$$
1
$$

RETURNING MATERIALS: Place in book drop to remove this checkout from your record. FINES will be charged if book is returned after the date stamped below.

- Four and Six Horse Teans On The Farm.
E.D.A.true- Class of '78.

My object in this paper, is to propose a reduction ofexperse to the farmer of Michican, by increasing the number of horses in a team, from two or three, to four or six, and correspondingly reducing the number of men employed in cultivating the soil and hauling loads.

What I shall say on tiiis subject, is based on a growing experience of fifteen years, it jeing about that leneth of time, since we began using four horse teans on the farm. Since that time we have gradually passed from the occasional use of a four horse team to the almost constant use of four, five or six horse teans, for plowing, harrowing, rolling, and so forth, and the frequent use of four horses, for hadinu loads, especially on the road.

Our first systematic use of four horses, beytan before the general introdiotion of the springtooth harrow, when the wheel cultivator was almost universally used in tio siring, for working up fid. powict.

Cultivating wais such heavy work, that when the ground was at all hard, one of three evils generally foll owed; either the horses were overworked, the work was poorly done, or the cultivator and man had to stand idle one third of the time, winle the horses were resting. This we observed and undertook to remedy, by putting a span of horses on each side of the pole of our cultivator, and found as a result, that doing the work thorourhly, one man, one caltivator and four horses would, cultivate as mich as two men, two cultivators, and four horses.
From that time forward we rlways did our cultivating with four horses.

After cultivating with four, our next step was coupling two harrows together, and trying four on them. Two harrows however when coupled together, proved to draw much harder than when seperate, consequently thoufd with grave missgivings as to whether we were not overstepping the bounds of prudence, we applied six horses abreast, and with such satisfactory results that six abreast became a regular institution with us, for though two harrows together, drew harder than when seperate, the work done was so much more effective that we considered it no waste of energy.

After using two harrows together we soon coupled two rollers together, and also used various combinations of tools as for isstance, a roller or a Randall dise with a harrow hitched behind.

A lurrow wi th a roller behind it, a spring tooth with a spike tooth behind it, and occassionally λ train of three tools together; tast of all we added a gang plow, which turns two large furrows and requires six horses to draw it, and with which one man plows four acres a day, so that at present nearly all our cultivating operations, are done to a greater or less extent, in a wholesale manner.

We have been advancing along these lines, year after year, because bxxaxamag we believe we receive benefits by so doing.- What are they?

First, and most directly, we save wages and board of one or two men in the most hurrying time of the year, agregating perhaps there are four months for one man, in the course of the year. This is not a vast saving, but is good as far as it goes, but the benefits do not stop with waces and board, for when we lessea our gang of men, we lessen the cost of super vision.

If I send three men into a field, with two horses each, I know that they are alnost certain either intentionally, or unintentionally, to was te each others time, and experience has taught me, that it pays to keep near enough to know what is going on there. If I combine the six horses into one team, with one driver, I am practically care free for I find by experience

that there is only the slightest danger tiat he will not work and work faithfully, lesponsibility has a cood effect on men in any circumstances, and l beilieve that the responsibility of driving six horses, makes a man work better than when driving two. Agrin, 1 may drive the team inself, fating that 1 an earning tioe wities of boss and all hands,.

I have ridden many a week after six horses, feelig ing taat I was doing work worthy of π graduate of M.A. C., when 1 might otherwise have been plodding wearily after two, feeling myself in more than one sense, on a level with my horses.

We often get considerable help in the hurrying season, by using colts and other horses which for any reason are not fit to do the full work of a horse, and would scarcely be worth driving, if we had to furnish 2 driver for every two, or even three.

For instance, last spring we made five colts do the work of about three old horses by working them in to large teams, when otherwise, they would not have been used. After tine corn was planted, they were turned out, and have not been hitched up since, and perhaps will not be till next spring.

