THESIS

INVESTIGATION OF EAST LANSING WATER TOWER

C. H. PETERSON & A. L. SAYLES

East Landing - Water-ong

This thesis was contributed by

Mr. C. H. Peterson

under the date indicated by the department stamp, to replace the original which was destroyed in the fire of March 5, 1916.

Ciril originaering Santary enjeweering

Alas T

REGEIVED

MAR 3 1 1919
DEPARTMENT OF CIVIL ENGINEERING.

INVESTIGATION OF STRESSES

II

EAST LANSING WATER TOWER.

A THRSIS SUBMITTED TO THE FACULTY OF

MICHIGAN AGRICULTURAL COLLEGE

рЪ

C. H. Petersen

A. L. Sayles

Candidates for the Degree of RACHRLOR OF SCIENCE.

- प्रहार्ख

----F51路

INDEX

Introduction	page 1.
Specified Loads	3.
Specified Unit Stresses	6.
Loads	7.
Streames	9,
Make-up of Design	12.
Max. Unit Stresses	13.
Summery	20,
General Conditions and Workmanship -	21.
Acknowledgments and Technical References	22.

Photographs

Masprints

OUTLINE OF PROJECURE.

```
History.
A.
    Specified Loads.
B.
C.
    Specified Unit Stressed.
D.
    Loads -
          1. Tankfull - souare wind
          2. Tenkfull - Diagonal Wind
          3. Tank empty - square wind
          4. Tank empty - diagonal wind
\mathbf{E}_{\bullet}
    Stresses -
          1. Column, maximum
          2. Horizontal Bracing
          3. Vertical Bracing
          4. Anchor Bolts
          5. Hasonry -
                Bearing on
                Resist to uplift
                Press on soil
          6. Side Plate Pl.
          7. Spherical Bottom Plates Po
F. Make-up of Design -
          1. Column
          2. Horizontal Bracing
                                        a. Main section
          3. Vertical Bracing
                                       ) b. Riveted connections
          4. Anchor Bolts
          5. Masonry
          6. Side Plates P.
          7. Spherical Sottom plates )
G. Maximum Unit Stressed -
          1. Column
          2. Horizontal Bracing
                                        a. On main sections.
          3. Vertical Bracing
                                        b. Riveted connections
          4. Anchor Bolts
                                        c. Lacing
          5. Hasonry
          6. Side Plates P.
```

7. Spherical Bottom Flates

Outline of Procedure, Contd.

H. Summary -

- 1. Based on Original Sections
 - a. Members overstrained
 - b. Fercent. excess overstrained
- c. Loading producing excess. 2. General Conditions and Workmanship
- I. Acknowledgments and Technical references.
- J. Miscellaneous.

This work of analysis was undertaken not in any spirit of fault finding or of criticising the design or construction but in order to gain knowledge of steel construction and experience in analysis.

* * *

	·	
	·	

INTRODUCTION.

Prior to 1909 the City of East Lansing had no public water supply but depended on the individual system installed in private residences or from the College. Mr. Chase had erected a private tower and from this supplied a few in the immediate vicinity, but this was entirely inadequate to supply mere them a very few surrounding him. As the city expanded the need of an adequate water supply for demestic and fire purposes became very pressing. A number of small fires alarmed the city council and they realized that they could not depend on the City of Lansing for their water as they had done for their lights.

They first bried to obtain water from the College, as Mr. Bird on Grand River Avenue had done, but failed, as Mr. Bird had no legal right to use the College water.

A committee was appointed by the council to investigate the various systems in use and authorised to submit plans for a system to be used in Bast Lensing.

Professor Hadden, then of the Civil Engineering Department of the College, was secured to draw up design of tower. These plans were submitted for bids and the contract for building was let to Whitehead and Kales

Iren Works of Detroit, Michigan, in January, 1909.

The original site of this tower was the present
location of the pumping station, but before the erection
was started the present location was secured on Porest Hill
Avenue. This had been originally selected as the building
site but the price asked by the owners was almost prehibitory.
By changing the location to the top of the hill am increase
in head of about thirty feet was gained, but necessitated
the pumping of the water about three hundred feet further
and thirty feet higher.

Construction was started on the tower late in the spring of 1909 and finished in the summer of the same year. The system has so far been entirely satisfactory.

