| | | | | Mh | | zea lili yl THESIS NPD CM was (3! REVS NINE J.U, LAYER. A, J. RITCHIE. ISI6 MICHIGAN STATE LIBRARIES WA 3 50 3 129 026 1734 PLACE IN RETURN BOX to remove this checkout from your record. TO AVOID FINES return on or before date due. MAY BE RECALLED with earlier due date if requested. 6/07 p:/CIRC/DateDue.indd-p.1 sv \ 4 6 q vray RPe * FY er CR TLV ET oA 3 s . :. : t coe oo ~ Nd Oah.e or) Low “ae o- +e + a? . A /s -An * t™ ny? “~ cm e « . e at. e —» at e a +7 8 : 4c 0 eee fowetr te eam is me » om. t on .. me ta db re i ewes ~“ 1 &_pw, th eine aoa baeate 8 iC d. (: 3 Versa re AOOT ARP ay Coy toocs + ee wei ee JL abso cob Gea: gn. . : ee, “- - ow ae ~ ar vera OF AS WO Orr Ur we ew ee OOF ee eee ~ ; \ oe f ao ue ‘ Candidates for the Dagree of “AS “yooyT ewe 2 oy tN Spat “An ACH as a & ~ aks oe 'C™ June, 1916. THESIS Lop. | ir.tioduction Svaeilfied tnit stresses “ste. and o.of.g¢. of piers «Eble of tower piere to balcony “ite Of hemispherical bottom and piping ; reve Of trunk cylinder wt. of roof, ladder,finial and indicator igte OF Halcony ‘ajte of ater vind pressires clagonnal -~ XN vind pressures square bivet and plate stresses for hemispherical bottom = tank cylinder vynes and ef 2. Vee LO 10%. a( 16 ? § KO05 605 . &2} aA 40: SfE> Soo @oePte Wate of conerese vee Cue The. B L407 140 x 205 ® 40,3007 wot. of one plier, Altituce of syrantd 8 7.65 ft. " * frustrum © 4.25 Volume oF total nyravid = G1 x 7.65/3 = 206.5 eu. ft. = Distance of c. of @. Bove Hane or nv Toke er @ 2.91 ft. Volume of emall pyramid © 16 x 3.4/3 ® 18.15 ev. ft. “detonee of c.cf 7. above bice @ 6.1ft. Volure of Farellelosiyedt @ 10 x 10 x 1 8 100 cue ft. Lirtanee of c. of gc. 2oove brse & 65 ft. sistance of ¢.of =. cf entire pier above ita conse Bar © 206.5 © 7.92 * 100 x 65 = 28.15 x 6.10/20°. Parx® 232.05 ft. NOTB THIS STAR AS SHOWN # USED AS A PLUS SIGH THROUGHOUT THIS THESIS. 09ST O6G- v well -yoc tT “E°Q @ ,G*uBuc 2 83NI35 vr e2 t T-.12 THOT Bu9/S espor edtq 42S 99 - w F -.S2 f09*2 68 4f/L spor remo] L2t G°te v atZ@ -,T2 ZoS°t z a¥ spoy yNI3¢ ong “SL°ET Bye UBTD vote 965 v wh E102 S49 ey ww oTeuBUrT $490q 9 TeUBY GOlt 9¢% 7 v wf L 92 i as°9 8 oS UBUDZ 83NIYS 65 G°6T Y 0 F227 OT €vO°T Be ofS spor dt. 267 Cet 0 =,€2 ¢09°2 68 y2/L spoy remoy “Lat Q° Te 5 w$Z-,T2 205°T e 4F spor anzas c .., #S2°TT & yQ* ued oct2 Ses Y aPQ/S 8-,02 S2°92 4ST @ ,OT°UBUDT 8330g STeueg Ztct “Tol v a etme T 489.6 °ustog ByNI3S ve T°2t ? att -,9T €rO°T eof spor edyg 264 S°T9 G aL ~€2 £09°2 168 wQ/L «spr c08K0] L2T 8°TE y » ¥2 -,TZ 2oOS*t oot Gs e Spor yn19¢9 OT 9 ~, C2° *GE°TT B@ Qe ueun tz CvS v wPf/G2 -.02 62°92 a6T © ,oT°ueUST e4g0; » Tues CLOT 652 + e9t/ZtT-, ; ueude syniis 62 9° rT y 20 -.¢~T EVO? e.°/S spor sdty 29+ L°L¢ Q » #2 -.22 8 §=66€00°2 68, 2/4 epor r98eMoy AG2°TT @ 4 Q*UBUoT oRtz Sve ¥ wo &f/5 9 =,02 S2°92)-_ AGT @ OT°UeUOT #180g € Teuey 999 9t2 v ey, } 64NI34S $2 2°2e ¥ ort-, TT €vO°T @.9/S spor edtg egt L° ky g oF TT. 2 T6°T 68, % spor s0Mmoy GZ°TT #G2°Tt @ ,Q°uByoT OgTa + "SS > u&/S § -.62 AST AST © ,OT*URUOT S3a0q Z TouRg | *269 “tlt Y a8 RY #5°9 @ ,G°ueugg synxis zrJ uo% 61 L°6 + aF-.6 Eyo°T 2 ofS spoy sdtgq OOT S°2t 8 w ¥5-,6 Gze°t 68 .9/S spor xs9eMOo] *96% *v2T ¥ 091T/LO-, TT Stott PSeo Tle yQ°usuoTt aq802 999 “442 $ u8O .¥T AST #STROT ABUT tT Tevez *Sa0US 84} SUTPNTOUT you AUCoTeq 04 SIETC rEeM04 JO *4SM TeYO]L Ride°ge Taye, ZSo09t 6 2° 9t n$6-.0 eed O/EXEXE F sporegnsays I0Z wo) eee cf" ot oe w%Q-.0 St AST @ UeUD.OT bast. saaade teed ae 2ly 6S Q w$0~-.5 2°Uh 8/7 x $Ex 9 yue3 03 uu0o*sueyy vee oS v B5e,5 — 2°Ot w/t XaS SdzeTY) 6T ett 00T/2* ZT uoT}yOeUUOD Tepper) Zz oo¢ CoT/6 uoTyOoUUOONUR,) UT vt2 Qret OOT/z2°* ZT 8480q) SszeaTy LS 0992 o0t/2e* Zt wu Q/S sazetd sottds) ez Zeer oot/2° LT s3nI39) ovr 09 °OT Cv wel 89°OT punoxr 2 “sqnijys Ut suta SEet Aw T Zeer wet 2er°T ex FI sreq FuToey 20T 99°F QZ » LOT 25° 9T/S xX Fe eyed eottds) +99 o°€z gz 8ST QL2T 9T/S x fOr y Siazed 09 $99 6°21 96 uX2z,.T _-6Q°0T 9t/Sx totqu'q eqebe sottds) sqnzic “ZOT Stet € we OT See°t ex Fy rappel 10;J sieq 4usc eptn3 02 02 7 097152 Q 49 ByQ UBUDT sptne*pur syeotpuy Bee Q2°T 9ST ¥e-T 205° T ~ punor F Seunr TSppsy 962 96€ 2 19ST £4°2 wA8/EXwZ SIVG ISpPpey me3¢ “TET ATS wO-ceSO 68,1 spor teaoy Z2Stt oge + 9T/6TT-.02 «= SL*ETHSL°ST @ yg suBUDT og9gt O2r Q/LTT-.02 oz #02 8 OT *uBYnT S3y80g _QTeuag etdt tty v =.tt tt 9 8 ,S*ueuse $3NI3S "64 S*v2 + w%S*, C2 Ot punoz 49/5 spor edtg e229 °9 9 a €£-.S2 y°e 68 yT SporlrTeMmoy lat g°t ¥ w22-,.T2 = Z0S°T wise punor , $ spor ynsz3°5 IG L°ETHy4Q*UBUunt 0092 004 v n9/S9-,02 GL°EE iiss nea egqog 2 Touez J [eusg #249 8 Tez0] € Ze T*S9 TS Sg°at ‘ole 0°OT Lz 9Z°9 TET FE°OT OZ S9°° *6 €T°? ¥ °93a 18309 jo yuSTea MOO dO gs “3 - o0T/7z ot 6 SS s79aTy a2 -.T 9°Or at/E XeIT SUWTI °9405 T.0 o°ct 2OT Teugeryy n2/S0-.E O°6 B/EXSHE 8 | ao%Q-.8 Q°6 R/EXGERE I yUeg secye aQ8%,T Q°6 Q/E MEK SG a i “is ¥°ItTt o8/E © 46 » 3Ueg att T°k e/t x 82 oegerd tits UzysuST *35/*3%e ah Oye I9qUSR {Ia AETEE 187 0g Re ~ oe — OOt/7e°7T We #OT v0z OOT/#6 wetp ,2 S1OATH #6 - 906 / £625 w€°62e2Y pF 2 But esvig #QT vto° #625 at at® wh °62 pueys sseig ag*te #92 Lgso* fOSy ox a8 CE sur s038 alT~.0 FE v €S°9 #€°6 «= TTX §9T/F Yuko 3/0 uECD ROtec ~—«SS*9 .OlY B9*CQy “¥ Sjuyoy aet — DuFpnrouy edit 02 IOZ OTOY OTT AOT/E ‘mete ,6T °10490q . i ude rwey “fem 50 “99a “4z°no ™ UZSFUST [890% oummgoa °93 °bS "wow 428g 2OI8 jo°ou wem/3dm °4390/°43a °43/°33a 8 6dKu exer jo euey wwiibs Of BC of Sipe anc 2 ply fas af Timber wins 407 per eue (te or Get) { per cle Ine 127 5x12X0 0 '5x70.