We often get the use of our horses by making one man drive six, when taey would otherwise be idle for want of a driver, when work not requiring horses, calls off the men.

Horses, will do whatever you set them at, witnout jealousy or dissatisfaction. If you want to change thern from one job to another, or from one team to another, you may do 80 with impunity, as far as the horses are concerned.

Men are more sensitive, about the way they are handled, and a man who has eight or ten horses, and only two teamsters, can maniputate them much more easily, than the same number of horses with four or five tearnsters.

Reducing the number of men out of doors, reduces the work in the house, and in fact, the farmer who can successfully work his gorses with half the usual number of teamsters, will gain advantage upon advan-

A large factory is not an aggrezation of small shops under aone management. Instead of half a dozen small engines with half a doz en entineers, one large one with one engineer, furnishes the power.

Instead of small machines we find large ones, with which the same number of men, do tens or hundreds of times the amount of work. A large farm should not be an aggregation of small ones, but large fields, large tools,large teams and wholesale methods should correspond with broadened opportunities.

Though it is my object in this Paper to advise the farmer to drive more horses in one team, I would not advocate hitching two or three span of horses together, without carefully considering the safety of the plan, with reference to ones own particular horses.

One man cannot manage two runway horses, much less half a dozen, and the danger, in case of a general runaway, of course increases with the number of horses involved, therefore, be careful how you take chances by hitching up fractious horses.

Farm horses are how ever as a rule very docile and if properly fed and manajed, may be safely hitched together by the dozen, if requi red.

If I have to hitch in a horse that I think is inclined torun, I ut him on for an outside horse, and hitch him to the next horses hame by his tie-strap then I put my safest horse on the opposite side of the team, and if the fractious horse starts to run, and I can't hold him, I hold back the safe side of my team, and the result is a circle.

I have never had but one runway in all my experience with wide teams, and that, I stopped by the above tactics, making a circle, probably not more than three or four rods in diameter, and quickly subduing the runners.

My manner of hitching four horses abreas t, is to hitch up two span of horses as if they were to work seperately, drive them side by side, and fasten the two inside horses loosely together, by a strap three or four feet long, passing between the two inside breast strap rings.

If I use nockyoke, tais strap is not needed, as its only use is to keep the two tean from straying apart.

Then 1 take the four reins in my hands and cross the two inside ones, bringing the right hand rein of each span in to my right hand, and the left hand rein of each suan into my.left hand, Tea 1 start the four, and if necessary let the reins slip in my hands till they all draw evenly, and then without allowing them to slip out of place, I tie a single knot in each pair, just forward of where I wish to take hold in driving, tinus converting the two reins in my right hand into one, and the same witn those in my left hand, the knots being within reach, so that I can shift them if necessary, and also reach forward of them, as is often convienent in turning .

In hitching six abreast I follow the same plan, witching up two independent threehorge teams, I place them side by side and tie the inside horses together by their breaststrap rings, unless neckyoked, - cross the reins as before, - start my team to see that the reins are all even, and tie, as before, within reach of tice drivers hand.

For five abreast of course 1 place a two norse team beside a three horse team, cross tie reins and tie as before.

The object in fastening the two inside horses toéether, either by a strap or by a neckyoke, is simply to keep the two teans from straying apart, . th_{f} reins will zenerally do this, in fact I used'to drive with nothing to hold my horses together, but the guidance of tise reins.

Tiis is unsafe however, as the driver is liable to accidentally pull the wrong rein and rive to two teams apart, or a line may becone foul and produce the same result, and when the component teams begin to diverce, the driver soon looses all controll, and the tangle becomes serious.

Hired men are apt to want to tie the inside horses together by their heads as it relieves then of sometrouble in driving, b:it this I never allow.

After the reins are crossed and tied, their direction is changed, enough to cause considerable loosening of some of the cross-reins, and tightening of others. This must be corrected before they will work satisfactorily.