Other improvements were made after the tower was erected which depended on a good water supply, the chief being an extensive sewer system.

The tower is 118 feet high and has a capacity of 10,000 gallens.

SPECIFIED LOADS.

Dead Loads.

Weight of structure.

.

•

Tank Drum(
4 " 8'x28"x3/16" @ 30.6#/ft = 2950#
To tal ---- 5510#

Tank Reof (18 plates No.12 gauge, 60"x24"x1/10" @ 490f/Cu It = 410f

Tank Bell (8 " 48"x5/16"x6'5" @ 46.8f/ft = 500f

To tal ---- 1280f

Total Weight of Tank ----- 5200#

Total Dead Load Estimates -

4 Columns 8510f

1 Ledder 480f

5 Cross France 5450f

Vertical & Lateral reds 2201f

Tank 5200f

Total ---- 19821f

Use ---- 20000f

Add 20% for rivets, etc. -- 4000f

Total Dead Load ---- 24000f

Weight of Contained Water in Tank.

10000 Gals. = 1840 Cm ft. @ 681 /cm ft. = 84000 / 7.48

Total Dead Load of Structure and Contained Water z 108000\$

108000 = 27000 D.L. en each column

Find Loads

50f/sq.ft. of exposed area 150f/ Lin.ft. of height

Specified Unit Stresses.

Tension in Tank plates 12000 /sq.in. net area Tension in other parts of structure 16000#/ Sq.in.net area Compression 16000#/sq.in. (reduced)

Shear on shep rivets 12000%/ sq.in.

" filled "

9000#/sq.in

ifi plates

10000f/sq.in. (Gross area)

For compression members the permissible unit stress of 16000 shall be reduced by the formula

$$P = 16000 - \frac{70 L}{r}$$
 where

- P = permissible working stess in compression in pounds / sq.in.
- L = length of member from center to center of connections in inches.
- r = least radius of gyration of section in inches. The ratio L/r shall not exceed 120 for main members and 180 for struts and roof construction members.

Unit compression on consrete sub-structures = 350f/ sq in. Unit masonry bearing on soil - 2 tons/sq.ft.

Londo.

Vind en reefs - (Print No.2)

2/5 b h x 80#/sq.ft.

2/5 x 12 x 4 x 30 = 960#

Wind on Drum

2/3 bh x 50#/sq.ft.

2/3 x 10 x 13 x 30 = 2600#

Vind on Bell

2/3 bh x 50#/sq ft 2/3 x 10 x 5 x 50 = 1000#

Wind en Tower (Prints Nos. 2 and 5)

Diagonally per foot of vertical height

Area = 8^{n} + 8^{n} + 6^{n} + 6^{n} = $2 \frac{1}{5^{1}}$ + 2.84 = 5.17° 5.17 × 50 × 1 = $154\frac{\pi}{2}$ /ft of height.

Squarely on Tower.

Area = $\frac{4 \times 10}{12}$ =- 3.33' + 2' = 5.33'

5.33 x 30 x 1 $\frac{1}{2}$ 160 $\frac{1}{2}$ /ft of height.

Load on each section (Print No.57 25 x 160 x 4000

Wind Loads on Tank. See Print Me.S.

•	Tank Rapty.	,
Porces	Sq. Wind	Ding. Wind.
AB	960	960
BC	2600	2600
ത	2000	1925
DO	1000	1000
EP	4000	385 0
76	4000	3850
CH	4000	3850
HI	2000	1925

With tank full, the loads on lesward side are increased by the weight of the water in the tank

STRESSES.

Stresses in Column Analytical Solution.

Stress due to wind = M/2r for four column structure where M is maximum moment of each section due to wind and r is the radius of a circle passing through the center of the columns.

Thus:

Also about base in the plane about the diagonal ∨ of the structure = 0

- $5 = [4000 \times 25] + (4000 \times 50) + (4000 \times 75) + (2000 \times 100) + (2600 \times 106.5) + (960 \times 114.55) + (1000 \times 96) + (15 \times 2)$
- S = 42853 due to wink.
- S = 27000 due to weight of structure and water Total stress- 69853

This compares favorably with wind stresses as shown in graphical solution in Print No.5, that giving max. stress as 45000 + 27000 = 72000f. This being slightly greater the graphical solution was used for final results.

Column Stresses.

