# TRANSPLANTING AS A FACTOR IN GROWING PLANTS 

THESIS FOR DEGREE OF M. HORT.
JESSE GEORGE BOYLE
1914
thesis

thesis

$$
\begin{aligned}
& \text { Tectu }
\end{aligned}
$$

# TRANSPLAKTIRG AS A FAOTOR 

## IIN GROWING PLANTS

## Thesis for Degree of Master of Hortioulture Jesse George Boyle 1914

# TRANSPLANTING AS A FAOTOR IN GROWING PLANTS. 

Introduotion.

Traneplanting is a term used to designate the removal of living plants and establishing them in new quarters. The operation may be performed when plants are in a dormant state or when they are growing. Some plants transplant roadily without serious injury, whilo with others the operation is a diffioult one and attended with considerable danger to the life of the plant. ' The ability of certain speoies to undergo the ohanging of their position in the soil, with the necesmary $108 s$ of roots and the arresting for a time of their Fital aotivities, is remarisable and may be attributed largely to the manner of root growth and the inherent power of the plant to recuperate after a severe shoak of this nature.

As a class, annual or perennial plants producing long tap roots are difficult to transplant. This is largely due to the great lose of roots that ocours when the plant is reset: Trees like the oak, hiokory and walnut, all of whioh have long tap roots, are very diffioult to transplant and when grown in the nursery, they are transplanted ono or twioe when young
to so ohange the development of the root syatem that they will be able to withatand the shock of resetting when they have become older. This aame principle applies likewise to annuals. 'In order to secure earliness and a longer bearing season, many vegetable plants are started in hotbeds or cold Prames in early spring and set in the field when outside weather conditions have beoome favorable. The grower of plants has come to recognize transplanting to be a desirable practico oven with those sorts that may be reset aucoessfully without diffioulty. 'Experience has shown that transplanting hotbed-grown flower and vegetable plants onoe or twioe before setting them in the open ground, will cause them to develop in such a manner that when they are set, they will grow more successfully than if the plants are allowed to grow where the seed was sown until transplanted to the field. 1 Although transplanting is generally considered a paying practioe and is quite common with the greenhouse operator and the gardener, its effoct upon plant growth and actual value in a comparative way have been given little consideration. In the following discussion and tables, the term transplanting applies to the re-setting of seedling plants between the time of sowing the seed in the hotbed and the placing of the plants in the ground. It does not have reference to the actual operation of setting in the field.

$$
r \cdots i l
$$

## OBJECT

It was the object of this investigation to determine the effect of transplanting seediing tomato plants upon the following phases of plant growth:

1. Root and atom development;
2. Earliness of bearing and total yield.

## SOURCE OF DATA

The data, upon whioh this thesis is based, were secured by the author during the season of 1911 from carefully conducted experiments which were under his direct supervision at the Purdue Experiment Station, Lapayotte, Indiana. The ame experiments were also oarried out in 1910 and 1912. From the standpoint of season and other considerations, the work of 1911 was the most unfform, and for this reason its results havo boon used in this thosis. The results of 1910 and 1912 were very similar to those of 1911 here-in reported.

LOCATION AND SOIL

The experimental plots were located on the trial grounds of the Horticultural department at Purdue University. The soil on this looation is known as the Sioux loam, consisting of a dark brown loam to a depth of eighteen inches, containing a large percentage of silt, some coarse and and Pine gravel. The sub-soil
is a brown or reddish-brown loam, having about the same texture as the soil, and is underlaid at an average depth of two fe日t by a bed of gravel many feet in depth. The sub-soil is very porous, making artificial drainage unneoessary in this looality.

The soll possessed but an average amount of fertility. It was fertilized in the early spring of 1911 by a light top dressing of barnyard mamure, at the rate of four tons to the acre. A rye cover crop was turned under a few days before the plants were set.

## VARIETY

The stone variety of tomato was used in this experimental work. The plants were strong and vigorous and produced a good yield of large,solid,bright red fruit. This variety is grown largely as a field orop for oanning and is one of the best standard sorts for main orop purposes.

