inbreds to produce low value hybrids. 8• There were significant differences between many of the group mean variances for all characters in the double crosses. However, the results were so variable for the different characters that it is impossible to say that the variability of one type of cross is con­ sistently greater than that of another. 9. Predicted mean values and variance values for all characters and yield in the double crosses were calculated by averaging the four non parental single cross values. Significant correlation coefficients between the predicted mean values and the actual mean values were ob­ tained in all cases. The correlation coefficients obtained between the predicted variance values and the actual variance values, although significant for certain characters, were so small in all cases that it -36is doubtful whether this method of predicting variability in the double crosses is of any practical value. 10. An analysis of the double crosses with the 10 highest and the 10 lowest variances for all characters showed that most of the inbreds occurred with equal frequency in both groups. Certain inbreds showed a definite tendency to be associated with crosses of either high or low variances but this association was not the same for all characters. The one conclusion to be drawn from this study is that the inherent characters within the inbreds determine variability in the hybrid and this variability could not be accurately predicted from the inbreds themselves, their single crosses or the method of combining the inbreds. -37- Literature Cited 1. Anderson, D. C. The ralation between single and double cross yields in com. Jour. Amer. Soc. Agron., 30: 209-211. 1938. 2. Doxtator, C.W. and Johnson, I.J. Prediction of double cross yields in corn. Jour. Amer. Soe. Agron., 28: 1* 60-1* 62. 1936. 3. Eckhardt, R.C. and Bryan, A.A. Effect of the method of combining the four inbred lines of a double cross of maize upon yield and variability of the resulting hybrid. Jour. Amer. Soc. Agron., 32:31*7-353. 19l*0. 1*. ________ ,______ _ . Effect of the method of combining two early and two late inbred lines of corn upon the yield and variability of the resulting double cross. Jour. Amer. Soc. Agron., 32:61*5-656. 19l*0. 5« Hays, H,K., Murphy, R.P., and Rinke, E.H. A comparison of the actual yield of double crosses of maize with their predicted yield from single crosses. Jour. Amer. Soc. Agron., 35:60-65. 19l*3. 6. Jenkins, M.T. Correlation studies with inbred and cross­ bred strains of maize. Jour. Agr. Res., 39:677-721. 1929. 7._________ . Methods of estimating the performance of double crosses in com. Jour. Amer. Soc. Agron., 26: 199-201*. 1931*. 8. Millang, A. and Sprague, G.F., Use of punched card equip­ ment in predicting the performance of corn double crosses. Jour. Amer. Soc. Agron., 32:815-816. 19l*0. 9. Pinnell, E.L., The variability of certain quantitative characters of a double cross hybrid in corn as related to the method of combining the four inbreds. Jour. Amer. Soc. Agron., 35:508-511*. 19l*3« 10. Snedecor, G.W., Statistical Methods. Ames: Iowa State College Press., Ed.3. 191*0. -38Table 19. Analysis of variance for ear moisture of inbreds, single crosses and double crosses. Source : DF : SS V : F Inbreds 383 Total Replications Inbreds 1 H : I? 2H 31 R il Within plots 23,204 1,951 11,653 8,270 2,837 547 803 8,797 975.5 1,664.7 8,270.0 709.3 273.5 57,3 24.4 17.02** 29.05** 144.33** 12.38** 4.77* 2.35** 45,491 8,807 19,775 6,156 568 4,903 6,760 1,387 1,557 15,352 4,403.5 732.4 684.0 284.0 4,903.0 482.9 1,387.0 28.8 9.6 152.90** 25.43** 23.75** 9.86** 170.24** 16.77** 48.16** 3.00** 3 83,191 16,176 27,243 251 8,088,0 425.7 83.7 170.27** 8.96** 1.84 0 0 0 0 0.0 0.0 26 5 8,899 2,147 2,252 932 1,842 6,124 290 4,515 6,083 33,689 342.3 429.4 2,252.0 932.0 184.2 382.7 290.0 4,515.0 47.5 9.1 2 7 1 4 2 14 360 , SinjzLe Crosses 1,679 Total Replications Crosses 1 H x H . 2 L x L 3 1:2 4 H x L 5 1*2 : 4 1 x 6 Within plots 2 . 27 9 2 1 14 1 54 1,596 Double Crosses Total Replications Crosses A1 (HxH) (HxH) A2 (LxL)(IxL) 3 A l : A2 B4 (HxH) (HxL) B5 (HxL) (LxL) 6 B4 : B5 7 A :B C8 (HxH) (LxL) C9 (HxL) (HxL) 10 C8 : C9 11 AfB : C RxC Within plots 3,899 2 • 64 - • 1 1 10 16 - 1 1 128 3,705 a H equals late inbred; L equals early inbred. * Exceeis the 5j6 point. ** Exceeds the ijt point. 0.00 0.00 7.21** 9.04** 47.41** 19.43** 3.88** 8.06** 6 .11 * 95.05** 5.22** -39TQble 20. Analysis of variance for ear weight of inbreds, single crosses and double crosses. Source Inbreds Total Replications Inbreds I E : I* 2H 31 R x I Within plots Single Crosses Total Replications Crosses lExH 2 L x L 3 1 :2 4 E x L 5 1+2 : 4 BxC Within plots : m • DF 383 2 7 1 3 3 14 360 1,679 2 27 5 5 1 15 1 54 1,596 SS : V : F 334,559 14,591 73,740 61,327 6,513 5,900 25,769 220,459 7,295.5 10,534.0 61,327.0 2,171.0 1,966.7 1,840.6 ? 612.4 3.96 5.72** 33.32** 1.18 1.07 3.00** 3,115,980 160,645 585,237 86,124 124,495 28,703 343,499 2,415 154,224 2,215,874 80,322.5 21,675.0 17,224.0 24,899.0 28,703.0 22,899.9 2,415.0 2,856.0 1,388.3 28.12** 7.59** 6.03** 8.72** 10.05** 8 .02** 1.18 2.06** 5,680,269 130,327 346,834 65,163.5 5,419.2 17.15** 1.43 0 0 0.0 0.0 0.00 0.00 1,069 68,690 69,172 5,096 7,994 15,128 173,940 505 5,239 468,458 4,734,650 1,069.0 5,283.8 5,320.9 5,096.0 7,994.0 1,680.9 7,247.5 505.0 5,239.0 3,800.4 1,277.9 3.55 1.39 1.40 1.34 Double Crosses Total 3,899 Replications 2 Crosses 64 A1 (HxH) (HxH) 0 0 A2 (LxL) (LxL) 3 A1 : A2 1 B4 (HxH) (HxL) 13 B5 (HxL) (LxL) 13 1 6 B4 : B5 1 7 A : B C8 (HxH) (LxL) 9 C9 (HxL) (HxL) 24 10 C8 : C9 1 11 A+B : C 1 R X C 128 Within plots 3,705 a H equals heavy ear weight; L equals light ear weight. ** Exceeds the point.- 2.10 2.26 1.91 7.53 1.38 2.97** -40Table 21. Analysis of variance for ear length of inbreds, single crosses and doable crosses. Source : DF • SS : V : F Inbreds Total Replications Inbreds I E : La 2H 3 L R x C Within plots 383 2 7 1 3 3 14 360 - 3,936 33 1,539 694 835 10 122 16.5 219.9 694.0 278.3 3.3 8.7 2,242 6.2 1.90 25.27** 79.77** 31.99** 2.64 1.40 Single Crosses Total Replications Crosses 1H x H 2 L x L 3 1:2 41x1 5 1+2 : 4 R x C Within plots 14,112 1,679 2 86 27 4,990 908 323 767 2,991 43.0 184.8 181.6 64.6 767.0 199.4 i 5: 5 1 15 2 2.0 54 1,596 491 8,545 9.1 5.3 3,899 Total 2 Replications Crosses 64 A1 (HxH) (HxH) A2 (LxL) (LxL) 3 A1 : A2 B4 (HxH) (HxL) B5 (HxL) (LxL) 6 B4 s B5 7 A :B C8 (HxH) (LxL) C9 (HxL) (HxL) 10 C8 : C9 11 A+B : C 128 R x C Within plots 3,705 24,800 131 2,952 65.5 46.1 0 0 0.0 0.0 5 781 621 5.0 52.1 44.3 1 4.73* 20.31** 19.96** 7.10** 84.29** 21.91** 4.55* 1.72** Double Crosses 0 0 1 15 14 1 1.0 7 23 35 319 1,103 35.0 45.6 47.9 1 1 86 0 86.0 0.0 11.6 1 1 1,488 20,229 —. . 5.65** 3.97** 0.00 0.00 2.32 4.49** 3.82** 11.60 3.02 3.93** 4.13** 7,41** 5.5 a H equals long ear length; L equals short ear length, * Exceeds the 5# point. ** Exceeds, the 1# point. . 0.00 2 .11 ** -41Table 22. Analysis of variance for ear diameter of inbreds, single crosses and double crosses. Source : DF : SS : V : F Inbreds Total Eeplicat ions Inbreds 1 H : La 2H 3.L Hz I Within plots 383 2 7 1 3 3 14 360 91*35 1.38 18.79 11.34 6.90 0.55 1.39 69.79 0.690 2.684 11.340 2.300 0.183 0.099 0.194 6.90** 27.03** 114.20** 23.16** 1.85 1.95 0.910 1.579 1.350 0.704 16.430 1.062 0.000 0.185 0.047 4.92* 8.54** 7.31** 3.81** 88.91** 5.75** 2.73 2.44** 0.00 0.00 20.87** 1.32 1.84 30.72** 6.65 4.53 0.515 0.461 0.000 0.000 3.940 0.250 0.348 5.800 0.000 0.475 0.252 0.20 0.200 0.34 24.17 340.08 0.340 0.189 0.092 S Single Crosses Total Eeplications Crosses I H x H 2 L x L 3 1 I 2 4H X L 5 1+2:4 HxC Within plots 15 129.53 1.82 42.63 6.75 3.52 16.43 15.93 1 0.00 1,679 2 27 5 5 1 54 1,596 9.98 75.10 0.00 3.92** Double Crosses 3,899 Total Eeplicat ions 2 Crosses 64 0 A1 (HxH) (HXH) A2 (LxL) (LxL) 0 l 3 A1 : A2 B4 (HxH) (HxL) 14 B5 (Hxl) (LXL) 13 1 6 B4 : B5 7 A :B 1 C8 (HxH) (LxL) 14 C9 (HxL) (HxL) 18 10 C8 : C9 1 1 11 A+B : C 128 HxC Within plots 3,705 - 394.77 1.03 29.49 0.00 0.00 3.94 3.50 4.52 5.80 0.00 0.00 2.51** 1.33 1.06 1.80 2.05** a H equals large ear diameter; L equals small ear diameter. * Exceeds the 5$ point. ** Exceeds the 3# point. -42Table 23. Analysis of variance for number of rows of inbreds, single crosses and double crosses. Source : . DI1 SS : V : F Inbreds Total Replications Inbreds ! 