Tisis is explained by figures 1 and 2.
This arrancement of reins is somewhat imperfect, but has the advantage of allowing the teams to be almost instantly changed from two or three abreast, to four or six, and vice versa, without the use of extra straps, which for my own use I consider an essential consideration.

I have no doubt that for use exclusively on four or six horse teams, reins might be contrived, that would de more satisfactory, but the advantage just mentioned is of such paramount importance for my own use, that I navenever attempted to make a change.

The imperfection just rentioned in tre workine of this system of reins will be explained by Figures 3,4 and 5 more easily than I can explainit otheryise, n these Figures the position of the horses is represented by the position of the bits, a straight pull on B Figure one and $\mathbf{3}$ oosining of A makes the horses take the position shown in Figure $\frac{4}{8}$, thereas they should take tire position indicated in Figure 5, which is done by stepping to the left and making A. \& B. take the position $A^{\prime \prime} \& B^{\prime \prime}$ or by reaching forward of K. on the right hand branch of the rein B., loosening the rein A. This makes the right hand horse act as a pivot for the whole team to revolve upon.

In actual practice after horses become used to working together they will generally turn almost without guidance, one horse standing nearly still sometimes even backing a little, while the rest swing around him. The time and space requi red for turning not being nearly so great as a novice would naturally soppose.

On my own harness I ha e adopted a style of rein which I consider superior for any purpose, to taht generally in use, but which is especially adapted to

Figure 1.

Figure 2.

Figure 1. Represents by means of reins and bi ts, two span of horses side by side, ready to have reins crossed and tied.
a.b.c.d. Reins.
e.f.g.h. Cross reins.

Figure 2. Req es en ts the same with reigns crossed and tied.

It is evident that the cross-reins f.and \mathcal{E}. will be loosened and also that e.and h. tightened.

This tightening and loosening must be corrected or the horses will not drive properly.

Fig' re 3.

Fiデure 4.
4

Figure 5.

use on vide tean, as it allows of maimated ciance in tise length of tie two forks of tiee rein in euther direction witiout the need of buckle lioles and also
allows the long and short branch of the rein to chance places without turnine the rein over or changing tife distance n the fork from tie bits.

I can explain the comparative workings of the two reins more easily, by referrinu to Tigure 0 and Figure 7, The ordinary form of rein is shown at Ficure 6 and consists of two peices, the stem A.B.C. and tiee cross rein du. D..sliding on the stem by means of the buckel 13. Bd. is suimosedto be loneer than b.C.
D

$c^{1 \theta}$

Figure 7.
but in case of driving six abreast B.\& C. sometimes has to be made loneer than B.d. which makes it necess-
 distance on the stem, making the fork come much farther from the bits than was intended, and aking it necessaf to have a long row of buckle holes punched in the stem in order to allow of so much shifting.

The rein that I prefer is also composed of two parts as seen in Figure 7

Fisure 7.
A. [3. stem vilich is simply a straight strap with tae end turned back and sewed down makine a lonp at B.
C.B.D. the cross rein is a continous strp 12 feet long with the usual arrangements for fastening it in to the bits, and looped upon the stem as represented at B.

When the loops are drawn upon they will not slip but are easily loosened, wh en the cross-rein may be sli ped in either direction as far as desired.

I often use a stem or handpiece of quarter inch rope, looped upon the leather cross-rein, this makes a very light, bheap rein that any one can make in a few minutes, of any length desired.- For driving six the reins need to be uncommonly long and lightness is also consideration. A whip long enough to reach the remotest horse is an essential part of the drivers outfit. This need not be an expensive braided affair but may be cut from a good heavy boot leg or some other piece of firm leather.

Six abreast make a rather loose jointed team and the driver must not expect to hold them as strictly to place as if driving two, and if they get out of the proper course, are not to be brought back suddenly by a sharp pull, but gradually by an easy curve.

The guiding of six abreast reminds me of the steering of a large boat, the man at the wheel never stops turning it, first a little to the right and then a little to the lef \ddagger, so with six abreast, the driver mus t be constantly touching this rein then that, nipping in the bud each incipient curve, not making and straightening great on es.