## SIZE OF PLOTS

Each plot consisted of twenty plants, set at a distance of five by five feet, which would make a total of 1742 plants to the aore. The tests were conduoted in duplioate in order to have a direct oheok on the experimental error.

## METHOD OF STARTIMG PLANTS

All of the tomato plants used in this test
were started in a hotbed, which was of the pit type, having twenty inches of stable manure to provide the artificial heat. Six inches of composted soil was placed upon the marure and the seed sown in it on Marah 25th. The bed was handled carefully, as regards proper temperature and moisture oonditions, in order to keep the plants growing vigorously. Double light aash were used to provide the necessary protection. Several days before setting in the plots, the sash were removed whenever the weather permitted, to harden off the plants. The plants grown in the hotbed were handled in fire distinot ways from the time the seed was sow until the plants were removed to the open ground. Following is given the mothod used in producing the plants for each of the five experimental plots.

Plot 1.- The tomato seed were sown in rows sif inches apart across the bed. When the first true leaves began to form, the plants were thinned to a distance of two inches apart in the row. They were then allowed to grow in the hotbed soil until set in the experimental Pield on May 18th. The root system was disturbed only when the plants were field set.

Plot 2.- The seed were sown in rows six inohes apart across the bed. The young seedilings were transplanted into flats April 20th. Composted soil was used in the flats and the plants were set two inches apart. As the plants were removed from the hotbed, each
was lifted with a small ball of earth attached to the roots, so that a majority of the fine root hairs were not destrojed. After transplanting, the flats were placed in the hotbed and the plants left there until they were set. The roots were disturbed twioe. (See Fig. 3).

Plot 3.- The seed were sown and the plants handled aimilar to those in plot 2 except that when the seedings were transplanted into flata, they were pulled loose from the hotbed soil and not lifted. These plants lost a large portion of their roots at this transplanting. The root systems were disturbed twice. (See Fig.3).

Plot 4.- The plants grown in this plot were handied in the hotbed the same as in plot 2 exoept that they were transplanted twioe into flats instead of once. The plants were lifted with soil attached each time, and the transplantings were done April 15 th and 29th. At the seoond transplanting, the plants were taken from one flat and set into another. The roots were disturbed three times, twioe when transplanted, and once when set in the field. (See Pigs. 3 and 5).

Plot 5.- The plants for this plot were started by sowing the seed in four-inch dirt bands placed in the hotbed. Two seed were sown in each to insure a stand, and when three weeks old the plants were thimed to one in each band. The plants grew in the same soil
where the seed were sow until set in the field, when the dirt band, soil and plant were removed intact and set in the desired looation. The roots were disturbed in no way whatever.

Table I.- Giving dates of sowing seod in the hotbod, transplanting into flats and setting in the field for the tomato plants grown in each of the five experimental plote.

| Plot | Soed sown <br> in hotbed | Transplanted into <br> flats | Set in <br> fleld |
| :---: | :--- | :--- | :--- |
| 1 | Maroh 25 | Mot transplanted | May 18 |
| 2 | Maroh 25 | April 20 (with so11) | May 18 |
| 3 | Maroh 25 | April 20 (pulled) | May 18 |
| 4 | Maroh 25 | April 15 and 19 <br> (with soi1) | May 18 |
| 5 | March 25 | Grown in dirt bands, <br> not transplanted. | May 18 |

## SETTIMG PLARTS

The land was thoroughly fitted and marked off In oheok rows five by five feet apart. A trench four inches deop was then made along the rows in one direotion, and the plants immediately set (See Fig. 2). All plants set in each of the five plots, grown as previousIy mentioned, were removed from the hotbed with a ball of earth attached to the roots. The plants with the soil were placed in oarriers and dropped where they were


#### Abstract

to be grown. A worker followed and set each by hand, using only moist soil around the roots.


## CULTIVATION

Immediately after the plants had been set, the land was oultivated to loosen the paoked soil. The plots were kept free from grass and weeds throughout the season. As long as the distance between the Fines permitted, a horse oultivator was used in oultiFating. During the remainder of the season the soil was kept in condition by hand hoeing. Considerable care was taken to prevent the formation of a crust after rains, and to maintain a dust muloh at all times.

