DESIGN AND CONSTRUCTION OF MODERN ELECTRIC TRAVELING CRANES

Thesis for Degree of M. E. Charles Henry Ponitz 1915 · Electro Curios

SUPPLEMENTARY

Mechanical engineering

_

x----- T H E S I S -----x

DESIGN AND CONSTRUCTION

x--- of ---x

MODERN ELECTRIC TRAVELING CRANES

x--- by ---x

CHARLES H. PONITZ

MUSKEGON, MICHIGAN. MAY 1915.

THESIS

· Inc

XXX C O N T E N T S XXX

- I INTRODUCTION.
- II CLASSIFICATION OF CRANES.
- III PRINCIPAL PARTS OF ELECTRIC TRAVELING CRANES.
- LV PROPORTIONING OF TROLLEY UNITS.
- V PROPORTIONING OF BRIDGE UNITS.
- VI ACCESSIBILITY OF MECHANISM.
- VII FLEXIBILITY A VITAL FACTOR IN THE DESIGN
 OF ANY HOISTING MECHANISM.
- VIII INDUSTRIAL DEMANDS WHICH TAX THE DESIGNER'S INGENUITY.
- IX POWER SUPPLY OF TROLLEY AND BRIDGE MOTORS.
- X DETERMINATION OF POWER UNITS.
- XI SAFETY APPLIANCES.
- XII AVERAGE VS. STEEL MILL CRANES
- XIII DESIGN OF TWENTY TON TWO MOTOR TROLLEY

 EMBRACING PRINCIPAL CALCULATIONS, DIMENSIONS,

 ARRANGEMENT, etc., SHOWN ON BRAWING 3D142

and the second s

•

INTRODUCTION

Since time immemorial, devices and appliances to raise and lower loads have been a necessity in various industries, construction work and processes of manufacture. Many of these were crude and inefficient, the primary end in view being to move loads at any cost.

In analyzing the contributing causes which have made the electric traveler such a necessity there is probably no one factor so prominent as the application of electric power to various crane requirements. Other forms of power have been used, yet there is no other form which is so adaptable to the requirements of traveling cranes. In view of this, many improvements have taken place which redound to the benefit of the crane manufacturer as well as purchaser.

Contrasting the earlier devices and appliances for the moving of loads with those of today, we find the conditions and demands different and more far reaching. Where the crane was used exclusively as a mover of loads irrespective of cost, it is now, in addition, a conveyer to a large extent, not only lifting objects but transporting them from place to place. Where formerly manual labor was employed to transport material, the electric traveler, bucket crane and lifting magnet carry large quantities, reducing time and labor costs to a minimum.

It is the purpose of this thesis to consider the actual design as well as the commercial construction of the electric traveler. It is not the purpose to consider the electric traveler from a purely theoretical standpoint but to

And the state of the second process of the s

The state of the s

blend scientific principles with practical requirements; to satisfy the customer's demand without losing sight of the manufacturer's interests. It is only with due consideration and proper co-ordination of these various factors that the interests of all concerned are best served.

CLASSIFICATION OF CRANES

In general, cranes may be classified according to their motions, or their source of motive power. Under the first classification a crane would be rotary or rectilinear, while under the second we would have the following subdivisions:

Cranes having their power attached, electric, pneumatic and steam.

Locomotive cranes, which supply their own power.

Hand--where manual labor is used for operation.

All electric travelers can be grouped under one of five heads. So far as industrial requirements are concerned it seems more logical to classify the electric traveling crane according to the service it is to perform. Thus we would have the single drum crane which hoists and lowers its load by means of attaching the load to an ordinary crane hook. This is the type of crane in greatest demand and has a wide application in the industrial world. The average shop would require nothing further than the hook. A structural shop, for instance, would require a wider gauged trolley which would permit the suspension of a lifting beam from the ropes. This may result in two drums on the same shaft, yet in principle it is nothing but a single drum extended. Foundries, machine shops, ware-houses, boiler-shops, assembly floors, locomotive shops, etc., can use the same type of crane. Some details must be altered to suit the

entitut (n) (an notal for provide the source of the source

Carlotte and the second of the Carlot Annual Control of the Control many to the second of the seco or the allegant of the following the line of the following ments in the contract of the contrac to the first first out one state of prize them be also by a bound of a second contract the second Carterian to the engineer with a product of the Carterian territory and the district of the Carterian Section 5. ្រុកសម្រាស់ ស្នាក់ស្នាល់ ស្នាន់ ស្នាស់ ស ing of the second of the section of them is a first than the street of the stree Constitution of the Annex Comment of Admin (1980) 2 h & 1002 (1980) or a term of the compact of the com particles of the months of the transfer of the particle of the Leave to the wife of the old of the control of the the the the the characters are the contraction of the open to the engine of the property of the second of th A CONTRACT OF THE CONTRACT OF THE FIRE THE PROPERTY OF THE PROOF

shop, the chief one being, in most cases, the application of the power to the load.

A second class would be the bucket crane. This class of crane must be very rugged and substantial since the service is extremely severe and frequently rough. Where it formerly required a dozen laborers to unload and convey a barge of coal, for instance, one bucket crane will dispense with nearly all of them. There is a saving of time and money. The operating expenses and power consumption are small items when compared to the labor item, to say nothing of the time gained which is a very important consideration in most enterprises. Coal, sand, coke, cinders, slag, etc., offer a wide application for the bucket trolley.

A third class of electric traveler is the gantry crane. This may be an ordinary gantry, two or one-legged, it may be a single cantilever or a double cantilever gantry. It may have a hook trolley or a bucket trolley. In this class as in any other it is impossible to conceive of all the possible industrial demands and subsequent designs that could be produced.

The ladle crane enables the carrying and pouring of large quantities of metal heretofore impossible. The service is severe at all times and every part must be reliable and not fail its purpose at critical moments.

In the electric stripper we have a fifth class which is used to remove the moulds from ingots.

The second secon

To despend the control of the control

Fig. 6.02 to a construction of the first of

III

PRINCIPAL PARTS OF ELECTRIC TRAVELING CRANE

Every crane is composed of two parts and these are known as the trolley and bridge. The trolley comprises the entire hoisting and traversing mechanism, in fact everything above the bridge rail. Every part below the bridge rail down to the runway rail is included in the bridge, the machinery for longitudinal travel not excepted.

• •

PROPORTIONING OF TROLLEY UNITS.

Trolley Sides.

The trolley is the most important part of the crane for reasons which are presented farther on in our discussion. It is the unit of the crane upon whose successful operation more is dependent than upon the bridge. It receives the most careful attention both from the designer's and the manufacturer's standpoint. The success or failure of any crane depends primarily upon the reliability and serviceability of the trolley.

The sub-structure of the trolley usually consists of two cast frames known as the front and rear trolley sides, looking at the front bridge platform on a line parallel to the runway rails. The front and rear trolley sides are securely bolted together by a bex shaped casting known as the machinery girt. This girt rests upon machined ledges of the trolley sides, thus insuring a firm foundation for the parts of machinery it is designed to carry. Incidentally this form of connection also obviates the necessity of having all reamed belts.

The trolley sides should be rigid both vertically and laterally. In many cases design and foundry considerations necessitate a depth of casting greater than that which is required to carry the vertical leads imposed. The designer must always bear in mind that it is impossible to obtain as perfect a casting as the pattern. If this is lost sight of figures may show a safe section while in reality the actual casting is not safe. This is not speaking of faulty

A COMPANIA A SERVICIO SERVICIO

The first term of the first of the second of

The second section of the second seco

design but simply those irregularities due to unavoidable variations. In one place very little metal may fulfill all the requirements of strength, yet the molten metal must flow and internal shrinkage strains must be reduced to a minimum, hence it will be advisable to add more metal.

Another condition frequently encountered in the design of machinery is where figures will show that a section is amply strong yet to the eye it seems insufficient and out of proportion. In this case it is frequently advisable to strengthen the section until a more substantial appearance is produced. Each part must not only be amply strong for the required service, but the machine must also present a pleasing effect to the eye that will help sell it. It must be remembered that any part of a machine may be satisfactory from the designer's point of view, and yet be a failure commercially. Ultimately the machine is made to sell and must meet competition successfully.

care should be exercised in laying out the trelley sides so that cores are reduced to a minimum. Very often a little forethought will do this. A rib placed in one position may not allow the sand to "stand up", yet it was probably quite feasible to place the rib so that the sand would leave its own core. Casting after easting will be made from these trolley side patterns and any saving effected, whatever the form, will be hexact heroportion to the number of castings produced.

In a similar manner the ease or difficulties that may be encountered in the machine shope should be anticipated.

Here is a second to the state of the second Laboratory and the second to the second to

A to the first term of the control of

To form a connection or to accomplish some feature is frequently the easiest part; but to attain this in a way which will be practical and without special or cumbersome machining may be quite another problem. Likewise the machine operations should be held down to a minimum. The eareful observer will find examples of unnecessarily complicated machining. Not only does this add to the cost but also is there greater possibility of such machining not being done satisfactorily.

A simple example of hew machining operations and cost may be reduced is found in a bracket. We will assume a bracket having four base bolts. In one case the bracket will have narrow finishing pads the entire length of the base. This will necessitate a planer or shaper operation. Suppose new, ether things being equal, this bracket had been provided with round besses instead of the finishing strips. The bracket is fully as rigid, possibly requiring a little heavier base. The bracket is set up on the drill and all four heles drilled. Next the four besses are spot-faced instead of doing this on the planer or shaper. Thus the following saving has been effected:

- 1. One routing.
- 2. One setting up.
- 3. Cheaper labor.
- 4. In most cases the spet-facing requires less time.
- If the bracket goes on some structural or ethers unfinished work the besses have the additional advantage

of being more easily fitted to structural irregularities.

