THESIS

Effect of Bacteria on Bonemeal

W.R. Wright

THESIS

XX 131 173

12mm may 1 , **. . .**

T H E S I S

THE EFFECT OF BACTERIA ON BONEMEAL.

(A Partial Verification of Work Done by Professor Stoklasa in Germany.)

 \mathbf{B}

W. R. WRIGHT.

· Michigan Agricultural College.

1902.

The aim of this thesis has been the investigation and possible verification of some valuable results regarding the effect of bacteria on bonemeal recently published by Professor Stoklasa of Cermany. The subject is one of agicultural interest and worthy of capeful consideration. His work was published in Scientific and Appricultural Journals in Europe.

It has not been possible to take up the work as extensively as that carried on by the German Professor. As his work could be readily divided into two experiments, one a verification in a horticultural way of the other, we chose to duplicate that part most intimately consected with the Science of Pacteriology. Furthermore the time allotted did not permit of satisfactory repetition of the entire experiment.

Before giving the details of our own work it will be necessary to present a few facts regarding the Professor's work, which were given in German Scientific papers. He used six different bacteria, first in solutions, and, later, in soils. We are interested in the results he has published as to their effect in solution, and our aim has been to verify his work along that line. It was his opinion that the discovery of micro organisms capable of reducing bonereal to the elements would, by the lib mation of Mitrogen and Phosphoric Acid, favor the growth of plants. With this end in view he conducted his investigations as to the effect

of the six micro organisms in solution as follows: Ten grams of bonemeal, (analysis indicated the presence of 5.26 per sent of nitrogen and 19.8 per sent of phesphoric acid), were put into 900 c.c. of sterile water, and iron sulphate, potassium sulphate, and Fagnesium chloride were added in small quantities. Equal quantities were then put into seven flasks, one of these being retained as a control. After inoculation the flasks were kept at a temperature favorable for semi-growth. After 33 days had elapsed, they were smalyzed, with the following results:

Control flask	Nitrogen. 3.69%	Phosphoric Acid.
Pegaterium	4.98/	4.27 %
Fluoresc. liquef	- 5.00%	1.82 5
Protexs Vulgaris— — — — -	- 4.59%	2.93 %
Butyric Huppe	- 5.06%	3.08 %
Mycoides	- 5.10%	4.56 %
Mesk nterious Vulgatis	- 4.78%	4.08 %

An examination of these tabulated results slave us:
That the edfect on Phosphoric Acid was greater than on
Mitropen; the per cost of Mitrogen way far less than those
of Phosphoric Acid; and that in all cases the germs have
increased the amount of both elements.

In our work, fresh ground bone was not available, so old eal was used. This heal contained line in shall quantities, which fact probably accounts for the small changes that occurred.

To understand the work thoroughly, somy or the details must be given. Harch 12, 1902, seven 500 c.c. Erlmeyer flasks, each containing 1 1/2 grads of the bonereal, 128 c.c.m. of storile water, a little potassium sulphate, kagnesium chloride and aron aulphate, were prepared. The Following day bast mia were introduced inwo five of them, two being reserved as controls. They were placed in the incubator room, whore a uniform temperature of 25 C. is maintained. After the expiration of 33 days these were removed and Witrogen and Phosphoric Acid determinations made as regidly as possible. The Kjeldahl Sethod was used for determining the total amount of Mitrogen, and the Uranium titrating reathed for the Phosphoric Acid. Duplicate tests were, in all cases, ade of the contents of each mask, and in two instances a disagreement hade it recessary to repeat. Laking in all rour tests for a single determination. The Megaterium flask and one of the controls contained a mold when samples for the determinations were taken.

The results of our tests are given below Nitrogen.	7. Phosphoric Acid.
Control flasks 035 %	0.80%
Resenterious Vulgatis014	1.85
Protess Vulgaris 01405	1.55
Floresc. Liquefier0154	1.70
Hegaterium0182	1.10
Butyricus0238	0.80

An examination of this table shows a decrease in the litrogen and an increase in the Phosphoric Acid. The Rityricus is an exception to this, but thus may be accounted for by the apparent feebleness of the germ as indicated by cultures made from the flask. Our germs have decreased rather than increased the amount of Nitrogen, but have increased the amount of Phosphoric Acid to more than double the original amount in two of the flasks. The small changes as indicated by the tests are procably due to a great extent to the absence of organic matter upon which the germs could thrive. The Germ, Eycoides, was not available at the time of inoculation.

It would not be just to raise the statement that Professor Stoklasa's results are not possible and even probable. In comparing the figures given in the two tables it must be constantly become in mind that the real which we used was old and liny, and, to say the least, unravorable for the action of germs. Our results in the Phosphoric Acid column parallel those of the Professor's as closely as could be expected, of a me consider the media the germs had to work upon. We regret that green bone was not available, so that all the conditions of his work could have been duplicated.

	`	

1900 1/2 /14

.

.

