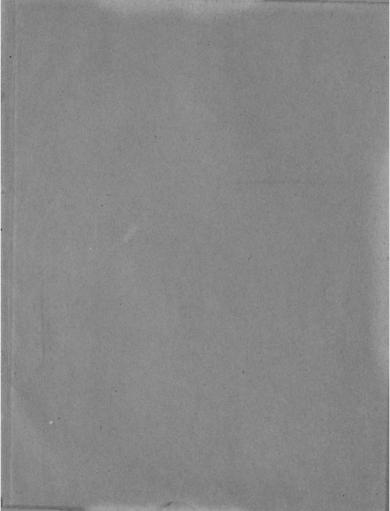
103 502 THS

Inheritance of Earliness in Oats

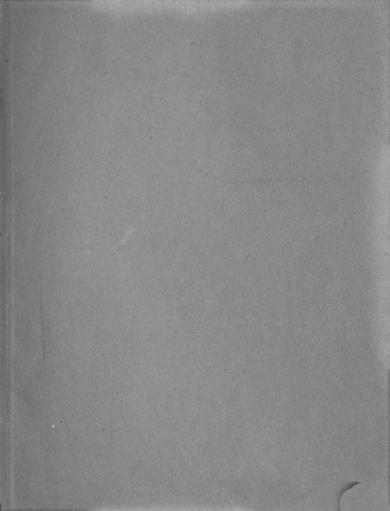
Thesis for Degree of M. S.

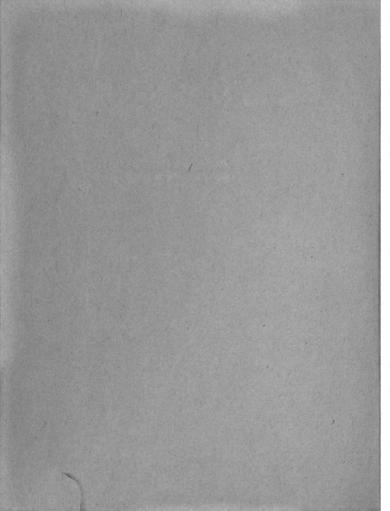
ROBERT LESTER BUCHANAN

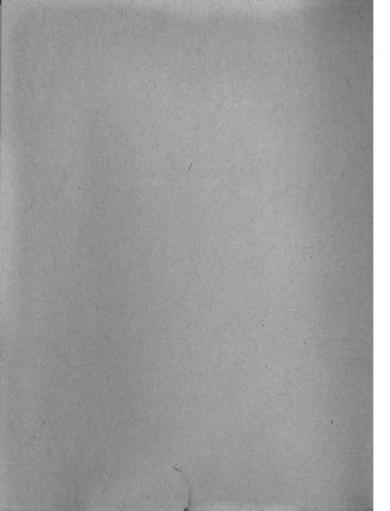
1915



RETURNING MATERIALS:
Place in book drop to
remove this checkout from
your record. FINES will
be charged if book is
returned after the date
stamped below.

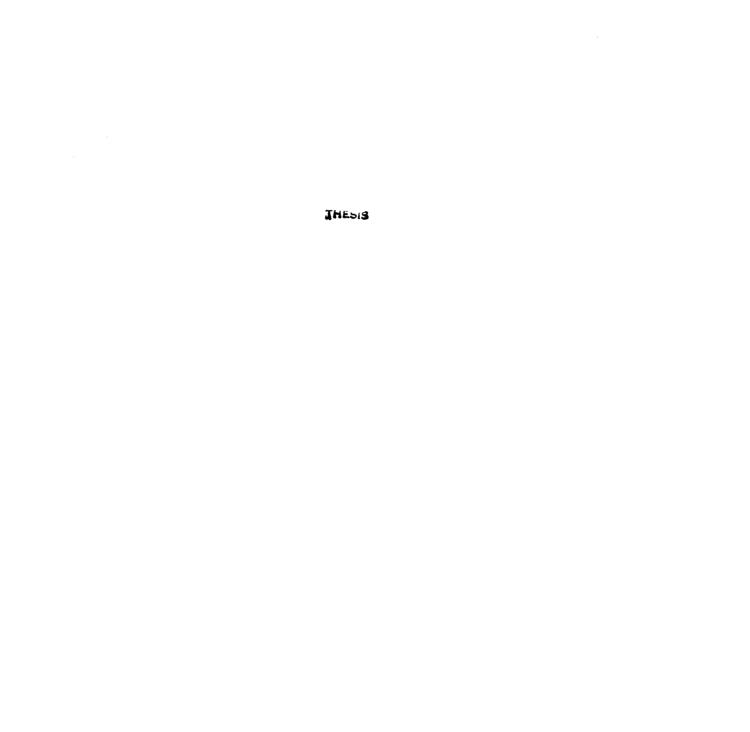






RETURNING MATERIALS: Place in book drop to remove this checkout from your record. FINES will be charged if book is returned after the date stamped below.

INHERITANCE OF EARLINESS IN OATS



THESIS FOR DEGREE OF M.S.

ROBERT LESTER BUCHANAN

M.S

1915

(Printed by Prof.Spragg)

These pictures show the field variety test plat of oats at the Michigan Station in 1914. The plats lighest in color are the ripest. Every plat is homozygous in ripeness, but there is a 2 day period between some of the plats.

