

RETURNING MATERIALS:
Place in book drop to remove this checkout from your record. FINES will be charged if book is returned after the date stamped below.

Analysim of Beal Road Bridge

ATheris Sabmitted to

The Faculty of the

Michigan Agrioultaral College

by

F. 工. Hemarrox

Candseate for the Degree of
 Bacholor of solemce

THESTE
© 0

INDEX

Page
Disoussion 1
Introduotion 2
General conolusions 4
Plate girder design 5
Deaign of a 60' plate Girder, 10 © 11 6
Comolusions for the deok girder spanf 14
Design gi 35' through plate girdor G 8 25
Summary of analysis of girder G 8 81
Complete deaign of 86^{\prime} through plate girder 62 22
Summary of analysis of girder $G 8$ 25
Complete design of 88' through plate girder $G 8$ 25
Summary of analysis of girder $G 8$ 89
Amalysis of cross beams B 2 \& B 2 80
Analyeis of conorete footing under Column CL 1 81
Amalysis of gusset 82
Analysis of columns and mway bracing 88
A1scellaneous data
Final conclusions 84
Bibllography.
Drawings
Incation plan: Ha. 1
Karking diagrem 2
Typioal etress aiagram 3
Stress sheet for Girder $G 10$ 4
stress gheot for Girder $G 8$ 5
Stress sheet for Girder Q ? 6
stress oheet for Girder $\in 3$ 7

Strese sheot for oross bear:s B 1 \& B 2
Soction through colvoms
Half gection of bridge

Girder Bridges

$\Delta 11$ bridge atruotures may be divided into three groups, Beam Bridges, Suspension Bridges, and Aroh Bridges. Beam bridges exert only a vertical pressure apon the bearings or gupports. Beam bridges include, simple bridges, drawbridges, contimnous bridgen, and cantilever bridges. A simple bridge is one resting on two supports.

Simple bridges are of two kinds, truss bridges and girder bridges. A girder bridge has its floor supported by solid or built up beams. A wooden beam, a rolled I beam, and a plate girder formed by riveting angles and plates together are examples of girders. Girder bridges are used for short spans, usualiy less than 100 feot. Other kinds, however, such as the 140 feet built up plate girders are not uncommon.

About 1850, built up plate girders, formed by riveting angles to a solid web plate, were used in Furope. Plate girder bridges were not used extensively in this country until 1895. Today, the plate girder is the first choice for spans from 80 to 100 feet in length.

The advantages of a girder bridge are greater gtiffness, adventage in erection, a solid floor may be used rith the regular ballast and very shallow floors. The through plate girder has the added advantage of requiring very little headroom.

2. Ieul iooad Brimev, 100ンinō South.
2. Vic\% fru! tic "ort-...ost E. Tic: from t... "..ozt.

Introduotion

The Beal Road Bridge was built in the late swmer of 1913. The atructare was built by the miohigan Railway Pag. Co. for the Mohigan \& Chicago Railway Co. The actual construction and erection was done by the Toledo Bridge and Crane Co. Mr. Fm. Fargo was the consulting engineor.

Beal Road is a highway one mile south of Grand Rapids. At the location of the bridge, the G. R. \& I. R.R. orosses the highway at grade. The Michigan and Chioago Railway was forced to oross the G. R. \& I. roadbed overhead. The G. R. \& I. rails at the orossing has a ourve of 2^{0} without a spiral easement. The two railways oross at an angle of $81{ }^{\circ} 3^{\prime}$. This fact arbitrarily fized the location of the supporting members. (See Arawing 1)

The bridge 1 s plate girder type throughout carried on conorete end piers and ten columns composed of buil ap sections. The bridge consiats of two deck apans, each aixty Peet long, and three skew through spans, in addition to two short through spans which connect the skew spans and the deck apans. Due to an arbitrary placing of the columns no two girders in the through gpan are of the game longth. The arrangment of girders is shown in Drawing 2.

The bridge is an extremely long one for an overhead orossing. This is due to the fact that the earth fill at the north end of the bridge has a depth of 28^{\prime} under the pier. The approach from the south is also an earth ifll and is 12^{\prime} deep under the south pier. The greatest olearance over natural earth 1s 30'. The olearance over the G. R. I ra11s 18 22 .

The bridte is in strict keeping with the rest of the roadbed of this division. The maximum grede on the KalamasooGrand Rapids diviaion 181% and the greatest ourve outside of the oities 182°.

The Mohigan Railway Company operates its KalamazooGrand Rapids aivision cars over this bridge. The woight of their oers are as follows:

The bridge is deigigned for $\mathbb{H} 40$ Loading with a liberal allowance for dead load.

The floor of the structure consists of $3 / 8^{\text {n }}$ steel plates supported on $10^{\text {N }}$ - 80* I beams reating direetly on the flanges of the girders. Ten inoh cedar ties aro nsed on the bridge and the ballast 18 ornshed rook.

The anajysis of the structure will fall under three heads. Pirst, the computation of the stresses in one of the deok girders, two thourgh girders, one pair of colvons, the Eway bracing between them, and one pair of column footinga. The second step will be the aotual design of the members noted above. This design will be base on A. R. E. A. ppeoifications of 2910. The third θ tep will be the comparison of the authors design vith the design aotually found in the straoture. An attempt will be made to acoount for differences found and justify them if possible.

Goneral Conclusions

A olose examination of the bridge in April 1921 showed the structure to be in very excellent condition. There were absolutely no gigns of rust on any of the girders, I beams, or lateral bracing. There was a tendency exhibited for the paint to peel from four of the columns exposing the shop paint.

The most serious signs of depreoiation were at the bases of the columas where the concrete was beginning to weather away. The conorete was poured about the column to a distance about six feet above the column footing. The conorete had failed to form a close seal to the column and water was working down between the steel and the concrete, encasing it, and upon freezing, was causing the ateel to rust and the concrete to fall away from the steel. There is no reason to fear that the columns Will fail before any of the rest of the structare.

The conorete in the piers seemed to have been of poor quality es large pit-holes are forming in the sloping top of the bases. Local aggregates were used in the conorete and organio matter is quite liable to have gotten into the conorete.

Design of a Plate Girder Bridge
The apecifications used in this design are those prepared by the American Railway Engineering Association in 1910.

The loads that will be oonsidered in this deaign are the dead load, live load, impact, and wind loads. The live load will consiat of Cooper's $\mathbb{I} 40$ loading. The dead load will consist of the weight of the metal in the structure, the floor, trask and fastenings, ballast and all loads that are constantly aprlied.