%40 02312 LES,” 127 .5x12x0.975 x OE x0.C5218 117° BOXEKEND A TEXG 7 eC 700231 350 96 x 2 x3 34.5 x9.6C231 460 127.5 ft.of Sin v. 1. nine @ 25.177; Der 1t3G00 Votale TAGO! ae \ 50> of Pipe ant encing » 37 30) #00690 8=6‘IVLOL O9F of 9T 87.7 Qt edid MOT JI040 £9 OS#T ooT/sty 8 y S20aTy vtz G°Es v Hyon vet t°+? % XyeRU YE #eT2uy 0002 00S Y 8 ,,87 et 2°6€ w ® S2°td Sgé6t Léy + 9T ¢8> 2% So°é¢ ” 7 v#°Ta 266T o6y v “.2T 2°6€ T9 €#°ta 8 *weE Ae IU Hr 4.xr0d g 28M TeI0L ‘wom 99K so om UIPueT 993/99 = dn ogee = Z0 owen oe - * WHECHITAD WNVL ZO LOM #tvlz TIVLOL 7 QB0TS pre edor* pur . . or s2unz ve 8 gl°t €t mr? t 205°T Se +7 xepper g 2 G2 6T°€ x22 e.7eq ee oer a3 7 reppwy °99m MOM Ay eno ogy obs ogerem zared THOR 7 4v9m “TOA ; ety 30° On uzBuey *43 "ne/ 4° 390 °95/ ° 39a Gu equ JO owen GHANILNOO@ YOLVOIGNI CHV UNGGVI ‘IVINIA ‘A008 WHVL 40° SOA "82 92°t *09 ‘09 °OT °S *Tt S9°2 *0S *Lt °of °S a * LST S°TE vy StS + “or S2°s *S9bZ v°y 96°24 °134 “wow °2z "NS "47 “de TWROL JO °4Ry ‘T°, = we.ty “et %,2",% COS°T ony +7 e9unz « °C2z etre 5 x ene SIVeq I8ppeT g seaveus Y tT ° x x 2 $978TgZ 2 Gt°e OT Bry io | TRTRte O<¢/ 840 S/ 00Tt fu I< . 4 nS r e Xo 89 “ 09°t ye Cag Het FiIdg - 2T e *Sue « Dy é 0S°2 ae Be Tee soy tT Se 2 On°T eo « “Sue s0oq ” ‘ oT x t €& (We é@ 00°t a 100¢ 9°69% HOTTY 8/t FOOSE TBO FU, @ wow “ur gred JO °OR UWueyT °33 *no/ °49g “95/320 dn exey = 0 oareg 26f2 Loz gSTt €é¢ €Stt vt ty ts 0ST °93a {V{O0Y TSzOs E02 6°6 3 ESTT S&°S Ts L°2t L°9t wed /p% ee S t 9°29 oT oe ,f & t 8°29 * t 9 = 96 * 4 ¥ o& ot = .0 Ir g aS af + we 8 an * tequew 38 °on 89 yA Suey GLE°T wee e pt Soe €°€ , o ~ os 7 puvy °C ope EBS rekt MS, MUTTpUr ft ir /t JO 8380g S2°9 ¥ owe v°O2 A Eee "Pstd *aty e°6 «6g na €=x¢ seeriuy 29°E Vp t/ em ee T2uy §26°9 /, zz rot seqVetg e°6 O/ExSxe serSuy "04/"s4a da ext ze owey "AMOS IVER IS” “LASTER 13 untire wot. of wetal in tover Tankroof, finial & Indtcator P74L TZ Tank Cylinder 6906 11.9;; HNemisphemical bottom incl:icin; expansion connection 3312 57 503 of weteof piping amd caring 3730 6.475 Balcony 2392 4.1% Four shoes 672 1c) Tower puers to 2ia leony 38272 66.0% 58, o1o¢ 100:° gt. of water hen ful) — Vohume of cylinder plus henisphere = 3014R2 1 * 2x3.14 3/38 3.14 x 64x 14.03 ® 2x3.14x512 - 4055Cu. ft. Volume of columnof water supyorted by pipe =» 23x3.14 xO.11-8'u.ft. Total volune of water = 4055#G84047 cu.ft. wet. valume one cu. ft, water @ 62.5; Total wet. of water e1047 x 62.5 © 252,500; ‘gt. of retail in of wet. of water = 22): 14. 7% “nS Yoruy eter pos Am oF * woe oUF wet Wy Qader: « eR orgy nage 2 preety 2. APF Se EES and bloving diagonally on tower . Grd c3aleulatead as 70, per eq.ft. for That vrojected arcas, f an nem gh a t. wep ins et . a - and 2/3 of that smecnt for the eurvod projceted arease : Oofe tie SMOKY 03 = ra fut e £¢ oie L500 tus 013.0 X Llbe 2.1 Bre fhe ALO "7 ® ° . ” s ' ~ .f* an - Veriepherdical ottome 8x3 eR4xG4xofrel7 atogePte 20° 0 2, = am 7 PAVOOY Cee Pte renee ~ ee, a C400 HB ew Fe PAHS «| 2 Posts 4x0.082x20.72 Tower fods &x0.625x24.9 : Pipe Rods0.052x2x11.62 6 Chan. otru ta Cx0 ° 416x216 062x ° (07® Ind ,Guide -6x 00.5 Inlet Pive 20.§68.x2xi/3 = PAN 3 Posts 0.062 x 4x 0,72 = Tower rods ©x073 x22.19 = Pipe rods2xl4 xX .052 = Struts & 0.416 x19 .95 2 Inlet Pipe 2x20.5U x 2/3 = PAN #4 Posts 4 x0.GU2 x:0.72 = Strut rods 4x.062 x21 .19 = fower rods Ux23.§ x.0642 = Pipe rods.:x.052x16.37 = Gtruts 0x0.416 x 22.20x.707 = Inlet Fipe 2x20.50 x -/3 - 73-0 Sq.ft. 12.5 tt 1e2 " * 39.2." # 123.0 " * Q7.5 8 9 166.4 " " « 4992; 73-0 EQ « ft. 13.0 * n 1.5 47.6 765 MH 162.0 ® © ~ 4960; 7j0e2 B0e fte 530 13.8 1.7 5467 275 " 176.2 n " = 5280/ 6 PANEL j § Posts 4x0.02 «20.72 Strut rods4x.062x21 x19 = Tower rods&x.073x22.533 = Pipe rods 2x.052x14.73 = Struts Gx0.416 x.70726.62 «= Inlet Pipe 2x26.58 x2/3 = PAD {6 Postsa4 x 0.002 x 20.72 = Strut dods 4 x .062x21.17 - lower rod@ Ux.0/3 x -F.2 = Pipe réds 2x.062 x 21.0. = Struts Gx.416x29.°5 x .707 6 Inlet Fipe .Cx20.5U x 2/3 = LANL # Z. Posta 4x.662x20.72 & Strut roce 4x.062 «21.25 - Tower rbds Ox00x25.25 & Pipe rods 2x.052 x73.44 2 Strute Ux.416 x33.2° = Inlet *ipe 2x20.58 «2/3 = _ Pam Posts 4,852 x20.9 - 2ower rods &x.0U :27 = Inlet Pipe 2x20.51 x 2/3 = 53 13.8 1.2 63.0 725 104.7 * 7302 84e 203 14.7 Qeok rm 71.0 27.5 * 193.°) * 7de2 S8Q- 503 16.9 Ce 2G, 7s 283.9 " MR MV UN ts " © 27.7" 119.0 8 "59408 ft. A , ! ft. 8 = 612 O,; ft. "2 36004 WIND BLOVING SGUARUTY Gib boy Rocf, tank, henlepnere bottom and Lalcon. sare diazonal,. VATED J 1 °arwe ee aie ones 12. as cor wind Posts 4x .882 x12 = 42.4 sae ft. Tower rods&x.052 «9.44 = ii 40 Pipe rods 4x .052 x9.29 "8.707 = 263 Struts 4.416 x13.20 - 2201 Inlet pipe 2x4x72/2 = oe ‘ 76 _ PANSL jf2 H 8» 2300) Posts 4x.652 x20.72 _ = 73.0 sq.ft. Tpwer rods &x.062 x 24.95 = 12.5 Pipe rods 4x.052 x 11.4707 « 1.7 Strute 4x.416 x16.64 - 2767 Ind. Guide.5x26 x.707 = o.2 Inlet Pine 2 x20.50x2/3 - m5 8 151.6 TA VMIIT J " r = 4550;; Posts 4x.062 x20.7< = 73.0 sq. ft. “Ower TOUS OX.073 x22.19 ° 13.0 Pine rods 4x.(523 x14-.7C7 &. Qel Struts 4x.416 x19.05 - 333 Inlet “ipe 2 20.58 «2/3 - _ 2725 8 146.9 Ae 9 ep e- .. is 8 = 44798 ___ Pay, 74 Posts 4x.652 x20,./2 Strut rode 4*%.,002 x21.1° Tower " 6x.073 ¥23.58 Pipe rods 4x.052 x16.37x.707 Struts 4:. 416 xe 3 e oe) Inlet Pine 2x°C.72 x2/3 Posts 4x.002 x20.72 strut rods 4:062 x21.19 Tower rods Gx.073 x22.56 Pipe rods4x.002 x*1::.73 x.707 & Strute 4%.416 x 26.62 Inlet pive 2x20.55 x 2/3 = i SPALL 7 _ Posts 4x.852x20.72 = Strut rods 4x.C62 x/1.19 = fower rods ox.073 x25.27 = Pipe rods 47.052 x21.0.x707 & Sgrute 4x410 «29.995 = Inlet vise 2x20.908 x5/3 2. 18 7302 aqjne Lte 203 13.8 24 307 ope " " 160,9 * * 24827 # 903 13.0 2.6 44, 023 e745 " 165.9 * Woe 501Ci (302 8 ye ft. a “ 14.7 3.1 50,0 _ m3 * ny 19-6 PANAL gf’ { Poets 4x.052 x Ce. = 73-2 aqe ft. Strut rda. 4x%.0G62 x°1.39 = 5.3 Lower rds. oxX.00K25.29 = 16.9 Pipe rds 4x.052 x23.44x.707 = 325 Struts 4x.46 «33.25 - 5°44 Inlet Pipe 2x20.72 x2/3 - 29,5 CO J for. SAGO! PAW, 71 Same as for wir diagonal. 