The easiest way to drive six, if walking, is to tie the reins together and put them around the body, The force required to straighten so many reins, will very materially lessen the labor of walking: while if holding the reins simply in the hand the strain on the hands and arms is very tiresome.

I always feel however that a six horse driver deserves to ride and when using a tool without a seat as for instance, a harrow, I generally couple on a little cart made for the purpose, which aiduts much to the comfort of the driver and not very much to the draught of the eam.

When unhitching four and espe cially six horses the driver will necessarily be out of reach of several horses most of the time and they are apt to take advantare of this and b zin to stray away causing much trouble. Do not allow one to start till all are ready to go and if necessary have a light strap or rope ready and pass it through a bit ring of eath horse snapping or tieing it to the two outside ones, this will prevent all trouble and when all are unhitche it can be unsnanped at the ends and pulled out. This plan will prevent much trouble and if the horses are inclined to be erisky perhaps real danger.

My plan and constant aim when working horses is, whatever tool I am using, to have power enough to $k e p$ it going constantly, I do not intend to have the team stop mach more than I do a threshing machine. From the time they start till time to turn out, it is a s steady jog, - not fast, unless the footing is firm and the work light but constant. When a team has to rest every few minutes the time thus consumed, soon amounts to an alarmingly great part of the diy, and resting will bery likely be carried to excess if the drivers inclination leans that wey, and if not the horses will be in danger of being overworked.

What would you think of a teamster who on the road constantly loaded his horses so that they hd to rest every mile? You would say he was a fool and not fit to drive a horse. How much better is a farmer who does the same thing in his field?

Horses worked so hard that they have to be rested frequently are much more likely to have sore sholders, than when worked moderately and continually, and of all the jobs that fall to the lot of a teamster, 1 think nursing a sore shouldered horse is about the most disconrageing and of all the aboses carried on by respectable people, I count working a horse with the collar press ing into a raw sore dout the worst.

A ifour or six horse evener, with whiffletrees attached, is a reavy thing at the best, and should be made as light as possible. The easiest way to reduce the weight, and keep the strength, is to reduce the length, and consequently the other dimingions, of the

whiffletrees. For most work I prefer whiffletrees two and one half feet long to those three andxanexx feet long, and they on ly require to be about two thi rds as neavy.

When using this length of wisifiletrees the long evener for six horses should be eight and one half feet long and four horses, six feet long; These lengths allow for three inches of timber at each end beyond the pin holes, and also a little distance between the ends of the whiffletrees.

When an evener is made it should have several holes bored at each end, also several in the middle, to all ow plenty of latitude for giving light horses the advantage, and also in case of a six horse evener, to allow of its being used for five horses.

A three horse evener when composed of a long arm and a short armed, should always, if possible be attached to the main evener with the long arm out as in this position, it is much less likely to foul against the main evener than then the long arm is turned in.

Every evener whether for two , three, four or six horses should have a centre clevis and ring, by which to attach it to whatever is to be hauled, and every Implement, to which horses are to be attached, wherther it be a wagon, plow, harrow or roller, should have a hook to which the evener may be instantly attached, without taking off the centre clevis and ring.

If wagons and cultivators have hammer straps and pins and other tools have attachments requiring a centre clevis and ring, the pins will be changed about and often missing and so will the clevises and rings. This I know by experence, but the universal rule of a hook on every rool and a clevis and ring on every evener has ended this trouble.

Do not use a staple instead of a clevis and ring, in the centre of an evener, as it offers the greatest opportunity for a lazy horse to take advantage of a free one, a thing which should be guarded against in any team, but especially when drevengmore than the usual number of horses.