Rapialy moving trains produce greater stresses in a bridge than would the same load simply standing on the struoture. Por this reason allowance is made in the live load stresses for the additional stress. The allowance is a certain per cont of the live load stress and varies acoording to the length of the bridge. This ration is found from the formula

$$
I=s\left(\frac{300}{I .800}\right)
$$

The horizontal pressure exerted on bridges by the wind is called "Yind Pressure". Thirty pounds per aquare foot on the horizontal projection is uaually allowed. Find pressures will be found included in the lateral forces described in the specifications.

$$
\Gamma
$$

DRAWING NOB

BE STRESS

Data:
Length 59' c-0 of bearings.
Fidth 71 o-0 of girders.
Dead load as computed.
Live load Cooper's $\mathbb{S} 40$.
Caloulations for main girder.
Dead load.
Motal only. (12.5 L - 100) . $9=765 \#$

Tie
Rails and fastenings
Ballast 6 ou. ft.
I beam
Plates 12' long
Third rail and
insulators
150花
 8/8 $8^{\text {n }}$

24\#

1638\#
Total dead load 2400 \# per ft. of track.
M due to dead load $=1 / 8 \times 1200 \times 59^{2} \times 12=504,600 \mathrm{in} \#$ From table in Fetcham's Handbook

Max. N. due to F 40 Loading on a 58° gpan $=1223,400$ in

For maximum impact $\frac{300}{800+60}=83.6 \%$ 83.6% of 1223.400 in $\#=$ 1025,200 in t

Total moment at the conter 2753,200 in $\#$ The moxt thing to do is to detexmine the eoonomio depth. Io wob should be less than $8 / 8^{\prime \prime}$ thick. Fe will assume 8/8" as thiokness of this web and substitute in the formula

$$
\begin{aligned}
& 1 . 1 \longdiv { \frac { M } { P t } } \\
& 1 . 1 \longdiv { \frac { 2 7 5 3 , 2 0 0 } { 1 6 0 0 0 \times 3 / 8 ^ { \prime \prime } } } = 7 5 . 7 \mathrm { in } .
\end{aligned}
$$

So we will nge a web plate $75^{\text {² }} \times 3 / 8^{n}$.

The flange area will noxt be determined. It is readily seen that the offective depth will be alightly less than the total depth, so assume 74" as the effective depth.

$$
2753,200+74=372000 \#
$$

For the glange stress $372000+16000=24.2 \mathrm{sq}$. in. required in each flange.

Use in each flange:

The thickest cover plate should be placed next to the angles, but in this case both cover plates are the same thickness. For the length of the longer plate we have:

$$
60 \sqrt{\frac{7.00}{26.87}}=80.61
$$

and for the length of the longer plate

$$
6 0 \longdiv { \frac { 1 4 . 0 0 } { 2 6 . 8 7 } } = 4 1 . 2 ^ { 1 }
$$

According to the specifications one cover plate must cover the entire flange. The other plate will be made the same length as the longer under plate.

The next thing to determine is the atiffening angles and web. The masimum ond shear is:

Dead Load	34800%
Iive Load	95900
Impact	80800

[^0]allowed for shearing stress. Therefore, 81. $2 \mathrm{aq}$. in. 1s required in the web. 4 wob plate $72^{n} \times 3 / 8^{\prime \prime}$ gives an area of $24 \mathrm{sq} . \mathrm{in}$.

Aocording to the specifications, the outstanding leg of the stiffeners must not be less then $1 / 80$ of the depth of the girder plus $2^{\prime \prime}$.

$$
\frac{75}{30}+2^{n}=4.5^{n} \quad \text { The angle nearest this is }
$$

$5^{n} \times 31 / 2^{\text {w }}$ wich will be used throughout for the intermidiate atiffeners.

The end stiffeners mast be designed to carry the entire ond shear and act as columne. Then assuming $5^{n} \times 81 / 2^{n} \times 1 / 2^{n}$ used, We have for each colum used:

$$
r=\sqrt{\frac{8 x 2.47^{2}+19.98}{8}}=2.88
$$

Then substituting this value of r and the oolunn length:

$$
16000-70 \frac{37.5}{2.88}-15.075 \#
$$

and for the allowable compressive stress on the end stiffemers:

$$
\frac{211,000}{15,075}=14.85 \text { sq. in. req'd. }
$$

So we ซill nse $4-5^{n} \times 3$ 1/2" $\times 1 / 2^{n}$ In area 16.00 日q. in.
Wo will use the minimum size intermidiate stiffeners and make the spacing accordingly. Using the assumed web $75^{\prime \prime} \times 3 / 8^{\prime \prime}$. we have:

$$
0=\frac{211,000}{28}=7,016 \text { for the maximum unit }
$$

shearing stress in the web. From whioh

$$
A=\frac{8 / 8}{40}(12,000-7,015)=47^{\prime \prime} \text { for the required spacing }
$$

near the end of the girder. Since this 18 less than $1 / 2$ the depth of the girder, we rill use a spacing of $45^{\prime \prime}$ or $3^{\prime \prime}=9{ }^{\prime \prime \prime}$ F

Por the bearing on the masonry, $\frac{211,000}{600}=352 \mathrm{sq}$. in. Use bearing plates $18^{\prime \prime} \times 20^{\prime \prime}$. Each bearing must be deaigned so that there will be at least this much bearing on the masonry. This compleses the necessary caloulations for the main girders, and the next thing is the lateral bracing.

The laterci bracing should be symmetrical about the oenter of the mpan. The laterale should have a slope as near 45° as practioable. The distance between oross frames should never exceed 15'. In accordance with this there will be six intermediate oross fromes in a 60' span.

The lateral bracing will be as ahown:

Acoording to the speoifications the laterals must resist aniform lateral force of $200+.10(5850)=775 \#$. Suppose this load moves on from the right as a miform live load. The load at each panel point 7111 be $4.6 \times 770=5750 \frac{6}{7}$ (about). Then for the marimum shears in each panel, we hare: Shear in panel

$880 \times 2=820 \frac{\pi}{4}$	mm
$320 \times 3=960 \frac{4}{5}$	ml
$380 \times 6=1920 \frac{\pi}{\pi}$	2n
$320 \times 10=3200 \%$	kh

$$
\begin{aligned}
& 320 \times 15=4800 \% \mathrm{hg} \\
& 320 \times 21=6620 \# \mathrm{gf} \\
& 320 \times 28=8940 \# \mathrm{fo} \\
& 320 \times 36=11,300 \# \mathrm{od} \\
& 320 \times 45=14,200 \# \mathrm{do} \\
& 320 \times 55=17,600 \# \mathrm{ob} \\
& 320 \times 66=20,800 \# \mathrm{ba}
\end{aligned}
$$

Tangent of the angle $\frac{4.8}{7.0}=.686 \quad$ sec $\theta=1.218$
Then for the maximum atresses in the diagonala, we have:

\[

\]

It will be seen that the diagonals have to reaist both compression and tension, but compression 7111 probably goverp. Let us try a single angle asy 1-I $31 / 8^{\prime \prime} \times 31 / 2^{\prime \prime} \times 3 / 8^{\prime \prime}$. 中he radius of gyration of this angle is $1.07 . L=100^{\prime \prime}$. Lhen substituting in the compression formula, $16,000-70 \frac{1}{2}$.

$$
16,000-70\left(\frac{108}{1.07}\right)=9,000 \frac{4}{i} \quad \text { for the allowablo }
$$

stress.
Dividing the greatest oompressive atress, which ocours in bo

$$
20,800+9,000=2.31 \text { for the req'd cross section }
$$

of the lateral and the assumed L has an area of 2.48 aq . in. Por the area required in tension, $20,800+16,000=1.80 \mathrm{sq}$. in., so the angle is quite aufficiont for the end lateral. The ongle selected is the snalleat allowed by the specifications so it will be used throughout in the lateral bracing.