Most of the foregoing points apply to all castings, however they are mentioned under this head because of the very nature of the trelley sides these points are more easily overlooked and not found until too late.

Attempts have been made to use but one pattern for the front and rear trolley sides. The difficulties are obvious. While there are advantages in having but one pattern yet the disadvantages decidedly outweigh the advantages. One good reason for having two different patterns for the average crane is the fact that castings will be made in large quantities, and by having two patterns they should last twice as long as the single pattern.

Structural Versus Cast Members.

For the standard line of cranes the cast trolley sides have the following advantages:

- 1. Deflection, as compared to structural frames, is eliminated.
 - 2. The casting is easily adapted to make connections.
 - 3. Bearings and sub-structure are one unit.
- 4. Castings can be jigged thus saving time and insuring interchangeability and accuracy.
- 5. To assemble cast frames requires less skilled laber.
 - 6. Quicker delivery to a customer.

The structural frame is ideal for special trelleys. By its use the pattern requirements are comparatively simple and reduced to a minimum. In laying out a ma-

A section of the sectio

The second state of the control of the second state of the control of the control

- In the control of the c
 - Site white a particular condition is sufficient and support to a particular condition.

chine of this kind the matter of deflections is probably more important than any other one thing, especially where the service is severe and continuous. Clearances should not be taken so closely that it will require unnecessarily accurate work to hold to given limits.

Machinery Girt.

and the mechanical lead brake or, when dynamic braking is employed, the electric brake. Semetimes the machinery girt is also used to support the upper block sheaves. While this reduces the length of trelley, yet it is objectionable inasmuch as the sheave leads may influence the machinery mounted on the girt. In case of excessive lead, shock or some accident, the machinery girt would be affected and not as easy to replace as a separate load girt. Its section is bex shaped with ribs at the ends and intermediate points.

Upper Bleck Girt

When a separate girt is used to support the upper sheaves two channels supporting an idler sheave will answer for the smaller capacities. For heavier leads a section built up of plates and angles must be used. With the system of having two ropes winding on the drum the lead girt is called upon to carry heavy loads. Take, for instance, a fifty ton crane having twelve parts of rope. The load girt must support a vertical load of

83.33 peunds. This load is not rigid and preduces lateral forces for which provision must be made. Occasionally a crane is used to pull leads horizontally, thus inducing heavy lateral forces. Perhaps the severest duty of all is a suddenly applied lead. If the crane operator is not exceful to tighten his rope gradually, abnormal strains will be induced proportional to the speed and the amount of slack rope. Another condition which must be considered is the sway of the lead. Usually the lead is still ascending when the bridge or trolley travel or traverse, respectively. It is obvious that, primarily, the sway of the lead is dependent upon the lead, the distance of suspension and the rate of acceleration.

Upper and Lewer Bleck Sheaves.

The average pitch diameter of sheaves is usually about twenty-four to twenty-six times the diameter of repe. The throat is extended well beyond the pitch diameter to preclude all possibility of the repe jumping out. Fermerly most all sheaves were made with arms, but of late the tendency is to use a web with cored holes. This simplifies the pattern making and when the web is reenforced by ribs, almost any amount of lateral strength may be obtained with less metal. The sheaves are turned to give a true bearing for the repe and to make the pitch diameter concentric with the bore.

- In the second of the second

Control of the control of the control of the

The state of the content of the state of the state of the state of the content of the content of the content of the content of the state of the stat

Lower Block.

A simple design for a lewer bleak consists of a plate reenferced by a narrower plate, the two forming one side. At the upper end is the shaft supporting the sheaves while the lewer part supports the cross-head which in turn carries the heok. To facilitate the turning of the hook it is mounted on a ball bearing.

Rope Drum.

In most all eases repe drums are made of east iron since it lends itself much better to the turning of grooves. Where a light drum is necessary east steel is sometimes used. In determining the inside drum diameter it should be remembered that the sere may not be exactly concentric hence a liberal allewance should be made above any theoretical determination. The allewance necessary will vary with different foundries.

Different fermulas have been derived for the determination of drum section, some of them being too cumbersome for practical and rapid calculations.

Let P = pull on one rope in pounds.

- * t = thinkness of drum at bettem of greeve.
- " p = pitch of grooves.
- " 1 = distance in inches between drum bearings.
- " D = drum diameter at bettom of greove.
- " d = inside diameter of drum.
- " Bm = bending moment.
- " S = section modulus of drum.

• The second problem is a positive of the second problem in the second problem.

• The second problem is a second problem in the second problem in the second problem.

• The second problem is a second problem in the second problem in the second problem.

• The second problem is a second problem in the second problem in the second problem.

• The second problem is a second problem in the second problem in the second problem.

• The second problem is a second problem in the second problem in the second problem.

• The second problem is a second problem in the second problem in the second problem.

• The second problem is a second problem in the second problem in the second problem is a second problem.

• The second problem is a second problem in the second problem in the second problem is a second problem.

• The second problem is a second problem in the second problem in the second problem is a second problem in the second problem in the second problem is a second problem in the second problem in the second problem is a second problem in the second problem in the second problem in the second problem is a second problem in the second problem in the second problem in the second problem is a second problem in the second problem in the second problem in the second problem in the second problem is a second problem in the s

to the contract of

The second of th

- .e boy the state of the Select Height Fit #
- -constant of the first field to the first field of the field of the field $I = {}^{n}$
 - - · Property of the second secon

Let B I fibre stress in bending.

" C. = " " compression.

Then
$$S = \frac{D^4 - d^4}{10d}$$

- * B * E
- " $C = \frac{P}{Pt}$

Combined stress $= \sqrt{B^2 + C^2}$

For east iron $\sqrt{B^2+C^2}$ should not exceed 6000 pounds per square inch.

Strong extra flexible wire repe has taken the place of chains. For hoisting drums the plew steel repe is used having a hemp center, six strands and thirty-seven wires to the strand.

wound on it simultaneously. On the earlier cranes it was considered unsafe to wind more than one rope on a drum, yet at the present time cranes having a capacity of one-hundred tons are employing the two-rope scheme with good success. When one rope per drum was used, two drums opposite each other wound the ropes. This had the undesirable feature of causing the hock to ascend in a spiral like manner. The two-rope single drum scheme effects a truly vertical rise of the hock so long as the sheaves are placed in proper relation to one another.

Gearing.

The gears in the hoisting train are usually made of east steel, and pinions of steel forgings. All gears and pinions are cut from solid blanks.

The second of the second

on the company of the company of the state of the state

The second of the second of second of the first of the second of the seco

A control of the first process of the energy of t

•, 200

Considerable variation exists in the matter of determining the faces of gears. Some builders will use a greater face than given by the Lewis formula while others use a smaller face than allowed by Lewis. So far as hoisting machinery is concerned this seems to be more a matter of individual choice rather than expediency. Gear faces proportioned by the Lewis formula are conservative and reliable for crane service.

In the past many everhung gears have been telerated chiefly because in the design it was the path of least resistance. These, however, are a thing of the past and the near future will see the elimination of all overhung gearing for standard work.

Shafting.

Medium steel with a sarbon content of about .25 to .30 is extensively used in crame construction. Cold relled steel is also preminent where the shaft diameter can be used unchanged thus avoiding machine work. For steel mill service Open Hearth steel having .40 to .50 carbon is specified. Where a light shaft or exceptional strength is required special steel is employed.

Bearings.

Very little can be said in regard to the bearings since they possess no individual difference as compared to other types of slow moving machinery. In some isolated cases ring ciled bearings are specified. While ring ciled bearings have obvious advantages, yet is has not been proven that they are desirable on slow moving

crane journals.

Lifting Magnets.

For certain classes of work the lifting magnets offer many advantages. For example, in the foundry it may
be used to clean the sand, gather the flasks and transpert the castings. Since it is used as an auxiliary its
use in no way precludes the service of the regular crane
hook the magnet being suspended from the hook. Prevision
must be made to wind and unwind the magnet cable as the
magnet is raised or lewered. This may be accomplished by
driving a drum from one of the shafts or by using a cable
reel which automatically winds and unwinds the cable.
When the magnet is not in use the cable is wound and fastened on its drum enabling the trelley to be used as any
ordinary book trelley.

Crane Wheels.

In general, east iron wheels with chilled treads are used, ground true and to uniform circumference. Cast steel and steel tired wheels are frequently specified. A very special and seldomly used wheel is made of manganese steel. This metal being so hard that it is impossible to machine, it becomes necessary to cast a soft steel center integral with the wheel. In this way the wheel can be bered, keyseated and the habs finished. Where the center of softer material is cast with the wheel it must not become loose. One scheme to accomplish this is to provide the center with a series of "V" shaped cylinders turned on the circumference, the theory being that in easting the ends of the "V" will fuse and effect a union with the surrounding molten metal.

Carlotte Commence of the Commence of

** A Table **

Crane Hooks.

Crane hooks made from a high grade of wrought iron are preferable to steel hooks since defects, produced by wrong heat treatment, are more easily detected. Defects in a steel hook are invisible. In the case of a dangerous overload the iron hook will give warning by a visible, slow deflection before actual failure occurs.

For comparatively light leads drop ferged hooks find extensive application, while the larger capacity hooks are fergings made from tough refined wrought iron.

PROPORTIONING OF BRIDGE UNITS

Girders.