20. Max Stress in Plate of Spherical botton. . ad . . : . cy Boe DG x vr ft cet. i eteounts S..b.p 7 C3 {12 tT = g@gaddial strees per aq6 ine hes heac of water irmft. re radius of tan: in ft. % = thickness of plate in inches T - 2.6x23 x8/0.1375 = 2550 # per sq. ft. Test of rivets in raiiel joint, ae pitch of rivets - 1.52 in. G eGdiam. of rivet hole - 17/32 in. De dian "8 "2" oP ee tonsile trea ii: plate a% joint per equare inon Ses unit cnesar on rivet stress pes lineal inch of plate = 2550# x G75 @ 470/ P = load on joint per pitch = 1.52 x 475 = 727;! Se = PU xfaed) = 727/(1.52"0.53) x0.1875 = 3920 los per sqe in. of net plate. seari:¢ onpplate fror rivets of radial joint Sg m@ unit comoressive stren- Set P/* D = 727/0.1875x 0.5 & 7759 lbs per 84. in. “hearing stres3 on rivets of radial joint . 3, 2 unit cleaving stress 3g 2 4 P/3.14 12 © 4x727/5.14 x 0.25 = 370Clbs per sq. in. Rivet anil plate stre:ses in cjreunferential joint of of spherical bottom Te 2.6 h r/t = 2.6 x 22.41 x8/0.1575 © 2499 lbs.per sq. ine of viate. Stress ver lin. inch of plate = 2490 x 0.1575 =| 467 lbs. Pitch « 1.5 inches. Pe load per pitch = 1.9 x467 = 700 lbs. D- 0.5 inch d = 17/32 inoh Ses P/t(a-d) = 700/0.1875 (1.5 -0.53) = 3840lcs./sq.in. San 4 Bf .3,14 x D< © 4x 700/3.14 x 0.25 = 3960 lbs" * Ses P/t Be 700/0.1075 x 0.5 = 7450 lbs.per sq. on. Riveted connection betwen cyliniptcal tank and hemispher~ ical bottom. ete of water 252,5004 wet. of hemispherical Lotton. 3 312 f " 50;. of vipings ~ ALP Total woie Z55 5 542); Load pe: jneh of clrev: ference - 25°, 542 /603 = 430 lis. Boaud ver pite’. 2.57." x 430 = O76R € 917/32 ineh, De 3.5 inch. Se = P/t (aed) = 676/0.1875 (1.57 200.53) = 3440;'/ac.in. Sq 2 4 P/3.14 De ~ ax 676/3.14 x 0.25 = 2490;/eq. in. Sq 2 P/* tL = 676/0.1875 «0.5 = 7210"/s'. in. a VERTICAL SOUS OYUR i Ae Te 26h ff te 2.6 215 xO fU.17/5 = 1664 #/50. in. ‘tress per lin. inch © 1664 x 0.1875 «= 312 # Fy 312 x 1.407 © 463 ff b126 27 9 eraller load on the sae size rivet und a svialler pice: than for the previously calculated joints as the etress3es will be smaller. MoT Cid JOT S Ta CatRay CUI nN Cr TR ry wt. OH 34 * a A iatodh ww dead ASME D d = 13/32 inch D- 3fé " Nie 2.6 nv ft = 2.6 x LOxE/0.1075 © 111C F/aq. ih. WLIO x0. 75 = 2007 /lin. ine: of joint . ae1l.25 incres Sge 40/3014 Dee 4x7260/3.14 x9.141 = 2350f/sc. in. Sgn P/E D = 260/0.1575 x 00375 = 37007 Sore ine HORIZOIMAL JOLNY VAN CYLINV sR De 3/8 inch, d= 13/3::, a 1.351 inches “gt. of root _ @ 2741; “gte of 2/3 tank eylinder « 4600 _ Total 7341,;, Ciroumference of tank is 694 inet-es 7341/604 = 12.2; pes» lin. ineh. Pe 1.35, x1. = 16.5; As the losd &s exceedin; ly emall the stress whll be cprrespondingly small. PY co OAL LBWLT ei. os os JOLers IN ANE amt Lorre... Hacial joint in hemisvheariceal botton. (>t is a civle riveted iap joint. ff. of plate in tension = (aed)/a = (1.5%90.53)/1.5:. = 65 3 off. of rivet in bearing « 22 Sq fa Se 2 ¢ * OF x 10000/1.52 x 13000 = 95.7,; “fie Of rivet in shear © 3.14 »? Seq Jf cxa * “e - R024 x 00.5 x900O f2 x1.52 x07 X120002 1045 ye shaic Joint is 65; efficient. JoCur ie TAR JOINT AN bP ey MICAS Goro, mae -. it @s a sirctle riveted lap joi:t.. “ff. of plate in tension © (ad) fa - (1.5 -0.53)/1.5 = 64.6;: Tf. in shear and bearinzs sane as for radial joint. "he efficiency os this joint is 64.6: _Clreunferentint Joint betreen cylinder tank ad berlsocherical batten 1t is a sinsjle rivetei lao joint. wff. of plate in tension (aed)/a = (1.572 0.53)/1.°7% @ 66.3, Uffs. in shear and bearing sine as for radial joint. ‘he efficiency of the joint is 64.3. VERTICAL JOINT IN CYLIND (2 TANK It is a single riveted lap joint Eff. of plate in tension «= (aed)/a = (1.4U7= 0.53)/1.487 - 64.35 The effs. in shearing and bearing same as for radial joint. The eff. of the joint is 64.3%. Calculation for the efficiency of the tank plate in tension, at the riveted conrection of the column to the tank plate. Yotal area of plate at connection - 14 x 21 = 294 sq. in. Area of 64 «$ inch rivets = 0.22 x 64 = 14 sc. in. “ffielency of plate = 260/294 » 95 |: co te A) SV diese go DEG Pa AGC ALT er ee ae 7 eel pe y pages x. 1m fe ii’ LC: R Se /2 r Stres3 in ecsdumn C- qs Retohuu'ts © i 2 pee 370 Teking moments: sbout the bottom of panel {3 Mon 172.6 x 1500 © 162.2 x 5O50 * 152.8 x.020 © 150.3 x 20" 134 x4992 * 113.4 x4°060 ©9209 x 5206 * 7°.3 x9540 © 51.7 x5020 e 31.) x 120 * 10.5 x3360 = 4,411, 400 ft.1lis. 2 ft. rs sec a © 1.01 where aw anrle o.lane of ceit makes with the vertical ceo acl /er S 21.01 x 4, 411, 4060/2 TH. SPRUSS IN COLIUN Cg Foe 110.6 x15900 * 102.2 «5050 ® 8 2.3 x2520 © J2 xa0Q2 © * 3065 25059 © 10.3 x9540 v2 15.53 ft. _ 1 914, ‘700 © . ‘ La 90.5 x20) 52.5 X 4560 telbae = ecc.a x fe re ll x1, 914, 700 J. x18.53— -52, 300, = xr 106.9 x5 ¢ 51.5 x 9rcod * 30.9 2 132.E x 1500 © 121.0 x7cgo ¢ * 92.6 x554C * 2,07.5,0CCft. lies. ~- od eli: Tt. ex® “ee seo 2/2 re lol x #6 oy Fenber ow we 5160 £820 7440 c 00 169000 11310 17.620 LO ,-Cad qe wes ls as Need oe PL. ompty onpty ib ACD AT Cotas 2 rank filting 6° Cr 7OCGE 71460 72750 74000 75250 76706 99 [7 77449 © 72 x 4360 13.4 x5020 z,626,000/2 x 21.1% ird Diagonal p18 62,600 yand dis,;:0: a3 LF Ooo =" Ft ay » © corp.totil. 