The orose frames oan be fairly well analysed. The stress in the top angle of the frame can be teker equal to one-half of the lateral force per foot of apan multiplied by one-hald the length of the span, and this force maltiplied by the secant of the angle of slppe of the diagonals. The bottorn angle of the. frame has no stress(theoretically). Then according to the above Te have:

$$
\frac{775 \pm 29}{2}=11,300 \frac{\%}{\pi}
$$

for the stress in the top angle of the frame and as the diagonals have a slope of about 45° with the horizontal the stress in the diagonals will be:

$$
11,300 \times 1.4=15,800 \#
$$

A $31 / 2^{n} \times 31 / 2^{n} \times 3 / 8^{n}$ is plenty large for this position, so a $31 / 2^{\prime \prime} \times 3^{\prime \prime} \times 3 / 8^{n}$ angles $w 111$ be ased in the oross frames. This concludes the preliminary compatations for the deaign of the girder.

Conclugions for the Deck Girder Span

Considerable difficulty was encountered at first in discovering the dead load allowed which would produce the etress which the web plate would ststain. The span is designed for a dead load of $2400 \mathrm{~F} / \mathrm{ft}$. of track which makes a liberal estimate of the woight of ballast.

Using the x 40 live load and the dead load as stated, the total shear is found to require a web area of $21.18 \mathrm{gq}$. . in . A web 75" $\times 3 / 8^{\prime \prime}$ gives an area of 28 sq. in.

The economic depth is 75.7 sq. in., but a depth of $75^{\prime \prime}$ was found in the girder.

The flanges as designed were found to be exactly the same as those found on the girder. The flange areas are 2.5 sq. in. in excess of the required areas. The cover plates as deaigned were also the aame length as found in the flange.

The end stiffeners as designed were the same cs used on the girder. The atiffoners vere also amply atrong, having an area 2 sq . in. in exoess of that recuired. The spacing was elso very liberal, and the ontire meb is sufficiontly gtiffened.

The minimum sized laterals used in the specifications are $\delta 1 / 2^{\prime \prime} \times 3 / 8^{\prime \prime} \times 3^{n}$, but the engles found in the laterals were $3^{n} \times 3^{\prime \prime} \times 3 / 8^{n}$. With this one exception, everything else about the girder is well above that required by the specifications.

BEAR TOAD BRIDGE
MICHIGAN CHICAGO RY
FARGO ENGINEERING CO.
scale $\frac{z^{\prime \prime}}{}=1$

Complete Design of a 35' Through tlate
Girder, 8.---(Johnson, Bryan, and Turneau)
Length 35' o-0 of bearings.
Width 16' o-c of girders.
Dead Load
(metal only) 0.9(12.5 I + 100) = 485\#.
Total dead weight 2000 /ft. of track.
Maximum moments occur at the center of the apan

Dead Load	153,125
Live Load	523,000
Impaot	468,800
	I,144,485 in \#

Maximum shear ocours at ond

Dead Load	17,500
Iive Load	69,200
Impact	62,000
	$148,700 \mp$

For the depth(economical)

$$
\begin{aligned}
h & =h_{f} \sqrt{\frac{\nabla}{62.5}+h_{f}^{2}} \\
& =6-\left(\frac{148.700}{62.5}-36\right) 1 / 2 \quad h=49^{\prime \prime} \\
t & =\frac{49-18}{160}=.232 \mathrm{in} .
\end{aligned}
$$

8/8" is the minimum thickaess need so a web plate $3 / 8^{n}$
will be used.
For the eoonomical depth $h = 1 . 1 \longdiv { \frac { 1 , 1 4 4 , 4 2 5 } { 1 4 , 0 0 0 \times 3 / 8 } } = 5 1 . 6 ^ { n }$
Reducing this by 20%, $h=40.5^{n}$.
Ye vill use a web $42^{n \prime} \times 3 / 8^{n}$, area 15.75 sq. in.
The tlange area will next be determined. The effective
depth will be elightly less than the total depth, so an effective depth of $41^{\prime \prime}$ will be aseumed.

1,144,425 in.\# $+41=280,000$ for the flange stress. $280,000+16,000=17.5$ 日q. in. in Iower flange.

For the apper flange

$$
\begin{aligned}
A & =\frac{p}{16,000-70 \frac{1}{6}} \\
& =\frac{280,000}{16,000-\frac{70 \times 35 \times 12}{14}} \\
& =20.2 \text { q. in. }
\end{aligned}
$$

Use in the lower flange
2 Ls $8 \times 8 \times 5 / 8^{\prime \prime}$
19.22
16.78
1 pl $6^{\text {T}} \times 5 / 8^{\prime \prime}$
3.75
2. 80
1 I $4^{n} \times 3^{n} \times 3 / 8^{n}$
2.48
1.78
1/8" web
1.97
1.97
24.22
22.928q. in.

Use in the upper flange

2 Ls $6^{\prime \prime} \times 6^{\prime \prime} \times 5 / 8^{\prime \prime}$	11.78
1 pl. $14^{\prime \prime} \times 7 / 16^{\circ}$	5.85
1 pl . $14^{\prime \prime} \times 3 / 8^{\prime \prime}$	4.50
1/8" ${ }^{\prime \prime}$ web	1.97

$25.45 \mathrm{Eq.1n}$.
The thicker cover plate should be placed next to the angles and in the upper flange one oover plate mast cover the entire length of the cover plates.

The leagth of the shorter plate is given by the formula:

$$
I \sqrt{\frac{a_{1}+a_{2}}{\Delta}}
$$

Erom Fhioh

$$
\sqrt{\frac{4.5+5.25}{23.44}}=22.6^{\circ}
$$

and for the length of the cover plates on the lower flange no oover plates are used.

The next thing to oalculate are the atiffeners. Find etiffeners must be carried on fillers and carry the ontire load at the end of the girder. The maximum and shear was 148, loon. According to the specifications the outstanding leg of the angle must equal $2^{\prime \prime}+1 / 30$ of the depth of the girder.

$$
2^{n}+\frac{62}{80}=3.4^{n} \cdot \text { We will try La } 31 / 2^{n} \times 31 / 2^{n} \times 3 / 8^{n}
$$ for the ond atiffeners. Then assuming each two of these angles to act as a column $\begin{gathered}\text { me have: }\end{gathered}$

$$
x=\sqrt{\frac{4.96 \times 1.88^{2}+5.8}{4.96}}=2.18, \text { using this }
$$

value of " r " and the column length of 81 "

$$
16,000-70 \frac{21}{2.18}=15,820 \# \text { for the allowable }
$$

compreasive atress in the stiffeners.

$$
\frac{148,700}{15,380}=9.62 \text { q. in. for the required area in }
$$

the end stiffeners. We will use 4 Is, $81 / 2^{n} \times 81 / 2^{n} \times 8 / 8^{n}$. Area 9.62 sq. in.