Bridge girders are proportioned the same as any other girders, there being no distinctive features except in the requirements of lateral strength necessary in the upper flange. As a rule the front girder carries the platform, motor and eage, thus leading the front girder heavier. When the eage is placed at or near the center of span special care must be taken to have the girder strong enough to resist the torsional stresses produced by the eage in starting and stopping the crane. These stresses are an indeterminate quantity. Good judgment based on experience is the best guide in selecting the proper section.

End Trucks.

The end trucks are either east or structural or a combination of both, as circumstances may require. The connection between the girder and truck beam should be very rigid to insure strength and proper alignment. The wheel base should never be less than one sixth of the span otherwise the wheel flange pressure becomes too great. This is especially true where the bridge moter is not mounted in the center of the span, the tendency being for one side to everhaul the other, due to the difference in the angle of tersion in the driving shaft. Furthermore, the trolley will also be operating near the bridge extremities thus placing very unequal leads on the end trucks tending to threw the crane " out of

• *

The second secon

square" which makes a substantial wheel base a prerequisite to successful bridge travel.

Driving Shaft and Brackets.

The maximum demand is made on the driving shaft and gears when the lead is near one bridge extremity since an unequal tractive effort must be transmitted which should be considered in determining the sizes of these members.

The driving shaft brackets should be securely belted and elevated as the center of the span is approached such that, when the girders are carrying their rated leads, the deflection of the girders will bring the center line of driving shaft on a herisontal line. Good practice demands that brackets be spaced not over ten feet apart and preferably less for the smaller shafts. Babbitted bearings are extensively used because of their adaptability.

Bridge Meter Brake and Platform.

The bridge meter should preferably be lecated at the center of the span thus equalizing tersional deflections and a consequent tendency of keeping "in square" the end trucks. It is belted directly to the front girders or mounted herizontally on the platform supported at this point by substantial brackets.

It is a good plan to apply the foot brake directly to the motor armature thus requiring a less powerful brake for the same braking effect. Where the brake is

The state of the s

applied to the driving shaft additional bending and twisting stresses must be taken by the shaft. Since a brake of this kind must be equally effective in forward or backward motion the two lever arms connecting with the band extremities must be of equal lengths.

In order to make all parts of the bridge and trelley machinery readily accessible a platform is provided
the full length of the front girder with a hand rail of
ample height. When the motor is mounted on a horizontal
base and takes up considerable room it becomes necessary
to widen the platform around the motor so that a man may
pass with case and without having to step over any parts.
The platform floor is made of either wood or checkered
steel plates as the case may require.

Operator's Cage.

Facing the bridge machinery the eage is usually mounted on the right hand side of the front girder, though at times the service demands that the eage be placed at the left, in the center, or even on the trelley itself. Its location should be such that the operator may have the best possible view at all times and a comfortable position. In this connection it is well to locate the heist controller on the side of the eage nearest to the center of span to enable the operator to lock down over the cage edge; likewise it is also best to so place or wire the centrollers that corresponding lever operations will bear the same relation with regard to the operator. The most natural way is to have the centrollers so arranged that

the cessation of any motion shall be produced by a forward movement of the controller levers. In this way the different operations will be simplified besides saving possible accidents at critical moments.

The eage centains the feet brake lever which is conmeeted to the meter brake by means of bell cranks and
reds mounted on the side of the girder. The eage floor
censists of weed beards or steel plates as may be required. Also a feet geng within easy reach of the operator.
The average crane has either three or four controllers,
hoist, bridge and trolley traverse, -- and where the trolley has an auxiliary drum a fourth controller is required. Where the controllers are mounted to the rear of the
eperator and connected to levers in the front of the
cage there is no obstruction to the operator's view. This
is a desirable feature especially where the nature of the
work demands close attention of the operator.

Every eage centains a switch-beard of ample size to mount the following: For a three motor crame--a magnetic switch, main switch, main line fuses, and fuses for each of the three motor circuits. The main switch should preferably be placed above and within easy reach of the eperator, such, however, that accidental centact will be avoided. A lamp and its fuses are also provided.

ACCESSIBILITY OF MECHANISM

Examining some of the elder cranes it is evident that accessibility was not a serious consideration, however, any machine of today which will stand the scrutiny of the intelligent buyer, besides rigid competition, must not be deficient in this particular. First of all, such parts are unnecessarily cumbersome to assemble, but the great objection comes after the machine is in the hands of the customer. It may be necessary to remove some parts prior to an inspection; breakage may occur, due to any one of a number of causes, making it imperative that some parts of the machine be dismantled. When this becomes necessary it will be seen that inaccessibility may be largely respansible for making idle both men and equipment.

The introduction of half hexagon bushings on the axles of the Master Car Builder's type enable its users to remove the axle by simply releasing the weight from the wheel. The majority of trolleys at the present time are not equipped with M. C. B. bearings, yet the tendency in the newer designs is to adopt this type of bearing.

For the bridge axles the M. C. B. feature is especially desirable since they are much larger and, as a rule, more inascessible. The driving shaft should not be to long sections in order to facilitate the handling. Each shaft should be removable without disturbing a

second.

Where gear guards are used or where moving parts are in any way enclosed it is desirable to provide inspection covers so that their operation may be observed without removing or lessening any part. Frequently minor adjustments may be made in this way with comparative ease.

IIV

FLEXIBILITY A VITAL FACTOR IN THE DESIGN OF ANY HOISTING MECHANISM

Aside from correct scientific and practical construction of a hoisting mechanism in all its phases, the success or failure of such mechanism will, in a very large measure, be determined by its flexibility, i. e., the adaptability of the greatest number of parts of said machine, without change, to the greatest number of demands which may be required of that particular class of machinery. When one considers the variables which must be met or the combination of these it is apparent that it embraces many features all of which require careful consideration.

First of all, there is the great variety of heisting speeds that must be accommodated which immediately affects the heisting gears and the meter, as well as the gear guards. How there are a great many different makes of meters. One customer prefers this make of meter and another some other make, etc. Each manufacturer has meters which differ from these of his competitors mechanically and electrically. It is of little avail to tell a prespective customer that a certain make of motors will answer his requirements, for he will at once conclude that the manufacturer is trying to give him something inferior at perhaps a greater prefit. Added to this there is the choice of magnetic brake for the heist motor. Not infrequently it becomes necessary to employ

a meter and brake manufactured by two different concerns, thus further adding to the already complex problem of flexibility.

What has been said of the hoist mechanism also applies to the traverse, although deviation is not of as much consequence. Sometimes the span is so short that it is abourd to specify any speed at all since the motor would have no chance to accellerate up to full speed. Hence it is obvious that so far as actual results are concerned the traverse motor speed and gearing could be higher than specified.

The question of Elexibility manifests itself with equal force in the pattern shop, the foundry, and finally in the machining of the eastings. If, in view of any of the aforesaid conditions, it becomes necessary to make alterations in existing patterns, or perhaps new ones, valuable time is consumed and, in reality, it becomes semi-special work. But special work means one, or, at best, a limited number which in turn spells production at reduced profits. Apart from the ability to make a quick delivery when these variable features have been anticipated, there is the added advantage that parts can be placed in stock in quantity, completely machined, thus reducing production costs to a minimum.

Aside from the obvious difficulties probably the greatest single deterrent in flexibility has been the greatest initial expense involved which, however, in the end pays big dividends. It is safe to predict that the

out the first of the Million of Affiliance & Durante, and the of the first of the market of the first of t the second of th or the control of the state of the control of the c The state of the second of the the state of the s - Inthing the English between the State of the Contract of the The state of the s the control of the co internal of the state of the st والمشاعب The second of th

future trolley will show a very marked improvement as regards flexibility and simplicity.

The question of flexibility also embraces the shape of parts. Unnecessary curves or angular lines can usually be reduced to a minimum and thus greatly facilitate the placing of adjoining parts and the determination of clearances.

In this connection it is well to remember the flexibility of mechanical lead brake. All hoisting mechanism has a lead brake or its equivalent. For special work structural steel frames are extensively used and if this is kept in mind in the design of standard work, a brake should be produced which can be removed as a unit and easily mounted on a structural frame of a similar capacity.

INDUSTRIAL DEMANDS WHICH TAX THE DESINGER'S INGENUITY.

Prebably an actual case will best illustrate seme of the difficulties which must be met. A plant, we will say, was built five years age adequate for the demands at that time. Possible growth and expansion had been considered. At that time a two ten jib crane was sufficient to handle all leads. The need of a five ton electric traveling crane was thought necessary at a later date so a runway was placed with this in view at the time the building was erected.

Five years later the jib crane is no longer satisfactory. The firm finds that, in justice to their business, a ten ton crane with five ten auxiliary is required. But the runway is already in place. The building can be extended but it is out of the question to make any change in the height of the existing building. Furthermore, physical shop conditions demand that the hook appreach the runway en each side within a fixed distance. Thus we have the anomalous condition of placing a ten ten crane, with auxiliary, within the same clearance dimensions required by a five ten crane without auxiliary. Above the roof trusses limit, while any lewering of the machine simultaneously decreases the vertical heek movement. Thus it will be seen that a machine must be designed within narrow limits and without making the cost of same exceed estimated figures.

the contract of the second A STATE OF THE STA The state of the s The state of the s The second of the → Provide the sign of the control of the cont and the second of the second of the second The state of the s $\frac{1}{2} \left(\frac{1}{2} \left$ The state of the s Harrison to the control of the contr ong inti na 1990 • ekkilonak na hafatan jakasa katawa se on the contract of the contrac Harmonia, with the later was a first transfer of the second of and the first of the first of the contract of A server of the Arman Selection Selection in the Company of the Comp grand and a final first the first first of the second of t the state of the control of the state of the A service of the servic in the contract of the contrac • I will be the state of the st and the first term of the firs

the control of the state of the control of the state of the control of the state of

other examples are: the combination of hoist motor and magnetic brake each of which is manufactured by another firm; hoist motor with magnetic brake so arranged that a lead may be heisted electrically or manually, all control being effected from the floor by pendent cords; an adjustable automatic device for a cantilever gantry so arranged that it will gradually retard the beem speed in the last few feet of travel, both raising or lowering, and finally stopping the beem at a given point should the operator fail to shut off the power at the proper time. This device to be so designed that it will not prevent the operator from stopping the beem through the controller at any desired point in its travel.