15,3200 137,050 153 550 “ax.uplift tot il fouting 71,930 é TG QOO # OOOE «# vy fz 2g TE 062°2S «# OOO€ « OSgét # ' Le 0992 /« oztz - tyt- be OOn' Tz « OOOE « OOWEt « %¢ o90zT - OzéTT - Tvt- 9S 009°02 # Coot 009/t « Sa 0492 - ofSz ~ tvT- Sg OOZ6T » OOOE « OOzoT # %¢q Ovté - 0006 - Tet= ¥g OOZOT «# OOO »# OOLST «# ta 09S2 - OZv2 - tvT- Cs OSELT « COOE «# OStet § cq 0199 - A i Trt- zg OOT°TT # OOo€ ¢ oot? « tq C0%S - 098s - Tvt- Tg 009‘TT «# QOOf « 0098 « Ty ait “ ain meta a ee — — pe eae — “uopueg xen 8 6°dmOyD ° XUg™ UoTeUs, TETETuUg srends peog puta PeCT Peep 7 104G4 ZEqQueR , ————"PuYoved uY Sas MAX. UNLT STRESSYS IN BODY OF COLUTNG. UNIT STRESS IN COLUKN Cy Make up is ome 10 in.chan. © 15# & one 8 in. chan. < 113 # Area 10° Chan. & 15) = 4.46 sq. in/ * 8 * “1gfe 3.95" * Totalarea7.81 * * Totak compressive stress in column = 125, 300 # Unit strees - 125, 300/7.81 = 16030 lbs. per so. in. Alhowable stress = 16000-70 L/R Considsring the (y) axis soincident with the outer edge ef the flange of the 10" chan., and the (x) axis coineident with the outer edge of the extreme flange of the &* chan. Bar (y) = 4.46 m 5.639 * 3.35 x 4/7.81 = 6.65 in. pear (x) = 4.46 x5 * 3.35 x4.201 /7.81 = 4.66in. Monent of inertia about (x) sxie thru c.o€ g. of column. Z = 2.30 * 1.9892 x 4.46 * 32.3 * 2.652 x 3.35 I = 75.7 inehes4 YWoenent of inertia -bo.t (y} axis thré c.of g. of column. Io 66.9 * 4.46 x 0.342 © 1.33 * 2.35 x 0.4492 I = 69.42 Inches* Re square root of I/A Ro square roct 69.42/7.81 =| 2.98 Inches. Albowable stress - 16000+70 x 20.72 /2.98 " * © 10160 lis.per sq. in. IVR = 83.5 UNIT STRES ON COUN C¢ Fake up is one 10° Channel « 154 and one &" changel at 1324 Area 10° Chan. = 4.46 sq. in/ e ge a« = 4.04" * Total area &.50 * 8 Tetal compressive stwess in column - 137,050/ Unit stress - 137,850 #/8.50 = 16,200 lbs. per sq. in. Bar (y) - 4.46 x 8.639 * 4.04x 4/5;50 = 6.44 inches Bar (x) = 4.46 x 5 * 4.04 x 4.162/3.50 © 4.62 inches. Soment cf inertia about (y) axis thru c.of g. of eolumn. Is 66.9 © 4.46 x 0.35" © 3.55 © 4.04 x 0.4382 - & .88 in.4 Moment of inertia about (x) exis thru c.of g. ef column. 1 = 2030 * 4.46 x 1.92 © 36.0 © 4.04 x 2.442 ~ 80.23 in.4 R = square root of 63.88/8.50 - 2.07 inches L/R @ 20.72 x 12/2.67 = 86.7 Allowable unit stress = 160:.+¢ 70 x £6.7 = 9930 lbs/ec. in. UNIT STRE"S IN COLUIN Cg ake up is one 10* Chan. ie 20 aye one i" Chan 13 a. Area 310" Chan. = 5.83 @Ge in. - 4.04% * sien e Re ® ep Total area 9.92 * e Total compressive stress in column = 163, 550 ; Unit stres - 163, 590 /9.92 © 1°. 500 lbs per eq. in. har (y) = 5.83 x 5.663 * 4.04 x 4/9.92 = 6.73 inches Bar (x) = 5.85 x 5 * 4.04 x 4.102/ 9.92 « 4.67 inches. Vomentof inertia about (x) axis thru c. of g. of column I = 2.85 * 5.88 x 1.88% © 36.0 * 4.04 x 2.732 = 89.75 int. Homent of inertia about (y) axis thr e«. of g. of colum Eg 78.7 ° 5.88 x 0.332 © 1.55 © 4.04 x 0.4882 ~ 2.85 in 4 Re square root of 01.85/9.92 = 2.U7 inches I/R © 20.90 x 12/ 2.87 = 87.5 Allowable unit stress = 16000-70 x 87.5 " A " = 9850 lbs per sq in. Determination of co prersive ctress in tank plate considere’ 298 a simple bean between column connections; to note if this satress exceeda the ctress due to the outvard pressure of water. Length of beam olf4 x 3.14 x 16 = 12 56 ft. vepth _ * = 15 ft. Shiekness * 2 3/16 inch. sgte of water in tank = 252, 500 lbs. * * Hemispherical ot. 3 312 * " * 50; of pine 2s 3 7H * Total 259.542 * igte falli:g on one span = 259,542/4 » 64,885 lbs. Uniform load per ft. = 64,885/12.56 = 5165 lbs. Considered as a sample beam fixed at both enda. axe moment occurs at ends = w 12/32 Hoe 5165 x 12.562/ 12 = 68,000 ft. lbs. i = BI/c i/e & b d2/6 =» 11875 x 32,400/6 = 1012 Me 68,000 x 12 = S x 1012 S = 806. los. per sq. in. Stress outward due to water Te 26hr/t eo 2.6 x 15x8 /.1575 «© 1,670 lis /e . in. These results ihdficate tiiat this is about the largest size tank that .an be safely built ith on'y four peints of support . Determination of the shear on the heads of the rivets at the eennections of columns to tank due to Lending moment produced by wind. H = 9.4 x @450 x 12 = 276, 500 in. lbs. Taken from gravhical solution. 276,500 x .707 = 195, 300 in. los is the moment perpendieular to the connection. ad = lever arm of resisting foroce a» 7 in. Ve= avge, shear on one rivet head There are 32, ¢ inch rivets resisting the force Me 32 V a 195,300 = 32 Vx 7 V = 872 lte. Yaxe shear on one rivet head » 2 x £72 © 1744 lbs. Shearing area of one 1" rivet © 3.14 x .5 x 281 = .44258>.in. Allowable shear one one rivet = .4425 x 9000 = 3°80 lbs. AT THE COLUWR COMUNCTI UN fO TAN: gte water 252,500 lbs. " oF oylinder 6,900 * " * Hemis$herical bottom 3 312 * . * Piping 3 730 * " " roof, etc. £4” Total 269, 183* Ug%. on one connection « 269, 183/4 - 67, 296 lbs. ioe of §" rivets taking shear - 64 “hear on one rivet - 67,296/64 = 1052 lbs. Area of ;," rivet = .196 aq. in. Allowable value on one rivet « 196 x 9000 = 1765 i Test feB beariny value of : in rivets on 2/16 inch plate. Bearing area of one rivet = .1875 x .5 = .0938 sq. in/ Total bearing area = 64 = .0938 = 6.0 sce ine Unit bearing value - 67, 296/6.0 = 11,200 lbsf/s:. in. Allowable value - 15000 lbe per sq. in. STRESS 3 IN COLUMN C Ue TO MCCECTHICITY eapruaphaes beret Diagonal wind , and dead load plus water. 