## PICKING AND GRADING

The fruit was pioked every other day during the heavy bearing season. At each pioking the vines wore examined oarefully and all red ripe fruits were gathered.

In grading, the sound, emooth tomatoes, free from oracks, and not under size, constituted the first grade. Those that were inferior to the above in size, or smoothness, or with slight oraoks about the stems or apex of the fruit, were classed as seconds. Immediately aftor picking, the fruits were graded and weighed. All decayed fruits were discarded.

As shown in Table II, the temperature during 1911 was ideal in April and May for the growth of the planta. Daring the latter part of June and early July, the temperature ranged from $90^{\circ}$ to $104^{\circ} \mathrm{F} .$, accompanied by a very light rainfall, which reduced the yields materially. The temperature and rainfall in August and September were more favorable and the vines bore heaviIy until frost. The total rainfall from April 1 to Ootober 1, was 18.81 inches, whioh would have proven an ample supply, if it had been more evenly distributed.

Table II.- Average temperature and amount of rainPall Prom April to October 1911.

|  | Temperature, F. |  |  |  |
| :--- | :---: | :---: | :---: | :--- |
| Month | Av.Mean | Maximum | Minimum | Rainfall |
| April | $49.366^{\circ}$ | $72^{\circ}$ | $26^{\circ}$ | 3.86 inches |
| May | $67.30^{\circ}$ | $96^{\circ}$ | $31^{\circ}$ | 2.35 inches |
| June | $74.30^{\circ}$ | $101^{\circ}$ | $49^{\circ}$ | 2.10 inohes |
| July | $75.50^{\circ}$ | $104^{\circ}$ | $460^{\circ}$ | 2.96 inches |
| August | $72.40^{\circ}$ | $99^{\circ}$ | $48^{\circ}$ | 2.71 inohes |
| September | $67.90^{\circ}$ | $92^{\circ}$ | $45^{\circ}$ | 4.83 inohes |

PART I.
EFPECT OF TRANSPLANTING ON ROOT AND STEM GROWTH.

The development of the roots and stems of several tomato plants grown similar to those planted In each of the five plots were carefully examined on May 18th, at whioh time the plants were transferred from the hotbed and set in the open ground. Especial attention was given to the length, stookiness and strength of stem, size of the root syster, and the development of the flowers and fruits. The condition of the plants set in each plot, and the effect of the ohange to the open ground upon their immodiate development, was as Pollows:

Plot 1.- The stoms of the plants set in this plot were ten and twelve inches long, of a pale oolor beneath the leares, rather slender and soft. A few flowers had formed and were beginning to open. The roots had spread to a considerable distance in the hotbed soil and when taken up for setting at least onehalf of the roots were broken off. When set in the field, the plants wilted considerably, and it took them six to eight days to attaoh themselves to the soil and begin growing. Some of the plants were so slender and top-heavy that they were broken over by the wind and had to be re-set.

Plot 2.- The stems of the plants grown in
this plot were 6 to 8 inches high, a dark green oolor, stooky, and somewhat woody at the base. A few flower olusters had just begun to form. The roots were bunched more than in plot 1 , only about one-fourth of them being torn away when removed from the flats and set. There was but little wilting when the plants were placed in the open ground and they commenced growing on the third or fourth day from setting. There was no wilting of plants or breaking of the stems by the wind. (See Fig.8)

Plot 3.- The plants in this plot were similar to those in plot 2 at the time the plants were set in the experimental plots. (See Fig. 9).

Plot 4.- The stems were slightly shorter than those set in plot 2 and somewhat stookier and stronger. A fow flower buds had formed. Approximately one-fifth of the root aystem was lost when the plants were romoved from the flats and set. The plants withatood the shook of transplanting better than those in any of the preoeding plots. (See Fig. 4).

Plot 5.- The stems averaged 8 to 10 inohes in length, were stocky, strong and woody at the base. The plants were well formed and had a few fruits on them from one-fourth to one-half inoh in diameter. The root systems were the largest of any of those set in the five plots. The roots had grown to the sides of the dirt bands and turned backward into the soil
within. When set outside, no roots were injured and the plants began growing immodiately. (Seo Fig. 7).