Many other cases could be cited, however, these serve to illustrate the diversity of demands.

POWER SUPPLY OF BRIDGE AND TROLLEY MOTORS.

The majority of crane motors are of the direct current type and series wound. The main wires are usually placed beneath and to the inside of the runway girders, en ene side enly. The bridge truck beam carries a bracket supporting an arm to which are fastened the main collectors supplying the power to all meters. For obvious reasons this collector bracket should preferably not be placed between the girders. The bridge motor takes its supply direct from these main collecters. Since the frelley moves along the bridge it is necessary to provide conductors along the bridge girders from which the trolley meters draw their power. Where there is no platform on the rear of the bridge this is the ideal place to locate them. When, however, it is not convenient to so locate them they must be placed on the inside of one or both of the girders. When this becomes necessary particular care must be taken that the hoisting ropes or any part of the trolley shall not come in accidental contact with the conductors. In fact the electrical and mechanical clearances as well as insulatien should be liberal, and preclude the pessibility of short circuits. It is well to place the trolley conducters on the girders in such a position that when the pull of the heisting ropes is such as to bring them to teuch the bettem plate of the girder the conductors will

the state of the s the contract of the contract o e → to the control of the control and the second of the second o → Property of the second and the second of the second o $|x| = |x| + \frac{1}{2} \left(|x|^{2} + \frac{1}{2} x^{2} - \frac{1}{2} x^{2} - \frac{1}{2} x^{2} - \frac{1}{2} x^{2} - \frac{1}{2} x^{2} + \frac{1}{2} x^{2} - \frac{1}{2} x^{2} + \frac{1}{2} x^{$ on the first of the second of and the state of t and the second of the second o $m{z}$ and the contract of the contra the first of the second of and the second of the second o and the control of th

the contract of the contract o

still have ample clearance. This is an extreme condition.

Occasionally, however, a crane is used to drag a load or

move cars and when this is done it is imperative to have

the conductors out of reach.

Beth wires and plain flat bars are used as conductors. Wires have the advantage of lightness as well as being easily insulated. Where flat bars are used supports must be previded at frequent intervals which is not necessary with wires. Should a wire break from some cause or another it must necessarily fall with the possible result of serious accident. Where flat bars are used there is no danger from this source.

For the average three motor direct current crane nine trolley conductors are required: four each for the hoist and traverse motors and one for the limit switch.

DETERMINATION OF POWER UNITS

The electric crane motor is serviceable and reliable even under extreme conditions of leading. Its marked adaptability to various leads makes it an ideal machine. Heavy everloads will be carried without any serious consequences so long as the everload duration of time is short.

For electric travelers no motor should be overloaded when carrying its rated lead. Trelley traverse and bridge motors should have some excess herse-power to enable them to accelerate quickly. Cranes of the same capacity will frequently have meters of different horse-powers. This discrepancy can be accounted for in three different ways or a combination of any: Different efficiencies, difference in the builders rating, and individual practice in the excess of herse-power allowed.

The heist gear ratio for a D. C. series meter may be determined in two ways, as follows:

Let C =circumference of drum in feet.

- " r.p.m=revelutions of motor per minute.
- " H = heek speed in feet per minute.
- " R =hoist gear ratio

Then F. P. M. Revelutions of drum per minute.

Then CXr. D. M. * H

1) er R : C x r. p. p.

H fer single part ef repe off drum.

- in a section of the s
- 👉 ja 🗜 📜 to ka to mag 📮 🐧 o 🛫 ja
- 🚅 to straight the state of the
 - - $(1+2) \qquad \forall t \in \{1,2,\ldots,m\}$
- In the second of the second of

Since the speed of the series motor varies through wide limits, for reliable results, it becomes necessary to ascertain the exact motor torque exerted and the corresponding speed. The normal speed rating cannot be used in the above formula unless the meter is actually carrying full lead.

A more direct solution is to equate the lead torque to the motor torque and compute the required ratio therefrom.

Let L =lead on drum in pounds.

- " r-pitch radius of drum in inches.
- " T= meter terque in inch peunds.
- " E = efficiency of hoisting mechanism.

Then Lr = TER er

(2) R- Lr

The size of heist meter may also be determined in two ways.

Let P = lead on heek in pounds.

Neglecting weight of parts then,

(3) $\frac{PH}{33000 E}$ = actual required H. P.

Again neglecting weight of parts,

(4) <u>Ir</u> = actual required meter terque.

Comparing the two formulas it is evident that (3) does not consider the diameter nor the lead on the drum. In consequence thereof it would be possible to compute the same H. P. for two different machines of the same

The state of the s

. Programme of the state of th

 $(-1)^{2} (2^{2} + 2^$

1. **(5** 1 45 3)

The state of the s

en de la composition della com

may not be the same. This would necessitate two different gear ratios for the two cases. Where the size of meter is determined by formula (3) it may be found necessary to add another reduction in order to use the proposed meter, which may eliminate the intended machine and the design or substitution of another having a greater gear reduction. An actual example will make this clearer.

Let P = 40,000 pounds.

- " H = 15 ft. p. m.
- " B = 76 %

Then by (3) $\frac{40000 \times 15}{33000 \times .76} = 23.9$ required H. P.

We will select a Westinghouse 8K, D.C. crane motor, 220 velts, 25 H. P. @ 575 r. p. m., whose torque is 2740 inch pounds.

To use (4) we will further take fellowing conditions:

Let L = 13333 pounds - r = 12" - six parts of rope.

Then by (4) $13333 \times 12 = 3570$ inch pounds, required meter terque.

But this result is greater by 830 inch pounds, neglecting any excess H. P., and hence cannot carry its rated lead without everleading, in which event we should not get a heist of fifteen feet per minute.

From (1) $R = 24 \times 17 \times 575 = 80.5$ required hoist 12 x 15 x 3 ratio for Westinghouse 8K meter. Therefore we should either have to provide a larger meter or a greater gear

· E company is a second trust

The state of the s

one to the second second of the second of th

The state of the s

The transfer of the first of the second of t

្នាក់ ប្រការស្រុក ប្រកាស្ត្រ (១៩៩៦) ខេត្ត ប្រការ

ratio to obtain the required hoisting speed.

Again, if we had computed the size of motor according to (4) we obtain the following:

13333 x 12 = 59 hoist gear ratio required, which $3570 \times .76$

our preposed machine can accommodate.

Traverse Metor.

Let T - required tractive effort in pounds.

- " G = dead weight plus live weight.
- D z diameter of trelley wheel in inches.
- " d diameter of axle in inches.
- " f = emefficient of friction--about .07.
- " E efficiency in per cent.
- " S z linear speed of trolley.

Then T = .07Gd and

Required H. P. of traverse motor is $\frac{TS}{33000}$

While this gives the actual herse-power required, yet seldemly, if ever, is the traverse meter developing its full herse-power. In consequence, if it is essential that the traverse speed be adhered too closely, it becomes necessary to ascertain the exact terque exerted by the meter and base the gear ratio on the r. p. m. at this terque.

Bridge Moter.

The size of bridge motor may be determised in a similar manner as the traverse motor. In practice a more

 $(\bullet, \bullet^{\bullet}) = (-1, \bullet, \bullet^{\bullet}) = (\bullet, \bullet, \bullet) = (\bullet, \bullet) = (\bullet,$

and the second second

- or the late of the first the late of th
- · Production of the control of the c
 - on the first of the first term of the first ter
- - The state of the s
 - on of the state o

and the second section of the second section is the second section of the second section of the second section of the second section is the second section of the section of

en de la companya de la co preferable way is to compare load torque and moter torque and preportion the gear ratio accordingly. A liberal excess of H. P. should be allowed on the bridge moter since the position of lead on the bridge may demand excessive power especially on long span cranes. Where, for instance, the trelley is near one bridge extremity and earrying full lead, there is a tendency for the bridge to get "out of square" while traveling.

Furthermore, there is the deflection of girders which cannot be eliminated. While it is possible to compute the deflection of the girders at different points and elevate the driving shaft brackets accordingly, yet it is not so easy in practice to locate them with mathematical precision, considering various variables in the process of manufacture. Thus it is evident that excessive friction may be produced due to irregularities, all of which demands a liberal excess of H. P. to provide for these contingencies.

SAFETY APPLIANCES.

Se long as the human element is a factor with which we must recken, it is necessary to provide means that will prevent the wrecking of machinery, injury to workmen and possible death. The fundamental principle of all safety appliances is to take action, either suddenly or gradually, before the danger sone is reached without in any way interfering with the regular operations. Such devices must, of necessity, be automatic, i. e., they must act regardless of any action or inaction of the operator.

The evertravel of hook or the heisting of the lead until it interferes with parts of the trolley is a source of trouble unless there is provision made to prevent this. Where it becomes necessary to utilize the full hoist continually it is obvious that such provisions for safety become of considerable moment. Sometimes it is required to limit the hook travel in the lowering as well as in the heisting direction.