Figure 8.
In attaciong four horses to a pole a four horse neckyoke is a very good thing, but ies not practically necessary. Figure 8 shows a pole with four horse whiffletreest and neckyoke, connected by traces and breaststraps, where it is evident that if one horse Goes ahead, another must fall back correspondingly, and the tension on oreast straps and neckyoke remain constantly the same.

Figure 9 shows pole with four horse whiffletrees and two horse nebkyoke, where it is evicient that if the two middle horses advance and the outside ones fall
back tire tendency is to slip the neckyoke off the end of the tongue. On the contrary if the outiside horses advance and the middle horses fall back, the traces and oreast straps of the inside horses being practicaiy continious straps, becone tauigh, and the tendency is for the outsj de horses to draw the entire load, the inside horses sirply supporting the pole, by means of the tightened traces and breast straps.

To avoid these troubles the end of the toncue
should project well beyond the neckyoke ring, to prevent its sljpping off, and the breast straps should be long and rather lonse, which will counteract the other difficulty.

For driving six abreast on a pole a four horse neck yoke is necessary as the two difficulties just mentioned are increased to such an extent as to be serious practical difficulties, men only two norses support tile pole. Figure 10 shows a four horse reck yoke.

Figure 10.
A and b are ordinary two horse neckyokes, C four horse neckyoke, wilh ch is twice the length of a two norse neckyoke and madief a good piece of ash or rock elm board one and one half inches thick, by four or five incios wide in the centre and tapering at tine ends to ahout two incnes. D.l.hooks by which c is attached to $a \& b$, E.F.lieght clevises by waich tire ring is fastened to c.

Tinis neckyoke is very easily made and can be d!stantly attacined and ietacined by means of tiee in

- With reference to implements, suitable for wholesale farming in Michigan, volumns inight well be writtea It is not my aim however to go beyond a point where I believe my sugcestions might be of immediate practical value, to a large number of Michigan farmers.

The plow is the efreat foundation ilpplement, and though improved by thousands of inventors, and boutht to great perfection in some respects seems to be the bardestof all tools, to increase in width by multiplication; There are bane plowshowever, that work well under fnvorable circumstances and would be very valuable tools on many farms, except for the difficulty attaching and drivire the horses.

In speaking of bancs, I refer only to those composed of two plows.
wakers of gangs generally claim that they can be operated successfully by three horses, and that if four are required they can be driven successfully abreast wi thout drivinu a horse on the plowed yround.

I have tried a number of gangs, but they all draw so hard that to work them with three horses, is not even to be thought of, F.t is possible to work them with four horses, if the ground is in nice condition and the furrow not too large, but this brings the Ritch so far to one side of the plow as to be objectionable, and even with the shortest whiffletrees, crowds the furrow horse very badly. I am satisfied that one might partially relieve this troubles by lengthening the traces, say from three to six feet, by introducing some tace chains, and I should certainly try this if I wanted to use four horses on a gang. I think a better plan would be to hitch five abreast, putting one horse on the plowed ground and Uiving him the advantage to compensate for the hard traveling. This would give.powereenough, to turn two furrows prett weill, and also bring the hitch in the same place, asit. using three horses which I consider the only proper hitch for a two furrow plow.

Whoever can manage to run a gang, successfully will find it a ereat help in pushing work along, espec ially fall plowing, when apple picking and corn
-
harvest call off the men and leave the horses idle.0n my own gang I drive three horses abreast on the pole and three abreast for leaders, this makes an elegant and powerful tean, but as it requires the addition of an elevated seat on the plow for the driver, and the use of a whip about twenty five feet long, it is of little use to reccomend it to any but a professional four horse teamster.

On the whole gang plows work, x\&xexas as far as I have obs erved is not first class, but I think it averages as well as the work done by hired men with walking plows.

I strike out and finish up my own lands with the gang and think I do so as well as can be done with any sulky plow.

To my one interested in gangs, I would say don' t buy till you try and reserve the right to be your own judge whether or not the plow is a success. W

With reference to harrows for four or six direast I can simply give my own manner of combining two in one.