Kember	Wind Stress	Pead Load Stress	Max. Stress
C1, C2	45000	27000	72000
03, 04	325 00	26000	58500
05, 06	20600	25000	45800
07, 68	10200	24000	34200

Horizontal Bracing

Kember	Max. Stress.
81.	7000
3 2.	5750
85.	4450

Vertical Bracing

Member	Max. Stress.		
DI.	11000		
D2	10000		
D3	8600		
D4	6 75 0		

Ancher Bolts

Two anchor belts in each pier take the tension due to wind on empty tank, minus 1/4 weight of tank.

Masonry Bearing .

The masonry takes both the compression on the leeward side and the dead load coming on it from one leg, or

Max. Stress = 45000 + 27000 = 72900#

,	,			
·				
		·		

Bearing on Seil

45000 + 27000

= 72000f Bearing due to tower

157 Cu ft • 150f/cu ft= 23500f Wt. of one pier 95500f

88 cu ft Earth @ 100f /cu ft

= 8800 Wt. of earth above

Slide Plates - Pl. (See Print No.4)

Stress is that due to tank full of water.
Stress per sq. in. of plate

3 = 2.6 hd

h = height in feet = 14"

d = Diameter of Tank in feet = 10'

t = Thickness of plates in inches = .1875"

 $S = \frac{2.6 \times 14 \times 10}{.1875} = 1940 / square inch.$

Spherical Plates

Stress T. = 2.6 hr /Sq. In.

h - height in feet - 19'

r - radius of tank = 5'

t = thickness in inches = .1875

 $T = 2.6 \times 19 \times 5 = 1520 \text{/Sq in.}$

•

MAKE UP OF DESIGN.

Columns. (Plate No.5)

The columns are made up of two 6" channels, the two lower ones having a 3/8" x 8" plate on one side and single laced on the other side by 1-1/2" x 1/4" bars. The two upper ones are single laced on each side. 5/8" rivets are used in all columns.

Horisontal Bracing. (Plate No.6)

The horisontal bracing is made up of four angles 2-1/2" x 2 x 1/4", two in each set and joined by 1-1/4" x 1/4" laced work, 5/8" rivets.

The tie rods of the horizontal bracing are of 3/4" round rods, bolted to the columns.

Vertical Bracing. (Plate Mo.5).

The vertical bracing in the two lower panels are of 1" round rods; that in the two upper panels are of 7/8" round rods.

Ancher Bolts. (Plate No.6)

These are of 1-1/4" \times 4° long stock firmly imbedded in congrete.

Masenry, (Plate No.6)

The piers are of solid concrete made in three stages, the lower one being $7' \times 7' \times 2'$, middle one $5' \times 5' \times 2'$, and the tap one $5' \times 3' \times 1'$.

Side Plate - Pg. (Plate #5)

These are of 3/16" O.H.Steel, &l rivets 1/2". The plates are bent to the radius of the tank.

Spherical Bottom Plates. (Plate No.7)

These are also of \$/16" O.H. steel, using 1/2" rivets, stamped to conform to their spherical shape.

MAXIMUM UNIT STRESSES.

Columns. (Refer to Plate No.8)

Stress in 61 - C2 - C3 - C4.

$$S = \frac{P}{A} + \frac{P.e.c.}{I}$$

P = 72000

A = 4.76 + 3 = 7.76 sq.in.

C = 4.35"

• = 1.35°

Iy4 4.19

r_= 2.52"

 $5 = \frac{72000}{7.76} + \frac{72000 \times 1.35 \times 4.35}{41.9} = 19500 \#/\text{sq.in.}$

Unit Compressive stress = 16000 - 701 where 1 is length (unsupported) in inches and r is least radius of gyration = $16000 - 70 \times 25 \times 12$ 2.32allowed stress = $16000 - 9000 \times 7000 \frac{1}{2}/82.$ in.

 $\frac{1}{r_{y}}$ should not exceed 120 but in this case it is in excess of that amount.

$$\frac{1}{r_{T}} = \frac{300}{2.32} = 129$$

Stress in column C5 - 06 - C7 - C8.

$$=\frac{45800}{4.76}$$
 = 9500 /sq in.

$$\frac{1}{r} = \frac{500}{2.34} = 128$$

Should not exceed 120

Allowed Unit Compression - 16000 - 70 1

= 16000 - 9000 = 7000#/sq in.