CONTENTS

	page
Object	1
Introduction	1.
Acknowledgements	1
Method	2
Data and ratios for 1913	38
Selections from the 1913 data	89
Indications from the 1913 data	9-10
History of the accession numbers	10
History of the plats	11-14
Segregations and dates 1914	14-17
Ratios for 1914	18-24
Data at Pullman, Wn. 1914	
1.History of the plats	24-25
2. Segregations and dates	25
Discussion of results at East Lansing 1914	25
Discussion of results et Pullman, Wn. 1914	26-28
Conclusions	28-29
Bibliography	30-31

INHERITANCE OF EARLINESS IN OATS

OBJECT

To study inheritance in oats in regard to ripeness.

INTRODUCTION

These oats have been under observation since 1908 by Profesor Spragg, as part of his regular work. This investigation was really started in 1911, but two years were spent increasing and segregating the material. In 1913, Mr. Spragg was not able to give this work his personal attention, but he had one of his men give all his spare time to harvesting the oats. Mr. Matthews found five classes which he and Profesor Spragg designated as "Dead Ripe", "Ripe", "In Milk", "Heading", and "Not Heading". The material was tied in bundles, properly labeled, and hung in the store room.

In the fell of 1913 the author took charge of this work and carefully went over all the material. With suggestions from Profesor Spragg, the groups were interpreted as possible Hendelian ratios and selections were made for carrying on the work in 1914. The data obtained by Profesor Spragg and Mr. Matthews is included in the thesis to show clearly the history of the material and the basis on which the 1914 work was started.

ACKNOWLEDGEMENTS

To Profesor Spragg, East Lansing, Mich. for suggestions, for the material highly developed for planting the oats at

East Lansing in 1914, and for correcting the thesis.

To Mr.E.F.Gaines and Mr.Matthews for gathering oats at Pullman and East Lansing.

METHOD.

When the first oats were Dead Ripe, a second class was Ripe, and other groups were found In Malk, Just Heading, and Not Heading. Several of the plats were pulled at this time, classed under these headings and counted. As no seed would grow from plants treated in this way, only the Dead Ripe and Ripe were removed from the remaining plats on July 27th. Later observations led the Ferm Crops Department to decide that there was probably one week between the ripening of the classes. Thus July 27, Aug. 3, 10, 17, and 24th may be considered the approximate dates of ripening of the different groups.

Here we consider ripeness and absence of ripeness (lateness) as an allemorphic pair. If there is only one factor for ripeness present, a 1:2:1 ratio should occur in the absence of dominance. In this case with complete dominance the ratio should be 3:1. In case there are two factors, with complete dominance, the ratio should be 15:1. With incomplete dominance the ratio should be 9:6:1, or in the absence of dominance a ratio of 1:1:1:1:2:2:2:2:4. With three factors, in complete dominance the ratio should be 63:1, or in incomplete dominance 27:27:9:1. In case four factors for ripeness are present, in complete dominance the ratio should be 255:1, or in incomplete dominance a ratio of 81:108:54:12:1.

The plats having similiar segregations are grouped together. The segregations are not identical. All plats are included in the ratios. In some instances the plats are not in the group that the number of segregations present would indicate, but in a group having a greater number of segregations, since at times the numbers indicate that some groups are missing.

DATA FOR 1913.

TABLE 1. .

Plat number	Dead Ripe	Homozygous
3	all	n
105	ri	17
106	11	17 .

Plats 3 and 105 are homozygous in ripeness, that is all the plants ripened at the same time. Plat 106 had a few plants in a later class, but so few they were disregarded.

TABLE 2.

Plat number 5 28 29 32 33 97 98 102 104 107		Dead Ripe 81 124 149 117 26 355 25 276 319 27		Ripe 31 24 51 17 6 52 24 9 28 117 359
Total	1859			
Ratio		3.2270	:	.7730
Expected		3.0000	•	1.0000

The ratio expected here is the ratio that should occur if only one factor for ripeness is present. As the number of individuals is not so very large the ratio obtained is probably as close as could be expected. From this group we have the best chance to isolate the Dead Ripe and Ripe classes. Selections were made from plat 5 for this purpose.

TABLE 3.

		111111111	•		
Plat number	De	ead Ripe		Ripe	In Milk
4		77		39	1
19		75		57	18
20		52		42	9
3 0		28		4	9 1
31		362		7 8	18
34		14		16	3
35		43		48	3 8
3 8		91		6 0	23
39		84		117	35
40		27		27	5 3
43		80		6 6	3
44		14		19	14
8 3		44		158	16
8 6		13 0		82	24
87		9		3	0
88		67		45	0
100		4 8		18	1
101		37		12	0
		1282		891	179
Total	3352				
Ratio		8.7211	:	6.0612	: 1.2177
Expected		9.0000	:	6.0000	: 1.0000

This expected ratio is the ratio two factors should give if there is incomplete dominance. Considering the small number of plants this is really quite close to the expected ratio. From this group we have the best chance to isolate the In Milk ripeners, with a smaller chance to isolate the Dead Ripe and Ripe.

TABLE 4.

Plat number	Dead Ripe	Ripe	In Milk	J.Heading
21	36	3 8	3 0	18
22	39	10	5	1
23	45	24	3 8	1
26	57	66	42	1 5
27	26	23	8	0
36	1	82	25	0
37	11	61	34	0
41	7	17	25	3
42	27	87	32	0
68	15	3 9	72	7
69	69	89	6 8	1
75	3	46	71	0
76	19	62	105	3
85	61	72	8 6	28
8 9	270	99	8	2
90	3 0	4	0	0
91	193	7	12	0
92	102	140	35	1
93	167	77	5 0	0
95	31	112	65	1
96	26	97	116	11
99	273	26	2	2
108	43	71	5	2 5
	1551	1349	934	89

Ratio 25.3031:22.6.76 : 15.2373 :1.4520

Expected 27.0000:27.0000 : 9.0000 :1.0000

In this group which seems to contain three fectors, with incomplete dominance the ratio should be 27:27:9:1. The ratio obtained is farther from the expected than the last. Yet it is quite possible that some plants from the Ripe class were placed in the In Milk class as the distinction between the two classes is hard to make.

