THESIS

Location and Bstimate of Cost of Bieotrio Railway

Between M, A, O, and Hasleftt
H. D. SETPRANOE A, 1), PETERS

1903

IUPPLEMENTAPY
 MATERIAL IN BACK OF BOOK

PLACE IN RETURN BOX to remove this checkout from your record. TO AVOID FINES return on or before date due. MAY be recalled with earlier due date if requested.

date due	date due	date due

'IHESIS.

LOCATION AND ESTIMATE OF COST
of

ELECTRIC RAILWAY
between
M. A. C. and HASLETT
H. $D \cdot$ Severance.
A. D. Peters.
1903.


```
majutrainroco
```


and 9 and 16 until we should approach to within about 500 ft. of the G. $\mathrm{T} \cdot \mathrm{R}$. R.; at this point deflecting to the left and running parallel to the G. T. tracks until reaching Haslett Park.

Equipping ourselves with an Aneroid, a fecometer, and a rough map of the territory, we walked over the line. Ihis route, however, proved very unsatisfactory; first, because it would necessitate excessive graces, which would make operating and iritial cost larger; second, because it crossed three swamps, one of which was about 100 rods across. (These swaupy spots iorm a very unstable road-bed, since they are mere deposites of organic matter over glacial lakes. Ihis crust has broken through in several places thereby causing considerable expense and trouble to the C. \& G. I. R. R.) 'The adrantages of this route were: directness, ease with which the right of way could be obtained.

We then thought that by deflacting, to the right
from some point on the section line west of the school nouse of disirict no. 8, the hills and swamps could be
avoided. After passing around to the right of the "sink holes" and hills, we returned to the section line between sectiona 9 and 16 , striking the line near the quarter post. Thence we ran along the section line to the North and South road which is between sections 15 and 16 , thence straight across the country to Haslett Park. This route seemed much better than the first because the largest and lowest swamp was avoided and grades were much easier. 'Ihe latter part, however, in which we crossed from the road to Haslett was not so farorable as the corresponding part of the first route; being intercopted by steep gracies and swampy land. by joining these two routes and shortening the distance by runnirg east from the north end of College Grove instead of going to the section line, we had what we thought to be the most econotical route.
$==$ RRELIMINARY_LINE. Since the line was definitely fixed as far as the intersection of Elizabeth St. and M. A. C. Ave. in College Grove, we took as a point of beginning of a pre-
fiminary line the intersection of the centers of the above streets. (Assuming Elizabeth St. to be 4 rods wide.) From this point, we ran due east through the forest following the second plan of the route to Haslett, making corrections as the work progressed. (See preliminary map and profile). As stated before, one of the principal dificulties was the unstable character of the soll. Although we avoided marshy peat beds as much as possible, it was impcssitle to avoia thea entirely. The only places where the ground seemed uncertain were betreen Stas. 110and 120, 14 C and 150 , and 180 to 200 , but judging from the size of the trees and the soil clinging to the roots oi orerturned stubs, we concluded the crust bo beply thick to sustain an electric line.

The steepest grades were between stations $80 \& 10 C$ and 200 \& 205 . The former being caused by a range of hills running north ard south for a considerable distance ard hence unavoicable. 'ithe latter could have been reduced some by entering Haslett by a more westerly point. If this had
been done, it woula hare made the line considerably longer or it would have passed over sereral hills of nearly as steed grades as the one we washed to alozd.

$=I Q P Q G B A P H Z$.

Kailroad topography consists in securing full
data for mapping contour lines, property lines, roads, etc. 'ihe width of territory to be embraced varies with the characier of the country and choice of the preliminary lire.

The party consisted of two men, levelmar and rodman. No peculiarities presenied themselves in this work, except that we omitted the contour work where the ground adjacent to the line was practically level. (See prelimanary map.)
. - PAPER LOCATION.