Using the angles as calculated, we will have to find the required spacing of the intermediate stiffeners.
$a=148,700+25.75=9,450 \%$ mandmum unit shearing stress in the web from which

$$
a=\frac{66}{40}(12,000-9,450)=23.5^{n} \text { ince this is leas }
$$

than the depth of the web, the apacing will be conaidered satisfactory.
-

Sasumed dead 10ad 2000\＃．Use in bottom flange
Effective span 35^{\prime} ．
1／8 web area
1.971 .97

2 Is $8 \times 8 \times 5 / 8$ F．工． 19.2216 .72
$1 \mathrm{pl} .6 \times 5 / 8 \quad 8.75$ 2．50
1 工 $4 \times 3 \times 3 / 8$
2.481 .73

24．2E 2K．9K
Kaximam end shear

Dead Load	$27,500 \%$
Ilve Load	$69,200 \%$
Impact	$62,000 \#$
	$148,700 \%$

Required wob area 14,87 sq．in．
Use 42＂ $\mathbf{4} 3 / 8^{\prime \prime}, 15.75$.
Use in top Mange

2 Ls $6 \times 6 \times 5 / 8$	14．22	11.78
$1 \mathrm{pl} 14 \times 7 / 16^{\prime \prime}$	6.78	5.26
$1 \mathrm{pl} 14 \times 3 / 8 \times 18^{\text {m }}$	5.85	4.50
1／8 mob	1.97	1.97

Maximom momentum at center

Live load	153，125 1n年
Dead load	523．000 1n\＃
Impaot	468，300 1n＊
	144，485［事
	Sti

Weight of 35＇Girder

	S1ze	Io．	$\begin{gathered} \text { Wt. } \\ \text { per } \\ \text { ft. } \\ \hline \end{gathered}$	Total	
Fob	$35^{\prime} \times 42^{\prime \prime} \times 3 / 8^{\prime \prime}$	1	53.55	1880\＃	1，880＊
$\begin{aligned} & \text { Plazge } \\ & \text { Angles } \end{aligned}$	$6 \times 6 \times 5 / 8^{\prime \prime} \times 35^{\prime}$	2	84．2\＃	1700年	
Angles	$8 \times 8 \times 8 / 8^{\prime \prime} \times 35^{\prime}$	2	32．7音	2880\＃	
Plate	$6^{\prime \prime}=5 / 8^{\prime \prime} \times 35^{\prime}$	1	12．75	445\＃	
Angle	$4^{\prime \prime} \times 3^{\prime \prime} \times 8 / 8^{\prime \prime} \times 35^{\prime}$	1	8．54	297\＃	
Plate	$14 \times 7 / 16^{\prime \prime} \times 85^{\circ}$	1	80.83	728：̈̆7	
Plate	$14 \times 3 / 8^{\prime \prime} \times 18^{\circ}$	1	27.85	322\＃	
Rivets	$7 / 8^{\text {m }} \mathrm{D}$	780		480\％	6．192\＃
Stiffenor： Angles	$6^{\prime \prime} \times 6^{\prime \prime} \times 5 / 8^{\prime \prime} \times 3^{\prime} 6^{\prime \prime}$	2	24.2	169.4	
Angles	$5^{\prime \prime} \times 3^{\prime \prime} \times 3 / 8^{\prime \prime} \times 8^{\prime \prime} 6^{\prime \prime}$	2	9.8	68.6	
P111098	$\mathrm{g}^{\prime \prime} \times 5 / 8^{\prime \prime} \times 8^{\prime} 4^{\prime \prime}$	2	1.87	88.0	
Angle	$4^{\prime \prime} \times 3^{\prime \prime} \times 3 / 8^{\prime} \times 4^{\prime}$	1	8.5	34.0	
Piller	$6^{\prime \prime} \times 5 / 8^{\prime \prime} \times 8^{\prime}$	1	8.75	21.25	
Pillers	$3^{\prime \prime} \times 5 / 8^{\prime \prime} \times 4^{\prime}$	7	1.87	52.2	
Angles	$5^{\prime \prime} \times 3^{\prime \prime} \times 3 / 8^{\prime \prime} \times 3^{\prime} 6^{\prime \prime}$	7	9.8	241.0	
Angl 88	$0^{\prime \prime} \times 3^{\prime \prime} \times 8 / 8^{\prime \prime} \times 8^{\prime \prime} 4^{\prime \prime}$	7	9.8	278.0	
Angles	$5^{\prime \prime}=4^{\prime \prime} \times 3 / 8^{\prime \prime} \times 8^{\prime \prime} 4^{\prime \prime}$	3	11.0	77.0	
Angles	$5^{\prime \prime} \times 81 / 2^{\prime \prime} \times 8 / 8^{\prime \prime} \times 8^{\prime \prime} 6^{\prime \prime}$	8	10.4	110.0	
Angles	$5^{n \prime} \times 8 \times 1 / 8^{n} \times 1 / 2^{n} \times 8^{\prime \prime} 6^{n}$	4	18.6	191.0	
Pillers	\％ $1 / 8^{\prime \prime} \times 5 / 8^{\prime \prime} \times 24^{\prime \prime}$	4	2.18	205.0	
Pillers	$31 / 2^{\prime \prime} \times 5 / 8^{\prime \prime} \times 9^{\prime} 1 / 4^{\prime \prime}$	3	2.18	61.8	
Rivets		118		55.8	1，362．4番
Gussets		2	150.0		800.0
			mots		0．738 ．f年

Length 38°

Depth 16^{\prime} o-c of girders.
The weight of the metal in this girder by mpirical formale is 485策. The other dead load consisting of track, ties, etc., mas 1688f. The total dead load is 2l23\#/ft. of track, but Mr. Pargo's figures allowed 2900\#/ft. of track.

The maximam shear was $148,700 \#$ and required a wob plate area of 14.87 gq . in. The web plate used was $42^{n} \times 8 / 8^{\prime \prime}=$ 15.75 8q. in.

The maximum moment was $1,144,485$ in $\#$ and with an effeotive depth of $41^{\prime \prime}$, a flange area of 17.5 sq. in. was required. Due to the construction of the larger girders, the same alze angles were used in the 35^{\prime} girder as in the larger girders. The lover flange used had on area of 22.92 gq . in and the upper flange an area of 23.44 sq. in. The shorter cover plate as determined from the ompirical formula was 15.2'. The cover plate used on the girder was 18' long. Ho cover plates were used.