Manufacturers have produced devices of considerable diversity to limit hook travel and the merit of any one of them depends upon a number of things taken collectively. A device may answer every requirement of safety and yet be undesirable from the erane builder's point of view. The device must not be too expensive and the external proportions such that it can be attached readily

The second of th

The second of th

te any hoisting machanism. Where the attachment of the device depends upon a certain construction, very frequently considerable expense is involved in attaching such a safety device which in reality adds to the cost of such appliance. Whatever the construction, it should never diminish the vertical hook travel.

In response to the demand of a positive safety device to prevent evertravel of hock which would be satisfactory to the purchaser of cranes as well as the manufacturer the Shaw Electric Crane Co., developed a new device which the writer had the pleasure of desinging and which is new used on all the cranes manufactured by this Company. In the design of this mechanism the following points were kept in mind, and the apparatus developed accordingly:

- 1. Reliability at all times and positive action.
- 2. Simplicity consistent with the requirements making for easy and speedy manufacture.
- 3. To make the apparatus a complete standard unit in itself which could be adapted to various hoists without any alteration or substitution of parts.
- 4. Flexibility -- to enable its attachment to the various classes of cranes without the necessity of long and tedious layouts.
- 5. To employ the same device for open or closed circuit, single or double acting.
- 6. To make the outside dimensions as small as possible.

- In the control of the property of
 - Section 1980 and Expeditions with equipment of a section of the section.
 Section 1981 and 1982 and 1982 and 1982 are section.
 Section 1982 and 1982 are section.
 - on activity on the right with residence to be to get to be one of all and a second of the second of

7. The ultimate cost to be lew consistent with the above requirements.

Through the medium of a crank connection is made with the drum shaft, the crank being on a worm and driving a worm wheel which in turn has a contact lug. As the worm is driven by the drum the contact lug on the worm wheel is brought eppesite a similar lug on a trip lever, which epens the meter circuit through a magnetic switch in the cage. The limit switch will not allow the meter to get any current in the heisting direction, but any time that the controller is reversed to the lewering direction everything resumes its normal course. Furthermore, the device keeps the heist circuit epen for several revolutions thus eliminating the danger existing in an instantaneous epening—that of centinuing in the heisting direction.

The range of limit switch is emple for all hoists required, the adjustment being effected by the bringing nearer or farther the point of contact as the case may require.

The limit switch uses the same parts for open or closed circuits, the change being accomplished by different
relative positions of parts. Generally the closed circuit is used because the breaking of a circuit is positive, but not the making of a circuit. In other words,
the electric circuit is complete until interrupted by
the device.

The entire mechanism is enclosed in a rectangular box whose external dimensions are $4\frac{1}{2} \times 6\frac{1}{2} \times 5^2$. The box

 \mathbf{r}_{i}

The first content of the content of

- Some and a regression of the first of a second control of the state of the
 - on the first of the first of the control of the state of

has two lugs by means of which it is bolted to the end of the drum bearing.

. Since the device is adaptable to any hoist without change, it can be manufactured in large quantities thus materially reducing the cost of manufacture.

• The state of the

AVERAGE VS. STEEL MILL CRANES

The steel mill crane is a product in response to a demand for a crane thoroughly reliable at all times under most exacting conditions and equipped with every safety device. It must be berne in mind that the steel industry represents an investment of enormous capital and the process of manufacture is one which, perhaps more than any other, places the life and limb of those engaged in jeepardy. Delays of minutes may make inoperative an amount $\frac{of}{A}$ equipment whose value totals thousands of dollars. Thus it will be seen that steel mills must have the best possible and most modern equipment irrespective of cost.

While such cranes are primarily used for steel mills yet there are other industries to which these remarks apply, in a measure, with the result that a good many steel mill specifications are incorporated in buying a crane. In fact, the steel mill specifications are manifesting themselves in various phases of the crane industry.

The mill crane immediately gives the impression of massiveness, strength and liberal preportions. In many parts the factor of safety is greater. All couplings are of the safety flange type. All parts are made of steel except drums and collector shoes. All pinions are made from forged steel and no pitch finer than four diametral pitch; no everhung pinions are used. No wood is

•

used for any construction, conductor insulators not excepted. Trolley shafting is usually made of Open Hearth steel and the bridge driving shaft of C. R. S. No trolley wheels are less than 12° in diameter and bridge wheels not less than 24°. All treads are so proportioned that with a wear of 1 1/4° on the diameter they will still be serviceable. All through bolts are used and preferably no reamed belts.

The heist meter magnetic brake is designed to held the lead independently whereas on standard cranes the brake is preportioned to held about one-half the motor torque.

The bridge motor and driving shaft brackets are mounted herisentally on substantial brackets while standard cranes have the motor and brackets belted to the side of the girder. All axle bearings are of the M. C. B. type. Drum and sheave diameters not less than thirty rope diameters, whereas standard cranes run under thirty. No babbitted bearings.

The preeminent feature on the mill trolley is the almost exclusive use of the dynamic braking heist controller, which has been perfected within the last three or four years. As has been pointed out, the steel mill service is unusually severe and in consequence thereof mechanical load brakes have been the source of delays and heavy repair costs. A brief analysis of the mechanical load brake will show why this is so.

Control of the Contro

When a lead is lifted a certain number of feet peunds of work must be done. Energy has been stored which is available for useful work or it must be dissipated in some form or other. The principle of the mechanical lead brake is to dissipate this energy in the form of friction. In other words the lead brake is a means for transforming potential energy into heat which must be dissipated rapidly if the brake shall not become excessively het. When we multiply the hook lead by the heist, neglecting harmful resistances, it becomes clear that even light leads store considerable energy, and which is proportionately greater for heavier leads and lenger heists.

Where dynamic braking is used the centrel in lewering is effected by converting the meter into a generator thus returning useful electrical energy to the main line. If the resisting force, due to friction, is greater than the lead the meter lewers the lead by power; but if the frictional forces are exceeded by the lead the meter immediately becomes a generator diminishing the speed of lewering which may be varied by the insertion or removal of resistance. The preminent feature of dynamic braking is that useful electrical energy is returned to the main lines, and if not then a part of it appears in the form of heat through resistances especially designed for this purpose. This cannot be said of the mechanical lead brake.

While dynamic braking actually centrels the speed

 $\mathbf{v}_{i} = \mathbf{v}_{i} + \mathbf{v}_{i}$ (4.15)

والمراجع والمراجع والمنافق والمسترين والمراجع والمراجع والمراجع والمراجع والمراجع والمراجع والمراجع والمراجع والمراجع

of lewering, yet it will not hold a lead in any position. For this reason it becomes necessary to add a second electric brake on the motor gear shaft. For mill cranes this brake as well as the motor brake is made powerful enough so that each will held the lead independently. Such a combination is very powerful and quite instantaneous and there is a question if this action is not too powerful for ultimate satisfactory performance.

In dynamic braking the werst eventuality which could happen would be the simultaneous failure of the supply veltage, magnetic brake and the controller wiring yet, in that event, because of safety devices used in dynamic braking, the lead would actually descend so slowly that the danger of any damage would be remote.

Automatic Magnetic Switch Control.

Another very important feature of large mill cranes is the application of the automatic magnetic switch control. Where large meters are used it has been found that manually operated controllers have a high maintenance charge and are sumbersome to operate.

The numerous advantages obtained through the application of this control all reduce delays, and it is this feature more than any other which recommended this form of centrol.

A second of the secon

[.]

On the mill switch beard we usually find overlead relays for all meter circuits instead of fuses, thus eliminating the expense of blowing fuses; push button for epening or closing quickly the circuit breaker switch; a safety plug which the eperator can remove and lock giving certainty that the crane will not be traveled until he has replaced the plug. It also has the main line switch, lamp and its fuses.

IIIX

PRINCIPAL CALCULATIONS IN THE DESIGN OF TWENTY TON TROLLEY.

On the fellowing pages are given the requirements and principal calculations of the twenty ton two motor trelley shown on the enclosed drawing, 3D142.

220 Volt direct current.

Heist moter--Westinghouse No.8, Type KG, 25 H. P., & 575 r. p. m., terque 2740 inch pounds.

Traverse meter--Westinghouse No. 4, Type K, $7\frac{1}{2}$ H. P., @ 750 r. p. m.

Heisting speed 14 feet per minute.

Traverse speed 130 feet per minute.

Bight parts of 3/4" repe.

Vertical beek movement 28 feet.

All gears are to be east steel--pinions forged steel.

Show limit switch.

Pibre stresses in shafting net to exceed 9000 pounds per square inch, except sheave pins which may be stressed up to 12000 pounds per square inch.

Dynamic braking to be used instead of a mechanical lead brake.

Westinghouse, type KT, magnetic brake for the hoist meter.

Cage to be attached to right hand end of bridge.

Master Car Builder's type of axle bearings.

•

enter de la la la poeta de la companya del companya del companya de la companya

Sometimes of the second of the

Hoist gears will be enclosed with No. 10 U. S. G. sheet steel guards.

The traverse gears will be enclosed with cast iron guards.

No overhung gears, motor pinions excepted.

Hoist Motor.

Following efficiencies will be used:

Total number	Per cent	efficiency	,	
parts of	Lower block to	No. of	Second	
rope	drum		Variable Property	1000
8	87	80	74	68

H: H: P: x 33000 x E = 25 x 33000 x .68 : 14.02'
per minute hoist.

H. P.
$$\frac{\text{H P}}{33000 \text{ E}} = \frac{14.02 \times 40000}{33000 \times .68} = 25 \text{ H. P. required.}$$

$$R = \frac{L r}{R T} = \frac{10000 \times 10}{.68 \times 2740} = 53.5$$
 required hoist

ratio.

$$\frac{79}{23} \times \frac{84}{21} \times \frac{85}{23} = 51$$
 Actual heist ratio used.