3 “RES DUS TOG LCChETRICITY Becentricity = the distance between the extended e@.of g. of the column proper, and the e. cf gz. of the column section at the connection to the tank. Me@a.e @ = 2.72 inches Moment due to eccentricity - tot:1 load on one column x @ = 68261 x 2.72 = 185, 600 in. Ins. Yake up of section at connection Cne 10" Chan, £ 157 One 8&* x 3/8" plate on outside of channel. Cne 6° x 34" x 3/8 arg. on each side of Chan, (x) axis coincident with the tack cf the ehannel Par (y) = 4.46 x .639 * .437 x 3 * 6.54 x 2.04 Jf 14.3 + 1.267 in. Homent of inertia avo t (x) axis thru the «. of ¢. ef section. ECR AUGIES Te 2(12.86 * 3.42 x 7732) = 23.82 PCR PLAT): Ie bd d3AN2 & 8 x .053/M12 * 3x 1832 2 2-11 FOR CHANT, Te 2230 © 4.46 x 0620" «© 4.06 Total I = 4.06 © 2.11 * 29.82 = 35.99 HeSI1/C 185, 600 - S x 35.99/4.73 S =» 24,400 los per -q. in. HERESY LS TO DRAGOVAL “IID aap ament of wind loads csiout the bottom of Panel — Moe 1500 x 20.3 * 5050 x 15.9 * 2020 x U5 * 2920 x 6 I @ 170,270 ft. lbs. Fe 9.39 ft. Ss sec ax 1/2 r 2 1.01 x 170,2/0 /18.75 = 9,1701bs. Unit stress - 9,170/14.3 = 642 lbs per av. in. STRYSS DUT TG DAD LCAD PIR CATE fetal stress = 69,000lbs. Unit " - 65,000/14.3 = 4620 lbs per sa, in. Ri SULTART COovoe Se LV) Cre i334 Rescentricity «- c4, 400 lbs per sq. in. Diagbnal Vind o- 642 * a bead plus vater=e 4, 820 * * «© & at 2 3 Total a uo ee * Allowable stress «= 16000-701/K " ® 2 16000070 x 1 xl12/1.505 " " = 15,400 lbs per sq. in. ITF eee ee y eft gyn rT ye a STROCECS LR SHO DEPAILs total compression on bearing plate = 506 lbs per sy. in. Test fer shear on crees-seetion of rivets connectim side angtesa to columns. Area of vlate covered by one arzle = 3* x 20" = 6C sy. in. “hearing feree = 60 x 506 = 30,400; Thia ferse taken by twe 3/4" rivets and two 5/5" rivets two 3/4" rivets & 9000 are worth 2( .442x9000)= 79507 Twe 5/6" * “ =# 8 & 29,307 x9000) 55§30f Total anount rivets can take 213,460 7 This is considerably less t:an 30,4007 Test fro shear on crossesection of four 3/4" rivets at back of solumn. Total foree taken bg these four rivets - 30,4060" 30x506 = 45,606; Value of four 3/4 * rivets in si-gle shear «4(.442 x9000) = 15,900/ Gne 7/4" rivet on 1/4" web of ehan. « 1000 is orth 33007 Tetal walue - 4 x 3380 - 13,50¢, hence bearing: coverns; but ie ruch lees than amount taken by rivets. Test to see if angles on the side of ths eolurme are thiek enbugh to take the shear. The angles are 3/8" thick and 20" long 20 & «375 = 7.5 oq. ine Al! owable shearing value - 10,000/ persq. in. One angle is worth 10,000 x7.5 = 75,000; It has to take only 30,405," Test on the ten 5/8" rivets on front of eolumn in single shear. Foree coming to the 10 rivets «© 30,400 * 87.5 x566= 74,800, One 5/8 rivet in single shear € 9000 is worth 2,756 # ven 5/5" rivets *® ° " * 4 e 8 29,6503 which is considerably lese than 74,::00-/ Max, uplift of 71,930" is taken by thirteen 5/0" rivete in sincle shear, which are worth only 37,950 7 Test of shear on riveta holding the diagonal toed D9 It is held by four 5/3" rivets Stress in rod ia 19,550,’ Total stress on section of rivets 219,¢50%.707-14,0307 Allowablé stress ©4x2765 = 11,000: Total shear on heais of rivets © 19,050x.707014,0306, Shear on cross section coverns 1.8 this is weaker than the head in shear. 38. CALCULATION CYOUNTT OTRA0 ES INO STRUTS ude up is two 5" ecahnnels & 6.5 7/ Same section used thruout the tower fotal max. stress = 12,060 compression area = 3.90 sq. in. Unit stréss - 12, 060 /3.9 = 3,100 lbs so. in. Area « 3.90 sa. ine Albowable stress = 16000 -70 L/it {x} axis considered as coincident with back of inaide chan. Bar (y) « 1.95 x 4.89 * 1.95 x 7.9./5-" = 4.24 inches. Heme of imertia sbout (x) thre c.of ¢. Im 468 © 1.95 x 3.752 © .88 © 1.95 x 30752 © 55.696 Heme of inembia about (y) axis thru ec. of c. I= 7.4 * 7.4 = 14.8 Re sq. poot 14. 8/3.9 + 1.95" L/R = 14.98 x 12 / 1.95 = 92.2 Allowed stress - 16000 ©70 x92.2 = 5,540; per sqein. 092Z9e oSezze OOF ite 006926 O0TSZe OSrvze 00l2Ze of 46te eeerse stHQ e00€e OSo¢Zze Sorics 0090Z~e oozéte ooZete OSt* Lie GOT’ {Te e0e0x38 Te302 trv *t *t $9d° S9d° s94° $9° S29$° 39 LATION C3 UNIT appraaces JN LEACTION eee VACING ca HORIZO TAL STRUT ~ P = stress im lacing bar - 2/0 A r ese.a/c Ao area of strut re least rad. of cyr. Co dést, motral axis to most remote fibre @ oe ahcle made by bar with axis of etrut csc.a 1.367 Pe 200 x 3.9 x 3.78 21.17 /§.01 ~ 963 # Lating bar is 1 7/4" x 3/4 " » .4375 ace ine Unit stress = 963/.4375 = 22007 sc. ine Test for shear on one rivet holding lasing ber. cose& = 2517 3S = shear on s ection of rivet S32 2x P £517 © 2x 963 x 0517 = 9978 one 5/0 " rive’ in virgle shear is vortn 2765% UNIT STRESSES IN CERUY COMICS TO Cons Same desizn used in each of the connections . S¢ gete the largest compressive atress of 12,060 # 5/8 in rivets on 5/16 in plate, shear fowverns. “Aight 5/8 in rivets take theestress in sinzle shear. Yalue of one 5/8" rivet in 6.5. = 2765 Connection is wbrth 8 x 27657 = 22,100/ These plates are bent and are riveted to the fhanges of the column cliannel. 396 Twelve 5/& ® rivets take the stress in“. 5. Stress on rivets = 12060 x .707 = 8540: Value of the rivets «+ 12 x 27 65 = 33, 200; STRGAS ON PINS Greatest stress produced in pin at the intersectbon Stress in 6 = 18400 # tens for one only " Da = 19850 , =O 1" * it Stress “ T4 » 3000 C n 1 a Horis. comp. of 1¢ ~ 18400 x16 ,65/25.31 = * 12, 100 Vertical * 8 4 = 18400x21.19/25.31 © © 15,400; Hordze “ ® Do . 19850 x 16.65/27 = 91 225¢# Vert. Vert. * 8 6 19850 x 20.5/27 = ~15060 conp.of Ta =3000; Horiz. " a Length cf sin is 9 inehes, @ Ty, bs at centre. Noriz.componet of the left reaction. Rew 12, 250 x 6. 30 © 12, 100 x 5.30/9 = © 1456}! Horiz.““oment at centre line T,4 Moe 1456 x 4.5 © 12,-50 x 1.875 * 12, 100 x .o075 £e 5870 in lbs. Noris. Homént at centre line Dé M = 1456 x 3.625 © 12,250 x 1 = = 6970 in lbs. Horig Moment at centre line Dy Moe 1456 x 2.625 = © 3230 in lbs. Vertical component of teft reaction. 