1 H : I® 2 H 3L Bzl Within plots 1,799 383 3.57 74.92** 315.00** 40.93** 28.57** 2.07 1,035 5.0 104.9 441.0 57.3 40.0 1.4 2.9 6,629 5 2,630 294 266 1,253 816 2.5 97.4 58.8 53.2 1,253;0 54.4 1.08 36.07** 21.77** 19;70** 464.07** 20.15** 2.70 1.13 2 10 7 734 441 172 1 3 3 14 360 120 20 Single Crosses Total Replications Crosses lHzE 2 L x L 3 1:2 41 :L 5 1+2:4 BxC Within plots 1,679 2 27 5 5 1 15 1 1.0 54 1,596 148 3,846 2.7 2.4 3,899 Total 2 Replications Crosses 64 A1 (HxH) (HxH) A2 (IxL) (IxL) 3 A1 : A2 B4 (HxH)(HxL) B5 (HxL)(lXL) 6 B4 : B5 7 A :B 08 (HxH) (IxL) C9 (ExL) (ExL) 10 C8 : C9 11 A+B : C 128 R x C 3,705 Within plots 15,036 49 1 Double Crosses 0 0 1 14 15 1 1 8 23 1 1 2,210 0 0 0 450 255 495 64 156 774 5;io* 24.5 34.5 7.19* o;oo o;oo 0.0 0.0 0.0 32.1 17.0 495.0 64.0 19.5 33.7 1 1.0 15 616 12,161 15.0 4.8 3.3 0.00 6.69** 3.53** 103.13** 13.33** 4i06** 7.02** 4.80 3.13 1.45** a H equals many rows per ear; L equals few rows per ear. * Exceeds the 9# point. ** Exceeds the l£ point. -43Table 24. Analysis of variance for height of ear of inbreds, single crosses and double crosses. Source : Inbreds Total Replications Inbreds 1 H : La 2 E 3 L Hxl Within plots DP : 383 2 7 1 4 2 14 360 : SS V : F 24,344 185 17,175 13,631 1,988 1,556 1,308 5,676 92.5 2,453.5 13,631.0 497.0 778.0 93.4 15.8 65,437 5,595 29,569 388 6,214 15,155 4,562 3,250 3,297 26,976 2,797.5 1,095.1 194.0 690.4 15,155.0 325.9 3,250.0 61.1 16.9 45.79** 17.92** 3.17* 11.30** 248.04** 5.33** 53.19** 3.61** 122,516 6,961 32,228 3,480.5 503.5 49.93** 7.23** 1.01 26.27** 145.94** 5.32** 8.33** 5.91** Single Crosses Total Eeplicat ions Crosses IE x H 2 LxL 3 1:2 4 H x L 5 1+2 : 4 HxC Within plots 1,679 2 27 2 9 1 14 1 54 1,596 Double Crosses 3,899 Total 2 Beplications Crosses 64 A1 (HxH)(Hx£) 0 A2 (LxL) (IxL) 4 0 3 A1 : A2 B4 (HxH) (ExL) 3 B5 (ExL)(IxL) 29 6 B4 : B6 1 7 A : B 1 C8 (HxH) (IxL) 8 C9 (HxL) (ExL) 16 10 C8 : C9 .1 11 A+B : C 1 128 HxC Within plots 3,705 ' - 0 0.0 1,153 288.3 0 0.0 465 9,771 8,785 605 3,406 2,320 155.0 336.9 8,785.0 605.0 425.7 145.0 2 5,723 8,918 74,409 2.0 5,723.069.7 0.00 4.14** 0.00 2.22 4.83** 126.04** 8 .68 ** 6 .11 ** 2.08* 34.85 82.11** 3.49** 20.0 a H equals high height of ear; L equals low height of ear. * Exceeds the 5$ point. ** Exceeds the 1# point. -44Table 25. Analysis of variance for plant height of inbreds, single crosses and doable crosses. Source : DF : ss : V : F Inbreds Total applications Inbreds 1 H : La 2 H 3 L R x I Within plots 383 2 7 1 3 3 14 360 52,629 248 40,029 34,353 2,912 2,763 1,875 10,477 124.0 5,718.4 34,353.0 971.0 921.0 133.9 29.1 1.08 42.71** 256.56** 7 .85** 6 .88 ** 4.60** 171,306 894 130,131 324 3,013 113,151 12,947 696 4,529 35,753 446.9 4,819.6 64.8 602.7 113,151.0 86.3 696.0 83.9 22.4 5.33** 57.44** 1.29 7.18** 1,348.64** 1.03 8.28** 3.74** 225,239 1,374 98,040 687.0 1,531.8 0 0 0.0 0.0 4.51* 10,06** 0.00 14,941 5,351 6,785 58,988 40 2,796 7,974 1,162 3 19,477 106,348 14,941.0 445.9 452.3 58,988.0 40.0 233.0 398.7 1,162.0 3.0 152.2 28.7 Single Crosses Total Replications Crosses 1 H x H 2 L x L 3 1:2 4H x L 5 1+2 : 4 R x C Within plots 1,679 2 27 5 5 1 15 1 54 1,596 Double Crosses 3,899 Total 2 Replications Crosses 64 0 A 1 (HxH) (HxH) 0 A2 (LxL) (IxL) 3 A1 : A2 1 B4 (HxH) (HrL) 12 B5 (HXL) (IxL) 15 6 B4 : B5 1 1 7 A : B C8 (QzH)(LzL) 12 20 C9 (HxL((HXL) IX) C8 : C9 1 11 A+B : C 1 R x C 128 Within plots 3,705 . 0.00 98.17** 2.93** 2.97** 387.57** 3.81 1.53 2.62** 7.63** 50.73 5.30** a H equals tall inbred type; L equals short Inbred type. * Exceeds the 556 point. ** Exceeds the 1# point. -45Table 26. Code : 25 : 27 Frequency distribution, mean and variance of ear moisture for inbreds, single crosses and double crosses. 28 30 31 33 A* ttb 34 36 % Moisture 37 40 43 46 39 42 45 48 49 51 Inbreds - late 4 4 2 4 6 1 2 2 4 1 6 1 1 1 2 5 11 5 0 7 1 0 1 2 0 0 2 8 3 5 6 1 5 5 2 6 5 1 0 2 2 0 4 4 1 nC B * it c n n D it •» Gr ft ft 52 54 55 57 58 60 61 : Mean: • 64 : , 1 4 0 0 2 3 2 2 2 4 i l l 4 4 1 3 4 3 3 6 3 4 2 0 3 1 1 1 ■ ’ 0 4 3 2 3 2 2 4 0 2 1 8 6 1 7 n 1 » F n t» H 1 it " AB it » AC tt it ~ 1 0 Group mean 0 1 2 1 1 3 0 2 2 . Inbreds - Early 6 2 5 2 6 5 1 3 3 2 2 4 1 2 1 5 5 1 5 6 0 3 5 1 4 3 2 6 5 1 1 2 1 3 3 5 5 6 2 ■* 48.5 31.1 56.7 17.1 54.3 28.6 50.4 36.8 48.6 51.7 25.9 27.8 44.9 18.5 2 3 Croup mean E V 1 1 Single Crosses - late z Late 3 8 5 1 5 2 1 9 1 2 1 4 11 1 6 4 3 3 7 8 4 1 7 3 8 2 ' 3 2 3 1 1 1 0 1 40.9 17.3 41.1 42.3 18.8 18.2 49.2 13.7 47.3 11.3 . a Harvested during the meek of September 19th. b Harvested during the meek of September 26th. e Harvested during the meek of October 3rd. -46Table 26. Cont inued Code : T 5 “ W ~3T*T 4 " 37 “5RT 43“■WT ”49““ssr■55““55”"51": Mean: V • : 27 30 33 36 39 42 45 48 51 54 57 60 64 : • SingLe Crosses - Late z Late (Cant.) 3 7 5 5 2 4 9 4 1 1 1 13 1 1 3 5 1 1 9 4 7 5 8 8 2 6 1 2 1 2 6 7 3 1 4 9 0 5 0 1 6 2 0 1 4 6 1 3 10 2 1 4 3 0 3 5 1 8 2 6 0 1 10 1 2 5 2 11 7 3 1 8 1 8 1 5 5 1 3 6 11 2 1 2 15 » 7 2 1 10 5 3 1 1 0 10 0 3 1 9 7 2 1 6 11 7 1 12 2 1 1 7 9 5 1 4 10 AD i» » AG it it BC tt H 3) n it BG It It GD ti « CG tt it DG tt it Group mean EF tt it - m n it IH it it AE n tt AF n tt 2 4 2 Group mean Single Crosses - Early x Early 0 1 7 8 4 2 2 2 14 7 9 3 1 2 9 9 " 1 3 14 2 8 3 9 8 3 6 2 1 6 5 1 6 3 3 2 5 1 Single Crosses - Late x Early 4 6 7 3 2 4 10 4 1 5 1 2 10 1 0 2 1 4 6 6 1 2 11 6 1 5 12 2 1 44.0 9.5 41.6 9,4 50.5 14.6 44.9 11.2 43.3 7.9 43.6 4.9 42.8 7.7 39.7 44.7 4.9 9.5 1 1 - - 38.5 5.7 41.1 3.7 36.7 38.8 28.8 12.7 44.4 8.5 38.7 8.7 -47Table 26. Continued : Code : 25 28 : 27 30 31 33 AH tt tt BE ft ft BF n ft it ft CE t» n CP tt if CH tt tt DE vt tt DF «t it BH ft tt GE n n GF 34 37 36 -39 52 54 55 57 58 60 : : 61 : Mean: V 64 : : Single Crosses - late x Early (Cont.) 0 5 0 5 1 9 1 10 9 6 11 2 1 1 1 2 5 10 1 2 7 7 3 0 1 -* 8 2 7 2 '1 2 0 0 12 5 1 2 8 3 1 6 4 4 2 9 7 2 1 8 2 3 5 12 2 3 14 1 3 7 6 3 1 7 5 2 3 1 i2 2 7 10 1 6 1 0 1 1 11 6 2 5 7 8 1 1 10 2 8 10 3 2 2 13 3 4 13 6 6 4 3 1 1 9 10 _ 2 14 4 2 5 1 4 8 3 0 1 1 8 6 1 1 6 7 4 2 8 2 8 4 3 1 12 5 .5 5 4 3 7 9 1 7 6 5 1 1 8 1 5 7 1 3 1 G 1 3 11 1 2 2 9 6 1 7 3 1 5 0 8 6 2 4 3 0 4 1 6 6 4 8 2 4 2 . __ r 1 ' 1 1 1‘ 0 39.7 7.1 46.6 12.4 39.6 10.3 40.9 7.1 46.3 9.6 40.1 7.1 40.7 3.4 43.4 5.2 * ' 38.8 12.6 37.8 10.2 t 44.1 10.3 39.1 16.7 42.5 13.2 41.4 9.5 - tt tt # Moisture 40 43 46 49 42 45 48 51 ■ 2 2 CE n tt - Group mean -48Table 26. Continued Code : 25 : 27 28 30 31 33 34 36 % Moisture 37 40 43 46 39 42 45 48 Double Crosses - (late ACBD 3 1 w 8 1 4 » 3 1 6 ACBG 1 n 1 2 2 tt 5 1 0 4 AGCD 1 n 1 5 4 tt 2 2 6 4 1 3 BGCD 1 » 4 1 n 0 4 1 1 Croup mean AEBC •» tt AfiDE it n HBCD it it ABCF tt tt APED A It hjcf n » ACBE ti ft AFBC n it AECC it tt AGCF tt_ n 49 51 52 54 x late) (late 5 5 3 2 4 1 1 9 3 4 10 6 3 5 10 3 1 4 2 9 3 2 5 0 5 1 5 3 3 2 12 1 7 6 1 55 57 61 : Ifean: V • 0' 0 64 • 58 60 x late) 2 0 1 1 1- 43.9 15.4 44.9 12.7 1 42.3 16.3 1 2 Double Crosses - (late x late) (late x Early) 2 7 5 1 2 2 5 .1 3 6 1 4 2 7 1 2 2 1 5 0 3 6 4 1 1 3 2 3 2 8 5 7 8 1 3 1 5 3 4 7 1 2 4 2 3 9 8 8 1 1 2 7 2 3 1 5 1 0 2 3 3 2 1 9 2 2 8 4 4 1 4 3 7 4 1 3 4 3 10 ■' 2 3 -1 4 1 9 7 2 7 3 1 5 1 1 0 9 4 1 2 4 13 0 5 6 1 2 1 4 1 4 2 2 2 ■ 8 2 6 6 3 5 7 3 1 1 5 1 2 1 2 0 6 2 9 1 3 3 6 1 2 4 8 3 2 4 1 0 1 8 1 5 4 1 7 6 6 1 0 4 3 2 0 1 10 3 1 2 7 3 4 2 7 5 1 5 1 44.6 18.4 43.9 15*7 1 1 45 i9 21;1 44.6 17; 2 45 ;1 9; 8 43.1 16.5 40.6 11.9 41.4 9.8 43.8 17;6 40.9 26.5 1 - 1 ' 2 - - 47.8 12.1 - 39.4 15.1 “49**' Table 26. Continued : Code : 25 28 : 27 30 ADEGr « BBCGr 19 ft BCFG 99 99 HEDG ft 99 BEDS 99 99 CDEG tt 99 CGDF H 99 AHBC n 99 m m tt 99 ABGH tt 99 AHGD 99 ft MGR 99 99 34 36 1 - 1 1 0 1 3 5 5 2 1 2 1 2 2 1 1 1 1 1 1 1 3 2 1 . 8 2 1 tt 1 3 tt BGCH tt 99 % Moisture 37 40 43 46 39 42 45 48 Double Crosses-- (Late 5 5 1 8 4 5 9 3 3 2': 2 8 1 2 0 2 1 13 0 3 6 1 2 1 4 5 0 4 9 1 3 0 6 0 1 2 3 1 6 5 6 3 6 3 4 2 3 5 1 4 5 0 3 0 1 4 6 5 10 1 4 8 1 3 3 agdh 99 . 