Traverse Motor.

We will use 85% efficiency for two reductions and one idler.

13 x .261 = 3.4' circumference of 13" wheel.

The traverse gears will be endlosed with cost iron guards.

no overhung gears, motor pinions excepted.

Hoist Motor.

Following efficiencies will be used:

	,	fficiency	ent e	Per c	Total
enois:	Second	real Viret	ej	Lewer	parts to
88	74	08	1	68	8

H = 1. P. T 13000 X 2 = 20 X 2300 0 X - 20 ... 14.520.

P minute hoist.

4. P. H. P. | 14.01 x 2.20 | 2) H. P. rom strad.

teind beringer $\xi: \{\xi = \frac{Cf \times CG \times Cf}{CG \times G} = \frac{\pi}{2}, \frac{\pi}{2} \neq F$

ratio

 $\frac{\partial \phi}{\partial x} \times \frac{A}{a+1} \times \frac{A}{a+1} = A^{-1}$ Actual heigh ratio uses.

.TOJOE BRIDVAT!

the aller.

1) x .2(1 = 3.4' circumference of 13° wheel.

R = $\frac{c \times r}{s}$ = $\frac{3.4 \times 750}{130}$ = 19.6 required traverse ratio.

 $\frac{52}{14} \times \frac{83}{16} = 19.25$ actual traverse ratio used.

Estimated weight of trolley 13500 pounds

Live lead 40000 pounds

Total lead 53500 pounds

 $T = Gfd = 535 00 \times .07 \times 3.25$ DE 13 x .85

tractive effort required.

H. P. = $\frac{T.8}{33000}$ = $\frac{1100 \times 130}{33000 \times 3000}$ = 4-34 H. P. required.

Since the No. 3 frame is a 5 H. P. the next largest, a No. 4 frame, $7\frac{1}{2}$ H. P., will be used.

Heist Gearing.

Live lead on drum = 40000 = 10000 pounds.

P. D. of drum gear = 26.333*

P. D. of drum pinion = 7.666"

P. D. of intermediate gear - 24.000"

P. D. of intermediate pinion = 6.000"

P. D. of meter gear = 21.250*

P. D. of motor pinion = 5.750"

79 = 3.43 Drum gear ratio.

84 = 4 Intermediate gear ratio.

85 = 3.69 Meter gear ratio.

Where the dead weights are comparatively small they will be neglected in calculating the strength of parts.

the contract of the contract of the contract of

and the second of the second o

• and the second second second second

the state of the s

The second of the second secon

the second second second second second

. .

• Or discount of the second

•

• • • •

 $\frac{10000 \times 20}{26.33 \times 80}$ = 9500 pounds, teeth lead on drum gears.

$$\frac{575}{4 \times 3.69}$$
 = 39 r. p. m. of drum pinion.

39 x .261 x 7.66 = 78' P. m. , lineal velocity of drum pinion.

Value of factor "Y" (Lewis)

Teeth	200 Involute	Teeth	200 Involute
12	.078	19	• 100
13	.083	20	.102
14	.088	21	. 104
15	.092	23	. 106
16	- 994	25	108
17	.096	27	.111
18	.098	30	.114

Allowable fibre stress in gear teeth (Lewis)

Material	Speed at pitch line in feet per minute					
110v x 1		200	300	600	900	1200
Cast St.	12000	10500	9600	8000	6000	4800

Then by the Lewis formula for the strength of gear teeth.

W = S P F Y

$$F = \frac{W}{S. PY} = \frac{9500}{12000 \times 1.047 \times .1} = 7.58$$
 say 7 3/4"

face of drum pinion and gear.

 $\sqrt{\sigma}$ is the second of σ and σ is σ . As σ

			6	
			, •	
			•	
			•	- ;
		•	•	
,	•			,
			- •	

<u> </u>		12		 1.2 miles
- (•	4	<u>.</u>
	<u> </u>	*	1	

and the control of th

 $9500 \times 7.66 = 3300$ pounds teeth lead on intermediate gears.

575 = 156 revelutions P. M. of intermediate pinion. 3.69

156 x .261 x 6 = 244' lineal velocity of intermediate pinion.

F = $\frac{3300}{10000 \times .897 \times .1}$ = 3.68" say 4" face of intermediate gears.

 $\frac{3300 \times 6}{21.25 \times .92}$ = 10 12 pounds tooth lead on motor gears.

575 x .261 x 5.75 = 863' p. m. lineal velocity of motor pinion.

 $F = \frac{1012}{6000 \times .785 \times .1} = 2.14^{\circ} \text{ say } 2\frac{1}{8}^{\circ} \text{ face of motor}$ gear, pinion 2 5/8* face.

Traverse Gearing.

P. D. of driver gear a 13"

P. D. of driver pinion = 3.5°

P. D. of meter gears 16.6"

P. D. of meter pinion = 3.2*

 $\frac{1100 \times 13}{13}$ = 1100 pounds tooth load on driver gears.

 $\frac{750 \times 16}{83}$ = 145 r. p. m., of driver pinion.

145 x .261 x 3.5 \pm 132 p. m. lineal velocity of driver pinion.

1100 x .785 x .088

for driver gears. We will use 24" face.

On general principles we will make the motor gear

. The second of the second of

eta=-(a+b) . The transformation of the first $oldsymbol{eta}$, $oldsymbol{eta}$,

en de de la company de la comp

To A to a subject to the subject of the subject of

Isom to be a partial of the

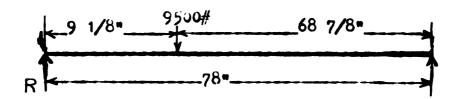
THE RESIDENCE TO STATE OF SECTION AND LONG.

#1. 1 gran tot : 1

The state of the state of the state of

. He was the transfer of the forties of the said a title of the said.

en sommer to be a significant


The property for the form of the form of the contract of the

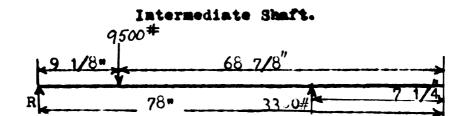
of the second of the figure of second in the second

2 1/8" face, pinion 2 1/4" face. Since this face is larger than the face required for the driver gears, further calculations will be unnecessary.

The increase of face is to take care of any excess leads which the motor may be called upon to earry. Furthermore, the actual faces required would appear weak and out of proportion for a machine of this size.

Drum Shaft.

Live lead on drum 10000 pounds.


Drum gear keyed to drum thus eliminating all twisting on the drum shaft.

R = $\frac{9500 \times 68 \text{ } 7/8}{78}$ = 8380 pounds reaction on drum bearing due to gear lead.

Since the heisting ropes are central on the drum each bearing will take one half of the rope leads. Hence 8380 + 5000 = 13380 pounds, total reaction on drum bearing.

We will take the lever arm $1/4^{\circ}$ inside of drum hub, hence $4.25 \times 13380 \pm 57000$ inch pounds bending moment.

57000 g 6.32 section medulus required. This cerres-9000 pends to a 4" shaft. We will use a drum shaft 4 1/8" diameter.

• • • •

- . The probability of the constant Ain the contract of the property of the contract of the contrac · and a second of the control of the

The state of the s

o bodanie Nobel I oder Moha Galenie (1866). Podanske pod The contract of a company to the first of the first of the second → Maximum to the first for the form of the first fo

 $(-1)_{m{k}}$, $(-1)_{m{k}}$

and the first of the control of the en de la companya de

and the state of t

 $R = \frac{9500 \times 68 \, 7/8 - 3300 \times 7.25}{78} = \frac{654000 - 24000}{78}$

R - 8700 pounds, reaction on drum pinion bearing.

 $8700 \times 9.12 = 79300$ inch pounds bending moment.

9500 x 3.83 z 36400 inch pounds twisting moment.

 $\frac{36400}{9000}$ = 4.03 section modulus, which corresponds to

a 2 3/4" shaft for twisting only.

79300 = 2.18 = K---H = 1.66.

1.66 x 2.75 = 4.57" say 4 5/8" diameter of intermediate shaft.

Hete: All shafting computations involving bending and twisting are based on the formula

$$Te = B_m + \sqrt{B_m + T_m^2}$$

Brake and Brake Shaft.

 $\frac{79}{23} \times \frac{84}{21}$ = 13.75 Ratio between drum and brake.

10000 x 10 x .74 s 5380 inch pounds retarding ter13.75
que fer which the second shaft brake must be designed.

5380 = 715 pounds retarding force necessary on 7.5 brake drum.

Let T : pull on tight side of brake band.

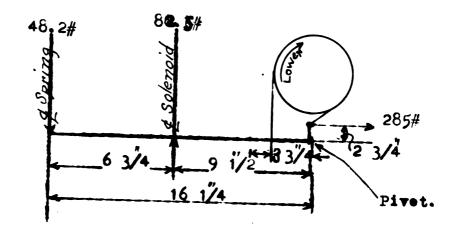
- * t . pull on loose side of brake band.
- " x z angle enclosed by brake band, say 240°.
- " f g coefficient of friction (3).

Then Efx. 2.718 .3 x 4.188 - 3.514.

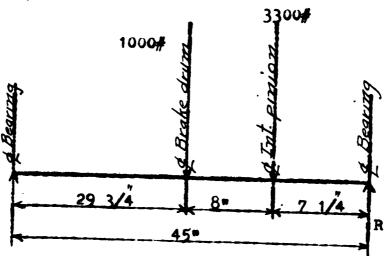
···

• Problem Area (a) Section 3.