Lacing on Columns (Print No.9)

Lace bar Shear = $\frac{9000 \text{ Ar}^2}{d/2} \times \frac{4}{L}$

Max. Stress in Lacing = $\frac{9000 \text{ Ar}^2}{\frac{4}{7}/2} \times \frac{4}{L} \times \text{Sec } \Theta$

where A = 7.76 sq.in.

r = 2.32"

d = 7.5"

L = 300"

O = Angle between lace bar and horisontal

Sec. $\theta = 1.33$

Shear =
$$\frac{9000 \times 7.76 \times 2.32^2}{7.5/2} \times \frac{4}{300} = 1180$$

Stress in bar = $1180 \times 1.33 = 1570$ #

Divide by area of bar $1-1/2^n \times 1/4^n = 3/8^n$

 $8/3 \times 1570 = 4200 \#/sq.in.$

Chesk (From Ketchums)

Stress = 280 Ar Csc e.

A = 7.76 sq.in.

r = 2.32"

C = 4.35"

Cse en 1.33

• is angle between lacing and vertical.

Stress = $\frac{280 \times 7.76 \times 2.32 \times 1.33}{4.35}$ = $\frac{1540 \#/\text{sq.in.}}{4.35}$

Horisontal Bracing (Print No.3)

4/5 2-1/2" x 2" x 1/4" Area = 1.06 x 4 = 4.24 sq.in.

Unit Stress = PA

P = 7000

A = 4.24

 $=\frac{7000}{4.24}$ = 1650 $\frac{1}{3}$ /sq.in.

Allowed Unit = 16000 - 70 $\frac{L}{R}$ L = 17.75 x 12 = 212"

Least radius of gyration = 1.21"

Allowed Unit = $16000 - 70 \times 212 = 16000 - 12250 = 3750 \frac{4}{20}$ in.

 $\frac{L}{R} = \frac{212}{1.21} = 175$ Allowed 180

Lacing on Horizontal Bar (Print Ho.9)

Stress = $\frac{70L}{R}$ { $\frac{Ar^2}{d/2}$ } $\frac{4}{L}$ sec •

 $\frac{70L}{R} = 12250$

A = 4.24

r = 1.21

 $d = 16^{\pi}$

L = 212"

 $sec.e = \frac{17.25}{13.75} = 1.26$

Stress in bar $\frac{12250 \times 4.24 \times 1.21^2}{16/2} \times \frac{4}{212} \times 1.26 \times 2254$

225# = 225 = 600#/sq.in.

Chocked by Ketchum's formula giving

227 i or 227 = 600 i

Vertical Bracing

D₁ and D₂

Maximum Stress = 11000#

Area of 1' rod = .7854 sq.in.

Unit Stress $= \frac{11000}{-7854} = 14000 \frac{\pi}{4} / \text{ sq.in.}$

D₃ and D₄

Maximum Stress = 8600#

Area of 7/8" rod = .6013 sq.in.

Unit Stress = $\frac{8600}{.6013}$ = $14300 \frac{\pi}{4} / \text{eq.in.}$

Anchor Bolts

Maximum Stress - 19500#

Area of 1-1/4"bolt- 1.2272 sq.in.

Unit Stress = 19500 = 15400 /sq.in.

Test for bond.

Bond stress = 80 x surface area

= 80 x 4 x 13 x 3.927 = 15100 $\frac{1}{6}$

15100 x 2 = 30200#

Masemry

Column bearing on Pier

Maximum Stress = 72000#

Area = 14" x 16" = 224 sq.in.

Unit Stress - 72000 - 320 /sq.in.

Pier on Soil

Maximum Stress = 104300#

Area = 7° x 7° = 49 sq.ft. = 2100 //sq.ft.

Side Plate P 1. Riveted Joints.

Rivet spacing = 1-1/2"

Diameter Rivet 1/2". Diam. hole 9/16"

Stress per lin. in. of vert. height # 1940#

Load for 1-1/2" = 1-1/2 x 1940 = 2910 = P.

a = pitch of rivet = 1-1/2"

d = Diam. of rivet hole = 9/16"

St= Unit tensile stress in plate

S_{om} " compression in plate

Ser " shear on rivet.

d₁= Diam. rivet =1/2"

$$S_t = \frac{P}{(a-d)} \qquad S_c = \frac{P}{a} \qquad S_s = \frac{P}{1/4\pi a^2}$$

$$8_{c} = \frac{2910}{.5625} = 5200 \frac{1}{7}/\text{sq.in.}$$

$$S_{2} = \frac{2910}{1/4\pi} d^{2} = \frac{2910}{1963} = 14700 \#$$

Spherical Plates

Unit atress in sphorical plates = 1320#/sq.in as shown on page 13.