99 mcD 31 33 " 2 3 7 5 2 6 1 5 4 4 11 2 2 5 4 8 7 3 5 3 7 5 5 8 5 5 2 ?v .6 3 0 5 10 6 9 5 4 7 2 7 1 7 6 9 49 52 55 51 54 57 i Late)(Late 3 6 4 4 3 6 5 4 6 8 0 5 2 4 6 6 3 1 21 9 1 8 7 2 8 1 1 5 1 7 1 1 3 1 1 5 2 9 3 5 1 0 6 1 1 9 3 11 2 7 3 7 3 7 5 3 1 0 4 3 2 1 9 6 2 5 5 3 7 4 9 2 i 9 4 2 8 5 9 : : 61 : Mean: V 64 : : x Early) (Cont.) 41.4 10.2 1 2 1 2 1 45.2 15.3 43.4 16.2 43.1 9.5 • 39.4 22.0 42.2 16.6 39.9 7.7 46.7 21.8 39.5 16.6 41.7 12.4 41.7 18.7 42.6 11.0 - 38.0 15.7 42.3 9.8 42.8 9.6 1 1 3 3 1 0 1 1 6 0 3 1 1 4 2 4 1 1 5 3 58 60 2 2 1 3 1 6 1 5 2 1 1 1 1 50Table 26* Continued : _ Code : 25 28 31 34 j 27 30 33 36 % Moisture 37 40 43 46 39 42 45 48 49 51 52 54 55 57 : : 61 : Mean: V 64 : : 58 60 Double Grosses - (Late x Late) (Late x Early) (Cont.) B G r lH it 2 it 2 2 1 n 0 2 4 7 9 1 6 10 1 3 4 4 1 1 1 9 6 2 1 4 6 4 8 2 2 9 CDGH tt 3 1 __ 40.4 10.1 41.5 12.9 42.4 14.6 ■ - 2 ... Group mean Double Grosses - (Late x Early) (Early x Early) BFCE If 3 3 7 7 8 3 4 11 7 6 6 7 3 n 2 AEPH 2 it 1 « 1 0 1 1 BEIH n it 1 c m « « 1 2 1 3 2 7 7 3 3 3 7 3 2 3 3 1 4 3 8 7 5 3 9 2 8 7 2 8 3 1 10 2 4 5 1 2 1 4 1 3 5 3 2 4 1 4 8 5 2 7 deeh n 5 8 EFGH It 1 2 3 1 6 H 1 1 2 3 5 1 5 0 6 3 1 1 2 3 9 2 1 3 2 0 0 43.5 15.4 40.2 9.7 41.2 17.2 39.1 14.5 35.8 12.4 37.9 21.6 39.6 15.5 41.6 15.8 38.5 9.0 2 2 1 Group mean Double Crosses - (Late x Late) (Early x Early) ABEF * 1 i» 1 2 bdef It 1 1 It tt 1 1 10 1 2 6 5 6 2 1 2 6 2 2 9 5 1 1 2 2 2 3 1 6 6 5 4 6 7 4 1 3 1 1 3 1 1 . 1 9 6 1 0 3 2 9 8 6 2 0 CGEF n it 3 4 5 7 5 6 AGEF it 3 6 6 10 7 2 - '“r* 1 - 39.5 20.1 41.2 9.1 -51Table 26. Continued Code : 25 'e • 27 2d 30 3i 33 34 36 %_Mbisture 37 46 43 46 39 42 45 48 49 51 52 55 54 57 58 61 : liaan: V 60 64 : : Double Crosses - (Late z Late) (Early z Early) (Cont.) 5 9 5 1 ABES w 0 7 5 1 6 1 ft 7 41.7 2 5 3 0 1 1 1 2 0 0 ■1 9 4 3 0 1 ABEH »» 6 8 2 4 38,7 3 7 2 1 1 5 1 2 0 7 5 1 5 BCIH tt 1 2 3 8 3 1 2 tt 2 43.2 7 2 1 2 6 3 1 5 5 1 3 1 1 BCJH tt 1 5 9 3 2 tt 42.1 2 2 2 2 4 7 1 5 7 2 5 1 mm tt 6 9 2 1 0 1- 1 » 40.1 3 4 7 1 4 1 CGEH 3 12 4 1 tt 7 0 3 5 4 1 tt 7 1 40.7 6 2 1 1 1 1 " 1 1 8 4 5 1 DGEEH n 1 5 11 3 t» 37.6 3 5 3 2 1 6 Group mean 40.5 AFCE It ft AEDF n tt CEDE n n BEFG n « D7EG tt •t AECH it it AHCF tt it Double Crosses - (Late z Early) (Late 7 3 3 4 8 7 0 4 1 7 8 2 0 2 0 1 0 1 5 4 10 7 2 2 9 2 7 5 3 1 2 1 1 13 4 6 3 0 3 4 2 1 1 5 10 4 1 2 10 3 4 1 7 2 3 5 1 0 1 7 3 2 5 1 1 1 6 2 7 2 1 2 3 5 0 2 4 1 4 1 2 0 1 6 4 1 1 5 2 8 2 5 7 2 6 4 0 1 9 3 6 7 9 3 1 1 1 7 1 6 1 2 1 5 5 1 3 6 13.5 15.5 15.5 21.1 12.3 13.6 12.1 14.3 z Early) 3 41,6 13,3 40.2 9.7 40.0 10.7 4 41.4 16.6 37.4 18.8 44,9 11,4 37.1 11.2 1 2 1 1 1 - Table 26. Continued Code : 25 • • 27 28 30 . . . . 31 33 34 36 % Moisture 37 40 43 46 49 52 39 42 45 48 51 54 55 57 58 60 61 : Mean: • 64 : • Double Crosses - (Late z Early) (Late x Early) (Cont .) 2 2 1 4 1 9 1 7 2 2 9 tt 36.8 6 6 3 5 0 1 8 3 0 AEGH 3 4 1 0 « 2 4 .1 1 12 tt 42.8 5 1 4 10 AHFG 2 6 8 1 1 1 1 tt 7 5 4 1 3 tt 35;8 2 4 2 1 1 10 3 1 1 BHDF 3 7 5 tt 7 1 4 4 2 2 tt 38.1 6 3 8 1 1 1 1 8 2 4 5 EBBB 3 5 1 4 7 « 41.9 6 3 2 3 6 0 2 5 6 6 1 BHFG it 8 3 6 1 1 0 1 it 39.4 4 8 1 2 4 1 1 0 8 3 7 1 C23)H n 1 7 5 5 1 1 tt 42.1 2 1 0 2 5 1 9 2 2 7 9 CHDF it 1 2 7 3 6 1 » 38.0 1 8 6 2 2 1 1 2 4 1 6 6 CFGH n 1 1 5 10 0 2 1 n 39.0 1 3 8 6 2 5 2 2 11 BEGS it 2 8 4 6 w 38.8 7 4 5 2 1 1 Group mean 39.7 V AHDF n 10.1 12.7 14.4 14.8 9;9 12.4 .. llil 14.2 12.9 11.5 12,7 -53Table 27. : Code : 25 : 49 A C e H Frequency distribution, mean and variance of ear weight for inbreds, single crosses and double crosses. Weight in grams : : 50 75 100 125 150 175 200 225 250 275 : Me an : 7 74 99 124 149 174 199 224 249 274 299 : 5 12 12 13 18 20 2 11 21 Group mean 6 2 Heavy Inbreds 15 5 4 1 ' 2 9 10 9 1 11 4 Ihbreda! - Light 5 1 8 14 20 9 13 11 15 8 12 21 7 8 1 21 17 1 Group mean Single Crosses1 - Heavy x Heavy 3 9 13 0 6 10 11 2 AC 9 7 1 7 1 10 24 1 AE 7 2 8 20 11 10 AH 1 1 9 8 2 8 15 12 2 1 CE 7 CH 3 5 8 18 19 Group mean Single CrossesI - Light x Light 3 3 7 9 17 14 5 BD 1 BF 3 2 5 8 12 16 12 2 5 7 7 10 18 12 1 BG 2 6 11 24 10 7 DF 2 1 4 14 15 23 BG 1 3 18 9 5 21 FG 2 2 Group mean Single Crosses - Heavy x Light 8 2 8 9 6 18 AB 5 1 1 8 11 12 15 9 1 1 3 AB 3 3 6 8 10 13 12 AF 7 12 10 14 10 3 3 AG 7 2 7 19 4 14 3 CB 2 1 10 17 8 8 5 9 CD 17 10 8 10 4 10 CF 7 11 13 2 4 7 7 CG 2 13 8 7 11 8 2 9 EB 12 18 3 ED 5 8 13 1 EF 2 2 9 9 26 11 1 0 4 15 12 15 12 EG 1 7 0 10 20 16 5 HB 2 HD 3 15 7 21 13 1 7 1 HF 5 13 16 18 2 1 2 HG 4 9 13 16 13 Group mean B D F G . 4 2 3 1 1 1 1 3 1 6 2 1 1 98.7 97.7 85.0 88.5 92.5 1,302 722 366 452 710 71.0 76.3 66.1 59.9 68.3 393 548 600 517 514 179.2 151.2 166.4 180.5 191.1 169.5 2,394 1,378 1,308 1,642 1,029 1,412 171.3 168.3 175.2 142.1 162.4 122.9 157.0 1,460 1,607 1,499 1,064 , 919 . 897 1,241 * 2,099 1,467 1,323 • 1,753 , 2,213 1,214 1,316 2,437 1,796 1,286 903 1,037 956 1,142 958 1,272 1,448 156.4 163.1 172.5 167.2 160.4 188.4 179.8 186.1 174.9 152.8 153.5 167.2 161.5 147.1 117.1 125.0 160.8 -54Table 27. Continued :__________ WeightIngrams______• Code : 25 50 75 100 125 150 175 200 225 250 275 : 49 74 99 124 149 174 199 224 249 274 299 : : : Mean : : : V AEBH Double Crosses - (Heavy x Heavy) (Heavy x Heavy) 2 6 10 13 10 12 5 2 148.3 1,750 BFDG Double Crosses - (Light x Light) (Light x Ligxt) 3 8 15 15 16 2 1 155.1 1,060 Double Crosses AEBC 2 4 9 AFCE 1 5 ABCG 1 4 13 2 2 8 8 AHBC 7 ABEH 2 6 AHCD 7 1 5 AHCF 1 3 4 ACGH 1 0 2 7 AEEH 1 0 4 AEGH 1 1 1 12 7 BCIH 1 6 2 2 9 CJS)H 7 CEBH 1 2 CGEH 7 1 Group mean - (Heavy 11 13 16 14 14 12 8 18 16 15 9 15 11 15 14 15 21 14 10 16 9 17 10 11 10 13 10 13 x Heavy) (Heavy x Light) 7 161.0 6 4 4 0 1 17 6 163.4 7 150.7 5 3 1 3 6 4 146.4 1 146.2 3 11 160.7 7 2 1 13 2 173.8 13 12 2 10 3 168.8 9 146.3 2 U 152.5 15 4 12 155.7 6 2 0 162.0 8 2 1 15 1 160.8 2 24 7 173.3 7 1 1 13 158.6 * 1,757 936 1,807 2,477 1,230 1,779 2,179 1,736 862 1,347 1,593 1,732 1,235 2,152 1,630 Double Crosses - (Heavy x Ligit)(Light x Light) AFBD HDCF AFBG BGCD BCFG BEDG BEFG CGDF DFEG BHDF 1 1 4 0 2 0 5 1 3 2 8 0 2 1 1 1 2 2 bgdh 1 1 £HFG DGIH 1 8 Group mean 4 3 8 5 7 9 4 4 6 5 9 13 3 6 8 12 7 9 8 10 11 12 10 17 12 7 18 20 13 14 18 19 11 14 16 21 16 16 11 18 20 15 17 20 16 14 14 10 15 16 16 15 18 13 13 7 13 7 11 6 11 7 7 5 10 5 7 6 3 3 1 3 0 1 5 1 6 1 1 1 1 1 169.9 172.2 170.5 158.0 169.9 148.0 177.0 161.4 168.7 160.4 157.9 158.0 158.4 143.5 1,191 1,028 1,180 1,465 1,453 1,879 1,297 945 1,715 888 905 1,111 882 1,019 162.4 1,211 -55 Table 27. Continued ; Weight In grams Code : 25 50 75 100 125 150 175 200 225 250 275 : 49 74 99 124 149 174 199 224 249 274 299 : : : Mean : : Double Crosses - (Heavy x Heavy)(Light x Light) 2 9 2 167.5 ACH3 1 0 0 9 10 13 14 2 5 1 158*8 4 AEDF 4 14 19 11 152.1 4 BFCE 1 11 18 14 12 3 166.2 ACBG 2 1. 3 11 18 11 U 8 AHED 5 163*5 2 2 6 10 16 11 4 13 13 1 165*8 2 3 24 AHDF 157.3 20 6 7 11 AHFG U 1. 4 163.9 10 9 2 1 BGCH 1 3 6 9 19 154*4 6 1 3 6 17 14 13 BDBH 9 1 164,1 1 2 5 11 14 17 CHDF Group ipean 161*4 Double 3 AH)Z 1 BBCD 3 ABCF ABEF 1 1 CFDE 1 AGHS AGCD 2 AGCF 1 ADEG 1 0 AGEF HBCG 1 GDEG CGEF 1 2 AHEH 1 ABGH AG3DH ffiCD 1 0 2 BCIH HEFEt 1 HECH CDCB 2 CFGH DEEH 2 DEGH 4 ETCH Group mean Crosses 4 11 3 2 5 6 2 8 1 7 5 2 7 4 2 3 1 4 3 7 2 2 1 1 3 6 3 7 5 4 14 4 6 8 10 7 11 6 9 2 8 2 2 4 7 2 6 4 10 7 1,442 1,023 993 1,572 1,607 911 1,430 1,629 1,103 1,533 1,324 - (Heavy x Light) (Heavy x Light) 147.1 13 17 5 0 6 1 5 14 19 12 176;6 4 15 11 9 2 153*9 9 7 13 17 5 4 2 164;5 177; 2 5 7 10 16 14 170;0 4 9 9 19 11 2 0 1 163; 6 8 12 19 5 12 180; 2 6 13 16 1 4 162*8 1 11 19 19 161*8 13 13 18 4 2 7 2 175*5 9 6 11 20 179*8 7 14 21 11 5 2 167*8 7 8 13 21 3 150*3 18 10 15 1. 