PART II.

EFPFECT OF TRANSPLANTING ON EARLINESS OF BEARIRG ARD TOTAL YIELD.

The tomato is a warmin loving plant, its native habitat being in the warmer parts of South America. Under these natural conditions, the plant is a peremial and lives from eighteen months to two years. The bearing season of the tomato in its wild state extends over a period of one year, and the plant produces until it is entirely exhausted. In our own olimate, the tomato is an annual, sinco it is killed by frost, whioh vory greatly ourtails its bearing season. The limits of the growing season in the open air for the tomato in this climate is the last frost in apring and the first in the autumn. This varies from five and one-half to six months, whioh is too short a time in which to grow a paying crop. In order to lengthen the season, tomato plants are atarted in a hotbed in Maroh and carried along under artificial conditions by the gardener until the weather is settled and warm, when they are set outside. The handing of the seeding plants in the hotbed is a very important factor in the production of maximum yiolds. Just how important, the following tables and disouseions will tell.

TABLE III.- Daily yield record for plot 1.

| Date Picked |  | Pirsts Peight Seconds |  |
| :---: | :---: | :---: | :---: |
|  |  |  |  |
| July | 19 | - 371 bs . |  |
| July | 25 | . 51 lbs. |  |
| August | 4 |  | . $51 \mathrm{lbs}$. |
| August | 7 |  | $.251 \mathrm{bs}$. |
| August | 10 | 6.51 bs . |  |
| August | 14 | 5. 1bs. |  |
| August | 16 | 4.5 1bs. |  |
| August | 21 | 11. 1bs. | . 5 1bs. |
| August | 26 | 8.5 1bs. |  |
| August | 30 | 14.25 Ibs. | 1.251 bs . |
| Sept. | 2 | 3.75 1bs. | . 5 Ibs. |
| Sept. | 6 | 32. 1bs. | 3. 1bs. |
| Sept. | 9 | 32.51 bs . | $1.51 \mathrm{bs}$. |
| Sept . | 13 | 10.751 bs . | . 251 bs . |
| Sept. | 19 | 8.51 lbs . | . $51 \mathrm{lbs}$. |
| Sept. | 27 | 5. 1bs. | 1.25 1bs. |
| Oct. | 3 | 9.75 1bs. | 1. 1bs. |
| Oot. | 11 | 13.51 bs . | 1. 1 bs . |
| Oct. | 19 | 42. 168. | 4. 1 bs . |
| Total |  | 208.37 1bs. | 15.51 bs . |

In Tables III to VII inolusive are given the daily yields of tomatoes harvested from each of the five plots. From these tables it will be noted that the first ripe fruit was pioked from plot 5 on July 14, fifty-seron days from the time the plants were set in the field, and one hundred ten days from the date of sowing the sood in the hotbed. The plants grown in plot 5 were started by sowing the soed in dirt bands, and the roots were not disturbed at any time in their growth, and consequently were not oheoked when set. The early bearing in this plot was largely due to the fact that they did not have to overcome the shock of tranaplanting, as did those in the other plots. The plants grew without interruption from seeding until harvesting time.

Plot 4, sot with plants that had been transplanted twice in flats in the hotbed, was the second oarliest bearer, the first ripe fruits being picked on July the 17th, three days later than plot 5.

Plot 1 was third producing its first ripe fruit July 19th; plot 3 fourth, and plot 2 fifth, its first ripe fruits being gatherod on July 29th. This made a difference of fifteen days betwoen the earliest and latest plots to oome into bearing, due entirely to the treatment the plants received in the hotbed.