As this is smaller than that above used in finding stresses on joints, the stresses on rivets and joints will be smaller.

Riveted Connection

Between plates of tank and legs. (Print Me.10)

Weight of tank plates = 5200;

plus 335 for incidentals = 1700

Wt. of contained water =84000

Total = 90900#

1/4 on each leg or 22725# borne by rivets

Value of 5/8" rivet in single shear at 10000# = 3068#

16 rivets at 3068 = 49088# rivets can take in single shear.

Bearing value of single 5/8" rivet on 3/16" plate.

Unit bearing stress = 20000f =

Diam. of rivet x thickness of plate x allowed unit bearing stress.

Bearing value of rivet = .625 x .1875 x 20000 = 2344

16 rivets at 2344 = 37504 rivets can take in bearing en plate.

•			
		·	
		•	
·			
		•	
	•		

SUMMARY.

Based on original section.

columns. These appear to have been designed without taking into consideration the eccentric loading due to the plate on the inside or to the large value of the item L/R. In the case of the lower half of the columns, this reduces the allowed unit compressive strength from 16000% to 7000%. The addition of the plate in this case was a detriment. Instead of strengthening the column it weakened it by increasing unit stress from 15100%eq.in. to 19500%eq.in.

The main columns are overstressed 180%
The upper columns are overstressed 36%

The calibrated corrosion on the tower was found to be so small that it could be neglected altogether. That on the plate, for instance, was found to be .0005 inches and none on the channels.

The corrosion on the tank was much greater but could not be calibrated on account of its inaccessibility. The rivets in the north side of the bell were nearly eaten away by the rust. This is probably due to the running over of the tank and to excess of carbon dioxide in the water.

GENERAL CONDITIONS AND WORKMANSHIP.

This design appears to have been rather hasty and incomplete. The action of the couple due to the wind on the tank seems to have been neglected and also that of eccentric loading of the columns.

This, coupled with lax attention and peer upkeep, has rendered the structure unsafe for excessive leads. The tank was repainted this spring for the first time since it was erected in 1909, and has suffered from inattention in that manner. We had the good fortune to interview a skilled structural iron worker at the time of examination of the tank and from him learned of the unsafe condition of the bell. In his opinion the rivets will have to be renewed within two years or the bell will fail.

٠					
	•	٠			
	•				
			•		

ACKNOWLEDGIES NT 5.

In the solution of this work, we are indebted to Prof. C. A. Melick for advice and help and to the "American Handbook," Ketchum's "Structural Handbook," Morris' "Design and Detail of Steel Structures," "The Report of the Royal Commission on Quebec Bridge," and the "Theory and Practice of Modern Framed Structures," by Johnson, Bryan and Turneaure, for formulas, information and general knowledge of steel structures.

* * *

.

.

•

.

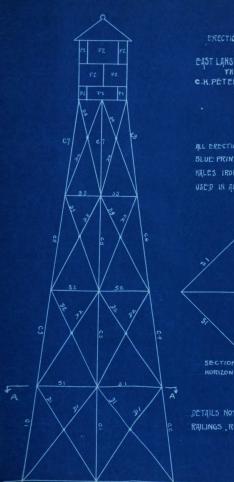
• .