159.6 6 1 1 13 17 12 2 5 158*4 6 18 15 167.3 7 U 9 12 10 6 2 146 ;7 8 16 8 4 150.4 8 16 15 161.2 8 4 9 9 15 161.6 8 2 11 19 10 164.2 6 1 10 20 17 151.0 5 13 16 13 8 164.5 15 11 18 142;6 2 13 15 12 1,797 1;305 1,723 2;0S2 1,364 1,811 2,021 1,481 1,028 1,127 1,396 1,137 1,139 1,567 1,440 1,189 1,229 1,829 1,383 1,637 1,179 1,193 1,392 953 1,488 162*3 1,433 -56Table 28. Frequency distribution, mean and variance of ear length for inbreds, single crosses and double crosses. • • Code : 5 :6 7 8 9 10 A B C H 2 7 3 Group mean 1 Length in centimeters 11 13 15 17 19 21 23 25 12 14 16 18 20 22 24 26 Inbreds 13 16 7 15 24 9 1 1 9 5 22 13 Inbreds 3 21 19 32 13 6 10 12 14 13 3 4 D £ 3 F 4 15 G 4 12 Group mean Single Crosses AB 1 3 10 13 AC 1 1 6 2 6 29 AH BC -1 1 4 4 0 1 5 m 1 GH Group mean Single Crosses 2 10 22 DE 2 5 10 m 1 3 1 1 DG EF 1 6 11 7 EGr 1 0 FG 1 10 4 18 0 1 Group mean Single Crosses 3 6 14 AB 0 11 27 1 AE 7 5 AF 4 AG 5 13 6 7 1 1 HD 7 8 1 BE 8 3 5 BF .1 10 BG 1 2 4 CD 3 1 1 1 CE 3 2 CF 2 1 CG 12 5 HD 1 2 8 23 BE 13 18 HF 2 8 3 11 15 HG 1 1 Group mean . • • 27 : Mean 28 : - Long 3 14 4 16 1 13.5 13.5 18.6 14.1 14.9 7 V 4.87 1.69 4.66 2.91 3.53 - Short 12.7 2.31 12.3 1.45 ii.8 5.85 12.3 5.29 12.3 3.73 ' 16.9 11.00 20.0 7.32 18.4 2.43 20.0 15.01 3.52 18.8 2.80 21.6 19.3 6.25 ' 2.60 16.1 17.1 5.19 18.5 2.16 17.1 3.29 18.2 2.05 16.0 6.17 3.60 W.i 1 2 - Long x 17 14 12 16 21 2 7 16 15 35 3 11 Long 2 14 9 18 4 29 1 7 3 15 1 - Short x Short 0 1 25 2 9 31 1 25 29 33 8 1 1 28 23 9 17 - Lang x 21 15 2 19 29 13 6 17 17 28 18 19 18 22 10 15 9 10 13 18 4 16 7 6 13 29 23 4 5 14 7 22 Short 1 2 11 7 4 17 31 22 20 20 4 1 14 21 1 2 1 17.1 16.1 17.4 18.3 17.8 18.1 17.8 18.9 20.3 19.6 22..0 21.8 17.4 16.4 15.5 16.2 18.1 4.59 3.55 5.40 5.95 4.65 4.91 5.87 4.99 4.13 5.91 5.33 6.99 3.64 2.57 6.07 5.98 5.03 -57Table 28. Continued : Code : 5 : 6 7 8 length In centimeters 9 11 13 15 17 19 21 23 10 12 14 16 18 20 22 24 : 25 27 26 28 : Mean : V : : j AHBC Double Crosses - (long x long) (long x long) 2 3 10 13 8 16 7 1 17.3 10.98 DFZJGr Double Crosses - (Short x Short)(Short x Short) 1 4 13 27 13 2 17.7 3.94 Double Crosses -(long x long) (long ACBD 2 9 24 13 10 AEBC 1 3 6 9 23 12 4 ABCF 3 3 18 13 15 7 ACBG 2 3 10 15 14 14 AHED 3 3 11 23 15 5 ABEH 2 2 13 15 21 7 ABFH 1 0 3 4 13 22 14 3 AB® 2 5 11 22 20 ABDD 1 6 14 15 14 10 AECH 4 8 14 18 11 3 ABCF 3 15 24 14 AC® 1 0 0 3 8 19 13 10 B3CD 1 1 3 4 15 22 10 BCEH 1 0 2 7 14 17 17 1 BCIH 3 5 12 18 14 7 BGCH 1 2 IL 14 15 12 Group mean x Short) 2 2 1 2 2 3 6 4 1 1 4 1 1 Double Crosses - (Long x Short)(Short x Short) AEDF 1 8 22 16 9 4 BDSF 2 8 27 17 6 CFDE 2 3 18 23 11 3 ADEG 4 13 20 21 2 AGEF 1 4 18 17 17 3 BEDG 2 15 24 17 2 BFDG 2 6 8 23 17 4 BEFG 1 4 15 25 13 2 CDEG 1 4 13 26 15 1 CGDF 1 5 15 31 6 1 .1 CGEF 1 5 19 23 12 DEIH 3 2 16 27 12 DE® 3 15 25 15 2 DGEH 3 3 14 25 14 1 EF® 1 4 8 9 23 12 3 Group mean ^ 18.6 4.98 17.5 6.05 17.6 6.37 18.5 8.28 17.7 5.45 16.1 . 5.13 17.0 .6.43 17.7 . 4.16 18.0 . 6.71 17.0 7.24 19.9 , 4.17 18.9 8.62 18.9 5.02 17.9 * 6.63 17.7 6.93 19.0 7.27 18.0 . 6.22 • 16.9 18.2 19.3 17.8 17.6 17.9 17.5 17.4 19.5 19.2 19.0 17.2 17.7 17.4 17.0 18.0 4.32 3.25 3.36 3.57 3.97 2.94 5.15 3.90 3.41 3.58 • 3.49 3.70 3.34 4.11 6.89 3.93 -58Table 28. Continued ; Code : 5 : 6 7 8 AHDE ABEF BGFG AHDF AHFG BHDF fflPG CHDF Double Crosses - (Long 1 1 6 7 24 15 9 10 24 2 1 1 2 6 11 16 3 12 34 3 8 29 3 5 9 26 7 25 0 1 2 11 U 2 9 10 Length In centimeters 11 13 15 17 19 21 23 12 14 16 18 20 22 24 . Group mean Double Crosses 0 3 1 BECD 2 2 AFBD 5 AFCE 1 1 0 EDCF 5 EBCE 4 9 AG-BE 1 4 1 AFBG AGCD 3 3 2 6 ABCG 1 2 AGCF 1 3 BGCD 0 BBCG 1 4 2 3 AGDH 2 AE5H 1 6 0 7 1 AEGH 1 2 4 BDB3 1 4 bgdh 1 7 4 BEEH 1 9 BEGS 2 5 CEDE 1 1 CDGH 0 0 3 1 CEEH 3 CGEH 0 1 3 CFGH Group mean - (Long 9 12 14 19 11 25 7 14 15 20 7 23 9 26 5 16 14 17 4 9 9 17 7 21 9 25 25 16 11 23 10 24 12 21 18 20 15 13 12 15 13 12 8 16 2 18 6 11 27 28 25 26 : : : Ifean : V : : x Long) (Short x Short) 5 1 15.8 12 2 17.0 8 3 13 17.9 2 9 17.6 3 17.8 14 19 1 17.8 1 22 4 18.4 24 10 18.6 17.6 x Short) (Long x Short) 2 20 13 18.9 21 2 17.9 13 17.7 4 2 27 9 19.3 2 17.6 17 1 3 17.2 14 5 17.8 14 23 5 5 18.7 13 4 3 1 17.7 22 19 19.7 3 3 13 14 18.8 15 12 18.8 17.8 18 3 8 2 16.3 14 4 17.4 17 3 17.7 IS 3 1 17.9 10 16.5 3 17.4 19 18.0 5 2 19 27 6 18.5 18.5 8 24 18 15 4 19.4 18 18 3 19.3 18.1 , 6.61 6.22 8.75 2.38 4.59 3.04 3.38 5.45 5.05 - 6.47 4.3.4 4.00 4.1l 4.49 6.30 6.42 9.07 8.76 4.98 6.3.7 6.06 4.24 4.40 6.81 3.96 4.39 5.99 5.68 6.58 4.46 5.18 5.33 7.53 5.84 -59 Table 29. Frequency distribution, mean and variance of ear diameter for inbreds, single crosses and double crosses._______ D ; Diameter in centimeters ; : Code ; 2.75 5.00 5.25 5.50 5.75 4.00 4.25 4.50 4.75 5.00 ; Mean: 7 A B E H 2 1 2 Inbreds - Large 10 15 6 7 22 12 9 7 2 22 6 22 13 11 4 13 15 15 Inbreds - Small 2 14 21 13 19 1 21 1 1 6 23 5 4 4 4 3.85 3.63 4.13 3.65 3.81 11 Group mean C D P G l 6 2 4 5 Group mean Single Crosses - large x 11 2 AB 1 2 13 AE 22 2 5 AH 1 BE 2 25 6 m 8 tt Group mean Single Crosses - Small x 3 28 CD 31 4 6 CP 5 2 4 39 CG 3 12 36 DP 7 38 4 DG 25 1 9 24 PG Group mean Single Crosses - large x 21 3 1 1 AC 14 2 6 AD 16 2 3 AF 22 1 5 AG 10 31 2 2 BC 15 1 3 ED 1 4 24 BF 3 31 1 BG 2 1 9 EC 15 4 ED EF 6 15 8 EG 1 33 3 HO 37 12 1 3 HD 12 26 10 1 HF 32 0 6 11 HG 1 Group mean large 17 21 16 23 15 16 37 11 13 14 13 34 Small 18 11 19 8 1 6 3 5 6 1 Small IS 14 14 22 23 15 18 14 13 2 20 21 15 16 16 9 8 31 24 16 28 11 35 14 15 9 6 1 5 6 6 3 0.143 0.048 0.076 0.048 0.079 3.51 0.074 3.53 0.079 3.44 0.075 3.40 0.041 3.47 0.067 5 8 1 9 2 4 1 4.29 0.096 4.36 0.061 4.16 0.073 4.50 0.034 4.12 0.100 4.40 0.035 4.30 0.066 • 1 2 2 1 8 1 2 1 1 4.15 4.02 3.97 3.97 4.02 3.82 3.99 0.042 0.040 0.057 0.044 0.048 0.036 0.044 4.18 4.23 '4.24 4.16 3.99 '4.23 4.17 4.12 4.39 4.23 4.18 4.29 4.13 3.95 3.93 3.95 4.15 0.079 0.085 0.076 0.063 0.057 0.050 0.116 0.044 0.057 0.061 0.050 0.031 0.037 0.044 0.082 0.077 0.063 -60Table 29. Continued Diameter in. centimeters Code • 3.00 3.25 3.50 3.75 4.00 £.25 4.50 4.75 5.00 5.25 : Mean : V ABEH (Large x Large)(Large x Large) Double Crosses 14 13 22 1 1 9 4.34 0.084 CGDF (Small x Small)(Small x Small) Double Crosses 2 26 1 2 19 10 3.97 0.056 Double Crosses 1 2 1 2 5 4 2 1 0 2 1 1 4 1 2 3 2 5 2 AEBC ABDE ABEF AGEE AHBC AH3) ABEH ABGH AECH AEEH AECE BOSS EDM BEEB BEGS Grpup mean «. 2 2 5 3 7 3 6 7 6 3 6 7 5 4 7 (Large 13 25 10 11 19 21 24 17 14 20 19 13 18 14 9 x Large) (Large x Small) 24 2 13 5 11 2 16 2 2 1 17 20 4 3 18 2 21 10 14 4 1 13 4 15 13 1 13 3 1 17 12 2 14 19 2 13 19 3 21 1 7 3 21 14 12 2 17 1 2 22 2 14 4 2 19 19 Double Crosses - (Large x Small)(Small x Small) . BDCF 26 13 5 2 2 12 CEDE 17 6 21 15 1 AGGD 14 1 1 0 5 4 15 20 AGCP 10 4 21 1 4 9 11 12 BGCD 25 8 11 4 BCFG 2 21 10 1 10 4 12 18 BFDG 14 7 6 15 CDEG 21 16 2 8 11 1 1 CGEF 18 3 6 15 15 3 DFEG 6 24 12 1 1 16 CHDF 23 10 8 18 1 CDGE 2 23 15 14 5 1 0 21 23 7 GFGSE 1 5 3 DGIH 20 8 8 16 8 Group mean . ' * 4.34 4.22 4.31 4.27 4.15 4.17 4.12 4.17 4.17 4.17 4.21 4.23 4.35 4.27 4.30 4.22 0.098 0.092 0.1U 0.096 0.120 0.095 0.064 0.110 0.120 0.084 0.110 0.099 0.081 0.100 0.095 0.098 - 4.05 4.19 4.12 4.13 4.06 4.05 4.10 4.18 4.20 4.12 4.12 4.13 3.95 3.97 4.10 0.067 0.067 0.110 0.120 0.075 0.096 0.089 0.100 0.097 0.075 0.062 0.092 0.068 0.081 0.086 -61Table 29. Continued : Diameter In centimeters _________ : : Code : 3.00 3.25 3.50 3.75 4.00 4.25 4.50 4.75 5.00 5.25 : Mean: V BECD ABCF AEDF AECG BECG bbdg BEFG AHCD ABCF AHDF AHFG fflCD ffiDF BHFG CGIE Double Crosses - (Large x Large)(Small x Small) 20 20 1 0 3 16 17 1 4 6 7 25 22 17 15 6 13 16 7 22 2 10 30 2 2 1 15 3 13 22 2 17 3 17 17 4 15 1 6 7 3 17 8 19 6 0 1 14 24 11 2 7 1 16 12 1 20 11 1 11 9 10 24 5 17 9 2 18 2 1 11 11 12 3 23 11 10 8 1 32 9 2 1 15 12 4 6 19 Group mean 4.28 4.04 4.16 4.14 4.26 4.30 4.23 4.10 4.14 4.13 4.05 4.10 4.07 4.06 4.14 4.15 * Double Crosses - (Large x Small)(Large x Small) 17 12 19 3 4 ACS) 1 0 1 10 1 15 1 AFED 3 6 24 21 1 14 5 19 AFCE 15 3 27 11 HPCE 4 1 14 15 0 HOT 25 1 4 2 18 15 ACBG 3 21 1 10 3 14 21 6 6 AFBG 17 15 2 1 ADEG 18 7 14 15 4 2 AGEF 21 3 1 17 13 10 14 1 5 ACGH 10 8 2 25 3 12 AGSDH 2 10 11 11 11 BCFH 15 11 2 24 14 9 BGCD 15 20 11 BGDH 5 9 16 15 19 CEDH 1 0 9 0 1 16 9 5 10 19 CEEH 13 6 1 DEEH 8 10 22 3 17 16 17 DB3H 4 3 6 17 9 24 EFGH 4 Group mean . 