TABLE IV.- Daily yield reoord for plot 2.

| Date Ploked |  | Woight |  |  |
| :---: | :---: | :---: | :---: | :---: |
|  |  | First | B | Seoonds |
| July | 29 | .51 | bs. |  |
| August | 1 | 1.51 | bs. | .5 lbs. |
| August | 4 | .75 | Ibs. | . 25 lbs. |
| Augurt | 7 | 1.5 | 1 bs . | . 5 Ibs. |
| August | 10 | 7. | 1 bs . | .51 bs. |
| August | 14 | 5. | 1 bs . |  |
| August | 16 | 2. | 1 bs . | . 5 Ibs. |
| August | 21 | 6.5 | 1bs. | 1.5 lbs. |
| August | 26 | 18. | $1 \mathrm{bs}$. | 1. 1 bs . |
| August | 30 | 13.5 | 1 bs . | .251 bs . |
| Sept. | 2 | 8.5 | 1bs. | 1.5 1bs. |
| Sopt. | 6 | 44. | 168. | 3.75 16s. |
| Sept. | 9 | 29.25 | 1bs. | 2.75 1bs. |
| Sept. | 13 | 20.75 | Ibs. | .75 1bs. |
| Sopt. | 19 | 3.5 | 1 bs . | . 251 lbs . |
| Sept. | 27 | 3.75 | 1 bs . | . 25 lbs. |
| Oct. | 3 | 8.5 | Ibs. | .75 1bs. |
| Oot. | 11 | 8.75 | 1bs. | .75 lbs. |
| oot. | 19 | 21.5 | Ibs. | 2.51 lbs. |

Total 204.75 1bs. 18.25 Ibs.

In Table VIII is given the gield that was taken from eaoh plot by July 31 and August 31, whioh are more valuable data from the standpoint of earliness of bearing than the date of the first pioking of ripe fruits. It is seon in this table that up to and including July 31, plot 5 had borne fruit at the rate of .5 tons per acre and plot 2 . 021 tons per acre, being the highest and lowest jielders respectively. Plot 4 was second with a yield of . 36 tons, plot 3 third with .043 tons, and plot 1 fourth with .037 tons per acre.

The yield data given under August 31 in Table VIII shows distinotly the offect of transplanting upon earliness of bearing. On this date plot 5 ranks first with a yield of 6.16 tons and plot 4 seoond with a yield of 4.29 tons por sore. Plot 3 is third with 3.89 tons, plot 2 fourth with 2.76 tons and plot 1 fifth with a yield of 2.31 tons per aore. From the standpoint of earliness, the preceding ranking is the most valuable of the three and represents the placing of each of the five methods of starting tomato plants from the standpoint of early fruiting. The order 1s as follows:

First- Plants started in dirt bands.
Sooond- Plants transplantod twioe into flats.
Third- Plants transplanted once into flats, pulled.
Fourth- Plants transplanted once into flats, with soil attached to the roots.

Pifth- Plants grown in hotbed soil, not transplanted.

TABLE V.- Daily field reoord for plot 3.

| Date Pioked |  | Firgts Weight |  |  |
| :---: | :---: | :---: | :---: | :---: |
|  |  | First | 8 | Seoonds |
| July | 25 |  |  | . 51 lbs. |
| July | 27 | . 5 | 1bs. |  |
| August | 1 | 1.51 | 1 bs. | - 37 1bs. |
| August | 4 | 1.12 | 1bs. | .75 1bs. |
| August | 7 | . 5 | 1bs. | . $621 \mathrm{lbs}$. |
| August | 10 | 4. | 1bs. | .751 bsa |
| August | 14 | 10. | 1bs. | 1.751 bs . |
| August | 16 | 3. | 1bs. | . 5 1bs. |
| August | 21 | 8. | 1bs. | . 75 Ibs. |
| August | 26 | 18.75 | 1 bs 。 | 1.251 bs . |
| August | 30 | 19.5 | 1 bs . | 1.51 lbs . |
| Sopt. | 2 | 6. | 1bs. | 1. 1bs. |
| Sept. | 6 | 39.5 | 1bs. | 3.51 bs . |
| Sept. | 9 | 39. | 168. | 2.251 bs . |
| Sept | 13 | 12. | 1bs. |  |
| Sept. | 19 | 4.75 | 1bs. | . 251 lbs. |
| Sopt. | 29 | 3. | 1bs. | . 251 lbs . |
| Oct. | 3 | 5.5 | 1bs. | .51 bs . |
| Oot. | 11 | 10.5 | 1bs. | 1.5 1bs. |
| Oot. | 19 | 23. | 1bs. | 2.51 bs . |

Total 210.12 1bs. 20.5 1bs.