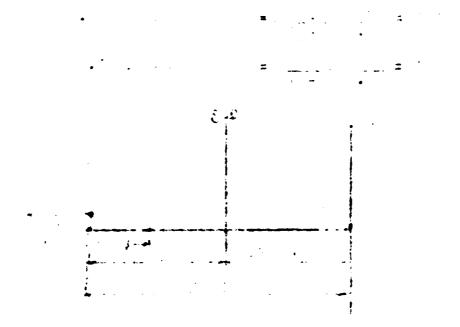
on the second of the second was a second with the second of the second


orange in the second of the se

· Company of the second second


• The second of the second of

 $T = \frac{715 \times 3.514}{3.514 - 1} = 1000 \text{ pounds pull.}$


$$t = \frac{715}{3.514 - 1}$$
 = 285 pounds pull.

285 x 2.75 s 48.2 pounds, force to be exerted by 16.25 spring neglecting weight of parts. In detailing the the brake parts, effect of the weight of different parts must be considered and proper allowance made for the spring, and selemeid winding. Since the spring is adjustable the brake action can be varied through wide limits. It will be noted that the tight side of the band is fixed, thus making an occanonical and powerful brake.

We shall neglect the fact of continuous beam and

 $(1-\epsilon)^{2}$. The second of $(1-\epsilon)^{2}$, $(1-\epsilon)^{2}$

consider brake drum and intermediate pinion supported by only two bearings.

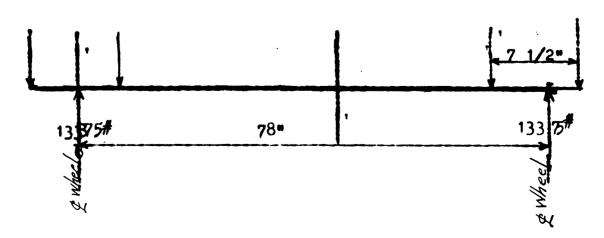
For practical purposes it will be sufficiently aceurate to consider the resultant of the band pulls acting vertically and equal to T, or 1000 pounds.

R = $29.75 \times 1000 + 37.75 \times 3300 = 3440$ pounds reaction on brake shaft bearing.

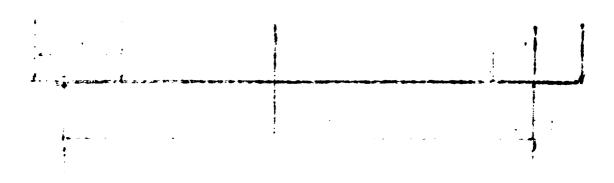
7.25 x 3440 s 25000 inch pounds bending mement.

3300 x 3 - 9900 inch pounds twisting moment.

9900 : 1.1 section modulus, which corresponds to a 9000


1 13/16" shaft for twisting only.

25000 = 2.53 • K—X • 1.75.


1.75 x 1 13/16 = 3.18 say 3 3/16" diameter brake shaft required. We will use 3 1/4 diameter at this point which is practically determined by the back bearings on the motor, due allowances having been made for the assembling of parts.

Since it is apparent that this shaft meets all requirements, further calculations will be unnecessary.

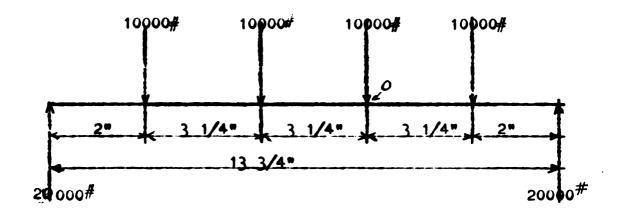
Driver Axle.

•

We shall neglect the centinuous beam feature.

Assuming that all wheels are equally leaded, we would have $\frac{40000 + 13500}{4}$ = 13375 pounds carried by each wheel.

Teeth lead en driver pinien 1100 pounds.


The maximum moment occurs at the wheel and is equal to $13375 \times 7.5 \times 25000$, inch pounds beading moment.

1100 x 6.5 a 7150 inch pounds twisting moment.

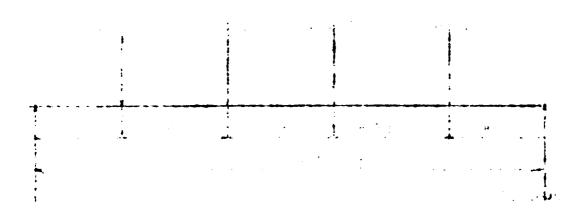
 $\frac{7150}{9000}$ z .795 section modulus which corresponds to a 9000 1 9/16* diameter shaft for twisting.only.

1 9/16 x 1.93 = 3.01" say 3 1/4" diameter of axle.

Upper and Lewer Bleck Sheave Pins.

This diagram shows the loading of the lower block sheave pin.

Taking mements about 0 where the maximum mement oc-


 $-10000 \times 3.25 + 20000 \times 5.25 = 72500$ inch pounds bending moment.

The first manual of

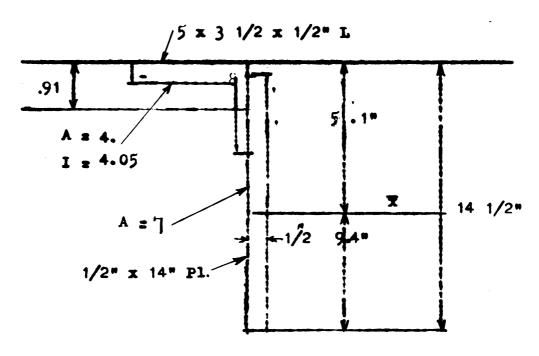
المنظم المنظ المنظم المنظ

en de la composition La composition de la

The second of th

en de de la companya La companya de la co

We will use a 4" sheave pin.

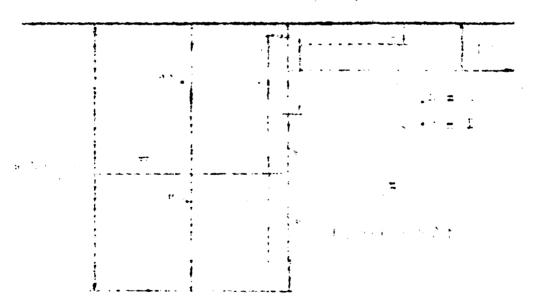

72500 = 11300 pounds per square inch en 4" sheave 6.4 pin.

For the upper block pin we will also use 4" so that the sheave bushings for the upper and lower blocks will be interchangeable.

Since the upper pin is shorter and not leaded as heavily as the lower one, any calculations will be super-fluous.

10000 = 768 pounds per square inch. bearing pres-3.25 x 4

Upper Bleck Girt.

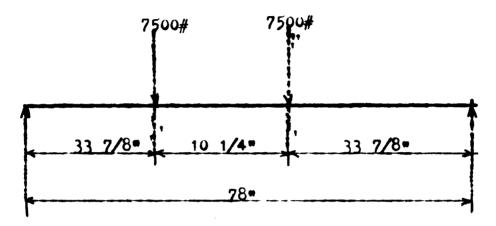

$$\bar{x} = \frac{7 \times 7 + 4 \times 13.59}{7 + 4} = 9.4$$

 $I_x = \frac{1}{12} \times \frac{1}{2} \times 14^3 + 7 \times 2.4^2 + 4.05 + 4 \times 4.19^2$

Some fine and description of the control o

- Property of the second of t

الرابات المعاد المعاد


建工品 医骨毛夹上炎

 $I_{x} = 114.2 + 40.25 + 4.05 + 70 = 228.50$.

228.50 = 44.3 compression modulus.

228.50 = 24.3 tension modulus.

The vertical leading of one half of the upper block girt is as shown above.

 $7500 \times 33 \ 7/8 \approx 254000$ inch pounds maximum bending moment.

254000 - 5740 pounds per square inch compression.

 $\frac{254000}{24.3}$ = 10500 peunds per square inch tension.

The compression is kept lew so that the angles are enabled to resist any normal lateral forces they may be called upon to carry. To take care of extreme lateral forces we will anchor the lead girt to the machinery girt by means of a tension belt, as shown on the drawing. This belt will be fixed in the machinery girt, but free in a slot in the lead girt, so that deflection by the lead girt will place no lead on the belt.

20% of the vertical live lead is a conservative estimate of the lateral force that the lead girt must be

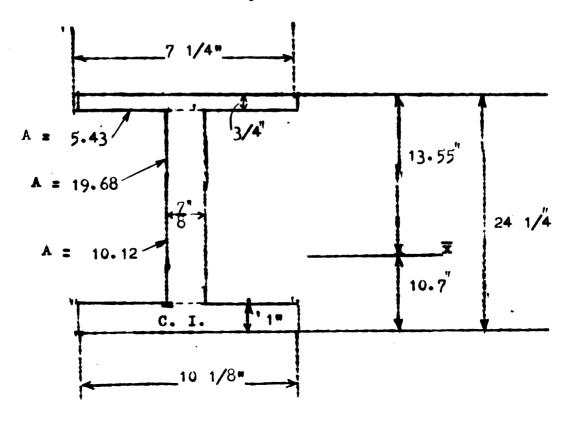
•

the state of the s

able to resist, hence

20% of 30000 = 6000 pounds.