TABLE 5.

Plat no.	D.Ripe	Ripe	In Hilk	N. Heading	J.Heading
17	23	24	56	36	3
18	43	107	109	15	5
24	63	35	69	5	3
25	228	153	69	7	2
7 0	55	155	72	0	0
71	56	56	5 0	0	0
72	16	3 3	88	15	4
73	3	17	43	4	0
74	3	13	29	4	1
77	31	80	159	0	0
78	25	8 9	141	0	0
81	99	147	91	0	0
82	14 .	62	18	0	0
	699	971	994	86	18

Ratio 61.8416:91.1202:93.2786:8.0704:1.6893

Expected 81.0000:108.000:54.0000 :12.000 : 1.0000

In this group we find a wide variation from the expected ratio. But the difficulty of separating the various groups, together with the large number of classes and the small number of individuals may account for this. The ratio expected here is that of incomplete dominance.

TABLE 6.

Plat number	In Milk	J.Heading	N.Heading
6	110	9 9	1
11	21	132	5
13	160	24	
15	55	48	1 2
16	10	10	0
45	72	65	3
46	160	88	0
47	270	153	2 0
48	65	198	0
49	40	48	0
54	129	34	0
5 5	46	36	2
60	127	112	31
61	180	73	9
62	150	58	13
66	111	174	18
67	7 6	69	1
	1772	1421	88

Ratio 8.6413 :6.9296 : .4291

Expected 9.00000 :6.0000 : 1.0000

In the case of incomplete dominance the ratio should be what is given as the expected ratio. The Just Heading group is larger than expected, but owing to the method of harvesting some of the plants from the other classes might easily have been placed in this group. So this ratio may be considered as indicating a 9:6:1 ratio.

TABLE 7.

Plat number	Just Ripe	In Milk	Just Heading
79 80 94	12 58 101 171	67 183 201 451	20 36 3 59
Total	681		
Ratio	1.0044	: 2.6490	: •3460
Expected	1.0000	: 2,0000	: 1.0000

This ratio is found for the first time in this group of plants. In all the ratios so far there has been strong indication of partial dominance. This should give a 3:1 or in the case of absence of dominance a 1:2:1 ratio. It is possible that in some cases there is really an absence of dominance, but I think this ratio may be explained partly by the small number of plants, and that a large number of plants would probably give a different ratio.

TABLE 8.

Plat	number	In	Milk	J	.Heading	N.Heading
7		2	235		7	
8		Ţ	124		45	
9]	138		46	i
10			66		22	
12			150		35	
14]	L49		16	
5 0			88	•	113	
51			24		17	
52		3	115		77	
53			39		32	
56		2	224		89	
5 7			144		83	
5 7 58]	173	•	130	
59		•	23		24	
63]	176		29	2
64		2	200		36	0
65			21		9	<u>0</u>
	•	208	39	8	10	2

Ratio 2.8803 : 1.1179 : .0028

Expected 3.00000: 1.0000 : .0000

In this group we have a relatively large number of individuals segregating into two main classes. The ratio obtained is quite close to the expected in the case of dominance.

SELECTIONS MADE FROM THE 1913 DATA.

In the fall of 1913, I took charge of this work which until this time had been cerried on by Profesor Spragg and his assistants. Profesor Spragg aided with valuable suggestions in the grouping of the material and in making the selections to carry on the work in 1914. In practically all the plats earliness (ripeness) seemed dominant over lateness. Thus a plat having plants in the

Dead Ripe class would have only 4D or 4 Duplex. If there were plants in the Ripe class also there would be 3D plas S.If plants in the first three classes there would be 2D plus 2S and so on. Selections were made in an attempt to get 4D, 3D, 2D, 1D, 0D, 2D plus S, and segregations from plants supposed to be 4S. In all cases only plants homozygous in black and white, and hulled and hulless, were selected.

Plat no.

Selection

- 4 Best 10 pure hulless plants. Dead Ripe
- 5 Same as 4.
- 17 All available pure hulless plants.
- 23 Dead Ripe and Ripe. 20 white hulless plants.
- 47 I.Milk and J.Heading.20 pure hulless.
- 56 Best 10 plants as in 47.
- 63 Same as in 56.
- 79 Best 20 pure hulless plants. Ripe.
- 80 Same as in 79.
- Best 20 D.Ripe and Ripe. White and hulless.
- 94 Best 20 plants from the Ripe class.
- 107 Best 20 plants from Dead Ripe and Ripe classes.
- 112 Same as 107.

INDICATIONS FROM THE 1913 DATA.

- 1. These oats segregate in regard to ripeness.
- 2. These segregations take place according to Mendelian ratios.
- 3. The time between segregations seems to be about one week.

4. With the exception of plats 3,105, and 106, all the plats are heterozygous in regard to ripening.

5. It is possible by selection to get oats homo-zygous in ripening and these may be of commercial importance as well as of scientific interest.

6.Earliness or ripeness is dominant over late-

1914.