The spacing of the intermediate stiffeners was found to be quite stifisfactory as all spacings wore very conservative.

The weight of 9,738 is is in excess of that given by the formula $9(100+12.5 \times 35)$. Since 2000 \# ft. of track waa allowed for the dead-load weight, the increase in weight is taken care of.

Data:
length 86LOn o-0. of bearings Dead Load 3000\%/ft. of track
Fidth 16'-0" 0-0. of girders Ifve load Cooper's cless $f 40$ Caloulations:

Meight of track, ballast and etc. $1636{ }_{2}{ }^{2}$
Weight of metel in Eirder
$.9(12.5 \mathrm{I}+100) \stackrel{9(1075+100)}{=}$
10604

2696* Total weight
M due to dead load $=1 / 8 \times 1500 \times 86^{2} \times 12 \quad 1,354,600$ in $\#$
Prom table in Ketoham'd bandbook
Kax. Mi due to E 40 loading on 86^{\prime} apan 2,407,000 in $\frac{4}{4}$
Impact $=85.6 \%$ of live load moment 1.875,500 in t
Total moment at the center span 5,631,100 in ${ }^{\boldsymbol{Z}}$
The first thing to do is to find the economic depth. The specifications require a wob thickness of at least $8 / 8^{\prime \prime}$ so that thickess of meb will be assumed in these oaloulations. This thickness is at once used in the formula:

$$
\begin{aligned}
h & =1.1 \sqrt{\frac{h}{f t}} \\
& =1.1 \sqrt{\frac{5.637 .100}{16,000 \times 3 / 8}}=107^{\prime \prime}
\end{aligned}
$$

A web platell4" $\times 3 / 8^{\prime \prime}$ was necessary in the 101 ' span and for the sake of appearance, all of the longer through spans will use the same size meb plate, $114^{\prime \prime} \times 3 / 8^{\prime \prime}$.

Since the flange takes all the moment, the flange area will next be determined. The effective depth will be elightly leas than the depth of the web plate so we will assume an effeotive depth of 112". $5,637,100+112=50,300$ in $\frac{\#}{\#}$ for the flange stress. $\quad 50,300$ in $\frac{\#}{\#}+16,000=32.6 \mathrm{sq}$. in recuire: flange area.

Use in the lower flange	Gross	Net
2 Is $8^{\prime \prime} \times 8^{\prime \prime} \times 5 / 8^{\prime \prime}$	19.22	15.47
$1 \mathrm{pl} 6^{\prime \prime}=5 / 8^{\prime \prime}$	3.75	2.25
$1 \mathrm{pl} \mathrm{18"} \times 7 / 16^{\prime \prime}$	7.88	7.00
$1 \mathrm{pl} 18^{\prime \prime} \times 3 / 8^{\prime \prime}$	6.75	6.00
1 L $4^{\prime \prime} \times 3^{\prime \prime} \times 3 / 8^{\prime \prime}$	2.48	1.73
1/8' ${ }^{\text {n }} \mathrm{meb}$	5.34	5.34
total	45.42	38.04

Use in upper flange
$2 \mathrm{Ls} 8^{\prime \prime} \times 8^{\prime \prime} \times 5 / 8^{\prime \prime} \quad 19.22$
$1 \mathrm{pl} \cdot 18^{\mathrm{n}} \times 5 / 8^{n}$
1/8 8 mb
11.25
$1 \mathrm{pl} 18^{\prime \prime} \times 9 / 16^{\prime \prime}$ Total $\frac{10.13}{44.94}$
Required area in upper flange is found from the formala

$$
A=\frac{P}{16,000-70 \frac{I}{b}}
$$

from which $A=\frac{50,800 \text { in } f}{16,000-\frac{70 \times 86 \times 12}{18}}=42.6$ sq. in.
18
The thickeat cover plate should be pleced next to the angles.
For the lower flange and the longer plate, we have:

and for the shorter plate:

$$
86 \sqrt{\frac{6.00+8.00}{38.04}}=50.2^{1}
$$

According to the specifications one of the upper cover plates must extend the full length of the girder.

The next thing to determine is the shear in the web and the necessary stiffeners. The masimum shear is at the end of the span and is mase up as follows:

Impact 83.6% of Ifve load 101,900
Total 296,850

The sillowable unit shearing atrese is $10,000_{\text {th }}^{\text {f }}$ per sq. in. so $29.6 \mathrm{~s} \mathrm{c}_{\mathrm{i}}$. in. Of web area is requireu. A web flate $114^{n \prime} \times 3 / 8^{n}$ has an area of 42.75 sq . in. and gives the recuired area plus. From the specifications the outstanding leg of the stiffening engle must equal $2^{n}+1 / 30$ of the depth of the girder.

$$
\frac{114^{\prime \prime}}{30}+2^{\prime \prime}=5.8^{\prime \prime} \cdot \text { An angle } 6^{\prime \prime} \times 31 / 2^{\prime \prime} \times 3 / 8^{\prime \prime} \text { will be }
$$ selected und used throughout for the intermediate stiffeners. The ond etiffoners oarry the full and shear and aot as columns. Angles $6^{\prime \prime} 6^{\prime \prime} \times 1 / 2^{\prime \prime}$ vill be seleoted for the first trials. Me have then for each of the tro angles eoting as a column:

$$
r=\sqrt{\frac{11.5 \times 2.67^{2}+39.8}{11.5}}=2.16
$$

Uaing this value of "r" and the oolumn length of 57"

$$
16,000-\frac{57}{3.16}-70=14,760_{i r} \text { for the allowable }
$$

compressive stress in the end stiffeners.

$$
\frac{269,350}{14,760}=18.2 \mathrm{sq} \cdot \text { in. We will use } 4 \mathrm{Ls}
$$

$$
6^{\prime \prime} \times 6^{\prime \prime} \times 1 / 2^{\prime \prime} \quad \text { Area } 23 \text { sq. in. }
$$

Using the stiffeners as celculated, wt will make tie spacing acoordingly. $=269,350+42.75=6,380$ for the matimum unit shearing stress from whioh:

$$
d=\frac{3 / 8}{40}(12,000-6,320)=54.2^{\prime \prime} \text { or } 4^{\prime} 6^{\prime \prime}
$$

Since this is less than the depth of the girder and less then 6^{\prime}, this arrangment of stiffeners is satiafactory.