4.18 4.15 4.19 4.17 4.17 4.21 4.10 4.22 4.19 4.11 4.06 4.03 4.10 4.09 4.16 4.07 4.00 4.20 4.05 4.13 0.054 0.076 0.050 0.073 0.051 0.085 0.120 0.100 0.084 0.071 0,091 0.081 0.076 0.084 0.100 0.080 * 0.116 0.099 0.057 0,056 0.067 0.067 0.110 0.085 0*100 0.100 0.083 0.124 0.067 0.094 0.074 0.096 0.093 0.075 0.066 0.086 -62Table 30. Frequency distribution, mean and variance of number of rows _____ for inbreds, single crosses and double c r o s s e s . ____________ Code : : 8 10 Number of rows per ear 12 14 16 18 20 Inbreds - Many Rows 22 13 9 13 7 28 13 30 5 2 12 27 7 A D E H 22 5 Group mean B C F G AD AE AH DE m m BC HP BG CF CG FG AB AC AF AG DB DC DF DG EB EC EP EG HB BC HF HG Inbreds - Few Rows 12 2 34 32 11 1 29 4 6 22 19 5 14 1 Group mean Single Crosses - Many x Many 21 1 13 25 8 31 18 3 13 8 27 8 1 20 29 9 2 3 25 22 10 3 12 34 11 Group mean Single Crosses - Few x Few 28 32 30 3 12 15 27 25 5 3 2 2 37 19 30 2 28 26 2 32 Group mean Single Crosses - Many x Few 21 1 29 9 14 8 27 11 25 4 13 14 4 28 13 2 3 14 2 15 4 39 35 1 15 9 36 1 22 1 22 31 1 6 9 1 12 16 33 8 13 38 1 2 16 33 9 2 7 40 10 1 3 34 1 3 19 30 14 16 13 2 21 24 3 26 1 11 19 Group mean : : 24 : Mean : V 16.7 14.2 14.4 14.3 14.9 2.91 1.69 1.38 2.22 2.05 13.7 ! 12.3 U.7 . 13.5 „ 12.8. 1.07 1.22 1.80 2.07 1.54 16.3 17.0 17.3 15.5 14.6 16.2 16.1 2.45 2.59 4.05 2.24 2.60 2.40 2.72 12.9 14.3 15.0 12.7 13.1 13.0 13.5 1.02 2.*63 2.17 1.44 1.33 1.33 1.65 - 1 ; 16.5 14.6 16.0 15.9 14.5 13.9' 13.2 14.6 15.8 13.9 14.4 15.9 15.3 13.9 13.8 14.6 14.8 2.02 3.30 4.14 3.23 1.49 1.19 1.17 1.79 2.54 l;6l 1.98 1.96 2.17 2.05 3.11 3.03 2.30 -63- TabLe 30. Continued Code : :~5 10 12 Number of rows per ear. ll* 16 lF 20 22 W : s : Mean : V BCFG Double Crosses - (Few x Few)(Few x Few) , 18 28 12 2 13.9 2.1*9 ABDE AEDF ADEG AHBD ABEH AHCD AECH AHDF AGDH AEFH AEGH BDEH CEDH DEFH DEGH Double Crosses - (Many x Many) (Many x Few) 21 10 2^ 1* 16.7 6 0 2 15.0 21* 9 19 2 1 7 11* 19 17 15.9 1 12 16.2 30 13 k 10 32 1 3 16.7 * 9 6 1 21* 11 1 17 15.1* 10 18 21 11 15.1 8 1 15.0 27 li* 10 26 10 1 3 17 3 15.9 12 8 21 2 15.0 17 16 1 16.0 5 19 15 1* 10 30 16.0 3 13 1* 6 1 ll* 25 11* ii*.5 18 20 1 2 19 1U .1 10 12 2 9 15.1* 27 2.75 3.82 5.0S 3.0* 1*.32 1*.03 3.23 3.65 l*.ll 3.1*0 5,12 3,1*9 3.96 3.39 U.07 Group mean 15.0 3*83 ABCF BDCF BFCE ACBG AFBG AGCF BGCD BECG BFDG BEFG CGDF CGEF BCFH BGCH BHFG CFGH Group mean Double Crosses - (Many x Few) (Few x Few) 9 27 17 7 ll*.7 11 36 11 2 ll*.l 11 1 35 13 ll*.l 1 8 27 1 23 15.1* 21 12 7 19 1 15.1* 8 21* 20 1 15.0 7 2 ll* 27 11*.2 17 10 20 23 7 ll*.7 10 1 28 16 5 ll*.5 10 22 23 11**8 ;5 17 31* 9 13.7 11 16 2 31 ll*.3 1 11* 25 15 5 11**3 9 33 3 15 ll*.i* 21 9 27 3 ll*.6 1 23 .30 1 .5 13.1* H*.5 , „ 3.23 2,00 1*71* 2.58 3.1*1* 3.58 2.63 3.00 3.26 3.03 1.61 2.37 3.1*2 2.30 2.51* 2.11* 2.68 -64Table 30. Continued Code :a ____________Number of rows per ear : 8 22 10 12 18 20 lit 16 2l+ : Mean : V AEBC CFDE AECG AHBC AHCF AHFG BCEH BGDH CGEH Group mean Double Crosses - (Many x Many) (Few x Few) 1 16.3 17 2b lit it 11+-3 15 b 25 16 10 lit.6 1 27 17 S 11 2 it 2k 19 lS.lt 10 17 9 2b lS.l 22 17 0 11 9 1 lit.9 It 21 23 12 lS.it 6 30 21 3 llt.7 6 21 28 2 3 lS.l lSil 3.70 3.21 ■2.98 3.70 3.SU It.61 3.09 2.12 3.07 3i33 ACBD BECD AFBD ABEF AFCE BDEF AGBE AGCD AGEF BEDG CDEG DFEG ABFH ABGH ACGH BHCD BHDF BEFH BEGH CHDF CDGH 2 CEFH DGFH EFGH Group mean Double Crosses - (Many x Few)(Many x Few) 32 it 17 7 lSiU llt.6 8 26 1 2$ 11 1 16.2 3 29 13 3 1 12 31 0 1 16.2 2 13 10 lit.6 3 2b 23 21 6 30 lSiO 3 10 2 16.6 2lt 21+ 8 22 6 1 1S.0 23 21 9 17 9 it iS.lt 22 8 2 7 21 IS.2 11 22 1 3 23 llt.7 6 26 23 1S.0 S 18 26 8 S 3 iS.S 5 11 IS 23 b 2 16,s 2 1S.6 5 16 27 10 28 2 7 23 lit.8 10 28 20 1 1 llt.S 20 2 1it 20 it lit.7 22 26 3 9 lS.3 2 2 lit 28 Hi llt.O 1 11 1 lit.o 27 18 28 11 1 IS lit.l 12 2 29 17 lit.3 1 11 6 27 IS llt.S lS.l 2;39 2ill 3;9S 3ilt9 2.U7 2.26 2.Si 3.3S S.02 3.81t S.12 2.S9 3,79 S. 70 3.28 2.0S 2,Si it,31 2.S6 2.9S 3,82 3.19 2.1t0 3.1t2 3.29 s -65Table 31. ■; Code : 0 : 4 Frequency distribution, mean and variance of height of ear for inbreds, single crosses and double crosses._________ 5 8 9 12 Height of ear in inches 13 17 21 25 29 33 37 16 20 24 28 32 36 40 Inbreds -High 3 9 12 12 8 2 13 25 3 5 15 24 1 A B D 9 ; : 41 45 : Ifean : 44 48 : 3 Group mean C E P G H AB AD m CE OP CG CH EF EG EH PG m GS AC AE AP AG AH BC HE HP BG m DC BE DP BG DH Inbreds -low 3 15 1 10 1 3 2 6 15 8 22 11 25 11 8 16 10 5 21 15 5 1 0 12 14 Group mean Single Crosses 3 1 2 Group mean Single Crosses 3 10 22 3 16 6 18 5 24 2 14 1 15 24 2 6 23 12 1 1 6 14 14 18 4 8 21 18 3 5 15 20 11 Group mean Single Crosses 1 11 18 3 14 1 1 3 9 14 4 19 1 17 1 12 5 1 9 ■- 3 8 2 6 1 1 Group mean 22 7 7 7 High x High 13 15 18 11 7 13 20 10 4 17 18 11 Low 12 19 18 17 21 13 8 6 7 5 x Low 11 2 14 6 16 2 11 2 22 1 7 9 7 6 2 1 2 1 Higi x Low 16 10 4 22 18 2 12 24 12 2 23 11 24 11 1 27 13 2 7 15 21 14 21 13 21 14 8 24 15 9 6 24 20 7 5 19 9 24 15 14 19 14 20 17 13 1 5 0 1 3 6 5 2 7 1 4 4 3 2 1 1 3 1 2 2 Y 28.9 26.1 21.1 25.4 16.5 7.7 11.5 11.9 15.7 10.6 13.4 8.6 15.1 12.7 9.9 7.1 18.6 10.5 10.2 11.3 32.1 34.5 34.6 33.8 17.0 17.6 25.1 19.9 24.4 27.1 25.9 25.3 26.2 23.2 21.7 18.2 20.1 18.1 23.1 25.6 13.7 '8.0 13.6 25.1 26.8 30.9 25.8 26.0 26.4 28.9 30.6 28.5 28.6 33.1 25.5 28.9 30.0 29.6 28.3 14.8 9.5 27.3 16.8 11.6 12.2 17.4 20.1 13.4 14.5 13.1 16.3 29.9 11.8 12.3 15.1 * io .i 12.6 10.4 22.6 20.8 27.3 16.5 -66Table 31. Continued Code : 0 • • 4 5 8 . 9 12 Hei&ht of ear In Inches 13 17 21 25 29 33 37 16 20 24 28 32 36 40 41 44 45 : Mean : 7 • 48 • Double Crosses » (Low x Low) (Low x Low) 2 6 19 22 10 CGEF 1 2 8 6 20 24 csm 7 9 1 CGEH 1 6 14 22 5 12 19 17 7 CPGH 3 EFGH 7 25 14 10 1 Group mean Double Crosses - (High x 8 3 AC 3D 3 13 ABDE 4 AFBD 4 4 1 AHBD Group mean AFCE BFCE CIDE AECG AGCF AGEF BECG BCFG befg Double Crosses 1 4 3 2 4 13 11 4 2 1 4 8 1 1 1 3 1 3 CDEG CGDF DFEG AECH AHCF ACGH AEFH AEGE AHFG BCIE BCIE BGCH hictfH f BEGE ffiFG CEEE CHDP CDCH DEEH DEGE DGBH Group mean 1 8 2 4 5 1 . 1 2 4 1 4 2 1 11 1 14 14 16 6 3 10 6 9 12 4 9 2 6 4 9 5 (Higi x 13 21 19 19 8 18 15 12 12 24 7 29 10 12 18 20 16 10 15 16 18 15 5 10 24 10 7 22 15 13 15 18 26 14 5 18 21 25 13 24 8 18 18 22 20 13 8 22 15 19 8 21 20 18 8 11 8 20 16 22 High) (High E Low) 1 22 14 12 20 13 11 6 1 11 23 15 4 22 15 10 Low) (Low 5 14 10 4 9 16 2 5 3 13 7 13 8 22 3 9 7 19 8 16 13 5 21 16 1 5 18 10 2 11 3 3 3 4 23 1 9 4 9 9 15 2 7 3 5 9 14 3 8 18 ~9 2 11 17 13 3 15 5 12 x Low) 2 3 5 1 - 1 3 1 2 2 1 1 6 2 4 1 7 1 2 1 4 1 3 3 3 1 2 1 6 5 29.1 25.3 26.5 23.3 24.7 25.8 15.9 13.1 17.9 14.7 18.3 16.0 32.4 31.6 35.3 32.5 32.9 13.2 20.3 23.0 25.7. 20.5 26.8 26.4 28.9 22.7 27.9 28.1 28.0 25.3 28.6 27.9 27.7 31.6 22.2 29.0 24.4 22*7 22.4 28.2 25.7 25.5 28.1 24.8 24.3 28.2 24.4 28.5 25.4 29.5 27.3 26.0 26.5 21.8 25.1 23.9 27.7 28.1 14.5 18.8 20.4 29.6 18.3 25.1 21.3 16.7 16.9 15.3 12.3 9.6 25.3 12.1 21.4 24.2 19.0 27.4 21.9 19.7 18.2 19.9 32.3 29.1 16.2 21.1 Table 31. Code Continued :0 5 :4 8 9 12 Height of ear la Inches 13 17 21 25 29 33 37 16 20 24 28 32 36 40 41 44 45 : Mean 48 : Double Crosses - (Higi x High) (Low x Low) 2 10 23 16 7 2 ABCF 7 1 AHEF 1 2 5 12 22 10 1 9 1 1 13 19 16 BDCF 2 5 8 15 20 10 HOT 1 1 4 12 14 14 14 ADBGr 3 14 20 15 4 4 ABEH 1 6 18 17 14 4 ABBH 5 6 11 25 13 ABGH 2 .1 3 12 17 15 10 BDEB Croup mean Double Crosses - (High x Low) (High x 8 8 13 15 13 1 12 13 8 18 6 10 12 22 7 2 5 1 2 12 3 18 14 11 13 16 7 0 12 11 1 20 12 4 4 20 3 8 15 22 10 1 23 15 6 8 0 4 1 17 6 5 1 1 10 18 1 3 11 20 14 11 8 3 11 12 26 17 4 2 10 16 9 7 2 14 17 15 12 5 25 6 2 9 2 8 1 10 14 22 3 5 14 16 16 5 9 14 1 1 15 18 1 AEBC HECD AEDF ACBC ACHE AFBC AGCD BGCD BEDC HTOG AHBC AHCD AHDF AGDH BKCD ffiDF BGDH Group moan Low) 2 2 1 1 1 3 2 2 5 1 2 1 1 1 V 28*3 30.2 32.6 33.5 28.7 27.3 26.3 26.8 32.3 29.6 19.2 24.4 19.0 17.8 15.8 17.0 19.2 12.9 20.9 18.5 30.8 31.7 26.7 27.8 29.6 30.2 29.6 31.6 29.1 27.9 28.4 29.2 23.6 29.7 29.6 29.7 28.2 29.0 29.1 27.9 24.1 15.1 30.0 15.6 19.7 18.8 27.7 15.7 17.3 26.6 23.0 25.0 24.4 25.5 27.9 23:1 -68Table 32. Frequency distribution, mean and variance of plant height __________ for inbreds, single crosses and double crosses. Code :40 45 :44 49 _ A B C D 50 54 55 59 Plant height In Inches 60 65 70 75 80 85 90 64 69 74 79 84 89 94 Inbreds •■ Tall 7 15 2 6 1 10 16 15 5 6 12 15 9 3 2 13 16 13 4 13 1 3 2 95 100 : Mean: V • 99 104 •• • 3 77.2 43.3 69.3 24.3 67.0 31.5 68.1 24.3 70.4 30.9 Group mean Inbreds - Short 19 15 3 1 7 6 8 9 17 15 20 10 3 2 9 18 12 6 1 0 Group mean