Harrows as we buy them are usually cormosed of two leaves hinged together and hooked to f coupling evener To combine two in one simply place them dide by side remove the short coupling eveners and substitute one long enough for both harrows, with four hooks instead of two.

This makes a tool too wide to run steadily when the hitch ise only in one place in the middle of the long coupling evener, and requi res a crotch iron or chain as shown in Figure 11.

Figure 11 .

a.b. Long coupling evener.
c.c.c.c.c Hooks by winich harrows are attached. d.d.Clevises.
e.e. Iron rods with loops in each end by which they are attacired to d.d. and also to the hook f.

I have often thought of making a harrow wi th each section independent of the others, except for being hitched to the same long evener in front. This would allow much greater freedom in raising - a great advantace., and also the sections might be coupled thyetioer in odd numbers allowing one to use three or five sections togetiner, instead of confining him to tie use of four.

The coupling for two rollers consists of a wooden stretcher between the ends of the two tongues to keep them always at the proper distance, a d a short chain say 18 inches or 2 feet long, hooked to the adjacent ends of the xust rollers just tiyht enoush to prevent one roller fron getting ahead of the other.

The tears are at tached as if the rollers were to be used sepeately then driven side by side the stretcher fastened between the tonyues and the chain hooked

The seat is the most difficult part of tne oitfint as the driver naturally wants to sit directly bedind the middle of his team, which would be over the ends of the two rollers where there is no suitable place to attach the seat. A plank extending between the seats of the two rollers or sone other support in the midde of each roller, furnishes a seat on which the driver can take any position he desires, and also brings all the weight at the proper points. This plank seat must needs slide endwise at one support or the other as these two supports must evidently change there distance from each other, with the tipping of the rollers and also as one roller advances or receded with reference to the other as $1 t$ must continually do.

The exact arrangement that I use would nce here, as my rollers were made with special reference to being used together.

Figure 12 will give a suijestion that will I think be practicably applicable on most of tal rollers in use.

Figure 12.

2.2. Roller seat standards.
b.b. Pieces of scantling bolted to standards and projecting backwards from under seats.
c. Plank seat extending between the two standards.
d. Roller on which one end of the plank slides.
e. Bolt on which tiae other end of tiae plank turns.

This arrangement of rollers leaves a narrow strip of unrolled ground, between the two rollers which may be disregared or rolled like the rest by the means of a small roller attached to one of the others.

A very pleasant was of cultivating is to hitch one tool behind another as a harrow behind a roller. This is a favorite plan because it is so easy to make the hitch with a couple of short chains and some hooks on the roller frame.

I also use a roller behind a harrow which I consider really a better combination in most cases for several reasons, lst.- It leaves the ground rolled which is often a benefit. 2nd.- It makes a better footing for the horses when going over it the next time. 3rd.- It is perfectly killing to lumps great or small, as moist ground is stirred by the harrow, and pressed by the roller with only the lapse of a second or $s o$, and has no chance to become hardened by the sun or wind.

It requires however that the tongue be removed from the roller and a short ohs substituted, and also a somewhat complicated attachment applied to the harrow to receive the end of the short tongue, allowing it lateral motion in turning and also vertical motion in ppassing over inequalities in the surface of the ground.

See Figure 13.

Figure 13.

4. Foundation of wood or iron of any shape convenient for fastening to the harrow.
b. U shaped piece of rron or wood to which the roller tongue c. is attached by means of the pin d. e. Bolt by means of which b. turns on a.

．

$$
\begin{aligned}
& \text { - 。 } \\
& \text { •• }
\end{aligned}
$$

．． $2 . .4$

In hitching four or six horses to a tool having a pole it is necessary to guard against putting too much weight on tine necks of the horses.

I have in mind my own disc harrow on which the place for tre whiffletrees was originally above the tongue, but winch I have changed to a point a considerable distance below.

Figure 14 gives approximately acurate measurements taken from this tool which will seiveto illustrate this point.