In a through plate girder bridge atays for the top flanges are necessary at distances not greater than every

Meight of Girder 61'

Part	Size	耳0.	$\begin{aligned} & \text { Wt. } \\ & \text { per } \\ & \mathrm{pt} . \end{aligned}$	Total	
Tob	114" $\times 3 / 8^{\prime \prime} \times 8{ }^{\prime}$	1	166.7	14400*	14,400*
Plange Angles	$8 \times 8 \times 5 / 8^{\prime \prime} \times 86^{\prime}$	4	32.7	11,040	
Plates	$18^{\prime \prime} \times 5 / 8^{\prime \prime} \times 86^{\prime}$	1	38.25	3,290	
"	$18^{\prime \prime} \times 7 / 16^{\prime \prime} \times 52^{\prime}$	1	28.26	1,480	
"	$18^{\prime \prime} \times 3 / 8^{\prime \prime} \times 36^{\prime \prime}$	1	22.95	821	
"	$6^{\prime \prime} \times 5 / 8^{\prime \prime} \times 86^{\prime}$	1	8.5	731	
n	18" $\times 9 / 16^{\prime \prime} \times 43$ '	1	34.43	1,480	
Angle	$4^{\prime \prime} \times 3^{\prime \prime} \times 3 / 8^{\prime \prime} \times 86^{\prime}$	1	3.75	323	
Rivets	3/4" D	972		455	19,620\#
Stiffeners					
Angles	$6^{\prime \prime} \times 62 \times 1 / 2 \times 9^{\prime \prime} 6^{\prime \prime}$	8	19.6	1,481	
	$6^{\prime \prime} \times 31 / 2^{\prime \prime} \times 3 / 8^{\prime \prime} \times 98^{\prime \prime}$	34	11.7	3,820	
Fillers	$6^{\prime \prime} \times 5 / 8^{\prime \prime} \times 8^{\prime} 6^{\prime \prime}$	8	3.75	262	
Rivete		342		160	5.723年
Gussets		7	$284.0 \#$		1,988\#

Sommary of Analysis of 86' Through Flite Girder
Length 86' o-c. of bearings.
Wiath 16' o-c. of girders.
The total dead load mes 2696\#/ft., but the figure allowed by Mr. Pargo was 3000券/ft. of track.

The total shear was $296,350 \#$ requiring an area of 29.63 sq . in. The economic depth was 107": but for the sake of appearance a wob plate $114^{\prime \prime} \times 3 / 8^{\prime \prime}$ was used, giving an excess web area of 42.75 sq . in.

The required flange area for an effective depth of 112 sq . in. was 42.6 sq . in. for the upper flenge and 32.6 sq . in. for the lower flange. The area in the upper flange used was 44.94 sq . in. and in the lower flange, 38.04 sq . in.

The intermediate stiffeners used are $6^{\prime \prime} \times 31 / 2^{\prime \prime} \times 3 / 8^{\prime \prime}$ angles and the end atiffeners are $4^{\prime \prime} \times 6^{\prime \prime} \times 1 / 2^{\prime \prime}$ angles. The end stiffneers have an area in excess of that required of 5 sq . in.

The spacing of intermediate stiffeners is very oonservative and no oriticism oen be expressed of them.

Complete Design of an 83' Through Plate Girder, G3 Data: Length 88^{\prime} 0-0. of bearings Dead load 2900\#/ft. Midth 16' o-c. of bearings Live load olass E 40. Caloulations for the main girder:

Dead load(metal only) $\quad .9(12.5 \mathrm{~L}+100)=1020$
Total dead load 2900\#/ft. of track. Max. moment ocours at the center of the span.

Dead Load
1,250,000 in
Live load (from Ketohem's Handbook)
2,306,400 in $\frac{7}{4}$
mpact E2.6; of live iocd
1,800,530 in :
Total
5,356,930 $\ln \frac{\pi}{4}$
The o?"cetive depth 19:

$$
\begin{array}{ll}
h=1.1 \sqrt{\frac{L}{1 t}} & t=3 / 8^{\prime \prime} \\
h=1.1 \sqrt{\frac{5,365,930}{6000}}=104^{\prime \prime} \quad \text { We wil1 use }
\end{array}
$$

the same aine piob as in the 101' girder, namely, 114*. The effective depth will le assumed as 112". Then 8,565,980 + $112=$ 478,000等 for the flange stress.
$478,000+16000=29.2 \mathrm{sq}$. in. net area required in the lower flange.
Por the upper Ilange fs $=16,000-\frac{70 \times 83 \times 12}{18}=11,900$ Then an area of 40.2 sq . in. is required in the upper flange

Use in the lower plange
$1 / 8 \mathrm{meb}$
2 Ls $8^{\prime \prime} \times 8^{n} \times 5 / 8^{\prime \prime}$
1 PI $6^{\prime \prime} \times 5 / 8^{\prime \prime}$
1 P1 4" $\times 8^{\prime \prime} \times 3 / 8^{\prime \prime}$
$1 \mathrm{P1} 18^{n} \times 3 / 8^{n} \times 51^{\prime}$
1 P1 18" $\times 3 / 8^{\prime \prime} \times 35^{\prime}$

The shorter cover plate in the upper flange equals
$8 8 \longdiv { \frac { 1 0 . 1 } { 4 4 . 7 6 } }$
$=39.5^{\prime}$

For the longth of the oover plates in the lower flange

$$
\begin{aligned}
& 83 \sqrt{\frac{6.00}{36.79}}=34^{\prime} \text { for shorter plates } \\
& 88 \sqrt{\frac{12.00}{36.79}}=47^{\prime} \text { for Ionger plates }
\end{aligned}
$$

The ond whear in the web is:

Dead Load	$60,100 \#$
Live Load	$128,200 \#$
Impact	$100,400 \#$
	$288,700 \#$

Hence $28.87 \mathrm{sq} . \operatorname{in}$. of meb area is required. A wob plate $114^{\prime \prime} \times$ $3 / 8^{\prime \prime}$ has an area of 42.75 sq . in. The outstnading leg of the stiffener angle must equal $2^{4} 1 / 30$ of the depth of the web.

$$
2^{n}+1 / 30 \text { of } 114=5.8^{n}
$$

Since $6^{\prime \prime} \times 6^{\prime \prime} \times 1 / 2^{\prime \prime}$ angles are used as ond stiffeners on all the large girders, they will be use on this girder.

From the analysis of the 86^{\prime} ririci. this allowable ompressive stress is $24,760 \mathrm{f} / \mathrm{sq}$. In. Four hs have an area of 23 sq. In., making the total she vhich couli be safely oarried 338,000?, but we have only $2 \mathrm{E}_{\mathrm{C}}, 700$, shear. For the intermediate stiffeners $6^{n} \times 31 / 2^{\prime \prime} \times 3 / 8^{\prime \prime}$ Ls were used. The spacing is

$$
\frac{3 / 8}{40}\left(12,000-\frac{288,700}{42.75}\right)=49^{n} \text { or } 4^{\prime} \text { at the onds. }
$$

In a through plate girier, stejs must be provided at distances not exceciline 1:'. The gusset or knee brace will be analyzed under a separcte heading.

Conclusions on Analysis of 83^{\prime} Girder
The wob area and slope is determine $\begin{gathered}\text { by that required }\end{gathered}$ In the largest girdor. ine web in the 105' eirder was 114" deop and for appearance all the longer throuch apens were made the same depth. Tisis gives en excess area in the web of 14 sq . in. or about 50% groater then is needed.