Single Crosses - Tall x Tall 2 1 9 11 AB 13 14 AC — AD 6 13 4 19 2 BC 6 4 2 BD 7 8 1 CD Group- mean Single Crosses - Short 3 Short jgff 6 16 23 13 2 EG 2 2 10 22 24 3 1 3 17 20 16 m 3 FG. 6 19 21 11 1 1 4 12 21 20 1 IH 1 3 GH 2 25 17 12 Group mean Single Crosses - Tall x Short 2 15 23 14 4 1 1 AE 1 0 3 9 25 1 AF 7 6 26 19 AG 1 7 2 14 20 16 AE 6 10 13 28 BE 3 18 21 BF 2 12 30 16 BG 6 9 16 25 1 1 m 5 9 34 11 - 1 CE 2 21 19 2 1 1 CF 6 7 20 25 0 2 CG 1 2 10 17 21 10 CH 0 11 27 15 6 1 DE 7 12 28 12 DF 2 5 10 22 21 DG 7 1 6 11 21 13 IH Group mean E F G H 48.4 13.4 56.0 40.4 47.4 23.8 52.7 31.9 51.1 27.4 11 20 16 21 25 26 24 13 13 16 9 19 16 4 4 4 1 3 4 90.6 90.1 91.9 90.2 92.4 92.0 ' 91.2 42.7 32.7 24.9 24.9 34.8 29.7 31.6 71.1 22.5 66.7 19.8 61.7 17.5 64.8 20.9 '67.1 £6.8 64.9 17.8 66.0 £0.9 18 0 1 2 15 3 1 0 3 2 10 1 1 4 1 76.8 87.4 79.2 78.3 80.3 86.5 81.8 79.6 76.4 85.1 78.9 79.1 73.2 81.2 77.8 77.5 79.9 32.3 36.6 17.8 21.3 30.9 16.6 15.6 21.6 13.2 45.6 28.8 28.6 20.8 15.3 20.5 * 32.0 24.8 -69Table 32. Code : 45 • • 49 Continued 50 54 55 59 Plant height In Inches 60 65 70 75 80 85 64 69 74 79 84 89 90 94 95 100: Mean 99 104: V AC HD Double Crosses - (Tall x Tall) (Tall x Tall) 2 4 10 17 18 9 92.7 36.3 EFGH Double Crosses - (Short x Short)(Short x Short) 3 70.3 1 11 12 17 16 32.5 Double Crosses - (Tall x Tall)(Tall 8 13 16 AEBC 4 15 13 3 9 ABDE 1 1 8 10 14 BECD 0 5 9 17 0 1 ABCF 3 13 4 AFED 0 9 8 1 BDCF 7 2 11 ACBG u 6 20 15 6 1 AGCD 3 8 11 2 BGCD 13 14 3 14 AHBC 8 17 11 5 AHH) 2 0 6 13 14 1 AHCD 1 6 14 14 5 1 EHCD Group mean AGEF BEFG CGEF DFEG AEEH AEGH AHFG EEEH bem Double Crosses - (Tall 4 10 1 2 7 11 2 14 1 0 3 12 10 13 16 2 6 12 20 2 14 7 16 1 6 13 14 1 8 15 1 5 4 12 1 5 7 17 2 4 7 17 3 4 8 5 2 6 8 13 13 1 2 9 21 BEFG CEEH CGEH CFGH DEEH DEGB DGEFH Group mean x Short) 8 U 4 14 13 11 13 12 22 13 19 16 22 6 6 4 18 12 6 9 8 6 6 2 7 10 85.9 84.1 4 88.5 3 88.9 5 91.4 7 92.1 1 87.6 2 83.9 6 90.4 1 84.8 3 84.9 87.1 3 85.7 87.3 x Short) (Short x Short) 78.3 8 1 19 17 78.5 8 3 2 12 15 80.0 3 1 13 16 11 78.2 1 6 2 rZl 14 71.6 2 13 6 71.9 14 5 1 79.0 14 18 10 2 3 1 74.4 12 14 73.310 7 1 6 77,8 4 1 16 14 4 76.6 6 4 16 12 74.0 0 1 0 18 11 73.4 2 18 9 _ 76.4 0 1 8 13 17 72.7 3 9 14 74.5 11 13 3 75.7 41.1 42.8 55.0 41.7 40.6 38.3 46.3 59.2 47.9 48.1 81.8 48.5 54.0 49.6 30.4 59.8 41.8 48.9 36.4 37.8 33.9 51.9 73.1 38.9 63.-2 52.7 44.9 77.3 50.5 43.3 49.1 -70Table 32. Continued • Code : 45 : 49 50 54 Plant height in inches 55 60 65 70 75 80 85 59 64 69 74 79 84 89 Double Crosses - (Tall 7 ADffl 6 b de f 2 4 12 ADEG BCIG 1 1 6 3 12 CDEG 1 4 14 AEEH 3 14 AEEH 6 14 ABGH 2 0 14 ACGH 4 12 2 BCIE 2 10 1 BCIE 5 3 EDIE 5 12 1 CDGE Group mean AFCE AEDF hfce CEDE AGEE AFBG AECG AGCF BECG EEDG EEDG CGDF AEGH ahcf AHDF AGDH bgch EHDF BGDH CEEE CHDF • 90 94 95 100: Mean 99 104: x Tall)(Short X Short) 2 14 16 11 10 12 14 11 13 4 2 7 9 17 10 2 18 16 7 9 14 7 13 11 4 1 15 10 11 5 6 22 10 8 1 1 17 13 16 20 8 1 15 17 9 9 3 5 12 18 2 4 12 22 12 7 4 15 16 Double Crosses - (Tall x Short) (Tall x Short) 0 2 9 7 23 10 7 2 3 6 10 9 19 12 1 1 9 2 17 18 10 3 3 7 0 5 15 16 13 1 6 6 6 11 20 10 1 5 1 4 1 2 12 16 19 4 8 2 10 13 10 13 2 2 1 2 10 11 17 13 2 2 8 8 15 15 12 4 7 8 21 10 7 1 1 1 1 8 5 13 15 14 3 1 6 3 1 3 10 12 11 13 2 3 15 18 16 5 0 1 2 4 7 12 4 12 14 5 2 5 2 16 14 20 1 2 2 2 9 2 m 9 11 23 2 4 9 8 15 11 7 4 5 1 8 17 12 10 4 3 5 1 7 3 13 12 19 3 7 5 9 12 15 4- 4 ' 1 2 1 2 11 10 21 13 Group mean . ¥ • 82.3 32.7 83.8 46.3 78.4 48.3 81.6 49.4 80.6 47.2 79.1 49.9 80.2 40.0 77.7 42.2 78.4 39.3 78.0 37.3 80.8 63.3 81.7 45.0 77.9 48.1 80.0 45.3 82.9 78.9 81.9 82.4 82; 6 84.5 77.1 80.6 81.8 82.1 81.8 81.2 76.7 83.5 87.8 81.5 83.2 84.2 79.2 78.8 80.5 55.0 37.4 44.4 46.6 57.8 42.9 46.3 63.8 52.8 88.3 37.9 51.2 31.8 76.3 30.9 49.3 75.4 61.9 48.6 59.4 39.6 81.6 51.2 -71 Table 33• Actual means of double crosses and predicted means from Single cross values for the character ear moisture. Double t Cross : Actual Mean ACBD AEBC ABDE BECD ABCF AFBD ABEF AFCE AEDF BDCF BFCE BDEF CFDE ACBG AGBE AFBG AGCD AECG AGCF ADEF AGEE BGCD BECG BCFG BEDG BFDG BEFG CDEG CGDF CGEF DFEG AHBC AHBD 43.9 45.8 44.6 45.1 43.0 40.5 41.6 4l«6 40.1 41.4 43.4 38.5 40.0 44.9 43.8 U0.9 U2.3 47.7 39.5 itl.il39.4 44.7 45.0 43.4 43.1 39.4 4 i.4 42.2 4o.o 4 i.i 37.4 46.7 39.6 j Predicted : Mean 46.8 47.3 45.0 46.3 44.0 42.9 42.3 42.6 41.1 43.1 43.9 42.1 41.8 46.0 45.2 42.4 43.5 44.8 42.0 42.3 41.5 44.5 46.0 41.5 43.9 41.5 41.3 43.1 4o.6 42.4 40.2 44.5 43.0 . Ts Double :: Cross ABEH ABFH ABGH AHCD AECH AHCF ACGH AHDF AGDH AEFH AEGH AHFG BHCD BCEH BCFH BGCH BDEH BHDF BGDH BEFH BEGH BHFG CEDH CHDF CDGH CEFH : CGEH CFGH DEFH DEGH DGFH EFGH Average of actual values Average of predicted values Correlation coefficient : : Actual Mean 41.7 38.6 41.7 4 l.6 1*4.8 37.1 42.6 36.8 37.9 40.2 42.8 35.8 42.3 - 43.2 42.2 42.8 4o.o 38.1 4o.4 4 i.4 41.9 37.1 42.0 38.0 41.5 39.1 40.7 39.0 35.7 38.8 37.6 37.9 4l.l5 42.25 0.82 j Predicted Mean : 42.9 39.7 41.4 42.5 43.6 40.9 41.2 39.3 1*1.5 39.5 41.6 39.9 43.5 43.6 40.3 44.2 42.2 39.7 42.0 : 4o.o ' 42.3 40.5 42.2 39.5 40.3 4o.i . 43.4 39.8 39.1 40.7 39.5 40.2 -72- Table 3U. Actual means of double crosses and predicted means from single cross values for the character ear weight. Double Cross : Actual t Mean ACBD AEBC ABDE BECD ABCF AFBD ABEF AFCE AEDF BDCF BFGE bdef CFDE ACBG AGBE AFBG AGGD AECG AGCF ADEG AGEF BGCD BECG BCFG BEDG BFDG BEFG CDEG CGDF CGEF DFEG AHBC AHBD *' 167.5 161.0 1U7.1 176.6 153.9 16?.9 16U.5 163.U 158.8 172.2 152.1 170.5 177.2 166.2 170.0 158.0 163.6 150.7 180.2 162.8 161.8 169.9 175.5 lij.8.0 177.0 155.1 16L.U' 179.8 168.7 167.8 160.U lU6.ii. 163.5 * : Predicted Mean i63.2 172.5 165.0 166.2 170.0 157.0 166.7 165'.7 160.5 16U.5 167.0 159.5 166.0 167.0 162.0 153.2 172.5 173.5 165.2 158.2 153.5 169.7 170.7 177.2 166.5 152.7 165.7 170.5 163.2 162.7 1U7.7 171.5 156.5 s: Double :* Cross : : 1U6.2 150.3 159.6 160.7 1U8.3 173.8 168.8 165.8 158.U 1U6.3 152.5 157.3 167.3 155.7 1U6.7 163.9 15U.U 157.9 158.0 i5o.U 161.2 158 .U 162.0 16U.1 161.6 160.8 173.3 16U.2 151.0 16U.5 1U3.5 1U2.6 ABEH A S ’H ABGH AHCD AECH AHCF ACGH AHDF AGDH AEFH AEGH AHFG BHCD BCEH BCFH BGCH BDEH BHDF BGDH SEFH BEGH BHFG CEDH CHDF CDFH CEFH CGEH CFGH DEFH DEGH DGFH EFGH Average of actual values Average of predicted values Correlation coefficient Actual Mean 161.1 162.3 0.23 : predicted Mean : 163.2 I67.O 167.2 170.0 168.7 165.0 177.5 150.O 15U.0 160.2 162.2 1U5.5 167.2 177.0 175.0 l58.0 159.0 150.7 15U.7 157.7 163.0 1U7.2 170.2 158.0 171.5 168.2 166.0 15U.2 1U8.7 156.2 13U.2 139.0 -73Table 35* Actual means of double crosses and predicted means from single cross values for the character ear length. Double j Actual Cross s Mean ACBD AEBC AIDE BECD ABGF AFBD ABEF AFCE AEDF BDCF BFCE BDEF CFDE ACBG AGBE AFBG AGCD AECG AGGF ADEG AGEF BGCD BECG BGFG BEDG BFDG BEFG CDEG. CGDF CGEF DFEG AHBC 18.59 17.1+9 15.81 18.87 17.63 17.88 17.02 17.67 16.89 19.31+ 17.63 18.23 19.32 18.51+ 17.21 17.78 18.71* 17.71 19.71+ 17.83 17.61+ 18.83 18.79 17.91 17.90 17.1+7 17.1+2 19.1+9 19.17 18.99 17.66 17.25 : Predicted Mean > 18.57 18.65 17.27 18.37 18.80 17.20 17.35 18.52 16.90 18.77 19.02 17.25 18.1+7 19.25 17.52 17.25 19.35 19.02 18.80 17.25 16.92 19.52 19.17 19.87 17.75 17.1+2 17.97 19.00 18.95 18.70 16.90 19.30 ' • • • • ' - t t Double : Actual : Predictet Cross Mean Mean ABEH ABFH ABGH AHCD AECH AHCF ACGH AHDF AGDH AEFH AEGH AHFG BHCD BCEH BCFH BGCH BDEH BHDF BGDH BEFH BEGH BHFG GEDH CHDF CDGH CEFH CGEH CFGH DEFH DEGH DGFH EFGH Average of actual values Average of predicted values Correlation coefficient 17*97 18.21 0.51+ 16.13 17.03 17.67 18.01 17.03 19.9k 18.9 k 17.61 17.77 16.33 17.39 17.77 18.89 17.95 17.75 19.0V 17.73 17.83 17.95 16.U5 17.37 18.1+4 17.96 18.60 18.52 18.1+5 19.37 19.25 17.16 17.73 17.1+0 -17.03 17.82 18.07 18.57 19.02 18.60 18.62 20.02 16.85 17.55 17.30 17.82 16.85 19.20 19.50 19.87 19.17 17.57 17.12 17.80 17.1+7 18.15 17.10 18.60 18.55 19.82 19.00 18.90 18.72 16.95 17.62 16.65 16.52 ' ’ ' ■ ■ ■ • ' ‘ ’ ' ' • -74- Table 36. Actual means of double crosses and predicted means from single cross values for the character ear diameter. Double : Actual Cross : Mean ACED AEBC ABDE BECD ABCF AFBD ABEF AFCE AEDF BDGF BFCE BDEF CFDE ACBG AGBE AFBG AGCD aecg AGCF ADEG AGEF BGCD BECG BCFG BEDG BFDG BEFG CDEG CGDF CGEF DFEG AHBC AH ED It .18 It.3U U.22 It .28 it.Oit U.15 U.31 it .19 it. 16 U.05 it.17 It .17 U.19 it *21 it.27 it .10 lt.12 it .lit it .13 it.22 U.19 it.06 lt.26 it. 05 It.30 It.io it. 23 U.18 3.99 it.20 it .12 it .15 U.17 : Predicted : Mean U.17 it.3it it.33 it.21 it.15 U.17 lt.32 U.19 it.22 U.07 U.17 it.22 U.17 it.io it.27 it.11 it.io it.25 U.05 it .19 it.18 U.05 it. 20 U.07 it.22 U.03 U.19 U.15 lt.00 U.13 U.06 U.18 U.15 :: :: " Average of actual values Average of predicted values Correlation coefficient Double : Actual Cross : Mean ABEH ABFH ABGH AHCD AECH AHCF ACGH AHDF AGDH AEFH AEGH AHFG BHCD BCEH BCFH BGCH BDEH BHDF BGDH BEFH BEGH BHFG CEDH CHDE CDGH CEFH CGEH CFGH DEFH DEGH DGFH EFGH U.1U7 U.1U8 0.78 U.3U U.12 U.17 U.10 U.17 U.lit U.11 U.13 U.06 U.17 U.21 U.05 U.10 U.23 U.03 U.io U.15 U.07 U.09 U.27 U.30 U.06 U.16 U.12 U.13 U.07 U.iU 3.95 U.oo U.20 3.97 U.05 : Predicted t Mean U.29 U.17 U.1U U.12 U.28 U.12 U .ll U.09 U.09 U.25 U.25 U.07 U.07 U.29 U .ll U.oi U.20 U.07 U.08 U.22 U.23 U.oU U.23 U.oi U.02 U.18 U.19 3.96 U.13 U.17 3.92 U .ll -75- Table 37. Actual means of double crosses and predicted means from single cross values for the character ear number of rows. Double : Actual Cross : Mean ACBD AEBC AEDE BECD ABCF AFBD ABEF AFCE AEDE BDCF EFCE BDEF CFDE ACBG AGBE AFBG AGCD AECG AGCF ADEG AGEF BGCD BECG BCFG BEDG BFDG BEFG CDEG CGDF CGEF DFEG AHBC AHBD 15.1*0 16.27 16.68 11*.63' 1U.73 16.17 16.23 H*.63 15.03 1U.13 ll*.13 15.00 Hi.27 15.36 16.56 15.37 15.00 1jU.6U ll*.97 15.93 15.1*0 ll*.2l* 11*.72 13.93 15.23 11+.I+7 1U.77 11*.70 13.73 1U.30 15.00 15.1*3 16.20 : Predicted : Mean ll*.90 15.20 15.90 11*.20 H+.1+5 15.17 15.77 11*.67 15.55 13.67 13.95 ll*.70 13.85 ll*.60 16.20 li*.92 1U-65 15.07 H*.17 15.75 15.1+7 13.77 11+.1+2 13.77 15.22 13.92 11+.90 1U.27 13.55 13.87 11+.37 15.07 15.67 it :j Double : Actual : Predicted Cross : Mean : Mean ABEH ABFH ABGH AHCD AECH AHCF ACGH AHDF AGDH AEFH AEGH AHFG BHCD BCEH BCFH BGCH BDEH BHDF BGDH BEFH BEGH BHFG CEDH CHDF CDGH CEFH CGEH CFGH DEFH DEGH DGFH EFGH Average of actual values Average of predicted values Correlation coefficient - 16.67 15.53 16.53 15.1*2 15.10 15.07 15.60 11+.97 15.87 15.02 15.97 U+.93 11+.83 15.1*3 ll*.27 ll*.l*0 15.97 11+.50 li*.70 11+.67 15.32 ll*.60 11+.50 il*.oo 11+.03 11+.13 15.13 13.1*0 1I+.10 15.37 1U.30 ll*.l*7 i5.oi ll*.8l 0.85 16.35 15.82 15.87 H*.85 15.50 11+.57 15.05 15.17 15.70 15.97 16.32 15.17 13.97 11*.72 11+.05 13.97 15.30 il*.l*o 11*.85 15.05 15.60 11*.1*2 11+.87 13.75 11*.05 H+.30 11+.57 13.1*5 H+.60 15.32 13.95 llt.72 -76Table 38. Actual means of double crosses and predicted means from single cross values for the character ear height. Double s Actual Cross s Mean ACBD AEBC ABDE BECD ABCF AFBD ABEF AFCE AEDF BDCF EFCE BDEF CFDE ACBG AGBE AFBG AGCD AECG AGCF ADEG AGEF BGCD BECG BCFG BEDG BFDG BEFG CDEG CGDF CGEF DFEG AHBC AHBD U2.U 30.8 31.6 31.7 28.3 35.3 30.2 26.8 26.7 32.6 26.U 33.5 28.9 27.8 29.6 30.2 29.6 22;7 27.9 28.7 28.1 31.6 28.0 .25O 29.1 27.9 28.6 27.9 27.7 29.1 - 31;6 28.U 32.5 : Predicted j Mean 31.5 27.6 31.2 27.9 28.3 31.5 29.3 26.5 29.U 27.3 27.3 28.5 28.3 27.5 27.7 26.7 28.9 2ij.i6 25.0 27.0 2U .8 29.3 25.6 28.0 28.0 27i6 270 26.5 27.1 23.2 25 il 27.8 :s :: Double Cross : Actual : Predicted Mean : Mean : ABEH ABFH ABGH AHCD AECH AHCF ACGH AHDF AGDH AEFH AEGH AHFG BHCD BCEH BCFH ■ BGCH BDEH BHDF BGDH BEFH BEGH BHFG CEDH CHDF CDGH CEFH CGEH CFGH DEFH DEGH DGFH EFGH 31.2 Average of actual values Average of predicted values Correlation coefficient 28.09 26.93 0.59 27.8 26.3 26.8 29.2 22.2 29.0 2k.k 32.6 29.7 22.7 22.lt 28.2 29.6 25*7 25.5 28.1 32.3 29.7 28.2 2U .8 2U.3 28.2 2I4..I4. 28.5 25.U 250 26.5 230 29.5 27.3 27.6 29.0 27.2 28.6 2U.3 250 25.7 28.8 27.1 26.3 2U .2 23.7 29.0 26.8 27.9 2U.7 28.1 28.7 27:9 26.9 25.5 2U O 26iU 27.5 27.7 25*2 22.7 22 .U 26.7 26.1 26.0 23.7 2U.7 “ 20.8 -77- Table 39. Actual means of double crosses and predicted means from single cross values for the character plant height. Double s Actual : Cross : Mean : ACBD AEBC AEDE BECD ABCF AFBD ABEF AFCE AEDF BDCF EFCE BDEF GFDE ACBG AGBE AFBG AGCD AECG AGCF ADEG AGEF BGCD BECG BCFG BEDG BFDG BEFG CDEG CGDF CGEF DFEG AHBC AHBD - 92,7 85.9 8U.2 88.5 88.9 91.it 82.3 82.9 78.9 92.1 81.9 83.8 82.k 87.6 82.6 8U.5 83.9 77.1 80.6 78.it 78.3 90.it 81.8 81.6 82.1 81,8 78.5 80,6 81.2 80,0 78.2 8U.8 81t.9 Predicted Mean 91.2 8U.3 85.3 83.1 88.5 87.5 82.7 80.7 80,9 87.5 81.7 80.3 80.2 8it.7 79.0 80.3 8U.7 78.1 80.3 76.7 73.9 81t.8 78,8 83.1 78.5 80.1 76,5 76,6 79.9 73.3 71.7 81t,8. 8U.9 j: :: Double : Actual t Predicted Cross s Mean : Mean ABEH ' AEFH ABGH AHCD AECH AHCF ACGH AHDF ' AGDH AEFH AEGH AHFG BHCD BCEH BCFH BGCH BDEH BHDF BGDH BEFH BEGH BHFG CEDH CHDF CDGH CEFH CGEH CFGH DEFH -■ DEGH DGFH EFGH . Average of actual values 80.97 Average of predicted values - 79.17 Correlation coefficient 0.89 79.1 80.2 77.7 87.1 76,8 83.5 78.it 87.8 81.5 71.6 71.9 79.0 85.7 78.0 80.8 83.2 81.7 8it.2 79.2; 7it.it 73.3 77.8 78.8 80.5 77,9 76,6 7it,0 73,it 76,it 72.7 7it,5 70.3 78,782.9 79,7 8U.-6 76,6 80,9 78,9 81.0 78,2 7it,6 71.5 7it,7 8U.8 78.9 82,6 78.it 77.7 80.9 78,7 7U.7 72.5 75.1 76,5 80.it 78,3 7it,3 71,8 72,5 ■ 72.9 70,9 72.1 65.1 -78- Table UO. Actual means of double crosses and predicted means from single cross values for yield in bushels per acre at 15*5$ moisture. Double : Actual Cross : Mean ACBD AEBC ABDE BECD ABCF AFBD ABEF AFCE AEDF BDCF BFCE BDEF CFDE ACBG AGBE AFBG AGCD AECG AGCF ADEG AGEF BGCD BECG BCFG BEDG BFDG BEFG CDEG CGDF CGEF DFEG AHBC AHBD _ : Predicted t Mean 65;6 59.5 59.6 o 63 ;o 62.2 59.6 6U;2 53.8 66;561; 7 6it;i 67.9 63 ;8 6U.5 6o.l| 66;it 56.lt 7g ;i 63.7 61.2 66;1 63 ;9 57.2 63.3 58.7 62 .'9 ' 71.0 65.5 65.5 63 ;5 56.3 61.5 . 63il 63 ;5 61.8 62 .It 65.1 59.0 63i8 6)4.5 61.2 6U;o 63 .It 60.7 63.8 63 i3 58.9 57.9 66;o 62.9 62.7 61.7 55.1 6lt.9 6l.it 69.5. 60.9 57.3 6l.lt 65.3 63.7 58.it 56.5 66. k 61.6 :: :: Double : Actual : Predicted Mean Cross : Mean : ABEH ABFH ABGH AHCD AECH AHCF ACGH AHDF AGDH AEFH AEGH AHFG BHCD BCEH BCFH BGCH BDEH BHDF BGDH BEFH BEGH BHFG CEDH CHDF . CDGH CEFH CGEH CFGH DEFH DEGH DGFH EFGH Average of actual values Average of predicted values Correlation coefficient 61.56 61.98 0.31 60.5 61.9 61.8 61.9 56.6 6U.565.5 57.U 61.9 52.9 56.1 55.8 63.0 60.7 57.7 63.9 60.9 58.it 60.3 57.2 60.7 57.0 62.2 62.9 62.k 6it.2 . 63.0 61.3 61.2 61.3 55.0 58.0 63 ;o 65;U 65.lt 66.2 , 62;5 63.8 68.2 59.0 58.8 60.1 58.1 57.0 65.1 67.7 69.7 62.5 63.3 60.2 61.2 61.7 60.2 57.9 65.8 6lt.lt 68.1 6it.lt 60.5 59.5 57.3 57.9 52.6 U9.3 -79- Table Ijl Actual variance of double crosses and predicted variance from single cross variances for the character ear moisture* Double Cross ACBD AEBC ABDE BECD ABCF AFBD ABEF AFCE AEDF BDCF BFCE BDEF CFDE ACBG AGBE AFBG AGCD AECG AGCF ADEG AGEF BGCD BECG BCFG BEDG BFDG BEFG CDEG CGDF CGEF DFEG AHBC AHBD Actual t Predicted :: Double :: Cross * Variance t Variance x 15.39 21.13 17.20 9.77 16.15 11.87 15.82 13.25 9.67 9.81 15.37 9.00 10.68 12.69 17.63 26.50 16.35 12.13 15.1U 10.19 20.12 18.36 15.35 16.17 9.5U 21.97 16.62 16.62 7.66 9.05 18.76 21.76 16.60 10.67 11.75 10. hO 10.15 11.23 11.53 9.97 8.15 7.27 10.60 9.95 10.13 8.20 11.35 10.10 12.53 8.35 10.15 11.10 7.OQ 11.05 9.60 10.60 8.25 8.65 12.20 8.55 6.85 8.U0 10.93 8.13 8.87 10.13 ABEH ABFH ABGH AHCD AECH AHCF ACGH AHDF AGDH AEFH AEGH AHFG BHCD BCEH BCFH BGCH BDEH BHDF BGDH BEFH BEGH BHFG CEDH CHDF CDGH CEFH CGEH CFGH DEFH DEGH DGFH EFGH Average of actual variances Average of predicted variances Correlation coefficient : Actual * Variance x Predicted 13.52 15.53 12.37 18.72 11.38 11.16 11.02 10.12 15.71 9.75 12.75 1U.36 9.65 15.16 21.11 9.60 12.31 111.83 10.07 17.23 9.93 12.39 11.09 11;.18 12.92 lh.52 13.61; 12.93 12.39 11.5U 12.05 21.62 8.77 8.30 7.87 1U.16 9.67 0.26 : Variance 8.60 7.93 13.05 6.90 11;.30 8.67 6.30 7.63 , 15.03 9.85 8.13 9.97 10.65 8.73 15.13 9.10 6.70 7.25 15.05 U.30 12.75 6.55 U.97 9.13 1U.15 8.05 7.27 . 