TOTAL YIMTD
The yields of ripe and green fruits harvested from each of the five plots are given in Table IX. The weight of green fruits given for each plot was secured by picking all the green fruits on the vines after the first killing frost.

Plot 5 leads with a yield of 9.07 tons per acre of green fruits, and 14.93 tons of ripe fruits, making a total jield of 24 tons per acre. It exceeded the highest yield of any of the other plots by 3.51 tons of ripe fruits and 2.09 tons of groen fruits per aore. This record places this method of starting tomato plants, where the roots are never disturbed, in a olass by itself, and proves it to be the most desirable practioo.

Plot 4 ranks seoond, whioh indioates that two transplantings are more desirable than one. Of those that were transplanted once into flats with soil attached to the roots and those that were pulled when transplanted, it is seen that the latter method used in plot 3 produoed $\cdot 33$ tons more tomatoes than did plot 2. Plot 1 bore a slightly larger crop than plot 2 bat when it is considered that unfavorable weather conditions at setting time will cause many plants to perish, when grown as were those in plot 1 , it can be seen that the manner of growing as used for plot 2 is the more desirable.

TABLE VI.- Daily yield reoord for plot 4.

| Date Pioked |  | Weight |  |
| :---: | :---: | :---: | :---: |
|  |  | Firsts | Seconds |
| July | 17 | . 62 Ibs. |  |
| July | 19 | 3.75 Ibs. |  |
| July | 22 | 1. Ibs. | 1.5 Ibs. |
| July | 25 | 1.25 16s. |  |
| July | 29 | . $251 \mathrm{lbs}$. |  |
| August | 1 | 2. 1bs. | . 87 1bs. |
| August | 4 | . 5 1bs. | 1. 1bs. |
| August | 7 | 2.25 lbs. |  |
| August | 10 | 8.75 Ibs. |  |
| August | 14 | 14.25 1bs. | $2.251 \mathrm{bs}$. |
| August | 16 | 7. 1 bs . | .75 1bs. |
| August | 21 | 11. 1bs. | $1.51 \mathrm{bs}$. |
| August | 26 | 20.5 1bs. | 2.51 lbs . |
| August | 30 | 14. 1bs. | 1.751 bs . |
| Sopt. | 2 | 9. 1 bs . | $.51 \mathrm{bs}$. |
| Sept. | 6 | 40.5 1bs. | 7. 1bs. |
| Sept. | 9 | 36.75 1bs. | 2.25 1bs. |
| Sept. | 13 | 16. 1bs. | 1.51 bs . |
| Sept. | 19 | 5.25 1bs. | 1.25188. |
| Sopt. | 27 | 4. 1bs. | 1. 1bs. |
| Oot. | 3 | 5.251 bs . | .5 lbs. |
| Oot. | 11 | 7.751 bs . | 1. 1bs. |
| Oot. | 19 | 21.51 bs . | $2.51 \mathrm{bs}$. |
|  | tal | $232.621 \mathrm{bs}$. | 29.62 1bs. |

TABLE VII.- Daily yield record for plot 5.

| Date Pioked |  | Weight |  |
| :---: | :---: | :---: | :---: |
|  |  | Pirsts | Seconds |
| July | 14 | 1.51 bs . |  |
| July | 17 | 1.751 bs . | .621 bs. |
| July | 20 | 1.931 bs . | 1.131 bs. |
| July | 22 | 1.49 1bs. | 1.251 bs. |
| July | 29 | 1.441 bs . | .661 bs . |
| August | 1 | 3.51 bs . | 1.361 bs . |
| August | 4 | 5.361 bs . | 1.131 bs . |
| August | 7 | 4.25168. | .25 libs. |
| August | 10 | 15.75 1bs. | 2. 1bs. |
| August | 14 | 23.51 bs . | 1.51 bs. |
| August | 16 | 7.75 1bs. |  |
| August | 21 | 12. Ibs. | .251 bs . |
| August | 26 | 21.75 1bs. | . $51 \mathrm{lbs}$. |
| August | 30 | 28.51 bs . | .5 lbs . |
| Sept. | 2 | 7. lbs. | .75 1bs. |
| Sopt. | 6 | 50.75 lbs. | 4.25 1bs. |
| Sept. | 9 | 54.5 Ibs. | 4.251 lbs . |
| Sept. | 13 | 20.51 bs . | 1.5 Ibs. |
| Sept. | 19 | 9.75 1bs. | .251 bs . |
| Sept. | 27 | 4.51 bs . | .75 1bs. |
| Oct. | 3 | 3.75 lbs. | .25 1bs. |
| Oct. | 11 | 11. 1bs. | 1. 1bs. |
| Oct. | 19 | 24. 1 lbs . | 2.51 bs . |