The flange composition exoept for the cover flates is also determined by the size of the flanges used in the largest girders. The upper flange area 19 10\% larger than is needed. The lower flange is arbitrarily chosen because of the comnection betwem the floor sections and the girder. The lower flange area is 26.5% larger than is necessary.

The ond atiffeners are $6^{\prime \prime} \times 6^{\prime \prime} \times 1 / 2^{\prime \prime}$ Ls and are atcndard throughout the through girder spans. The intermediate angles are likewise atandeardized, $6^{\prime \prime} \times 31 / 2^{\prime \prime} \times 3 / 8^{\prime \prime}$ La being use. Aocording to Kirkhom there is no theoretioal way of spacing the intermediate stiffeners.

The analyais 85' girder 18 exactly the same as that of the 86' girder axcept for the cover plates in the flanges.

Part	Size	Ho.	$\begin{aligned} & \text { wt. } \\ & \text { per } \\ & \text { st. } \\ & \hline \end{aligned}$	Total	
Meb plate	$114^{\prime \prime} \times 3 / 8^{\prime \prime} \times 83^{\prime}$	1	$166.7 \frac{7}{7}$	13,823	1\$823\#
Flange					
Angles	$8^{\prime \prime} \times 8^{\prime \prime} \times 5 / 8^{\prime \prime} \times 831$	2	32.7	5,430	
n	$6^{\prime \prime} \times 8^{\prime \prime} \times 5 / 8^{\prime \prime} \times 83^{\prime}$	2	82.7	5,430	
Plate	$18^{\prime \prime} \times 9 / 16^{\prime \prime} \times 83^{\prime}$	1	34.43	2,840	
n	$18^{\prime \prime} \times 9 / 16^{\prime \prime} \times 42^{\prime}$	1	34.43	1,428	
"	$6^{\prime \prime} \times 5 / 8^{\prime \prime} \times 81^{\prime \prime}$	1	3.75	805	
"	$18^{\prime \prime} \times 3 / 8^{\prime \prime} \times 51$	1	6.75	845	
n	$18^{\prime \prime} \times 3 / 8^{\prime \prime} \times 35^{\prime}$	1	6.75	237	
Angle	$4^{\prime \prime} \times 3 / 8^{\prime \prime} \times 8 / 8^{\prime \prime} \times 81^{\prime}$	1	21.25	911	
Rivets	$3 / 4{ }^{\prime \prime}$ D	2312		1,081	18,007\#
Stipfoners					
Angles	$6^{\prime \prime} \times 6^{\prime \prime} \times 9^{\prime \prime}$	8	19.6	1,481	
n	$6^{\prime \prime} \times 31 / 2^{\prime \prime} \times 3 / 8^{\prime \prime} \times 9^{\prime \prime} 9^{\prime \prime}$	38	21.7	4.820	
Fillers	$6^{\prime \prime} \times 5 / 8^{\prime \prime} \times 31 / 2^{\prime \prime}$	8	3.75	268	
Bivets	3/4" ${ }^{\prime \prime}$	416		196	6,259\#
Web splices		4			
Gussets		6	248\#		1,688\#

Lood: 2 concentratedloads r'opert
w/1000 weach
Marsheor $211,000^{*}$
Fesd Area 21.1 sg. in
Total Moment \& \& $3 / 000$ in
Eff Depth 39°
Peqd flarge firea 7.3289 .17.
Use for flonges
$2 \angle 0 \quad 6^{\circ}+6^{*} \times \frac{1}{2}, \quad 11.50 \quad 9.0$
1 PL $16^{*} \times \frac{1^{\prime \prime}}{2} \times 10^{\prime} \frac{8.00}{19.50} \frac{2.25}{16.75}$

BEAL ROAD BAIDGE MICHIGAN \& Chicago fyco. FRAGO ENGINEERING CO.

Analysis of Cross beans bl and 2
Leagth $14-1 / 2^{\prime \prime}$ say 14'. See Photograpis 2.
2 concentrated loads 211,000\# each 7' apart about center.

Calculations:
Total shear 213,000\#
Total moment 4,447,300 in \#
Require. area for shear 21. sq. in.
The plate used is $40^{\prime \prime} \times 3 / 8^{\prime \prime}=25$ sq. in.
2 plates $1 / 2^{\prime \prime} \times 28^{\prime \prime}=28$ sq. in. 43 sq. 1 n .

The shear in the flange equals

$$
\begin{aligned}
& 4,447,300+40=211,825 \cdot \text { in \#. } \\
& 111,825+16,000=7.34 \text { sq. in. } \frac{4}{4}
\end{aligned}
$$

The flange used was
2 Ls $6^{\prime \prime} \times 6^{\prime \prime} \times 1 / 2^{\prime \prime}$
Het area

1 pl. $16^{\prime \prime} \times 1 / 2^{\prime \prime} \times 10^{\prime \prime}$ 7.25
16.75 8q. in.

Leagth of cover plates $1 4 \longdiv { \frac { 7 . 2 5 } { 1 6 . 7 5 } }$
Stiffeners under coneentrated loads 212,000\# $212,000+15=14,100 \#$ 日q. in. This shows the allowable unit shearing stress in the web directly underneath the concentrated loads to be exoeeded by 4.100\# 日q. in. With this excoption, the beams are amply strong. This is the first number in the entire structure which failed to come up to specifications.

Analysis of the Conorete Footing under Colum. CLI.
The total dead load from the girdera to the column is $269,0004+210,000 \frac{7}{4}=480,000$ \# The weicht of the column is approximately $27,000^{\prime \prime}$. The pier 1810^{\prime} square and $3^{\prime} 6^{\prime \prime}$ deop. At 250\#/on. ft., the pler weighs 60,000華, meking the total weight on the soil underneath the pier 567.000\% spread over an area of 100 sq. ft. The unit becring atress resulting is 5.67 tons per sq. et. or 2.83 tons. The allowable pressure on the foundation is from 2 to 3 tons for ordinary clay and dry sand. The foundation here rests on a gravelly soil underlaid by a layer of hard blue elay over a deep bed of muck. Hence the footing will be considered afe for bearing pressure.

Piers commonly fail from pinching shear, that is the section direotly underneatch the column bearing plate being forced down through the footing. The colum rests on a plate 24" $\times 86^{\prime \prime}$ having a perimeter of 10 ft .

The conorete in the piers was made of local ungraded aggregate in a ration of $1: 2: 6$. The concrete was carelessly mixod and placod so the allowable oompressive atress will be taken as 1500\#/Eq. in. The pier has both vertical and horizontal reinforcement so 6% of the compressive stress will be allowed for shear.