East Lansing
Water Tower

A.L.Sayles C.H.Peterson

A.L.Sayles C.H.Peterson

C.H.Peterson A.L.Sayles L.P.Dingham

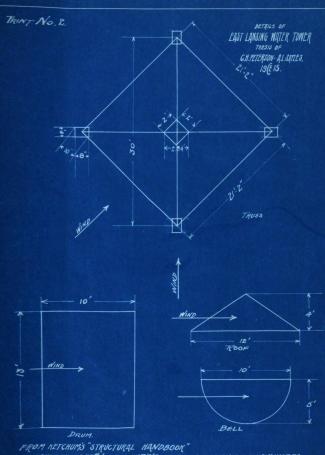

Strut

L.P. Dingham

Column

M.S.Fuller

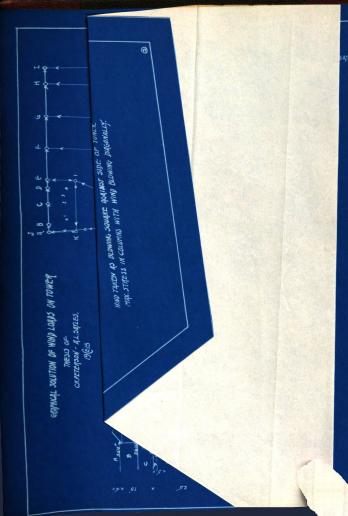
ERECTION DRAWING


EAST LANSING, MICH., WATER TOWER THESIS OF C.H.PETERSON - AL. SAYLES

ALL ERECTION MARKS TAKEN FROM BLUE PRINTS OF WHITEHEAD & KALES IRON WORKS AND WILL BE-USED IN ALL REFERENCES.

SECTION ON A-A, SHOWING HORIZONTAL TIE RODS

DETAILS NOT USED, SUCH AS: LADDER: RAILINGS, ROOF PLATES, ETC., OMMITTE



FROM NETCHUMS "STRUCTURAL HANDBOOK"

WIND LOAD OF 30" SO, FT. ACTING IN ANY DIRECTION OR ON CYLINDERS

CONICAL OR SPHERICAL SURFACES, THE WIND LOAD SHALL BE 34 OF HEIGHT

X DIAMETER X 30"/20' APPLIED AT CENTRE OF GRANTY.

(KETCHUM'S "STRUCTURAL HANDBOOK")

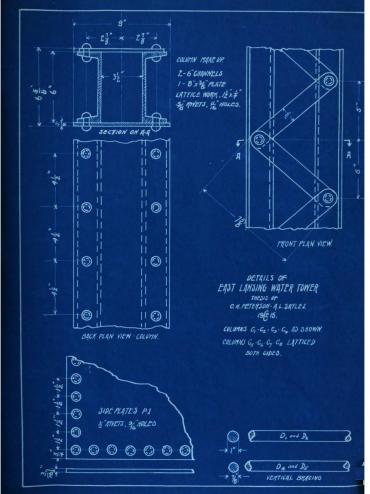
5= 26 ha

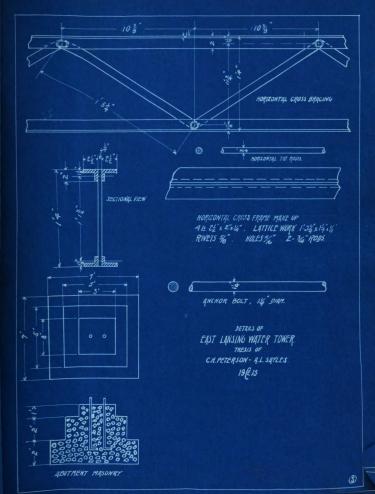
STRESSES IN SIDE PLATES

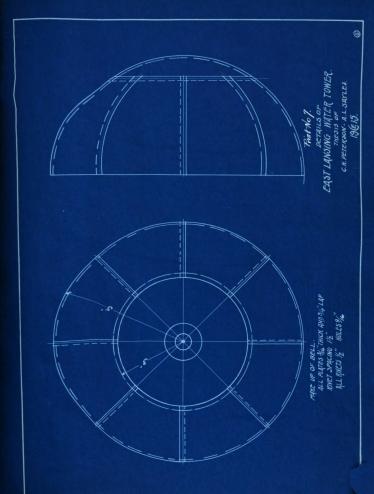
STRESSED DAME IN ALL DIRECTIONS OF SPHERE, ..

STRESSES IN CIRCUMFERENCIAL JOINTS.

FOR SEDGMENTAL BOTTOM (8) Ti = Wcsc20 24 Trit


STRESSES ON RADIAL JOINTS


FOR HEMISPHERICAL BOTTOM; T1 = 2.6 hd = 2.6 hr



THESIS OF CH.PETERSON - A.L.SAYLES 1915.

FORMULAS FOR STRESSES IN ELEVATED TAN

ECCENTRIC LOADING
DUE TO COVER PLATE.