40. R = 15060 x 6.38 © 15,400 x 5.30 -3000x4.5/O— 44.57 Vert. moment at centre line T4 Mio 044.5x4.5 © 15060 x 1.875 * 18400 x 2.575 = 149907 Vert, moment at eentre Aine 1¢ Yoo 44.5 x 3.625 #15060 x 1 © 15221 in lbs. Vert moment at cehtre line dD, Yow 044.5 x 2.625 = 117 in. lve. ax. resultant momeht occurs at "6 Moe square root of 69707 © 15 2212 = 16 760 in lbs. Diam. of vin» 2 in. fe = «734 * @ SIfe + 16760 = S x 2704 Se 21,400 # an. in. Allewable stress ~- 24,000) s1. in. 41. ALALY 1S CF FLOOR PLAS FP BALCONY 3G sae ft. as uniform load. Plate is 24" wide and 1/4 " thick Mew 12/8 Plate vehs,. 20.4 lbs per lin ft. Ms 60. 4x 14.137 /8 ~ 2010 ft lbs. Ife = 0.25 Ke 8 Ife = 2010 x12 - 8 x .25 S = 9,6607 sq. in. Allowable stress ~ 16,000f sq. in. ANALYSIS OF BRACES? CONNSCTICN TD CCLUTHS Foree tending to shear rivets 1/4 wet of baloony = 578} Univorm loadon floor plate = B4Be total 1426 Lever arm of force 2 10.5 in. ending moment 2 10.5 x 1486 - i5C00 in lbs. Distance between -ace lines of rivete - 2 1/4 in. Reeisted by four 5/c" rivete in single shear. S « stress on one rivet 42. 15000 = 2025 xX 4x 8 Ss 1667; Value of 5/8" rivet in S. 8, = 2765/! a " r Hl * bearing on 3/G" plate « 42° 0/ BTRESS IN ANCHO: BOLTS. _ axe uplift total - 71930; Vert. comp. in a anchor bolt = 71930 x 156,3/1.01 KX 157eje= = 70,700# Diam of anchor bolt - 2*® at root of thread Unit stress in anchor bolt »= 70,700/3.14 = * 22,500; 43. ee ACTOR CR OSARZTY AGATNSY UPLIPY . aap Loments about axis of shoes. Over turning moment cue to wind. Roof (15007 x 172.61 ) = 259,000 Tank & Bal(5092 / x163.21 ) « 831,000 Hem Bot. (2020 # x 192.51) = 309,000 Py (2300x 150.31 ) - 346,000 Ps (4550x 134.02 ) - 610,000 P3 94470 x 113.44 ) - 507,000 Py (4827 x 92.66 } = 445,000 Pe (5010 mw 72.25 ) oe 362,000 ” Pe (5220 x 51.7.) = 270,000 Po (5450 x 31.12 ) » 16) ,500 P. (3600 x 10.54 )- 38,000 total overturnin: moment 4,149,500 ft.lbs. Sesisting moment - Tank empty « oments about exis of shoes. Entire wst. of steel in tower. 56,0128 subtract 50°) of wat. of pipe _ 34730 het Total = 594,260; Lever arm of wyt. of steel = 1/2 square custance of tower be tween anchor bolts - 18.5 ft. 54,288% x 18.5 - 1,005,000 ft. lbs. wate of 2 pliers - 2 x42,850/ = 85,700f lever arm» 37 ft. 44. S5,7007 x 37° = 3,170, 0007 Calculation of wt. of earth aroun’ pier viieh offers resistance to everturning:. Vbdlume of masonry pier - 288.cu. ft. Volume of soli@é ecual to area of base of pier times height of pier, eouals 10° x 10* x 5.25° = 525.cu. ft. 525 « 788 «© 237 cue ft. of earth. wiete of earth on 2 piers. 237 X22 474 cu. ft. wote of earth = 1007 per cu. ft. 474 x 100-6 47,400 lever srm ecualg 327 ft. 47,400 x 37 = 1,755,000 ft. lbs. otal resisting moment. _ Steel 1,005,0C0 asonry piers 3,270,G00 “arth 1.755,000 Totar 54°930,000 ft. lbs. Factor of safety sg-inst™: overturning « 5,930,000 ¢-= 4,149,500 ~ 1.43 45. CBMTT cy DATA Ct! FOUNBATICONS oe LQAVIID CONDITIONS (a) ‘ith four panels of tower in place taken Feb,l2y 1916. (bd) with all the steel in place April 7, 1916. SARUN UNDER VARLOUS (ce) with water on tank, June 2,1516. Newrth ‘iest Pier “Levatiors @ corner 182 107 13) 02 184.106 Ny 103.151 103.144 103.151 ge 8 103.142 103.139 103.141 Ss # 103.1% 103.129 103.131 Korth Sast Fier a Comer 103.165 103.2256 103.162 y 8 103.121 103.097 103.104 Bg 8 103.116 103.106 103.108 g 103.135 103.116 103.128 South Bast Pier W “orner 103.122 103.125 103.109 n|6Off 103.112 163.098 103.109 B " 103. OFF 103.086 193.091 8 " 103.071 103.065 103.067 South . est Pier Slevati ons W Corner {8 65 (PF 362 18) 65 No 103.173 103.156 103.172 gE $ 103.152 103.146 103.148 gS 103.169 103.161 103.165 three pipes were driven ir the ground near the Nort!: -est pier Pipe Nest of pier (a) (b) (ec) pipe 4 ft. long 103.244 103.141 103.141 Hast of Pier (2) 6 ft.from pier6ft long 10 2.969 102.961 32.966 (2) 9ft. ® "748 Yong 103.010 103.C06 103.0R83 The above data chowa that the Vier s have not settled materially. ‘che apocrent rice in the elevations of the piers in the later survey is in all probability due to an error in the neight of instrument. HE BEFECT CR OOUE FUCUE BUILDING MACAVATION CN THE SARSTY OF THE TOY It is a know fact thet culekesanmi is predoninant in the subegoil of the 2 AC campus. ‘therefore ti:e most logical thing to have done would have been to set the piers on piles. If future excavation caused the cuick sand to run, the failure of the tower could cause matcrial damege to adjoinghg property. 47 CRITISIZM YITH RESPECT BIRCH WORDS SPECIFICATIONS. Numbers refer te spee, articles as queted in Ketchums SHB 10, Fer ceupression numbers, the permissible unit stress ef 16,000 1d. shall be reduced by the fermula: p-16,000- 701/r, where p- permissible werking stress in compression, in lb. per sq. in. le length ef member, frem center te center ef cennectiens, in inches; re least radius of gyration ef section, in inches, The ratie, l/r, shall mever exceed 120 for main members ané 180 fer struts and roef censtruction membddes. The allewable value ef 1 4- ris net exceeded in any ef the members, However the sllewable unit compressive stresses are exceeded in all of the parts of the eolumus. The most extreme cases are an excess ef 95% in column C) and am excess of 67% in celum Cg. il, Stresses due to wind may be neglected if they are less them 25 per cent of the eombined dead and live leads. All wind stresses are in excess of 25% ef the combined dead and live lead. 12. Unit stresses én Bracing and ether members taking wind stresses may be increased te 20,600 lb. per se. in, except as ehown in Seetien 11, In the @nsion members of the bracing the aellewable stress of 20,000 lbs. per sq. in. has been exceeded in nearly every case. The extreme case being an excess of 35%. 48 13. Pertiand cenent CONCTECE. cccccccccccesse 350 lb. per sq. in. The allewable unit pressures en the piers are exceeded 45%. 