The load producing punching shear is:

$$
\frac{100-6}{100} \times 507,000 \#=475,000 \#
$$

The minimum depth then for punching shear is

$$
\frac{475.000}{8 \times 10 \times 12 \times 90}=22^{\prime \prime}
$$

Bonding momont on each sot of roda is

$$
\begin{aligned}
& M=c_{2} d p \quad c_{1}=.615 \\
& .015 \times 507,000 \times 120=3,160,000 \text { in } \# \\
& A \pi=\frac{3,160,000}{16,000 \times 36 \times 0.875}=6.4 \text { in of steel. } \\
& \text { Pourteen }-3 / 4^{n} \text { round bars. Area } 6.21 \mathrm{sq.} \text { in. }
\end{aligned}
$$

Hence from this analysis it will be seen that the pier has aufficient area for bearing and are deep to prevent punching by the column. The fourteen round bars give ample reinforcement In the bottom of the pier. In addition there are ring bars and angles attached to the column itself which increases the allowable atress allemable in the concrate. The piers will probably carry fully 50% more load then will ever come upon them.

Aralysis of One Gusset

Consisting of 2 Ls $3 / 2^{\prime \prime} \times 3^{\prime \prime} \times 8 / 8^{\prime \prime} \times 5^{\prime} 3^{\prime \prime}$ and 1 plate $16^{\text {n }} \times 3 / 8^{\text {n }} \times 8^{\prime \prime} 8^{n}$. The radina of gyration of these angles 180.91 and the length 98". Substituting in the compression formula:

$$
169000-70 \frac{98}{0.91}=15,2507
$$

The area of these two angles is 4.82 sq . in. or the total compreasive atreas that these angles vill take is $4.22 \times 15,2504$ - 64,100t.

The flange atress due to overturning is .10(6200) $+200=$ 720年 applied $7^{\prime \prime}$ above the rail.
ds the rail is about 2^{\prime} above the lower angles and the girders are 16' apart, the overturning moment 1a:

$$
780 \times \frac{9}{16}=406 \%
$$

The bending moment at the center of the span 1s:

$$
\frac{406 \times 100^{8}}{8}=457,000 \mathrm{ft} . \# \text { and the rerralting flange }
$$

atress is $\frac{457,000 \times 12}{118}=48,100$ it.
It is hard to dotermine the exact stress passing from the crirder to the gusset plate, but standard practice requires 2 Is $8^{\prime \prime} \times 3^{\prime \prime} \times 8 / 8^{\prime \prime}$ and a $3 / 8^{\prime \prime}$ web plate between them. This is the arrangment used in the gussets on this bridge.

Woight of Gussets
2 Ln $3^{n \prime} \times 8^{n} \times 8 / 8^{n} \times 6^{\prime} 8^{n} \quad 76.14$
1 pl. $16^{n} \times 8 / 8^{\prime \prime} \times 8^{\prime} 2^{n} \quad 192.4$ 䒨
80 3/4" Rivets

Final Conozucions

She Beal Road Iridge is a very good expmple of the best practice in recent bridge building. Bridge designing like $a l l$ othor forms of structural designing is an art.

Modesign a bridge, one must do more than to compute the varioul etresses in the bridge and to make all mambers amply strong. He mast so proportion all the parts as to make an economical design to build, but also a etruoture easily orected and when ozecerected, capable of resisting not only the loads it carries, but the elements as well until a time witil newer etructural practice makes it advisable to replace the etructure.

This briage is designod to oarry what is known as Cooper's Class 40 loading. This losding consiats of a standard locomotive of a certain weight followed by loaded oars also of definite weight. Since no standarised loading has been provided for oleotric railway structures, steam road loading have to be used. A careful analyeis of the forces caused by en electric car paesing over a bridge shows that those forcee are from 50 to 75% of those caused by \# 40 loading. iience Beal Road Bridge will be able to carry interarban care from $851 / 8$ to 50% larger than are being now used. Although it is hard to prophees the future growth and evelopment of eleotrical railways, it is safe to asame that the Bridge will not require replacement for 80 years.

A cemparison of the resulte obtained from mion oompatations of the deaign of several members of the etructure with the actual conditions fornd in the bridge show the bridge to be antirely aafo. fxtreme conditions vere waiched out for and these couditions amply provided for.

The greatest etresses in the bridge ocourr in the girders. Every girder shows excess material.

If a bridge was not stiffencd and braced throughout. there would be excessive vibration when the cars passed acrosa the bridge. Due to the rock ballast used and the thorough bracing of the entire atrueture, a car passing over the briage will not Jar a coin placed on a horisontal surfaee on the briage. Lack of vibration makes riding on the Kalamasoc Interurban oars mach more pleamat then 19 commonly attributed to eleotric railwey carn.

Ho etructure can stand for long valess it has eecure foundations. All piers are of heavily reinforeed conorete with broad bases. Tine piers rest directiy on gravelly soil mized Whth olay which form the best bracing aupport offered by ony so11..

The eteel colums supporting the girdere appear to be manmothe to the laymen. These oolumn are filled with comorote te prevent rusting of the metal on the inside of the colwnis and to give added stiffness to the structure.

The layman may faill to see the economy of an overhced orossing at this point. The atruotare cost very nearly $\$ 50,000$ and the approaches everal thousand dollarn more. Eut the state Rallroad Comisaion ruled there must be a separation of railroal grades. The reason for this is quite apparent when one oonsiders the amount of trafific on each. The Michigan Railway Company operates 36 passenger trains a day end the G. R. \& I. operates about 20 trains a day on this line. The roads orose at very acute angles whioh forms the same conditione as was prcsent at the recent wreck at La Porte, Indiana. A grade separation
provents the greator number of acoidents and has a value which cannot be measured in dollars and conts.

The Beal Road Bridge is by all means a monument to moderin engineering foresight and skill. A bare plate airder bridge is never a thing of beauty, but it serves its purpose well. The desimers of this bridge have made the beat of the conditions present and have produced a strueture which is atable and thoroughly suited to its location.

Mscellaneous Data

Rivet epacing in flange argles at end of girder

Girder	0.10	0	0.8	08	08
spacing	$2.5^{\prime \prime}$	$2.0^{\prime \prime}$	$2.5^{\boldsymbol{n}}$	$2.5^{\prime \prime}$	$8.8^{\prime \prime}$

Heximum moments for remaining girders not analyzed:

Girder	45^{1}	101:		96^{1}
Moment	1,805,000 in \#	7.510,000 in \#		6,989,000 in \#
Shear	280,250\#	887,580\%		386,500才
Greates	t mob area reaj		33.75	ma. 1m.
Esonom1	al denth		114*	

BIBLIOGRAIHY

The following books were used throughout the preparation of this thesis:

Ketcham's "Structural Engineer's Handbook".
Kirkham's "Structural Enginearing".
Johnson's, Bryen, and Turneau's "Modern Pramed Structures".

Hool and Johnson's "Conorete Fngineer's Handbook".

The author is greatly indebted to Mr. Mm. G. Pargo of the Fargo Fingineering Company and the Fngineoring Department of the Michigan Railway Company for the ready and willing assistance they have given him in the preparation of this thesis.
31293500234541

[^0]: 2110007