P=72000⁴ A = 1.76*a*" C = 4.35" C = 4.35" I = 41.9 in^{4 a}n/ 43.04 in² PRINT No. 8.

FORMULA FOR MAK UNIT STRESS IN GOLUMN. S=E + Pec

S:P + Pec

WHERE S. UNIT STRESS

P = LOAD

A : AREA OF COLUMN SECTION

C: DISTANCE TO MOST REMOTE FIBRE.

I: MOMENT OF INERTIA.

GENTRE OF GERVITY OF COLUMN.

X: ZWT WHERE W= MEA OF EACH PIECE ± W AND F = DISTANCE FROM NEUTRAL

USING GRAVITY AXIS AS REFERENCE LINE

X= (4.76 x3) + 3 (6 x 3/6) = 4.35

e = 1.35 " 7.76

4.76 0" AREA OF 25 3 0" . " PLATE

MOMENT OF INERTIA

Ix: Ig + Ade d= DISTANCE FROM

IN OF LE : 26 int. (Kerchum) GRAVITY HAS

In 26 + 4.76 x 1.35 = 34.7 int

IX, OF PLATE = 13623 = 1 x8 x21 = 14 in 4

Total Ig: 347 + 834 : 43.04 int

Iy: 25.9 FOR E


Iy: 16. FOR PLATE TOTAL Iy: 25.9+16:41.9in.

EAST LANSING WATER TOWER.

THESIS OF

C.H. PETERSON - A.L. SAYLES

19(€15

COLUMN

PRINT NO. 9. EAST LANSING WATER TOWER. THESIS OF C.H.PETERSON-ALSAILES 19(E)15

STRESSES IN LACING

FORMULA \$\frac{\pi}{2} = \frac{\pi}{2} \quad M= \frac{\pi}{2} = ALSO
FROM FORMULA FOR UNIT COMPRESSION
ALLOWED , 16000-20\(\pi = \pi \)
70\(\pi = 9000''' \)
FOR MOST EXTREME
FIBRE STRESS, COMPRESSION ON
ONE SIDE AND TENSION ON OTHER