From the ratios obtained in 1913, the chance of obtaining the desired types in 1914 was determined mathematically. To be more certain of getting what was wanted from three to five times the required number of plats were planted. Material from different sources (accession) numbers was grouped together because it was that to have similiar factors for ripening.

Accession 105 is a selection from ac.28 which is S.P.I.number 21231. This came from China.

Accessions 106 and 107 are selections from ac.29 which is S.P.I.number 21233. This also came from China.

Accession 108 was obtained from the Rossman Bros., Lake View, Michigan.

Accession 112 is the product of a cross in 1911 of Chinese Hulless and Alexander.

Most of the oats were planted at East Lansing by Profesor Spragg. A few plats were planted at Pullman, Wn. In the latter case the factor of acclimitization must be considered.

TABLE 9(HISTORY OF THE PLATS).

Plat 1914	Plat 1913	Ac.no.	Wanted	Parent
1	5	112	4D	3D plus S
1 2 3	n	11	. 11	· _ n
3	17	17	. 17	11
4 5	77	17	n	n
5	11	17	W	77
6	107	107	W	n
7	77	**	n ,	
8	77	17	Ħ	11
9	11	17	П	11
10	17	**	17	11
11	112	108	17	11
12	17	17	17	n
13	**	**	11	Ħ
14	11	17	**	11
15	Ħ .	11	11	n
16	17	**	••	n
17	17	11	***	11
18	11	11	11	11
19	107	107	3D	11
20	11	17	11	11
21	n 	11	11	11
22	17	n n	11	11
23	11		1 9 19	11
24	112	108	17	17
25	17 19	11 11	77	17
26	17	**	19	17
27	"	17	77	11
28	47			
29 70	467	105	E D	29
3 0	17	77	17	11
31 32	11	17	17	 11
33	11	17	17	11
3 4	17	11	11	11
35	77	17	11	11
36	11	11	11	11
37	17	17	n	n
3 8	17	17	11	11
39	17	17	n	11
40	17	77	17	17
41	11	77	17	n
42	11	17	17	17
43	19	77	n	11
44	17	11	17	n
45	17	17	17	11
46	56	77	11	11
47	m	17	17	31
48	17	77	11	n
49	77	17	10	11
50	17	17	17	n

TABLE 9 (CONTINUED).

Plat 1914 Plat	: 1913	Ac.no.	Wanted	Parent
51	56	105	SD	3D plus S
52	77	n	11	17
53	11	11	19	11
54	11	11	11	n
55	63	17	17	D plus S
56	17 19	17 11	17 77	11
57	17	W	17	11 11
58	17	11	77	11
59 6 0	11	17	11	., 11
61	11	71	19	n
62	n	11	11	11
63	17	11	17	11
64	47	17	OD	28
65	11	11	n	75
66	11	11	17	11
6 7	n	19	19	n
68	11	11	Ħ	11
69	79	**	77	n
70	11	n	77	11
71	**	77	17	11
72	11	17	11	, 11
73	n	17	19	n
74	n	11	17	11
75	77	11	11	n
76	11	#	***	11
77	77	***	**	***
78	77	**	19	11
7 9	11 11	17 17	17 17	11
80	17	17	17	n
81	11	 17	17	n
82 8 3	17	17	17	"
8 4	56	17	1D	D plus S
85	11	11	μ Τη	א אדמים ה
86	11	11	11	11
87	11	11	17	11
88	11	19	17	n
89	11	17	17	11
90	11	71	17	n
91	Ħ	19	17	11
92	n	17	17	n
98	n	17	17	W
94	20	**	2D plus S	2D plus 2S
95	11	11	77	11
96	11	11	11	11
97	11	11	11	11
98	11	11	11	**
99	17	11	11 -	**
100	11	11	**	11

TABLE 9(CONTINUED).

Plat 1914	Plat 1913	Ac.no	. Wanted	Parent
101	20	105	2D Dlus S	2D plus 2S
102	n	11	n han n	n n
103	**	11	**	17
104	7 9	1 06	n	33
105	11	100	11	ี ท
106	17	11	17	11
107	80	Ħ	11	11
	11	79	11	11
108	11	77	nt .	11
109	n	17	11	17
110	"	17	11	 11
111	"	17	11	
112	** **	17		17
113			η ••	17
114	11	11	11	17
115	17	77	17	17
116	11	17	Ħ	17
117	11	17	11	11
118	17	17	19	17
119	n	77	17	11
120	94	106	Ħ	TT .
121	17	77	17	17
122	17	17	77	11
123	17	11	77	17
124	17	11	77	11
125	17	11	17	11
126	n	11	17	17
127	17	17	17	Ħ
128	17	77	n	11
129	17	Ħ	19	17
130	17	105	Segregations	48
131	11	14 T()()	Segregations	#D
132	11	11	17	11
	19	77	17	11
133 134	11	17	17	17
135	11	17	17	n
	19	17	17	17
136	n	11	11	17
137	π	17	17	17
138	., 1 1	11	11	17
139	11	77	" "	
140	17			17
141		7 7 7 7	17 11	11
142	n		11	11
143	77	***		11
144	77	17	₩	17
145	n	17	Ħ	17
146	17	17	n ,	Ħ
147	17	17	11 -	11
148	11	11	11	77
149	17	79	Ħ	***
150	11	11	Ħ	17

TABLE 9(CONTINUED).