$?$

The total yield of ripe and green fruits seoured from plots 1, 2, 3, and 4, as given in Table IX, are approximately the same while the yield of ripe Pruits varies.

Table VIII.- Giving the date of picking the first ripe fruit and the oalculated yield per acre of Pruit harvested from plots 1 to 5 at the end of July and August.

| Plot | $\begin{gathered} \text { Firgt } \\ \text { Ripe Fruit } \end{gathered}$ |  | $\begin{aligned} & \text { Yield, Rip } \\ & \text { July } 31 \end{aligned}$ | Fruits to August 31 |
| :---: | :---: | :---: | :---: | :---: |
| 1 | July | 19 | . 037 Tons | 2.31 Tons |
| 2 | July | 29 | . 021 Tons | 2.76 Tons |
| 3 | July | 25 | . 043 Tons | 3.29 Tons |
| 4 | July | 17 | . 36 Tons | 4.29 Tons |
| 5 | July | 14 | . 5 Tons | 6.16 Tons |

These four methods of starting the plants had little effect upon the total orop borne by each plot, but did affect the amount of ripe fruits harvested. That is, the larger the gield of ripe fruits, the smallor the amount of green fruits left after frost. With these four plots the manner of starting the young tomato plants in the hotbed had littie effeot upon the total yield, but did cause more fruits to ripen on some plots than did on others previous to frost.

The dates upon which the highest yields were harvested are about the same being Sept. 9 for plots 1
and 5, and sept. 6 for plots 2, 3 and 4. The amounts ploked on a one-acre basis from each of the five plots upon these dates varied from 2.55 tons, taken from plot 5 to 1.52 tons taken from plot 1. Plot 2 produced 2.07 tons; plot 4, 2.06 tons; and plot 3, 1.87 tons per acre upon their heaviest yielding dates.

TABLE IX.- Calculated yield per acre of ripe fruit, green fruit pioked after frost and the total yield harvested from the five plots of tomatoes set with plants started in various ways.

| Plot | Yiold Per |  | Acre |
| :---: | :---: | :---: | :---: |
|  | Greon | Ripe | Total |
| 1 | 6.72 Tons | 9.75 Tons | 16.47 Tons |
| 2 | 6.98 Tons | 9.71 Tons | 16.69 Tons |
| 3 | 6.42 Tons | 10.04 Tons | 16.46 Tons |
| 4 | 6.09 Tons | 11.42 Tons | 17.51 Tons |
| 5 | 9.07 Tons | 14.93 Tons | 24.00 Tons |

The ranking of the five plots from the standpoint of ripe fruits produoed is as follows:

Firat - Plot 5. Plants started in dirt bands and not transplanted.

Second-- Plot 4. Plants transplanted twice into flats, with soil attached to the roots.

Third - Plot 3. Plants transplanted once into flats, pulled.

```
Fourth - Plot l. Plants grown in the hotbed soil,
    not transplanted.
Fifth - Plot 2. Plants transplanted once into flats
    with soil attached to the roots.
```


## SUMAARY

Part I.