14, The plates forming the sides ef cylindrical tanks shall ve ef different diameters, so that the courses shall lap eve each ether, inside and outside, alternately This item has been very aptly complied with, 15. The jeints for the horisental seams, and fer the radial eeame in spherical bdbettoms, shall preferably be lap joints, The lap joint has been used throughout this design. 16. Fer vertical seams deouble-riveted lapjoints shall be useés fer 1/4,5/16, and 37/8in. plates. Triple lap jeints shall be used fer 7/16 and 1/2 in. plates; double-riveteé butt joints shall be used fer 9/26, 5/8, 11/56 and 3/48n. plates; and triple-rivited butt joints for 13/16,7/8, 15/16 ané I in, pilates. | Single riveted lap joints with 3/16 ineh plates have been used, which is allewable with plates less then 1/4 invoh, 17. Rivets 5/8 in. in diameter shall be used for 1/4 in, Plates; rivets 3/4 in in diaméées shall be used for 5/16" plates; rivets 7/8* in diameter shall de used for 3/8 te 7/8 in. plates, inclusive, Rivets 1° im diaméter shall be used fer 15/16 in, and 1 in. plates. 1/2* rivets have been used which is allewable with 3/16 inch plates. The efficiency f2lls slightly belew the spec- ified amount. The lewest value deing about 65%. 49 18. In no case shall the spacing between rivets along the cah- ked edges of piates de more than ten times the thickness of tke piates. All rivets shall be entered from the inside of the tank, and shall ve driven from the outside, that is, new heads om rivets shall always be formed from the opposite side ef the piate on which the caulking is done, This requirement has been cemplied with, 20, jj The minimum thickness of the plates fer the cylindrical part shall be 1/4in. The thickness ef the plates in sphericald vettoms shall never be less than that ef the hewer course in the eylindrical part of the tank. The thickness ef the plates in the cylindrical part ef the tank are 3/16 ef an inch thick which is thinner than the required amount 25. The radial seetions ef spherical hottoms shall be madd : in multiples of the number ef columns supporting the tank, and shall be reinforced at the lower parts, where heles are made for piping. There are 12 radial sections ef the spherical dbattou and this is a sultiple ef the 4 columns. The spherical bottom 4s reinforced with a circular hea@ plate where the piping is connected, 26. When the center of the spherical bottom is above the point ef cennection with the cylindrical part ef the tank, there ehall be provided a girder at said point ef connection te take the horisental thrust, The herisontal girder may be made in « r 50 connection with a balcony. This also applies where the tank is eupperted bg inclined columns, The centre of the spherical bottom is at theline. of eemmection ef the epherical bottom te the cylindrical part, se there is no horizontal thrust, 27. The balcony around the tank shall be 3 ft wide, and shall have a floor-plate 1/4 in. thick, which shail be punched for drainage, The balcony shall be provided with a sutiable railing, 3 ft 6in. high, This item has net been strichiy adhered to , The baleeny is 24 inched wide, made of 1/4 ineh plates, and the railing is 2 ft 9-3/4" high. 28. The upper parts of aphefical dettom plates shall al-ays be cennected on the inside ef the cylindrical seetion eof the t& The plates of the spherical bottom are eennested to the adnside ef the plates of the cylindrical part. 29. in erder to avoid eccentric leading on the tewer eolwnns, ané lecal stresses in spherical bottoms, the cennections bet- ween the colunns and the sides ef the tank shall be made in such a manner that the center of gravity of the celumn seetieg intersects the center of connections b tween the spherical pettem and the sides ef the tank, Enough rivets shall be provided above this intersection to transmit the total column & lead. This item has been somewhat overlooked th this design; and eecentric stresses ef considerable value are proeduced. The riveted connection at this point $a streng enough to tranemit the load, 30. If the tank is supperted en columns riveted directly to the sides, additional material shall be provided in the tank plates riveted direetiy to the columns to take the shear. The shear may be taken by providing thicker tank plates, er wy reinforcement plates at the column connestions, while pending moments shail be taken by upper and ijewer fiange , angles. Cennections te columns shall be wade in such a manner that the sfficiency ef the tank plates shall not be less that that of the vertical seams. There ie ne additional, material riveted te the tank plates, however they are safe in bearing value. There is a Piate riveted te the outside of the channel of the celumn to strengthen the web in bearing value. The efficiency of the tank plates at this cennection is about 95% while the effice dency sf a vertical joint is about 65%, 32. Yer high towers, the columns shail have a vatter of 1 te 12, The height ef the tower shall be the distance from the tep ef the masonry te the conneetion of the spherical pottem, or the flat bettem , with the eyiindrical part of the tank, The ceolwans have a batter of 1-3/8 inches im 12 inches. 