Plat 1914	Plat 1913	Ac.no.	Wanted	Parent
15 1	17	105	Segregations	48
152	11	11	**	77
153	77	11	11	17
154	n	17	11	17
155	17	19	77	11
156	17	11	17	11
157	17	17	11	17
158	11	**	11	11
159	17	17	11	17
160	11	17	11	77
161	17	11	11	11
162	17	11	H	11
		TABLE 10	•	

Plat	no.		Seg	regati	lons a	and d	late	3		Total
	7/23	7/25	7/27	7/29	7/31	8/3	8/5	8/7	8/10	
1	55		43	3	•	•	•	•	•	192
1 2	91		21	0						175
3		72	70	19						200
4	64	67	9	4						144
3 4 5 6 7 8		40								40
6			62	29	20					111
7			49	62	14					125
8			56	23	17					96
9			5 0	42	29					121
10			49	5 5	12					116
11 12			16	11	114	3				144
12				7	136	0				143
13				8	144	7				159
14				22	109	0				131
15					117	3				120
16					120	11				131
17					106	7				113
18					69	22				91
19					86	27				113
20					111	41				152
21					78	16	2			94 178
22			7.0		119	57	~			
2 3 2 4			12		117 136	13 1				142 137
25					219	7				226
26					128	9				137
20 27					118	7				125
28					110		7.4			
29					6	93	14	0.4		107
30					2	4	67	84	47	175
31						3	80	32	41	156
32						0	8	12	53	73
1764						2	4	13	52	71

TABLE 10 (CONTINUED).

Plat n	10.		Se	gre	gatio	ons ar	nd dat	tes			Total
		7/31	8/3	8/5	8/7	8/10	8/15	8/17	8/19	8/21	
33		,	-, -	15	34	50	,	-,	-,	-,	99
34			17	32	29	13					91
35			12	92	18						122
36			22	70	59	15					166
37			66	51	5						122
3 8			36	31	10						77
39		1	106	115	16						238
40			4	49	3 8						91
41			36	126	40						202
42			90	65	15						170
43			40	37	26						103
44			26	75	33		•				134
45 46			50 28	110 38	17 48						177 11 4
47			40	9 0	54						54
48				39	21						60
49				55	21						76
50			42	30	17						89
51			108	82	4						194
52			9	27	24						62
53			35	21	10						66
5 4				14	51						65
55					69	75					144
56				18	34	23					75
57					14	41	20	16			91
58					1	8	33	28			70
59					1	26	16	58	3.0	•	101
60						1		18	12	28	59 55
61 63							16	34	2 3 2 6	42 33	65
62 63							16	0%	8	9	109 17
64								12	14	.,	26
65								26	8		34
66								25	16		41
67						11	15	23	18		67
6 8			3			59	13	44	33		149
69								21	14	18	53
70								25	35	26	86
71			1	11	62	41	23	35			173
72			6	70	64	69					209
73			_	46	34	23					103
74			1	^-	45	67					113
75 76			13	23	21	4					61
76			47	3 3	1.5						-95
77			75	25 37	מר						100
78 79			30	37 59	17 63						84 122
80				50	22						72
OU				•)()	~~						16

TABLE 10 (CONTINUED).

Plat	no.		Se	gregat	tions	and	date	8.			Total
		7/25	7/27	7/29	7/31	8/3	8/5	8/7	8/10	8/15	
81 82							28 19	3 0 22			58
83							30	46			41 76
84							42	33			75
85						19	65	65	11		160
86								61	23		84
87							8	45	53	12	118
88					_	4	41	56	12		113
89					2	6	39	83	22		152
90 91						70	94 71	55	7		156
92						70 102	18	47	19		207 120
93						61	15				76
94		28	41	9	24	22					124
95			15	32	72	16					135
96					55	18	2				115
97			• •		75	138	4				217
98			19	47	17	28					111
99 100				55	60	91	45				115 136
101					26	89	40				115
102			5	12	55	36					108
103			4	15	39	29	5	•			92
104					5	4					9
105			11	11	28	7					57
106				13	22	_					3 5
107				3		9					99
108 109					33 18	4 0 4 9					73 67
110					21	37					5 8
111					48	48	17	11	4		128
112					44	22					66
113			1	37	26						64
114			4		24	56	17	37			138
115			3.0	77	15	21	1	16	2		55
116			10	11	54	55	10	15	8		163 64
117 118				17 3	61 80	55 30	1 3				116
119				J	00	41	J				41
120				1			74	46			121
121				-			66	24	10		100
122							35	2 8	18		81
123							21	14.	·		35
124							28	23	10		61
125							24	28	29		81
126							30	29	23		82

TABLE 10 (CONTINUED).

Plat no.		Segre	gati	ons a	nd de	tes	•			Total
	7/25	7/27	7/29	7/31	8/3	8/5	8/7	8/10	8/15	
127						41	27	38		106
128							26	9		37
129						13	22	28		63
130				24	45	14	7			90
131			_	50	88	30	22			190
132		0.4	9	63	54	28				154
133		26	24	63	31	31	4			179
134	~~	40	20	40		25		3.0		85
135	33	49	27	7.5				12		121
136	23	36	5	15	0					79
137		31	29	32	8	9				100
138 139	40	17	3 0	4 0	7	2				52 58
140	40	8	2	3 0	1 34	4				7 8
141		9	21	34	21	5				90
142		1	0	33	17	10				61
143		6	35	34	12	10				8 7
144		9	14	21	4					48
145		6	. 9	12	5					32
146		17	14	~~	•					31
147		4	3	22		20	3			52
148		-	13	îī	10					34
149				15	10					25
150				14		7				21
151		1			2					3
152				18	6 8	0	6			92
153	9	17	8	38	35	9	2			101
154		14	56	41	3 8	5				154
155		20		15	12	17	6			70
156		8	21	53	24	11	2			119
157		1	9	20	27	14	5			76
158		6		43	32	6				8 7
159			1	19	23	5	17			65
160		12	8	15	18	10	5			6 8
161			7	10	12	16	5			50
162						63	3			66

On August 10th there was a very heavy rain which caused the oats to turn green again. This accounts for the long period from the 10 to the 15th, during which no oats ripened.