1. Tomato plants started in hotbed soil and not transplanted previous to setting in the field were tall, spinding and tender. Fifty per cent of the roots were broken off and the plants wilted considerably when set.
2. Planta transplanted once with soil attached to the roots were rather stocky, strong and wilted but little at setting time.
3. Plants transplanted once into flats and pulled loose from the soil in the hotbed were apparently in the same condition when set in the field as those that had soil attached to the roots when transplanted.
4. Plants transplanted twioe into flats were stockier, the stems somewhat larger and of a more woody growth than those transplanted but once. They were also cheoked less at setting time.
5. Plants that were started in dirt bands and had their roots disturbed at no time in their growth were stocky, well formed and did not stop growing when set.
6. Transplanting tomato plants into flats had a tendonoy to bunch the roots and accustom the plants to the change when field set, so that the growth was checked much less than was the case with the plants that were not transplanted.

Part II.
7. Tomato plants grown in dirt bands and not transplanted, produced earlier and larger yields than any of the five methods tested.
8. Plants that were transplanted twioe into flats, bore larger and earlier crops than those that were transplanted once.
9. Tomato plants pulled loose from the hotbed soil when transplanted, and a large portion of the root system destroyed, produced earlier and larger yields than those that were lifted with soil attached and a considerable portion of the root system retained.
10. Transplanting caused a greater amount of fruits to ripen before frost, but did not materially increase the total production of ripe and green fruits.
11. If the root system of the tomato plant is not disturbed throughout its growth, it will bear the largest and earliest crop.
12. If tomato plants are started in suoh a way that the root system must be disturbed when the plants are set in the field, transplanting once or twioe will cause the production of a larger yield.

## BIBLIOGRAPHY.

Bailey, - Encyclopedia of Hortioulture.
Bailey, - Principles of "Vogetable Gardening.
Watts, - Vogetable Gardening.
Boyle,- Tomato Investigations, Bulletin No. 165, Purdue Experiment Station.
Bailey and Lodoman, - Hotos on Tomatoes, Bulletin No. 32, Cornoll Agricultural Experiment Station.
Bailey and Corbett, - Tomato Notes for 1892, Bulletin No. 45, Cornell Agricultural Experiment Station.


Fig. 1,- Tomato Experimental Plots,
Purdue University, 1911.


Fig. 2,- Experimental Plots with rows furrowed out for setting tomato plants.


Fig. 3,- Size and condition of tomato plants at the time of first transplanting into flats. Those at the left were pulled. Those at the right were lifted with soil attached to the roots.


Fig. 4,- Size and condition of tomato plants at time of setting in the field, which had been previously transplanted twice into flats. (Plot 4).


Fig. 5,- Size and condition of tomato plante at time of second transplanting into flats.


Fig. 6,- Showing method of removing tomato
plants from flats with soil attached to the roots at time of setting in the field.

at time of setting in the field which had heen previously grown in dirt bands. (Plot 5).


Fig. 8,- Size and condition of tomato plants at
time of setting in the field, which were previously transplanted once into flats, with soil attached to the roots. (Plot 2).


Fig. 9,- Size and condition of tomato plants at time of setting in the field, which were previously transplanted once into flats, pulled. (Plot 3).

INDEX.
Introduction ..... Pago 1
Object ..... 3
Source of data ..... 3
Looation and soil. ..... 3
Variety ..... 4
Size of plots ..... 4
Mothod of atarting plants ..... 4
Table I ..... 7
Sotting plants ..... 7
Cultivation ..... 8
Picking and grading ..... 8
Temperature and rainfall ..... 9
Tablo IB ..... 9
PART I.
Effoot of transplanting on root andston growth10

PART II.
Effeot of Traneplanting on Earliness of
Bearing and Total Yield ..... Page 13
Table III ..... " 14
Earliness of bearing ..... 18
Table IV ..... 16
Table V ..... 18
Total Yiold ..... 19
Table VI ..... 20
Table VII ..... 21
Tablo VIII ..... 22
Table IX ..... 23
Summary ..... 25
Bibliography ..... 27
Illustrations:
Fig. 1 ..... 28
Fig. 2 ..... 29
Fig. 3 ..... 30
Pigs. 4 and 5 ..... 31
Figs. 6 and 7 ..... 32
Figs. 8 and 9 ..... 33

ROOM USE OMLI

$$
\text { mal2g } 40 \text { fran: :CE ORI }
$$

$\varepsilon$