13.17 11;.87 -80Table 1|2 Actual variance ox double crosses and predicted variance from single cross variances for the character ear weight. Double * Actual : Cross : Variance: ACBD AEBC AEDE BECD ABCF AFBD ABEF AFCE AEDF EDCF BFCE 33EF Qfde ACBG AGBE AFBG AGCD AECG AGCF ADEG AGEF BGCD BECG BCFG BEDG BFDG BEFG CDEG CGDF CGEF DFEG AHBC AHBD 1882 1757 1797 130^ 1723 1191 2032 936 1023 1028 993 1182 1368 1572 1811 1865 2021 I807 1U81 1028 1127 1853 1396 1879 1297 1060 985 1137 171S 1139 888 21x77 1607 IVedicted Variance 1728 1982 1^25 1650 1888 1559 1526 1897 1285 1528 1557 1838 1205 2185 1503 1589 I 808 1706 1762 1338 1158 1757 1597 1718 1320 1230 1261 1571 1086 1223 1001 1619 1816 : : Double : Actual : Predicted : : Cross : Variance t Variance ABEH ABFH ABC® AHCD AECH AHCF AC® AHDF AGDH AEFH AECH AHFG BHCD BCEH BCFH BGCH BDEH BHDF BGDH BEFH BEGH BHFG CEDH CHDF CD® CEFH CGEH CFGH DEFH DEGH DGFH EF® . 1230 1567 1880 1779 1750 2179 1736 911 1189 862 1387 1830 1229 1593 1829 1629 1103 905 1131 1383 1637 882 1732 1533 1179 1235 2152 1193 1392 953 1019 1888 Average of actual variances lljlO.U Average of predicted'variances 1388.9 Correlation coefficient 0.38 1359 1298 1379 1508 1516 1826 1631 1222 1281 1068 1205 1326 1861 1355 1227 1719 1295 1291 1151 1087 1053 1338 1062 1157 1381 993 1285 1330 958 955 1093 908 -81- Table 1+3 Actual variance of double crosses and predicted variance from single cross variances for the character ear length. Double Gross ACBD AEBC ABDE BECD ABCF AFBD ABEF AFCE AEDF BDCF BFCE BDEF CFDE ACBG AGBE AFBG AGCD AECG AGCF ADEG AGEF BGCD BECG BCFG BEDG EFDG BEFG CDEG CGDF CGEF DFEG AHBC AHBD : Actual : Variance lu.98 6.05 6.61 6.1*7 6.37 lull* 6.22 i*.00 hi 32 l*.ll 1*.1*9 3.2£ 3.36 8.28 6.30 6.1*2 t 9.07 8.76 U.98 3.57 3.97 6.17 6.06 8.75 2.91* 5.15 3.90 3.1*1 3.58 3.1*9 3.91* 10.98 5.1*5 s Predicted 3 Variance 8.67 7.27 ” U.1*3 7.05 8.1*0 6.67 U.93 1*.8£ 3.97 7.55 7.13 U.65 U.63 9.73 6.50 7.25 5.27 5.30 6.1*7 3.55 1*.30 7.23 7.00 5.80 3.60 5.27 U-07 £.1*3 l*.l+5 i*.87 3.57 6 .l£ s s Double 3 3 Cross ABEH ABFH ABGH AHCD AECH AHCF ACGH AHDF AGDH 'AEFH AEGH AHFG BHCD BCEH BCFH BGCH BDEH BHDF BGDH BEFH BEGH EHFG CEDH CHDF CDGH CEFH CGEH cfgh DEFH DEGH DGFH EFGH 3 Actual 3: Variance 5.I3 6.1*3 1*.16 6.71 7.21* lt.17 8.62 2.38 l*.2l* 1*.1*0 6.81 U.59 5.02 6.63 6.93 7.27 3.96 3.01* I*.39 5.99 5.68 3.38 6.58 5.1*5 i*.l*6 5.18 5.33 7.53 3.70 3.3k i*.n 6.89 5.67 Average Of actual variances Average of predicted variances Correlation coefficient " 5*37 £.11 0.31* s Predicted s Variance 3.57 I*.30 1*.20 U.57 1*.55 5.1*o U. 53 1*.93 3.80 1*.1*3 3.25 5.85 6.-53 1*.27 i*.37 7.87 3.65 5.07 I*.10 3.83 3.30 5.75 3.03 1*.77 3.90 3.50 I*.20 5.53 3.67 2.63 5.25 1*.2£ -82- Table I4I4. Actual variance of double crosses and predicted variance from single cross variances for the character ear diameter. Double Cross ACBD AEBC ABDE BECD ABCF AFBD ABEF AFCE AEDF BDCF BFCE BDEF GFDE ACBG AGBE AFBG AGCD AECG AGCF ADEG agef BGCD BECG BCFG BEDG EFDG BEFG CDEG CGDF CGEF DFEG AHBC AHBD : Actual : Variance 0.116 0.098 0.092 0.05U 0.076 0.099 0.111 0.057 0.050 0.067 0.056 0.067 0.067 0.067 0.096 0.110 0.110 0.073 0.120 0.085 : Predicted t Variance 0.070 0.067 0.057 0.056 0.082 0.085 0.071 0.057 0.068 0.065 0.0U5 0.06U 0.0U8 0.068 0.058 0.078 0.067 0*057 0.062 0.058 0.100 0.051 0.075 0.051 0.053 0.01*7 0 .06 U 0.01*7 0.096 0.085 0.089 0.120 0.100 0.056 0.097 0.075 0.120 0.095 0.0U3 0.060 0.055 O.Otil 0.01*1 0.0U9 0.078 ' 0.081 : : Double s : Cross AEEH AEFH „ ABGH AHCD AECH AHCF ACGH AHDF AGDH AEFH AEGH AHFG BHCD BCEH BCFH BCGH BDEH BHDF BGDH BEFH BEGH BHFG CEDH CHDF CDGH CEFH CGEH CFGH DEFH DEGH DGFH EFGH Average of actual variances Average of predicted variances Correlation coefficient : Actual :Variance 0.081* 0.061* 0.110 0.100 0.120 0.081* 0.100 0.071 0.083 0.081* 0.110 0.091 0.081 0.099 0.121* 0.067 0.081 0.076 0.09l| 0.100 0.095 0.08U 0.07U 0.062 0.092 : Predicted t Variance 0.067 0.091 0.070 0.061 0.061 0.068 0.057 0.071 0.071 0.058 0.051 0.071+ 0.01*7 0.057 0.073 0.073 0.060 0.073 0.069 0.075 0.053 0.080 0.00U 0.052 0.01*7 0.096 O.OlCL 0.100 0.051 0.068 0.053 0.01*3 0.0U0 0.093 0.075 0.081 0.050 0.066 0.01*6 0.087 0.060 0.22 -83Table 1*5 Actual variance of double crosses and predicted variance from single cross variances for the character number of rows* Double Cross ACBD AEBC AEDE ABCF AFED ABEF AFCE AEDF BDCF BCCE BDEF CFDE ACBG AGBE AFBG AGCD AECG AGCF ADEG AGEF BGCD BECG BCFG BEDG BFDG BEFG CDEG CGDF CGEF DFEG AHBC AHBD : Actual : Variance 2.39 3.70 2.75 3.23 3.95 3.1*9 2.1*7 3.82 2.00 1.71* 2.26 3.21 2.58 2.51 3.U* 3.35 2.98 3.58 5.05 5.02 2.63 3.00 2.1*9 3.81* 3.26 3.03 5.12 1.61 2.37 2.59 3.70 3.05 : Predicted : Variance 1.67 2.37 2.27 2.77 2.07 2.97 2.33 2.70 1.50 1.75 2.15 1.1*91.90 2.1? 2.30 2.22 2.53 2.53 2.1*6 2.51 1.1*1 1.69 1.90 1.97 1.5U 2.19 1.71* l.ltl* 1.59 1.83 2.39 2.31 r : Double : : Cross AEEH ABFH ABGH AHCD AECH AHCF ACGH AGDH AEFH AEGH AHFG bhcd BCEH BCFH BGCH BDEH BHDF BGDH BEFH BEGH BHFG CEDH CHDF : CDGH CEFH CGEH CFGH DEFH DEGH DGFH EFGH Average of actual variances Average of predicted variances Correlation coefficient : Actual jVariance iPredicted jVariance h.32 2.81* 3.25 2.91 2.60 2.81* 3.15 2.67 2.83 3.11* 2.91 3.38 1.79 2.09 2.07 1.89 2.39 2.1*6 2.12 2.29 2.17 2.73 1.97 2.09 1.91* 1.97 2.16 1.95 2.01* 5.97 2.03 2.20 3.79 5.70 1+.03 3.23 3.51* 3.28 I*.11 3.U0 5.12 U.61 2.05 3.09 3.1(2 2.30 3.U9 2.51 2.12 1*.31 2.56 2.5U 3.96 2.95 3.82 3.19 3.07 2.11* 3.39 I*.07 2.1*0 3.1*2 3.26 2.31 0.52 -84- Table k6 Actual variance of double crosses and predicted variance from single cross variances for the character ear height. t Actual 8Variance t Predicted : Variance ACBD AEBC 13*2 abde 20.3 27.9 19.2 23.0 2lt.lt 21.8 2it.l 15.0 18.7 17.it Double Cross BECD ABCF AFBD ABEF AFCE AEDF BDCF BFCE BDEF CFDE ACBG AGBE AFBG AGCD AECG AGCF ADEG A (3SF BGCD J&CG BGFG BEDG BFDG BEFG CDEG CGDF CGEF DFEG AHBC ahed 29.1 19.0 2^.1 17.8 23.9 15.1 30.0 15.6 19.7 27.7 28.1 15.8 lit.5 18.8 18.8 20.li27.7 15.7 29.6 18.3 25.1 15.9 21.3 17.3 25.7 19.8 18.6 21.1 18.6 11.5 17.8 13.8 13.3 20.9 19.7 13.5 13.1 19.1 13.0 17.5 18.2 13.6 18.5 lit.2 15.9 13.8 16.8 :22.7 lit.1 I5.it 15.3 18,6 15.2 lit.9 15.3 : : Double s 8 Cross AEEH AEFH ABGH AHCD AECH ahcf ACGH AHDF AGDH AEFH AEGH AHFG BHCD BCEH BCFH BGCH BDEH BHDF BGDH BEFH BEGH BHFG CEDH CHDF CDGH CEFH CGEH CFGH DEFH DEGH DGFH EFGH Average of actual variances Average of predicted variances Correlation coefficient Actual s Predicted 8 Variance 8 Variance s 17.0 19.2 12.9 26.6 16.7 16.9 15.3 23.0 25.0 12.3 9.6 25.3 2it.it 12.1 21.it 2it.2 20.9 25.5 27.9 19.0 27.it 21.9 19.7 18.2 19.9 13.1 17.9 lit.7 32.3 29.1 16.2 18.3 20.83 16.27 0.08 13.3 18.U llt.l lit.6 15.6 19.1 12.5 19.5 17.1 lit.9 12.9 23.1 15.8 17.8 15.5 15.5 15.1 19.6 19.7 13.8 12.7 20.it 13.3 15.0 ll.it 11.9 17.3 16.3 15.7 11.8 23.0 16.6 -85Table 47. Double Cross ACH) AEBC ABDE BECD ABCF AFBD ABEF AFCE AEDF mew BFCE wnffg CFDE ACBG AGBE AFBG AGCD AECG AGCF ADEG AGEF BGCD BBCG BCFG BEDG BFDG BEFG CDEG CGDF CGEF DFEG AHBC AHBD Actual variance of double crosses and predieted variance from single cross variances for the character plant height. : Actual : Variance 36.3 41.1 42.8 55.0 41.7 40.6 32.7 55.0 37.4 38.3 44.4 46.3 46.6 46.3 57.8 42.9 59.28 46.3 63.8 48.3 30.4 47.9 52.8 49.4 66.3 37.9 59.8 47.2 51.2 41.8 48.9 48.1 81.8 : Predicted :: Double : Variance :: Cross 30.7 29.9 30.7 23.4 27.7 24.9 29.1 33.3 26.3 21.6 31.0 20.9 20.2 28.5 27.6 24.5 26.7 26.9 29.7 22.9 27.4 27.3 18.4 26.7 22.7 21.7 18.6 20.8 29.2 24.9 21.2 31.5 30.3 AHEH AEFH ABGH AHCD AECH AHCF ACGH AHDF AGEE AEEH AEGE AHFG BHCD BCFH BC5H BGCH HDFH BHDF BGDH BEFH BEGE ffiFG CEDE CEDF CD® CEFH CGEH CFGH DEEH DECK DGFH EFGH Average of actual variances Average of predicted variances Correlation coefficient : Actual : Predicted : Variance : Variance 49.9 40.0 42.2 48.5 31.8 76.3 39.3 30.9 49.3 36.4 37.8 33.9 54.0 37.3 63.3 75.4 45.0 61.9 48.6 51.9 73.1 38.9 59.4 39.6 48.1 63.2 52.7 44.9 77.3 50.5 43.4 32.5 48.67 25.24 0.004 26.5 24.0 19.1 29.5 21.2 31.2 24.1 30.1 21.1 24.5 19.1 24.7 30.1 23.6 28.1 23.3 26.3 27.5 23.7 19.5 18.6 19.2 24.1 33.5 27.5 28.5 23.7 26.3 21.9 22.5 25.1 21.3