52 32. Near the tep ef the tank there shall be provided one Z-bar to act as a suppert for the painter's trolley, and fer stiffening the tank. Its section meuunlus shall net be lees than “/250. where D is the diameter of the tank in feef. If the upper part of the tank is theroughly held by the reef constructions this may be reduced, There is ne 2 bar to act as a support for the painter's trelley and for stiffening the tank there is a 3° x 2* x 1/4® angle at the tep ef the tank. ts section modulue is 0.26 in 3 fer bending in a vertical direction which is eensiderably less than p 250 33. ##Gn large tanks, circular stiffening angles shall be 1.02 previded in order te prevent the plates from buckling during windstorms, The distance between the angles shall be det- ermined by the formula : é 960 st /R wnaere q apprenin- ate distance between angles in feet; te thickness ef tank plates in inches; De diameter ef tank, in feet. 4- 990 3 = 24.3 feet. He cireular stiffening angles are required in this design, and none are placed on the tank, 34, The tep ef the tank wiil generally be severed with a eemical reef ef tin plates ; and the piteh shall be one to siz. For tanks up te 22ft in dian. , the reef plates will pe assumed to be self supporting. If the diameter ef the tank exeeedes 22 ft, angie rafters shall be used to suppert the reef plates which are generally 1/8" thick 53 Plates ef the following thickness will be assumed te be self supperting fer various diameters; 2/32 inch plate, up to a diameter of 18 feet, i2/8* plate up te a diameter of 20 feet 3/16 inch plate, up te a diameter of 22 feet. Rivets in the reof plates shall be from 1/4 to 5/16 ef an inch in diameter and shall be driven cold. These rivete need met be headed with a button set, The piteh ef the reof is greater than 1 te 6 inch The roof plates are 2 1/8 inch thick, as the diameter of the tank 1s 16 ft, the plates are self supperting. The rivets are §/16 ineh reund. 35. The trap deor 2 feet square, shall be provided in the reof plate, Hear the tep of the higher tanks, there shall be a platform with a railing for the safety of the men operating the trap doer, There is a trap door 22 inches by 28" There is neo platform «nd railing. There is an ornamental finial. 37/ There shall be a ladder i fost 3 in, wide, extending from a point about 8 feet above the foundatien te the tePof the tank, and also one on the inside ef the tank. Each ladder shall be made of twe 2-1/2 by 37/8 in. bars with 3/4*° round ruggs ene foot apart . On large high tanks 30 feet or more - in diameter, a walk shall be provided frem the celumn nearest the ladder te the expansien joint on the riser or inlet nipe. The ladder extends from the piers to the tep of the tank, 54 It is ene foot 2-1/4 inches wide; the bira are 2 inches by 7/8 ineh; and the runcs are 3/4 inch round and are spaced ene foot apart. 38. In designing a tank a height of 6 in. shall ve added to the required height ef the tank if an overflow pipe is not specified by the owner, The riser or iniet pipe is & Sk.inckes in diameter, Pher is am cutie? pipe 46. All pipes entering the tank shall have ca:t fren expansion joints with rubber packing and facilities for tightening such joints the expansion joint, generally, shail be fastened te the vettom of the tank with bolts having lead washers, The tank piates shail ve reinforced where the pipe enter the tank, Thies design has ea cast iron expansion joint wiht drass packing; there is a bsoit for tightening the joint, The expansion joint is fastened te the tank with rivets 41, All pipes entering the tank shall be thomeughly braced latterly with adjustable diagonal bracing at the panel points of the tower . There are latteral brace rods, diagonally placed at the panel points fer strengthening the inlet pipe, 42. The diagonal bracing in the tower shall preferably be adjustable, and shall be calculated fer an enitial stress 3000 1b. in adition to wind atresses atc. | The max uplift is 71,930 lbs. The anchor belts are fastened directly toe the columns by the means of bent piates vearing on angles. 55 43. The sise and nwebder of the anchor bolts in the tower enall be determined by the waximus uplift when the tank is empty, The anchor volts in the tower, where the sazinua uplift is gre:ter than 10,009 lb,, shall be fastened directly t® the coluwne with bent plates ex cimilsa® details. In all ether cases 1% wouldbe eufficient to cennect the ancher belts direetiy to the base pinates, fhe tenaion and anchor belts will net excesé 15,006 lbs per oq. in, ef net sres. The sénimum section shali be limited to a diaweser of 1-1/4 in. The details shall be wade ga that the unchor bolts will develop thisr fgil strength and at the lewer end, they shali be furnished wita an ancner pixte, mot less tian 1/2 in. thick to assure good anchorage te the foundation whtheut depending on the adhesion between the eonrete and e«teel , Tne anchor bolts 2inenes in diam. The anit tension in the anchor bolt is 22,9060 libs. per sq. in, which exceeds the allevable value ef 15,900 lbs. per dq, in. a44/ The conerete foundation shall be assumed to have a weight ef 140 pounds per @ cu. ft. and shall be sufficient fim quantity te take the uplift, with a factor of safety of 1-1/2. The facter of sa-fsty against everturning is 1.395 which is slightly below the specified value . 56 45. Three-ply frostproof casing shall be provided if mum meeesvary , round the pipes leasing te and from the tank. Thies casing shall be eomposed of two layers ef 7/8 2 2-1/2 inch dressed lumber g and each layer shall be covered with tar paper er tarred felt, and one outside leyer of 7/5 x 2-1/2 in, dressed ané matched flooring. The luwaber shail be in lengths of about 12 ft. The-e shall be a one inch air spxrce between the layers of lumber ahd wooden rings er seperatoras chall de nailed te them every three feet, ( In very cold climate it is good practise te £111 the space between the nipas and the first Layer of lumber with hay er sindlar material) The frost ceasing may be square er cylindrical; it shall se braced ta the tewer with adBustable diagonal bracing, as ) oe = ee ) = 8 Be | — a> Ce 3) oe as 1) Rose o a ad ti = fe eee a lg K