In the summer of 1914 the oats were watched carefully and gathered as fast as they ripened. Instead of the

expected one week segregations it was found that they
fell naturally into two day segregations. Two conditions
tended to make the separation into classes more difficult than usual. (1) Some plats were badly smutted. (2) Heavy
rains toward the end of the ripening period caused the
oats to turn green again. Evidently the harvesting was not
watched carefully enough in 1913 and in many cases several segregations must have been gathered as one. Consequently the selections made from these in order to obtain some
particular type, in most cases broke up into many segregations. Yet in several cases all the plants in the plats ripened at the same time, thus proving that they are homozygous. In general all the plats from the same parent plant
had similiar segregations.

TABLE 11.

Plat number			Segregations	and dates	ripe.
1 2 4		7/23 55 91 64 210	7/25 91 63 67 221	7/27 43 21 9 73	7/29 3 0 4 7
Total	511				
Ratio		26.30]	14:27.6790	:9.1429	: .8767
Expected		27.000	00:27.0000	:9.0000	: 1.0000

This is the ratio expected with three factors and incomplete dominance. Considering the small number of individuals in this group the ratio obtained is very close to the expected ratio. Plat 5 from the same parent plant proved homozygous in ripeness.

TABLE 12.

Plat number	Segregations and dates ripe					
6 7 8 9	7/27 62 49 56 50		7/29 28 62 23 42	7/	/31 20 14 17	
10	2 66		<u>55</u> 211	-	12 92	
Total	569					
Ratio	7.4796	:	5.9332	:2.5870		
Expected	9,0000	:	6.0000	:1.0000		

This is the ratio expected with two factors in partial dominance. These plats all came from the same parent in 1913. The segregations are quite similiar. This ratio is near enough to the expected to be possible when the very small number of individuals is considered.

TABLE 13.

Plat number	er	Segrega	tions	and d	dates ripe	
~	7/29	7/31	8/3	Ratio	o approximatel;	7
12	. 7	136	Ó		1:18	
13	8	144	7		?	
14	22	109	0		1: 5	
15.		117	3		39: 1	
16		120	11		11: 1	
17		106	7		15: 1	
18		69	22		3: 1	
24		136	1		136: 1	
25		219	7		31: 1	
26		128	9		14: 1	
27		118	7		17: 1	
28			9 3	14	6; l	

These plats all came from the same plat in 1913. This was plat 112 and belongs to accession number 108. The ratio in 1913 was 3:1.but this data shows that it

should have been much larger. These ratios show that ripeness is dominant in all but two plats. In plats 18 and 28 there is a 3:1 ratio and this indicates the presence of one factor for ripening with dominance. Plats 16,17,26. and 27 give ratios which indicate the presence of two factors for ripening. Plats 15 and 25 give ratios of over 30:1. These may indicate a still higher ratio but I am inclined to think that a few plants which belong to the lower class have been placed in the higher class. Plat 24 gives a ratio of 136:1. This may indicate a still higher ratio. with more factors present, but I think this can be explained in the same way as the 30:1 ratio just given above. This is quite likely a 63:1 ratio or possibly enen a 15:1 ratio.Plats 12 and 14 of the same group give a reversed ratio. Such a ratio is found occassionly and has usually been noted as reversed dominance. Little explains this on the basis of the presence of a different number of factors. In this same group plats 11 and 13 break up into a large number of segregations which do not resemble any known ratios. These two plats seem to indicate a complete absence of dominance. In some of the ratios from this group there are indications of the presence of one, and in others the presence of two factors for ripeness. The higher ratios may possibly indicate the presence of more factors. These ratios are comparable to those obtained by East and Hays in their work with color factors in corn.

If we accept Little's explanation (Science Dec 18, 1914), we can explain the reversed dominance. But according to his explanation we would have to grant, in such a ratio as 136:1, the presence of about 18 factors. This may be possible, but I prefer the explanation of this on the basis of complete dominance in the presence of a smaller number of factors.

TABLE 14.

Plat	number	Segreg	ations and de	etes ripe	
			7/31		8/3
	19 20 21 22		86 111 78 119 394		27 41 16 59 143
Total	L	5 37			
Ratio)		2.9348	:	1.0652
Exped	ted		1.0000	:	1.0000

Such a ratio as this is to be expected in the case of dominance in the presence of one factor. This is really quite close to the expected ratio. These came from the same parent plant in 1913. All in the group segregated in the same way except plat 23 which has three segregations. These may belong to the two classes as the others since the extra class is very small compared to the others. In this group there is a 4 day period instead of 2 as in the other groups.

TABLE 15.

Plat number		Segregations and dates ripe				
		7/31		8/3		
108 109 110 112		33 18 21 44 116		40 49 37 22 148		
Total	264					
Ratio		1	:	1.2		
Expected		1	:	1.1		

In this group there is a reversed dominance. The plats all came from the same parent plant in 1913. The expected ratio is that given by Little in the presence of three factors. The ratio obtained in this group is really quite close to the expected as given by Little.