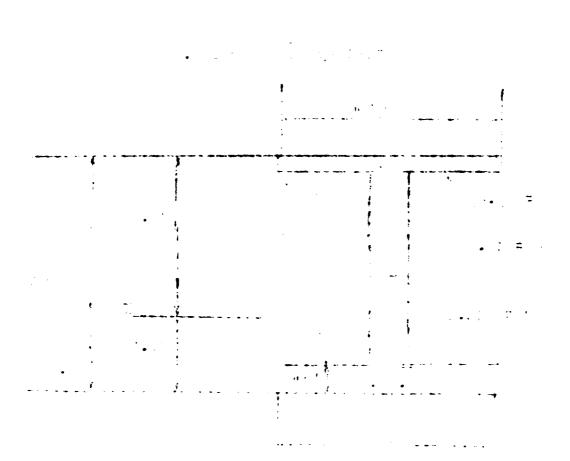
At about 10000 pounds per square inch tension this will require a 1" belt. Any excessive forces in the eppesite direction will be transmitted to the machinery girt through the interposed washer.


$$\frac{L}{r} = \frac{78}{.75} = 52.$$

According to Gordon's formula the allowable compressive stress for a slenderness ratio of 52 is as follows:

$$\frac{12500}{1 + \frac{39^2}{36000 \times (.75)^2}} = 11600 \text{ pounds per square inch.}$$

This would indicate that the girt will not buckle under the combined vertical and lateral forces, the compressive stress due to vertical lead being 5740 pounds per square inch.


Trelley Side Section.

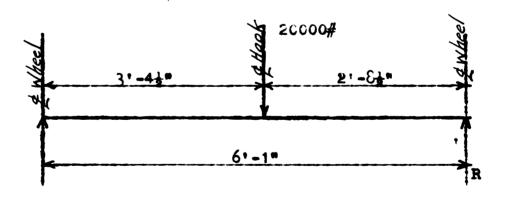
the second control of

Experience of the second of th $eta: (eta \otimes eta) \otimes eta \otimes$

in the court of the first term of the court $(x_1, x_2, \dots, x_n) \in \mathbb{R}^n$, which is $(x_1, \dots, x_n) \in \mathbb{R}^n$, $(x_1, \dots, x_n) \in \mathbb{R}^n$

$$\mathbf{x} = \frac{10.12 \times 1/2 + 19.68 \times 12.25 + 5.43 \times 23.87}{10.12 + 19.68 + 5.43}$$

$$\bar{X} = \frac{5.06 + 241 + 130}{35.23} = \frac{376.06}{35.23} = 10.7^{\circ}$$

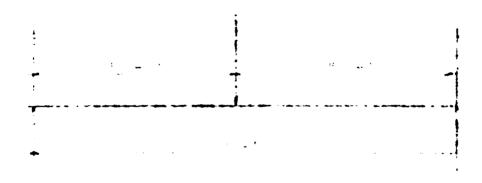

$$I_{x} = 10.12 \times 10.2^{2} + 1/12 \times 7/8 \times 22.5^{3} + 19.68 \times 1.55^{2} + 5.43 \times 13.18^{2}$$

$$I_{x} = 1050+832+47+942 = 2871$$

The inertia of the upper and lower flanges about their own axis has been neglected since this is very small.

$$\frac{2871}{10.7}$$
 = 268 tension modulus.

We will now take moments to determine the maximum moment on each of the trolley sides.



Re 40.5×20000 = 11090 peunds maximum lead carried 73 by one wheel.

11090x32.5 = 361000 inch pounds bending moment due to live load.

The dead lead will be considered as uniformly dis-

> e 1 martin de la companya de la comp A companya de la comp

n de la companya della companya della companya de la companya della companya del

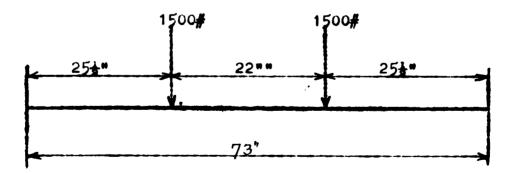
• 1 -> 1

tributed, hence

 $\frac{13500x73}{2x8} = 61600 \text{ inch pounds bending moment due to dead lead.}$

361000+61600 = 422600 inch pounds, total bending moment on one trolley side.

422600 = 2000 pounds per square inch compression.


 $\frac{422600}{268}$ = 1580 pounds per square inch tension.

We shall assume that the trolley sides may be called upon to carry a lateral lead of 20% of the live lead on the lead girt.

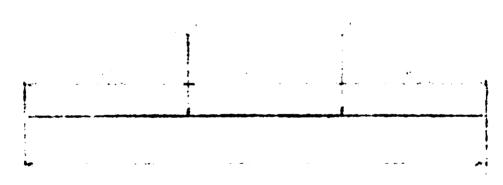
20%x3000 = 6000" pounds.

6000 = 3000 peunds lateral force per trolley side.

For convenience we shall assume this lead as distributed equidistant between the wheels, thus

1500x25.5 - 38300 inch pounds lateral bending moment.

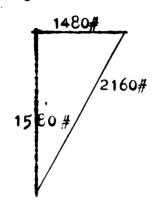
It is apparent that a part of this bending moment is transmitted to the upper flange, we will say 1/3. Therefere


38300x2/3 = 25533 inch pounds lateral bending moment

and the second of the second

• • • • •

en de la companya de la co


Section 1998 And the section of the se

 $(-1.2) \times (0.000) \times (0.00$

on lower flange.

 $\frac{2533}{1 \times 10^{1/8}} = 1480^{1/8}$ lateral tension on lower flange.

combining the vertical and herizontal tensions, as shown, we get a maximum tensile stress in the lower flange of 2160 pounds per square inch, which is satisfactory.

Bearing Pressures.

The sheave bearing presures have been determined under a previous heading.

We have found the maximum live lead on one wheel to be 11090 pounds. Assuming that the dead lead is equally distributed ever the four wheels, we have

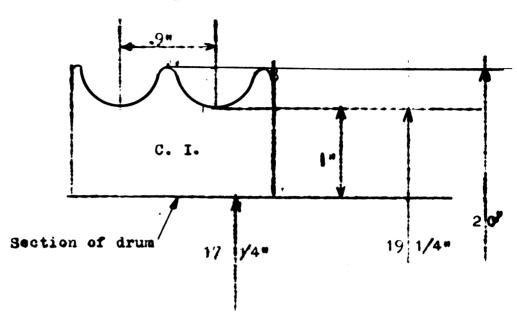
 $\frac{13500}{4}$ = 3375 pounds per wheel.

11090+3375 = 14465 pounds, maximum wheel lead. Hence the maximum bearing pressure is

 $\frac{14465}{2x3.75x3.25} = 593 \text{ pounds per square inch.}$

It is apparent that the bearing pressures in the hoisting train are lew. They are both safe and practicable

A second of the s


entre de la companya del companya de la companya del companya de la companya de

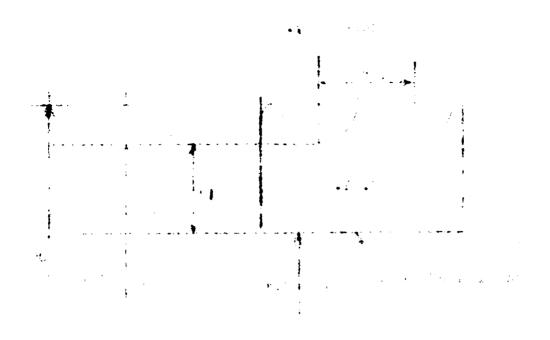
en de la composition de la completa La completa de la completa del completa de la completa del completa de la completa del la completa del la completa del la completa de la completa del la completa de la completa de la completa del la completa della completa del la completa della comp

en la de la companya del companya de la companya de

and hence further calculations in that direction will be superfluous.

$$S = \frac{p^4-d^4}{10d} = \frac{19 \frac{1}{4} - 17 \frac{1}{4}}{10x17 \frac{1}{4}} = \frac{138000-88500}{172.5} = 287 \text{ section modulus of drum.}$$

10000x70 = '175000 inch pounds, bending moment on drum.


 $B = \frac{Bm}{S} = \frac{175000}{287} = 610$ pounds per square inch bending.

 $C = P = \frac{5000}{9x1} = 5555$ pounds per square inch compression.

 $\sqrt{B^2+c^2} = \sqrt{610^2+5555^2} = 5600$ pounds per square inch cembined tension and compression.

The wire rope will be extra flexible plow steel, six strands, thirty-seven wires to the strand, hemp core, having an ultimate capacity of 42000 pounds.

42000 = 8.4 factor of safety in rope, neglecting 5000 dead weight.

ore the company of the control of t

 $\mathcal{L}(\mathbf{x}) = \mathbf{x}^{-1}$, where $\mathcal{L}(\mathbf{x}) = \mathbf{x}^{-1}$, $\mathcal{L}(\mathbf{x}) = \mathbf{x}^{-1}$, $\mathcal{L}(\mathbf{x}) = \mathbf{x}^{-1}$, $\mathcal{L}(\mathbf{x}) = \mathbf{x}^{-1}$

and the second of the second o

 $\mathbb{E}_{\mathcal{A}} = \{ (x,y) \in \mathcal{A} \mid (x,$

. This factor of safety is a little high, since, however, the 3/4" repe is the nearest commercial size answering our requirements it has been selected.

The drum has a total of twenty-four groeves per side. We will allow two turns for wrap and stretch of repe, leaving twenty-two greeves available for hoisting.


Circumference of drum in feet is .261x20 = 5.22. Heist per turn = $\frac{5.22}{4} = 1.30$ feet.

1.3x22 = 28.6 feet hoist, which meets our requirements.

the production to the first of the second of the first of the second of

• The second of

Pocket his: I Plan

SUPPLEMENTARY MATERIAL