THUS S: ME C. 2/2 I. April

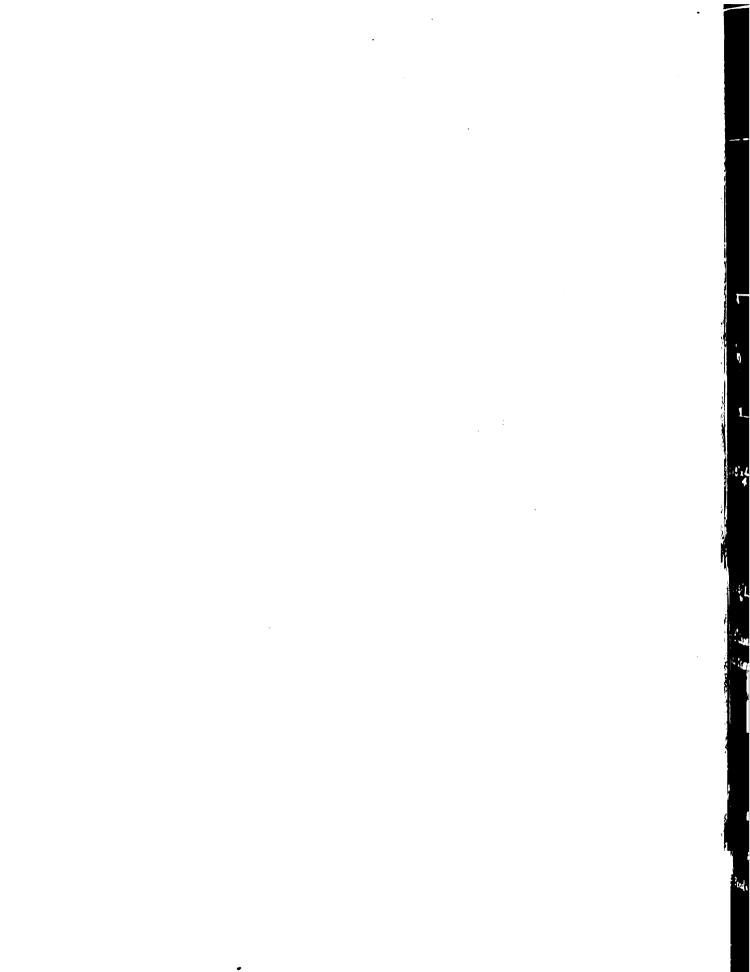
and

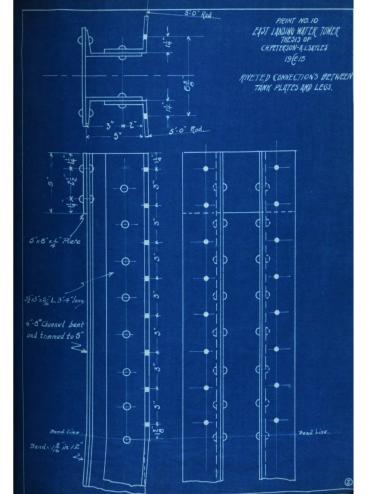
9000 = M 4/2 Ar2

A: Area of Column Section

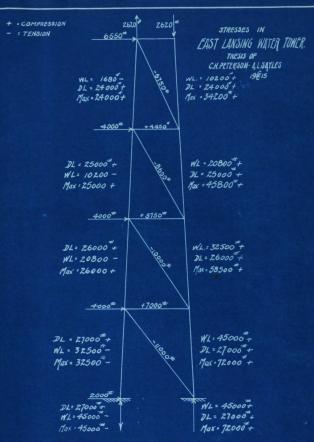
1 = least radius of Gyration

C = distance to most remote


THEN, M = 9000 x Art 26


9000 Ar 2 = $S^{\perp}_{\overline{4}}$ where δ = 5hear, \overline{z}

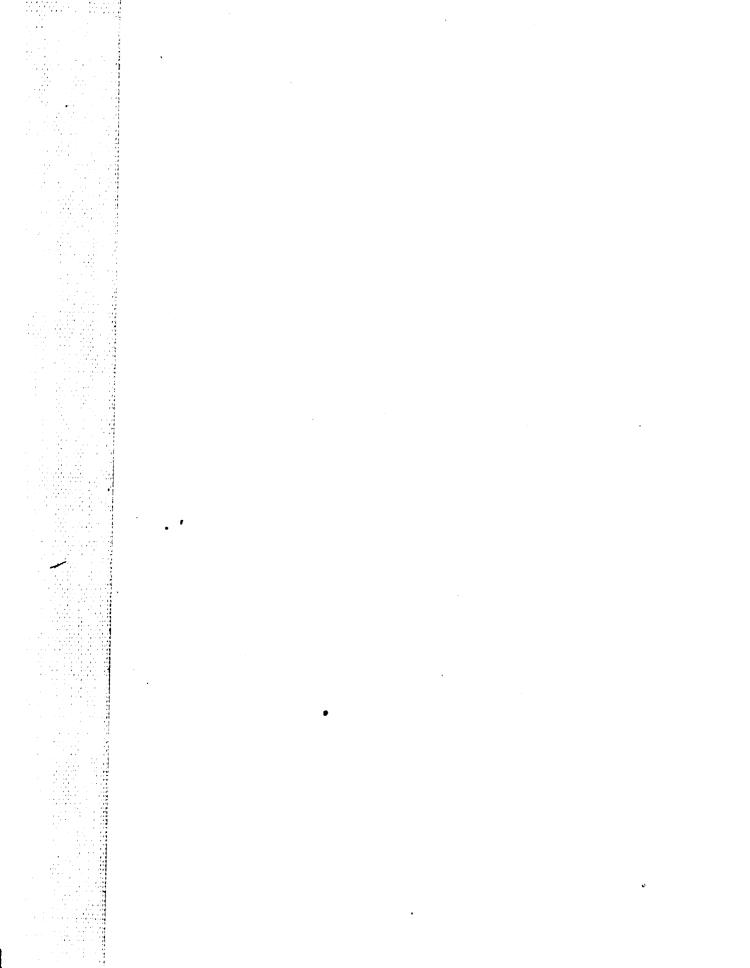
AN) S= 9000 x Arz x8


Let Stress in Lattice Work = KThen $K = \frac{5}{2} \times 5 = 0$ OR $K = \frac{5}{2} \times \frac{P}{2}$

KETCHUMS FORMULA STIFESS = 280 Ar CSC &

'8 5		

PRINT NO. 11


1

ROOM USE ONLY

Jan 8 '48

The state of the s

.