TABLE 16.

Plat numbe	r Segreg	ations and dates r	ipe
	8/3	8/5	8/7
35 37 38 40 41 42 43 44 45 39 76	12 65 36 4 36 90 40 26 50 107 47 30	92 51 31 49 126 65 37 75 110 115 33 37	18 5 10 38 40 15 26 33 17 16 15 17
Total	1615		
Ratio	5.3895	: 8.1337	: 2.9778
Expected	4.0000	: 8.0000	: 4.0000

All the plants in this group came from the same parent plant in 1913. The expected ratio given here is the ratio that should occur in the case of one factor with entire absence of dominance. The same ratio occured in a small group in the 1913 data.

TABLE 17.

Plat number	Segregation	ns en	d dates ri	Lpe	
	8/3		8/5		8/7
46 50 51 53	28 42 108 35 213		38 30 82 21 171		48 17 4 10 79
Total	463				
Ratio	7.3348	:	5.9000	:	2.7241
Expected	9.0000	:	6.0000	:	1.0000

This is the ratio that should occur with two factors and incomplete dominance. These plats all came from the same parent plant in 1913. The ratio obtained is a wide variation from the expected ratio, but the small number of individuals will partly account for this. Plat 47 from the same parent plant may be considered homozygous as all the plants ripened on August 8th.

Plat 119,a selection from plat 80 in 1913,is homozygous in ripeners as all the plants ripened at the same time and were gathered August 3d.

TABLE 18.
Other plats showing promising ratios

Plat number	Segregetions	Ratios
54	14 51	.8614 : 3.1385
55 61	69 75 23 42	30.7777 : 33.2222:0:0 1.4154 : 2.5746
65 77	26 8 7 5 25	3.0590 : .9410 3.0000 : 1.0000
80 86	50 22 61 23	2.7778 : 1.2222
90	94 55 7	9.7436 : 5.6410 : .6460
9 3 100	61 15 91 45	3.2105 : .7895 2.0000 : 1.0000
101	26 89	.9300 : 3.0700

These plats are given merely as indicating promising ratios. They do show the two day segregations and in a few cases the reversed dominance such as was noted in Table 13.

DATA AT PULLMAN, WASHINGTON.

These plats were harvested by Mr E.F.Gaines while I was hervesting the plats at East Lansing, Mich. The oats were grown under experimental conditions in the cereal nursery. As at East Lansing the oats were watched carefully and gathered as fast as they ripened.

TABLE 19(HISTORY OF THE PLATS).

Plat 1914	Plat 1913	Ac.no.	Wanted	Parent	Clase
1 2	4 5	112 112	4D	3D plus S	D.Ripe
3	20	105	17	11	***
4	23	17	ir	19	n
5	47	17	3D	3S	I.Milk
6	17	17	11	17	77
7	56	17	17	17	17
8	17	17	17	17	17

TABLE 19 (CONTINUED).

Plat 1914	Plat 1913	Ac.no.	Wanted	Parent	Class
9 10 11	6 3 80	105 106	2D 3D	ID plus S 3S	I.Milk Ripe
12 13 14	85 94	79 77 77	4D 5D	D plus 38 38	D.Ripe Ripe
15 16	107 112	10 7 108	4D	3D plus S	D.Ripe

TABLE 20.

Plat no. Segregations and dates

	8/1	8/3	8/5	8/7	8/9	8/13	8/20	Total	Composition
1 2 3	80 60							80 60	Homozygous
		14	67	115				196	Heterozygova
4 5		33	171					254	19
						60		60	Homozygous
6						7 5		7 5	17
7							110	110	17
8							6	6	11
9							65	65	77
10	1		1					·2	Heterozygous
11	90		4					94.	11
12		79	30					109	11
13						80		80	Homozygous
14						101		101	n
15		11		79				90	Heterozygous
16		95						95	Homozygous

DISCUSSION OF RESULTS AT EAST LANSING MICHIGAN.

The presence of numerous segregations which were not noted in 1913 prevented the results from being what was expected. Instead of segregations one week apart as in 1913, in practically all the plats which were not homozygous there were two day segregations. This data with a few exceptions shows that ripeness is dominant, but that the dominance is incomplete. In the 1914 plats from plat

112 in 1913, the ratios indicate that in this group at least, there are two factors and one factor present. Of the plats in 1914, plat no. 5 is possibly homozygous, while 47 and 119 are homozygous as all the plants ripened at the same time.

As in 1913 plets from the same parent plant segreregated in much the same way. Those having similiar segregations were grouped and the ratios determined. But in
groups having many segregations the total number of individuals is so small that the results do not even approximate Mendelian ratios. In such cases the grouping is omitted, because with the small number of individuals the
misplacing of one or two plants would cause a wide variation in the ratio.

The summer was unusually dry at Lansing. The soil which is a sandy loam dried out very rapidly. So it is possible that some of the oats may simply have died and not ripened. All we can do is to assume that all the oats were affected in the same way. Yet, on Aug. 10th a heavy rain fell and this caused the unharvested oats to turn green.

DISCUSSION OF RESULTS AT PULLMAN.WN.

The soil used was a heavy loam, formed of decomposed volcanic rock. This soil holds water very well. The oats received no rain from the time they were planted until they were harvested. The oats were planted later than et Lansing and the cool nights which are characteristic of the region tended to make the harvesting later.

As at East Lansing the oats were carefully watched and harvested in the same way. In the plats that segregated two day periods were found. Yet in the plats which proved to be homozygous in ripeness we find periods of about one week between the dates of ripening.