After haing completed the mapping of the preliminary line and contours, we were ready to make the paper location. This problem of paper location is a couplicated one. For the best road as regards construction may be a
failure because of exdessive initial cost;wile the cheapest construction may entail such hea:y operating expenses that it may be equally unprofitable. The alignment must be as free from curves as possible, while heavy grades are at the same time excluded; these two requirements conflict, to a marked degree, in our problem. But we adjusted them as far as possible. The paper location was drawn in red ink, all argles measured, and curves best adapted to the conditions were drawn. (See map.)

LQCT: 10 N.

The point of beginning of the location line was in the center of the M. A. C. ard Lansing St. R. R. referenced as per map. From this point, the line runs southeast on the Lansing and Howell road, (center of track to be $231+$. to the right of the center of this road) uritl it reaches a point opposite the center of "Summit Place". Frof this point we deflected to the left, passing up the center of the above street, tnence across lot no. 29, thence to the leit again as we reach the center of $M . A . C$. Ave. running to the
point of beginning of the preliminary line. From ihis poinc, we followed as closely as possible the paper locaticn. (See location line map).
_GROSS_SECTION1NG_Un account of the fact that our stakes were pulled if left over night, it was found impossible to take cross section notes. But since there was little side hill work, the error in our estimate from this source is necessarily small.
-ESTIMATE_QE_COST2-
The final estimate included earthwork, clearing, irack, fencing, overhead wire, etc. Eartbwork: We figured on a 14 ft . base for fills, and an 18 fr . base for cuts, thus allowing for 2 ft . ditches. We assumed the ground to be level in direction transuerse to the line, hence if h equals the height to be filled, or depth to be cut at any station, and A ecual the area of cross section at that station, and b equal to the base, (lo'for cuts and 14^{\prime} for fills) then

$$
A=h(h+b)
$$

The number of cubic yards to be excavated or illled detween two stations, was taken from table $X X$, Nagle's rield Manual, using the mear area as argument. We assumed 500 ft . Iree haul, but for every cubic yard hauled over bou ft., it would cost 1.5ℓ for every 100 ft. or fraction thereof. Figuring cost of:

$$
\begin{aligned}
& \text { Excaration - - - - - © © . } 2 \mathrm{Cl} \text { per cu.yd. } \\
& \text { Borrowed embankmert - \& } 80.20 \text { per cueyd. }
\end{aligned}
$$

we iound that it would be economical to overhaul 1400 ft .
M. A.C. \& H.E.R.R.

Length of line $=24900 \mathrm{ft}=4.79 \mathrm{mi}$.
Graduation measure price quantity amount.

1. Earthexc'tion cu. yds. ©C.20. 9691.C $\quad 1938.2 \mathrm{C}$
2. Earth emb. borrowed
" "
$.20 \quad 10701.3$
2140.26
3. Earth

overhauled	cu.yd.stas.	.03	210.4	6.31	
$"$	$"$	$"$	$"$.052	490.7

Graduation	measure			price	quanti	ty amount
Earth work overhauled	cu. yds.staw0.01t				757.2	$\$ 11.36$
" '"	"	"	"	0.023	751.1	16.62
4. Clearing	acres			40.00	1.6	80.00
Exidges, culverts, etce						
```Cast iron for ctlvorts```	tons			36.00	19.7	591.00
Plank for						
Cattle guards	each			18.00	4.0	72.20
Track						
Ties	each			- EC	12646.C	6323.00
Rails (60\# per yd.)	tons			3C.CO	431.10	12933.0 C
Spikes	miles			150.00	4.79	718.50
joints	"			000.00	4.79	1437.00
Track laying and suriacing	"			400.00	4.79	1716.00
Ballast	"			12.00	4.79	57.48


graduation	measure	price	quantity	amount
Eiscellanequs				
Fencing	mile	8450.00	3.75	81687.60
Right of way	acres	150.00	96.0	144<0.00
Overhead wire				
(2, CC)	lbs.	C. 2 C	15.323	3064.60
Trolley poles	each	2.50	$1536.0$	$\begin{array}{r} -\$ \$ 40.00 \\ E 1 i 23.50 \end{array}$
Engineering	percent	E\%		- 5 ¢ 6.20
		21 - -	- -	5679.50