Figure 14.
a Dise.
b. Pole.
c. Whiffletrees in original position.
c^{4} Whiffletrees in new position.
c.d. Trace in original position.
c'd. Trace in now position.
d. Point of attachment to hames both of trace and breast straps.
e.c. Trace produced.

Now with the whiffletrees c. in the original position. f.g. at right angles to e.c.d. would represent the short arm of a lever with the horses attached at f., the fulcrom at E. and g.d. the long arm bearing on thenecks of the horses at d.

Then the short arm f.g. which is 1 1-2 feet :-g.d.

- '....i a

which is 13 1-2 feet :: 1 : 9
From which we see that when the whiffletrees are placed at c. 1-9 of the entire draught of the horses comes on theneck of the team.

This harrow originally intended for two horses, when set to its full capacity furnishes abundance of work for four.

Now let us hitch on four horses with the two middle horses carrying with tongues an a set of four horse whiffletrees weighing 50 pounds at c. add to this 1-9 of the entire draught of the four and we will have a weight on the neckyoke sufficient to soon lay the team up with sore necks, - Moral- Put the whiffletrees at c^{\prime}.

To the average farmer, four horses appears to be a ponderous and unwieldy team, when in truth it is not a hard team to drive, and can be handled with ease in a good large garden, and I believe that many a farmer who has driven horses all his life, would as readily undertake to run the Frie Rail Road, as to hitch up and drive six, still they can be nandled to advantage in any medium sized field, that is not full of objections and after one has become used to such teams, the feeling on going to work with two is that of throwing away ones time and probably not less so than in case of a man us ed to driving two or three horses on going to work with only one.

I have sook en of driving large teams in cultivating the soil and I believe that four horses ought to be a very common team for hauling loads on the road, a large part of the farm produce of Michigan, is hauled from three to five miles, to market, and much of it farther, and all by teans of two horses, each driven by a man who with a little practice, might just as well drive four and haul nearly or quite, twice as much.

Farmers frequently pass my door hauling loads with two overworked horses, when I know they have horses lying idle at home that might just as well help to haul much larger loads and still have the work easy for all.

What is the reason of this, - Our roads are straight- our bridges are good- We can hardly think
that our men and boys, are not as capable as in other countries, $a d$ in other parts of our own country, where four horse teams are common, both on the farm and on the road.

I can see nothing in it but a habit, A wasteful, shiftless habit, in which the whole community has indulged, till a four horse team in the hands of a farmer is considered a dancerous monstrosity, only to be used in case of absolute necessity, and then with two drives and a footman.

Such a state of things, is an indoustrious and energetic community, where we boast of our quickness, to adopt and carry out every new plan, for making aor saving money and where every man is a teanster is a paradox of folly beyond my comprehension.

I can on ly compare it to the state of things that missionaries say exists in barbarous countries, where the people cultivate the ground wi th crooked sticks, and though freely furnished wi th improved implements, throw them aw ay and return to thereold methods.

What is the matter of the farmer? The trouble is that he lacks education in the principles of mech-

- antek, and engineering, The principles that govern - that application of power to work.

The horse is the farmers engine, and he will never have any thing but a two or three horse power, until the áricultural implements manufacturer, moved by his own selfish interest, gets up one for him, unless he makes an effort in this direction himself.

Professor Barrows, Dr.Beal, and Dr. Kedzie, can answer his entomological, botanical, and chemical questions better than he can hope to do himself. But mechanical questions arise almost daily that if solved at all must be solved inmediately and by the farmer,
 questions that he onght first of all, to prepare himself to solve if he hopes to advance.

Education cures the barbarian of plowing with a crooked stick, and the right kind of education, will cure the Michigan farmer of wasting his time in large smooth fields, and on straight turnpikes, wi th the
same team that his grandfather used, wisen he inad on ly a little patch of stumpy clearing, no bridges and no roads.

ROMA USE aMA