Plat number	Supposed to be	Date ripe	Homozygous
1	Dead Ripe	8/1	11
2	17	n	17
12	17	8/3	17
5	In Milk	8/13	11
6	11	'n	17
7	77	8/20	TT
8	17	IT	11
9	11	11	***
13	Ripe	8/13	11
14	11	'n	11

Considering the Dead Ripe on 8/1, the Ripe should be about 8/8, the In Milk about 8/15, and the Just Heading about 8/22, according to the segregation periods found in the 1913 date. If these are the approximate days on which the groups should ripen, no Ripe class was found. It is entirely possible that the plants put in the Ripe class and selected for planting in 1914 should have been thrown into the In Milk class. The results in the 1914 date bear out this supposition. Two of the plats (5 and 6) In Milk, proved homozygous and ripened Aug. 13th., two days early in comparison with the Dead. Ripe. The other plat supposed to be in the Milk ripened Aug. 20th. This was also 2 days early compared to the Dead Ripe. It is juite evident here that

the last plats should have been placed in the Just Heading class of 1913.

what part the factor of acclimitization plays here we have no way of determining. Some claim that it takes a plant three years to reach an equilibrium after being taken to a new climate. Yet it seems to me that all the oats in the experiment probably were affected in the same way. At any rate it is significant that two day segregations were obtained in two places so far apart and under different conditios.

conclusions.

- 1. These oats, with the exception of accession 112, are natural crosses.
- 2.All of these oats segregate in regard to ripeness.
- 3. The period between these segregations is 2 days. (This was found in two places 2500 miles apart.)
- 4. The segregations are according to Mendelian ratios.
- 5. Factors for ripeness are present. The number in the different oats may vary, but in the progeny of the plats from accession 112, the data shows the presence of one factor in some cases, and two in others. the ratios obtained in this case are comparable with obtained by East and Hays in their study of color

factors in corn.

6.Ripeness is dominant over lateness. In most cases the dominance is incomplete, but in the progeny of accession 112, the ratios indicate complete dominance.

7.It is possible by selection to isolate types which ripen at different times. (From the 1913 data types were obtained which ripened on 3 or 4 dates about one week spart.) The 1914 data indicates that an almost unlimited number of types may be obtained from this meterial.

8. These types when isolated will be of commercial importance in a state which has such a variation in the length of growing season as Michigan.

BIBLIOGRAPHY.

East, E.M. and Hays, H.K.

"Inheritance in maiz3"

Conn.Bul.167.

Castle.W.D.

"Heredity"

Jameson.T.

"Natural cross fertilization of oats and change of seed"

Proc.Agr.Research Association(Scotland)

Kirshe.A.

I. "Growing and breeding oats."

Deut.Landw.Presse.26(1899)n3.6.pp45-46.

2. "Methods of plant breeding."

Deut.Landw.Presse 29(1902)no.3.pp18-19.

3. "Breeding onts resistant to lodging."

Illustrated Landw.Ztg.24(1904)no.20,p217.

Karup, A. V.

"Some investigations of the transmission and variability in oats with special reference to the possibility of isolating types high in fat adapted to the manufacture of shelled oats."

(Copenhagen) Aug. Bang., 1903, p70.

Little, C.C.

"A possible Mendelian explaination for a type of inheritance apparently non-Mendelian."

Science December 18,1914.p 905.

Norton. J.D.

"Improvement in oats by breeding". (Copenhagen) Aug. Bang. . 1903.p 70.

Nilsson-Ehle.H.

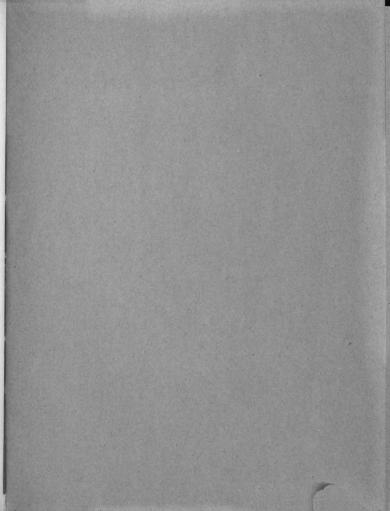
1."Variation in oat hybrids".

Nature 69(1904)no.1792.p 413.

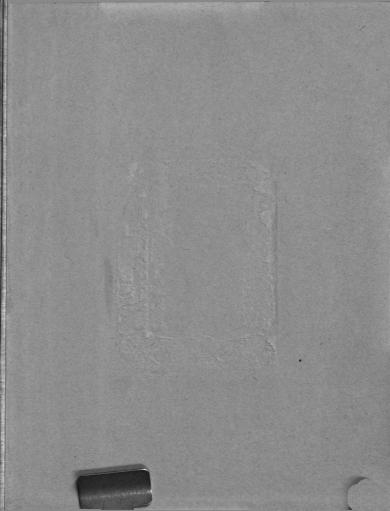
2. "Cases of spontaneous disappearance of unit characters in oats".

Zacht. Inductive Abstan.in Verbunglehre 5(1911), no.1.

- 3. "Hybridization investigations in oats and wheat".


 Lunds. Univ. Arssk. . u. Ser. Sect. 2.5(1905) no. 2.
- 4."A noticeable color factor as an inhibiting factor in awn development".

Zacht.inductive Abstan.u Verbunglehre,12(1914), no.1.


Wilson, J.H.

"Variations in oats hybrids".

Nature 69(1904) no.1792.p 413.

ROOM USE ONLY

